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ABSTRACT

A comparison is presented between the predictions of the finite-element analysis and a

recently developed higher-order theory for functionally graded materials subjected to a through-

thickness temperature gradient. In contrast to existing micromechanical theories that utilize clas-

sical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress

and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally

graded materials), the new theory explicitly couples the microstructural details with the macros-

tructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling

is necessary when: the temperature gradient is large with respect to the dimension of the rein-

forcement; the characteristic dimension of the reinforcement is large relative to the global

dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these

circumstances, the standard micromechanical analyses based on the concept of the representative

volume element used to determine average composite properties produce questionable results.

The comparison between the predictions of the finite-element method and the higher-order

theory presented herein establish the theory's accuracy in predicting thermal and stress fields

within composites with a finite number of fibers in the thickness direction subjected to a

through-thickness thermal gradient.

INTRODUCTION

The past thirty years have seen tremendous growth in the development and use of compo-

site materials. The applications range from sporting and recreational accessories to advanced

aerospace structural and engine components. Traditionally, the reinforcement phase in different

types of composite materials is distributed uniformly such that the resulting mechanical, thermal

or physical properties do not vary spatially. Recently, a new concept involving tailoring or

engineering the internal microstructure of a composite material to specific applications has taken

root. This concept involves spatially varying the mierostructural details through nonuniform dis-

tribution of the reinforcement phase, by using reinforcement with different properties, sizes and

shapes, as well as by interchanging the roles of reinforcement and matrix phases in a continuous



manner.Hencethenamefunctionally gradientmaterials(FGMs)coinedby Japaneseresearchers

to describethesenewly emergingmaterials.Theresultis amicrostructurethatproducescontinu-

ouslychangingthermalandmechanicalpropertiesat themacroscopicor continuumlevel.

Functionallygradedcompositesareideal candidatesfor applicationsinvolving severether-

mal gradients,rangingfrom thermal structuresin advancedaircraft and aerospaceenginesto

computercircuit boards. In suchapplications,ceramic-richregionof afunctionally gradedcom-

positeis exposedto hot temperaturewhile metallic-richregion is exposedto cold temperature,

with a gradualmicrostructuraltransition in the directionof thetemperaturegradient.By adjust-

ing the microstructuraltransition appropriately,optimum temperaturedistribution canbe real-

ized.Microstructuralgradingcanalsobeeffectivelyusedto reducethemismatchin thethermo-

mechanicalpropertiesbetweendifferently oriented,adjacentplies in a laminatedplate. Thus
reductionof the interlaminarstressesat thefreeedgeof a laminatethat result from a largepro-

perty mismatchbetweenadjacentplies canbe realizedby usingthefunctional gradingconcept
to smoothout the transitionbetweendissimilarplies. Along similar lines, joining of dissimilar

materials can be made more efficient through the use of functionally graded joints. Other bene-

fits to be realized from the use of functionally graded architectures include fracture toughness

enhancement in ceramic matrix composites through tailored interfaces.

The potential benefits that may be derived from functionally graded composites have led to

increased activities in the areas of processing, and materials science, of these materials. How-

ever, these activities are seriously handicapped by the lack of appropriate computational stra-

tegies for the response of functionally graded materials that explicitly couple the heterogeneous

microstructure of the material with the global analysis. The standard micromechanics approach

used to analyze the response of this class of materials is to decouple the local and global effects

by assuming the existence of a representative volume element (RVE) at every point within the

composite, Figure 1 (cf., Yamanouchi, 1990; Wakashima and Tsukamoto, 1990; Fukushima,

1992). This assumption, however, neglects the possibility of coupling between local and global

effects, thus leading to potentially erroneous results in the presence of macroscopicaUy nonuni-

form material properties and large field variable gradients. This is particularly true when the

temperature gradient is large with respect to the dimension of the inclusion phase, the charac-

teristic dimension of the inclusion phase is large relative to the global dimensions of the compo-

site, and the number of uniformly or nonuniformly distributed inclusions is relatively small

(Aboudi et al., 1993). Perhaps the most important objection to using the standard RVE-based

micromechanics approach in the analysis of FGMs is the lack of a theoretical basis for the defin-

ition of an RVE, which clearly cannot be unique in the presence of continuously changing pro-

perties due to nonuniform inclusion spacing.



As a result of the limitation of the standard micromechanics approches, a new higher-order

micromechanical theory for functionally graded materials (HOTFGM), that explicitly couples

the local and global effects, has been developed. This theory allows coupled micro-

macromechanical analysis of composite plates functionally graded in the through-thickness

direction that are subjected to a thermal gradient in the same direction (Aboudi et al., 1993;

1994a,b). The development of the theory has been justified by comparison with the results

obtained using the standard micromechanics approach which neglects the micro-macrostructural

coupling effects explicitly taken into account in the new theory (Pindera et al., 1994, 1995). Due

to the absence of such coupling, the standard micromechanics approach often underestimates

actual stress distributions in composites with a finite number of uniformly or nonuniformly dis-

tributed fibers across the thickness dimension subjected to a thermal gradient.

A limited comparison has been presented by Goldberg and Hopkins (1995) between the

predictions of HOTFGM and the results of a boundary-element analysis of thermal fields in

composites with a finite number of through-thickness rows of fibers subjected to a thermal gra-

dient. This comparison partially establishes the reliability of the coupled higher-order theory in

accurately predicting thermal fields in the presence of temperature gradients. Herein, extensive

comparison between the predictions of the finite-element method and HOTFGM are presented

for both the thermal and stress fields in unidirectional SiC/Ti composites subjected to a through-

thickness temperature gradient. This comparison establishes the theory as an accurate tool in the

analysis and optimization of functionally graded architectures in metal matrix composites.

HOTFGM: A COUPLED HIGHER-ORDER THEORY FOR FGMs

HOTFGM is based on the geometric model of a heterogeneous composite, with a finite

thickness H, extending to infinity in the x2-x3 plane and subjected to a temperature gradient pro-

duced by the temperature Tr and TB applied to the top and bottom surfaces, respectively, Figure

2. The composite is reinforced by periodic arrays of fibers in the direction of the x2 axis or the x3

axis, or both. In the direction of the x l axis, called the functionally gradient if'G) direction, the

fiber spacing between adjacent arrays may vary. The reinforcing fibers can be either continuous

or finite-length. The heterogeneous composite is constructed using a generic unit cell, Figure 3,

which consists of either four or eight subcells, depending on whether continuously or discontinu-

ously reinforced functionally graded composites are considered. The generic unit cell in the

present framework is not taken to be an RVE whose effective properties can be obtained through

homogenization (Hill, 1963). Rather, the RVE comprises an entire column of such cells span-

ning the plate's thickness. Thus the response of each cell is explicitly coupled to the response of

the entire column of cells in the FG direction, thereby directly coupling the microstructural



details with the global analysis. This is in stark contrast with the standard uncoupled

micromechanics approach commonly used in the analysis of FGMs.

The solution to the thermo-mechanical boundary-value problem outlined in the foregoing is

solved in two steps. In the first step, the temperature distribution in a single column of cells,

representative of the composite-at-large, spanning the FG dimension is determined by solving

the heat equation under steady-state conditions in each cell subject to the appropriate continuity

and compatibility conditions. The solution to the heat equation is obtained by approximating the

temperature field in each (a[3"/) subcell of a generic unit cell using a quadratic expansion in the
_(a) -(1_) -(v)

local coordinates x , x , x , centered at the subcell's mid-point, that reflects the

microstructure's periodicity and symmetry in the x2 and x3 directions (i.e., absence of linear

• _,)terms in the local coordinates x2 and

1 r,_-(a)2
d_ )2 1 ,,__(_)2+ -

12

- 4)z1 

(1)

A higher-order representation of the temperature field is necessary in order to capture the local

effects created by the thermomechanical field gradients, the microstructure of the composite and

the finite dimension in the FG direction, in contrast with previous treatments involving fully

periodic composite media (Aboudi, 1991). The unknown coefficients associated with each term

in the expansion are then obtained by constructing a system of equations that satisfies the

requirements of a standard boundary-value problem for the given temperature field approxima-

tion. That is, the heat equation is satisfied in a volumetric sense, and the thermal and heat flux

continuity conditions within a given cell, as well as between a given cell and adjacent cells, are

imposed in an average sense. This yields 40M equations in the unknown 40M coefficients _al_,)

for a composite with M rows of fibers in the through-thickness direction of the form:

,c T = t (2)

where the structural thermal conductivity matrix r contains information on the geometry and

thermal conductivities of the individual subcells (a[37) in the M cells spanning the thickness of

the FG plate, the thermal coefficient vector T = (T_ 111), . .... T_222)), where T_pafar) =

( To, Tl, T2, T3, T4 )(pa_), contains the unknown coefficients that describe the thermal field in



eachsubcell,andthethermalforcevectort = ( Tr, 0,..., 0, TB ) contains information on the ther-

mal boundary conditions. The details of derivation of the above system of equations are given in

Aboudi et al. (1993, 1994b).

Given the temperature distribution in a single column of cells representative of the

composite-at-large, internal displacements, strains and stresses are subsequently generated by

solving the equilibrium equations in each cell subject to appropriate continuity and boundary

conditions. The solution is obtained by approximating the displacement field in the FG direction

in each subcell using a quadratic expansion in local coordinates within the subceU. The displace-

ment field in the x2 and x3 directions, on the other hand, is approximated using linear expansion

in local coordinates that reflects the periodic character of the composite's microstructure in the

x2 and x3 directions.

1 ,,,_(a)2 ..1_1/(p) 2 hU_Ctl_ k:,__(_})2
utCXl_')= w_el_,) + _(1a) (_al_ + "_-_Xl - 4 -tt " ' + 2 k3x2

1 ,,,-(v)2 lz2 _w_al_
+_t-_x3 - 4 "r:''

- ¼h )V (3)

(4)

(5)

As a consequence of the chosen displacement field representation, the present formulation

leads to a description of a functionally graded composite whose overall deformation is character-

ized by the vanishing of the average composite strains E22 and E33. This follows directly from

eqns (4) and (5) which contain no constant terms that represent subcell center displacements. It

is possible to generalize the present theory by including subcell center displacements that pro-

duce uniform strains E22 and E33. This generalization leads to an overall behavior of a composite,

functionally graded in the x l direction, which can be described as a generalized plane strain in

the xl-x2 andxl-x3 planes (Aboudi et al., 1995a).

The unknown coefficients associated with each term in the expansion, i.e., wt alyt), 0t al_,

X_, _g_,13-t),U_), V_), W_a_), are obtained by satisfying the appropriate field equations in a

volumetric sense (0-th, 1-st and 2-nd moment), together with the boundary conditions and con-

tinuity of displacements and tractions between individual subcells of a given cell, and between

adjacent cells. The continuity conditions are imposed in an average sense. This results in 56M

equations in the unknown 56M coefficients in the displacement representation for each cell for a
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composite with M rows of fibers in the through-thickness direction of the form:

K U =f (6)

where the structural stiffness matrix K contains information on the geometry and thermo-

mechanical properties of the individual subcells (ctl3T) in the M cells spanning the thickness of the

FG plate. The displacement coefficient vector U contains the unknown coefficients that describe

the displacement field in each subcell, i.e.,

u = ( ut "1) ...... u_ 2)) (7)

where U_c_l_'t)= (wl, ¢1, U1, Vl, Wl, X2, XI/3 ) (crIb'), and the mechanical force vector f contains

information on the mechanical boundary conditions and the thermal loading effects generated by

the applied temperature. The details of derivation of the above system of equations are given in

Aboudi et al. (1993, 1994b).

FINITE-ELEMENT ANALYSIS

The comparison between finite-element and HOTFGM predictions was carried out for

three plate configurations with one, three and five uniformly-spaced rows of SiC fibers in the

thickness direction embedded in a titanium matrix. The IIOTFGM results have been previously

reported by Aboudi et al. (1993) for configurations in which the first row of fibers was located

directly adjacent to the top surface (i.e., the matrix layer between the first row of fibers and the

top surface was removed). These configurations were subjected to a through-thickness tempera-

ture gradient of 500°C by maintaining the top surface at 0°C and the bottom surface at 500°C.

The top surface was traction-free whereas the bottom surface was constrained by imposing zero

displacement in the thickness direction.

The geometry of the basic unit cell used in the finite-element analysis to construct these

configurations is shown in Figure 4. As in the HOTFGM model, the apex of the fiber is flush

with the upper surface of the unit cell. The dimensions of the unit cell for the given fiber radius

produce a composite with a fiber volume fraction of 0.40. These dimensions are one third of the

actual dimensions employed in Aboudi et al. (1993). However, since the problem is linearly

elastic the actual dimensions do not matter so long as the proper geometric ratios are maintained,

which is the situation here. The boundary conditions employed in the finite-element analysis for

the configuration with one row of fibers through the plate's thickness are also shown in the
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figure. These boundary conditions simulate a state of plane strain along the x2 direction.

The material properties of the SiC fibers and the titanium matrix employed in the analysis

are given in Table 1. For the purpose of the comparison presented herein, the SiC fibers and the

titanium matrix were treated as elastic with temperature-independent properties. The thermal

conductivity mismatch between the constituents was deliberately amplified (i.e., _¢f/r,m = 50) in

order to critically test the predictive capability of the new theory.

The finite-element results were generated using the commercially-available finite-element

code ABAQUS (1989). This was carried out by first performing heat transfer analysis to deter-

mine the temperature distribution throughout the analyzed region, and subsequently using the

nodal temperatures as input in the mechanical analysis. In order to ensure convergence of the

thermal and stress fields, successively finer meshes were constructed and the results obtained

with each refined mesh compared with those obtained with the preceding mesh. The initial mesh

for the basic unit cell was constructed with 66 elements, Figure 5a, while the final mesh which

produced satisfactorily convergent thermal and stress fields consisted of 248 elements, Figure

5b. For the thermal analysis, two-dimensional heat transfer, three- and four-noded (DC2D3 and

DC2D4, respectively), linear elements were employed. For the mechanical analysis, plane strain

three- and four-noded linear elements (CPE3 and CPE4, respectively) were employed in order to

account for the vanishing average strain field in the x3 direction obtained from HOTFGM. The

refined meshes employed to simulate configurations with three and five rows of fibers through

the plate's thickness are shown in Figure 6.

COMPARISON OF HOTFGM AND FINITE-ELEMENT RESULTS

The comparison between finite-element and I-IOTFGM predictions for the temperature and

normal stress _22 and 633 through-thickness distributions are presented in the fiber/matrix and

matrix/matrix cross-sections (see Figure 4). The fiber/matrix cross-section passes through the

diametral plane of each fiber along the x l direction, whereas the matrix/matrix cross-section lies

halfway between adjacent fibers along the x2 direction. The various distributions along the thick-

ness direction are given as a function of the normalized coordinate x 1 / M, where M is the number

of fiber rows. The maximum value ofxl/M is 199 _tm, which corresponds to the thickness of a

single layer employed in Aboudi et al. (1993). The corresponding fiber diameter used in the

above study which produces fiber volume fraction of 0.40 is 142 lxm. Since the results generated

by ABAQUS were based on a single layer thickness of 66.33 _tm and fiber diamater of 47.34

_tm, the locations of the actual points at which the field quantities were evaluated were scaled up

by a factor of three to bring them into geometric correspondence with the I-IOTFGM results

obtained by Aboudi et al. (1993).



Figure 7 presentscomparisonbetween HOTFGM and finite-element results for the tem-

perature distributions in a SiC/Ti plate with one, three and five rows of fibers in the fiber/matrix

(Figure 7a) and matrix/matrix (Figure 7b) representative cross-sections (RCS). In the RCS con-

taining both phases, the temperature profiles exhibit pronounced "staircase" patterns, character-

ized by small temperature gradients in the fiber phase and much larger gradients in the matrix

phase. This is consistent with the large thermal conductivity of the SiC fiber employed in the

present calculations relative to that of the matrix. Virtually no difference is observed between the

results of the higher-order theory and finite-element analysis in the fiber/matrix cross-section. It

is worthwhile to point out that the same results were obtained independently by Goldberg and

Hopkins (1995) in the fiber-matrix cross-section of a configuration with three rows of fibers

through the plate's thickness using the boundary-element method. In this study, however, only

the thermal fields were considered.

Alternatively, the temperature profiles predicted by ItOTFGM in the RCS containing only

matrix generally exhibit smoother transitions between fiber and matrix phases away from the

boundaries (i.e., in the interior) relative to the fiber/matrix cross-section, without an apparent

staircase pattern caused by the presence of adjacent fibers. In contrast, the influence of adjacent

fibers is observed in the finite-element results which exhibit small oscillations about the

HOTFGM predictions. These oscillations resemble the staircase patterns seen in the fiber-

matrix cross-section temperature profiles, with substantially smoother transitions, however,

between the matrix regions adjacent to the fibers and the matrix regions adjacent to the matrix in

the fiber-matrix cross-section. The differences between the higher-order theory and finite-

element results in the matrix-matrix RCS are generally small, and further these differences

decrease with increasing number of fibers through the plate's thickness.

The corresponding normal stress _22 and _33 distributions are presented in Figures 8 and 9,

respectively, in both characteristic cross-sections. In the case of the RCS containing both phases,

Figures 8a and 9a, the stress profiles predicted by I-IOTFGM exhibit characteristic patterns

characterized by jumps at the fiber/matrix interfaces when the number of fibers through the

plate's thickness is greater than one. These jumps occur because the normal stresses a22 and _33

are not traction components associated with the fiber/matrix interfaces normal to the X l direc-

tion. Substantially smaller stress gradients are observed in the fiber than in the matrix phase, as

suggested by the corresponding temperature profiles. The finite-element results closely match

the higher-order theory predictions, with somewhat greater differences observed in the _22 distri-

butions than in the _33 distributions. In fact, the _33 distributions obtained from the finite-

element calculations are virtually the same as the higher-order theory predictions for the confi-

gurations with three and five rows of fibers through the plate's thickness. In contrast, the _22



distributionsobtainedfrom thefinite-elementcalculationsexhibit some(generallysmall) depar-

turesfrom the higher-ordertheorypredictions.The presenceof abrupt stressgradientchanges

andstressoscillationsin thematrix phaseobservedin thefinite-elementpredictionsfor 622 sug-

gests that the observed differences may be eliminated by further mesh refinement.

In the case of the RCS containing matrix only, Figures 8b and 9b, the 622 and 633 stress

profiles predicted by HOTFGM also exhibit jumps at elevations corresponding to the

fiber/matrix interfaces in the adjacent fiber-matrix cross-sections. These jumps are typically

greater in the ¢_22distributions since this stress component must be continuous along the x2 axis,

and thus is influenced to a greater extent by the corresponding stress in the adjacent fiber-matrix

cross-sections than ¢_33. Since only one material is present in the matrix-matrix cross-section, the

stress gradients away from the boundaries do not change significantly in regions separated by

planes passing through the fiber/matrix interfaces where the jumps occur. As in the case of the

stress distributions in the fiber-matrix cross-section, generally good agreement is observed

between the higher-order theory and finite-element results, with better correlation for the cr33 dis-

tribution than the ¢_22distribution. The greatest differences occur in the matrix regions adjacent

to the fibers in the neighboring fiber-matrix cross-sections. These differences are due to the

sharp spike-like profiles observed in the finite-element results, suggesting that further mesh

refinement in those regions may potentially improve the correlation. In contrast, the differences

between the higher-order theory and finite-element predictions in the matrix regions adjacent to

the matrix phase in the neighboring cross-sections are quite small for both stress distributions.

CONCLUSIONS AND FUTURE PERSPECTIVES

This report presented a comparison of the thermal and stress fields in a composite plate

subjected to a thermal gradient generated using a recently developed coupled higher-order

theory for functionally graded materials and the finite-element analysis. In this new approach,

the microstructural and macrostructural details are explicitly coupled when analyzing the

response of a composite subjected to a uniform or nonuniform loading such as a through-

thickness temperature gradient. Coupling of the local and global analyses is required to ration-

ally analyze the response of polymeric and metal matrix composites such as B/Ep, B/A1 and

SiC/TiA1 that contain relatively few through-thickness fibers, as well as the newly emerging

functionally graded materials with continuously changing properties due either to nonuniform

fiber spacing or the presence of several phases. For such materials, it is difficult, if not impossi-

ble, to define the representative volume element used in the traditional micromechanical ana-

lyses of macroscopically homogeneous composites.
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The comparisonbetweenthe predictionsof the coupledhigher-ordertheory and finite-

element analysis has been presented for a SiC/TiAl composite plate reinforced by one, three and

five equally-spaced rows of fibers through the plate's thickness and subjected to a through-

thickness 500°C temperature gradient. The presented comparison demonstrates that the proposed

theory is an accurate and efficient method for investigating internal temperature and stress fields

in composites with a finite number of fibers in the thickness direction which cannot be analyzed

using the standard micromechanics approach based on the concept of a representative volume

element. It is indeed remarkable that the higher-order theory's predictions obtained using a rela-

tively course discretization of the composite's microstructure compare very favorably with the

finite-element results obtained using a very finely discretized mesh. In fact, considerable effort

has been made in the finite-element mesh refinement process to obtain satisfactorily convergent

thermal and stress fields. Conversely, only four subcells per generic unit cell were required to

generate higher-order theory results of comparable accuracy. Additional validation of the accu-

racy of the higher-order theory in predicting thermal fields in composites with a finite number of

through-thickness rows of fibers subjected to a thermal gradient has been provided recently by

Goldberg and Hopkins (1995) using the boundary-element method. The results presented herein,

reinforced by the Goldberg and Hopkins data, set the stage for the application of the higher-order

theory to the newly emerging class of functionally graded composites having continuously vary-

ing microstructures with confidence.

The recent enhancements of the higher-order theory's capabilities through the addition of

inelastic constitutive models (Aboudi et al., 1995b) make possible the investigation of function-

ally graded composite plates subjected to through-thickness thermal gradients in a wide tempera-

ture range. In particular, functional grading of metallic layers protected by ceramic thermal bar-

rier coatings has been shown to reduce the resulting thermally-induced warping tendency in such

configurations. Such applications of the higher-order theory open up new areas of research deal-

ing with the concept of optimum thermal management through functionally graded material

architectures. Along similar lines, the most recent extension of the one-dimensional version of

the theory to materials functionally graded in two directions makes possible the investigation of

the potential of functionally graded fiber architectures in reducing edge effects in laminated

composites (Aboudi at al., 1995c).
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Table 1. Material properties of SCS-6 SiC fiber and titanium matrix.

Material E (GPa) v o_ (10 -6 m / m / °C) _: (W / m-°C)

SiC fiber 414.0 0.3 4.9 400.0

Ti-A1 matrix 100.0 0.3 9.6 8.0

E and v denote the Young's modulus and Poisson's ratio, respectively, et is the coefficient of
thermal expansion, and _: is the thermal conductivity.
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An RVE subjected to homogeneous boundary
conditions to determine effective properties at point P.

Figure 1. Uncoupled micromechanics analysis of FGMs.
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reinforced material; b) particulate inclusion reinforced material. RCS denotes the representative
cross-section.
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Figure 3. The generic unit cell of a composite with nonperiodic fiber distribution in the xl direc-
tion.
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Figure 4. Geometry of the basic unit cell used in the finite-element analysis and the boundary
conditions for the configuration with one row of fibers through the plate' s thickness.
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Figure 5. Details of the mesh for the configuration with one row of fibers through the plate's
thickness used in the finite-element analysis: a) initial mesh; b) refined mesh.
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a) b)

Figure 6. Details of the refined meshes for the configurations with three (a) and five (b) rows of
fibers through the plate's thickness used in the finite-element analysis.
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Figure 7. Comparison between the coupled higher-order theory and the finite-element analysis
of the thermal fields in a SiC/Ti composite with one, three and five uniformly-spaced fibers in
the thickness direction: a) temperature profile across the fiber-matrix RCS; b) temperature pro-
file across the matrix-matrix RCS.
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Figure 8. Comparison between the coupled higher-order theory and the finite-element analysis
of the normal 022 stress in a SiC/ri composite with one, three and five uniformly-spaced fibers
in the thickness direction: a) stress profile across the fiber-matrix RCS; b) stress profile across
the matrix-matrix RCS.
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Figure 9. Comparison between the coupled higher-order theory and the finite-element analysis
of the normal o33 stress in a SiC/Ti composite with one, three and five uniformly-spaced fibers
in the thickness direction: a) stress profile across the fiber-matrix RCS; b) stress profile across
the matrix-matrix RCS.
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