AVIRIS SPECTRA CORRELATED WITH THE CHLOROPHYLL CONCENTRATION OF A FOREST CANOPY

John Kupiec
Geoffrey M. Smith
Department of Geography, University College of Swansea,
Singleton Park, Swansea SA2 8PP, United Kingdom.
and
Paul J. Curran
Department of Geography, University of Southampton,
Highfield, Southampton SO9 5NH, United Kingdom.

1. INTRODUCTION

Imaging spectrometers have many potential applications in the environmental sciences. One of the more promising applications is that of estimating the biochemical concentrations of key foliar biochemicals in forest canopies (Peterson et al., 1988; Wessman et al., 1989; Johnson and Peterson, 1991). These estimates are based on spectroscopic theory developed in agriculture (Curran, 1989) and could be used to provide the spatial inputs necessary for the modelling of forest ecosystem dynamics and productivity (Committee on Earth Sciences, 1989). Several foliar biochemicals are currently under investigation ranging from those with primary absorption features in visible to middle infrared wavelengths (e.g., water, chlorophyll) to those with secondary to tertiary absorption features in this part of the spectrum (e.g., nitrogen, lignin). The foliar chemical of interest in this paper is chlorophyll; this is a photoreceptor and catalyst for the conversion of sunlight into chemical energy and as such plays a vital rôle in the photochemical synthesis of carbohydrates in plants.

The aim of the research reported here was to determine if the chlorophyll concentration of a forest canopy could be correlated with the reflectance spectra recorded by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

2. DATA COLLECTION AND METHODS

The study site is located 35 km NE of Gainesville, Florida. Fourteen plots (50 X 50 m) had been established in a mature stand of slash pine. Half of these plots had been fertilised and the other half were controls (Gholz et al., 1991). Each plot had a uniform canopy structure and similar background.

In July 1992 twenty needle samples were collected from the upper canopy of each of the 14 plots. Chlorophyll concentration was determined in the laboratory using standard spectrophotometry of tissue extracts in a 90% acetone solution (Mackinney, 1941). The mean chlorophyll concentrations were 2.10 mg g\(^{-1}\) (σ 0.82 mg g\(^{-1}\)) and 1.33 mg g\(^{-1}\) (σ 0.40 mg g\(^{-1}\)) for the fertilised and control plots respectively.
Four images of the study site were recorded by the AVIRIS within a 50 minute period on the 8th July 1992. These images were atmospherically corrected to 'scaled surface reflectance' by The Centre for the Study of the Earth from Space (CSES) at the University of Colorado in Boulder using the 'Atmospheric Removal Program' (ATREM) (Gao et al., 1992). The 14 plots were located within each image using an affine transformation calculated from ground control points. Two check points indicated an average error of less than one pixel. A reflectance spectrum for each plot was extracted from each of the four images. These spectra were averaged by plot and transformed to a first derivative of the reflectance values.

3. THE CORRELATION BETWEEN FIRST DERIVATIVE REFLECTANCE AND CHLOROPHYLL CONCENTRATION

Correlation coefficients between first derivative reflectance and chlorophyll concentration were calculated for each AVIRIS waveband (Figure 1).

Figure 1. Correlation coefficients between first derivative reflectance and chlorophyll concentration for 14 plots. Note that the very low signals in the water absorption bands have been rescaled to zero.

The maximum correlation coefficient is 0.85 and occurs at a wavelength of 723 nm. This is located on the edge of the chlorophyll absorption feature in a spectral region used by others for the spectral estimation of chlorophyll concentration (Gates 1980; Baret et al., 1987; Curran et al., 1990).

First derivative reflectance data at 723 nm were extracted from the first derivative spectra and plotted against chlorophyll concentration (Figure 2). The relationship between these two variables is not only near linear it is also functionally direct. An increase in chlorophyll concentration will result in increases in the depth of the absorption feature, the steepness of its long wavelength edge and thereby the first derivative of reflectance.
Figure 2. First derivative reflectance at 723 nm plotted against chlorophyll concentration for 14 plots, of which 7 are (C)ontrol and 7 are (F)ertilised.

Stepwise regression was used to explore further the relationship between first derivative reflectance and chlorophyll concentration (Table).

Table. The results of a stepwise regression analysis between first derivative reflectance and chlorophyll concentration.

<table>
<thead>
<tr>
<th>Step No.</th>
<th>Waveband (nm)</th>
<th>R^2</th>
<th>Change in R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>723</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>2</td>
<td>2371</td>
<td>0.87</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>1552</td>
<td>0.96</td>
<td>0.09</td>
</tr>
</tbody>
</table>

The first step of the regression analysis selected the wavelength in which there was the largest correlation between first derivative of reflectance and chlorophyll concentration (723 nm); this accounted for 73% of the variation in chlorophyll concentration. Subsequent selections were for wavelengths reported to be associated with other foliar biochemical constituents (Williams and Norris, 1987). Research is in progress to explain these subsequent wavelength selections.

4. CONCLUSION

This is the first study to report a correlation between the AVIRIS spectra and chlorophyll concentration. The challenge ahead is to correlate the AVIRIS spectra with other foliar biochemicals (e.g., water, nitrogen, lignin, cellulose) and then to use this experience as a basis for the design of methodologies for the estimation of foliar biochemical concentrations.
ACKNOWLEDGEMENTS

We wish to thank Professor H. Gholz (University of Florida, Gainesville) who established the study site with funding from the NSF and provided support and advice throughout this research. The research was funded by the NERC (UK) by means of a research grant to PJC and a studentship to GMS and the NASA Earth System Science Division by means of a research grant and AVIRIS flight time to PJC.

REFERENCES

