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HOT-WIRE CALIBRATION IN SUBSONIC/TRANSONIC FLOW REGIMES

by
K.A. Nagabushana and R.L. Ash
Old Dominion University
Department of Aerospace Engineering
Norfolk, VA 23529

Abstract —

A different approach for calibrating hot-wires, which simplifies the calibration procedure
and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted
that the directly measurable quantities-in any flow- are velocity, density, and total temperature.
Very few facilities have the capability of varying the total temperature over an adequate range.

However, if overheat temperature parameter, a,, is used to calibrate the hot-wire then the

directly measurable quantity, voltage, will be a function of the flow variables and the overheat
parameter i.e, E= f(u,p,a, T,) where a, will contain the needed total temperature
information. In this report, various methods of evaluating sensitivities with different dependent

and independent variables to calibrate a 3-wire hot-wire probe using a constant temperature

anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a,,
as the independent variable instead of total temperature, T, or overheat temperature parameter,
7, is that while running a calibration test it is not necessary to know the recovery factor, the
coefficients in a wire resistance to temperature relationship for a given probe. It was deduced
that the method employing the relationship E = f (u,p,aw) should result in the most accurate
calibration of hot wire probes. Any other method would require additional measurements. Also
this method wili allow calibration and determination of accurate temperature fluctuation
information even in atmospheric wind tunnels where there is no ability to obtain any temperature
sensitivity information at present. This technique greatly simplifies the calibration process for
hot-wires, provides the required calibration information needed in obtaining temperature
| fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hot-

wires. Some-of-the.results-using the_above.techniques are presented in an appendix.




Nomenclature

R -R
a, —‘T“—"""— Overheat temperature parameter

adw
Wire diameter
E Mean voltage across wire
Kn  Knudsen number
Thermal conductivity of air at 7,
£ Wire length
M Mach number

m Mass of fluid fiow
Nu,  Nusselt number

P, Poﬁer to hot-wire
Q,  Heattransfer rate
R,

Resistance of wire at reference temperature T,,,

Re Reynolds number based on viscosity evaluated at 7, and wire diameter

R, Resistance of wire

S, Velocity sensitivity

S, Density sensitivity

S,o Total temperature sensitivity
T,  Recovery temperature of wire
T Total temperature

I,  Reference temperature

T, Wire temperature

u Velocity

a & 3 Coefficients in wire resistance to temperature relationship



adw

n , Recovery temperature ratio
Yo Density

Ratio of specific heats

E, Temperature parameter

T -T
T —»_adv Temperature parameter

o
Introduction

The heat transfer from heated wires in fluid flows has been investigated for many years
for various reasons. One of the main reasons in fluid mechanics is the application of the results
to hot wire anemometry. The early work in this field was performed by Boussinesq (1 905)1 and
King (1 914)2. Even though "King's law”" was derived over 75 years ago, it is still being used, in
various forms, to predict the heat transfer from heated wires in subsonic incompressible ﬂows.
From King's law it can be shown that the heat transfer parameter, Nusselt number, is a function

only of Reynoids and Prandtl numbers.

In the 1950's, it was shown that the Nusselt number can be a function of Mach number
for Mach numbers as low as 0.10, indicating that King's law does not apply3-4. The reason for
this disagreement was determined by Spangenberg5 to be due to gas rarefaction effects.
Spangenberg found that Nu, = f(Re, M ,Kn), where the apparent Mach number or
compressibility effect was a slip flow or Knudsen number effect. Since the Knudsen number is
related to the Reynolds and Mach numbers, only two of the three quantities in the relationship for
the Nusselt number are required. Experimental results obtained by King and others indicate that

the Nusselt number is also a function of a temperature parameter. The functional relationships

expressed for Nusselt number are Nu, = f (M, Re,, 6)8 or Nu = f (M, Kn, )78, From the



above functional relationship, it has been shown that the mean voltage measured across the

heated wire is E= f(u,p,T,,T,)S.

Theoretical Consideration

To obtain the sensitivity relationships for use in hot wire anemometry, the following heat

transfer equation is usually used to describe the heat loss from a heated wire mounted normal to

the flow:

Q. =2ntk, (T - nT )Nu, (1)

For steady state conditions the electrical power supplied to the wire is equal to the heat

loss from the wire (P, = (0, ). Differentiating this equation in terms of its logarithmic derivatives
yields:

n

d logQ, =dlog Nu, -ﬂdlogT +gdlogT ——dlog n+dlogk, (3]
T ° T YT

where dlog I, =0 for a constant temperature anemometer (CTA).
For sensitivities depending on Nu, = f (M ,Kn, r):

Equations were re-derived for the sensitivities of heated wires operated in compressible
flow and powered by a constant temperature anemometer using the heat transfer relationship for

the variables Nu, = f(M,Kn,7). The sensitivity equations derived by Baldwin’ and

Sandbom® are incomplete for several reasons. In these references the velocity sensitivity

includes a JT, [ S term under the constraint that 7, = constant. There are other terms missing



in the equations due to an incomplete partial differentiation process. Following the

assumptions’ 8 that Nu, = f (M,Kn, 1), the change in Nusselt number is:

dlog Nu, = %dlog M +%ll%gg—%dlogKn +%’f}g‘—dlog T )
The Mach number is a function of ¥ and 7. Thus:

dlog M = a;fg]:[ dlogu+ 22?7:1 dlog T, (4)

dlogM:(1+7T_1M2)dlogu—%(l+%—1M2)dlog7; (5)

The Knudsen number is a function of only density for a given wire diameter, and can be

expressed as’:

_ 1.587x10°°

or dlog Kn = -dlog p 6)
pd,

Kn

The recovery temperature ratio, 77, is assumed to be a function of A and Kn. Then:

dlog n= %’LdlogM+%gg?Z—dlogKn ™

The thermal conductivity for air is evaluated at ];. giving:

dlogk, =g§§—;‘—dlog7;. ®

o



The power to the heated wire can be written as:

dlog P, =dlogE,—dlogR,

For a constant temperature anemometer:

dlogR, =0

T —-nT

dlog r= -—edlog T —ﬁdlog n
T T

n
The quantity 7= % therefore, the change in 7 is:

Equations (5-11) can be substituted into (2) to give:

where

diogE, =S, dlogu+Spdlogp+ Sy dlogT,

S ==

{050

S
ol

AlogNu, 7 dlog n

Jlog Nu, 4

olog M

ré‘logM(

_1{_ Jlog Nu, '+£ dlog n (
2

Olog Kn

-(1+

7 Slog Kn

n
T

)

Olog Nu,

dlogr

Jlog Nu, + l)}

dlogt

__11+5logk,

dlog

7 OJlogT,

}

)

9)

(10)

an

(12)

(13)

(14)

(19)



The sensitivity equations as derived by Baldwin in reference 7 using functional

relationship Nu, = f (M ,Kn, r) are as follows:

2 5logM TaM) 7t U

_ dlog Nu, iif_’+ dlogk, n  t+mnNu, \dT,
OlogKn p \Adlogl, = Nu, &M ) T,

N | —

dl
— 16
7 (16)

These equations (13-15) for velocity, density and total temperature sensitivities are

different from equation (16) for several reasons. In equation (16) the velocity was differentiated

with respect to I, under the assumption that 7, = constant. Also, the differentiation processes

in was incomplete.

The re-derived equations were used to obtain the velocity, density and total temperature

sensitivities for hot-wires and are compared with the sensitivities computed using the functional

relationship E = f(u,p,T.,T,). The constraints required by calculus and the functional form of

the equation dictated by the data were met by both methods for computing sensitivities. These

results are presented in the enclosed appendix.

For sensitivities depending on Nu, = f (M ,Kn,a_,):

Following the assumptions that Nu, = f (M ,Kn,a_,). the change in Nusselt number is:

Alog Nu, —1tdl gM+al°gN Ldl gKn+M‘—‘-dloga (7

dlog Nu, = w
og M dlog Kn dloga,

R -R
The quantity g, = —‘”R-—“"' adR, = f (M,Kn,T). Therefore, the change in a,is:



AogR,,, (1+1——1M2)(dlogu— ldlog 7;)
dlog M 2 2
dloga, = —-—2{

f (18)
aW

dlogR,,, OlogR,,
-—=—2 dlogp+—2*dlogT,
Slog Kn o8P AlogT, o8 %

Substituting equations (5-10), (17) and (18) in equation (2) leads to equation (12) where

S,=l (1+7—1M2) AogNu, n Jogn JlogR,, 6 AlogNu, (19)
2 2 dogM tologM JdlogM a, dlogM

=l{_ Jlog Nu, W dlog n N 6 Jlog Nu, a"long} 20
2

JlogKn 1t dlogKkn a, JSloga, JlogKn

s, =-;—{-—2S __6 Jlog Nu, _n, dogk,}

v (21)
° a, dloga, 1 JlogT, '

For sensitivities depending on E = f(M,Kn,a,):

If we use the relationship E = f(M,Kn,a,) then the change in voltage is:

JlogE
dloga,

dlogE = ;‘°gE dlog M +-2BE

dlog Kn + dloga 22
og M Kn og ga, (22)

Substituting equations (5) through (10) and (18) in equation (22) leads to equation (12) where

S'=(1+7—1M2)[ JlogE 6 JlogE é'long]

(23)
2 AogM a, dloga, JlogM



§ =_ OlogE +_0_ dlog E Slog R, 24)
P dlogKn a, dloga, SlogKn

S, = —lS,—ﬁ OJlogE JlogR,,, 25)
° 2 a, dloga, JlogT

Resistance to temperature relationship can be written as:

R,= Rnf{1+ o1, - T,)+AT, - 7;.,)2} (26)

Using equation (26) the quantity Slog R,,,/Jlog T, can be obtained as:

dogR,,  Tw]a+28Tu-Ty)] on

P87, [1 el -1, {11,

For sensitivities depending on E = f(u,p,T.):

For a constant temperature anemometer (CTA), the change in voltage across the wire

can be expressed as E = f(u,p,T.). Once the wire is calibrated and functional relationships

are defined, the sensitivities can be evaluated by taking the partial change in £ with respect to

u, p and 7, intum. The equations for sensitivities can be written as:

S, =(ﬂ°gE ) (28)
dlogu )1 1.
P \Aogp),z,r,



S = (M) (20)
AL, Jupr.

This method of obtaining sensitivities is the direct method since the output voltage,
which is a directly measurable quantity, is a function of velocity, density and total temperature

which are in tumn directly measurable quantities.
For sensitivities depending on Nu, = f(M,,Re,,6):

For the sake of completeness, the sensitivity equations for constant current

anemometers (CCA) using the functional relationship of Nu, = f (Mw,Re,,B). as derived by

Morkovin®, are repeated here. They are:

5, = 1 (1+ 7—1M2) AogNu,| 7 Jlogn
2 2 OlogM |, , 7. dlog M

+8S, (31)
M,0 -

5, = 1| dogNu, _ n dogn (32)
2| dlogRe,|, , 7, JlogRe,| ,
S, =l S"+Sp(2m'_1)__5_k.g_ly_"_f __7l_+@§_kL (33)
° 2 Aogb |, ., T Ologl,

Experimental Description:

The data were collected using the "Probe Calibration Tunnel" (PCT) at NASA Langley
research center which is an open jet tunnel in which velocity, density and total temperature can
be controlled independently. The combination of a staged pressure system, low mass flow rates

through the facility and the availability of large vacuum systems enables this facility to run

10



continuously. It has two interchangable, subsonic and transonic nozzles, having diameters of
1.50 and 2.25 inches respectively, that yields a continuous fiow capability over the Mach number
range of 0.05 to 1.0. Tunnel stagnation pressure and temperature can be varied from a
minimum of 0.20 atmospheres to a maximum of 10 atmospheres and from 500°R to 600°R,
respectively. This corresponds to a Reynolds number range of 1 x lO6 <Re/ft <S1x 106 for
a Mach number of 1. The 3-wire hot-wire probe utilized three different diameters of Platinum
coated Tungsten wires (diameters of 0.0001, 0.0002 and 0.0003 inch) and was used to obtain
most of the calibration data. The test matrix consisted of 12 velocities, 7 densities and 5 total
temperatures for the cases where E = f(u, p.a,, 7;) ForE= f (M ,Kn,aw), the test matrix
consisted of 12 Mach numbers, 7 Knudsen numbers and 8 overheats. The lower and upper
bounds of the test matrix for the two methods are given in Tables | and Il. In this study all
Knudsen numbers were greater than 0.01, indicating that all the data were in the slip flow regime

based on the definition of the slip flow.

=Pﬂameter I Minimum |  Maximum —
Total pressure, psi 3.40306 46.2992
Static pressure, psi 2.83727 31.5238
Velocity, ft/sec 113.785 950.953
Mach number 0.0982 0.941
Total temperature, °R 500 600
Static temperature, °R 417.33 579.73
Reynolds number/foot 0.3 x 108 12.3x 108
Density 0.01875 0.14693
Mass flow, Ib/sec 0.012832 1.71468

Table I. Minimum and Maximum Test Conditions of Test Matrix for Functional

Relationship E = f (u,p,a T )

w? w

11



Minimum Maximum
Total pressure, psi 3.675 29.4
Static pressure, psi 3.44859 26.2216
Mach number 0.1 0.95
Total temperature, °R 540 540
Static temperature, °R 457.433 539.73
Reynolds number/foot 0.5 x 106 13.3 x 108
Knudsen number 0.00494 _]0.10369
Overheat ratio 0.3 1.0
Density 0.01875 0.13333
Mass flow, Ib/sec 0.013103 1.7193

Table Il. Minimum and Maximum Test Conditions of Test Matrix for Fu_nctional

Relationship £ = f(M ,Kn,a,).

Discussion:

To illustrate the complexity of the sensitivity equations, consider the relationship
between voltage across a wire mounted normal to the flow and the quantities u, p and T, for the

constant temperature anemometer. Utilizing a small perturbation assumption we can write:

’ pl T' .
=8, —+S5~+8, = 34
Su+ p+’°]; (34)

12



Evaluating the partial derivatives in the above sensitivity equations requires care when

carrying out the mean flow calibration. For example, consider equations (31-33). The evaluation

of ﬂo_g&,_ must be obtained by varying P, only and the Mach number and the total
OlogRe, |, ,
u

temperature must be held constant. Also, the evaluation of Aog Nu, requires that the total
dlog M Re,.0

pressure be changed when the Mach number is varied in order to maintain Reynolds number

olo dlo

constant. Similar constraints must be observed when _gosn d 08T are

dlogRe,|,, dog M|,

evaluated. Care must also be taken in evaluating the partial derivatives when using other
dependent and independent variables. This method of obtaining sensitivities is time consuming
when conducting experiments in large wind tunnels since the Mach number and the total
pressures must be varied in order to maintain the prescribed non-varying independent variable at

a constant level when the variation of the remaining dependent variables being sought.

f Nu,=f (M,,,,Re,, 6) and the above described constraint is applied, the operational

envelope for the facility must be considered, since there is a skewing of the Nu; vs. Reg curves

for constant Mach numbers because Re, = f (u,p)9. Due to this skewing, the region over
which the partial derivatives can be evaluated will reduce rapidly. The advantage of using the
suggested functional relationship i.e., E, = f (m,]L,];) or kE, = f (m,aw,T,’,) can be seen by
plots of Nug vs. Kn for constant Mach number where the data are not as skewed and a more
complete set of derivatives can be evaluated from a given number of data pointss. This efficient
use of data with the wire voltage correlated in terms of these primitive variables cannot be
ignored and that will reduce the amount of data needed for calibration by an order of magnitude.

Eventually, that attribute leads to better accuracy in the calibration process.

The effect of wire temperature is complicated due to its nonlinear variation and because

it is not fully understood. In the literature several methods based on various heat transfer

13



relationships, using different dependent and independent variables for a given type of
anemometer, are available to compute hot-wire sensitivities. Among these, the most extensively
used correlations are Nu, = f (M,,,Kn, rw) and Nu, = f (Mw,Re,,H). All these methods
should give identical results for the sensitivity of a given hot-wire at given test conditions. Hot-
wire calibrations have been performed as part of the PCT facility flow quality investigation, in
various flow regimes. At higher speeds, where compressible flow effects occur, it has been

found that King's Law is not valid1.2:10. Hence, those flow regimes have been investigated.

In the 1950's, Kovasznay11:12 extended hot-wire anemometry to compressible flows
Qhere it was found experimentally that in supersonic flow the heated wire was sénsitive only to
mass flow and total temperature. Kovasznay developed a graphical technique to obtain these
fluctuations, which is used primarily in supersonic and hypersonic flows. Kovasznay's12
compressible flow resuits showed that there was a significant difference between the heat
transfer in compressible and incompressible flows. In subsonic compressible, transonic and low
supersonic flows, effects due to compressibility influence the heat transfer from a wire. In high
supersonic and hypersonic flows a strong shock occurs ahead of the wire and the heat transfer
from the wire is influenced by subsonic flow downstream of the shock front. Because of this, it
was found experimentally that in supersonic/hypersonic flows Nu, = f (Re,,0) only, and the
heat transfer from the wire was again a function of} mass flow, total temperature, and wire
temperature. For this reason some understanding of subsonic flow while studying supersonic or

hypersonic flow, becomes essential.

In continuum flow the mean free path of the particles is less than the diameter of the
wire and conventional heat transfer theories are applicable. When the diameter of the wire
approaches a few mean free paths between the particles, the flow does not behave as a
continuum, but exhibits some effects of the finite spacing between the particles. These effects

have been studied3.14 by assuming finite velocity and temperature jump boundary conditions.

14



This gas rarefaction regime was noted as slip flow. In free molecular flow the fluid is assumed to
be composed of individuat particles and the distance between the particles is sufficiently large
that their impact with and reflection from a body is assumed to occur without interaction between

the particles.

Conclusions

The following conclusions have been made:

. The equation obtained for a constant temperature anemometer (CTA) based on the

assumption that E = f(u,p,T) resulted in an equation in which neither wire length nor

the coefficients in the wire resistance vs. temperature relationship were required. This
should result in a more accurate method for calibrating hot-wire probes in facilities where

total temperature can be varied.

. The equation obtained for a constatnt current anemometer (CCA) based on the

assumption that £ = f (u,p,I;,Y;) results in an equation that requires the variation of

four independent variables and is believed to be too complicated for routine use. The

equation also requires evaluation of f# who's elimiation was desired.

. The equation obtained for a CCA and CTA under the assumption that
Nu, = f(M,Kn,a,) and T, = constant resulted in an equation where a and S occured

in only one term in the equation for the total temperature sensitivity. Consequently, this
calibration of wires should be more accurate than those obtained using conventional

methods.

15



The sensitivities computed based on the methods presented using the data obtained in the

"Probe Calibration Tunnel are comparable. However, differences in S, are more

significant than for S, and §,,.

In general, the velocity sensitivity ranges from 0.05 to 0.40, density sensitivity ranges from

0.10 to 0.40 and total temperature sensitivity ranges from -0.2 to -1.0.

The equations (13-15) for the sensitivities of a constant temperature anemometer are

different from those in references 7 and 8. In those references, the velocity sensitivity has

OlogT
a term for g% under the constraints that 77 = constant. There are other terms
ogu

missing in the equations due to the incomplete partial differentiation process.

16
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A Rational Temi ue for Calibrating Hot-Wire Probes from Subsonic to Supersonic Speeds

K.A. Nagabushana!
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0Old Dominion University
Norfolk, VA 23508
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and

G.8. Jones
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Abstract

Hot-wire anemometry is a well developed technique for measuring fluctuations in
flowing fluids where its application depends on the mean flow calibration of the heated wire. The
conventional technique usually used to calibrate hot-wire probes is based on the determination
of Nusselt number and wire recovery temperature ratio as functions of Reynolds number and
Mach number. This method requires the measurement of the wire length and the coefficients in
the temperature - resistance equation for the wire material. The accurate measurement of these
quantities are difficult to make, particularly the wire length and the coefficient of the second
degree term in the temperature - resistance equation. The lack of accurate values for these two
quantities are possible sources of error in the determination of the sensitivities for the heated
wire to heat transfer from the wire. A technique is proposed that reduces the dependency of the
sensitivities of wires to these quantities.

Nomenclature ‘
a, (R, - RL)/R.. I current across the sensor
0 AonE 1 k thermal conductivity of air evaluated at
A [1 - _'(1 +¢) o8 . ]' subscript temperature
a, Soga, K AogT, [AogR,
<, specific heat at constant pressure Kn Knudsen number
c, specific heat at constant volume 4 hot-wire length
d,  diameter of the hot-wire m Aoy, [AogT,
dA, elemental surface area of the wire M Mach number .
. Nu Nusselt number evaluated at subscript
e fluctuating voltage across the sensor temperature
f sea;n voltafge acr;;.s. the sensor P electrical power to the hot-wire
eat transfer coefficient q dynamic pressure

Copyright © 1994 by K.A. Nagabushana. Published by the
American Institute of Acronautics and Astronautics, Inc. with
permission.

’Fom\crly contract research engineer at Fluid Mechanics
_ Division, NASA Langley Research Center through ViGYAN Inc.,
Hampton, VA 23666. .

AIAA 94-2536, 18th AIAA 19th Ground Test Conference
Colorado Springs, Colorado, July 20-23, 1994



forced convective heat transfer
radius of the hot-wire

resistance
Reynolds number
distance along circumference of the wire

velocity sensitivity
density sensitivity
total temperature sensitivity

temperature
velocity

distance along the length of wire
a (l + ﬁle) :

2
a, & B, coeflicients in temperature - resistance
relationship
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Introduction

Historically, much hot-wire data were
analyzed by using equations derived by Morkovin! to
obtain the sensitivities of the heated wire to changes
in velocity, density, and total temperature. This is
particularly true for wires operating in the
compressible flow regime. The use of these equations
requires a knowledge of the wire length, @, and B, in

the temperature - resistance relationship for the wire

material. The operation of wires at high temperatures
requires a knowledge of 5, values. The calibration of
the wire at elevated temperature places a severe

demand on the construction of the probe to withstand

these temperatures. Because of this, values for g,

are often not obtained from calibration but from

handbooks.

The length of the wire must also be known
and for wires having slack it is difficult to accurately
measure their lengths. Since the wire is heated, the
length measured when cold will differ from the value
when the wire is hot. The approximate values of §,
and errors in measuring the length of the wire can
lead to error in the calibrated values of the mean flow
sensitivities. The mean flow calibration is also
constrained by the average values used and the
approximations made for the heat transfer equation.
The use of general functional relationships for heat
transfer from the heated wire should lead to more
accurate mean flow calibrations.

Two methods are proposed for calibrating the
sensitivities of heated wires to flow variables, One
method eliminates the need to measure the wire
length or ¢, and B,. In the second method, the
quantities a, and g, affect only the total temperature
sensitivity of the wire to a minor degree.” Equations,
based on these techniques, will be presented for
constant temperature and constant current
anemometers (CTA and CCA). Calibration data for a
constant temperature anemometer will be presented
based on these two calibration techniques.

Theoretical Consideration

Rational for using Functional Relationships

Consider the heat transfer from a heated wire
with slack as shown in figure 1. For this problem the
general heat transfer equation due to forced
convection can be written in integral form as:

Q= [A(T, - Tu)dd_ (1)

where

dA= dxds= rdxdp )



Using equation (2) we can write equation (1) as:

xt =

0=t | [WT-1.)% dg (3)

-xft 0

Here h, T, and T, are local values. Using
stagnation values of these quantities to normalize the
above equation along with the stagnation values at

zero sweep, the above equation can be rewritten as:

0 tth T, ) i Tmn b (T T) &

% A oreo T To), o s (.- Ta),, € dp  (4)

where A,T, and 7,,, are f(x). T, and T, are
f(M,Kn,T,,A). Mach number and Reynolds number
are  f(9). ik, \= f(9)= f(M,.Kn,)  and
LY L) .A.o—f( .Kn_,A)= f(x). The quantities that

are f(x) are due to conduction to the supports and to

the local sweep. This is a more complex equation
than the usual heat transfer equation used to derive
hot-wire equations.

The conventional heat transfer equation due
to forced convection can be written as:

0= 1td }o (T, s = Tate.ove) (5)

Nondimensionalizing equation (5) similar to that done
in equation (4) gives:

[l

(T, e = Tt

6
o T, O

0= wtdh,polT. = Ton), 7o

Here equation (4) and (6) represent the same quantity
but approached in a different way. Evaluating the
terms in equations (4) and (6) are difficult. However,
note that both equations can be represented in terms
of functional relationship to basic flow quantities as:

Q= f(wpT,T,) 7)

which can be used to evaluate the sensitivities of the
wire to heat transfer more accurately than equation
(4) or (5) or (6) as far as the hot-wire application is
concerned.

Derivation of Sensitivity Equations

The functional relationship given by Morkovin
that governs the voltage measured across a heated
wire was obtained from equation (5) and results in:

E= f(upT,.1) 8

The change in voltage with respect to the
independent variables is:

diogE = 2BE jiogus ABE
Aogu dog

9)
AogE AogE
dlog T, + —=—dlogT,
Aog T, og °+z7log7' og [,

For a constant current anemometer the
change in wire temperature must be considered. The
temperature of the wire should be obtained from the
wire resistance using the following equation:

wom a8l -1,f (10

Equation (10) is required to relate T, to R,. For
T, = f(R,) the following equation can be written:

dlogT, = K dlogR, (11)
Ohm's law gives:
dlogR, = dlogE - dlogl (12)

Using equation (11) and (12), equation (9) can
be written as:

[1 - x2B8E 5)]dlogE -

AcgT, (13)
‘9'°gEd1ogu+ 2‘: dlogp+ gzsﬁdlogl‘
The final equation for the change in £ becomes:
dlogE = S, dlogu+S,dlogp+ S; dlogT, (14)
where
5, = dO;E/ilosu .S, - dozE/ilosp
an” (+ e)J [1-1(&:: (1+ e)J
(15)
s o AogE/AcT,

) [1- Kg::f 1+ e)]



For a CTA, dT, = 0 and the final equation for
the change in E is same as equation (14) where:

AogE
AogT,

§ = ABE o _ ARE
dogu’ 7 Aogp’

(16)

S; =

Equation (15) is not recommended for
calibrating a CCA since the flow variables of u, p, T,
and 7, must be varied. This makes the calibration
process too lengthy. The term K, in equation (11)
also requires values of a, and 8,. However, equation
(14) and (16) for a CTA does not require the
knowledge of wire length or a, and §,.

It is not often possible to vary 7, in wind

tunnels. To overcome this problem, the following
functional relationship is suggested:

E= f(M,Kn,a.) 17)

where T, is constant. Using equation (17), the change
in the voltage across the heated wire is:

diogE = 2BE j1og M+
dog M
(18)
Aog E
Aog Kn

ABE 10g kn+ 2BE - dlogal,
Aoga,

From the definition of a!, the change in a] is :
,_ 8
dioga,, = —(dlog R, - dlog R,,,) (19)
a'

One possible functional relationship for R,,, is:
Ru= f(M.Kn,T) (20)

From which the change in R_, is:

dlogR, = ‘::3"*[ (dlogu-;dlogT)]

AlogR,,, AogR,,.
— L e Jlogp+ ——2Pd]og T,
Biogkn ” B gt 18T,

(21)

Using equation (21) in (19), substituting dloga, into
equation (18), and rearranging leads to:

diogE = S.dlogu+ S,diogp+S; diog T, +

(22)
L2 A%E jgR,
o, Boga,

Finally, Ohm's law can be used to express the wire
resistance in terms of the voltage across the wire as
follows:

dlogR, = (1+&)dlogE (23)

Using equation (23) in (22), the final equation for the
change in E is same as equation (14} where:

A| AlogE
S, = AS. =~ -
‘ v a{a"logM

8 AogE AogR,,,
a, Aoga, dogM

] (24)

0 AogE AogR,,, HOlogE

S, =AS'= A - 25

’ ’ {a,’, Aoga, AogKkn AogKn 25)

S =4Sy = .4[" AogE [ | HAogRy, dogR&) alogs] (26)
al, Aoga,, \2a Aog M AogT, Nog M

A= [1-_(1+ )""°BE]— (27)
a, Aoga

Using equation (10) the quantity SlogR,, /AlogT, can
be obtained as:

T+ 26, (T - Ty )]

dlogR,,, -
[1+a,(r,,,- Ty)+ AT~ Ty f ]

AogT,

(28)

The evaluation of dJlogR,, [AlogT,, requires
values for a, and £, and the latter should be obtained
from the temperature-resistance calibration of the
wire. The values for @, can be easily obtained,
however, it is often necessary to use handbook values
for f,. In any case, the values of @, and £, occur in
only one term in the equation for the sensitivity of the
wire to total temperature and any error in §, would
be limited to this sensitivity. The possible error in
evaluating SlogR,, /dlogT, by neglecting the value for
B, can be obtamed from:

AlogR,,,
[m {Td,[a, +26(T- "')]} ah (29
[% {al Tﬂ"}au )

AogT,



where

a-287) . [ 1R
[Td"]dpﬂ = —2ﬂl'——i -4—ﬂ2l—+ E[E—— IJ (30)
and

[T,,,]a‘ = al[%-- 1] +Ty (31)

For a CTA dlogR_ = 0, and equations (24) - (26) are
valid with 4= 1.

Facility and Description of Present Work

The "Probe Calibration Tunnel (PCT)2 is an
open jet tunnel with the ability to independently
control velocity, density and total temperature. The
primary purpose of this facility is to economically
calibrate probes for NASA's major test facilities at the
Langley Research Center. Typical operational cost for
the PCT is 1% of the cost of operating a major
facih'tyz. The combination of the staged pressure
system and low mass flow requirement of the facility
and the large volume vacuum systems enables
economic and accurate calibration of probes. Due to
these feature, the flow in this facility is continuous.
Schematic diagram of the facility is presented in
figure 2.

The PCT has two interchangeable, subsonic
and transonic, nozzles having diameter of 1.50 and
2.25 inches, that gives a continuous flow capability
over Mach number range of 0.05 to 1.0. Tunnel
stagnation pressure and temperature can be varied
from a minimum of 0.20 atmosphere to a maximum
of 10 atmospheres and SO0°R to 600°R, respectively.
This corresponds to a Reynolds number range of

1x10° < Re/ft < 51x10% for a Mach number of 1.

A schematic diagram of the data acquisition
system for this test is presented in figure 3. A three
wire hot-wire probe consisting of three different
diameters of Platinum coated Tungsten wire
(diameters of 0.0001, 0.0002 and 0.0003 inch) was
used to obtain the data. The 1.50 inch diameter
nozzle was used in this test. The operational envelope
of the tunnel with this nozzle is compared with few
other facilities in figure 4, where simi -6 hot-wire
measurements were performed at NASA Langley.

The test matrix consisted of 12 velocities, 7
densities and S total temperatures for the case where
E= f(upT,T,). For E= f(M,Kn,a.,), the test matrix

consisted of 12 Mach numbers, 7 Knudsen numbers
and 8 overheats. The lower and upper bounds of the
test matrix for the two methods are given in Table I
and [I. The flow region of the present test as
compared to earlier calibration tests are shown in
figure 5. At selected test conditions, fluctuation data
were obtained for future analysis. In this study, all
the Knudsen number were greater' than 0.01
indicating that all the data were in the slip flow

" regime based on the definition of the slip flow

boundary in reference 7.

Parameter Minimum | Maximum
Total Pressure, psi 3.40306 46.2992
Static Pressure, psi 2.83727 31.5238
Velocity, ft/sec 113.785 950.953
Mach Number 0.0982 0.941
q , psi 0.0064 14.328
Total Temperature, °R 500 S80
Static Temperature, °R | 417.33 579.73
Reynolds number/foot | 0.3x10° | 12.3x10°
Heater Power, Watts 325 - 4545
Density 0.01875 0.14693
Mass flow, lb/sec 0.012832 1.71468

Table I. Minimum and Maximum Test Conditions
of Test Matrix for Functional Relationship

E= f(u,pT,T,); Method 1.

Parameter Minimum | Maximum
Total Pressure, psi 3.675 29.4
Static Pressure, psi 3.44859 26.2216
Mach Number 0.10 0.95
q, psi 0.0066 9.8543
Total Temperature, °R 540 540
Static Temperature, °R | 457.433 539.73
Reynolds number/foot | 0.5 x 10° 13.3x 10°
Knudsen number 0.00494 0.10369
Heater Power, Watts 33.2 2985
Density 0.01875 0.13333
Mass flow, 1b/sec 0.013103 1.1793
Overheat Ratio 0.3 1.0
Table II. Minimum and Maximum Test

Conditions of Test Matrix for Functional
Relationship E= f(M,Kn,a.); Method II.



Results and Discussion

Data obtained in the "Probe Calibration
Tunnel” was used to calculate the sensitivities of
several hot-wires using the two methods developed
for CTA. The data were obtained such that the partial
derivatives of the functional relationship such as
E= f(u,p,T,,T,) and E = f(M,Kn,a.) were satisfied as
dictated by the calculus, i.e., while obtaining data by
varying one independent variable, the other
independent variables were held constant. Constant
Temperature Anemometers (CTA) were used in
obtaining the hot-wire data. Thus, the restriction of
the calculus with respect to 7, was satisfied
automatically and the first functional relationship
reduces to E= f(u,p7T,). Polynomials of appropriate
degree were chosen to give the "best curve fit" to the
data to evaluate the partial derivatives required in the
sensitivities equations.

The test conditions in this study for
E = f(u,p,T,) case are presented in Table 1. Examples

of curve fits to the data are shown in figures 6 (a-b)
where the dependent variable, measured voltage, is
presented against each of the independent variable,
while the other independent variables were held
constant. Computing sensitivities in this case was
simple and direct. The logarithmic derivative of the
measured voltage to each independent variable gives
the sensitivity of the hot-wire to corresponding
variable as shown in equation (16).

In the second set of data, a, was chosen over
T, to demonstrate that even though many wind
tunnels do not have the capability of varying total
temperature, the limitations of the tunnel can be
overcome by using a.. In obtaining the second set of
data with respect to overheat ratio, all the hot-wires
were operated at assigned overheat values. The test
conditions for this case are given in Table 1I. The
curve fit of measured voltage vs. various independent
variables are presented in figure 7 (a-b). Here the
sensitivities were computed using equations (24)-(26).

To obtain fluctuation quantities each hot-wire
on the probe was assigned different overheat value in
an attempt to make S, # S, a necessary condition for

obtaining fluctuations. n However, no fluctuation
quantities are presented in the present study.

Velocity Sensitivity:

As seen in figures 6-a and 7-a, the voltage
increases rapidly at low velocities or Mach numbers
and at transonic speed the slope of the curves tend to
decrease. For the case E = f(M,Kn,a!) there was a
tendency for dE/dM — 0 at intermediate Mach
numbers before increase as M— 1. Thus, in
correlating £ vs. M at transonic speeds might result
in zero or negative slope. This variation was also
observed in the data presented by other
researchers8:10,11, i order to correlate these data
higher order polynomials were required. This could
lead to large difference in the sensitivities at higher
Mach number due to poor curve fitting at the end
points. Precautions need to be taken in using the
proper degree of polynomials because they could lead
to unreasonable values for the sensitivities. One
such difficulty in using higher order polynomial was
presented in reference 9 where it lead to a hairpin
like variation of §, with S,.

Examples of the velocity sensitivity, S,, for
both sets of data are presented in figures 8 (a-b) and
generally, S, ranged from 0.05 to 0.40. In both cases
S, increased with increased ¥ or M at low subsonic

speeds and decreased at intermediate subsonic
speeds. As S, approached sonic velocity, the

sensitivities increased rapidly.

A comparison of S, for both the methods is
presented in figure 9. It is expected that both
methods, at identical test conditions, should give
similar results. Most of the values for S, agreed
within about 25 percent, however, some of the
differences shown may be due to different degree of
polynomial curve fits used in each technique. Also, it
may be due to the differences in the operation of the
anemometer for each method. In the first method, T,
is held constant and 7, is varied. In the second
method, 7, is held constant and T, is varied. Due to
this difference in the operation of the hot-wire the
end-loss to the support could be different. This
difference in end loss could contribute to differences
in all the three sensitivities.

Density Sensitivity

The measured voltages across the hot wires
monotonically increased or decreased with increasing
density or Knudsen number, respectively. At higher
Knudsen number the slope changed sign which was
due to large change in Knudsen number and



insufficient data . A second degree polynomial was
used to correlate the data. The density sensitivity, §,,

varies from 0.1 to 0.4 and an example of S, for both

the cases are presented in figures 10 (a-b). Except for
the data where Knudsen number had a large change,
the density sensitivities in both the cases were
comparable with each other and a case is presented
in figure 11.

A comparison of velocity sensitivity, S,, with
density sensitivity, S,, is presented in figures 12 (a-b)
and shows that S, # S, for most of the data. However,
few data points do approach S,=S5, and §,> §, in
some cases for E= f(M,Kn,a.).
§,> S, indicates that the wire was in the slip flow

regime. This observation is consistent with
Spangenberg's data8 as noted in reference 9. It was
also noted that at higher Mach numbers and lower
overheat ratio, a,, S, approaches S,. As a, was

increased S, became greater than S,.

The cases where

Total Temperature Sensitivity

For method II, the manufacturer's suggested
values of a, and Morkovinl suggested values of B, for

tungsten wire were used to compute S;. a, was also

computed using the data obtained during the test
and this value was comparable with the
manufacturer's provided value of @,. The data
obtained in the present study was not adequate to
evaluate f,.

An example of the data used to obtain the
total temperature sensitivity, S;, is presented in
figures 6(b) and 7(b) and S, ranges from -0.2 to -1.0.
However, the total temperature sensitivity obtained
using the first method was always larger than the
values computed using the second method. A few
examples of these variations are presented in figures
13 (a-b). This range of temperature sensitivity is
consistent with the earlier studies®9 from the
authors. The temperature sensitivities using the
overheat parameter may be more accurate because
better curve fits were possible since more data points
were available when using the E = f(u,p,T,) method.

This shows the possible advantage of using this
method versus the other.

A comparison of total temperature sensitivity,
Sy, between the two methods is presented in figure

14. There is a significant difference between the

values of Sz for the two methods. This difference

might be explained if the end losses are taken into
account since they might be different due to the
difference in the operation of the anemometer for
each method.

In general, the range of data available from
the present study is ter than those obtained from
previous studies3- , particularly in regards to
temperature information. In some of the earlier
studies logarithmic functions were used to correlate
the data which gave no variation of the sensitivity to
its corresponding independent variable. Therefore,
polynomial functions seem to be a better technique
for correlating the data compared to logarithmic
functions. However, careful analysis of the present
data is required for a better understanding of the
differences between the sensitivities, particularly the
total temperature sensitivity, so that they could be
applied for computing the fluctuation quantities.

Conclusion

Conventional methods for calibrating hot-wire
probes use equations which include quantities that
are difficult to evaluate. These quantities are wire
length and B in the temperature - resistance
equation for the wire material. This could lead to
possible errors in obtaining the sensitivities of the
heated wire to changes in velocity, density and total
temperature. Methods were developed that either
eliminated the need for the measurement of { and S,,
which are difficult to make accurately or reduced the
effect of ;. From a study of these methods the

following conclusions can be made:

1. The equation obtained for a CTA based on the
assumption that E = f(u,p,T,) resulted in an
equation in which neither wire length or a, and
B, are required. This should result in a more

accurate method for calibrating hot-wire probes
in facilities where T, can be varied.

2. The equation obtained for a CCA based on the
assumption that E = f(u,p,T,,T,) results in an
equation that requires the variation of four
independent variables and is believed to be too
complicated for routine use. The equation also
requires the evaluation of f, who's elimination

was desired.

3. The equation obtained for a CCA and CTA
under the assumption that E = f(M,Kn,a.) and



T, = constant resulted in an equation where q,
and B, occurred in only one term in the
equation for the total temperature sensitivity.
Because of this the calibration of wires should
be more accurate than those obtained using
conventional methods.

The sensitiviies computed based on the
methods presented using the data obtained in
"Probe Calibration Tunnel’ gives comparable
results for S, and S,. However, there were
significant differences in the values for S, . The
differences in the sensitivities could be due to
different degree of the polynomial curve fits
used in each technique or due to the
differences in the operation of the anemometer
in each method.

In general, the velocity sensitivity ranges from
0.05 to 0.40, density sensitivity ranges from
0.10 to 0.40 and total temperature sensitivity
ranges from -0.2 to -1.0.

Polynomial functions seem to be better for

correlating hot-wire . data compared to
logarithmic functions.
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Abstract

Much has been written about the improbability and impossibility of obtaining solutions to the mean
square equation for constant current anemometry in subsonic slip and transonic flows. For these flow
conditions, the fluctuating voltage across a wire mounted normal to the flow is a function of velocity, density,
and total temperature. In principal, the fluctuations of these quantities can be measured, however, to date there
are no known acceptable solutions to the mean square equation in these flow regimes. In this study, data
presented in the 1950's by Spangenberg were used to show that, for a large region in the Nusselt number -
Reynolds number or Nusselt number - Knudsen number regimes, there exists the possibility of obtaining
solutions to the mean square hot-wire equation. These data were used to compute the sensitivities of the heated
wire to changes in velocity, density, and total temperature; indicate regions where the velocity and density
sensitivities were different (a condition required for a solution to the mean square equation); and show a second,
necessary condition for a solution. Examples of fluctuation and mode diagrams for subsonic compressible and
subsonic slip flows are also presented under the assumption that there are solutions to the hot-wire
anemometry equation. '

Nomenclature

Mach number
Nusselt number
number of data points

electrical power to wire
heat transfer from wire

a,_a, coefficients in equations (22) - (27)
b,-b, coeflicients in equations {24) - (26)
¢ ~¢c, coeflicients in equation (26)

a.b,c &d constants in equation (A-4)

A quantity given by equation (20)

c, specific heat at constant pressure sensitivity ratio = S,/S,

c, specific heat at constant volume resistance of wire

d wire diameter wire resistance at reference temperature
e fluctuating voltage across the sensor sensitivity ratio = s_' IS;

E, mean voltage across sensor sensitivity ratio = S, /S,

f.g.h constants in equation (A-4)

mass sensitivity

NESNpRRe e Y ppe Ol 2

h coefficient of heat transfer loci itivi

I, current through the wire ve oc.xty sens'x . .ty

k,  thermal conductivity of air based on T, = 0°C density sensitivity

K AogT,[AogR, total temperature sensitivity
Kn Knudsen number temperature

L wire length total temperature

L characteristic length velocity

m mean mass flow general dependent variable

This paper is declared a work of the U.S. Government and is
not subject to copyright protection in the United States..



gene}al independent variables
& —(Aog1,/AcgR,)

a (1 +L1M2) l
2
a, linear temperature - resistance coefficient
of wire
B aly-0m2
B second degree temperature - resistance
coeflicient of wire '
mean free path
recovery temperature ratio, T, /T,
temperature parameter, T, /T,
angle between probe axis and plane sound
wave
specific heat ratio, ¢, /c,
density
temperature loading parameter, (T, - T,,)/7,
normalized fluctuation voltage ratio = (%') /s,. ‘

Sl RN

® DN

erscript

f

’ indicates instantaneous value
- RMS value
mean value -

script

f

adiabatic wall condition

wire condition

free stream or static condition
based on T =0°C

reference condition at 7, = 0°C
vorticity

entropy

s far field sound

Qe&°855

Introduction

Constant current anemometry (CCA} has been
extensively used to measure fluctuations in
incompressible and compressible ﬂowsl's. In
compressible flow the heated wire is, in general,
sensitive to changes in velocity, density, and total
temperature and fluctuations in these quantities can,
in principal, be measured?. In supersonic flow it has
been found experimentally that the mean voltage
measured across a heated wire is only a function of
changes in mass flow and total temperatures. Using
this result for supersonic flow, Kovasznay developed a
graphical technique for determining fluctuations of
mass flow, total temperature, and their correlation®.

Very few attempts have been made to measure
fluctuations in subsonic compressible flow using a
CCA because of the complexity that exists when the’
heat transfer from the wire is a function of three
independent variables.

Some efforts have been made to measure
fluctuations in subsonic compressible flow using a
constant temperature anemometer (CTA). For these
investigations a three-wire probe was used and the
voltages across the wires were digitized and a system
of three equations solved to obtain the instantaneous
changes in velocity, density, and total temperature as
a function of time. Statistical techniques were then
used to obtain fluctuations and correlations of
interest” .

For compressible flow; where the wire is
sensitive to velocity, density, and total temperature;
equations for CCA are usually derived using mean
square values. This results in a single equation with
six unknowns. Much has been written about the
improbability and impossibility8 of obtaining
solutions to this mean square equation. Solutions to
this equation requires that the velocity and density
sensitivities of the heated wire be sufficiently different.
In this report, data published in the 1950's by
Spangenberg9 was used to show that there exist a
large region in the Nusselt number-Reynolds number
or Nusselt number-Knudsen number regimes where
the velocity and density sensitivities appeared to be
sufliciently different to permit suitable solutions to the
mean square equation. It was further shown that
solutions were possible only when the velocity and
density sensitivities were non-linearly related in
specific manners. Again Spangenberg's data were
used to show that this second condition can often be
satisfied, further indicating that solutions to the mean
square equation are possible. Examples of
fluctuation and mode diagrams for subsonic
compressible and subsonic slip flows are also
presented under the assumption that there are
solutions to the hot-wire anemometry equation.

Spangenberg's Data

Spangenberg's data were presented in terms
of Nu,=f(M,p,z,) for T =constant. Data were

presented for several wire diameters and wire lengths.
The data to be considered herein were obtained using
a Pt-10% Rh wire having a diameter of 0.00015 inch
and a length of 2.80 mm. Data were limited to the
following conditions:



0.05 < M < 0.95
0.0004 < p, gmfcm® < 0.0012
0.221< 7, <2.192

The Nusselt numbers presented were
corrected for heat loss to the supports of the wire.
This corrected Nusselt number, Nu_, is suitable for

comparing heat transfer results from different
experiments using different wire materials and
different ¢/d's. For computing fluctuations, the
sensitivities of the wire must be obtained using the
uncorrected Nusselt number, Nu,. For the results
presented herein, Nu, values were converted to Nu,

values using the method presented by Spangenberg.

Examples of Spangenberg's data are
presented in figure 1. In figure la the uncorrected
Nusselt number is presented as a function of Mach
number for various values of density for a given value
of r,. The Nusselt number increases rapidly with
Mach number at very low values. The slopes of the
curves decrease somewhat as the Mach number
increases. At the higher Mach numbers (0.6 < M <
0.95) the Nusselt number often reaches a peak prior
to decreasing. This variation of NMe, with M at the
higher Mach numbers often results in zero or negative
slopes for Nu, vs M. The Mach numbers at which the
slopes of the curves reach zero increase with
increasing density. This variation of Nu, vs M was
also observed in data presented in references 10 and
11. Polynomials were used to fit curves to the data
from which the required derivatives were obtained,
and a fourth degree equation was required to obtain
"good” fits. The variation of Nu, with p, shown in
figure 1b, is monotonically increasing with increasing
density. A second degree equation was used to fit
curves to the Nu, vs p data.

The variation of Nusselt number with respect
to 7, is presented in figure lc and this variation of
Nu, is rather complex and nonlinear. The Nusselt
number can often increase then decrease with
increasing values of 7r,. A closer look at Nu,6 vs 7,
data revealed that, for most of the data, the values of
Nu, decreased from 0.629< r_ <1629 but most often
increased or tended to increase from 1629< 7, <2.192.
This variation of Nu, over this later interval of r, was
present in about 80 percent of the data and had a
profound affect on the relationship between the
velocity and density sensitivities. It is not known if
this variation can be supported by the limited amount
of data which is available. If third degree curves were
fitted to the data, there was a significant change in the

derivatives for most of the data at the higher values of
7,. Because of these changes, the values of Nu, were
fitted to values of r, using both second and third
degree equations. The results obtained using these
two curve fits on the variation of the velocity and
density sensitivities will be presented subsequently.

Data presented by Baldwin in Ref. 10 also
showed a similar variation of the Nusselt number with
r,. This complex and nonlinear variation of Nusselt

number with r, or overheat is probably the reason

that solutions to the mean square equation for CCA
might exist.

In general, the scatter in the values of Nu,
with respect to M and p are acceptably small; the
apparent scatter of Nu, with respect to 1, is

somewhat larger. This is probably due to the
relatively small change in Nu, with respect to r, or the

limited number of values of r, that are available.

Theoretical Considerations

Because of the manner in which Spangenberg
presented his data, equations must be derived for the
change in voltage across the wire in terms of the
sensitivity of the wire to changes in velocity, density,
and total temperature. The equation for the heat
transfer from the heated wire is generally given as:

Q= ndth(T, - T,,) (1)

For steady state conditions, power supplied to the
heated wire equals the aerodynamic heat transfer
from the wire. Therefore:

P, = I2R_= ntk (T, - nT.)Nu, @)

Making the small perturbation assumption, the
change in R, can be expressed as:

(1-26)dlogR, = dlog Nu, +dlog r, +dlogT,  (3)

where: *

_Pogl,
dlogR,

@)

For Spangenberg's data:

Nu, = f(M.p,,) | (5)



Note that there is a direct relationship between
density and Knudsen number. Therefore, the
Knudsen number could be used as independent
variable. The change in Ny, is:

dlog Nu, = Mdlogp+ Mﬁdlog}\h» é"E_M‘Ldlosf_ (6)
Aogp Aog M dlogr,

It is desired to obtain the final equation in the
following form:

E,= f(u,p,T,) (7)

The change in M is:
1 1
dlog M = —(dlogu - —dlog 7;) (8)
a 2
and

diogr, = L dlogT, - Ldlogn--LdlogT,  (9)
T, T, T,

The recovery temperature ratio can be written as:
n=f(p.M) (10)

and the change in 7 is:

Jog n lt?logn( 1 )
dlog 1= =21 dlog p+ ——=L| dlogu - —dlogT, 11
8 1= Ziop” Pt Aog a7 B 108 (1)

The temperature of the wire must be obtained from
the measured resistance using:

'i%f 1+a(T, - T,)+ 4. - 7, ) (12)
Therefore:

7= f(R) (13)
and

dlogT, = KdlogR, (14)

Finally, Ohm's law can be used to express the wire
resistance in terms of the voltage across the wire as
follows:

_dlogE,
dlogR, “dee (1S)

Morkovin? gives the following equation for the
changes in E, due to changes in ¥, p and 7, for a
CCA:

dlogE, = -S dlogu- S dlogp+ Sy dlogT, (16)

For the present case the sensitivities can be obtained
using equations (3) - (15) and are given by:

5, - Al AogNu, _ 1 Aogn  AogNu, a7)
a| AogM 1, élogM\ dlog 1, v
AogNu, n dlog r]{ Aog Nu
S,=4 2 - =41 18
, [ Aogp 7, Aogp\ Aogr, (18)
Sz=A[— 1 dosNu,4_r](quu,#lXI dlog n l)- ﬂogNu,} (19)
2a AdgM 1\ Aogrs, 2a Alog M Aog 1,
where
1
4= 0£<+;|) N (20)
og /Vu,
-2g)-—| ———2+1
[(l &) r,(alogr, + )]

For Spangenberg's data n varied with M and
plots of 7 vs M were presented in his report. The
values for @, and B, for the wire material were also
presented. Therefore, after the partial derivatives in
equation (17) - (20} were determined the sensitivities
to changes in u, p, and 7, could be calculated.

The value of & cannot be evaluated from
Spangenberg's data because the voltage of the battery
used is unknown and there are several variable
resistors, having unknown resistances, in the
electrical circuit. Because of these problems the
absolute values of the sensitivities could not be
obtained. The values of &£ does not, however,
influence the ratio of the sensitivities, the important
parameters, since the quantity A cancels out when
the ratios are formed.

The Partial Derivatives

Spangenberg's data were measured and
tabulated in a form that is necessary to obtain the
partial derivatives of the dependent variable with
respect to one independent variable while holding the
remaining independent variables constant. These are
the only data known to the authors where
measurements were obtained in this necessary
manner. For the present report, polynomials were



used to fit the data to obtain the desired derivatives of
Nu, with respect to the independent variables. The

degree of the polynomial was chosen to give the "best
fir to the data. In general, this method gives:

V= flxyz) (21)
where the function was assumed to be:

V(x,y,2)= a,+ax+a,x* +...ax" (22)
and:

a,= f(y2) m=012,.n (23)

Using polynomials, the values for the a's can be
expressed as:

a_=b,+by+by*+.by" (24)
where

b,=/(2); (29)
In a similar manner:

b =c,+cz+cz*+..c 2" (26)
From equation (22), the derivatives becomes:

AogV _ ax+2a,x’+..nax"
Alog x

(27)

a,+ax+a,x* +..ax"

The Sensitivities

After the partial deviates were determined, the
sensitivities were obtained using equations (17) - (20).
In general:

$,:8,:8;, = f(M,p,1,) (28)

For these calculations it was assumed that £=0.

Plots of the sensitivities will not be presented since it
will be shown subsequently that the ratios S,/S; and

S,/S, are the important parameters. At some values
of the Mach number, S, =0 and the wire, at these
conditions, is not sensitive to changes in velocity.

The Mean Square Equation

In the past hot wire data, using a CCA, were
obtained from mean square values. Following

Kovasznay, squaring equation (16), dividing by S2,
and taking the mean gives:

_ 2 2 /N2 - = o
,z=qz(u_) ”2(5) ,,(1) 1228 VT3 2T (29)
“ P T, up ul, AT,

This is a single equation in six unknowns,
L AP LIV AT oo 2

(x. .,;,;,E,u—p,;-i—,p—n} Since ¢ , ¢ and s are
functions of the overheat of the wire, one can, in
principal, operate a single wire at six overheats and
solve a system of six equations for the fluctuations
and their correlations. The unsuccessful attempts
that were made in the past to obtain solutions in this
manner were thought to be due to the mean flow
calibrations not being accurate enough or the
sensitivities not being sufficiently different to permit
accurate solutions?. Demetriades® stated that no
solutions to equation (29} are possible unless the
independent variable occurs to at least the fifth
power. It is shown in the Appendix that if s is
assumed to be a function of g, solutions to equation
(29) are possible if, after substituting the functional
relationship for s into the equation, the resulting
equation has six terms. This result requires that
values for s have very restrictive, non-linear
variations with respect to g as the overheat of the
wire is changed. Table I presents conditions where
solutions to equation (29) exist based on s being a
simple, finite, power series of q .

Figure 2 is presented to show to what extent
q = s for 7, =2.192. From the figure it can be seen that
s is, in general, greater than ¢ and the difference
can be large since ¢ can often approach zero at the
higher values of M. At the higher values of M the
sign of ¢ can change and negative values are not
presented in the figure.

For Spangenberg's data, which is considered
herein, the Mach number ranged from 0.05 to 0.95.
The equation given by Morkovin for the Knudsen
number is:

77521070
P

Kn (30)



where p is in gmfon’ and d is in om. Using this
equation, the value for the Knudsen number for these
data ranged from 0.017 to 0.051. Reference 12
suggest that continuum flow occurs for Xn < 0.001- and

slip flow occurs for 0.001< Kn<2. Other references
suggest that continuum flow occur for Kn<0.0l.

These quoted boundaries are not sharply defined, but
if it is assumed that slip flow occurs for Kn> 001, all
of Spangenberg's data considered herein is in the slip
flow regime. This result is in agreement with the data
presented in figure 2 where S /S, # S, /S, , however, a

few data points do approach S,/S; =S, /S, .

Solution to Mean Square Equation

Solutions to equation (29) can be obtained by
using the method of least squares. Applying this
method results in the following matrix equation:

(upu)?
¢ ze?? TP I ISPz WP
T4 T2 zgd Tl I8 @) Fs

2
v |-F¥_| (1
29232 }:qzl }:9!2 2up qiz (41
I Lag | L q#?
ol L

2
In equation (31) ¢, s and ¢ are functions of the
overheat parameter, 7,. Solutions to equation (31)
can be obtained as follows. Obtain a set of values for

2 .
q, s and ¢ for a suitable number of values for 7,

say 10 or 12. Fit suijtable curves to ¢ and ¢'2 vs 1,.
Also obtain curve fits for s= f{¢) that satisfies the
requirements noted in the Appendix to determine if a
solution to equation (31) is possible. The "best curve
fit' to these data using the acceptable coefficients can
be used to relate s to ¢ and ultimately s and r,.
Using the equations obtained for ¢, s and ¢'2 vs 1,
compute a set of values, say 20, to be used in
squation (31} o obwin the fluctuaticns and theis
correlations.

An additional datum point can be obtained for
s and g by using the limiting values for these

variables. These equations are:

Aogn

-1 Aog M
7= a(_l_ Aogn _,

2a AogM

; 1,=0 (32)

Aogn

s= A8 s =0 (33)
1 Aogn
2a dlogM

An indication of the accuracy and suitability of these
results can be obtained by computing the condition
numberl3 for the 6x6 matrix in equation (31). The
smaller the condition number the more accuracy can
be expected from the calculated results.

No fluctuating voltages were presented by
Spangenberg, therefore, no fluctuating quantities
could be calculated. His data were used to obtain
relationships between g and s, to calculate the
elements of the matrix in equation (31), and to obtain
the condition numbers for these matrices. This
procedure serves to illustrate that solutions to
equation (31) are possible and give some indication of
the accuracy of possible solutions.

Examples of the variation of s with ¢
obtained from Spangenberg's data is presented in
figure 3. The case where the Nusselt number was
assumed to be a cubic relationship with respect to r,
most often resulted in a hairpin like variation of s
with ¢. This type of variation does not appear

. reasonable, therefore, a curve is also presented in the

figure where Nu, was assumed to be given by a
second degree equation. This assumption resulted in
what appears to be a more reasonable variation of #
with ¢. It must be again noted that the behavior

obtained with the cubic curve fit might be due to the
limited amount of data available.

There were "several sets of data where Nu,

could be fitted with a cubic equation with respect to
1, without the derivative of Nu, increasing at the

higher values of r,. Examples of s vs g for these
cases are presented in figure 4. The powers of ¢
presented in Table | were fitted to the s— g data, and

the powers that gave the "best curve fits" to the data
are presented in the Table [l. Most of the curves fitted



to the data appear to be good based on the R? values
except for the case M = 0.60. Curves fitted to the data

using the values of the powers presented in Table II
are given in figure 4. The equations with these
powers were used to relate s to ¢ and in turn to r,
Twenty values for ¢ were selected, the values for s

computed, and the elements for the 6x6 matrix in
equation (31) calculated. Using the elements of the
matrix, the condition numbers for the cases presented
in figure 4 were determined and these results are
presented in the Table II. These large numbers
indicate that the 6x6 matrix in equation (31) is very ill
conditioned. It is not known if these results are
general or limited to the cases investigated which has
a limited number of overheats. There are techniques
that can be used to improve solutions for equations
having ill conditioned matrices14. It is not known if
these techniques can be used to assure suitable
solutions to the hot wire equation. There are cases
where suitable solutions can be obtained to sets of
equations where the matrix results in large condition
numbers!S, It must be demonstrated that
satisfactory results can be obtained for the present
equation. Thus, the necessary condition for a solution
to the mean square equation has been established; it
remains to be demonstrated that sufficient conditions
can be established for suitable solutions.

There is an additional problem that could
have an adverse effect on solutions to equation (29).
Equations (32) and (33) show that s and g, in
general, cannot be zero at the same time. This means
that conditions required to obtain the total
temperature fluctuations do not lie on the curve
defined by s= f(gq). Therefore, the total temperature

fluctuations must be obtained by extrapolation to the
condition where ¢ = s= 0. It must be noted that this
condition is not determined by the accuracy of the
mean flow calibration data but by the relationships
used to obtain equation (29). This problem is not
limited to the subsonic compressible flow case, but
could also exist in supersonic flow if dlog n/dlogRe = 0.
In supersonic flow the extrapolation is in two
dimensional space, whereas in subsonic flow the
extrapolation must be in three dimensional space (see
Fluctuation and Mode diagram section).
Extrapolation, in three dimensional space, of a
nonlinear function could result in highly inaccurate
solutions. At the present time it is not known whether
other relationship could be used to obtain values for
s and ¢ such that this problem can be rectified.

Possible remedy might be found in the techniques
presented in reference 11.

Fluctnaﬁon and Mode Diagrams
Fluctuation Diagrams

It is recognized that, in general, if solutions to
equation (29) can be obtained using the method of
least ‘'squares then the fluctuations and their
correlations can be obtained without considering the
fluctuation diagram. However, the fluctuation
diagram can often be used to advantage in
determining the dominant mode in a flow16,

Before considering the fluctuation diagram for
subsonic compressible flows, consider the case for
supersonic flow where the velocity and density
sensitivities are equal. Under these conditions
equation {16) becomes:

m' T
=<8 — 48, == 34
m 1‘1; (34)

Dividing the above equation by S;, squaring, and
taking the mean gives:
L _To_
I,

This is a single equation with three unknowns
(x‘ e. %% 7;). In principle, a single wire can be

P ,z( (35)

mT,

o

operated at three overheats and a system of three
equations solved for the fluctuations and their
correlation. Kovasznay6 noted that this technique
would probably result in inaccurate answers. He
suggested that the wire be operated at several
overheats and a graphical technique be used to obtain
the fluctuations. Equation (35) is an equation of a
hyperbola where the asymptote gives the mass flow
fluctuation and the intercept of the curve with the ¢ -
axis gives the total temperature fluctuation. Note that
the method of least squares can also be used to obtain
solutions to equation (35). An example of a general
fluctuation diagram for supersonic flow is presented

in figure 5.

Kovasznay6 demonstrated that fluctuations in
compressible flow are composed of three basic
fluctuations which are vorticity, entropy, and sound.
He denoted these three basic fluctuations as modes.
Vorticity is a velocity fluctuation that is usually
described as turbulence and has no pressure or static
temperature fluctuation. Entropy consists of static
temperature fluctuation or temperature spottiness.



The sound field consists of isentropic fluctuations
associated with pressure fluctuations and include
density, velocity, and temperature fluctuations. If
fluctuations are considered to be composed of a single
mode then the fluctuation diagram was noted as a

mode diagram.

If it is assumed that the velocity and density
gensitivities are sufliciently different and sufficiently
non-linear so that solutions to equation (29) are
possible, what are the characteristics of the
fluctuation diagrami_ in subsonic compressible flow?

In equation (29), ¢'2 is a function of ¢ and s,
therefore, the fluctuation diagram exists on a three-
dimensional surface, a hyperboloid, rather than a
plane as in the case when S, =S§,. The locus of points
of the fluctuation diagram on the surface of the
hyperboloid will depend on the relative changes in ¢
and s as the overheat of the wire is changed.
However, the important information exists in the g-g
and ¢-s planes. For example when s=0, equation
(29) reduces to an equation for a hyperbola in the
¢-q plane where the asymptote gives the velocity
fluctuations. If ¢=0, again equation {29) reduces to
an equation for a hyperbola in the ¢-s plane and the
asymptote represents the density fluctuations. When
g and s are zero, the intercept on the ¢ -axis gives
the fluctuations for the total temperature. In planes
parallel to the g-s plane, the locus of points of the
fluctuation diagram is governed by the velocity and
density fluctuations and their correlation. The cross
product term, ¢s, requires a rotation of the axis before
the characteristics of this locus can be identified.

Although the fluctuation diagram exists on
the surface of a hyperboloid, the fluctuations can be
determined from the intersection of the hyperboloid
with the ¢—g and g-s planes. Because of this, the
fluctuation and mode diagrams will be defined as the
traces of these intersections in the noted planes. A
general schematic representation of the fluctuation
diagram for equation (29) is presented in figure 6.

Mode Diagrams

First, assume that the only fluctuations are
vorticity. Then:

Next, assume that the only fluctuations are
entropy. This results in:

v o £ (L), E_JE), »_ (&
o S {F) B AE) AR @

Finally, assume that the only fluctuations are
far-field sound. Then:
;g_l-(zJ cost g;(z) : L(f_')(g) 38)
v yM\p), p r\Ply L. 7 \P),

L. ai’;—‘)(%)v . ﬂ(i)v e mo)rLM(%'L (39)

A schematic of the mode diagrams for
supersonic flow is presented in figure 7 for vorticity,
entropy, and far-field sound. In all cases the mode
diagrams are degenerate hyperbolas. This figure is
presented in order to compare the mode diagram in
supersonic flows with those in subsonic flows.

If it is assumed that in subsonic flow the
fluctuations are only due to vorticity, equation (29)

gives:

#2= —ﬂ)z(i;l)z . o

Results obtained using this equation for the case
where (u'fu) =001 are presented in figure 8. The

mode diagram for vorticity is identical to the one for
supersonic flows except that S, is replaced by S, and
t_.he important part of the mode diagram lies in the
¢-q plane since p/p=0. Equation (40) shows that
when ¢=0, then g= 8. Also, when ¢ =0 then:

s=o(2) @1)

which represents the total temperature fluctuation
due to vorticity.

Next assume that the fluctuations are all
entropy. Then equation (29) becomes:

— 2
# =(s+a)2(%) @2



This equation is identical to the one for supersonic
flow except that S, is replaced by S, and the mode

diagram lies in the ¢-s plane.

An example of the mode diagram for entropy
when (7-'./7'.,)’=0.01 is presented in figure 9. Here

again, only the ¢-s plane is presented since dfu=0.
When ¢=0 then s= -a, and when s=0 then:

4= a{g) (43)

which represent the total temperature fluctuation due
to entropy fluctuations.

Now assume that all the fluctuations are far-
field sound (i.e., 4/L <<1). The equation for this case

18:

— 2
¢ = ﬁ(’ﬂ {(6- )cosos [aly-1)- M} (a9)
[ 2

Equation (44) represents a three-dimensional surface
in the ¢, ¢, s coordinate system and the mode
diagram, in general, lies on this surface. The
intersections of the surface with the ¢-g and g-s
planes are defined, herein, as the mode diagrams.
When s=0 the above equation represents the mode
diagram in the ¢-g plane and when g=0 the mode
diagram is in the ¢-s plane. An example of the
sound mode is presented in figure 10, where the ¢-s
plane has been rotated into the plane of the paper.
The sound mode is the only mode that has non-zero
values in the two planes, ¢-q and ¢-s, since sound
has both velocity and density fluctuations. All of the
mode diagrams described above are degenerate
hyperbolas in the g- ¢ and ¢-s planes.

Concluding Remarks

From the present study of hot-wire
anemometry for a constant-current anemometer
applicable to subsonic compressible and subsonic slip
flows, the following concluding remarks can be made:

¢ Based on Spangenberg's data, there appears to be
a wide range of M and Kn available where a
solution to the mean square equation for constant
current hot-wire anemometry in subsonic flow
might be possible based on the fact that S, # S,.

e It was shown that the mean square equation for
CCA has possible solutions provided that the
functional relationship which adequately relates
s to ¢ when substituted into the equation results
in only six terms. Again Spangenberg's data were
used to show that this condition can often be
satisfied.

e The application of the method of least squares to
the mean square equation resulted in a 6x6
matrix that was ill-conditioned for the data used.
Methods to circumvent this problem, if it is
general, must be found before reliable solution
can be obtained.

e If a solution exists, the fluctuation diagram was
shown to exists on a three dimensional surface - a
hyperboloid.

¢ The intersection of the hyperboloid with two of the
co-ordinate planes are hyperbolas, where in one

plane, (q—a), the asymptote gives the velocity
fluctuation and in the other plane, (3—3), the

asymptote gives the density fluctuation. The
intersection of the hyperboloid with the ¢ axis
gives the total temperature fluctuation.

e The mode diagrams for vorticity, entropy, and
sound are degenerate hyperbolas in two of the co-
ordinate planes.
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Appendix

A Note on the Mean Square Equation for CCA

The necessary condition required to assure a
solution to the hot-wire equation for the constant
current anemometer can be developed as follows. The
equation in terms of mean square values is:

A N2 - 2 U 2 by e '
,yz-qz(v_) ,,z(;r_) +(zo.] 2005 P 2 VT P
u P up

T, U

where
(A-2)

R

q=§-"— and s=
st

In equation (A-1) the quantities ¢'2, g,and s
are functions of 7,. Therefore s can be considered to
be function of ¢. Assume that solutions are sought
using the method of least squares and s= f(g);
substitute this functional relationship into equation
(A-1):

P f({—)2+[f(q)1’[g-)z+(-;?)i+mq>§--u?g-zﬂq%{’ (4-3)

* Any functional relationship which adequately
relates g and s and results in equation (A-3} having
six terms will satisfy equation {A-1) and result in a
solution. This can be illustrated by assuming the
following equation for s:

s=a+bg’ +cq® +dq* (A-4)
Substituting equation (A-4) into {A-1) and collecting
terms gives:
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A solution to this equation is possible for any
values of f, g, and h provided that the resultant
equation, after the substitution of values for f, g,
and & into the equation, has 6 terms. Some
examples of values for f, g, and h which results in
an equation which has six terms are presented in
Table I. However, when equation (32) is considered,
the non-integer values for f cannot be used to
determine s in the vicinity of r,=0. This is due to
the limiting value of ¢ being negative. This results in
the values of f being restricted to the values
presented in the first two rows of Table I. The major
problem in obtaining a solution to equation (A-1) is
evaluating the powers of ¢ in equation (A-4) which
will give the best fit to the mean flow calibration data
relating s to ¢. This can be done by using standard

statistical techniques.

Table I

Possible Solutions to Mean Square Equation for -
CCA:

—_ 2 —_
2. 2¥ oY . (T v . VT oT
¢ ( ) +[f(¢1)]2(p) (}:- +24f(q )—u; zq—.&ur 2f{q )7_:.
s= flg)= a+ by’ +cq* + dg
AKAN Terms in ¢
S 110 | g7 ¢ qba5° 7 = 3,4.5,..
f=-2,-3,4,..
S [o [0 ]e¥:¢' "¢ :a%45d° 1 =34.5,.
f=-2,-3,-4,..
J |1 10 | ¢¥i¢"*¢ :q%45¢° { :";""“""‘"“"
AR LEEIE T i
S 1110 | ¢¥q"a g% | 0<S <1
f=#05
S {0 [0 |¢¥ig e a%95¢" | 0<S <]
f=#05
TABLE I

Possible Solutions To Mean Square Equation For
CCA Based On Spangenberg's Data:

M p S| 8| A R2 Condition
Number

0.05 | 0.0012 | 30f1 |0 |[0.9936 | 1.97 x 107

0.10 [ 0.0012 | 3.3]1 | 0 | 0.9966 | 2.92 x 10°

0.20 [ 0.0012 { 3.0} 1 |0 |0.9933 | 1.92x 10°

0.40 | 0.0012 [ 3.0]1 |0 | 0.9997 | 1.09x 107

0.60 | 0.0012 [ 3.0 1 |0 |0.9718 | 6.54 x 10°
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Figure 2. Density sensitivity ratio, s vs. velocity
sensitivity ratio, g for r = 2192;
(Spangenberg's Data; Ref. 9).
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ADDENDUM AND ERRATA

AlAA 94-2535
HOT-WIRE ANEMOMETRY IN SUBSONIC SLIP AND TRANSONIC FLOW REGIMES
P.C. Stainback
and

K.A. Nagabushana

ADDENDUM

The present analysis of constant current
anemometry in subsonic slip and transonic flows
using the least square technique appeared to show
that, based on Spangenberg's data, measured
fluctuations would probably have substantial
errors based on the large condition numbers
calculated for the 6x6 sensitivity matrix. This was
true even though the necessary conditions required
for a solution to the mean square equation
appeared to be satisfied. Because of this,
additional studies of the problem were undertaken
in attempts to determine the possible reason for
the large condition numbers and to search for
possible methods for reducing their magnitudes.

From an analytical point of view, consider
equation (29). One serious problem which could
affect the ability to obtain accurate solutions to this
equation can be noted by considering the variation
of the sensitivity ratios, ¢ and s, with respect to
changes in the overheat of the heated wire and
their limiting values which are give in equations
(32) and (33).

In subsonic slip and transonic flows, the
values of s are, in general, larger than those for ¢ .
Both of these quantities approach small limiting
values as the overheat of the wire approaches zero.
However, except for very low densities, the limiting
values for s are smaller in magnitude than those
for ¢ as the overheat approaches zero. Because of
this, there is a range of overheats in the vicinity of
zero where ¢ and s are approximately equal and
the locus of points for ¢ and s in the g-s plane
crosses the ¢ = s line. Because of this, the mean
square equation reduces from the case of a single
equation with six unknowns to a single equation
with three unknowns. In other words as the

overheat is reduced, the mean square equation
becomes degenerate from a three dimensional
problem to a two dimensional one and this could
result in an inability of the equation to give
accurate results. Therefore, the present method
would probably result in answers having large
errors and accurate results cannot be expected
unless some other suitable technique can be found
to solve the mean square equation. Note that this
problem in the limit is due to the heat transfer
equation used and not due to any errors in the
mean flow data. Is the heat transfer equation used
adequate? If it is not, can another technique be
found to circumvent the problem of obtaining
accurate answers to the mean square equation?

After the wire is calibrated and the
sensitivities obtained and the RMS and mean
voltage measured across the wire, the search for a
possible solution to the mean square equation
becomes one of geometry. The trace of the values
for ¢ and s in the g-s plane and the
corresponding values of ¢ must be used to define
the hyperboloid from which the fluctuations and
their correlations can be accurately determined
since the fluctuation diagram lies in its surface. In
general, ¢ and s exist in only one quadrant of the
q-s plane as the overheat of the wire is changed,
and the hyperboloid must be determined from this
limited amount of data. Table II shows that
attempts to do this resulted in matrices with large
condition numbers indicating that any answers
obtained would be subject to large errors. These
errors might be reduced if additional information
could be obtained.

Is there a reasonable method that can be
developed to supply additional information to help
define more accurately the proper hyperboloid
thereby producing more accurate solutions to the

AIAA 94-2535, 18th AIAA 19th Ground Test Conference
Colorado Springs, Colorado, July 20-23, 1994



mean square equation? If the functional
relationship between ¢ and s are valid in one

quadrant, values for ¢ and s can be obtained in a

second quadrant by extending values from the
equation into the second quadrant. This technique
reduces the condition numbers of the matrix by
about two orders of magnitude. There are,
however, no corresponding values for ¢ in this
second quadrant. A method to circumvent this
problem is to assume ¢ is a function of ¢ in the
first quadrant then extend this relationship into the
second quadrant. Using this technique the
condition numbers of the sensitivity matrix were
reduced to the values presented in Table II. These
condition numbers indicate that significant
improvements in possible solutions can be
obtained, however, the condition numbers are still
rather large. DBecause of the symmetry of the
hyperboloid, the above technique might be
acceptable. However, it should be noted that the
coordinates of the hyperboloid is not symmetric
with respect to the ¢, s, ¢ coordinate axes.

Based on the present paper and the
Addendum, it appears that the possibility exist for
obtaining solutions to the mean square equation
for CCA in the subsonic slip and transonic flows.
The accuracy of the results are , however, subject
to question. In any case, the possibility of a
solution suggest that data, including fluctuation
measurements, should be obtained in an attempt
to further investigate the problem.

ERRATA

In general, the values for ¢ and s are
negative and equation (16) is written so that the
terms in equation (29) are all positive. For the
present report the negative values for ¢ and s
were transformed to positive values. However,
most of the equations were presented in the non-
transformed coordinate system. This fact was not

noted in the report and could lead to some

confusion. Equations (31) - (33) are written in the
non-transformed system.

Page 11 of the Appendix

However, when equation (32) is considered,
the non-integer values for f cannot be used to
determine s in the vicinity of 7, equal zero. This is

due to the limiting value of ¢ being negative.

The above should read: However, non-
integer values cannot be used since the fluctuation
diagram exist on the surface of a hyperboloid and
this surface must be defined in all quadrants.

The value 3.3 in Table II should be 3.0.

The notations for the coordinate axes in
figure 3 should be interchanged.

New Table II
M 1, emfem| J 8 | h 90 SIS ey | ~Fooas SIS s
Condition Condition
Number Number
0.05 0.0012 | 3.0 1 0 |0.9936 |1.97x107 1.34 x 10°
0.10 0.0012 | 3.0 1 0 |o0.9966 | 2.92x10° 3.23 x 10°
0.20 0.0012 | 3.0 1 0 |09933 [192x10% 2.12 x 10°
0.40 | 0.0012 |3.0 1 0 |0.9997 |1.09x107 1.73 x 10°
0.60 0.0012 | 3.0 1 0 |o0.9718 | 6.54x10° 9.51 x 107
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ABSTRACT

A review of hot-wire anemometry was made to present examples of past work done in
the field and to describe some of the recent and important developments in this extensive and
ever expanding field. The review considered the flow regimes and flow fields in which
measurements were made, including both mean flow and fluctuating measurements.
Examples of hot-wire measurements made in the various flow regimes and flow fields are
presented. Comments are made concerning the constant current and constant temperature
anemometers generally in use and the recently developed constant voltage anemometer.
Examples of hot-wire data obtained to substantiate theoretical results are presented. Some
results are presented to compare hot-wire data with results obtained using other techniques.
The review was limited to wires mounted normal to the flow in non-mixing gases.

NOMENCLATURE

a,-a, constants in equation (47) d( )/dt rate of change of quantity ( ) with respect to
a speed of sound time

AB constants in equation (24) d, ~ diameter of cylinder

A - A, constants in equation (18) d, diameter of jet

b -b, orderof q in equation (47) d, diameter of wire

B, - B, constants in equation (19) e instantaneous voltage across the wire

A(T) Lk, E mean voltage across the wire

A overheat parameter, 4(SlogR, /Ao I), E:., anc.emOt'nete'r output voltage '

B(T) 2L den E finite-circuit parameter, (1- 5)/(1+24;5)

<, specific heat at constant pressure '}f, gi:l:::? nless frequency

& specific heat at constant volume F, true one-dimensional spectral density

2 specific heat of wire F, measured one-dimensional spectral density
d wire diameter of mesh F, turbulence reduction factor

t Formerly Senior Research Engineer, Analytical Services & Materials, Inc., Hampton, VA 23666



Y WY

=

Grashof Number

coefficient of heat transfer

height above wire shock generator to probe
height above shock generator, immediate
postshock value

current

thermal conductivity of air evaluated at
subscript temperature

wave number in the flow direction
Knudsen number

characteristic length

mean mass flow

Aogu, [AogT,

Mach number

mesh size

exponent for mass flow in equations
(16) & (17)

Slogk, [AlogT,

Nusselt number evaluated at subscript
temperature

mean static pressure

mean total pressure

electrical power to the hot-wire

Prandtl number

sensitivity ratio, S,/S;

dynamic pressure

forced convective heat transfer
sensitivity ratio, S, /S,

radial distance in cylinderical polar
co-ordinate

distance of virtual source of jet from origin
radius of wire

r,-n

resistance

Reynolds number based on viscosity
evaluated at subscript temperature and
wire diameter

mass flow - total temperature correlation
coefficient, m'T)/mT,

velocity - total temperature correlation
coeflicient, u'_T;'/Ef;

density - total temperature correlation
coefficient, o'T;/pT,

velocity - density correlation coefficient,
g fip

normalized auto-correlation function
sensitivity ratio, S,/S,

()

sensitivity of hot-wire to the subscript
variable

t time

T temperature

T, (T.+T)2

u,v,w velocityin x, y and z directions
respectively

u, frictional velocity

x distance in the flow direction

x, virtual origin of the wake

x, distance along the length of wire

y distance normal to the flow direction

a (l + r-1 M2 ) !

2

a, linear temperature - resistance coeflicient
of wire

B aly - )M?

B second degree temperature - resistance
coefficient of wire

) boundary layer thickness

& displacement thickness for Blasius flow

£ finite circuit factor, ~(dlog/, /AlogR,),

n, transformed co-ordinate distance normal to
body

n recovery temperature ratio, T, /7T,

6 temperature parameter, T, /T, '

6, angle between plane sound wave and axis of

" probe

A mean free path

y7] absolute viscosity

r specific heat ratio, ¢, [c,

o density

T time lag

T, temperature loading parameter, (T, - T,, )/T,

7.,  temperature parameter, (T, - T, )/T.,,

Toatl shear stress at the wall

¢ normalized fluctuation voltage ratio,(‘?/E) /S,_

Subscript

adw adiabatic wall condition

adw,c  adiabatic wall temperature, continuum flow
condition

adw,f adiabatic wall temperature, free molecular
flow condition

B due to buoyancy effect

C constant current anemometer

e

edge condition
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eff effective velocity

Vi film condition

h M and Re, are constant as Q varied
total condition

ref reference condition

s electrical system untouched as M and Re,
varied

s sound source

sc settling chamber

t evaluated at total temperature

T constant temperate anemometer
w wire condition

® free stream or static condition

Superscript
' instantaneous
- RMS
mean
INTRODUCTION

Comte-Bellotlnoted that the precise origin
of hot-wire anemometry cannot be accurately
determined. One of the earlier studies of heat
transfer from a heated wire was made by
Boussmesq2 in 1905. The results obtained by
Boussinesq was extended by l(.mg3 and he
attempted to experimentally verify his theoretical
results. These earlier investigations of hot-wire
anemometry considered only the mean heat transfer
characteristics from heated wires. The first
quantitative measurements of fluctuations in
subsonic incompressible flows were made in 1929
by Dryden and Kuethe* using constant current
anemometry where the frequency response of the
wire was extended by the use of a compensating
amplifier. In 1934 Ziegler5 developed a constant
temperature anemometer for measuring
fluctuations by using a feedback amplifier to
maintain & constant wire temperature up to a given
frequency.

In the 1950's, Kovasznay6'7 extended hot-
wire anemometry to compressible flows where it
was found experimentally that in supersonic flow
the heated wire was sensitive only to mass flow and
total temperature. Kovasznay developed a graphical
technique to obtain these fluctuations, which is
mostly used in supersonic flow. In subsonic

compressible flows the heat transfer from a wire is a
function of velocity, density, total temperature, and
wire temperature. Because of this complexity, these
flow regimes were largely bypassed until the 1970's
and 1980's when attempts were made to develop
methods applit:able8 for these flows. In recent
years there were several new and promising
developments in hot-wire anemometry that can be
attributed to advances in electronics, data
acquisition/reduction methods and new

developments in basic anemometry techniques.

Previous reviews, survey reports, and
conference proceedings on hot-wire anemometry are
included in references 1,9-20. Several books21-24
have been published on hot-wire anemometry and
chapters25‘3° have been included in books where
the general subject matter was related to
anemometry.

This review considers the development of
hot-wire anemometry from the earliest
consideration of heat transfer from heated wires to
the present. Although mean flow measurements
are considered, the major portion of the review
addresses the measurement of fluctuation
quantities. Examples of some of the more important
studies are addressed for wires mounted normal to
the flow in non-mixing gases. The present review
attempts to bring the development  of hot-wire
anemometry up to date and note some of the
important, recent developments in this extensive
and ever expanding field.

FLOW REGIMES AND FLOW FIELDS

Based on the applicable heat transfer laws
and suitable approximations, hot-wire anemometry
can be conveniently divided. into the following flow

regimes:

1. Subsonic incompressible flow

2. Subsonic compressible, transonic, and
low supersonic flows

3. High supersonic and hypersonic flows

Within each of these major flow regimes are the
following sub-regimes:

1. Continuum flow
2. Slip flow

Stainback, P.C. and Nagabushana, K.A,



3. ' Free molecular flow

In subsonic incompressible flow the heat
transfer from a wire is a function of mass flow, total
temperature and wire temperature. Since density
variations are assumed to be zero, the mass flow
variations reduce to velocity changes only. The non-
dimensional heat transfer parameter, the Nusselt
number, is usually assumed to be a function of
Reynolds and Prandtl numbers and under most
flow conditions the Prandtl number is constant.
Evidence exist which indicate that Ny, is also a

function of a temperature parameter5. In subsonic
compressible, transonic and low supersonic flows
the effects of compressibility influence the heat
transfer from a wire. For these conditions the heat
transfer from the wire is a f(up7,,T,) and
Nu, = f(Re,,M,6). In high supersonic
hypersonic flows a strong shock occurs ahead of the
wire and the heat transfer from the wire is
influenced by subsonic flow downstream of the
shock. Because of this, it was found experimentally
that Nu, = f(Re,,6) only, and the heat transfer from

the wire is again a function of mass flow, total
temperature, and wire temperature.

and

In continuum flow the mean free path of the
particles is very much less than the diameter of the
wire and conventional heat transfer theories are
applicable. Where the diameter of the wire
approaches a few mean free paths between the
particles, the flow does not behave as a continuum,
but exhibits some effects of the finite spacing
between the particles. These effects have been
studied31,32 by assuming a finite velocity and a
temperature jump at the surface of a body. This
gas rarefaction regime was noted as slip flow. In
free molecular flow the fluid is assumed to be
composed of individual particles and the distance
between the particles is sufficiently large that their
impact with and reflection from a body is assumed
to occur without interaction between the particles.
Free molecular flow is theoretically studied33 using
the concepts of kinetic theory34.

Figure 1 presents a plot of Mach number
vs. Reynolds number for lines of constant Knudsen
number where d, = 0.00015 inch and for flow
conditions where 1.5 < p,, psia £ 150. Baldwin's
results3S indicated that the continuum flow regime
existed for Kn < 0.001 and slip flow conditions

existed for 0.001 £ Kn < 2.0. Other references
suggest that slip flow conditions were attained only
for Kn > 0.01. Even using the larger value of Kn for
the slip flow boundary, (i.e., Kn > 0.01) operating a
0.00015 inch wire at low Mach numbers and at
atmospheric conditions is near the slip flow
boundary. If the total pressure is decreased or the
wire diameter reduced, the value of Kn would be
shifted farther into the slip flow regime. Free
molecular flow conditions are generally assumed to
exist for Kn > 2.0. Figure 1 can be used to delineate
approximate values for M and Re, for the various

sub-regimes.

Various applications of hot-wire
anemometry and the approximate level of velocity
functuations are:

Types of Flows Apgroximate29
i fu
1. Freestream of wind tunnels36,37 0.05%
2. Down stream of screens and 0.20 - 2.00 %
gn'ds25,38
3. Boundary layersag'42 3.0-20.0%
4. Wakes?3,44 2.0-50%
5. Jets35-47 Over 20.0 %
6. Flow downstream of shocks48 ’
7. Flightin Atmosphere49
8. Rotating Machine 0,51
9. MiscellaneousS2-56
TYPES OF ANEMOMETERS

The two types of anemometers primarily
used are the constant current anemometer (CCA)
and the constant temperature anemometer (CTA). A
constant voltage anemometer (CVA)} is presently
under development5 Even though these three
anemometers are described as maintaining a given
variable "constant”, none of these strictly accomplish
this. The degree of non-constancy for the CCA is
determined by the finite impedance of its circuit>8,
The constancy of the mean wire temperature for a
CTA at high frequencies is limited by the rate at
which the feedback amplifier can detect and
respond to rapid fluctuations in the flow. The CVA
maintains the voltage across the wire and leads
constant rather than across the wireS’. The non-
constancy effects in the CCA and the CVA can be
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accounted for by calibration of the CCAS58 and by
knowing the lead resistance in the CVA.

The heat balance for an electrically heated
wire, neglecting conduction and radiation is:

Heat Stored = Electrical Power In - Aerodynamic

Heat Transfer Out
de, . _ -
—L=P-0 (1)
%_r, = 2R, - nLd KT, - T.,) @

If the heat storage term is properly compensated,
then equation (2) becomes:

R, = 2Ld M(T,-T,.) (3)

The measurement of fluctuations in a flow
requires a sensor, in this case a wire, with a time
response up to a sufficiently high frequency. The
time constant of even small wires are limited and
the amplitude response of these wires at higher
frequencies decreases with frequency. Therefore,
some type of compensation must be made for the
wire output. There are two methods for
accomplishing this. Earlier approaches utilized a
constant current anemometer with a compensating
amplifier that had an increase in gain as the
frequency increased?. An example of the roll off in
the frequency of the wire, the gain of the amplifier
and the resulting signal is shown schematically in
figure 2. In principle, the output from the wire can
be compensated to infinite frequencies. However, as
the frequency increases, the noise output from the
compensating amplifier will equal and ultimately
exceed the wire output, which limits the gain that
can be obtained. A schematic diagram of a CCA is
presented in figure 3.

The constant temperature anemometer uses
a feedback amplifier to maintain the average wire
temperature and wire resistance constant {i.e.,
dl,[dt= 0 in equation (2)}, within the capability of
the amplifier. The practical upper frequency limit
for a CTA is the frequency at which the feedback
amplifier becomes unstable. A schematic diagram of
a CTA is presented in figure 4. A third anemometer,
presently under development57, is the constant
voltage anemometer. This anemometer is based on

the alterations of an operational amplifier circuit
and does not have a bridge circuit. A schematic
diagram of a CVA is presented in figure S.

The upper frequency response of a CCA is
generally accepted to be higher than that of a CTA.
There is some evidence that the frequency response
of the CVA might equal or exceed that of the CCA.
The fluctuation diagram technique described by
Kovasznay is usually used with a CCA to obtain
data at supersonic speeds. This technique depends
on the sensitivity of the wire being a function of wire
temperature or overheat and the frequency
response of the wire being assessable to
compensation to almost zero overheat. This
technique has limited application for a CTA, since at
low overheats, the frequency response of the
anemometer approaches the frequency response of
the wire<>,

An example of the difference between the
fluctuation diagrams obtainedS9 using a CTA and a
CCA is presented in figure 6. The intersection of the
diagram with the vertical axis at S,/S.=0
represents the total temperature fluctuation and the
data show that the CTA cannot be used to measure
these fluctuations. The reason for this is illustrated
in figure 7a where the total temperature spectra at
low overheats for the two anemometers are
presented. In these cases the spectrum obtained
with the CTA was attenuated at a frequency that
was about two orders of magnitude less than for the
CCA. At high overheats the two mass flow spectra
were more nearly equivalent (figure 7b). However,
in reference 60 the output of a laser was modulated
and used to heat a wire to check the frequency
response of a CTA. It was shown that the frequency
response was essentially unchanged down to an
overheat of 0.07.

The CTA <can be used to make
measurements in supersonic flows by using two
wires. For these flows the CTA is operated with two
wires having different but high overheats, digitizing
the voltages and using two equations to obtain m',
I' and m'I}; as a function of time®l,  Then
statistical techniques are used to obtain quantities
of interest. In general, the CTA is more suitable for
measuring higher levels of fluctuations than a
CCA25, 1t remains to be determined how the CVA
will compare with the CCA and CTA. At present it
appears that the CVA has a higher signal to noise
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ratio than either CCA or CTA. Additional
advantages and disadvantages of the CCA versus
the CTA are described in references 1, 29, 57, 62
and 63.

At low speeds a linearizer is often used to
convert the non-linear relationship between wire
voltage and velocity to a linear relationship. There
are two types of linearizers in use; the logarithmic
and the polynomial. A linearizer makes it possible
to directly relate the measured voltage to the
velocity. However, the linearization process does
not result in better measured quantities25.

LIMITATIONS OF HOT-WIRE ANEMOMETRY

Most of the data obtained using hot-wire
anemometry is limited to small perturbations.
There are cases, however, where this linearization of
the anemometry equation is not accurate and non-
linear effects can influence both the mean*? and
ﬂuctuatin525 voltages. Since high level fluctuations
can influence the mean voltage measured across
the heated wire, it is important to calibrate probes
in flows with low levels of fluctuations.

Because of the mass associated with the
wire supports, there can be a significant amount of
heat loss from the wire due to conduction to the
relatively cold supports. This heat loss results in a
spanwise temperature distribution along the wire
that, in turn, causes a variation of heat transfer
from the wirel2,21,64 along its length. In order to
compare the heat transfer results from one wire or
probe with another, the heat transfer rates must be
corrected for these losses. However, computation of
fluctuation quantities requires that the uncorrected
values of the heat transfer rates be used. An
example of the temperature distribution along a
wire and its mean temperature21 is shown in figure
8. The finite length of the wire and its attendant
temperature and heat transfer distribution
influences the level of the spectra (especially at
higher frequencies), correlations, and phase
relationships between sensors2:65,

The spacial resolution of a wire is limited by
the length of the wire and the size of the smallest
scale of fluctuations in the flow. If the length of the
wire is larger than the smallest scale, the resultant
magnitude of the spectra will be attenuated at the

higher frequencies. The length of the wire with
respect to the size of turbulence can have an effect
on the measurements of fluctuation intensity, space
and time correlations, and the turbulence scales
and micro scales®0-68,  Additional spacial
resolution problems encountered near walls was
discussed in references 69 and 70. Proximity to
walls of wind tunnels or to surfaces of models can
introduce errors in measurements due to increased
heat transfer from the wire due to conduction to the
relatively cold walis21,25, An example of the effect
of wire length on normalized spectra is presented in
figure 9. The sgpacial resolution of multi-wire probes
is further limited by the distance between the wires.
The hot-wire probe intrusion into the flow can cause
severe disturbance in certain flows. Examples are
flows with large gradient such as boundary layers
and vortices. Because of the above, hot-wire
anemometry has limited resolution in space, time,
and amplitude29.

A severe problem is encountered in
hypersonic flows when the gas is air. At higher
Mach numbers the total temperature must be high
enough to prevent liquefaction of air in the test
section. There is a maximum recommended
operating temperature for each wire material
These two facts places severe limitations on the
maximum overheat at which wires can be operated.
For example, the maximum recommended operating
temperature for Platinum-10% Rhodium wire is
1842°R. For a M = 8 wind tunnel, the total
temperature required can be as high as 1360°R.
Using a recovery temperature ratio of 0.96, the
maximum values for 7, is 0.394 and 6., = 1.354.
If gas rarefaction effects are experienced and 7 is
greater than one, then the problem is even more
severe. For 5 = 1.1 the maximum value for 7,
under the above conditions is 0.254. The above
values for r, are based on the average temperature
for the wire. For small L/d, wires the limitation on
r, would be smaller due to higher temperatures at
the mid-portion of the wire. The total temperature
at low pressures where 77 could be larger need not
be as high as those at higher pressures, however,
the constraint of constant total temperature during
the calibration process limits the amount that T,

can be reduced. (Also see ref. 71-76).
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PROBE PRE-CALIBRATION PROCEDURE

Once a probe is constructed, the following
procedure should ensure accurate and reliable
measurements. First, the probe should be operated
at the maximum ¢, and 7, that will be used during
the proposed test. This is done to pre-stress and
pre-heat the wire to ensure that no additional strain
will be imposed on the wire during the test that
could alter its resistance. For supersonic and high
q.. subsonic flows, the wires should also be checked
for strain gaging, that is, stresses generated in the
wire due to its vibration. Note, for testing in flows
having high values of gq_,, the wires should have
slack to reduce the stress in the wires and to help
eliminate strain gaging. If strain gaging is
significant the wire should be replaced. During this
pre-testing many wires might fail due to faulty wires
or manufacturing techniques, but it is better that
the wires fail in pre-testing rather than during an
actual test.

A temperature-resistance relationship for
wires is usually requires to compute the heat
transfer rate from the heated wires. It is generally
recommended that the following equation, which is
a second degree equation in AT, be used:

%= 1+a,(T, - 1,)+ (T, - T, F )

After the wires have been pre-stressed and pre-
heated, they should be placed in an "oven” and the
wires calibrated to determine the values for a, and
B,. Once this calibration has been completed, the
probes can be placed in a facility for mean flow
calibration over the appropriate ranges of velocity,
density, total temperature and wire temperature.

STATISTICAL QUANTITIES

Data obtained using hot-wire anemometry
are typically reduced to statistical quantities. Over
the past few years the analysis of random data has
been developed to a very high degree77'79. This
plus the rapid developments in electronics (i.e., the
A/D converters and high speed computers), have
made it possible to obtain almost any statistical
quantity of interest within the error constraints of

the heated wire. Much of this is due to the fact that
the digital processing of data can be used to obtain
many quantities that are difficult or impossible to
obtain using analog data reduction techniques.

Many types of single point and multi-point
statistical quantities can be obtained using hot-wire
anemometryao‘ss. It is routine to measure mean
flow and RMS values, histograms and the higher
order moments of skewness and kurtosis, auto
correlation, and one dimensional spectra.
Measurements of multi-point statistical quantities
include cross correlations, two-point histograms
and higher order two-point moments, cross spectra,
and coherence functions. Attempts were made to
measure higher moments up to eighth order8l,

These measurements can be used in
various ways to evaluate many characteristics of the
flow such as scales, decay rate, energy content
etc25, The coherence function is a useful statistical
quantity that can be used to evaluate various
properties of a flowB4. It can often be used to
determine the predominant sound propagating
angle and to determine the dominant mode present
in a fluctuating flow field85,86,

A few examples of statistical quantities that
were measured using hot-wire anemometry are
presented in figures 10-13. Integral and micro time
and length scales of a flow can be determined from
autocorrelation functions such as the one presented
in figure 10. The higher moments of skewness and
kurtosis (figure 11la-b) can be used to determine if
the fluctuations are Gaussian. For a Gaussian
distribution the value of the skewness parameter is
zero and for the kurtosis the value is 3. Figure 11
shows that both of these moments indicate that the
mass flow and total temperature fluctuations are
Gaussian over most of the thickness of the
boundary layer. The value of third order auto-
correlation function, such as the one shown in
figure 12, can be used to support turbulent flow
theories. An example of space-time correlations
measured in a turbulent boundary59’87 is
presented in figure 13. The peak of these
correlations at ¢z 0 indicate the presence of
convection. The calculation of the convection
velocity, obtained by dividing the separation
distance by the time at which the individual curves
peaks, indicates that there was no significant
variation of the convective velocity over the spacings
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used. An example of normalized spectra measured
downstream of a grid88 is presented in figure 14
and show the increased attenuation of high
frequency disturbances with increased distance
downstream from the grid. (Also see ref. 89-92).

GENERAL HEAT TRANSFER RELATIONSHIPS

The heat transfer from a wire under the
limits of the present report (i.e., the wires mounted
normal to flow in non-mixing gases) is 29,

Q = f(",ﬂ,P,C,’T.:T.J.) (5)

if the fluid properties of u, c,, and k are based on
T,, then the above equation becomes:

Q= f(upT,.L) (6)
Since T, = #7, and n= f(Kn,M)= f(u,p.T,). For
incompressible continuum flows equation (6)
reduces to:

Q=sf(mI.1) g

Unless noted, the total temperature will be used
throughout this report to evaluate y,, ¢,, and &,

where as p will be basedon T,.

For a wire with a given L/d, the Nusselt

number can be expressed25 in terms of other
dimensionless parameters as:

2

I,-T u
Nu, = f| Re, ,Pr,Gr,—2—2d= 8
. /[e' nonT, c,(r.-T...)J @

and can be written as follows to show the effects of
compressibility:

Nu, = f(Re,,Pr,Gr,M, %} ©)

(-4

For relatively constant temperatures, Pr = constant
and if Gr<Re®, buoyancy effects will be small and
Gr can be neglected. These approximations lead to:

Nu, = f(Re,M_,t,) (10)

MEAN FLOW MEASUREMENTS

SUBSONIC INCOMPRESSIBLE - CONTINUUM FLOW

Theoretical Considerations

The functional relationship between the
power to the wire or the heat transfer from the wire
and the mean flow variables are required to
determine the so called "static” calibration of the
wire from which the sensitivities to the various flow
variables can be obtained in order to calculate the
fluctuations. Because of this the mean flow results
and probe mean flow calibration procedure are
considered together.

The first attempt to obtain a theoretical
solution for the heat transfer from a heated wire

mounted normal to the flow was carried out by
Boussinesq2. The equation that he obtained is:

0= Ll2zke,pur, T, - T)

Equation (11) can be expressed in terms of non-
dimensional quantities as follows:

Nu, = F,’PrRe,
z

King re-analyzed the problem of heat transfer from

(11)

(12)

a heated wire and obtained the following
relationship:
0= Lk, +2mc,pur (T, - T..) (13)
or in terms of non-dimensional quantities:
1 2
Ny = —+ —"PrRe, (14)
r V=«

From equation (11) and (13) it can be seen
that the only difference between Boussinesq's and
King's results is the inclusion of the additional term
k, in King's result that attempts to account for the
effects of natural convection. At "high” values of
Reynolds number the two results are essentially
equal.

Using equation (3], equation (13) can be
expressed as:
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P= [A'(r.,)+8;(r.)~/;][r.- T (15)

where 4'(T)) and B(T,) are based on King's results.

However, the quantities 4’ and B’ are usually
determined for a given wire by direct mean flow
calibration. Often the exponent for the mass flow
term is determined from a curve fit to the data. The
values for the exponent can range25 from 0.45 to
0.50.

For a CTA, equation (15) can be generalized

to:
EZ
iy 4T+ BT (16)
where 4,(T) = %‘%‘:2 and By(T)) = E:::—RS;)-
For a CCA:
R@%= 4(T)+ BT )oY a7

where A(T,)= A(T)faR, and BA(T)= B(T)/aR,,.
Therefore, if wires operated with a CTA or a CCA are
calibrated over a range of m and 7, equations (16)
and (17) indicate that the calibration curves will be
straight lines if the left hand side of the equation is
plotted as a function of (m)". In general, the slopes,
B, and intercepts, A, will be functions of the total
temperature. If the total temperature is constant, A4
and B will be constants and if the density is
constant, the mass flow term will reduce to velocity.
An example of voltage versus velocity for a wire
operated with a CTA is presented in figure 1S for
various values of total temperature. (Also see ref.
93-97).

Hot-wires have also been calibrated in the
form of u= f(E) rather than the more conventional

form of E = f(u). The constant 7, and p version of

King's law for a CTA is E2=A+BJ; and when
expressed as u = f(E) gives:

u= 4 - AE?+ AFS (18)

In this equation George et. al.,98 noted that A- A
are functions of 7,. They proposed the following
equation for the calibration of wires that is

independent of T, for a limited range:

Re, = B, + B,Nu! + BNu+B,Nut + BNu?  (19)

where 4 is evaluated at 7, and k evaluated at 7.

Examples of Data

A summary of heat transfer data from
cylinders in terms of Nu, vs. Re, taken in the
subsonic continuum flow regime was presented in
reference 21. The results from these experiments
are compared with the theoretical results of
Boussinesq and King in figure 16. This figure
shows that there is a relatively good agreement
between the measured results and King's theory
over a wide range of Reynolds numbers. There is a
substantial difference between Boussinesq's theory
and King's theory and the measured results for
Reynolds numbers less than about 100.

A large amount of heat transfer data was
also presented by McAdam®? in terms Nu , Vs. Re,

and he recommended the following equation:

)052

Nu, = 0.32+0.43(Re, (20)

In comparision, King's equation with Pr = 0.70 is:

Nu, = 0.3183+0.6676(Re,)*>°

(21).
For Reynolds number equal to zero the two
equations give essentially the same value for the
Nusselt number. At higher values of Reynolds
number King's equation is about 40 percent higher
than the values of Nusselt number presented by
McAdam. A film temperature is often used as the
temperature at which k¥, p and g are evaluated
when correlating Nu versus Re. However, p is

sometimes evaluated at the free stream static
temperatures. The use of the film temperature for
evaluating fluid properties has been questioned in
reference 100. However, in this reference the
density in the Reynolds number was evaluated at
T,, where as, in reference 99 this apparently was

not the case.
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Bradshaw2’ notes that there is a difference
of opinion throughout the hot-wire anemometry
community about the usefulness of a universal
correlation based on variables evaluated at a film
temperature. These correlations provide a useful
guide for plotting results and comparing mean flow
results obtained by different investigators.
However, if good accuracy is to be obtained for the
fluctuations, individual calibration of probes is
required.

Often attempts are made to measure mean
velocities using hot-wire anemometry. It can be
shown using equation (13) that the voltage across a
wire is a f(upT,,T,). Therefore, to measure the

mean velocity, the other variables must be held
constant or a method must be used to correct the
data for any variation in variables other than
velocity65'71v1°1. Because of this, the hot-wire
anemometer is not a very good mean flow
measuring device, even if one utilizes some of the
corrections that have been developed. However, for
limited variations in the independent variables,
corrected velocity measurements were reported in
reference 101,

Very Low Velocities
At very low velocities the heated wire can

cause a relatively significant vertical movement of a
fluid due to buoyancy effects on the lower density
fluid adjacent to the wire. This results in a change
in the effective velocity around the wire. Efforts
were made to calibrate and use hot-wire
anemometry at very low velocities102-107 where
natural convection effects were present. The
influences of natural convection are parameterized
by the Grashof number. Experimental evidencel08
indicated that if Gr < Re® then free convection effects
were negligible. An example of the effect of low
velocities on the Nusselt number is presented in

figure 17.

King also provided an equation suitable for
low speed flows:

_ 2””1(7‘- - Tm‘v)

22
Toglb/r.) @2)

where b= ke'7[c,u and y = Euler's Constant =

0.57721. In terms of non-dimensional quantities,
equation (22) becomes:

2

N, = log[2¢"~"/(Pr Re,)]

(23)

Equation (22) is valid for ud, < 0.0187 where U is in
cm/sec and d_ is in cm. Equation (13) is valid for
ud, > 0.0187.

For velocities as low as 1.0 cm/sec, Haw
and Foss102 attempted to correlate their data using
King's equation in the form:

E%= A+Bu" (24)
A deviation of their data from a fitted curve was
observed at ¥ = 30 cm/sec. The diameter of the wire
used in their expex‘imentlo2 was not noted.
However, if one assumes a value of 0.00015 inch or
0.00020 inch, the limits for the application of
equations (13) and (22) indicate velocities of 49
cm/sec or 37 cm/sec, which are not too different
from 30 cm/sec. The use of equation (22) would not
improve the correlation presented in reference 102
since it can be shown that as ¥ — 0 in equation (22)
E_— 0. The data of reference 102 indicates that at
u= 0 the intercept of the curve is greater than the
value indicated by the intercept in equation (24).
Correlations obtained using the results of a theory
based on OseenlO8 flow would not improve the
correlation since this approach gives results that
are similar to those obtained using equation (22).
For a heated wire tested in horizontal wind tunnels,
u, cannot reach zero since the effective velocity is:

2 2.2

ugy = u” +uy (25)

and for a heated wire u, = 0.

SUBSONIC SLIP FLOW AND TRANSORNIC FLOW

Theoretical Considerations

These two flow regimes will be treated
together since the experimental results are similar.
Kovasznay6 extended hot-wire anemometry results
to compressible flows and showed that there was a
significant difference between the heat transfer in
compressible and incompressible flows. Several
experimenters obtained heat transfer
measurements at low speeds and found an

Stainback, P.C. and Nagabushana, K.A.



apparent compressibility or Mach number
effect35,64,109 ot Mach numbers as low as 0.1.
Spangenberg1 10 conducted extensive tests over a
wide range of variables and determined that the
apparent compressible flow effects at Mach number
as low as 0.05 was really due to gas rarefaction
(e.g., slip flow).

In this flow regime the heat transfer from
the heated wire is generally given as:

Q= P= alkT, - nT,) Nu, (26)

In transonic flow and subsonic slip flows
the Nusselt number is no longer oniy a function of
Reynolds number and Kings' law is no longer
applicable, The most common functional
relationshig) for the Nusselt number in these flow
regimes is 8,

Nu, = f(M,Re,,0) (27)
since it was found that My, is also a function of a
temperature parameter. Another functional
relationship that was used to analyze gas
rarefaction effects is3°:

Nu, = f(M,Kn,z,) (28)
In subsonic compressible flows the recovery
temperature of the wire can change and functional
relationships for n are:

n=f(M,Re) or n=f(M,Kn) (29)
Dependent | Independent Reference
Variable Variable
o M, Re,, M_, 8 Morkovin®%
@ Nu, Kn, M_, =, Baldwin°®
® Nu, Re,, M, 7,
® MNu, Kn, M_, 0
© n Re,, M, Morkovin®8
® n Kn, M, Vrebalovichl1ll

Table I. Functional Relationships for Nu, and 7.

Morkovin chose Nu, = f(M_,Re,,6) and

n= f(M_,Re,) for the development of his equations.
In order to emphasize the gas rarefaction effects,

Baldwin chose Nu, = f(M_,Kn,z,) and
n= f(M_,Kn). Independent variables that might be
used to relate Ny, and 7 to the dependent variables
are presented in Table 1. Although Morkovin and
Baldwin chose the variables of ® and @, one could
just as well have chosen the variables noted in @ or
®. 1t will be shown later that the variables in @
might be the most efficient group to use.

Examples of Data
Baldwin3® and Spangenbergl 10

investigated the heat transfer from wires over a wide
range of Re,, M, and T, in the slip flow and
transonic flow regimes. Their results, presented in
figures 18a-b, shows that Nu, = f(Re,,M) for Mach

numbers ranging from 0.05 to 0.90 and Reynolds
numbers ranging from 1 to about 100. The effects
of wire overheat on the values of Nu, were also
determined by Baldwin and Spangenberg and
examples of these effects are shown in figure 19.
The values of Nu, can increase or decrease with
increased overheat depending on the Mach number
and Knudsen number.

Results from theoretical calculations made
for the effects of slip flow on heat transfer from
wires were reported in reference 31. An example of
these results is presented in figure 20. The levels of
the calculated Nusselt number do not agree with
measured results, however, the trends of the
theoretical results agree with the experimental
trends shown in figure 18.

SUPERSONIC CONTINUUM FLOW

General results for compressible flow shows
that N, = f(M,Re,,6). However, it was
experimentally21,112 determined that Nu, # f(M)
for Mach numbers greater than about 1.4. Typical
heat transfer data for supersonic flow is presented

in figure 21 to illustrate the approximate invariance
of Nu, with M. At higher Mach number and

relatively low total pressures, there is a high
probability that much of the data presented for
supersonic and hypersonic flows are in the slip flow

regime.
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FREE MOLECULAR FLOW

. Standler, Goodwin and Creager33
computed the heat transfer from wires for free
molecular flow and an example of their results along
with measurements are presented in figure 22. A
combination of continuum flow, slip flow and free
molecular flow resultslO are shown in figure 23.
From this figure it can be seen that for continuum
flow at large Reynolds number Nu,~ Re}'. For free
molecular flow MNu, = Re, and slip flow results
smoothly connect the two regimes. Therefore, for
slip flows, Nu, varies with exponent of Reynolds

number which range from ' to 1.

RECOVERY TEMPERATURE RATIO

The recovery temperature ratio must be
known to compute the heat transfer from heated
wires. In general, the recovery temperature ratio is
a function of Mach and Reynolds numbers or Mach
and Knudsen numbers. However, for Mach number
greater than about 1.4 the recovery temperature
ratio is not a function of Mach number for
continuum flow. A "universal’ curve presented by
Vrebalovichlll (figure 24) correlated the
temperature recovery ratio with Knudsen number
for all Mach numbers. Using the results presented
in figure 24, the temperature recovery ratio for
continuum flow and free molecular flow, curves of
n vs. M and Kn can be calculated. An example of

these calculations is presented in figure 25.
FLUCTUATION MEASUREMENTS

SUBSONIC INCOMPRESSIBLE FLOW
Theoretical Considerations

a. Constant Temperature Anemometer
For a constant temperature anemometer,

King's3 equation can be expressed as:

%: L[k,+,/27,c',—ﬂ_zll' L.}

where R, and 7, are constants.

(30)

12

If one assumes that the changes in &, c,
and 7 can be neglected, the change in £ will be a
function of pu and 7, as given by the following
equation for small perturbations:

el ’ TI
—=S5 —+S,= 31
E .m+ 1, A ( )
where
5] J2zRePr . Se-ln ()
4 [1+ V21 /Re, Pr| 21,

From the above equation it can be seen that
S,~0as Re,» 0 and S, —> % as Re, > ®». For the

temperature sensitivity, S; - - as r, =0 and
Equation (31) shows that
S, = Slog E/Slogm

S; >0 as 7, > o.
E= f(mT) where
S; = Aog E[Aog T, .

and

Since equation (31) shows that E = f(m,T,),
the fluctuation of mass flow and total temperature
can be measured using a CTAl13-115  This can
best be done by using two wires operated at
different, but high overheats, digitizing the data,
and solving two equations for m', 7, and m'T] as
functions of time.

If the total temperature and the Mach
number varies significantly, then k, and ¢, must be

differentiated with respect to T, and n differentiated

with respect to Mach number. Under these
conditions it would be more appropriate to use the
equation obtained by Rose and McDaid® with the
assumption that Nu, = f(M).

Instead of using King's equation, consider
equation (15) for measuring mass flow and total
temperature fluctuation. For a CTA equation (15)
becomes:

diogB = BT, )m)" dlogm
2 41T+ BT X" |
Aog A(T,) SAog B(T,)
) A'(".)Tosi..—' (MY.B'(T')TL

2|[atz)+ pn | ‘ |4tz)+ tnem] s o)
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b. Constant Current Anemometer
For the CCA anemometer, Kings' equation
becomes:

El= L[k, + 2k, pud, I'r, - 1T}

Again assume that k,, ¢, and n are constant, the

(34)

change in E is given by the following equation:

e m I
—_—= S —tS5 = 35
E ~ m | A T ( ,
where
kr(1-5) 2xJRe Pr -k 1{1- &) (36)
" (- 26k, - §f[1+ J2xyRe, Pr L ((ECP TP

If dlogl = 0 then

s .kt 2 [RePr _=kn_ a7
" 2k, - 0][1+J'—/Rep,-] ,—0]

Equation (36) and (37) shows that S, = f(z,). If
Re,> 0 then S_—0, but if Re,—»go then

S.= =" __  On the other hand, if 5, - 0 then
2k, 7. - 6]

1 2zRe,Pr

2 [l+ JZ_:r,/Re,Pr |

If r,— 0 then S; —)ko” and if 7, » o then S; - 0.

S, 0 and if r, —» o then S, -

Again, it is possible to measure both i, 7, and R,
using a CCAl13 and the fluctuation diagram
developed by Kovasznays. An example of
fluctuation diagrams for two discrete frequencies
measured with a CCA is presented in figure 26.
Again if the total temperature and the Mach number
varies significantly, then it would be more
appropriate to use Morkovin's equation with the
assumption that Nu, # f(M).

Similarly, to measure mass flow and total
temperature fluctuation,equation (15) for CCA
becomes:

be(1-4) B{r)=" ogm
ai- ok, - [A(r)¢ B'(TXnﬂ

diogZ =

bei-a) [ A(,-)MA'(T) ()n,(,)dosr(r)

AgT, _n
[0- ')*f-"l[m»m.x-ﬂ [410)+ 5t XmY] :}m" 6

Mass flow fluctuations measured in
subsonic flows can be very misleading where there
is a significant amount of far-field sound. The mean
square value of mass flow fluctuation is:

(= - (=] v E)E)- (&)

The magnitude of the mass flow fluctuation depends
on #,p,and R, where -1< R <1. As an example,

assume R =1, indicating downstream moving
sound, and ifu= p/p. Under these assumption the

mass flow fluctuation equals twice the velocity or
density fluctuation. However, if R.,, = -1, indicating

upstream moving sound, and #fu= pfp; the mass
flow fluctuation are zero.

(39)

Examples of Data
Most of the measurements made using hot-

wire anemometry were and still are being made in
the subsonic, incompressible, continuum flow
regime. An extensive amount of data was
accumulated over the years in various flow fields25,

a. Freestream

Some of the first fluctuation measurements
made using hot-wire anemometers were obtained in
the freestream of wind tunnels to help evaluate the
effects of turbulence on the transition of laminar
boundary layersn6. The purpose of this effort was
an attempt to extend wind tunnel transition data to
flight conditions in order that the on-set of
transition might be predicted on full scale aircraft.
Measurements in the freestream are also required
to study the effect of freestream disturbances on
laminar boundary layer receptivity. An example of
measurements made in the freestream is presented
in figure 27 for the Low Turbulence Pressure Tunnel
located at the NASA Langley Research Center3’
The filled symbols represent data taken in the
facility during 1940117 and the curves represent
measurements made in 1980. The agreement
between the two sets of data is very good when it is
noted that the data taken in 1940 was obtained at
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p,= 4 atmospheres and the low datum point at
Re,= 5x10° is for M = 0.02.

Fluctuation measurements were also made
in various location within wind tunnel circuits,
predominantly in the settling  chamber.
Anemometry was used to evaluate the efficiency of
contractions in reducing vorticity levels in the test
section of wind tunnels!18, An example of the
results obtained through a contraction is presented
in figure 28. The absolute value of the velocity
fluctuation in the direction of the flow was reduced
through the contraction but the relative values were
greatly reduced depending on the area ratio of the
contraction. For example in figure 28 the velocity
fluctuation downstream of the contraction are
ratioed to the mean flow in the large section of the
contraction where the local velocity is low. If these
downstream velocity fluctuations were ratioed to the
local mean velocity, these normalized fluctuations
would be substantially smaller, i.e., &fu, =26 vs.

iifu= 0.16.

b, QGrids

It was found that screens or grids can
effectively reduce vorticity fluctuations. Because of
this attenuation, screens have been extensively
invesﬁgated25'38'119 using hot-wire anemometry
to optimize their characteristics for use in wind
tunnels to reduce the vorticity levels in the test
section. An example of these measurements is
presented in figure 29 where the turbulent
reduction factor is given as a function of the Ap/q.,
across the screensl20, Therefore, the use of
screens in the settling chamber along with a
contraction of adequate area ratio, can substantially
reduce velocity fluctuations in the test section due
to voriticity121. (Also see ref. 122-130).

c. Boundary Layers
Hot-wire measurements were made in

turbulent boundary layers42 to measure the
Reynolds stresses and other fluctuation quantities
to furnish data for the development of turbulent
boundary layer theories. An example of
measurements made in the boundary layer on a flat
platel3! js presented in figure 30a-b. Figure 30a
shows the significant variation of the velocity
fluctuation across the boundary layer while figure
30b shows an example of the local streamwise
velocity fluctuation ratioed to the local velocity.
Forming the ratio in this latter manner indicates

that the velocity fluctuations can exceed 40 percent,
a value that is too large for an accurate assumption
of small perturbation.

Extensive measurements were made of
turbulent flows in pipes4o’41 to compare
theoretical and measured results. From these
measurements many statistical quantities were
obtained including Reynolds stresses; triple and
quadruple correlations; energy spectra; rates of
turbulent energy production, dissipation, and
diffusion; and turbulent energy balance. An
example of the streamwise velocity fluctuations
across a pipe is presented in figure 31a-b.

Hot-wire anemometry has been extensively
used to investigate the characteristic of various
boundary layer flow manipulators such as Large
Eddy Break-up devices (LEBUS)132, Riblets!33 and
roughness elements134, Laminar boundary layer
transition due to T-S waves135, cross flow!36 and
Gortler vortices!37 was extensively studied using
the hot-wire techniques. Also the effects of heat

additionlss, sound!39 and vorticity14° on
boundary layer characteristics have been
investigated.

The hot-wire anemometer with a single wire
cannot determine the direction of flow. However, a
technique using a multi-wire, "ladder probe” was
developed141 to study the separated boundary
layer where a significant amount of reverse flow
occurred. This technique was used to determine
the location of the 2zero average velocity in a
subsonic turbulent boundary layer. (Also see ref.
142-144).

d. Laminar Boundary Layer Receptivity

One of the major impediments to a through
understanding of laminar boundary layer transition
is the ability to predict the process by which
freestream disturbances are assimilated into the
boundary layer. These free stream disturbances
can be either vorticity, entropy, sound or a
combination of these fluctuations.

The effect of freestream fluctuations on the
stability of the laminar boundary can be
investigated by making measurements in the
freestream and in the boundary layer to evaluate
the receptivi of the boundary layer to
fluctuations14® in the freestream. An example of
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fluctuations measured in a subsonic boundary layer
on a flat plate for various frequency bands is
presented in figure 32. Kendanl4 presented three
types of measurements made in a laminar
boundary layer due to velocity fluctuations from the
free stream. The first type is illustrated by the x's
and consisted of broadband velocity fluctuation
where the peak level occurs towards the inner part
of the boundary layer. This type of measurement is
noted as the Klebanoff's mode and is represented by
the solid line. The results obtained when the data
were filtered at the Tollmein-Schlichting (T-S)
frequency are represented by circles. Although the
frequencies were identical to those of T-S waves
they were not T-S waves since the convection
velocity was equal to the free stream value. The
maximum level of these fluctuations occurred at the
outer part of the boundary layer. The third type of
fluctuation is represented by the dotted line. These
were true T-S waves which occurred in packets and
had a convective velocity of 0.35 to 0.4 of the free
stream velocity. These peak fluctuation levels
occurred near the wall. (Also see ref. 146-156).

e. Jets

Hot-wire measurements were obtained in
jets45'47 to measure the Reynolds stresses
associated with free shear layers and to help
evaluate the RMS levels and frequencies associated
with jet noise. An example of the velocity and
temperature fluctuations measured across a
heated jet is presented in figure 33. The two types
of fluctuations were normalized by the maximum

and the local mean values, respectively. (Also see
ref. 158-160).
{. Wakes

Various statistical quantities were

measured downstream of a heated cylinder by
Townsend?3 to obtain experimental results to help
improve turbulent theories applicable to this type of
flow. Some of the quantities obtained included
turbulent intensities, sheer stress, velocity-
temperature correlation, triple velocity correlation,
diffusion rate and energy dissipation.
Measurements were made from 500 to 950
diameter downstream of the cylinder where
dynamical similarity was assumed to exist. An
example of the mean curve fitted to the u-
component of the velocity fluctuation is presented in
figure 34 and shows good similarity. Uberoi and
Freymuth44 made extensive spectral

measurements downstream of a cylinder and their
data indicated that only the spectra of large-scale
turbulence were dynamically similar.

SUBSONIC SLIP FLOW AND TRANSONIC FLOW

Theoretical Considerations

In compressible flows the heat transfer from
a wire is usually described by the following
equation:

Q= aLk(T, - nT,)Nu, (40)

Differentiating the above equation for the case
where Q= P gives:

dlog P - fldlogf, = dioghy, - Ldiogn~ LdlogT, + dlogh, (41

The terms on the right hand side of the
above equation depend only on the functional forms
assumed for Nu, and n (Table I) and the chosen
independent variables (Table 1I). Ultimately these
terms depend on the variation of Nu, and n with the
flow variables along with the aerodynamic and
thermodynamic properties of the flow. The final
form for the left hand sidc’ of the equation depends
on the type of anemometer used.

It was shown in reference 161 that, for a
wire mounted normal to the flow, E = f(u,p,T,,T.).

MorkovinS8 and Baldwin3S related Nu, and 7 to
the non-dimensional variables noted in Table I.

However, recent results presented by Barre
etal., 162 suggested advantages from using the
following  variables: E= f(mM_,T,T,) and

E= f(p,m,T,T.). In order to obtain the equation for
the CCA, they transformed Morkovin's equations
into their variables. This transformation is not
necessary, since once the variables are chosen, the
equations can be derived directly using a method
similar to the one described by Anders161,

The equations obtained using the variables
of @ from table Il gives the same results as those of
O, Morkovin®8, namely E= f(m7T,) under the
condition where Nu, # f(M_) and S, = S,. Using the
variables in ©, Barre etal.,162 applied the
resultant equations to measurements made in a
turbulent boundary layer under the assumption
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that p= 0 without assuming that §, = S,. They also
extended the equation to the case of supersonic flow
in the test section of wind tunnels by assuming that

all the fluctuations were sound, again not assuming
S,=8,.
v (4

Once the independent variables are chosen,
it is not necessary to derive the equations using Nu,
and 5. The "primitive” variables, u, p, T, etc.,
greatly simplifies the manipulation of the calibration
data and can be used to correlate £ as a function of
u, p, T, etc., without evaluating Nu, and n. This
technique might have advantages in the calibration
of wires and the ease of operation of calibration
facilities.

The possible sets of variables based on the
above discussion is presented in Table II.

Dependent | Independent Reference
Variable Variable
o E, M, n u,p, T, Baldwin®®,
Morkovin®8
® E, Nu, n m,M,, T, Barr, Quine and
Dussauge
© E, Nu, n Porm, T, Barr, Quine and
Dussau&e162
o E u,p, T, Rose and
McDaid8
Stainback and
Johnson85
(<) E m, M, T
ol E Porm, T,
Table II. Various Independent Variables to

Derive the Hot-Wire Anemometry
Equations

Therefore, there are many forms for the hot-wire
equations depending on the variables chosen and
the anemometer used. One should choose the
variables that are most convenient for the flow
situation under investigation.

a. Constant Current Anemometer

Using the heat transfer equation (40) and
the functional relationship from equation (27) and
(29), the change in voltage across a wire can be
related to the changes in ¥ , p, and 7,. An example
of a set of equations obtained for a constant current
anemometer was given by Morkovin®®8 as:

P I
E’—' -S.—— S,—+S;—

S5 T (42)

where

S= AgE EA . ANy, 1 AogNy, | (1 Acgn , Aoy (43)
“ Aogy 1, | "\ AcgRe, a AogM a dogM  SAogRe,

SP=M=.E_A~ ,"M_M (44)
dogp 1 dlogRe, JlogRe,
+ -l-n+ ———M #L———M
stamg=££k.&.(l+4) &&.(l ARt Ta MM) ©
o LR _({_l_ﬂosn* aosn)
2adogM T Aoghe,

For a large range of Reynolds numbers and
Mach numbers, §, and S, in equation (42) are
unequalss. Following Kovasznay's technique for
supersonic flow, dividing equation (42) by S,
squaring and forming the mean gives:

2
2R, L= (46
oy (46)

— N2 2 N2 - .=
7 e AL [ o
This is a general equation for a wire mounted
normal to the flow in compressible flows where
S,=S,. This is a single equation with six
unknowns. In principal, this equation can be
solved by operating a single wire at six overheats
and solving six equations to obtain the three
fluctuating quantities and their correlations. In the
past, it was generally stated that the calibration of
the wire cannot be made sufficiently accurate or the
velocity and density sensitivities cannot be made
sufficiently different to obtain a suitable solution
using this technique. Demetriades163 noted that
the coefficient in equation (46) must occur to at
least the fifth degree. This constraint, however,
appears to be too restrictive. For example, assume
that s is a function of ¢ as follows:

s=a + a,q"‘ + a,q“ + a‘q" @7

It ca be shown that b, b, and b, can have any value
provided that the substitution of the relationship for
s into equation (46) results in an equation having
at least six terms. An analysis of data obtained at

transonic Mach number by Spangenberg indicates
that s can be non-linearly related to ¢ and suggest

. R

P

e
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b. Boundary Layer

Horstman and Rosel70 made
measurements at transonic speeds where, for their
flow condition, it was found that S ~S,. For this

condition the transonic hot-wire problem
degenerated to the supersonic flow problem where
only mfm, T,/T, and R, could be measured. From
their measurement of rifm, the velocity and density
fluctuations were computed by assuming that T, /7,
and p/p were zero. An example of these results is
presented in figure 40. In this figure Horstman and
Rose's hot-wire results, represented by the circles,
are compared with the thin film results obtained by
Mikulla170,

c. Flight in Atmosphere
Any attempts to extrapolate the effect of

wind tunnel disturbances on laminar boundary
layer transition to flight conditions requires some
knowledge of the disturbance levels in the
atmosphere. Much of the fluctuation data obtained
in the atmosphere was measured using sonic
anemometers on towers}79. There was a limited
amount of data obtained in the atmosphere using
hot-wire anemometry on flight vehicles49,180
Otten et. al.,%9 expanded the methods devised by
Rose and McDaid by using a two wire probe. One
wire was operated by a CCA at a low over heat to
measure 7,. The other wire was operated with a

CTA that was sensitive to s and 7. The results

from these two wires were used to measure ni and
T, in the atmosphere. An example of spectral data
obtained in the atmosphere is presented in figure
41 and reveals the expected -53 slope, for m and

T,

d. Subsonic Slip Flow
For this regime Nu,= f(M_,Re,r,) and

S,#S,. These results are identical to those in the

transonic flow regime and attempts have been made
to apply the three wire technique developed for
transonic flows to subsonic slip flows. For tests in
subsonic slip flows the three wires were of different
diameters in addition to being operated at different
overheats. Some very preliminary data obtained
using this technique in the Langley LTPT tunnel is
presented in figure 42a-b where comparison with
results obtained using King's equation are made.

PRECEDING PAGE BLANK NO

HIGH SUPERSONIC AND HYPERSONIC FLOW

Theoretical Consideration
a. Constant Current Anemometer

In the 1950's and 1960's hot-wire
anemometry was extended into the high supersonic
and hypersonic flow regime6’7'181'182. For high
supersonic flows it was found experimentally that
S, = S, and equation (42) becomes:

(49)

Dividing equation (49) by the total temperature
sensitivity, squaring, and then taking the mean
results in the following equation:

AR

[ 4 o

This equation was derived by Kovasznay6 and used
to generate fluctuation diagrams for supersonic
flows. This equation was also used in references
167 and 168 for subsonic compressible flows. The
general form of equation (50) is a hyperbola where
the intercept on the ¢ -axis represents the total
temperature fluctuation and the asymptotes
represent the mass flow fluctuation? .

Kovasznay demonstrated that the basic
linear perturbation in compressible flows consists of
vorticity, entropy and sound. He termed these basic
fluctuations as "modes". If the fluctuation diagram
is assumed to consist of a single mode the diagrams
were termed "mode diagrams”. An example of a
general fluctuation diagram and the various mode
diagrams for supersonic flow are presented in
figures 43 and 44.

b. Constant Temperature Anemometer
For this case equation (42) becomes:

(51)

This is a single equation in two unknowns and a two
wire probe can be used to obtain m’, T, and m'T}

similar to the flow
case®1,183,184

compressible subsonic
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Examples of Data
a. Freestream

In order to evaluate the relative "goodness”
of supersonic wind tunnels and to relate the levels
of disturbances in the test section to laminar
boundary layer transition on models, a large
amount of hot-wire measurements were made in the
test sections of supersonic arnd hypersonic wind
tunnels. In 1961 Lauferl8 presented
measurements made in the test section of the Jet
Propulsion Laboratory 18 x 20 inch supersonic
wind tunnel over a Mach number range from 1.6 to
5.0 using CCA. An example of the fluctuation
diagrams obtained by Laufer is presented in figure
45. From these diagrams the mass flow and total
temperature fluctuations were obtained. Examples
of the mass flow fluctuations are presented in figure
46a. There was a significant increase of mfm with
Mach number ranging from 0.07% at M =16 to
about 1.0 to 1.35% at M=50, depending on
Reynolds number. All of the fluctuation diagrams
were straight lines and Laufer demonstrated that
these results indicated that the fluctuations were
predominantly pressure fluctuations due to sound.
Examples of the calculated pressure fluctuations
are presented in figure 46b. Laufer concluded that
the pressure fluctuations originated at the turbulent
boundary on the wall of the tunnel and because of
the finite value of the temperature fluctuations the
sound source had a finite velocity. An example of
the sound source velocities is presented in figure
47.

A large amount of hot-wire data was taken
in the freestream of various facilities to measure
disturbance levels in efforts to develop quiet
supersonic wind tunnels. A review of this effort was
reported in reference 186.

Measurements in the freestream of the
Langley Research Center Mach 20 High Reynolds
number Helium Tunnel were performed by Wagner
and Weinstein181, All of their fluctuation diagrams
were straight lines similar to the results obtained in
supersonic flows. Examples of their measured
mass flow and total temperature fluctuations are
presented in figure 48. The mass flow fluctuations
were substantially higher than the values measured
by Laufer at M=50. Pressure fluctuation

measurements presented in figure 49 indicate that
at low total pressures the boundary layer on the
nozzle wall was probably transitional at the acoustic

origin of the sound source. Relative sound source
velocities are presented in figure S0. The source
velocities for the Mach 20 tunnel at the higher
pressures are significantly higher than those
measured by Laufer at Mach numbers up to 5.
(Also see ref. 187).

b. Boundary Layer

Measurements were made in supersonic
and hypersonic turbulent boundary layers to extend
the range of Reynolds stress measurements needed
in the development of turbulent boundary layer
theories. Barre et. al.,162 conducted hot-wire tests
in a supersonic boundary layer where transonic
effects were accounted for by using a
transformation of equation (42-45) from « , p, T, to
p, m, and T,. Using the assumption that
E = f(p,mT) and p/p=~ 0, reduced their equation to
E= f(m,T,). Under these condition the fluctuation

diagram developed by Kovasznay was used to
obtain m/m, T,/T, and R,, without the assumption
that S, = S,.

Examples of their results are presented in
figures 51 and 52. Figure 51 shows that the
quantity qu"/r, is greatly underestimated if the
assumption is made that S, = S, when the velocity
in the boundary is transonic and S, # S,. Figure 52
show the variation of R, with the local Mach

number through the boundary layer. The expected
value for R, is -0.85 and the data obtained for

S, # S, agrees well with this value. However, data
evaluated where S, was assumed to be equal to S,

were substantially higher at the lower transonic
Mach numbers.

Fluctuations in a hypersonic bound
layer were made by Laderman and Demitrades18
and reported in reference 188. An example of the
mass flow and total temperature fluctuations
measured across the boundary layer is presented in
figure 53. The velocity, density, static temperature,
and pressure fluctuations were calculated using the
mass flow and total temperature fluctuations and
various assumptions. An example of these
measurements is presented in figures 54 and S55.

Additional measurements were made in
hypersonic boundary layers by Ladermanl89 and
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on an ogive cylinder by Owen and Horstman®>? at
M= 7.0. The measurements made by Owen and

Horstman included not only data for s, 7, and R,
but integral scales and microscales, probability
density distributions, skewness, kurtosis and
intermittancy distribution across the boundary

layer. A summary paper by Owen190 presents
additional data which included space-time
correlation, convective velocities, disturbance
inclination angle, and turbulence life time
distributions. (Also see ref, 87, 191-196).
c. Wake

An example of fluctuation diagrams

measured in the wake behind a 15° half angle
wedge at M = 155 is presented in figure 56. From
these results Wagner and Weinstein concluded that
the predominant fluctuation in this wake was
entropy since the fluctuation diagrams were straight
lines that intersected the r -axis at approximately
-a.

d. Downstream of Shock

In supersonic and hypersonic flows the
disturbances measured in the freestream of the test
section are not necessarily the disturbances that
can affect the transition of the laminar boundary
layer on a body. The passage of sound waves
through shocks will result in a combination of
vorticity, entropy, and sound downstream of the
shock197. Because of this the fluctuation diagram
will no longer be a straight line but a general

hyperbola48. An example of this result is presented

in figure 57. {Also see ref. 198-201).

CONFIRMATION OF THEORETICAL RESULTS

Hot-wire anemometry was used extensively
to validate or confirm theoretical results. Some
examples of these efforts are presented below.

Theoretical studies of the stability of
laminar boundary layers to small disturbances were
initially performed by Tollmein202,203 gpd
Schlichtingzo4 These calculations indicated that
disturbances of a given frequency could decrease,
remain constant or be amplified depending on the
frequency chosen and the Reynolds number. The
first experimental verification of the theory was
made by Schubauer and Skramstad13S,  An
example of recent experimental and theoretical

21

results for the determination of the neutral stability
boundar_yzo5 in a laminar boundary layer is
presented in figure 58.

Hot-wire  measurements were made
downstream of "grids” to evaluate the theory for the
decay of turbulence. Tests conducted by Kistler
and Vrebalovich206 to evaluate the "linear" decay
law is presented in figure 59 and confirm this law
for large values of the Reynolds number. At lower
Reynolds number2S the exponent can be closer to
1.20 - 1.25. Measurements of spectra for velocity
fluctuations downstream of grids was also made
and compared with theory. Two examples of these
spectra are presented2°6'2°7 in figure 60a-b. The
spectra in figure 60a had an insignificant amount of
energy in the expected inertial sub-range indicated
by a slope of -5/3. This result was attributed to the
low Reynolds number of the flow. The spectra
presented in figure 60b was measured in a high
Reynolds number flow and revealed a significant
amount of energy in the inertial sub-range.
Theoretical calculations were made for the
temperature spectra in a heated jet and
downstream of a heated grid. An example of the
theory and measurements297 js presented in figure
61. Attempts have been made to predict the
influence of measured freestream fluctuations on
laminar boundary transition. An example of this
efforts208 js presented in figures 62.

A considerable amount of data was obtained
by Stetson et. al., 209 in hypersonic flow to study
the stability of laminar boundary layer. An example
of these results are presented in figure 63 and
indicates the existence of first and second mode
instabilities in the laminar boundary layer. These
results were in agreement with those obtained by
Kendalll55 and Demetriades210 and was in
qualitative agreement with the theoretical results
obtained by Mack156,

OTHER APPLICATIONS
Hot-wire anemometry was used in shock
tubes in an attempt to check the frequency
response of probes and to trigger other

events©2,211

Theoretical results indicated that there
would be "temperature fronts or steps” in cryogenic
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wind tunnels due to the injection of liquid nitrogen
into the circuit. Measurements were made using a
hot-wire anemometer to determine the possible
occurrences of these thermal stepssa.

A pulsed hot-wire was used to measure the
velocities and flow angle in low speed flows212, A
wire, which was operated by an anemometer, was
place in the wake of a second wire which could be
alternately heated. The time lag between heating
the forward wire, this pulse being detected by the
second wire and the distance between the wires was
used to compute the velocity of the flow. In
reference 213 a somewhat different technique was
described that used two CCA's and a CTA to
measure the velocity and flow angle.

Hot-wire anemometry was used to obtain
the location of transition in a laminar boundary in
addition to obtaining some information on the
fluctuations in the laminar, transitional and
turbulent boundary layers214'215. In some flows
where the fluctuation levels are high, such as a jet,
a moving hot-wire probe was found to improve the
accuracy of the results216,  This technique is
usually noted as flying hot-wire anemometry. (Also
see ref. 217-221).

Hot-wire anemometry was used?22 o
measure the focal points of the laser beams for
Laser Transit anemometry (LTA) Using a
traversing mechanism and a CTA, the distance
between the two beams was determined by
measuring the difference between the two maximum
voltage outputs from the anemometer. It was noted
that additional information could be obtained such
as the mean value of the beam intensity intersected
by the wire, laser beam power, beam separation,
beam diameter, beam divergence, cross-sectional
beam-intensity distribution and relative beam
intensity. :

CONDITIONAL SAMPLING

Organized motion or structures in a
turbulent boundary layer has been extensively
studied20,223-225 using the concept of conditional
sampling. The flow of a turbulent boundary layer
over a concave surface was studied in reference 226
to search for organized motion in the boundary

22

layer. The possible existence of organized motion is
illustrated in figure 64 from measurements made
with two hot-wire probes located 0.15 apart. The
conditional sampling technique was used to
determine the characteristic shape of the mass flow
signal during the passage of an organized motion.
An example of these results are presented in figure
64. Figure 65 shows that the measured event at an
upstream and a downstream station had the same
general characteristic shape. :

COMPARISOR OF HOT-WIRE MEASUREMENTS
WITH OTHER TECHNIQUES

In the past the hot-wire anemometer, with
all its limitations, was the only instrument available
that was capable of measuring fluctuations with
adequate ﬁdelitym. To some extent, this is no
longer the case as other techniques such as LV, LIF,
CARS, and Raman scattering are now available for
measuring various mean flow and fluctuating
quantities. In inviscid flow where the fluctuations
can be low, the anemometer is presently the only
reliable instrument available. Compared to other
techniques the anemometer is still relatively simple
to operate and relatively inexpensive. Because of its
long history, the results obtained using anemometry
is still often used as a standard for evaluating
measurements obtained using other techniques.
The extent to which the anemometer can maintain
these advantages depends on the continued
development of the other techniques.

Tests were conducted in turbulent
boundary layers to compare hot-wire results with
other techniques to validate hot-wire/laser
velocimeter (LV)227’228 and hot-wire/laser-
induced fluorescence (LIF)2 9 techniques. An
example of velocity fluctuations obtained using hot-
wire anemometer and a LV system is presented in
figure 66 for streamwise velocity fluctuations. The
agreement between the two sets of data is very
good. Measured density and static temperature
fluctuations measured with a hot-wire and a LIF
system in a turbulent supersonic boundary layer is
presented in figure 67. Again, except for two values
for the density fluctuation obtained with the LIF
system, the agreement between the two sets of data
is very good. Various experiments were made using
LIF and LIF/RAMAN techniques to measure 7,/T,

and pfp where results were compared with hot-wire
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measurements228, An examplezso of these results
is presented in figure 68. The only disagreement
between the hot-wire and the other results was
attributed to a shock that apparently did not cross
the hot-wire probe.

CONCLUDING REMARKS

A review was made to illustrate the
versatility of hot-wire anemometry in addition to
noting some of its limitations. The review included
examples of results obtained in the various flow
regimes and various types of flow fields. Examples
of data were presented for the subsonic
incompressible flow regime that were used to
evaluate the flow quality in the test section of wind
tunnels, - to obtain measurements in turbulent
boundary layer, and to substantiate or validate
various theories of turbulence.

Recently attempts to extend hot-wire
anemometry into the transonic and subsonic slip
flow regimes were presented for cases where §,= S,
and S =S, Examples of data obtained at high

supersonic and hypersonic Mach numbers were
presented. These results revealed that the
fluctuation diagrams measured in the test section
were a straight line, indicating that the
disturbances in the test sections were due to sound
mode.

Examples were also presented to illustrate
measurements made to substantiate turbulent
theories, to compare with other techniques, and to
illustrate the concept of conditional sampling.
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Figure 15. Voltage vs. Velocity for a Wire Operated

with CTA,; (ref. 93).

Figure 16.

os|

Summary of Heat Loss from Circular
Cylinders Over a Wide Range of
Reynolds Number in Continuum Flow;
(ref. 21).
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Figure 17.

Interaction of Free and Forced
Convection; (ref. 104).
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Figure 18a. Nusselt Number Correlation for
Cylinders in Subsonic Slip Flow;
T =80°F; T =584°F; (ref. 35).
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Figure 18b. Spangenberg's Reported Heat Loss

Measurements from  Electrically
Heated Wires in Air; (ref. 171).
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Normalized Nusselt Number Variation
with Overheat for 0.00015 inch
Diameter Platinum Wire Containing
10% Rhodium,; (ref. 110).

Figure 19.

Re,

Figure 20. Predicted Nusselt Number Correlation
from Approximate Slip-Flow Theory;
(ref. 35).
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Figure 21.

Summary of Supersonic Heat Transfer
from Transverse Cylinders in Rarefied
Air Flow; (ref. 21).
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Figure 22. Comparison of Heat-Transfer Data with
Free-Molecule-Flow Theory Using
a= 0.57; (ref. 33).
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Figure 23. Correlation of Convective Heat Transfer
from Transverse Cylinders; (ref. 10).
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Figure 27. Velocity Fluctuations Measured in the
Test Section of LaRC Low Turbulence
Pressure Tunnel; (ref. 37).

Figure 24. Normalized Recovery Temperature Ratio vs.
Free Stream Knudsen Number; (ref. 21).
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Figure 25. Recovery Temperature Ratio vs. Mach Figure 28. Effect of 16:1 Contraction on Turbulence
Number for Constant Values of Generated by 2-inch Square Mesh Grid,;
Knudsen Number. R, = 3710; (ref. 118).

Figure 26. Fluctuation-Diagram of the Filtered
Signals (Single-Wire); (ref. 97).
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Boundary Layer Along a Smooth Wall; Figure 31. Distribution of velocity fluctuation in a
(ref. 131). pipe; (ref. 40).
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Figure 33. Distribution of Relative Intensity of Turbulent
Velocity and Temperature Fluctuations in a
Hot Round Free Jet; (ref. 157).
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Figure 34. Relative Turbulence Intensity (U#-
component) in the Wake of a Circular
Cylinder; Re, = 1360; (ref. 43).
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Figure 35. General Fluctuation diagram for Subsonic
Compressible Flow; (ref. 168).
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Figure 36. Fluctuation Diagram; M = 0.76; (ref. 167).
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Figure 37. Nusselt Number as a Function of p; (ref. 110).
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Figure 38. Spangenberg Data; (ref. 163).
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{b) Density Fluctuations; 7, = 303°K;
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Figure 38. Continued.
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(c) Total Temperature Fluctuations
T,= 303°K; p= 0.0008 gm/cm’.
Figure 38. Concluded.
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(a) Velocity Fluctuations

Figure 39. Disturbances Measured in the LaRC 8'
Transonic Pressure Tunnel using a
Three Element Hot-Wire Probe; (ref. 86).
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Continued.
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(d) Mass Flow Fluctuations
Figure 39. Concluded.
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Figure 40. Normalized RMS Velocity and Density
Fluctuation Distribution Across the
Boundary Layer; (ref. 170).
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Figure 41. Spectra of Mass Flux and Total
Temperature Fluctuations; 3.6 km;
M = 057; Feb. 79; (ref. 49).
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(a) Measured Fluctuations
Figure 42. Fluctuations Measured in the LaRC Low
Turbulence Pressure Tunnel;
p,= 15 psia; (ref. 172).
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(b) Mass Flow Fluctuations
Figure 42. Concluded.
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Supersonic Flow.
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Figure 45. Mode Diagram Measured in Test Section
for M = 5.0; (ref. 185).
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Figure 46. Variation with Tunnel Mach Number;
(ref. 185).
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Figure 47. Variation of Source Velocity with Tunnel

Mach Number; (ref. 185).
( ) Figure 49. Pressure Fluctuation in the LaRC 22"

Hypersonic Helium Tunne; (ref. 181).
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Figure S0O. Relative Source Velocities in the LaRC 22"
Hypersonic Helium Tunnel; (ref. 181).
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Figure 51. Velocity Fluctuation Measurements in
Boundary Layer; Influence of the
Sensitivity  Coefficient to  Mach
Number; Shaded Zone - Range of the
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Figure 52. Variation of R; with Mach Number

Through Boundary Layer; (ref. 177).
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Figure 53. Variation of Wide-Band RMS Mass-Flux
and Total-Temperature Fluctuations
Across the Boundary Layer. Kistler's
Results at M =4.76 (Solid Line) are

Included for Comparison,; (ref. 188).
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Figure 54. Variation of Wide-Band RMS Velocity and
Static Temperature Fluctuations Across
the Boundary Layer; p’'# 0; (ref. 188).
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Figure 55. Variation of Wide-Band RMS Pressure
and Density Fluctuations Across the
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Figure 56. Mode Diagrams in Wake of 15° Half-
Angle Wedge; (ref. 181).
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Fluctuation Mode Plots; M=~ 21;
p,=1241x1C° N/m?; (ref. 48).

Figure 57.

Neutral Disturbance in Studies of
Laminar Boundary Layer Stability;
(ref. 205).

Figure 58.
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Comparision of Streamwise Velocity
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Figure 67.
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A Comparison of the Distribution of RMS

Fluctuation Amplitudes in Static
Temperature and Density within the
Boundary-Layer obtained using a Hot-
Wire at Single and Multiple Overheat
Ratios with Direct Measurements
Obtained using Laser-Induced
Fluorescence (LIF). The LIF data have
been Corrected for Instrument Noise;
(ref. 229).
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