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Transferring Ecosystem Simulation Codes to Supercomputers

J. W. SKILES* AND C. H. SCHULBACH

Ames Research Center

Summary

Many computer codes have been developed for the simu-

lation of ecological systems in the last twenty-five years.

This development took place initially on main-frame

computers, then mini-computers, and more recently, on

micro-computers and workstations. Recent recognition of

earth system science as a High Performance Computing

and Communications Program Grand Challenge area

emphasizes supercomputers (both parallel and distributed

systems) as the next set of tools for ecological simulation.

Transferring ecosystem simulation codes to such systems

is not a matter of simply compiling and executing existing

code on the supercomputer, since significant differences

exist between the system architectures of sequential,

scalar computers and parallel and/or vector supercom-

puters. To more effectively match the application to the

architecture and achieve reasonable performance, the
parallelism, if it exists, of the original application must be

exploited. We discuss our work in transferring a general

grassland simulation model (developed on a VAX in the
FORTRAN computer programming language) to a

Cray Y-MP/C-90. We show the Cray shared-memory

vector architecture and discuss our rationale for selecting

the Cray. We describe porting the model to the Cray and

executing and verifying a baseline version, and we discuss

the changes we made to exploit the parallelism in the

application and to improve code execution. As a result of

these efforts, the Cray executed the model 30 times faster
than the VAX 11/785 and 10 times faster than a Sun 4

workstation. We achieved an additional speed increase of

approximately 30 percent over the original Cray run by

using the compiler's vectorizing capabilities and the
machine's ability to put subroutines and functions "in-
line" in the code. With the modifications, the code still

runs at about five percent of the Cray's peak speed

because it makes ineffective use of the vector and parallel

processing capabilities of the Cray. By restructuring the

code to increase vectorization and parallelization, we
believe we could execute the code six to ten times faster

than the current Cray version.

*Johnson Controls World Services, Inc., Cape Canaveral,
Florida.

Introduction

Scientists involved in ecosystem studies have used models

for many years. Models help explain processes in ecosys-

tems that cannot be observed or measured explicitly. They

serve to direct study to areas where data and understand-

ing are missing. Further, models allow manipulation of

simulated ecosystems not feasible with the actual system

because of time, budget, or conservation constraints. The

tools for ecosystem modeling, especially computing plat-

forms, were also evolving simultaneously.

Ecosystem model development began with the use of

mainframe computational platforms (ref. 1). Models were
submitted to a queue in the form of card decks, executed

in batch, and output returned as hardcopy, hours or days

later. Mini-computers eased the turnaround time between
job executions because they were more affordable. Since

there were more of them, they usually operated in a time-

sharing mode, and they offered greater access to graphic

and peripheral plotting devices.

The advent of the micro-processor brought computing to

the individual user. Large facilities were no longer neces-

sary for computing, and many specialized output devices

and applications became available for the display of

model output. Ecosystem modelers, over this same period
of time, have continued to demand faster and faster rates
of execution and more and more core or random access

memory (RAM). Supercomputing platforms would seem

to meet these continually rising demands.

Though signs of documentation of supercomputer use are

beginning to appear in the ecological literature (refs. 2-4),

supercomputers, generally located in large facilities, were

bypassed and never fully embraced by the ecosystem

modeling community. (We except here those ecosystem
models that use output from or are linked to global cli-

mate models (GCMs), since many use supercomputers for

execution (refs. 5 and 6).

Bypassing of supercomputers by the ecosystem modeling

community occurred for a variety of reasons: supercom-

puter time is perceived as expensive and difficult to obtain

because of the paperwork needed to open and maintain an
account; supercomputers are a limiting resource for mod-

elers and CPU time is not always available at accessible

installations; control languages and compilers are often



different from standards in the computer industry and

necessitate the user learning new commands in order to

execute a model. In addition, network connections used to

transfer code, data, and output between the supercomputer

and the user's front-end computer (perhaps a workstation

or desktop computer) are slow, difficult to use, and again

require the user to learn new commands. Finally, the sup-

posed decrease in execution time of model codes is not

fully realized because of the above considerations and

because the ported code often does not take advantage of

supercomputer architecture.

A growing emphasis on the grand challenges in ecological

modeling is changing the use of supercomputers in the

field. Ecosystem science is included in the Earth and

Space Sciences grand challenge area for NASA in the

High Performance Computing and Communications Pro-

gram (ref. 7). One such grand challenge is determining the

global carbon balance. Models designed for calculating

this balance (ref. 8, for example) use large data sets for

initializing and driving the simulation. Large data matri-

ces holding intermediate and state variables are also main-

tained and manipulated during these simulations, neces-

sitating large amounts of RAM and fast execution times in

order to perform large numbers of simulation

experiments.

Figure 1 shows the development of computer capabilities

over the last two decades and the projected Earth and

Space Sciences Computing Requirements in terms of

speed and memory. NASA now emphasizes the use of

supercomputers (both parallel and distributed systems) as

the next tool for ecological simulation and is making

supercomputer platforms more readily available to ecosys-

tem modelers. Ecosystem modelers would benefit from

the use of supercomputers because they could more read-

ily simulate large geographical areas with reasonable

turnaround time; be able to execute large unit time simula-

tions (many days or years) ordinarily taking too much

time on a lower-level computing platform; be able to use

large remote sensing data sets to drive the model or use as

validation; and be able to do more model scenario testing

or gaming with fewer real or clock-time constraints.
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Figure 1. Past, present, and predicted earth and space sciences computing requirements displayed as computer speed

versus words of memory. MFLOPS is millions of floating point operations per second; NWP is numerical weather predic-

tion. (Redrawn from J. Bredekamp and J. Harris, NASA Headquarters; personal communication.)



The need for the advanced computational systems shown

in figure 1 may not be apparent now, but the projected

increase in computing capabilities will enable ecologists

to attack problems that are thought to be too large or too

difficult today (ref. 9). For example, statistical mechanical

theories of interacting species have been developed in

community and ecosystem ecology. However, the theories

have had little impact on the discipline because the neces-

sary simplifying assumptions cannot be justified biologi-

cally (ref. 10). The simplifications have been imposed by

computational limitations. The further development of

predictive models in the earth and biological sciences will

continue to strain the capacity of the most powerful com-

puters. These models will require new techniques for

handling wide spatial and temporal scales, stiff systems of

equations, the processing of very large volumes of data,
and advanced distributed data management and informa-

tion systems (ref. 11), as well as techniques for the visual

presentation of model results.

In this paper, we address the concern of maximizing use

of supercomputer architectures. We use an ecosystem
simulation model (see Ecosystem Model Description sec-

tion) constructed on a Digital Equipment Corporation

(DEC) VAX 1 mini-computer and tested on several main-

frame computers to standardize the code and to establish

conformity of output. We describe transferring that com-

puter code to a Cray C90 supercomputer. We detail the
obstacles we encountered in this transfer, our solutions,

and the changes in code structure we made in order to

maximize processor use and minimize CPU time.

Assumptions

Before we began this work, we made some assumptions

pertaining to porting existing models to supercomputers.
The first assumption is that the model performs as it was

designed to perform on lower-level computing platforms.

It makes no sense to move a model to a supercomputer if

it is not functioning properly on the original machine. The
model we used met this criterion.

The next assumption is that the users who are moving the

model have knowledge of the model and of the data

required to execute the model. The users need to know
about the model in order to detect errors in execution or

output once the model is running on the supercomputer.

The users also need to know how many and what type of

files are required to initialize and execute the model. This

familiarity helps in understanding the input/output (I/O)

data structure(s) utilized and produced by the model.

1Use of trade names in this paper is for convenience only and
does not imply endorsement by the National Aeronautics and
Space Administration or by the U.S. Government.

Users should have complete output from the model that

was produced on a low-level platform for comparison

before the model is moved to a supercomputer.

The users are also expected to have good documentation

in hand in order to track down output deviations from the

standard output once the model is ported. Too often model
documentation consists of notes and scribbles collected in

a loose-leaf binder, or it resides in the modeler's head and
is not available to other users. Good documentation is

especially important if the users doing the porting to a

supercomputer do not have first-hand experience with the
model.

Lastly, we assumed that we would have access to a super-

computing platform. As mentioned above, supercomput-

ing resources are often limited, and we needed to be able
to access the chosen machine over a local or wide area

network as required.

Earlier drafts of this manuscript benefited from contribu-

tions by Hector D'Antoni, Christopher Potter, and Don
Sullivan.

Computer Platform Description

When computers were first introduced, they generally fol-
lowed what is now referred to as the "von Neumann"

architecture, after John von Neumann who proposed this

computer architecture in the 1940s (ref. 12). This archi-

tecture consists of a control unit (program counter and

instruction fetcher), the processor (arithmetic and logic

unit), and a memory containing the program and data.

Operations are performed one at a time in the order they
are encountered. Since this method is inherently limited, it

was not long before a number of concepts were proposed

to enhance the speed of execution. The result is today's

high performance computers that can process data at

speeds exceeding GFLOPS (billions of floating point

operations per second). These speeds are obtained through

replication of processors and the use of other techniques

(see next section). However, such GFLOPS speeds cannot

be obtained unless applications can make use of the paral-
lelism of the architecture. In fact, many applications may

achieve only a few percent of the top speed of the super-

computing machine.

We next explain some of the methods for exploiting

parallelism in computer architecture, provide our rationale

for choosing the Cray, and give a short overview of the
architecture of the Cray C90. More detailed information

on computer architecture and the Cray systems can be
obtained from references 13-15.



Parallelism in Computer Architecture

The use of separate processors, introduced to handle input

and output (I/O) functions, was one of the first examples

of parallelism in computer architecture. Later, interleaved

or banked memories were used to improve data access

speed, and independent functional units were created in

which machine functions were assigned to specialized

units able to execute simultaneously. The CDC 7600, for

example, had independent functional units: floating-point

add, long add, floating-point multiply, floating-point

divide, increment, shift, Boolean, normalize, and popula-
tion count. These functional units could be pipelined
as well.

Pipelining consists of using assembly line techniques to

increase throughput. Tasks are divided into stages, and

separate pairs of operands occupy different stages simul-

taneously. Figure 2 shows a possible pipeline for floating-

point addition. If each stage of the pipeline requires

10 nanoseconds, then, at the beginning, the first pair of

operands enters the pipe; the next pair enters
10 nanoseconds later, and so on. After 40 nanoseconds,

the first result is produced. Every 10 nanoseconds after

that, another result is produced. Pipeline techniques can

apply not only to the execution of instructions, but to

instruction processing as well. Instruction processing can

be divided into phases such as instruction fetch, instruc-

tion decode, and operand fetch.

Computer systems available in the mid- to late-1960s used
many of the techniques mentioned here to improve pro-
cessing speed. During this period, computer architects
realized that parallelism could be achieved in additional
ways. Flynn (ref. 16) proposed a classification scheme
that related machines and their instructions.

I I
Adjustexponents Stage 1 [ IONS I

I I
,d. mantiss,s Stage2 I lONe [

I I
I lO. I

I I
Round Stage 4 I lOBS ]

Figure 2. Example of a pipeline for floating-point addition.

The operation begins at the upper right.

Flynn's Classification Scheme

Figure 3 summarizes Flynn's classification scheme. This

scheme describes the function of a computer system, not

its architecture, but it is widely used to provide a frame-

work for discussion. A stream is a sequence of items,

either instructions or data, operated on by a processor.

There can be a single stream of instructions or data, or

multiple streams. The von Neumann architecture is in the

single instruction stream, single data stream (SISD)
machine class. All non-von Neumann machines fall into

either the single instruction stream, multiple data stream
(SIMD) or multiple instruction stream, multiple data

stream (MIMD) class because the MISD class is generally

considered empty.

Single
data

stream

Multiple
data

stream

Single
instruction

stream

Multiple
instruction

stream

Figure 3. Flynn's taxonomy of computer architecture.

Within the SIMD class, two general types of architecture

occur. The vector, or pipeline, processor represents an

extension of the idea of pipelined functional units. There

is still only one control unit issuing instructions, but one

instruction can cause an operation to be carried out on a

sequence of elements. The operations are done in a

pipelined manner. The Cray 1 and Cyber 205 computers

are examples of pipelined or vector processors.

The other type of SIMD machine is the array, or parallel,

processor. It is characterized by replicated processing

elements directly connected to a single common, control

unit. Each processing element has its own registers and

storage. The processors operate in lockstep under control

of the single control unit. Early examples of array proces-

sors are the ILLIAC IV and the Massively Parallel Pro-

cessor; a more recent example is the Thinking Machines
Connection Machine CM-2.

The MIMD machines, or multiprocessors, consist of mul-

tiple processors, each obeying its own instructions. As

with SIMD machines, there are two general approaches to

this class: (1) shared memory multiprocessors, and

(2) distributed memory multiprocessors.

4



Insharedmemorymultiprocessors,aprocessingelement
hasacontrolunitandanarithmeticunit,andtheprocess-
ingelementsshareacommonmemory.Theremaybea
multi-portedconnectiontothememoryelement(s),orthe
processingelementsmaybeconnectedthroughsomesort
ofconnectionnetworkorswitchingnetwork.The
CrayX-MP,CrayY-MP,andCray2computersare
examplesofthiskindofarchitecture.

Withdistributedmemorymultiprocessors,eachprocessor
hasitsowncontrolunit,memory,andarithmeticunit.
Theseprocessorsmaybeconnectedinavarietyoffash-
ionsnotdiscussedhere.Dataislocaltoaprocessor,and
communicationisviaexplicitmessagepassing.Examples
ofsuchmachinesincludetheInteiiPSC/860,Delta,and
Paragon,andtheThinkingMachinesConnection
MachineCM-5.

Selecting the Cray Platform

We selected the Cray C90 for our initial effort in

porting and modifying our ecosystem model based on

four considerations: (1)potential vectorization

capability and parallelism with multiple processors,

(2) availability, (3) ease in porting, and (4) maturity of

software. Although we had other platforms available

(such as the Intel iPSC/860 and Thinking Machines
CM-2), we decided that the Cray would be best for estab-

lishing an initial baseline output and execution

time for the model. Using the Cray would allow us to

invest less time learning the computer system and

more time executing and optimizing the model. The char-
acteristics of Cray systems are well known, and

the software is very mature. Also, many experienced

supercomputer users acknowledge that getting their

codes to run well on a Cray is the first step in getting

them to run well on other supercomputers.

Cray Architecture

The Cray 1, the first commercially successful vector pro-

cessor, was delivered to computer users in 1976. It

included multiple, special purpose, pipelined functional

units that could operate concurrently. The Cray 1 had

8 vector registers, each with 64 64-bit words, a radical

departure from the 16-bit and 32-bit sequential machines

in use at the time. Along with the vector registers were

additional machine instructions for manipulating the vec-

tors as units. Operations took place from one register to

another. The registers received data from and sent data to

main memory using starting location and an increment
(>1). The main memory for the original machines con-
sisted of 1 million words divided into 16 banks that could

operate concurrently. The section on data representation

explains more about the characteristics of Cray floating-

point arithmetic.

The Cray 1 had a special feature called "chaining" that

helped increase the speed of computation. Chaining pro-

vided the ability to link vector operations so that they

operated as one continuous pipeline. The result of a vector

instruction was fed directly into the pipeline for the next

instruction without waiting for the first instruction to

complete arithmetic on all elements. Thus, once the
chained pipeline was filled, multiple operations were

completed each clock cycle.

The vector operations and the chaining capability resulted

in a peak performance for the Cray 1 of 160 million

floating-point operations per second (MFLOPS). The rate

of 160 MFLOPS assumes that both the multiply and add

functional units could produce a result each clock cycle
(12.5 nanoseconds).

The Cray C90, the newest of the Cray products, can con-

tain as many as 16 processors and up to 1024 million

words of shared memory (approximately 8 billion bytes).

Each processor of the C90 is a vector processor similar to

the original Cray !. Data representation and binary
floating-point arithmetic differ very slightly from the

Cray 1. However, there are notable changes in the

Cray C90. It has dual (instead of single) vector pipelines

(dual sets of functional units--add, multiply, reciprocal

approximation) per CPU. Vector registers contain 128

(instead of 64) elements (64-bit words). In addition, the

clock speed is reduced to approximately 4.2 nanoseconds.

The differences in vector length between the Cray 1

and the C90 mean that the C90 achieves its peak

speed on vectors of length 128 (or multiples thereof)

rather than on vectors of length 64. Another difference
is that twice as many results can be produced per clock

cycle (i.e., 2 adds and 2 multiplies rather than 1 add and

1 multiply for the Cray 1). (Reciprocal approximations are

not counted here.) With the reduced clock cycle time of

4 nanoseconds, a single C90 processor has a peak speed

of approximately 1 GFLOPS. Combining all 16 proces-

sors results in a capability of over 16 GFLOPS.

Ecosystem Model Description

We used the Simulation of Production and Utilization of

Rangelands (SPUR) model (ref. 17) in our work. It is a

rangeland ecosystem model composed of modules simu-

lating rangeland hydrology, snow accumulation and melt,

plant growth and mortality, and herbivore/plant/soil inter-
actions. The SPUR model has a dynamic hydrology mod-

ule (ref. 18) and a plant growth module (ref. 19). Each
module is based on physical processes known to occur in

5



rangelandecosystems.SPURgenerallyoperatesona
dailytimestep,eventhoughsomeprocessesaresimulated
onshortertimespansandintegratedovertheentireday.
Themodelisdrivenbydailymaximumandminimum
temperatures,dailyprecipitation,dailysolarradiation,and
adailywindvalue.Intheabsenceofanactualweather
record,thevariablescanbeprovidedbyastochastic
weathergenerator(ref.20).Thehydrologymodulesup-
pliestheplantmodulewithsoilmoisturetensionbysoil
layer,andtheplantcomponentsuppliesthehydrology
componentwithleafareaindex(LAI)(fig.4).Theplant
componentexplicitlymodelscarbonandnitrogenflux
fromtheatmospherethroughstandinggreenvegetation,
liveroots,deadroots,propagules,standingdeadvegeta-
tion,soilorganicmatter,andlitter.Nitrogenaccounting
alsoconsidersmineralizationandsoilinorganicconcen-
trations.Inaddition,themodelincludesmodulesfor
domesticandwildherbivoregrazingandforrangeland
economics(fig.4),thoughwedidnotusethesemodules
inthisexercise.

, nitrogen,

too=-,ic I
animalsw t forageuse!gam Wildlife =

nitrogen

L_l.conoo,c.],,o.a..

Plant water Igrowth _ Hydrology

Figure 4. Major modules for the SPUR model

Model Validation

The SPUR model and model components have been sub-

jected to a number of validation tests. Renard (ref. 21) and

Springer (ref. 18) tested the hydrology module and

reported that SPUR can adequately reproduce seasonal

runoff in arid watersheds. Cooley (ref. 22) evaluated the
snow dynamics in the model and found good agreement

between observed and predicted snow accumulation and
snow melt over three seasons. Skiles (ref. 23) simulated

the growth of the two dominant grasses in the shortgrass
steppe of Colorado and concluded that the plant module

adequately reproduced the biomass production of the

grasses and matched the dynamics of the growing season.

Hanson (ref. 19) showed that the plant-animal interface in

the SPUR model correctly predicted domestic animal

weight gains as a function of stocking rate for a Colorado

grassland.

SPUR has been successfully used to predict plant biomass

production on pastures in West Virginia (ref. 24), provide

simulated forage for a modified domestic animal module

(ref. 25), and supply biomass to a grazing behavior model

(ref. 26). A geographic information system (GIS) has been

used with the SPUR plant and hydrology components to

demonstrate that high orders of stream complexity are not

necessary to adequately simulate monthly stream runoff in
Arizona (ref. 27). The SPUR model has also been used to

estimate the effects of climate change on plant and live-

stock production in the Great Plains of North America

(ref. 28) and estimate the effects of climate change and

CO2 increase on small-watershed hydrology (ref. 29).

Ecosystem Model Structure

The model consists of 3,200 lines of FORTRAN code in

43 modules (program, subroutines, and function subpro-
grams). Approximately one-third of the code consists of

non-executable records consisting of comment records
and common blocks.

The SPUR model was released in two versions, a field-

scale version and a basin-scale version (ref. 17); we use

exclusively the field-scale version here. This version of

the model can accommodate very large field or pasture

areas (up to hundreds of hectares) or very small areas

(minimum of one meter square). In the field-scale version,

the plant community of up to seven plant species or func-

tional groups covers the field without spatial constraints.

The seven plant species are distinguished one from
another by the 37 physiological and phenological parame-

ters the user inputs to the model. These parameters are a

significant feature of the model because the simulation of

all the species uses the same code with no branching for

different functional groups such as grasses, forbs, or
shrubs. The same is true for the soil moisture components

of the model. Each of up to nine sites on the field can

have up to nine soil layers (minimum of four). Soil char-

acteristics such as porosity, water holding capacity at dif-

ferent moisture tensions, and layer depth serve to distin-
guish the various layers. The same sections of code are

used to simulate each layer in the soil profile.

Though a large number of parameters are needed to ini-

tialize the plant component of the model, only about six
per plant species need to be input with any degree of

accuracy (ref. 30). Thus, simulations can be executed for

many locations or situations with the parameters given in
Skiles (ref. 31).



Figure5showsthecontrolloopstructureforSPUR.The
executionpathforassimilationbeginswiththeyearloop,
thenmovestothemonth,day,site/field,andsoil-layer
loop,respectively.Thus,eachinnerloopisexecuted
beforethenextouterloopisincremented;allsoillayer
calculationsaredonebeforethesite/fieldloopcounteris
increased,forexample.Theseimportantcharacteristics
affecttheanalysisandrestructuringofthecontrolloopsin
theoriginalcodeforexporttosupercomputers.

Year loop

Month loop

Day loop

Site/field loop

Soil layer loop

Plant growth loop
Plant carbon module

Plant nitrogen module

Figure 5. Control loop structure for the SPUR model Inner

loops are executed before outer loops.

Characteristics of the Simulated Site

In this exercise, we simulate a shortgrass prairie site

called Pawnee, located approximately 60 km northeast of

Fort Collins, Colorado, at an elevation of 1650 m above

mean sea level. The Pawnee watershed, part of the Central

Plains Experimental Range (CPER) is approximately 40 °

north latitude and 104 ° west longitude.

Average precipitation at the site is about 305 mm per year

(ref. 1); about 70 percent falls during the May-September

growing season (ref. 32). Average wind speed, yearlong,
is about 10 kin/hr. Soil parameters for our simulations

were defined for an Ascolon sandy-loam soil profile.

The vegetation is dominated by warm-season, shortgrass
bunch and sod-forming C4 plants. Over the long term,

about 700 kg/ha/yr are produced, but the production may

be 50 percent of that in dry years and 250 percent of that

in wet years (ref. 33). Other components of the vegetation

community include cool-season grasses and forbs, shrubs

and half-shrubs, and cactus (ref. 33). See Appendix 1 for

estimates of production and plant species at the Pawnee
site.

For our work, we configured the SPUR model to include

five functional plant groups characteristic of the short-

grass steppe at Pawnee. These were warm season grasses,

cool season grasses, warm season forbs, cool season
forbs, and shrubs. Parameter values for these functional

groups were obtained from Skiles (ref. 31) and Hanson
(ref. 19).

Baseline Simulations

We generated a series of simulations using the SPUR

model that produced results allowing us to compare and

evaluate subsequent model output produced by other

computing platforms. The SPUR model was developed on
a DEC VAX 11/750 in the mid-1980s (ref. 17). We used a

VAX 11/785 for our baseline simulations.

A standard run for the SPUR model consisted of simulat-

ing one site for one year with the five plant functional

groups mentioned above. The site soil profile was con-

figured for four soil layers. The weather drivers used were
from an actual weather record for the same location

beginning in 1971.

The summed month-end biomass amounts generated by
the model are shown in the first line of table 1. These

results conform to the monthly trend of the grassland

being simulated, as they show the seasonal dynamics of
the community (ref. 34). The amounts are within the norm

for the Pawnee site's monthly production (see

Appendix 1).

To test the portability of the code, we next executed the

model with the same configuration on five other proces-
sors: a micro-computer with an Intel 80486 processor, a

Sun workstation, a Silicon Graphics, Inc. (SGI) worksta-

tion, a Cray Y-MP, and a Cray C90. Summed monthly
biomass generated from each of these experiments is also

shown in table 1. In the five-species simulations, cool-

season plants initiated growth in April. The single species

simulations used only the warm-season functional group;

hence, growth was initiated during the warmer month of
June.

As can be seen, the different processors produced differ-

ent biomass amounts, and in some instances these differ-

ences were as much as 50 percent. These cases occurred

mostly in the single-species simulations and in the later
months of the simulations, so the variations in the biomass
differences were small relative to the total amount of

biomass produced. The fact that these differences exist at
all provides the major reason for writing this paper.
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Differences in Results and Possible Causes

The results in table 1 may be due to differences

between the computer systems in one or more of the

following areas: data representation, computer
arithmetic, compilers, mathematical libraries, and

conversion of data for input and output. When the
differences were initially discovered, we first

investigated whether the cause was one of the
differences between FORTRAN IV and FORTRAN 77

(ref. 35). In particular, we noted that the Cray run

produced an overflow on the variable stack. We

re-sized the stack, required static variable allocation,

and specified that all variables be saved upon exit

from subroutines. In the new run, there was no longer

a stack overflow, but the Cray results still did not

match those of the test case exactly.

We checked whether DO loop processing affected the

outcome. In FORTRAN IV, a DO loop is executed at least

once, regardless of whether or not the final value of the

loop control variable is greater than its initial value. In

FORTRAN 77, a DO loop is skipped if the ending value

of the loop control variable is less than the initial value.

There were no anomalies in the loop values, and specify-

ing at least one trip through each loop did not have any
effect.

After finding that the new runs still did not produce

results matching the standard run, we examined function

subprograms (e.g., BELL and ATANF) individually to see

if there were any differences in the values they produced.
We determined that, with the same input, the functions

produced the same output on different computing plat-
forms. We examined IF tests that might result in different

branches being taken (for different growing conditions,

not different functional groups). (See Appendix 2 for a

description of each SPUR subroutine and function sub-

program.) We concentrated on the parts of the program"

involved in calculating biomass (e.g., subroutines PLGRO,
PLANT, PHOTO, and NITE). By examining the number of

calls to a physiological-curve generation subroutine BELL

on a day-to-day basis, we discovered that, among the

machines, the number of calls on certain days differed.

The following portion of a FORTRAN program modified

from SPUR compares the value RTEMP (an intermediate
variable) to PHYTM2 (a state variable).

RTEMP= PHYTMI *P

IF (RTEMP .LT. PHYTM2)...

The values of RTEMP and PHYTM2 after 166 days of

growth indicate they are equal to seven decimal places.

PHYTMI:3 .I15948E+01

P:I0.0

RTEMP:3. I15948E+02

PHYTM2 =3. I15948E+02

However, while RTEMP and PHYTM2 were equal on the

Cray, RTEMP was less than PHYTM2 on a SUN. An

examination of the SUN representation of RTEMP and
PHYTM2 showed that the difference occurred in the low-

order three bits, the actual difference being one bit in the

least significant position. Pinpointing the actual calcula-
tion causing the difference in results is difficult because

the IF test occurs after many calculations. It does point

out, however, that unexpected results can occur when

using the same code on different computer systems.

Although variation is less common in current machines

because of the adoption of IEEE Standard 754 (ref. 36) in

the mid 1980s, it is especially important to be aware of

data representation differences when porting a code
between different machines.

Data representation- In trying to understand the differ-

ences between machines, it is important to understand

how data are represented in computers. Only a few con-

cepts relating to our experiences with the SPUR model are

presented here. Interested readers are referred to Goldberg

(ref. 37) for a more complete explanation of floating-point

arithmetic. Machine-specific information can be found in

Cray (refs. 38 and 39), Levy and Eckhouse (ref. 40), and

Sun Microsystems, Inc. (ref. 41).

To be represented by a computer, a decimal floating-point

number is first converted to a binary number. It is then

stored in a computer word with a sign bit and bits repre-

senting the exponent and fraction. It is interpreted as:

((-1)sign) x (2exp °nent'bias) x (0.f) (1)

where f is the fraction.

Following IEEE Standard 754, a single-precision, 32-bit
computer word would use the leftmost bit 2 (bit 31) to

indicate the sign of the fraction, bits 30-23 to represent the

exponent, and bits 22-0 to represent the fraction. The

exponent does not use a signed magnitude representation

but uses a representation in which a bias is added to the

exponent. Instead of allocating a sign bit to the exponent,

in addition to a sign bit for the number, the exponent is

represented as a positive number. However, the upper half
of the exponent range represents positive numbers and the

lower half represents negative numbers. The true value of

the exponent is determined by subtracting the bias. This

representation facilitates the arithmetic process because

2Starting from the left, bits are numbered from 31 to 0 inclusive.



non-negativefloating-pointnumberscanbetreatedas
integersforcomparisonpurposes(ref.37).

Twenty-threebitsareusedtorepresentthefraction.How-
ever,theIEEEstandardandotherrepresentationsassume
thehigh-orderbitof thefractionisonewhenthenumber
isnormalized,andsotheydonotrepresentit. Thishidden
biteffectivelygives24bitsforrepresentingthefraction.
Thus,thebitsofthefractionformabinarynumberas
follows:

(bo)(2-1)+(bl)(2-2)+(b2)(2-3)+... +(b23)(2-24)
(2)

wherebnrepresentsthenthbitofthefraction.Thevalue
forb0is 1if thereisahiddenbit.TheDigitalEquipment
CorporationVAXarchitectureassumesthebinarypointis
totheleftofthemostsignificant(hidden)bit.IEEE
assumesthebinarypointistotherightofthemostsignif-
icant(hidden)bit.Craydoesnotassumeahiddenbit.
Table2showshowtheCrayandVAXcomparetoIEEE
Standard754intherepresentationofsingle-precision
floating-pointnumbers.Whendifferentrepresentations

areusedforfloating-pointnumbers,thereareresulting
differencesinrangeandaccuracy.

Computerarithmetic-Inadditiontodifferencesindata
representation,differencesincomputerarithmeticmay
alsoplayaroleinproducingdifferentresultsondifferent
systems.Thesedifferencesincomputerarithmeticare
muchhardertodeterminebecausetheuseofcompilers
andmathematicallibrariesisalsoinvolved.Fortunately,
IEEEStandard754establishesguidelinesforcomputer
arithmeticaswellasdatarepresentation.However,some
machinearchitectures(e.g.,CrayandVAX)predatethe
standard,soit isimportanttounderstandthestandard,and
thentounderstandhowmachinesdeviatefromthe
standard.

Goldberg(ref.37)addressesthefirstissuebyproviding
anexcellenttutorialonthedetailsof floating-pointarith-
meticandtheIEEEStandard.Machinedeviationfromthe
standardishardertoaddressbecausetheinformationon
oldermachinesmaybeproprietaryand/orobscuredbythe
roleofthecompilerormathematicallibraries.Toaddress
thisproblem,severalprogramsareavailablefordetermin-
ingamachine'scompliancewiththeIEEEStandard.
Press(ref.42)providesroutinesfordiagnosingmachine
parameters.Anothertoolusefulindeterminingcharacter-
isticsofcomputerarithmeticisaprogramcalled

Table2.Differencesinsingleprecisionfloating-pointdatarepresentationonthreecomputing
platforms

Machine VAX IEEEStd.754 Cray
Sign bit15 bit31 bit63
Exponent bits14-7 bits30-23 bits62-48

Numberofbits 8 8 15
Bias 128 127 2048

Fraction bits6-0,31-16 bits22-0 bits47-0
Numberofbits 23 23 48
Hiddenbit YES YES NO
Effectivenumberofbits 24 24 48

Approximaterange
Maximum 1.7E+ 38 3.4E+38 2.73E+2465
Minimum 2.9E- 37 1.175E- 38 3.67E- 2466
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"Paranoia".3TheprogramchecksforadherencetoIEEE
Standard754byactuallyperformingarithmeticandcom-
paringtheresultstothoseexpected.WeranParanoiaon
theCray,VAX,andIEEE-compliantmachinesandcon-
firmedthatthereareindeeddifferencesinarithmetic.
Appendix3containsoutputfromanIEEE-compliant
machine,theCray,andtheVAX.

TheoutputfromParanoiaidentifiesaflawintheVAX
arithmeticandseriousdefectsintheCrayarithmetic.
TheseflawsanddefectsindicatedeviationsfromtheIEEE
standardandarenotindicatorsthatthemachinesshould
bedismissedasviablecomputingplatforms.However,a
machine'sfloatingpointcharacteristicsareofconcernto
numericalanalysts.Becauseofthepotentialimpacton
somenumericalalgorithms,usersshouldbeawareof
machine'sfloatingpointcharacteristics.

Resolution of Discrepancies

From our investigations into the reasons for differences in

biomass amounts calculated by the various computing

platforms, we concluded that the discrepancies were
related to how the various machines perform computer

arithmetic and not to program errors or differences
between FORTRAN IV and FORTRAN 77. To date, we

have not made any program changes to accommodate the
differences.

Code Optimization

The Cray architecture offers opportunities for faster exe-

cution time of the SPUR model beyond that resulting

from faster clock speeds. We use the term "optimization"

for this process of improving execution times by changing

the code configuration. A schematic diagram for the

optimization process is shown in figure 6.

Optimization Methodology

To be effective, any optimization scheme must have a

goal or an end point. We could have chosen as our goal

the conformation of Cray output with VAX results; we

could have tried to match exactly the biomass production

figures for Pawnee given in Appendix 1. Instead, we

chose as our goal decreased CPU or execution time while

still producing the numbers shown in our initial testing

(table 1). Establishing this criterion is box A in figure 6.

3Paranoia can be obtained by sending the e-mail message "send
index" to the lnternet address netlib@ornl.gov.

A B C

_l DetermineII L°cate I
Establish program I_lCPU-lntenslve[
criteria bottleneck /I code I

t°--n"I'--t Idegree of Restructure
optimization code

l o,,.i
Figure 6. Flowchart for optimization of code being ported

to the Cray. Letters above boxes refer to steps in the pro-

cess. See text, pages 11-15, for details.

Establish Criteria

Table 3 shows CPU times for the standard run of the

SPUR model: simulating one site with five plant func-

tional groups for one year (see Baseline Simulation sec-

tion). Timings are approximate; runs were done in an

environment where the machines were used by others dur-

ing the timing runs. The C90 standard run is about

twenty-eight times faster than the VAX standard run and
about ten times faster than the SUN standard run. These

results are consistent with the 30-fold speedup to be

expected in porting a scalar code to a vector processor

machine (ref. 43). We would like to see a speedup of 100

or 200 over a VAX. The first step towards a significant

speedup is to determine the program bottleneck.

Determine Program Bottleneck

Cray computer systems offer a suite of tools to help locate

CPU-intensive and I/O-intensive portions of code
(ref. 44). One of the tools we used was the Hardware Per-

formance Monitor (HPM). HPM is a hardware monitor

introducing very little overhead when used in conjunction

Table 3. Comparison of execution times for the standard
run of the SPUR model

Machine CPU time

VAX 11/785 11.95 sec

SUN 4 (33 MHz) 4.34 sec

Cray C90 (1 processor) 0.43 sec
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withaprogram.Table4showsaportionoftheoutput
HPMproducedduringaSPURsimulationthatwasdone
foronesite,fivefunctionalgroups,and100years.This
showsthatSPURoperatesatapproximately83MIPS
(millioninstructionspersecond)and18.8MFLOPS.The
MIPSvalueiswithinthenormalrangeof20-250MIPS,
buttheMFLOPSvalueshouldbebetween30and1000on
theC90(ref.44).TherelativelyhighMIPSnumber,the
verylownumberofvectorfloating-pointoperations,and
thelowMFLOPSnumberindicatethattheunmodified
SPURmodelisclearlynotusingthefull capabilitiesof
themachine.

Table4.PortionofHPMoutputforaSPURsimulation

Operation Number
Millioninst/sec(MIPS) 82.96
Floatingops/sec 18.81M
Vectorfloatingops/sec 0.13M

The higher the number of floating-point operations, the
more vectorized and efficient the code. The low number

for the unmodified SPUR shows that it is a highly sequen-

tial code. This is inherent in the application because it was

originally developed for a sequential machine, the DEC

VAX. The ultimate success in speeding up SPUR depends
on how much of the code is vectorizable (or can be made

vectorizable) and how much is sequential. This ratio is
important in determining how close an application can

come to the peak speed of the machine, as Amdahl's law
shows.

Amdahi's Law- Amdahl's Law (ref. 45) is useful in

understanding why most applications executed on SIMD

or MIMD machines seldom achieve the peak speed of the

machine. For vector/pipelined processors such as the
Cray, it is important to consider the fraction of the code

that is vectorizable. Figure 7 shows the fraction of the

code that must be vectorized to achieve a given speedup,
given different amounts of machine parallelism. On

vector/pipelined machines, machine parallelism equals the

vector speed divided by the scalar speed. Speedup is the
inverse of the sum of the fraction of unvectorized code

and the fraction of vectorized code divided by the

machine parallelism. As machine parallelism increases, a

larger fraction of the code must be parallelized to achieve

a given efficiency. On the Cray C90, the ratio of vector

speed to scalar speed is approximately 10-20 (ref. 46).

For a ratio of 10, 90 percent vectorization of the code

would result in a speedup of approximately 5. (See ref. 47

for comments on limitations and applications of Amdahl's
Law.) Unless the ecosystem simulation code can be

highly vectorized, the speed on the supercomputer will

not be a function of the speed of the vector units, but will

instead be a function of the speed of the scalar units.

Locate CPU-intensive Code

To locate CPU-intensive code, we again used Cray utili-

ties to find the subprograms in SPUR that use the most

CPU time (box C, fig. 6). Table 5 shows the top twelve

20

18

16

14

,,12
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10
41
Q.
u) 8

/
Speed up = l/((1-f)+(flR)) /

R=10

R=5

I I I I I I I I I I

.10 .20 .80 .90 1.0

R=20

.30 .40 .50 .60 .70

Fraction of veetorlzed code (f)

Figure 7. Graphical representation of Amdahrs Law applied to vector processors.
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Table 5. Example of Flow Trace Statistics showing routines sorted by descending accumulated CPU

time (seconds)

Routine name Total time Number of calls Avg. time/call Percentage Acccum. percent

BELL 6.42E-01 89,076 7.21E-06 15.83 15.83

DETAIL 6.29E-01 1,826 3.44E-04 15.50 31.34

TEMPP 4.97E-01 112,468 4.42E-06 12.26 43.60

P EXP 4.90E-01 68,016 7.20E-06 12.08 55.68

PHOTO 4.35E-01 8,502 5.12E-05 10.74 66.41

PLGRO 4.09E-01 9,130 4.48E-05 10. I 0 76.51

PLANT 1.87E-01 1,826 1.03E-04 4.62 81.13

F SVP I l. 57E-01 1 1.57E-01 3.88 85.01

THRESH 1.31E-01 22,886 5.71E-06 3.22 88.23

HY P 1.14E-01 43,213 2.63 E-06 2.80 91.03

MITE 1.02E-01 10,956 9.29E-06 2.51 93.54

SOIL 5.49E-02 1,826 3.00E-05 1.35 94.90

routines in terms of CPU time, sorted in descending order.

As shown in table 5, subprograms BELL, DETAIL,

TEMPP, and PEXP account for more than 55 percent of

the execution time for the standard run of SPUR. Of these

four subprograms, DETAIL, which produces daily output,

is the only one that writes to the output files. The other

three subprograms call intrinsic functions repeatedly and

thereby use extensive amounts of CPU time.

The SPUR model was written so that frequently used sec-

tions of code are placed in subroutine or function subpro-

grams. On many scalar machines, this results in certain

efficiencies. Among them are reducing the length of the

code and decreasing the execution time because extensive

(conditional) branching is avoided.

Using Cray compiler options, it is possible to place sub-

programs within the body of the calling program without

rewriting the code. This, in effect, restructures the code

(box D, fig. 6). This is called the "in-line" feature. The

Cray memory is very large relative to scalar machines on

which the code was developed, and the efficiencies for

scalar computers actually slow down the speed of

execution. Using the in-line command at compile time, a

function or subroutine subprogram can be placed inside of

the main or calling program. Less time is used by the Cray

moving between modules, and execution time for a

section of code is decreased. In the following conceptual

example of in-line restructuring of the program code, the

first program block contains a main (calling) program and

a subroutine MODULE called by MAIN.

PROGRAM MAIN

DIMENSION

COMMON B,C,X

CALL MODULE (A)

END

SUBROUTINE NODULE (A)

COMMON B,C,X

DIMENSION X(10000)

A = VALUE

DO I=l,10000

A = A + B + C * X(I)

END DO

RETURN

END

Thesecondprogram blockshowstheresultofthein-line

command withthepertinentpartsofMODULE placedin

MAIN.

PROGRAM MAIN

DIMENSION

COMMON B,C,X

A = VALUE

DO I=l,10000

A : A + B + C

END DO

* X(I)

END

13



Note that no rewriting of the code is necessary because

the Cray compiling systems restructure the code. Table 6

shows routines with an in-line factor of one or greater,

sorted by in-line factor. An in-line factor greater than 1

indicates that a routine may qualify for in-lining.

Vectorization information is also available from the Cray.

Figure 8 shows a sample of the Cray vectorization output.

The system indicates if loops were or were not vectorized.

If a loop was not vectorized, information is provided as to

why vectorization does not occur. In the example, the

loop beginning at line 116 was not vectorized because it

contains an inner loop, and only the innermost loops are

vectorized. The inner loop beginning at line 117 was vec-
torized. We used the vectorization information to identify

possibilities for additional vectorization.

Restructure Code

To restructure the code, we first placed a number of rou-

tines in-line, adding candidate routines fitting the Cray's

requirements for in-lining. For example, routines placed

in-line should generally have less than 50 lines of code.
We also examined the vectorization information to

determine if loops should be restructured. Very few rou-

tines were actually structured for vectorization. We did
not restructure the loops of this program because the loop

control variables were similarly-sized, with actual value

depending on user input.

We examined the possibility of unrolling loops, removing

nested IF statements, assigned GOTO's, backward trans-

fers within loops, and recursion as possible methods to

speedup code (ref. 48). We determined that significantly

improving vectorization of the SPUR model would mean

a substantial reworking of the loops controlling the simu-

lated time and location of the simulation (fig. 5).

Determine Degree of Optimization

As seen in table 7, by placing subroutine and function

subprograms in-line, our restructuring of the SPUR model

resulted in a 30 percent speedup of execution for a

100 year run over the unmodified version of SPUR. We

achieved this speedup on a single processor of the

Cray C90. We ran the model for 100 years so that the

execution times would be larger; we ran the model for one
site and then for nine sites. To ascertain if we could

improve vectorization by more fully using the allocated

arrays, we ran a nine-site case; however, the number of
MFLOPS did not increase much over the one-site

case.This net increase did not give us the factor of
100-200 we desired because the amount of vectorization

was not substantially increased (the average vector length

was between 3 and 12, not close to the optimum of 128).

Since our simple restructuring was not enough to increase

the vector length, substantial reworking will be needed to

improve the code execution.

Table 6. Example of Flow Trace Statistics showing routines sorted by descending in-line factor

Routine name Total time Number of calls Avg. time/call Percentage Acccum. percent In-line factor

TEIPP 4.97E-01 112,468 4.42E-06 12.26 12.26 105.99

HYP 1.14E-01 43,213 2.63 E-06 2.80 15.07 68.45

BELL 6.42E-01 89,076 7.21E-06 15.83 30.90 51.49

PEXP 4.90E-01 68,016 7.20E-06 12.08 42.98 39.36

THRESH 1.31E-01 22,886 5.71E-06 3.22 46.20 16.71

ATANF 2.89E-02 9,130 3.16E-06 0.71 46.91 12.02

CRACK 2.51E-02 7,304 3.44E-06 0.62 47.53 8.86

Nr'rE 1.02E-01 10,956 9.29E-06 2.51 50.04 4.92

ALBEDO 5.78E-03 1,826 3.17E-06 0.14 50.18 2.40

FLDHYD 1.00E-02 1,826 5.50E-06 0.25 50.43 1.38

DAYREP 1.27E-02 1,826 6.96E-06 0.31 50.74 1.09

EV/kPR 1.33E-02 1,826 7.26E-06 0.33 51.07 1.05

PHOPER 1.39E-02 1,826 7.60E-06 0.34 51.41 1.00
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1882 116. S S S S ......... <

1883 117. S S S S V ....... <
1884 118. S S S S-V ....... •

1885 119. S S S S ......... <

1886 120. S S S S V ....... <
1887 121. S S S S-V ....... •

1888 122. S S S
1888 123. S S S
1889 124. S S S
1890 125. S-S-S ........... >

1891 126. S-S ........... >

DO 60 NC2 - I,NSITE

DO 60 L - I,NCP
60 IF(FIX(NC2,L) .EQ. 0.0)SM - SM + Q2(NC2,L)

DO 70 NC2 - I,NSITE

DO 70 L - I,NCP
70 IF(FIX(NC2,L) .EQ. 0.0)Q2(NC2,L) -Q2(NC2,L)

+ * X/SM
SUM- 1.0

IT m IT ÷ 1

IF(IT .LE.( NCP * NSITE + 1))GO TO40
80 CONTINUE

+ Q2(NC2,L)

cft77-8035 cf77: VECTOR NTRFC, Line = 116, File = spur2.f, Line = 1882

Loop starting at line 116 was not vectorized. It contains an inner loop.

cft77-8004 cf77: VECTOR NTRFC, Line m 117, File = spur2.f, Line - 1883

Loop starting at line 117 was vectorized.

cft77-8035 cf77: VECTOR NTRFC, Line = 119, File = spur2.f, Line - 1885

Loop starting at line 119 was not vectorized. It contains an inner loop.

cft77-8004 cf77: VECTOR NTRFC, Line = 120, File = spur2.f, Line - 1886

Loop starting at line 120 was vectorized.

Figure 8. Sample vectorization information.

Table 7. The degree of optimization achieved using the in-line tool for 100-year model runs using the

Cray C90 (1 CPU). The subroutines placed in-line were BELL, PEXP, TEMPP, THRESH, HYP, ATANF,

CRACK, ALBEDO, and PHOPER

CPU-time, sec FLOPS Vector FLOPS Percent speedup

5 species, 1 site

SPUR 32.30 18.81M 0.13M

SPUR w/in-line 25.26 22.91M 0.44M 27.87

5 species, 9 sites

SPUR 226.54 19.46M 0.11M

SPUR w/in-line 175.30 24.00M 0.50M 29.23

Future Plans

We believe that SPUR and models like SPUR would be

more useful if larger versions with increased dimensions

could be run. A thousand-time speedup of the SPUR

model execution was not realized because code written for

use on scalar machines does not take advantage of the

specialized functional units of a supercomputer (ref. 43).

Our efforts so far reveal that substantial restructuring of

the code will be needed, and that merely porting the code

to a new platform is insufficient. We plan to vectorize and

parallelize the SPUR model to gain this increase.

Figure 5 shows the control loop structure for the SPUR

model. The site calculations can be done independently so

that up to nine sites can be evaluated simultaneously. In

addition, the plant growth loop calculations can be done

independently for each plant species so that up to seven

species can be evaluated independently. By parallelizing

these calculations, it should be possible to evaluate a

7-species, 9-site model in the same time as a 1-species,

l-site model. Executions of the current version of the code

indicate that parallelizing could result in a 6-times

speedup in execution time. We predict that even better
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improvements are possible in spite of overhead introduced

by the parallelization. The restructuring would also

improve input/output speed, increase vectorization, and

remove obsolete coding elements. In addition, we plan to

modernize the code by integrating the model into a dis-

tributed heterogeneous computing environment; produc-

ing two-dimensional and three-dimensional graphical

output; and modifying the model to use input from

remote-sensing databases and/or real time sensor
information.

Summary and Conclusions

Many computer codes simulating ecosystems and ecosys-

tem processes have been developed over the last two
decades (ref. 49). The computers used to build and test

these models have generally been those available at the

time of development. However, the use of supercomputers

in ecosystem simulation has been small because these

machines are not readily available and are difficult to

learn to use. In addition, according to Thromborson

(ref. 43), many codes only achieve a 30-fold speedup that

does not make supercomputer use cost-effective. Our
results are consistent with this figure, but we differ with

Thomborson's contention that codes originally developed

on scalar machines are not worth the time to modify for

execution on supercomputers. We believe that many

ecosystem model codes would be more useful if larger

models could be run in a shorter period of time, allowing

more alternatives to be simulated and more complex ques-

tions to be answered. Supercomputers can immediately

accomplish these objectives, and in the long-term will
enable more effective execution on the workstations that

may eventually replace them.

Supercomputers may not be as cost-effective as worksta-
tions in some cases. However, if supercomputers are

available, they offer the opportunity to begin modernizing

codes originally developed on scalar machines such as the
VAX. The definition of what constitutes a supercomputer

changes over time; capabilities of a supercomputer today

may be available on the desk top within a decade (ref. 50).

Further, as shown in figure 1, the definition of a super-

computer changes along with the requirements of the user

community and the increased power of the machine. What

is defined as a supercomputer today may appear as a desk-

top computer tomorrow, complete with the vectorization

and parallelization capabilities previously limited to

supercomputers. For codes to run well on the future desk-

top, they will have to be restructured in the same ways as
they now have to be restructured for supercomputers.

To begin a major restructuring effort, the user should have
a stable model and a reference or standard run available to

compare output between results generated on a supercom-

puter and results produced by the machine used to

develop the code. Because of possible differences in com-

puter arithmetic between platforms, the user should be

aware that results produced on a supercomputer can vary

from those produced by the reference machine. Conse-

quently, users should establish the amount of difference

they are willing to accept between the results from the

supercomputer execution and the standard run.

The supercomputer vendor often supplies tools and tech-

niques to optimize computer code. It is important that the
user be aware of these tools and learn to apply them

where appropriate. In our experience, the in-line com-
mands reduced the execution time of our code. This tech-

nique is fully documented in the manuals supplied by the
vendor.

Other more direct techniques for computer code optimiza-
tion may be found in Bently (ref. 51), and a further dis-

cussion of ecosystem code optimization may be found in

Loehle (ref. 52). These techniques include writing the

code to avoid double precision (on the Cray, the word

length is large, so this is generally not a problem); using

reciprocal multiplication instead of division; making the

shorter loops the outer loops in nested tasks, and minimiz-

ing the I/O in the code. In the SPUR model, reports are

generated from information stored in scratch files and
COMMON blocks and written from one subroutine. The

user can turn on write statements in other parts of the code

with switch options at execution time, but our experience

indicates this does not measurably increase execution time

on the Cray.

It is important for ecosystem modelers to use tools at hand

now. These are the supercomputer-class machines, among

them the Cray C90. New and innovative ways of using
existing workstations in networks so that they have much

of the speed and other resources of a supercomputers are

being explored (ref. 53). Programming and control lan-

guages are being designed so that by using these tech-

niques much of the coding of models is inherently vector-
ized during the model construction (ref. 54). This will

lead to ecosystem simulation codes ready for use on

supercomputing platforms from their inception.

Meanwhile, the modification and execution of ecosystem

simulation codes on supercomputers can be realized,

enabling more complex systems to be simulated and

increasingly complex questions to be asked of ecosystem

simulation codes originally constructed on scalar

computers.

16



References

1. Innis, G. S., ed.: Grassland Simulation Model.

Ecol. Stud., vol. 26, Springer-Verlag, 1977.

2. Urban, D. L.; and O'Neill, R. V.: Linkages in Hier-
archical Models. Coupling of Ecological Studies

with Remote Sensing: Potential at Four Bio-

sphere Reserves in the United States, M. I. Dyer
and D. A Crossley, Jr., eds., U. S. Department
of State Publication 9504, 1986.

3. Stockwell, D. R. B.; and Green, D. G.: Parallel

Computing in Ecological Simulation. Math. and

Comput. in Simulation, vol. 32, nos. 1-2, 1990,

pp. 249-254.

4. Costanza, R.; and Maxwell, T.: Spatial Ecosystem

Modelling Using Parallel Processors. Ecol.

Model., vol. 58, nos. I-4, 1991, pp. 159-183.

5. Sud, Y. C.; Sellers, P. J.; Mintz, Y., et al.: Influ-

ence of the Biosphere on the Global Circulation

and Hydrological Cycle - a GCM Simulation

Experiment. Agric. For. Meteorol., vol. 52,

nos. 1-2, 1992, pp. 133-180.

6. Gates, W. L.: The Use of General Circulation

Models in the Analysis of the Ecosystem

Impacts of Climatic Change. Clim. Change,
vol. 7, no. 3, 1985, pp. 267-284.

7. Office of Science and Technology Policy: Grand

Challenges 1993: High Performance Computing

and Communications. A Report by the Commit-

tee on Physical, Mathematical, and Engineering

Sciences to Supplement the President's Fiscal

Year 1993 Budget, Jan. 1992.

8. Potter, C.; Randerson, J. T.; Field, C. B., et al.:

Terrestrial Ecosystem Production: A Process
Model Based on Global Satellite and Surface

Data. Global Biogeochem. Cycles, vol. 7,

no. 44, 1993, pp. 811-841.

Dixon, D. A.; and Ravech6, H. J.: A National

Computing Initiative: A Summary. Fut. Gen.

Comp. Sys., vol. 5, nos. 2-3, 1989,

pp. 339-345.

Levin, S. A.; Moloney, K; Buttel, L.; and Castillo-

Chavez, C.: Dynamical Models of Ecosystems

and Epidemics. Fut. Gen. Comp. Sys., vol. 5,
nos. 2-3, 1989, pp. 265-274.

Bretherton, F. P.: The Earth System. Future Gen-

eration Computer Systems, vol. 5, nos. 2-3,

1989, pp. 259-264.

.

I0.

I1.

12. Burks, A. W.; Goldstine, H. H.; and

von Neumann, J.: Preliminary Discussion

of the Logical Design of an Electronic

Computing Instrument. Datamation, vol. 8,

nos. 9-10, 1962, pp. 24-30; pp. 36-41.

13. Hockney, R. W.; and Jesshope, C. R.: Parallel

Computers: Architecture, Programming, and
Algorithms. Adam Hilger Ltd. (Bristol), 1981.

14. Hockney, R. W.; and Jesshope, C. R.: Parallel

Computers 2: Architecture, Programming, and

Algorithms. Adam Hilger (Bristol and

Philadelphia), 1988.

15. Hwang, K.: Advanced Computer Architecture:

Parallelism, Scalability, Programmability.
McGraw-Hill, Inc., 1993.

16. Flynn, M. J.: Very High-Speed Computing Sys-
tems. IEEE, vol. 54, no. 12, 1966,

pp. 1901-1909.

17, Wight, J. R.; and Skiles, J. W., eds.: SPUR -
Simulation of Production and Utilization of

Rangelands: Documentation and User Guide.

U.S. Department of Agriculture, Agricultural
Research Service, ARS-63, 1987.

18. Springer, E. P.; Johnson, C. W.; Cooley, K. R.,

et al.: Testing the SPUR Hydrology Component

on Rangeland Watersheds in Southwest Idaho.

Trans. Am. Soc. Agric. Engrs., vol. 27, 1984,

pp. 1040-1046; p. 1054.

19. Hanson, J. D.; Skiles, J. W.; and Parton, W. J.: A

Multispecies Model for Rangeland Plant Com-
munities. Ecol. Model., vol. 44, nos. 1-2, 1988,

pp. 89-123.

20. Richardson, C. W.; Hanson, C. L.; and Huber,
A. L.: Climate Generator. SPUR - Simulation

of Production and Utilization of Rangelands:

Documentation and User Guide, J. R. Wight and

J. W. Skiles, eds., U.S. Department of Agricul-

ture, Agricultural Research Service, ARS-63,

1987, pp. 3-16.

21. Renard, K. G.; Shirley, E. D.; Williams, J. R.,

et al.: SPUR Hydrology Component: Upland
Phases. SPUR - Simulation of Production and

Utilization of Rangelands: A Rangeland Model

for Management and Research, J. R. Wight, ed.,

U. S. Department of Agriculture, Misc. Pub. no.

1431, 1983, pp. 17-44.

17



22. Cooley,K.R.;Springer,E.P.;andHuber,A.L.:
HydrologyComponent:Snowmelt.SPUR-
SimulationofProductionandUtilizationof
Rangelands:A RangelandModelforManage-
mentandResearch,J.R.Wight,ed.,U.S.
DepartmentofAgriculture,Misc.Pub.
no.1431,1983,pp.45-61.

23. Skiles,J.W.;Hanson,J.D.;andParton,W.J.:
SimulationofAbove-andBelow-GroundCar-
bonandNitrogenDynamicsofBouteloua

gracilis and Agropyron smithii. Analysis of

Ecological Systems: State-of-the-Art in Ecolog-

ical Modelling, W. K. Lauenroth; G. V.

Skogerboe; and M. Flug, eds., Proceedings,

Developments in Environmental Modelling: 5,

Colorado State Univ., May 24-28, 1982.

24. Stout, W. L.; Vona-Davis, L. C.; Skiles, J. W.,

et al.: Evaluating SPUR Model for Predicting
Animal Gains and Biomass on Eastern Hill

Land Pastures. Agric. Syst., vol. 34, 1990,

pp. 169-178.

25. Field, L. B.: Simulation of Beef-Heifer Production

on Rangeland. M. S. Thesis, Dept. of Animal
Science, Colorado State Univ., 1987.

26. Baker, B. B.; Bourdon, R. M.; and Hanson, J. D.:

FORAGE: A Model of Forage Intake in Beef
Cattle. Ecol. Model., vol. 60, 1992,

pp. 257-279.

27. Sasowsky, K. C.; and Gardner, T. W.: Watershed

Configuration and Geographic Information Sys-

tem Parameterization for SPUR Model Hydro-

logic Simulations. Water Resour. Bull., vol. 27,

1991, pp. 7-17.

28. Hanson, J. D.; Baker, B. B.; and Bourdon, R. M.:

Comparison of the Effects of Different Climate

Change Scenarios on Rangeland Livestock Pro-
duction. Agric. Syst., vol. 41, no. 4, 1993,

pp. 487-502.

29. Skiles, J. W.; and Hanson, J. D.: Response of Arid

and Semiarid Watersheds to Increasing Carbon

Dioxide and Climate Change as Shown by Sim-

ulation Studies. Clim. Change, vol. 26, no. 4,

1994, pp. 377-397.

30. MacNeil, M. D.; Skiles, J. W.; and Hanson, J. D.:

Sensitivity Analysis of a General Rangeland
Model. Ecol. Model., vol. 29, 1985, pp. 57-76.

31. Skiles, J. W.: Sample Data Sets for the Field-Scale
Version. SPUR - Simulation of Production and

Utilization of Rangelands: Documentation and

User Guide, J. R. Wight and J. W. Skiles, eds.,

U. S. Department of Agriculture, Agricultural

Research Service, ARS-63, 1987, pp. 321-337.

32. Parton, W. J.; Lauenroth, W. K.; and Smith, F. M.:

Water Loss from a Shortgrass Steppe in

Northeastern Colorado. Agr. Meteor., vol. 24,

1981, pp. 97-109.

33. Sims, P. L.; Singh, J. S.; and Lauenroth, W. K.:
The Structure and Function of Ten Western

North American Grasslands: I. Abiotic and

Vegetational Characteristics. J. Ecol., vol. 66,

1978, pp. 251-285.

34. Sims, P. L.; and Singh, J. S.: The Structure and
Function of Ten Western North American

Grasslands: II. Intra-Seasonal Dynamics in Pri-

mary Producer Compartments. J. Ecol., vol. 66,

1978a, pp. 547-572.

35. American National Standard Programming Lan-

guage FORTRAN. ANSI X3.9-1978, American
National Standards Institute, Inc., 1978.

36. ANSI/IEEE Standard 754-1985 for Binary

Floating-Point Arithmetic. IEEE, Inc., 1985.

37. Goldberg, D.: What Every Computer Scientist
Should Know about Floating-Point Arithmetic.

ACM Computing Surveys, vol. 23, no. 1, 1991,

pp. 5-48.

38. Cray X-MP Computer Systems, Cray X-MP Series

Mainframe Reference Manual. HR-0032, Cray

Research, Inc., Mendota Heights, Minn., 1982.

39. CF77 Compiling System, Volume 1 : FORTRAN

Reference Manual. SR-30715.0, Cray Research,

Inc., Mendota Heights, Minn., 1990.

40. Levy, H. M.; and Eckhouse, R. H., Jr.: Computer

Programming and Architecture: The VAX - II.

Digital Press, Bedford, Mass., 1980.

41. Numerical Computation Guide. 800-3555-10, Sun

Microsystcms, Inc., Mountain View, Calif.,
1990.

42. Press, W. H.; Teukolsky, S. A.; Flannery, B. P.;
and Vetterling, W. T.: Numerical Recipes: The

Art of Scientific Computing (FORTRAN Ver-

sion). Second ed., Cambridge University Press,
1993.

18



43. Thomborson,C.D.:DoesYourWorkstationCom-
putationBelongon a Vector Supercomputer?
Comm. of the ACM, vol. 36, no. 11, 1993,

pp. 41--49.

44. Unicos Performance Utilities Reference Manual.

SR-2040/7.0, Cray Research Inc., Mendota

Heights, Minn., 1992.

45. Amdahl, G. M.: The Validity of the Single Proces-

sor Approach to Achieving Large Scale Com-

puting Capabilities. AFIPS Conference

Proceedings, vol. 30, 1967, pp. 483-485.

46. CF77 Optimization Guide. SG-3773/6.0, Cray

Research, Inc., Mendota Heights, Minn., 1993.

47. Hillis, W. D.; and Boghosian, B. M.: Parallel Sci-

entific Computation. Science, vol. 261, 1993,

pp. 856-863.

48. Levesque, J. M.; and Williamson, J. W.: A Guide-
book to FORTRAN on Supercomputers. Aca-

demic Press, 1989.

49. ,_,gren, G. I.; McMurtrie, R. E.; Parton, W. J.,
et al.: State-of-the-Art of Models of Production-

Decomposition Linkages in Conifer and Grass-
land Ecosystems. Ecological Applications,

vol. 1, no. 2, 1991, pp. 118-138.

50. Baskett, F.; and Hennessy, J. L.: Microprocessors:

From Desktops to Supercomputers. Science,

vol. 261, no. 5123, 1993, pp. 864-871.

51. Bently, J. L.: Writing Efficient Programs. Prentice-
Hall, 1982.

52. Loehle, C.: Optimizing Ecosystem Simulation
Model Performance. Nat. Resour. Model.,

vol. 1, no. 2, 1987, pp. 235-243.

53. Buzbee, B.: Workstation Clusters Rise and Shine.

Science, vol. 261, no. 5123, 1993, pp. 852-853.

54. Fisher, J. A.; and Rau, B. R.: Instruction-Level

Parallel Processing. Science, vol. 253, no. 5025,

1991, pp. 1233-1241.

55. Sims, P. L.; and Singh, J. S.: The Structure and
Function of Ten Western North American

Grasslands. III. Net Primary Production,

Turnover and Efficiencies of Energy Capture
and Water Use. J. Ecol., vol. 66, 1978b,

pp. 573-597.

56. Dodd, J. L.; and Lauenroth, W. K.: Analysis of the

Response of a Grassland Ecosystem to Stress.

Perspectives in Grassland Ecology, N. French,
ed., Ecol. Stud., vol. 32. Springer-Verlag, 1979,

pp. 43-58.

19





Appendix 1

Pawnee Plant Production

Estimates for biomass and production at the Pawnee loca-

tion given in this appendix are from Sims et al. (ref. 33),

Sims and Singh (refs. 34 and 55), and Innis (ref. 1).

Studies of long-term total aboveground standing crop bio-

mass and of aboveground net primary production show

these grazinglands to produce about 700 kg/ha ranging,

over a few years, from 50 percent lower to 50 percent

higher. Warm-season grasses, the dominant forage plants,

have aboveground net primary production of about 400 to

800 kg/ha over a series of a few years. Shrub and half-

shrub production may vary from about 200 to 750 kg/ha

over a few years' interval.

Over several years, using different treatments (ref. 56),

the average standing crop biomass of aboveground

vegetation (live and dead material) is about 2590 kg/ha.

Some 43 percent of the vegetation comes from succulent

species (primarily Opuntia polyacantha) and 57 percent
from non-succulent plants. Only 1 percent of the standing

crop biomass is from legumes, with 99 percent from non-

leguminous plants. Some 8 percent of the standing crop

biomass is contributed by annual plant species, whereas

92 percent originates from perennial plant species. Of the

total standing crop biomass aboveground, 42 percent are

contributed by grasses and grasslike plants, 16 percent by

forbs (herbaceous, non-gramineous plants), 19 percent by

shrubs and half-shrubs, and 42 percent by succulents.

These values include both current-year's live, current-

year's dead, perennial live, and old dead plant materials.

From a standing crop biomass standpoint, the most

important species is Opuntia polyacantha with a mean of

1060 kg/ha, followed by Bouteloua gracillis with

520 kg/ha and Artemisiafrigida with 480 kg/ha. Plant
species whose standing crop biomass is in the range of 50

to 100 kg/ha include, in order of decreasing importance,

Psoralea tenuiflora, Sphaeralcea coccinea, Gutierrezia

sarothrae, and Gura coccinea. Plant species whose

standing crop biomass is in the range of 25 to 50 kg/ha

include Bucloe dactyloides, Cht3,sopsis villosa, and

Aristida longiseta. Plant species contributing a significant

amount of standing crop biomass (up to 25 kg/ha) include

the following in order of decreasing importance: Carex
eleocharis, Conyza canadensis, Salsola kali, Simnion

hystrix, Lepidium densiflorum, Plantago patagonica,

Sporobolus co'ptandrus, Lappula redowski, and
Orobanche hcdoviciana.
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Appendix 2

SPUR Modules

The modules below are for the SPUR Field-Scale Version,

Phase I, grassland ecosystem model. Each module is

identified as a main program, subroutine subprogram, or
function subprogram. The purpose of each module is

given, as are names of the modules calling the module and
the modules called.

PROGRAM FSVPI (main calling program) calls
ALBEDO, DAYREP, DETAIL, ERR, FLDHYD, IOSET,

LINE, NDPM, PACK19, PLANT, SOLADJ, TLAPSE,

USER, and YRREP, and is called by no subprograms.

The subroutine subprograms and function subprograms

below are listed in alphabetical order.

SUBROUTINE ADPL determines the shape of the areal

depletion curve and calls no subprograms; ADPL is called

buy USER.

SUBROUTINE AESCl9 computes the areal extent of

snow cover; AESC19 calls no subprograms and is called

by PACK19 and USER.

FUNCTION ALBEDO determines albedo for snow

covered fields; ALBEDO calls no subprograms and is
called by FSVPI.

SUBROUTINE ANIMAL controls execution of the

wildlife and livestock subprograms; ANTNAL calls
LVSTK and WLDLF, and is called by PLANT.

FUNCTION ATANF calculates plant physiological
response based on the arctanget function; ATANF calls no

subprograms and is called by PLGRO.

FUNCTION BELL calculates plant physiological
response based on a bell-shaped function; BELL calls no

subprograms and is called by NITE, PEXP, and PLGRO.

SUBROUTINE CRACK allows part of the water entering
a soil layer to seep through the cracks in the layer; CRACK

calls no subprograms and is called by SOIL.

SUBROUTINE DAYREP writes daily values of plant

biomass and animal weight; DAYREP calls LINE and is
called by FSVPI.

SUBROUTINE DETAIL controls output via print

switches; DETAIL calls no subprograms and is called by

FSVPI, LVSTK, PLANT, and SOILM.

SUBROUTINE ERR reports error codes passed to this
subprogram; ERR is called by FSVPI and USER.

SUBROUTINE EVAPR computes plant and soil evapo-

ration; EVAPR calls no subprograms and is called by
SOIL.

SUBROUTINE FLDHYD computes surface runoff from a

site; FLDHYD calls SOIL and is called by FLDHYD.

SUBROUTINE GROW computes the physiological
growth of a steer; GROW calls no subprograms and is

called by LVSTK.

FUNCTION HYP calculates plant physiological hyper-

bolic response curve; HYP calls no subprograms and is

called by NITE and PLGRO.

SUBROUTINE IOSET reads data file names and opens

appropriate logical unit devices; IOSET calls no subpro-

grams and is called by FSVPI.

SUBROUTINE LINE adjusts page contents for a line
printer; LINE calls no subprograms and is called by

FSVPI, DAYREP, USER, and YRREP.

SUBROUTINE LVSTK controls livestock routines;

LVSTK calls DETAIL, GROW, and NTRFC, and is called

by ANIMAL.

SUBROUTINE MELT19 computes surface melt based

on 100 percent snow cover and non-rain conditions;

MELT19 calls no subprograms and is called by PACK19.

SUBROUTINE NDPM returns the number of days in each

month of the current year; NDPM calls no subprograms
and is called by FSVPI.

SUBROUTINE NITE calls BELL and HYP and is called

by PLGRO.

SUBROUTINE NTRFC interfaces plant and animal

components in the model; NTRFC calls ZERO and is

called by LVSTK and WLDLF.

SUBROUTINE PACK19 executes snow accumulation

and melt module for one computational period; PACK19

callsAESCI9, MELT19, ROUT19, and ZERO19 and is

calledby FSVPI.

SUBROUTINE PERC allows part of the water stored in

a soil layer to percolate out of the layer; PERC calls no
subprograms and is called by SOIL.

...2_
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FUNCTION PEXP calculates expected photosynthesis

by plant species by photoperiod; PEXP calls BELL and is

called by PHOTO.

FUNCTION PHOPER calculates photoperiod of a day

based on time of year; PHOPER calls no subprograms and

is called by PLANT.

SUBROUTINE PHOTO calculates actual photosynthesis

by plant species; PHOTO calls PEXP and TEMPP and is

called by PLGRO.

SUBROUTINE PLANT controls plant module compo-
nents; PLANT calls ANIMAL, DETAIL, PHOPER,

PLGRO, SOILM, and TEMPP and is called by FSVPI.

SUBROUTINE PLGRO controls plant growth functions;

PLGRO callsATANF, BELL, HYP, NITE, PHOTO,

TEMPP, and THRESH and iscalledby PLANT.

SUBROUTINE ROUT19 routes excess water through the

snow cover; ROUT19 calls no subprograms and is called

by PACK19.

SUBROUTINE SOIL distributes evaporation and rain-
fall excess to the various soil layers; SOIL calls CRACK,

EVAPR, and PERC and is called by FLDHYD.

SUBROUTINE SOILC determines the moisture charac-

teristic function for each layer for each site; SOILC calls

no subprograms and is called by USER.

SUBROUTINE SOILM calculates soil water potentials

for each layer given soil water for each layer; SOILM

callsDETAIL and iscalledby PLANT.

FUNCTION SOLADJ adjusts solar radiation input for

slope, aspect, and day of the year; SOLADJ calls no sub-

programs and is called by FSVPI.

FUNCTION TEMPP calculates soil temperature profile;

TEMPP calls no subprograms and is called by PHOTO,

PLANT, and PLGRO.

FUNCTION THRESH calculates plant physiological

threshold response; THRESH calls no subprograms and is

called by PLGRO.

FUNCTION TLAPSE calculates temperature lapse due
to altitude; TLAPSE calls no subprograms and is called by
FSVPI.

SUBROUTINE USER is the initialization and initial val-

ues output subprogram; USER calls ADPL, AESCt 9,

ERR, LINE, and SOILC and is called by FSVPI.

SUBROUTINE WLDLF controls wildlife; WLDLF calls

NTRFC and is called by ANIMAL.

SUBROUTINE YRREP writes annual and monthly

reports; YRREP calls LINE and is called by FSVPI.

SUBROUTINE ZERO zeros a matrix in the domestic

herbivore subroutines; ZERO calls no subprograms and is

called by NTRFC.

SUBROUTINE ZERO19 sets all carry-over values to no

snow conditions for the snow operation; ZERO19 calls no

subprograms and is called by PACK19.
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Appendix 3

Paranoia Output

IEEE Standard754 Machine Outputfrom RunofParanoia, Single Precision

Is this a program restart after failure (i)

or a start from scratch (0) ?

A Paranoid Program to Diagnose Floating-point Arithmetic

... Single-Precision Version ...

Lest this program stop prematurely, i.e. before displaying

"End of Test"

try to persuade the computer NOT to terminate execution

whenever an error such as Over/Underflow or Division by

Zero occurs, but rather to persevere with a surrogate value

after, perhaps, displaying some warning. If persuasion

avails naught, don't despair but run this program anyway

to see how many milestones it passes, and then run it

again. It should pick up just beyond the error and

continue. If it does not, it needs further debugging.

Users are invited to help debug and augment this program

so that it will cope with unanticipated and newly found

compilers and arithmetic pathologies.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 0 .... page 1

Please send suggestions and interesting results to

Richard Karpinski

Computer Center U-76

University of California

San Francisco, CA 94143-0704

USA

In doing so, please include the following information:

Precision: Single;

Version: 31 July 1986;

Computer:

Compiler:

Optimization level:

Other relevant compiler options:

To continue diagnosis, press return.

Diagnosis resumes after milestone # 1 .... page 2

BASIC version (C) 1983 by Prof. W. M. Kahan.

Translated to FORTRAN by T. Quarles and G. Taylor.

Modified to ANSI 66/ANSI 77 compatible subset by

Daniel Feenberg and David Gay.

You may redistribute this program freely if you

acknowledge the source.
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Running this program should reveal these characteristics:

b = radix ( i, 2, 4, 8, i0, 16, I00, 256, or ... )
p = precision, the number of significant b-digits carried.
u2 = b/b^p = one ulp (unit in the last place) of 1.000xxx..

ul = i/b^p = one ulp of numbers a little less than 1.0.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 2 .... page 3

gl, g2, g3 tell whether adequate guard digits are carried;

1 = yes, 0 = no; gl for mult., g2 for div., g3 for subt.

rl,r2,r3,r4 tell whether arithmetic is rounded or chopped;

0=chopped, l=correctly rounded, -l=some other rounding;

rl for mult., r2 for div., r3 for add/subt., r4 for sqrt.

s=l when a sticky bit is used correctly in rounding; else s=0

u0 = an underflow threshold.

e0 and z0 tell whether underflow is abrupt, gradual or fuzzy

v = an overflow threshold, roughly.

v0 tells, roughly, whether infinity is represented.

Comparisons are checked for consistency with subtraction

and for contamination by pseudo-zeros.

Sqrt is tested, so is y^x for (mostly) integers x

Extra-precise subexpressions are revealed but not yet tested.

Decimal-binary conversion is not yet tested for accuracy.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 3 .... page 4

The program attempts to discriminate among:

>FLAWs, like lack of a sticky bit,

>SERIOUS DEFECTs, like lack of a guard digit, and

>FAILUREs, like 2+2 = 5

Failures may confound subsequent diagnoses.

The diagnostic capabilities of this program go beyond an

earlier program called _Machar _, which can be found at the

end of the book "Software Manual for the Elementary Functions"

(1980) by W. J. Cody and W. Waite. Although both programs

try to discover the radix (b), precision (p) and

range (over/underflow thresholds) of the arithmetic, this

program tries to cope with a wider variety of pathologies

and to say how well the arithmetic is implemented.

The program is based upon a conventional radix

representation for floating-point numbers,

but also allows for logarithmic encoding (b = I)

as used by certain early wang machines.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 7 .... page 5

Program is now RUNNING tests on small integers:

-i, 0, 1/2 , i, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.
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Searching for radix and precision...

Radix = 2.

Closest relative separation found is 5.96046448E-08

Recalculating radix and precision

confirms closest relative separation

Radix confirmed.

The number of significant digits of radix 2. is 24.00

Test for extra-precise subexpressions:

Subexpressions do not appear to be calculated

with extra precision.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 30 .... page 6

Subtraction appears to be normalized as it should.

Checking for guard digits in multiply divide and subtract.

These operations appear to have guard digits as they should.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 40 .... page 7

Checking for rounding in multiply, divide and add/subtract:

Multiplication appears to be correctly rounded.

Division appears to be correctly rounded.

Add/subtract appears to be correctly rounded.

checking for sticky bit:

Sticky bit appears to be used correctly.

Does multiplication commute? Testing if x*y = y*x for 20 random pairs:

No failure found in 20 randomly chosen pairs.

Running tests of square root...

Testing if sqrt(x*x) = x for 20 integers x.

Found no discrepancies.

Sqrt has passed a test for monotonicity.

Testing whether sqrt is rounded or chopped:

Square root appears to be correctly rounded.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 90 .... page 8

Testing powers z^i for small integers z and i :

Start with 0.**0

No discrepancies found.

Seeking underflow threshold and min positive number:

Smallest strictly positive number found is minpos = 1.40129846E-45

Since comparison denies MINPOS = 0,

evaluating ( MINPOS + MINPOS ) / MINPOS should be safe;

what the machine gets for ( MINPOS + MINPOS ) / MINPOS is

0.2000000E+01

This is O.K. provided over/underflow has not just been signaled.

Underflow is gradual; it incurs absolute error =

(roundoff in underflow threshold) < minpos.

The underflow threshold is 0.I1754945E-37 , below which

calculation may suffer larger relative error than merely roundoff.
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To continue diagnosis, press return.
Diagnosis resumes after milestone # 130.... page 9

since underflow occurs below the threshold =
( 2.00000000E+00)^(-1.26000000E+02) ,

only underflow should afflict the expression
( 2.00000000E+00)^(-2.52000000E+02) ;

actually calculating it yields
0.00000000E+00

This computed value is O.K.

Testing x^((x+l)/(x-l)) vs. exp(2) = 0.73890557E+01 as x -> i.

Accuracy seems adequate.

Testing powers z^q at four nearly extreme values:

No discrepancies found.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 160 .... page i0

Searching for overflow threshold:

Can " z = -y _ overflow? trying it on y = Infinity

Seems O.K.

Overflow threshold is v = 3.40282347E+38

Overflow saturates at sat = Infinity

No overflow should be signaled for v*l =

3.40282347E+38

nor for v/l =

3.40282347E+38

Any overflow signal separating this * from one above is a DEFECT.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 190 .... page ii

What messages and/or values does division by zero produce?

About to compute i/0...

Trying to compute i/0 produces Infinity

About to compute 0/0...

Trying to compute 0/0 produces NaN

To continue diagnosis, press return.

Diagnosis resumes after milestone # 220 .... page 12

No failures, defects nor flaws have been discovered.

Rounding appears to conform to the proposed IEEE standard P754

The arithmetic diagnosed appears to be Excellent!

End of Test.
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Cray Output from Run of Paranoia, Single Precision

Is this a program restart after failure (I)

or a start from scratch (0)

A Paranoid Program to Diagnose Floating-point Arithmetic

... Single-Precision Version ...

Lest this program stop prematurely, i.e. before displaying

"End of Test"

try to persuade the computer NOT to terminate execution

whenever an error such as Over/Underflow or Division by

Zero occurs, but rather to persevere with a surrogate value

after, perhaps, displaying some warning. If persuasion

avails naught, don't despair but run this program anyway

to see how many milestones it passes, and then run it

again. It should pick up just beyond the error and

continue. If it does not, it needs further debugging.

Users are invited to help debug and augment this program

so that it will cope with unanticipated and newly found

compilers and arithmetic pathologies.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 0 .... page 1

Please send suggestions and interesting results to

Richard Karpinski

Computer Center U-76

University of California

San Francisco, CA 94143-0704

USA

In doing so, please include the following information:

Precision: Single;

Version: 31 July 1986;

Computer:

Compiler:

Optimization level:

Other relevant compiler options:

To continue diagnosis, press return.

Diagnosis resumes after milestone # 1 .... page 2

BASIC version (C) 1983 by Prof. W. M. Kahan.

Translated to FORTRAN by T. Quarles and G. Taylor.

Modified to ANSI 66/ANSI 77 compatible subset by

Daniel Feenberg and David Gay.

You may redistribute this program freely if you

acknowledge the source.
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Running this program should reveal these characteristics:

b : radix ( i, 2, 4, 8, i0, 16, i00, 256, or ... )

p : precision, the number of significant b-digits carried.

u2 = b/b^p = one ulp (unit in the last place) of 1.000xxx..

ul = i/b^p = one ulp of numbers a little less than 1.0.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 2 .... page 3

gl, g2, g3 tell whether adequate guard digits are carried;

1 = yes, 0 = no; gl for mult., g2 for div., g3 for subt.

rl,r2,r3,r4 tell whether arithmetic is rounded or chopped;

0=chopped, l=correctly rounded, -l=some other rounding;

rl for mult., r2 for div., r3 for add/subt., r4 for sqrt.

s=l when a sticky bit is used correctly in rounding; else s=0

u0 = an underflow threshold.

e0 and z0 tell whether underflow is abrupt, gradual or fuzzy

v = an overflow threshold, roughly.

v0 tells, roughly, whether infinity is represented.

Comparisons are checked for consistency with subtraction

and for contamination by pseudo-zeros.

Sqrt is tested, so is y^x for (mostly) integers x

Extra-precise subexpressions are revealed but not yet tested.

Decimal-binary conversion is not yet tested for accuracy.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 3 .... page 4

The program attempts to discriminate among:

>FLAWs, like lack of a sticky bit,

>SERIOUS DEFECTs, like lack of a guard digit, and

>FAILUREs, like 2+2 = 5

Failures may confound subsequent diagnoses.

The diagnostic capabilities of this program go beyond an

earlier program called _Machar", which can be found at the

end of the book "Software Manual for the Elementary Functions"

(1980) by W. J. Cody and W. Waite. Although both programs

try to discover the radix (b), precision (p) and

range (over/underflow thresholds) of the arithmetic, this

program tries to cope with a wider variety of pathologies

and to say how well the arithmetic is implemented.

The program is based upon a conventional radix

representation for floating-point numbers,

but also allows for logarithmic encoding (b = i)

as used by certain early wang machines.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 7 .... page 5

Program is now RUNNING tests on small integers:

FAILURE: violation of 240/3 = 80 or 240/4 = 60 or 240/5 = 48
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Searching for radix and precision...
Radix : 2.
Closest relative separation found is 3.55271368E-15
Recalculating radix and precision
confirms closest relative separation

Radix confirmed.

The number of significant digits of radix 2. is 48.00

Test for extra-precise subexpressions:

SERIOUS DEFECT: disagreements among the values Xl, YI, Z1

respectively 0.3552714E-14, 0.0000000E+00, 0.3552714E-14

are symptoms of inconsistencies introduced by extra-precise

evaluation of allegedly "optimized" arithmetic

subexpressions. Possibly some part of this

test is inconsistent; PLEASE NOTIFY KARPINSKI

That feature is not tested further by this program.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 30 .... page 6

Subtraction appears to be normalized as it should.

Checking for guard digits in multiply divide and subtract.

DEFECT: division lacks a guard digit so error can exceed 1 ulp

or 1/3 and 3/9 and 9/27 may disagree.

SERIOUS DEFECT: subtraction lacks a guard digit so cancellation is obscured.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 40 .... page 7

Checking for rounding in multiply, divide and add/subtract:

Multiplication is neither chopped nor correctly rounded.

Division is neither chopped nor correctly rounded.

Add/subtract neither chopped nor correctly rounded.

Sticky bit used incorrectly or not at all.

FLAW: lack(s) of guard digits or failure(s) to correctly round or chop

(noted above) count as one flaw in the final tally below.

Does multiplication commute? Testing if x*y = y*x for 20 random pairs:

No failure found in 20 randomly chosen pairs.

Running tests of square root...

Testing if sqrt(x*x) = x for 20 integers x.

Found no discrepancies.

Sqrt has passed a test for monotonicity.

Testing whether sqrt is rounded or chopped:

Square root is neither chopped nor correctly rounded.

Observed errors run from -0.1000000E+01 to 0.5000000E+00 ulps.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 90 .... page 8

Testing powers z^i for small integers z and i :

Start with 0.**0

Is this a program restart after failure (i)

or a start from scratch (0) ?

Restarting from milestone 90.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 90 .... page 9
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Testing powers z^i for small integers z and i :
No discrepancies found.

Seeking underflow threshold and min positive number:

FAILURE:positive expressions can underflow to an allegedly
negative value z0 that prints out as 0.00000000E+00
but -z0, which should then be positive, isn't; it prints out as

0.00000000E+00
Since comparison denies PHONY0= 0,
evaluating ( PHONY0+ PHONY0) / PHONY0 should be safe;

Is this a program restart after failure i)

or a start from scratch (0)

Restarting from milestone 115.

This is a VERY SERIOUS DEFECT.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 115 .... page i0

Smallest strictly positive number found is minpos = 0.00000000E+00

Since comparison denies MINPOS = 0,

evaluating ( MINPOS + MINPOS ) / MINPOS should be safe;

Is this a program restart after failure (i)

or a start from scratch (0) ?

Restarting from milestone 121.

This is a VERY SERIOUS DEFECT.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 121 .... page ii

Is this a program restart after failure (i)

or a start from scratch (0) ?

Restarting from milestone 122.

The underflow threshold is 0.00000000E+00 , below which

calculation may suffer larger relative error than merely roundoff.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 130 .... page 12

since underflow occurs below the threshold =

( 2.00000000E+00)^(-8.19200000E+03) ,

only underflow should afflict the expression

( 2.00000000E+00)^(-1.63840000E+04) ;

actually calculating it yields

0.00000000E+00

This computed value is O.K.

Testing x^((x+l)/(x-l)) vs. exp(2) : 0.73890561E+01 as x -> i.

Accuracy seems adequate.

Testing powers z^q at four nearly extreme values:

No discrepancies found.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 160 .... page 13
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Searching for overflow threshold:
Is this a program restart after failure (i)
or a start from scratch (0) ?
Restarting from milestone 161.
Can " z = -y " overflow? trying it on y = -1.36343517+2465

Seems O.K.

Overflow threshold is v = R

There is no saturation value because

the system traps on overflow.

No overflow should be signaled for v*l =

R

nor for v/l =

R

Any overflow signal separating this * from one above is a DEFECT.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 190 .... page 14

FLAW: unbalanced range; UFLTHR * V = 0.25000E+00 IS TOO FAR FROM i.

What messages and/or values does division by zero produce?

About to compute i/0...

Is this a program restart after failure (i)

or a start from scratch (0) ?

Restarting from milestone 211.

About to compute 0/0...

Trying to compute 0/0 produces 1.0000000E+00

To continue diagnosis, press return.

Diagnosis resumes after milestone # 220 .... page 15

The number of FAILUREs encountered = 2

The number of SERIOUS DEFECTs discovered = 4

The number of DEFECTs discovered = 1

The number of FLAWs discovered : 2

The arithmetic diagnosed has unacceptable Serious Defects.

Potentially fatal FAILURE may have spoiled this program's subsequent diagnoses.

End of Test.
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VAX Output from Run of Paranoia, Single Precision

Is this a program restart after failure (i

or a start from scratch (0) ?

0

A Paranoid Program to Diagnose Floating-polnt Arithmetic

... Single-Precision Version ...

Lest this program stop prematurely, i.e. before displaying

_End of Test"

try to persuade the computer NOT to terminate execution

whenever an error such as Over/Underflow or Division by

Zero occurs, but rather to persevere with a surrogate value

after, perhaps, displaying some warning. If persuasion

avails naught, don't despair but run this program anyway

to see how many milestones it passes, and then run it

again. It should pick up just beyond the error and

continue. If it does not, it needs further debugging.

Users are invited to help debug and augment this program

so that it will cope with unanticipated and newly found

compilers and arithmetic pathologies.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 0 .... page 1

Please send suggestions and interesting results to

Richard Karpinski

Computer Center U-76

University of California

San Francisco, CA 94143-0704

USA

In doing so, please include the following information:

Precision: Single;

Version: 31 July 1986;

Computer:

Compiler:

Optimization level:

Other relevant compiler options:

To continue diagnosis, press return.

Diagnosis resumes after milestone # 1 .... page 2

34



BASIC version (C) 1983 by Prof. W. M. Kahan.

Translated to FORTRAN by T. Quarles and G. Taylor.

Modified to ANSI 66/ANSI 77 compatible subset by

Daniel Feenberg and David Gay.

You may redistribute this program freely if you

acknowledge the source.

Running this program should reveal these characteristics:

b = radix ( i, 2, 4, 8, i0, 16, i00, 256, or ... )

p : precision, the number of significant b-digits carried.

u2 : b/b^p = one ulp (unit in the last place) of 1.000xxx..

ul : i/b^p = one ulp of numbers a little less than 1.0.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 2 .... page 3

gl, g2, g3 tell whether adequate guard digits are carried;

1 : yes, 0 = no; gl for mult., g2 for div., g3 for subt.

rl,r2,r3,r4 tell whether arithmetic is rounded or chopped;

0=chopped, l=correctly rounded, -l=some other rounding;

rl for mult., r2 for div., r3 for add/subt., r4 for sqrt.

s=l when a sticky bit is used correctly in rounding; else s=0.

u0 : an underflow threshold.

e0 and z0 tell whether underflow is abrupt, gradual or fuzzy

v = an overflow threshold, roughly.

v0 tells, roughly, whether infinity is represented.

Comparisons are checked for consistency with subtraction

and for contamination by pseudo-zeros.

Sqrt is tested, so is y^x for (mostly) integers x

Extra-precise subexpressions are revealed but not yet tested.

Decimal-binary conversion is not yet tested for accuracy.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 3 .... page 4

The program attempts to discriminate among:

>FLAWs, like lack of a sticky bit,

>SERIOUS DEFECTs, like lack of a guard digit, and

>FAILUREs, like 2+2 : 5

Failures may confound subsequent diagnoses.

The diagnostic capabilities of this program go beyond an

earlier program called _Machar", which can be found at the

end of the book _Software Manual for the Elementary Functions"

(1980) by W. J. Cody and W. Waite. Although both programs

try to discover the radix (b), precision (p) and

range (over/underflow thresholds) of the arithmetic, this

program tries to cope with a wider variety of pathologies

and to say how well the arithmetic is implemented.

The program is based upon a conventional radix

representation for floating-point numbers,

but also allows for logarithmic encoding (b = I)

as used by certain early wang machines.
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To continue diagnosis, press return.

Diagnosis resumes after milestone # 7.... page 5

Program is now RUNNINGtests on small integers:
-i, 0, 1/2 , I, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.

Searching for radix and precision...
Radix = 2.
Closest relative separation found is 5.96046448E-08
Recalculating radix and precision
confirms closest relative separation

Radix confirmed.

The number of significant digits of radix 2. is 24.00

Test for extra-precise subexpressions:

Subexpressions do not appear to be calculated

with extra precision.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 30 .... page 6

Subtraction appears to be normalized as it should.

Checking for guard digits in multiply divide and subtract.

These operations appear to have guard digits as they should.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 40 .... page 7

Checking for rounding in multiply, divide and add/subtract:

Multiplication appears to be correctly rounded.

Division appears to be correctly rounded.

Add/subtract appears to be correctly rounded.

checking for sticky bit:

Sticky bit used incorrectly or not at all.

Does multiplication commute? Testing if x*y = y*x for 20 random pairs:

No failure found in 20 randomly chosen pairs.

Running tests of square root...

Testing if sqrt(x*x) = x for 20 integers x.

Found no discrepancies.

Sqrt has passed a test for monotonicity.

Testing whether sqrt is rounded or chopped:

Square root appears to be correctly rounded.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 90 .... page 8

Testing powers z^i for small integers z and i :

Start with 0.**0

%MTH-F-UNDEXP, undefined exponentiation

user PC 00005B99

%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC
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0000C328 0000C328

00033B23 00033B23

PWRCMP PWRCMP 32

POWER POWER 57

SPREC$MAIN SPREC$MAIN

$ run sprec

Is this a program restart after failure (I)

or a start from scratch (0)

1

Restarting from milestone 90.

00000019 00005B99

00000087 000069C7

257 000004AE 00004AAE

To continue diagnosis, press return.

Diagnosis resumes after milestone # 90 .... page 9

Testing powers z^i for small integers z and i :

No discrepancies found.

Seeking underflow threshold and min positive number:

Smallest strictly positive number found is minpos : 2.93873588E-39

Since comparison denies MINPOS : 0,

evaluating ( MINPOS + MINPOS ) / MINPOS should be safe;

what the machine gets for ( MINPOS + MINPOS ) / MINPOS is

0.2000000E+01

This is O.K. provided over/underflow has not just been signaled.

FLAW: x = 0.40407618E-38 is unequal to z = 0.29387359E-38 ,

yet x-z yields 0.0000000E+00

Should this not signal underflow, this is a SERIOUS

DEFECT that causes confusion when innocent statements like

if (x.eq.z) then ... else ... ( f(x)-f(z) )/(x-z) ...

encounter division by zero although actually x/z = 1 + 0.37500000E+00

The underflow threshold is 0.29387359E-38 , below which

calculation may suffer larger relative error than merely roundoff.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 130 .... page i0

since underflow occurs below the threshold =

( 2.00000000E+00)^(-1.28000000E+02) ,

only underflow should afflict the expression

( 2.00000000E+00)^(-2.56000000E+02) ;

actually calculating it yields

0.00000000E+00

This computed value is O.K.

Testing x^((x+l)/(x-l)) vs. exp(2) = 0.73890557E+01 as x-> i.

Accuracy seems adequate.

Testing powers z^q at four nearly extreme values:

No discrepancies found.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 160 .... page Ii
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Searching for overflow threshold:

%SYSTEM-F-FLTOVF_F, arithmetic fault, floating overflow at PC=00005EF2,

PSL=03C0002A

%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC

OVERF OVERF 104 0000026A 00005EF2

SPREC$MAIN SPREC$MAIN 276 000004CF 00004ACF

$ run spree

Is this a program restart after failure (I)

or a start from scratch (0) ?

1

Restarting from milestone 161.

Can _ z = -y " overflow? trying it on y = -8.50705917E+37

Seems O.K.

Overflow threshold is v = 1.70141173E+38

There is no saturation value because

the system traps on overflow.

No overflow should be signaled for v*l =

1.70141173E+38

nor for v/l =

1.70141173E+38

Any overflow signal separating this * from one above is a DEFECT.

To continue diagnosis, press return.

Diagnosis resumes after milestone # 190 .... page 12

What messages and/or values does division by zero produce?

About to compute 1/0...

%SYSTEM-F-FLTDIV_F, arithmetic fault, floating divide by zero at PC=00009EDC,

PSL=03C

00022

%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC

ZEROS ZEROS 52 00000074 00009EDC

SPREC$MAIN SPREC$MAIN 282 000004E0 00004AE0

$ run sprec

Is this a program restart after failure (i)

or a start from scratch (0) ?

1

Restarting from milestone 211.

About to compute 0/0...

%SYSTEM-F-FLTDIV_F, arithmetic fault, floating divide by zero at PC=00009F37,

PSL=03C

00022

%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC

ZEROS ZEROS 59 000000CF 00009F37

SPREC$MAIN SPREC$MAIN 282 000004E0 00004AE0

$ run sprec

Is this a program restart after failure (i)

or a start from scratch (0) ?

1

Restarting from milestone 212.
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To continue diagnosis, press return.

Diagnosis resumes after milestone # 220.... page 13

The numberof FLAWsdiscovered = 1
The arithmetic diagnosed seemsSatisfactory though flawed.
End of Test.
FORTRANSTOP
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