
N95- 24113

The Architecture of the High Performance Storage System
(HPSS)

Danny Teaff
IBM Federal

3700 Bay Area Blvd.
Houston, TX 77058

(713) 282-8137
Fax (713) 282-8074
teaff@vnet.ibm.com

Dick Watson

Lawrence Livermore National Laboratory
PO Box 808, L-560

Livermore, CA 94550
(510) 422-9216

Fax (510) 423-7997
dwatson@llnl.gov

Bob Coyne
IBM Federal

3700 Bay Area Blvd., 5th Floor
Houston, TX 77058

(713) 282-8039
Fax (713) 282-8074

coyne@vnet.ibm.com

Abstract

The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage
system performance and functionality relative to application requirements and the
capabilities of other system components. The High Performance Storage System (HPSS)
is a scalable, next-generation storage system that will meet the functionality and
performance requirements of large-scale scientific and commercial computing
environments.

Our goal is to improve the performance and capacity of storage systems by two orders of
magnitude or more over what is available in the general or mass marketplace today. We are
also providing corresponding improvements in architecture and functionality. This paper
describes the architecture and functionality of HPSS.

Introduction

The rapid improvement in computational science, processing capability, main memory
sizes, data collection devices, multimedia capabilities, and integration of enterprise data are
producing very large datasets. These datasets range from tens to hundreds of gigabytes up
to terabytes. In the near future, storage systems must manage total capacities, both
distributed and at single sites, scalable into the petabyte range. We expect these large
datasets and capacities to be common in high-performance and large-scale national
information infrastructure scientific and commercial environments. The result of this rapid
growth of data is a serious imbalance in I/O and storage system performance and

45

functionality relative to application requirements and the capabilities of other system

components.

To deal with these issues, the performance and capacity of large-scale storage systems must
be improved by two orders of magnitude or more over what is available in the general or
mass marketplace today, with corresponding improvements in architecture and
functionality. The goal of the HPSS collaboration is to provide such improvements. HPSS
is the major development project within the National Storage Laboratory (NSL). The NSL
was established to investigate, demonstrate, and commercialize new mass storage system
architecture to meet the needs above [5,7,21]. The NSL and closely related projects involve

more than 20 participating organization from industry, Department of Energy (DOE) and
other federal laboratories, universities, and National Science Foundation (NSF)

supercomputer centers. The current HPSS development team consists of IBM U.S.
Federal, four DOE laboratories (Lawrence Livermore, Los Alamos, Oak Ridge, and
Sandia), Cornell University, and NASA Langley and Lewis Research Centers. Ampex,
IBM, Maximum Strategy Inc., Network Systems Corp., PsiTech, Sony Precision
Graphics, Storage Technology, and Zitel have supplied hardware in support of HPSS
development and demonstration. Cray Research, Intel, IBM, and Meiko are cooperating in
the development of high-performance access for supercomputers and MPP clients.

The HPSS commercialization plan includes availability and support by IBM as a high-end
Service offering through IBM U.S. Federal. HPSS source code can also be licensed and
marketed by any US. company.

Architectural Overview

The HPSS architecture is based on the IEEE Mass Storage Reference Model: version 5
[6,9] and is network-centered, including a high speed network for data transfer and a
separate network for control (Figure I) [4,7,13,16]. The control network uses the Open
Software Foundation's (OSF) Distributed Computing Environment DCE Remote

Procedure Call technology [17]. In actual implementation, the control and data transfer
networks may be physically separate or shared. An important feature of HPSS is its
support for both parallel and sequential input/output (I/O) and standard interfaces for
communication between processors (parallel or otherwise) and storage devices. In typical
use, clients direct a request for data to an HPSS server. The HPSS server directs the
network-attached storage devices or servers to transfer data directly, sequentially or in
parallel to the client node(s) through the high speed data transfer network. TCP/IP sockets
and IPI-3 over High Performance Parallel Interface (HIPPI) are being utilized today; Fibre
Channel Standard (FCS) with IPI-3 or SCSI, or Asynchronous Transfer Mode (ATM) will

also be supported in the future [3,20,22]. Through its parallel storage support by data
striping HPSS will continue to scale upward as additional storage devices and controllers
are added to a site installation.

46

Control
• • •

Control

HIPPI/
FCS/ATM

Throughput Scalable to
the GB/a Region

Unix W/S

Figure 1 - Example of the type of configuration HPSS is designed to support

The key objectives of HPSS are now described.

Scalability

A major driver for HPSS is to develop a scalable, distributed, high performance storage
management system. HPSS is designed to scale in several dimensions.

The HPSS I/O architecture is designed to provide I/O performance scaling by supporting
parallel I/O through software striping [1]. The system will support application data
transfers from megabytes to gigabytes per second with total system throughput of many

47

gigabytesper second.Dataobjectnumberandsizemustscaleto supportbillions of data
objects,eachpotentiallyterabytesor largerin size,for totalstoragecapacitiesin petabytes.
This is accomplishedthrough64-bit metadatafields andscalableorganizationof system
metadata.Thesystemalsoisrequiredto scalegeographicallyto supportdistributedsystems
with hierarchiesof hierarchical storagesystems.Multiple storagesystemslocated in
differentareasmustintegrateintoasinglelogicalsystemaccessiblebypersonalcomputers,
workstations, and supercomputers.These requirements are accomplishedusing a
client/serverarchitecture,the useof OSF'sDCE asits distributedinfrastructure,support
for distributedfile systeminterfacesandmultiple servers.HPSSalsosupportsascalable
storageobjectnameservicecapableof managingmillions of directoriesandtheability to
supporthundredsto thousandsof simultaneousclients.Thelatter is achievedthroughthe
ability to multitask,multiprocessandreplicatetheHPSSservers.

Modularity and APIs

The HPSS architecture is highly modular. Each repiicabie software component is
responsible for a set of storage objects, and acts as a service provider for those objects. The
IEEE Reference Model, on which the HPSS design is based, provides the modular layered
functionality (see Figure 2) [6,9]. The HPSS software components are loosely coupled,
with open application program interfaces (APIs) defined at each component level. Most
users will access HPSS at its high level interfaces-currently client API, FTP (both parallel
and sequential), NFS, Parallel File System (PFS), with AFS/DFS, Unix Virtual File
System (VFS), and Data Management Interface Group (DMIG) interfaces in the future)
[11,15,18,19]. However, APIs are available to the underlying software components for
applications, such as large scale data management, digital library or video-on-demand
requiring high performance or special services. This layered architecture affords the
following advantages:

Replacement of selected software comp0nents-As new and better
commercial software and hardware components became available, an installation

can add or replace existing components. For example, an installation might add or
replace Physical Volume Repositories, Movers or the HPSS Physical Volume
Library with other commercially available products.

Support of applications direct access to lower level services-The
layered architecture is designed to accommodate efficient integration of different
applications such as digital library, object store, multimedia, and data management
systems. Its modularity will enable HPSS to be embedded transparently into the
large distributed information management systems that will form the information
services in the emerging national information infrastructure. Support for different
name spaces or data organizations is enabled through introduction of new Name
Servers and data management applications.

Portability and Standards

Another important design goal is portability to many vendor's platforms to enable OEM and

multivendor support of HPSS. HPSS has been designed to run under Unix requiring no
kernel modifications, and to use standards based protocols, interfaces, and services where
applicable. HPSS is written in ANSI C, and uses POSIX functions to enhance software
portability. Use of existing commercial products for many of the infrastructure services

48

supportedon multiple-vendorplatformsenablesportability, while alsoproviding market
proven dependability. Open Software Foundation (OSF) Distributed Computing
Environment(DCE), Transarc'sEncinatransactionmanager [8], Kinesix SAMMI and
X-windows are being usedby HPSSbecauseof their supportacrossmultiple vendor
platforms,in additionto therich setof functionalityprovided.TheHPSScomponentAPIs
havebeenturnedoverto theIEEEStorageSystemStandardsWorkingGroupasabasisfor
its standardsactivities.

Reliability and Recovery

Reliable and recoverable storage of data is mandatory for any storage system. HPSS
supports several mechanisms to facilitate this goal. The client-server interactions between
HPSS software components have been designed to be based on atomic transactions in
order to maintain system state consistency [14]. Within the scope of a given request, a
transaction may be established so that an abort (or commit) in one component will cause the
other participating components to abort (or commit). The HPSS Metadata Manager is fully

integrated with its Transaction Manager. Following an abort, the non-volatile file and name
space metadata changes within the scope of the transactions will automatically be rolled
back. For recovery purposes, mirroring of the storage object and name space metadata is
supported. The HPSS architecture will also support data mirroring if desired in a future
release.

Support is also provided to recover from failed devices and bad media. An administrator
interface is provided to place a device off line. Once the device has been repaired, it may
then be placed back on line. For bad media, an application interface is provided to move
storage segments from a virtual volume to a new virtual volume.

The HPSS software components execute in a distributed manner. Should a processor fail,
any of the HPSS software components may be moved to another platform. Component
services are registered with the DCE Cell Directory Service (CDS) so that components may
locate the services. Each component has also been designed to perform reconnect logic
when a connection to a peer component fails. Connection context is maintained by selected
components. When a connection context is established, a keep-alive activity is started to
detect broken connections. A server may use the context information associated with a
broken connection to perform any necessary clean up.

Security and Privacy

HPSS uses DCE and POSIX security and privacy mechanisms for authentication, access
control lists, permissions and security labels. Security policy is handled by a separate
policy module. Audit trails are also supported. Further, HPSS design and implementation
use a rigorous software engineering methodology which support its reliability and
maintainability.

Storage System Management

HPSS has a rich set of storage system management services for operators and system
administrators based on managed object definitions. The application programming interface
supports monitoring, reporting and controlling operations (see Appendix A).

49

Software Components

The HPSS software components are shown Figure 2. The shaded boxes are defined in the
IEEE Mass Storage Reference Model: version 5 [9].

HPSS Software Architecture

Common Infrastructure /Communications TransactionManager Logging 64-bitMath
Security MetadataManager InfrastructureServices Libraries

Client(s)

VFS I/F*

Applications
Data Management
System Daemons:
• FTP
• NFS
• DFS/AFS*
• DMIG*

• indicallm future
tnteHracee

Name
Server{s)

Location

Server(s)

Bitfile

Server(s) Blackcomponents
oredefinedinthe
IIEEEMass Storage
ReferenceModel.

Migration/ Repack
Purge

Other Modules

INSL Installation /UniTree Migratior_

M
a
n
a

g
e
m
e
n
t

Figure 2 - Software Model Diagram

This sectionoutlinesthefunctionof eachcomponent.

Infrastructure

HPSS design is based upon a well-formed industry standard infrastructure. The key
infrastructure components are now outlined.

Distributed Computing Environment

HPSS uses OSF's DCE as the base infrastructure for its distributed architecture [17]. This
standards-based framework will enable the creation of distributed storage systems for a
national information infrastructure capable of handling gigabyte-terabyte-class files at

gigabyte per second data transfer rates.

HPSS

D
C
E

S
e

c

u
r
i
t

DCE DCE
Distributed Directory

Time Service Service

DCE Remote Procedure Call

[DCE Threads

I Operating System and Transport Services

M
a
n

a
g
e
m

e
n

Figure 3 - HPSS DCE Architecture Infrastructure

DCE was selected because of its wide adoption among vendors and its near industry-
standard status. HPSS uses the DCE Remote Procedure Call (RPC) mechanism for control
messages and DCE Threads for multitasking. The DCE threads package is vital for HPSS
to serve large numbers of concurrent users and to enable multiprocessing of its servers.
HPSS also uses the DCE Security, Cell Directory, and Time services. A library of DCE
convenience functions was developed for use in HPSS.

Transaction Management

Requests to HPSS to perform actions such as creating bitfiles or accessing file data results
in client/server interactions between software components. Transaction integrity is required
to guarantee consistency of server state and metadata in case a particular component should
fail. As a result, a transaction manager was required by HPSS. Encina, from Transarc, was
selected by the HPSS project as its transaction manager [8]. This selection was based on
functionality, its use of DCE, and multi-platform vendor support.

51

Encinaprovidesbegin-commit-abortsemantics,distributedtwo-phasecommit,andnested
transactions.In addition, TransactionRPCs (TRPCs),which extendDCE RPCswith
transactionsemantics,areprovided.Forrecoverypurposes,Encinausesawrite-aheadlog
for storingtransactionoutcomesandupdatesto recoverablemetadata.Mirroring of datais
alsoprovided.

I Encina Toolkit Server Core
Encina Toolkit Executive

OSF DCE

infunctionO;
transaction {

,'''

onCommit

onAbort

Figure 4 - Encina Components

Metadata Management

Each HPSS software component has system metadata associated with the objects it
manages. Each server with non-volatile metadata requires the ability to reliably store its
metadata. It is also required that metadata management performance be scalable as the
number of object instances grow. In addition, access to metadata by primary and secondary
keys is required. The Structured File Server (SFS), an Encina optional product, was
selected by the HPSS project as its metadata manager. SFS provides B-tree clustered file
records, record and field level access, primary and secondary keys, and automatic byte
ordering between machines. SFS is also fully integrated with the Encina transaction
manager. As a result, SFS provides transaction consistency and data recovery from
transaction aborts. For reliability purposes, HPSS metadata stored in SFS is mirrored. A
library of metadata manager convenience functions for retrieving, adding, updating, and

deleting metadata for each of the HPSS components was developed.

Encina SFS

Encina Toolkit Server Core

Encina Toolkit Executive

OSF DCE

Figure 5 - Structured File Server (SFS)

Security

The security components of HPSS provide authentication, authorization, enforcement, and

audit capabilities for the HPSS components. Authentication is responsible for guaranteeing
that a principal is the entity that is claimed, and that information received from an entity is
from that entity. Authorization is responsible for enabling an authenticated entity access to
an allowed set of resources and objects. Authorization enables end user access to HPSS

directories and bitfiles. Enforcement is responsible for guaranteeing that operations are

52

restricted to the authorized set of operations. Enforcement applies to end user access to
bitfiles. Audit is responsible for generating a log of security relevant activity. HPSS
security libraries utilize DCE and DCE security. The authentication service, which is part of
DCE, is based on Kerberos v5. The following figure depicts how HPSS security fits with
DCE and Kerberos.

H
p I
S b
S g

S
C s
o
m

P I
0
ng
e h
n s
t e
s c

N

HPSS Node

D "."."_

E

s £
e E
c
u R
r u
! n
t t
Y i

.-.-.- e

O
S

Security Server ,

RPC _,_,,= Registry Service ..,,,._X.._

N;III Authentication Service

P ,ege service

Supplied by DCE D Kerberos Authentication Service

Figure 6 - HPSS Security

Communication

The control path communications between HPSS components is through DCE RPCs or
Encina transaction RPCs. For data path communication, the HPSS Mover(s) currently
utilize either Sockets or IPI-3 (over HIPPI) libraries. Future support is planned for IPI-3
and SCSI over Fibre Channel Standard and TCP/IP over ATM. A special parallel data
transfer library has been developed. This library allows data to be transferred across many
parallel data connections. The library transfers data headers that identify the data that
follows. This allows data to be sent and arrive in any order on the parallel paths.

Logging

The HPSS logger is used to record alarms, events, requests, security audit records,
accounting records, and trace information from the HPSS components. A central log is
maintained which contains records from all HPSS components. A local log of activity from
components on each HPSS node is also supported. When the central log fills, it will switch
to a secondary log file. A configuration option allows the filled log to be automatically
archived to HPSS. A delog function is provided to extract and format log records. Delog
options support filtering by time interval, record type, server, and user.

53

64 Bit Arithmetic Libraries

HPSS supports file sizes up to 2**64 bytes. Many vendor platforms support only 32 bit
integer arithmetic. In order to support large file sizes and large numbers of objects on 32 bit
platforms, a library of 64 bit arithmetic functions has been developed. The functions
support both big endian and little endian I/O architectures.

Interfaces

HPSS supports several high-level interfaces: currently Client API, FTP (both standard and
parallel), and NFS, with DFS/AFS, DMIG, and VFS planned for future releases.

Client API

The HPSS Client file server API mirrors the POSIX file system interface specification

where possible. The Client API also supports extensions to allow the programmer to take
advantage of the specific features provided by HPSS (e.g., class-of-service, storage/access
hints passed at file creation and support for parallel data transfers).

FTP (standard and parallel)

HPSS provides a standard FTP server interface to transfer files from HPSS to a local file
system. Parallel FTP, an extension and superset of standard FTP, has been implemented to
provide high performance data transfers to client systems. The standard FTP protocol
supports third-party data transfer through separation of the data transfer and control paths,
but it does not offer parallel data paths [11]. HPSS modified and augmented the standard
client FTP file retrieval and storage functions to offer parallel data paths for HPSS data
transfers. This approach provides high performance FTP transfers to the client while still
supporting the FTP command set. Additional commands have been added to support
parallel transfer. This work will be submitted to the Internet Engineering Task Force for
standardization.

NFS

The NFS V2 Server interface for HPSS provides transparent access to HPSS name space
objects and bitfile data for client systems from both the native HPSS and the Network File
System V2 service. The NFS V2 Server translates standard NFS calls into HPSS control
calls and provides data transfers for NFS read and write requests. The NFS V2 Server
handles optimization of data movement requests by the caching of data and control
information. If the server machine crashes, the NFS V2 Server is in charge of recovery of
all cached data at the time of the crash. The NFS V2 Server will also recover when HPSS

crashes. Before NFS clients can request NFS services, they must mount an exported
ttPSS directory by calling the Mount daemon mount API. Support for NFS V3 is planned
for a future release.

54

Parallel File System

HPSS provides the capability to act as an external hierarchical file system to vendor Parallel
File Systems (PFS). The first implementation supports the IBM SPx PIOFS. Early
deployment is also planned for Intel Paragon and Meiko PFS integration with HPSS.

Name Server (NS)

The Name Server maps a file name to an HPSS object. The Name Server provides a
POSIX view of the name space which is a hierarchical structure consisting of directories,

files, and links. File names are human readable ASCII strings. Namable objects are any
object identified by HPSS Storage Object IDs. The commonly named objects are bitfiles,
directories, or links. In addition to mapping names to unique object identifiers, the Name
Server provides access verification to objects. POSIX Access Control Lists (ACLs) are
supported for the name space objects. A key requirement of the Name Server is to be able
to scale to millions of directories and greater than a billion name space entries.

Bitfile Server (BFS)

The Bitfile Server provides the POSIX file abstraction to its clients. A logical bitfile is an
uninterpreted bit string. HPSS supports bitfile sizes up to 2**64 bytes. A bitfile is
identified by a Bitfile Server generated name called a bitfile-id. Mapping of a human
readable name to the bitfile id is provided by a Name Server external to the Bitfile Server.
Clients may reference portions of a bitfile by specifying the bitfile-id and a starting address
and length. The writes and reads to a bitfile are random and the writes may leave holes
where no data has been written. The Bitfile Server supports both sequential and parallel
read and write of data to bitfiles. In conjunction with Storage Servers, the Bitfile Server
maps logical portions of bitfiles onto physical storage devices.

Storage Server (SS)

The Storage Server provides a hierarchy of storage objects: logical storage segments,
virtual volumes and physical volumes. All three layers of the Storage Server can be
accessed by appropriately privileged clients. The server translates references to storage
segments into references to virtual volume and finally into physical volume references. It
also schedules the mounting and dismounting of removable media through the Physical
Volume Library. The Storage Server in conjunction with the Mover have the main
responsibility for orchestration of HPSS's parallel I/O operations.

The storage segment service is the conventional method for obtaining and accessing HPSS
storage resources. The Storage Server maps an abstract storage space, the storage segment,
onto a virtual volume, resolving segment addresses as required. The client is presented
with a storage segment address space, with addresses from 0 to N-1, where N is the byte
length of the segment. Segments can be opened, created, read, written, closed and deleted.
Characteristics and information about segments can be retrieved and changed.

The virtual volume service is the method provided by the Storage Server to group physical
storage volumes. The virtual volume service supports striped volumes today and mirrored
volume in a future release. Thus, a virtual volume can span multiple physical volumes. The
Storage Server maps the virtual volume address space onto the component physical
volumes in a fashion appropriate to the grouping. The client is presented with a virtual

55

volume that canbe addressedfrom 0 to N-1, whereN is the byte lengthof the virtual
volume.Virtual volumescanbemounted,created,read,written, unmountedanddeleted.
Characteristicsof thevolumecanberetrievedandin somecases,changed.

The physical volumeserviceis the methodprovidedby the storageserverto accessthe
physical storagevolumesin HPSS. Physicalvolumescan be mounted,created,read,
written,unmountedanddeleted.Characteristicsof thevolumecanberetrievedandin some
cases,changed.

Repackruns as a separateprocess.It providesdefragmentationof physical volumes.
Repackutilizes a StorageServerprovidedfunction which movesstoragesegmentsto a
differentvirtual volume.

Mover (Mvr)

TheMover is responsiblefor transferringdatafrom asourcedevice(s)to a sinkdevice(s).
A devicecan bea standardI/O devicewith geometry(e.g.,a tapeor disk), or a device
without geometry (e.g., network,memory).The Mover also performsa set of device
controloperations.Moversperformthecontrolandtransferof bothsequentialandparallel
datatransfers.

TheMover consistsof severalmajorparts: Moverparenttask,Mover listentask/request
processingtask,DataMovement,Devicecontrol,andSystemManagement.

The Mover parenttaskperformsMover initialization functions,andspawnsprocessesto
handletheMover'sDCEcommunication,datatransferconnections,aswell astheMover's
functionalinterface.TheMover listentasklistenson awell-knownTCPport for incoming
connectionsto theMover, spawnsrequestprocessingtasks,andmonitorscompletionof
those tasks.The requestprocessingtask performs initialization and return functions
commonto all Moverrequests.Datamovementsupportsclientrequeststo transferdatato
or from HPSS.Devicecontrol supportsqueryingthecurrentdeviceread/writeposition,
changingthe currentdeviceread/writeposition, loadinga physical volumeinto adrive,
unloadingaphysicalvolumefrom adrive,flushingdatato themedia,writing atapemark,
loadinga messageto adevice'sdisplayarea,readingamedialabel,writing amedialabel,
andzeroinga portionof disk.Systemmanagementsupportsqueryingandalteringdevice
characteristicsandoverallMoverstate.

Physical Volume Library (PVL)

The PVL manages all HPSS physical volumes. Clients can ask the PVL to mount and
dismount sets of physical volumes. Clients can also query the status and characteristics of

physical volumes. The PVL maintains a mapping of physical volume to cartridge and a
mapping of cartridge to PVR. The PVL also controls all allocation of drives. When the
PVL accepts client requests for volume mounts, the PVL allocates resources to satisfy the
request. When all resources are available, the PVL issues commands to the PVR(s) to
mount cartridges in drives. The client is notified when the mount has completed.

The Physical Volume Library consists of two major parts: Volume mount service and

Storage system management service.

56

The volume mount serviceis provided to clients suchas a StorageServer.Multiple
physicalvolumesbelongingto avirtual volumemaybespecifiedaspartof a singlerequest.
All of the volumeswill bemountedbefore the requestis satisfied.All volume mount
requestsfrom all clientsarehandledby thePVL. This allowsthePVL to preventmultiple
clientsfrom deadlockingwhentrying to mountintersectingsetsof volumes.Thestandard
mountinterfaceis asynchronous.A notificationis providedto theclientwhentheentireset
of volumeshasbeenmounted.A synchronousmount interfaceis also provided.The
synchronousinterfacecanonly beusedto mountasinglevolume,notsetsof volumes.The
synchronousinterfacemight beusedby anon-HPSSprocessto mountcartridgeswhich
arein a tapelibrary,butnotpartof theHPSSsystem.

Thestoragesystemmanagementserviceis providedto allow amanagementclient control
overHPSStaperepositories.Interfacesareprovidedto import,export,andmovevolumes.
Whenvolumesareimportedinto HPSS,thePVL is responsiblefor writing a label to the
volume. This label can beusedto confirm the identity of the volume every time it is
mounted.Managementinterfacesare also provided to query and set the statusof all
hardwaremanagedby thePVL (volumes,drives,andrepositories).

Physical Volume Repository (PVR)

The PVR manages all HPSS supported robotics devices and their media such as cartridges.
Clients can ask the PVR to mount and dismount cartridges. Every cartridge in HPSS must
be managed by exactly one PVR. Clients can also query the status and characteristics of
cartridges.

The Physical Volume Repository consists of these major parts: Generic PVR service, and
support for devices such as Ampex, STK, and 3494/3495 robot services, as well as an
operator mounted device service.

The generic PVR service provides a common set of APIs to the client regardless of the type
of robotic device being managed. Functions to mount, dismount, inject and eject cartridges
are provided. Additional functions to query and set cartridge metadata are provided. The

mount function is asynchronous. The PVR calls a well-known API in the client when the
mount has completed. For certain devices, like operator mounted repositories, the PVR will
not know when the mount has completed. In this case it is up to the client to determine
when the mount has completed. The client may poll the devices or use some other method.
When the client determines a mount has completed, the client should notify the PVR using
one of the PVR's APIs. All other PVR functions are synchronous. The generic PVR
maintains metadata for each cartridge managed by the PVR. The generic PVR interface calls
robotics vendor supplied code to manage specific robotic devices.

The operator mounted device service manages a set of cartridges that are not under the
control of a robotics device. These cartridges are mounted to a set of drives by operators.
The Storage System Manager is used to inform the operators when mount operations are
required.

Storage System Management (SSM)

The HPSS SSM architecture is based on the ISO managed object architecture [10,12]. The
Storage System Manager (SSM) monitors and controls the available resources of the HPSS
storage system in ways that conform to the particular management policies of a given site.
Monitoring capabilities include the ability to query the values of important management

57

attributesof storage system resources as well as an ability to receive notifications of alarms
and other significant system events. Controlling capabilities include the ability to set the
values of management attributes of storage system resources and storage system policy
parameters. Additionally, SSM can request that specific operations be performed on
resources within the storage system, such as adding and deleting logical or physical
resources. The operations performed by SSM are usually accomplished through standard
HPSS server APIs.

SSM management roles cover a wide spectrum, including configuration aspects of
installation, creating new volumes, initialization, operations, and termination tasks. SSM
can provide management capabilities to a range of clients, including site administrators,
systems administrators, operations personnel, complex graphical user interface (GUI)
management environments, and independent management applications responsible for tasks
such as purges, migration, and reclamation. Some of the functional areas of SSM include
fault management, configuration management, security management, accounting

management, and performance management.

SSM consists of these major parts: SSM Graphical User Interface (SAMMI GUI
Displays), SAMMI Data Server, and System Manager.

The SSM Graphical User Interface allows operators, administrators, and users to
interactively monitor and control the HPSS storage system. Kinesix's SAMMI product is
used to provide the HPSS GUI services. SAMMI is built on X-windows and OSF's Motif.

It provides mechanisms to simplify screen design and data management services for screen
fields. Standard Motif widgets such as menus, scrollbar lists, and buttons are used. In
addition SAMMI specific widgets such as dials, gauges, and bar charts are used for
informational and statistical data.

The SAMMI Data Server is a client to the System Manager and a server to the SAMMI

Runtime Display Manager. The SAMMI Data Server is the means by which data is acquired
and fed to the SAMMI Displays.

The Storage System Manager is a client to the HPSS servers and a server to the SAMMI
Data Server and other external clients wishing to perform management specific operations.
It interfaces to the managed objects defined by the HPSS servers.

Applications

Daemons:
- FTP
-NFS
- "DFS/AFS

- PFS (Ves_)

(all components)

SSM 1_=1

HPSS

RPC

Figure 7 - Storage System Management

58

Migration. Purge

The Migration-Purge server provides hierarchical storage management for HPSS through
migration and caching of data between devices. There are two types of migration and
caching: disk migration and caching and tape migration and caching. Multiple storage
hierarchies are supported by HPSS [2]. Data is cached to the highest level (fastest) device
in a given hierarchy when accessed and migrated when inactive and space is required.

The main purpose of disk migration is to free up the disk storage. This type of migration
contains two functions; migration and purge. Migration selects the qualified bitfiles and
copies these bitfiles to the next storage level defined in the hierarchy. Purge later frees the
original bitfiles from the disk storage.

The main purpose of tape migration is to free up tape volumes, and not just migrate bitfiles.
The active bitfiles in the target virtual volumes are moved laterally to the free tape volumes
in the same storage level. The inactive bitfiles in the target virtual volumes are migrated to
the free tape volumes in the next storage level.

The HPSS component client APIs provide the vehicle for the Storage System Manger to
request the server to start migration and purge whenever it is necessary. The migration-
purge server is set up to run migration periodically with the time interval specified in the
migration policy. In addition, the server will Start the migration and purge to run
automatically if the free space of a storage class is below the percentage specified in the

migration-purge policy.

Other

Installation

Installation software is provided for system administrators to install/update HPSS, and
perform the initial configuration of HPSS following installation. The full HPSS system is
first installed to an installation node. Selected HPSS software components may then be
installed (using the remote installation feature) from the installation node to the other nodes
where HPSS components will be executed.

NSL-UniTree Migration

HPSS, through its support of parallel storage, provides significant improvements in I/O
rates and storage capacity over existing storage systems software. In transitioning from
existing systems, a migration path is required. The migration path should be transparent to
end users of the storage system. The capability to migrate from NSL UniTree to HPSS is

provided. The migration software handles both file metadata and actual data. Utilities
convert the file metadata (e.g., storage maps, virtual volume data, physical volume data),
and name space metadata from UniTree format to HPSS format. Actual data is not moved.
The HPSS Mover software contains additional read logic to recognize NSL UniTree data
formats when an NSL UniTree file is accessed. Utilities to support migration from other

legacy storage systems will also be provided as required.

59

Accounting

HPSS provides interfaces to collect accounting information (initially storage space
utilization). These interfaces may be used by site specific programs to charge for data
storage. SSM provides user interfaces to run the accounting collection utility, change
account numbers and change the account code assigned to storage objects.

Summary and Status

We have described the key objectives, features and components of the HPSS architecture.
At the time this paper is being written, December 1994, HPSS Release 1 (R1) is in
integration testing and planning for its early deployment at several sites has begun. RI
contains all the basic HPSS components and services and supports parallel tape. It is
targeted at MPP environments with existing parallel disk services. Much of the coding for
Release 2 (R2) has been completed also. R2 adds support for parallel disks, migration and
caching between levels of the hierarchy and other functionality. R2 will be a complete
stand-alone system and is targeted for third quarter 1995.

We demonstrated, HPSS at Supercomputing 1994 with R1 and early R2 capabilities of
parallel disks, and tape access (Ampex D2, IBM NTP and 3490), to an IBM SP2, IBM RS
6000, PsiTech framebuffer, and Sony high-resolution monitor over a NSC HIPPI switch.
HPSS R1 is on order 95K lines of executable source code and R2 is expected to add on
another 50K lines of executable source code.

Our experience indicates that the architectural choices of basing the system on the IEEE
Reference Model, use of an industry defacto standard infrastructure based on OSF DCE
and Transarc Encina, and use of other industry standards such as POSIX, C, Unix, ISO
managed object model for Storage System Management and standard communication
protocols is sound. This foundation plus the software engineering methodology employed,
we believe, positions HPSS for a long and useful life for both scientific and commercial
high performance environments.

Acknowledgments

We wish to acknowledge the many discussions and shared design, implementation, and
operation experiences with our colleagues in the National Storage Laboratory collaboration,
the IEEE Mass Storage Systems and Technology Technical Committee, the IEEE Storage
System Standards Working Group, and in the storage community. Specifically we wish to
acknowledge the people on the HPSS Technical Committee and Development Teams. At
the risk of leaving out a key colleague in this ever-growing collaboration, the authors wish
to acknowledge Dwight Barrus, Ling-Ling Chen, Ron Christman, Danny Cook, Lynn
Kluegel, Tyce McLarty, Christina Mercier, and Bart Parliman from LANL; Larry Berdahl,
Jim Daveler, Dave Fisher, Mark Gary, Steve Louis, Donna Mecozzi, Jim Minton, and
Norm Samuelson from LLNL; Marty Barnaby, Rena Haynes, Hilary Jones, Sue Kelly,
and Bill Rahe from SNL; Randy Burris, Dan Million, Daryl Steinert, Vicky White, and
John Wingenbach from ORNL; Donald Creig Humes, Juliet Pao, Travis Priest and Tim
Starrin from NASA LaRC; Andy Hanushevsky, Lenny Silver, and Andrew Wyatt from
Cornell; and Paul Chang, Jeff Deutsch, Kurt Everson, Rich Ruef, Tracy Tran, Terry Tyler,
and Benny Wilbanks from IBM U.S. Federal and its contractors.

60

This work was,in part,performedby theLawrenceLivermoreNationalLaboratory,Los
Alamos National Laboratory, Oak Ridge National Laboratory, and SandiaNational
Laboratories,underauspicesof theU.S.Departmentof EnergyCooperativeResearchand
DevelopmentAgreements,by Cornell, Lewis ResearchCenterand Langley Research
Centerunderauspicesof theNational AeronauticsandSpaceAgencyand by IBM U.S.
FederalunderIndependentResearchandDevelopmentandotherinternalfunding.

.

.

.

.

°

.

.

.

.

10.

References

Berdahl, L., ed., "Parallel Transport Protocol," draft proposal, available from
Lawrence Livermore National Laboratory, Dec. 1994.

Buck, A. L., and R. A. Coyne, Jr., "Dynamic Hierarchies and Optimization in
Distributed Storage System," Digest of Papers, Eleventh IEEE Symposium on Mass
Storage Systems, Oct. 7-10, 1991, IEEE Computer Society Press, pp. 85-91.

Christensen, G. S., W. R. Franta, and W. A. Petersen, "Future Directions of High-

speed Networks for Distributed Storage Environments," Digest of Papers, Eleventh
IEEE Symposium on Mass Storage Systems, Oct. 7-10, 1991, IEEE Computer
Society Press, pp. 145-148.

Collins, B., et al., "Los Alamos HPDS: High-Speed Data Transfer," Proc. Twelfth

IEEE Symposium on Mass Storage Systems, Monterey, April 1993.

Coyne, R. A., H. Hulen, and R. W. Watson, "The High Performance Storage System,"
Proc. Supercomputing 93, Portland, IEEE Computer Society Press, Nov. 1993.

Coyne, R. A. and H. Hulen, "An Introduction to the Mass Storage System Reference
Model, Version 5," Proc. Twelfth IEEE Symposium on Mass Storage Systems,
Monterey, April 1993.

Coyne, R. A., H. Hulen, and R. W. Watson, "Storage Systems for National
Information Assets," Proc. Supercomputing 92, Minneapolis, Nov. 1992, pp. 626-
633.

Dietzen, Scott, Transarc Corporation, "Distributed Transaction Processing with Encina
and the OSF/DCE", Sept. 1992, 22 pages.

IEEE Storage System Standards Working Group (SSSWG) (Project 1244), "Reference
Model for Open Storage Systems Interconnection, Mass Storage Reference Model Version
5," Sept. 1994. Available from the IEEE SSSWG Technical Editor Richard Garrison,
Martin Marietta (215) 532-6746

"Information Technology - Open Systems Interconnection - Structure of Management
Information - Part 4: Guidelines for the Definition of Management Objects," ISO/IEC
10165-4, 1991.

61

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Internet Standards. The official Intemet standards are defined by RFC's (TCP
protocol suite). RFC 783; TCP standard defined. RFC 959; FTP protocol standard.
RFC 1068; FTP use in third-party transfers. RFC 1094; NFS standard defined. RFC
1057; RPC standard defined.

ISO/IEC DIS 10040 Information Processing Systems - Open Systems Interconnection
- Systems Management Overview, 1991.

Katz, R. H., "High Performance Network and Channel-Based Storage," Proceedings
of the IEEE, Vol. 80, No. 8, pp. 1238-1262, August 1992.

Lampson, B. W., M. Paul, and H. J. Siegert (eds.), "Distributed Systems -
Architecture and Implementation," Berlin and New York: Springer-Verlag, 1981.

Morris, J. H., et al., "Andrew: A Distributed Personal Computing Environment,"
Comm. of the ACM, Vol. 29, No. 3, March 1986.

Nelson, M., et al., "The National Center for Atmospheric Research Mass Storage
System," Digest of Papers, Eighth IEEE Symposium on Mass Storage Systems, May
1987, pp. 12-20.

Open Software Foundation, Distributed Computing Environment Version 1.0
Documentation Set. Open Software Foundation, Cambridge, Mass. 1992.

OSF, File Systems in a Distributed Computing Environment, White Paper, Open
Software Foundation, Cambridge, MA, July 1991.

Sandberg, R., et al., "Design and Implementation of the SUN Network Filesystem,"
Proc. USENIX Summer Conf., June 1989, pp. 119-130.

Tolmie, D. E., "Local Area Gigabit Networking," Digest of Papers, Eleventh IEEE
Symposium on Mass Storage Systems, Oct. 7-I0, 1991, IEEE Computer Society
Press, pp. 11-16.

Watson, R. W., R. A. Coyne, "The National Storage Laboratory: Overview and
Status," Proc. Thirteenth IEEE Symposium on Mass Storage Systems, Annecy
France, June 12-15, 1994, pp. 39-43.

Witte, L. D., "Computer Networks and Distributed Systems," IEEE Computer, Vol.
24, No. 9, Sept. 1991, pp. 67-77.

62

APPENDIX A

Application Programming Interfaces (APIs) to HPSS Components

HPSS provides an application client library containing file, directory, and client state
operations.

The HPSS Client Library provides the following routines grouped by

related functionality.

API

hpss_Open

hpss_Close

hpss_Umask

hpss_Read

hpss_Write

hpss_Lseek

hpss_ReadList

hpss WriteList

hpss_Stat

hpss_Fstat

hpss_Lstat

hpss_FileGetAttributes

hpss_FileSetAttributes

hpss_Access

hpss_Chmod

hpss_Chown

hpss_Utime

hpss_GetACL

hpss_DeleteACLEntry

hpss_UpdateACLEntry

hpss_Truncate

hpss_Ftruncate

Clients

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

client

Description

Optionally create and open an HPSS file

Close a file

Set the file creation mask

Read a contiguous section of an HPSS
file, beginning at the current file offset
into a client buffer

Write data from a client buffer to a

contiguous section of an HPSS file,
beginning at the current file offset

Reposition the read/write file offset

Read data from an HPSS file, specifying
lists for data sources and sinks

Write data to an HPSS file, specifying
lists for data sources and sinks

Get file status

Get file status

Get file status, returning status about a
symbolic link if the named file is a
symbolic link

Get attributes for a file

Alter file attribute values

Check file accessibility

Change the file mode of an HPSS file

Change owner and group of an HPSS file

Set access and modification times of an
HPSS file

Query the Access Control List of a file

Remove an entry from the Access Control
List of a file

Update an entry in the Access Control List
of a file

Set the length of a file

Set the length of a file

63

hpss_Fclear
hpss_Cache

hpss_Fcache

hpss_Purge

hpss_Fpurge

hpss_Migrate

hpss_Fmigrate

hpss_Link
hpss_Unlink
hpss_Rename
hpss_Symlink
hpss_Readlink

hpss_Mkdir
hpss_Rmdir
hpss_Opendir
hpss_Readdir
hpss_Rewinddir
hpss_Closedir
hpss_Chdir
hpss_Getcwd
hpss Chroot

hpss_LoadThreadState

hpss_ThreadCleanup
hpss_Statfs

hpss_AccessHandle

hpss_OpenBitfile

hpss_OpenHandle

client
client

client

client

client

client

client

client
client
client
client
client

client
client
client
client
client
client
client
client
client

client

client
client

client

client

client

Clearpartof afile
Cacheapieceof afile to a specifiedlevel
in thestoragehierarchy
Cacheapieceof afile to a specifiedlevel
in thestoragehierarchy
Purgeapieceof afile from a specified
levelin thestoragehierarchy
Purgeapieceof afile from a specified
levelin thestoragehierarchy
Migrateapieceof afile from aspecified
levelin thestoragehierarchy
Migrateapieceof afile from aspecified
levelin thestoragehierarchy
Createahardlink to anexistingHPSSfile
Removeanentryfrom anHPSSdirectory
Renameafile or directory
Createasymboliclink
Readthecontentsof asymboliclink (i.e.,
thedatastoredin thesymboliclink)
Createadirectory
RemoveanHPSSdirectory
OpenanHPSSdirectory
Readadirectoryentry
Resetpositionof anopendirectorystream
Closeanopendirectorystream
Changecurrentworkingdirectory
Getcurrentworkingdirectory
Changetherootdirectoryfor thecurrent
client

Updatestheusercredentialsand
file/directorycreationmaskfor athread's
API state

Cleansupathread'sClientAPI state
ReturnsinformationabouttheHPSSfile
system
Determinesclientaccessibilityto afile,
givenaNameServerobjecthandleand
file pathname
OpensandHPSSfile, specifiedbybitfile
ID

OpenanHPSSfile, specifiedby Name
ServerobjectID and,optionally,
pathname

64

hpss_GetAttrHandle

hpss_SetAttrHandle

hpss_GetACLHandle
hpss_DeleteACLEntry-Handle

hpss_UpdateACLEntry-Handle

hpss_LinkHandle

hpss_LookupHandle

hpss_MkdirHandle
hpss_RmdirHandle
hpss_ReaddirHandle
hpss_UnlinkHandle
hpss_RenameHandle
hpss_SymlinkHandle
hpssReadlinkHandle
hpss_TruncateHandle
hpss_StageHandle

hpss_PurgeHandle

hpss_MigrateHandle

client

client

client
client

client

client

client

client
client
client
client
client
client
client
client
client

client

client

Getattributesof anHPSSfile, specified
by NameServerobjectID and,
optionally,pathname
Setattributesof anHPSSfile, specified
by NameServerobjectID and,
optionally,pathname
QuerytheAccessControlList of afile
Removeanentryfrom theAccessControl
List of afile

Updateanentryin theAccessControlList
of afile
Createahardlink to anexistingHPSS
file, giventhenamespaceobjecthandleof
theexistingobject,andrelativedirectory
for thenewlink andthepathnameof the
newlink

QuerytheNameServerto obtain
attributes,anaccessticketandobject
handlefor aspecifiednamespaceentry
Createanewdirectory
Removeadirectory
Readdirectoryentries
Removedirectoryentry
Renameadirectoryentry
Createasymboliclink
Readthecontentsof a symboliclink
Setthelengthof afile
Stageapieceof afile toa specifiedlevel
in thestoragehierarchy
Purgeapieceof afile from aspecified
levelin thestoragehierarchy
Migrateapieceof afile from aspecified
levelin thestoragehierarchy

65

The Name Server provides APIs for the following operations:

API Clients Description

ns_Insert

ns_Delete

ns_Rename

ns_MkLink

ns_MkSymLink

ns_ReadLink

ns_GetName

ns_GetACL

ns_SetACL

ns_DeleteACLEntry

ns_UpdateACLEntry

ns_Mkdir

ns_ReadDir

ns_GetAttrs

ns_SetAttrs

client

client

client

client

client

client

client

client

client

client

client

client

client

SSM, client

SSM, client

Insert a bitfile object into a directory

Delete a name space object

Rename a name space object

Create a hard link to file

Make a symbolic link

Read data associated with a symbolic link

Get path name for the specified bitfile

Get an ACL for the specified name server object

Set an ACL for the specified name server object

Delete an entry from the ACL of the specified
name server object

Update an entry from the ACL of the specified
name server object

Create a directory

Return a list of directory entries

Get Name Server handle and managed object
attributes

Set Name Server managed object attributes

The Bitfile Server provides APIs for the following operations:
API Client Description

bfs_Create

bfs_Unlink

bfs_Open

bfs_Close

bfs_Read

bfs_Write

bfs_BitfileGetAttrs

bfs_BitfileSetAttrs

bfs_BitfileOpenGetAttrs

bfs_BitfileOpenSetAttrs

bfs_ServerGetAttrs

bfs_ServerSetAttrs

bfs_Copy

bfs_Copy

bfs_Purge

client

client

client

client

client

client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

Migration, client

Migration, client

Purge, client

Create a bitfile

Unlink a bitfile

Open a bitfile

Close a bitfile

Read data from a bitfile

Write data to a bitfile

Get bitfile managed object attributes

Set bitfile managed object attributes

Get bitfile managed object attributes (for an
open bitfile)

Set bitfile managed object attributes (for an
open bitfile)

Get (common) server managed object
attributes

Set (common) server managed object
attributes

Copy storage segments for a bitfile to the
next storage hierarchy level

Move storage segments for a bitfile to the
next storage hierarchy level

Reclaim space (i.e., purge segments)
occupied by a bitfile

66

The Storage Server
API

ss_BeginSession

ss_EndSession

ss_SSCreate

ss_SSUnlink

ss_SSRead

ss_SSWrite

ss_SSGetAttrs

ss_SSSetAttrs

ss_SSMount

ss_SSUnmount

ss_SSCopySegment

ss_SSMoveSegment

provides APIs for
Clients

BFS, SSM, client

BFS, SSM, client

BFS, client

BFS, client

BFS, client

BFS, client

the following operations:

Description

Start a storage server session

End a storage server session

Create a storage segment

Delete a storage segment

Read data from a storage segment

Write data to a storage segment

BFS,

BFS,

client

client

Migrate, Repack,
SSM, client

Migrate, Repack,
SSM, client

Migrate, SSM,
client

Migrate, Repack,

Get storage segment managed object
attributes

Set storage segment managed object
attributes

Mount a storage segment and assign it to a
session

Unmount a storage segment

Copy storage segment to new segment on
different virtual volume

Move storage segment to new virtual

ss_MapCreate

ss_MapDelete

ss_MapGetAttrs

ss_MapSetAttrs

ss_VVCreate

ss_VVDelete

ss_VVMount

ss_VVUnmount

ss_VVRead

ss_VVWrite

ss_VVGetAttrs

ss_VVSetAttrs

ss_PVCreate

ss_PVDelete

ss_PVMount

ss_PVUnmount

ss_PVRead

ss_PVWrite

ss_PVGetAttrs

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

volume

Create storage map for a v_ual volume

Delete storage map for a virtual volume

Get storage map managed object attributes

Set storage map managed object attributes

Create a virtual volume

Delete a virtual volume

Mount a virtual volume

Unmount a virtual volume

Read a virtual volume

Write a virtual volume

Get virtual volume managed object
attributes

Set virtual volume managed object
attributes

Create a physical volume

Delete a physical volume

Mount a physical volume

Unmount a physical volume

Read a physical volume

Write a physical volume

Get physical volume managed object
attributes

67

ss_PVSetAttrs

ss_SSrvGetAttrs

ss_SSrvSetAttrs

ss_ServerGetAttrs

ss_ServerSetAttrs

SSM,client

SSM,client

SSM,client

SSM,client

SSM,client

Set physical volume managed object
attributes

Get Storage Server specific managed object
attributes

Set Storage Server specific managed object
attributes

Get (common) server managed object
attributes

Set (common) server managed object
attributes

The Mover provides APIs for the following operations:

API Clients Description

mvr_Read

mvr_Write

mvr_DeviceSpec

SS, PVL, client

SS, PVL, client

SS, client

SS, SSM, client

SS, SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

mvr_DeviceGetAttrs

mvr_DeviceSetAttrs

mvr__MvrGetAttrs

mvr_MvrSetAttrs

mvr_ServerGetAttrs

mvr_ServerSetAttrs

Read data from a device or devices

Write data to a device or devices

Load a physical volume

Unload a physical volume

Load message to device's display area

Flush data to media

Write tape mark

Read media label

Write media label

Clear portion of disk

Get Mover device managed object
attributes

Set Mover device managed object attributes

Get Mover specific managed object
attributes

Set Mover specific managed object
attributes

Get (common) server managed object
attributes

Set (common) server managed object
attributes

68

The Physical Volume Library provides APIs for the following operations:

API Clients Description

pvl_Mount

pvl_MountNew

pvl_MountAdd

pvl_MountCommit

pvl_MountCompleted

pvl_CancelAllJobs

pvl_DismountJobld

pvl_DismountVolume

pvl_DismountDrive

pvl_Import

pvl_Export

pvl_Move

pvl_NotifyCartridge

pvl_WriteVolumeLabel

pvl_AllocateVol

pvl_ScratchVol

pvl_DriveGetAttrs

pvl_DfiveSetAttrs

pvl_VolumeGetAttrs

pvl_VolumeSetAttrs

pvl_QueueGetAttrs

pvl_QueueSetAttrs

pvl_RequestGetAttrs

pvl_RequestSetAttrs

pvl_PVLGetAttrs

pvl_PVLSetAttrs

pvl_ServerGetAttrs

pvl_ServerSetAttrs

client

SS, client

SS, client

SS, client

PVR

SS, SSM, client

SS, SSM, client

SS, SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

PVR

SS, SSM, client

SS, SSM, client

SS, SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

Synchronously mount a single volume

Begin creating a set of volumes to
automatically mount

Add a volume to the set of volumes to be
mounted

Mount a set of volumes

Notify the PVL a pending mount has
completed

Cancel all jobs associated with a
connection handle

Dismount all volumes associated with a

specific job

Dismounts a single volume

Forces the dismount of a specified drive

Imports a new cartridge into HPSS

Exports a cartridge from HPSS

Move a cartridge from one PVR to another

Notify the PVL that a cartridge has been
check in or out of a PVR

Rewrite the internal label of a specified
volume

Allocate a volume to a particular client

Return a volume to the scratch pool

Get drive managed object attributes

Set drive managed object attributes

Get volume managed object attributes

Set volume managed object attributes

Get PVL request queue managed object
attributes

Set PVL request queue managed object
attributes

Get PVL request queue entry managed
object attributes

Set PVL request queue entry managed
object attributes

Get PVL specific managed object attributes

Set PVL specific managed object attributes

Get (common) server managed object
attributes

Set (common) server managed object
attributes

69

The Physical Volume Repository provides APIs for the following

operations:

API Clients Description

pvr__Mount

pvr_MountComplete

pvr_DismountCart

pvr_DismountDrive

pvr__Inject

pvr_Eject

pvr__Audit

pvr_LocateCartridge

pvr__SetDrive

pvr_CartridgeGetAttrs

pvr_CartridgeSetAttrs

pvr_PVRGetAttrs

pvr_PVRSetAttrs

pvr_ServerGetAttrs

pvr_ServerSetAttrs

pvr_ListPendingMounts

PVL, client

PVL, client

PVL, client

PVL, client

PVL, SSM,
client

PVL, SSM,
client

SSM, client

PVL, client

PVL, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

Asynchronously mount a single volume

Notify PVL a requested mount has

completed

Dismount a single cartridge

Dismount the cartridge in a given drive

Accept a new cartridge into the PVR

Eject a cartridge from the PVR

Audit all or part of a repository checking
extemal cartridge labels when possible

Verify whether or not a PVR manages a
cartridge

Takes drives in the PVR on-line or off-line

Get a cartridge managed object attributes

Set a cartridge managed object attributes

Get PVR specific managed object attributes

Set PVR specific managed object attributes

Get (common) server managed object
attributes

Set (common) server managed object
attributes

List all currently pending mounts for the
PVR

The Storage System Manaljer provides APIs for the following operations:

API Clients Description

ssm_Adm

ssm_AttrGet

ssm_AttrReg

ssm_AttrSet

ssm_Checkin

ssm_Checkout

ssm_ConfigAdd

ssm_ConfigDelete

ssm_ConfigUpdate

ssm_Delog

client

client

client

client

client

client

client

client

client

client

'Perform administrative request on one or more
servers (shut down, halt, mark down,
reinitialize, start)

Get managed object attributes

Register an SSM client to receive notifications of
data change in managed objects

Set managed object attributes

Accept checkins from data server clients

Accept checkouts from data server clients

Add a new entry to a configuration files

Delete an entry from a configuration file

Update a configuration file entry

Allow accept to the delog command

70

ssm_DriveDismount
ssm_JobCancel
ssm_Cartlmport

ssm_CartExport

ssm_ResourceCreate

ssm_ResourceDelete

ssm_AlarmNotify
ssm_EventNotify
ssm_MountNotify

ssm_BitfileNotify
ssm_CartNotify
ssm_DeviceNotify
ssm_DriveNotify
ssm_LogfileNotify
ssm_MVRNotify
ssm_MapNotify
ssm_NSNotify

ssm PVNotify

ssm_PVRNotify
ssm_QueueNotify
ssm_RequestNotify

ssm_SFSNotify

ssm_SSNotify

ssm_ServerNotify

ssm_SsrvNotify

ssm_VVNotify
ssm_VolNotify
ssm_Migrate

ssm_Purge

client
client
client

client

client

client

Logging
Logging

PVL

BFS
PVR
PVL
PVL

Logging
Mvr
SS
NS

SS

PVR
PVL
PVL

Metadata
Manager

SS

NS, BFS, SS,
Mvr, PVL,

PVR,Logging
SS

SS
PVL
client

client

Dismountadrive
CancelaPhysicalVolumeLibrary job
Importcartridgesinto thePhysicalVolume
Library
ExportcartridgesfromthePhysicalVolume
Library
Createresources(physicalvolume,virtual
volume,andstoragemap)in theStorageServer
Deleteresources(physicalvolume,virtual
volume,andstoragemap)from theStorage
Server
Receivenotificationsof alarms
Receivenotificationsof events
Receivenotificationsof tapemountsand
dismounts

Receivebitfile datachangenotifications
Receivecartridgedatachangenotifications
Receivedevicedatachangenotifications
Receivedrivedatachangenotifications
Receivelogfile datachangenotifications
ReceiveMoverspecificdatachangenotifications
Receivestoragemapdatachangenotifications
ReceiveNameServerspecificdatachange
notifications

Receivephysicalvolumedatachange
notifications

ReceivePVRspecificdatachangenotifications
ReceivePVL queuedatachangenotifications
ReceivePVL requestentrydatachange
notifications

ReceiveSFSdatachangenotifications

Receivestoragesegmentdatachange
notifications
Receivecommonserverdatachangenotifications

ReceiveStorageServerspecificdatachange
notifications

Receivevirtualvolumedatachangenotifications
Receivevolumedatachangenotifications
Movestoragesegmentsfor abitfile tothenext
storagehierarchylevel
Reclaimspaceoccupiedby bitfiles

71

ssm_Repack
ssm_MoveCart
client_notify

client
cfient
cfient

Performdefragmentationof physicalvolumes
Moveacartridgefrom onePVRto another
Notify clientsof alarms,events,mountrequests,
managedobjectdatachanges,andspecial
SystemManagerrequests

The following managed objects have attributes which may be queried (and

set) by SSM:

Name Server

Bitfiles

Bitfile Server (common)

Storage segments

Storage maps

Virtual volumes

Physical volumes

Storage Server specific

Storage Server (common)

Mover device

Mover server specific

Mover server (common)

Drive

Volume

Physical Volume Library queue

Physical Volume Library request entry

Physical Volume Library server specific

Physical Volume Library Server (common)

Cartridge

Physical Volume Repository server specific

Physical Volume Repository Server (common)

Security server

Log Daemon server (common)

Log Client server (common)

Structured File Server

The Storage System Manager also receives the following type of
notifications from the HPSS server components:

Alarms] Tape mountsEvents Data changes for registered object attributes

Some of the more important management operations which may be

_erformed by the Storage

Import/create resources

Import cartridges

Export cartridges

Move cartridges

(from one PVR to another)

Audit PVR

Migrate

Purge

System Manager include:

Repack

Delog

Set devices online/offiine

Dismount drive

S tart/stop/reinitialize/halt servers

Configure servers

Define/modify ACLs

72

Migration/Purge
API

migr_StartMigration

migr_StartPurge

migr_MPSGetAttrs

migr_MPSSetAttrs

migr_ServerGetAttrs

migr_ServerSetAttrs

provides APIs

Clients

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

SSM, client

for the following operations:

Description

Start migration for a particular storage class

Start purge for a particular storage class

Get the migration-purge server attributes
m

Set the migration-purge server attributes

Get (common) server managed object attributes

Set (common) server managed object attributes

73

