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OPTIMAL GUIDANCE LAW DEVELOPMENT
FOR AN ADVANCED LAUNCH SYSTEM

Anthony J. Calise® and Martin S. K. Leung**
Georgia Institute of Technology, GA 30332

SUMMARY

The objective of this research effort was to develop a real-time guidance approach
for launch vehicles ascent to orbit injection. Various analytical approaches combined
with a variety of model order and model complexity reduction have been investigated.
Singular perturbation methods were first attempted, and found to be unsatisfactory. The
second approach based on regular perturbation analysis was subsequently investigated. It
also fails because the aerodynamic effects (ignored in the zero order solution) are too
large to be treated as perturbations. Therefore, the study demonstrates that perturbation
methods alone (both regular and singular perturbations) are inadequate for use in
developing a guidance algorithm for the atmospheric flight phase of a launch vehicle.

During a second phase of the research effort, a hybrid analytic/numerical
approach was developed and evaluated. The approach combines the numerical method of
collocation and the analytical method of regular perturbations. The concept of choosing
intelligent interpolating functions is also introduced. Regular perturbation analysis
allows the use of a crude representation for the collocation solution, and intelligent
interpolating functions further reduce the number of elements without sacrificing the
approximation accuracy. As a result, the combined method forms a powerful tool for
solving real-time optimal control problems. Details of the approach are illustrated in a
fourth order nonlinear example. The hybrid approach is then applied to the launch
vehicle problem. The collocation solution is derived from a bilinear tangent steering law,
and results in a guidance solution for the entire flight regime, that includes both
atmospheric and exoatmospheric flight phases. Assessment of performance and
reliability are demonstrated through closed loop simulations. The hybrid guidance
approach delivers over 99.9% of optimal performance and orbit injection accuracy while
the control computation is completed in tenths of a second on a SPARCstation 1. Wind
shear effects and a control constraint are also addressed.

* Professor, School of Aerospace Engineering.
** Graduate Research Assistant.



A second effort that paralleled this work under the same grant number was lead by
Dr. Dewey Hodges, of the School of Aerospace Engineering at Georgia Tech. This work
has been documented under a separate contractor report.
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SECTION 1
INTRODUCTION

The objective of the Advanced Launch System (ALS) program is to develop an
unmanned, all-weather launch system for placing large payloads (100,0001b - 150,0001b)
into a low Earth orbit at a fraction of present cost. Part of the guidance requirement is to
realize an efficient algorithm for solving the launch vehicle ascent trajectory problem.

1.1 Background

To date, first stage guidance has been realized in open loop form. The vehicle is
typically guided by using a pre-stored steering program. The steering program is calculated
as a part of pre-launched preparation to account for structural loads from aerodynamic
forces and from atmospheric disturbances such as wind shear. Typically it involves flying
with nearly zero angle of attack, and performing a gravity turn [1]. Near zero angle of
attack is employed to avoid creating excessive aerodynamic bending moments, which is
proportional to the product of angle of attack and dynamic pressure. Guidance for the
second stage and any subsequent stages is closed loop, employing various approaches.
The Saturn V vehicle uses an Iterative Guidance Mode (IGM) [2], and the Space Shuttle
employs Powered Explicit Guidance (PEG) [3). These are retargeting schemes because
the guidance commands are recalculated at each update cycle using the current vehicle's
position and velocity vectors as the initial conditions for the optimization process.
Tradition idance Solution M

Traditional launch vehicle guidance may involve either two or three different phases
[1 - 3]. The first is an open loop guidance phase for the atmospheric portion of flight
which typically flies with a non-optimal piecewise linear attitude program. The second is a
closed loop guidance phase for the exoatmospheric portion of flight. This has an analytic
solution under certain assumptions. Then a third closed loop phase is possibly required
when the vehicle is approaching orbital conditions for final precision orbit injection.

Numerical approaches to optimal guidance typically employ either nonlinear
programming [4 - 9] or multiple shooting [10]. In a direct method formulation such as
nonlinear programming, the optimization problem is transformed into a parametric
optimization problem. The unknown control profile is parameterized with undetermined
coefficients of typically piecewise linear polynomials. The states are considered as
functions of the control through the differential equations of dynamics. Constraints, if any,
are enforced discretely along the trajectory, typically at a finite number of nodal points of
the parameterized control. So the original infinite dimensional problem is approximated by



a finite dimensional problem in the reduced space of the control parameters, and gradient
techniques are used to search for a solution that optimizes the performance index. In [8],
Hargraves and Paris have combined the nonlinear programming method with collocation by
approximating all the state and control histories with piecewise smooth functions, thus
avoiding any integration process. Similar to the collocation method, Pamadi [9] has used
splines as function of velocity to approximate the altitude profile and applied an
optimization algorithm to determine the unknown coefficients of the splines. To be useful
as a feedback guidance solution, it is essential that these approaches converge quickly and
reliably at each instant the solution is updated during the flight.

On the other hand, multiple shooting is a technique used in indirect methods.
Instead of evaluating the performance index directly, optimization is achieved by satisfying
a set of necessary conditions which are expressed in the form of a Two-Point Boundary
Value Problem (TPBVP). For a constrained case, this may lead to a Multi-Point Boundary
Value Problem (MPBVP), for which a guess of the switching structure is required. To
reduce the sensitivity to an initial guess of the solution, piecewise integration or multiple
shooting is used. Instead of integrating for the complete trajectory starting from one set of
initial conditions, the trajectory is divided into intervals and integration is performed
separately from different sets of initial conditions for each interval. Then the boundary
conditions and continuity conditions (or jump conditions in the case of state constraints or
discontinuous dynamics) between intervals are enforced. A relaxed Newton’s method [11]
is typically used to iterate for a solution. Though the indirect method produces extremely
accurate results, it involves complicated programming in formulating the costates
differential equations and the control structure. The process is also complicated by the
requirement to provide an initial guess for both costate and state variables. On the contrary,
nonlinear programming is relatively simple to formulate. The method does not require the
use of costate variables or a knowledge of switching structure. In practice, it is favored
over indirect methods for solving optimization problems in general purpose programs.

Due to the intensive computation requirements, direct and indirect methods are used
only to generate off-line solutions for analysis purposes or to provide a first stage open
loop guidance program. To compensate for using an open loop approach during the first
stage flight, a feedback guidance scheme is introduced for the subsequent exoatmospheric
stages of flight where a more simplified dynamic model permits a more analytic solution.

In [2], Chandler and Smith have developed an IGM for the Saturn V vehicle. Itis
based on a flat Earth no-atmosphere model, and is further simplified with linear angle
steering guidance. The guidance solution requires solving only a set of linear equations.
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Ten years later, the Boeing Aerospace Company [3] adopted the linear tangent steering
guidance as the baseline program for the Space Shuttle’s PEG. Using an approximate
gravity model, the program is extended to handle the spherical Earth case, and the solution
is solved by an iterative algorithm.
P ion M f Analysi

Perturbation methods of analysis have been shown to be powerful approaches to
spacecraft guidance design. Breakwell and Rauch [12] have used regular perturbation to
solve a low thrust space flight problem. It is a neighboring extremal technique. A linear
feedback control is formulated by linearizing about the reference trajectory and the solution
is solved with a numerically determined state transition matrix. In [13], Jacobson and
Powers have developed an explicit guidance scheme also for low thrust space flight. Itis
basically a retargeting procedure and uses an analytic solution for the inertially fixed and
constant acceleration flight. Recently, Feeley and Speyer [14] have used regular pertur-
bations on the expansion of the Hamilton-Jacobi-Beliman (HJB) equation, and have
applied it to the launch vehicle guidance problem for exoatmospheric flight. The approach
requires an analytic zero order solution and quadrature evaluation. The analytic solution is
again based on a flat Earth, no-atmosphere approximation, and the neglected dynamics are
introduced as perturbations. Solution is obtained by expanding the HIB equation. In this
method, higher order state histories are not required and higher order corrections for the
costates are obtained by partial differentiation of the power series solution to the HIB
equation. An alternative approach based on regular expansion of state and costates was
also developed by Leung and Calise [15]. This approach has the advantage that on-line
quadrature can be avoided. However, both the solution approaches of [14, 15] were later
found to be inadequate when aerodynamic effects are included.

1.2 Research Contributions

The major contributions of this research are: (1) an exhaustive study and simulation
effort which demonstrates conclusively that perturbation methods alone (both regular
and/or singular perturbations) are inadequate for use in developing a guidance algorithm for
the atmospheric phase of a launch vehicle trajectory, and (2) the development of a hybrid
approach, that combines the numerical method of collocation and the analytic method of
regular perturbation to make it suitable for real-time guidance, and superior to either method
alone. The hybrid approach retains the desirable and complimentary features of the
individual methods. The collocation method is further improved by providing more
intelligent choices of the interpolation functions, which are derived from the analytically
tractable portion of the necessary conditions for optimality. When applied to the launch



vehicle guidance problem, the main result is a bilinear tangent steering law for the thrust
vector angle that can be employed for all flight phases, including the atmospheric phase of
the trajectory. The progress reports and papers that are related to this research effort can be
found in [15 - 25].

A second effort that paralleled this work under the same grant number was lead by
Dr. Dewey Hodges, of the School of Aerospace Engineering at Georgia Tech. This work
has been documented under a separate contractor report [26].

1.3 Report Organization

Sec. 2 presents the formulation of the launch vehicle trajectory optimization
problem, which includes the equations of motion and the vehicle aerodynamic and
propulsion models that are based on a generic model of the ALS. The results for two
purely analytical approaches are documented in Sec. 3. The first is a singular perturbation
approach using an energy state approximation and a 2-state model. The second is a regular
perturbation approach based on the zero order solution for a flat Earth no-atmosphere
assumption. Sec. 4 details the development of a hybrid approach that employs both regular
perturbation analysis and the method of collocation. A fourth order nonlinear system is
treated in depth to demonstrate its application, and to compare it to solutions obtained by
both regular perturbation analysis and purely numerical collocation methods. In Sec. 5, the
launch vehicle guidance problem is presented using the hybrid approach. It includes the
zero and the first order correction formulations and their solutions, and compares the
resulting guided solution with the optimal solution obtained by the method of multiple
shooting. Sec. 6 is the conclusions of this research and the recommendations for future
research .
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SYMBOLS AND ABBREVIATIONS

- airspeed

- wind speed components in the Cijk frame

- heading angle

- flight-path angle

- vehicle mass

- staging time (158.5s for the ALS vehicle)

- magnitude of radius vector measured from the Earth's center
- Earth mean radius (6.378 x 106m)

- Earth gravitational constant (3.9906 x 1014m3s-2)

- Earth's rotational rate (7.27 x 10-3rads-1)

- altitude, h=r-1,

- thrust throttle

- angle of attack, control variable in the wind frame

- sideslip angle, control variable in the wind frame

- Mach number

- sound speed

- reference sound speed on Earth's surface (340.3ms"1)

- aerodynamic drag coefficient Cp = Cp(a, M, B)

- aerodynamic lift coefficient Cf = Cp (o, M, B)

- atmospheric density

- reference atmospheric density on Earth's surface (1.225kgm-3)
- atmospheric pressure

- reference atmospheric pressure on Earth's surface (101330Nm2)
- dynamic pressure

- vacuum thrust

- engine exit nozzle area

- aerodynamic reference area

- state transition matrix for the linear system A

- local vertical velocity component

- local horizontal velocity component

- thrust-vector angle relative to local horizon, the control variable
- gravitational acceleration on Earth's surface (g, = He/Te2)



Symbols and Abbreviations (cont.)

Symbol

gi - small nonlinear terms (i =1, 2)

Px - interpolated state dynamics in the collocation formulation
Qx - interpolated costate dynamics in the collocation formulation
Abreviation

ALS - Advanced Launch System

HIB - Hamilton-Jacobi-Bellman

IGM - Iterative Guidance Mode

KSC - Kennedy Space Center

LEO - Low Earth Orbit

PEG - Powered Explicit Guidance

TPBVP - Two-Point Boundary Value Problems
MPBVP - Multi-Point Boundary Value Problems



SECTION 1

PROBLEM FORMULATION

In this section, we first formulate the optimal launch vehicle guidance problem,
which includes the equations of motion for a point mass model of a launch vehicle that the
subsequent analyses are applied to. The reference aerodynamic, atmospheric and propul-
sion models are also included.

2.1 Equations of Motion
Referring to Fig. 2.1, the point mass equations of motion for a multi-stage launch
vehicle over a spherical, rotating Earth inside a non-stationary atmosphere are:

) (i) _pW
V= T cosacosp-D —-l%siny+rco§(sin'ycoszK—cosysinkcoskcosx)
m r

—Wi cosysiny — Wj Cos’yCcosy, — Wk siny + 2 [W; (sinycosA —
cos?ysinA cosy) +cosy(W;sin A — Wy, cosA)siny] ; V(tg) =V,

(i) ; 1) 2
x=1{- T cosasinp +¥ + Y o2 ytanAsin + ro?2 sinA cosAsiny
m r
+2@, V(cosysinA — sinycosAcosy) — W; cosy + Wjsiny +
200 [W; sinAsiny + (W;sinA — Wy cos Acosyl}/ (Veosy) 5 x(ts) = Xo

M gne+1D v2
¥ = {T Sino - E—f— ——)cosY+ r(u)g(cos2 Acosy +sinAcosAsinycosy)
m r T
+2m, Vsiny cosA + W; sinysiny + Wj sinycosy — Wy cosy

+2we[Wj(cosycosA +sinysinA cosy) — sin y(WjsinA -

W cosA)siny]}/ V 3 Y(to) = Yo
b= Vcosysiny+ W : 0(tg) = b,
TCosA
A= Vcosycosy + W;  Atg) = A
T
I =Vsiny+ Wy ; T(tg) =1
m=f(n, 1, 1) ; m(to) = mg ; m(t{)) = m{ @2.1)

where
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Zw .
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X Xy ™
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Coordinate System
Z Equator
Figure 2.1.  Coordinate Systems: Earth-fixed Frame OXYZ, Local Horizontal Cijk, and
Wind Frame*.

* Here yw and zy, are defined in the opposite from their usual convention.
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Here, an inverse-square gravitational field is assumed and . is the Earth's gravitational
constant (3.9906 x 1014m3s-2). A higher order harmonic model to account for the Earth’s
oblateness can be used by replacing /2 with the harmonic expression. The superscript
@ = {1, 2, ... , n} indicates different stage values. The above complex model provides
sufficient details for most trajectory analysis purposes.

The state variables in this model are airspeed V, heading angle , flight-path angle
v, longitude ¢, latitude A, radius vector from the Earth's center r, and vehicle mass m. The
variables V, v, y are relative to the moving air. The wind velocity components W;, W;, Wy
are assumed to be given as functions of {¢, A, h}, where h =r - 1, is the altitude and r is
the mean Earth radius (6.378 x 106m). The control variables are throttle 1} , angle of attack
o and sideslip angle B. The coefficients of drag Cp, side force Cy and lift C; are
functions of o, B and Mach number M = V/c. The fuel rate f is a function of throttle
setting, altitude and time. The after-jettison stage mass m(tg,), staging time t;, are vehicle
parameters, and are both assumed fixed here. Standard atmospheric properties such as
density p, pressure p, and sound speed c are given functions of h. The coefficients and
properties are given in tabular forms which are interpolated as smooth functions of the
independent variables.

2.2 Assumptions and Simplifications

To simplify the analysis, the following assumptions are exercised:
Analytic thrust expression - As mentioned in the previous section, a typical launch vehicle
employs maximum throttle | = 1.0 during the ascent phase. For most trajectory analysis

purposes, thrust can be adequately modeled as
T = Toar — AP 2.3)

vac

where Ty, is the vacuum thrust value and A, is the engine nozzle exit area. The term A¢p
represents the back-pressure effect that causes a drop of thrust level as the engine is
operated inside the atmosphere.



Constant fuel rate - For a purely rocket propulsion system the rate of fuel consumption is
proportional to the vacuum thrust

th = ~T(, / (g.19)) (2.4)
where g, = Hofre2, and Lsp is the specific impulse, a measure of the fuel efficiency. Modern
rocket engines have values ranging from 300s to 450s*.
Non-rotating Earth - The Earth's rotation, @, is small (7.27 x 10-5rads-!) and the term ro,2
which represents the transport acceleration, was neglected. The term 2w,V which
represents the Coriolis acceleration may reach 0.1g, at orbital speed. Here g, is the
gravitational acceleration at the Earth's surface. However, the vehicle reaches orbital speed
sharply near the end of its flight phase. Therefore, the dominant effect of this term is only
apparent for a short period of time, and setting w, = 0 does not produce any significant
error.
Planar motion - In actual flight, the lateral maneuver is short. This magnitude is dependent
on the launch site which is selected as close to the equator as possible so that a wide range
of orbit inclination can be achieved. A large amount of lateral maneuver is typically not
required and the desired flight azimuth can be achieved very early in the flight. Hence for
simplicity, it is assumed that there is no out-of-plane motion by setting B = W;=0and
considering Cy(B =0) = 0. These assumptions allow us to decouple the dynamics of
airspeed, flight-path angle and altitude from those of heading angle, longitude and latitude,
and the dynamics are reduced to those associated with motion in the vertical plane. For
convenience, the vehicle is assumed to be launched due east on the equator, i.e. %, = 90°
and A, =0, and ¢,, is arbitrarily set to zero. The resultant system is a 4-state model:

v T® cosa— DO _He

A% —y r—2siny - W, cosy — Wy siny : V(ty) =V,
y=i o L - VTz)cosv + Wisiny - Wi ost) 5 7(t0) = Yo

e ; 6(tp) =0

I = Vsiny+ W ;T(tg)=hy+re 2.5

where

* For comparison, specific impulse of tubojet engine is over 5000s.
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m{ kD10 P <t W =gpij=1, 01

KD = 18, / (g 19 (2.6)

The initial conditions chosen for this problem represent the vehicle states following
a vertical launch and clearing of the launch tower. The terminal constraints represent direct
injection at the perigee of an 80nm x 150nm elliptical transfer orbit.

V, = 64.49m /s ;Yo = 89.5° ; hy=400m ;1o =158
V¢ =7858.2m/s  ;yf=0° ; hf =148160m 2.7

The objective is to minimize the final time, which is equivalent to minimizing the fuel
consumption for this formulation. Since there is no constraint on ¢f, the ¢ dynamics in Eq.
2.5 are ignorable and can be deleted from the analysis. Also, the optimization must be
performed subject to the constraints q < gmax and | aq | < (0D max-

2.3 Aerodynamic Model and Launch Vehicle Configuration

The aerodynamic model (cf. Figs. 2.3 - 2.8) is obtained from [27]. It corresponds
to a generic model of a heavy-lift capacity 2-stage launch vehicle based on a CFD analysis.
The vehicle has an asymmetric configuration as shown in Fig. 2.2 with the booster
mounted atop the main body. The booster produces a shadowing effect above supersonic
speeds during the first stage flight. This shadow effect reduces the Cp at positive angle of
attack and the Cp exhibits a nonconvex behavior (cf. Fig. 2.6) in o above Mach 1.3.
Other than this behavior, Cp(cr) and Cy (ct) are nearly parabolic and linear respectively at all
Mach numbers.

Figure 2.2. Generic Advanced Launch System (ALS) Model in the Cik Plane.
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Figure 2.4. ALS First Stage Cp Profile.
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Figure 2.5. ALS First Stage Cy_ Profile (continued).
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Figure 2.6. ALS First Stage Cp Profile (continued).

13



14

1.0 ———7—>—-—m—-—--r———a——
-15 -10 -5 0 5 10

alpha (deg)
Figure 2.7. ALS Second Stage C;_Profile.

15

0.45

0.35 -

0.25 -

0.15 — Tty T
-15 -10 -5 0 5 10 15

alpha (deg)
Figure 2.8. ALS Second Stage Cp, Profile.




Due to the nonconvexity in Cp, the Hamiltonian also becomes nonconvex. The
control is expected to jump as o switches from a lower value to higher value when the two
peaks (using Maximum Principle) of the Hamiltonian become equal as time progresses.
The phenomenon is displayed in Fig. 2.9. The study documented in [22] has shown that
the hodograph can be convexized when bank angle is used as a second control variable,
and the angle simply switches from 0 to 7 to make use of the lower Cp at small positive o.
It has also shown that the effect of a chattering control of the first kind [27], if exists, will
be small and that a chattering arc is not expected. This hypothesis is consolidated by the
numerical analysis here, where no high frequency control activity is observed within the

nonconvex region.
att-At A art A areeit A
- — _HL“aX_ - - Hmax_ Hmax
/ Qopt \ Clopt aopt\ / Clopt \

Figure 2.9. Jump in Control due to Nonconvex Hamiltonian.

Table 2.1. ALS Vehicle Physical Data

1st-stage 2nd-stage
my(ty); my(tsy) 1,523,400kg (15s) 546,600kg (158.5s)
Tyac 25,813,000N 7,744 000N
Isp 430s 430s
S 131.34m?2 65.67m?2
A 37.51m?2 11.25m?2
Qmax 40698.2Nm2 nil
(0D max 167,580degNm2 nil

Since sideslip is not considered, the aerodynamic coefficients can be interpolated as bicubic
splines [28] in o.and M. The interpolation scheme provides up to second order continuous
derivatives. Other physical parameters of the ALS vehicle are given in Table 2.1.

2.4 Atmospheric Model
The atmospheric model is based on the 1975 U. S. Standard Atmosphere [29].
Profiles of normalized density, pressure and sound speed with respect to their reference
values at the Earth's surface (p, = 1.225kgm3, p, = 101330Nm2, ¢, = 340.3ms"1) are
15



given in Fig. 2.10. To investigate the effect of wind shear, a mean winter wind profile
over Kennedy Space Center (KSC) is used to model the non-stationary atmosphere. The
profile is shown in Fig. 2.11. It indicates a head-on wind for vehicle launched due east,
and the vertical and horizontal (north) wind speed components are assumed to be zero.

Normalised Value

Wind Speed (m/s)
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Figure 2.10. Standard Atmospheric Model.

10

0 10000 ‘ 20000 . 30000
Altitude (m)
Figure 2.11. KSC Mean Wind Profile.



SECTION III

ANALYTICAL APPROACHES

Two analytical approaches are presented with the objective of simplifying the
optimal guidance problem described in Sec. 2. The analytical and numerical results are
summarized in this chapter. The analysis results are for: (1) a singular perturbation
formulation, and (2) a regular perturbation formulation.

3.1 Singular Perturbations

Singular Perturbation theory is related to the study of a reduced solution of
singularly perturbed systems of O. D. E's and the construction of a matched asymptotic
series representation of the exact solution. For example, consider the following initial

value problem
dx
— =f(x,y,t : x(g,0)=x
” (X,y,t) (£,0) =%,
d
S-d-{- = g(x,y,1) ; ¥(8,0) =y, €RY

where x and y are scalar functions and € > 0 is a scalar parameter. Setting € to zero, we
have the reduced system. Generally the reduced solution will not satisfy initial conditions
on y, and the initial behavior of the reduced solution will be quite different from that of the
exact one. This loss of boundary conditions on y (meaning that the reduced solution does
not provide a uniformly valid approximation for y) is a characteristic of singular
perturbation problem formulations. Basically, the system is separated into the slow
variables of x and the fast variables of y. The reduction of higher order problems into
lower order ones and the separation of numerically stiff parts by using different time scales
are the main advantages of the method. Applications of the method are detailed in [30, 31].
a) Energy state approximation

The energy state approximation is the most widely used approximation in aircraft
performance optimization, and sometimes referred to as energy management. It has been
applied to minimum time-to-climb, minimum fuel-to-climb and minimum time intercept
problems. First we replace the velocity with the mass specific energy

*

A third analytical attempt using matched asymptotic methods is documented in [25].
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E=V2/2-p,/r (3.2)

as the state variable. Differentiating Eq. 3.2 and using Egs. 2.5, 2.6 leads to the system

. (i) _n)
=T cosa—D v

E
m(t)

i = Vsiny

D gne e 1D V2

pei— e T yeosyy/v (3.3)
m(t) r r

where V =y 2(E+ U /1), At the moment, the wind shear effects are not considered. In
earlier studies on supersonic aircraft [30, 31], specific energy and mass are regarded as
slow variables and altitude and flight-path angle are treated as fast variables. So to put Eq.
3.3 into the singular perturbation form, we artificially introduce a bookkeeping parameter £
into Eq. 3.4 as follows:

. @) _pd
=T cosa—D v

E
m(t)
&r = Vsiny
® gin o 4 LD 2
ey = (—matl e Vo) osyi/v (3.4)
m(t) r T

The performance objective is to minimize t;.
The necessary conditions are formulated by first moving € to the right hand side of
the differential equations, and define the Hamiltonian as

. 1 —pd y A T )
H=XET cosa—-D V+thiny+—7{T sino + L
m(t) 3 3 m(t)
de V2
—(= ———)cosy}/ V +constraints (3.5)
r r
The costate dynamics satisfy:
< oH 2 oH Y oH
g = —— : 7\. - ; = —— 3.6
E="%E T LA™ G0
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Now introduce the transformations AE = Ag, €A =4y, 37‘7 = )"y which results in

~ oH \ dH - oH
AE=——— &\ =-—— ; €Ny = ——— 3.7
BT UeE T LAFY G
Note that Ag is a slow variable and that A, , A, are fast variables. The optimality condition
is given by
oH/da =0 (3.8)

In the reduced problem (g = 0) r and 7 are treated as control-like variables, which is a
consequence of setting € = 0 in Eq. 3.7. The transformed costates A, Ay (when

substituted in Eq. 3.6) can be interpreted as Lagrange's multipliers used to enforce the
constraints that result from setting € = 0 in Eq. 3.5.

Reduced (outer) solution
The reduced or outer solution corresponds to the solution of Egs. 3.4, 3.7 and 3.8
when ¢ is set to zero. The condition dH/dr = O (which results from setting € = 0 in Eq.

3.7) is a first order necessary condition for a minimum of the Hamiltonian in Eq. 3.5 (we
are minimizing the final time). Since the costate Ag may be interpreted as dtg/9E(t,), it
follows that in the reduced problem, Ag < 0. Hence a stronger statement for this optimality

condition may be written as

. max [T coso— DO
o {T cosa—D V}‘ 3.9)
E,m

r m(t)

subject to the conditions:
Y=0

T® sino+ 1D He V2
= - g - —)cosy
m(t) r r

q < 40698.2Nm ™2

|owg| < 2924.82radNm ™ (3.10)

The last two conditions are the dynamic pressure and aerodynamic load constraints.
Starting at an initial energy level and initial mass, a one-dimensional search in altitude is
performed. The energy level is then increased and the corresponding change in mass 1s
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Since the optimal solution also exhibits a large value of flight-path angle (incon-
sistent with the reduced solution approximation), another calculation scheme is used to
estimated as

Am = -kD(AE/E") (3.11)

where the superscript "*' denotes evaluation on the reduced solution. Hence by sweeping
through all the energy levels of interest, a reduced feedback guidance law that defines the
best altitude profile is obtained. Figs. 3.1 and 3.2 show the results for the reduced
problem when the optimization in Eq. 3.9 is carried out for the first-stage flight. The initial
conditions in E and m are chosen along a reference optimal trajectory. The solutions at low
energy levels result in very large values of angle of attack (> 20°) that are well beyond the

given aerodynamic model range and therefore should not be considered feasible. The
reduced solution is unrealistic in that the vehicle stays on the aq constraint up to an energy

level of -6.09 x 107Jkg-1.

Since the optimal solution also exhibits a large value of flight-path angle (incon-
sistent with the reduced solution approximation), another calculation scheme is used to
estimate a non-zero flight-path angle and to include the effect of a non-zero flight-path angle
in the reduced solution. Assuming the vehicle is already on the reduced solution and is to
follow the trajectory, the change in altitude along the reduced solution gives an estimate of
the flight-path angle according to

*

. _ Ah
siny, = {——(AE ; E)V} | (3.12)

By perturbing the energy level from E to E + AE, we have
Ah™ = h*(E+AE)-h"(E) (3.13)

and a central difference scheme is used to estimate y. Then the solution of Egs. 3.9 and
3.10 is recalculated with y = O replaced with Y =,. The results are given in Figs. 3.3 and
3.4. The inclusion of 7, gives a slightly lower value of o, and both angle profiles behave
reasonably. However, this calculation scheme becomes numerically unstable once the
vehicle left the ag constraint boundary.
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b) Two-state model

Since the energy state approximation does not produce a solution that resembles a
reasonable flight trajectory, a more accurate model is employed. The new reduced-order
model corresponds to a 2-state approximation:

(1) _p®d
_ T D v
m(t)
I = Vsiny
T(i) + K(i) 2
ey = (L% _Be V) ooipyrv (3.14)
m(t) r r '

where only the flight-path angle is assumed fast. To make Eq. 2.5 analytically tractable,
we adopt the assumptions that the induced drag due to « is negligible and lift is linearly
proportional to o (L) = K; Da). The necessary conditions for optimality of flight-path
angle and angle of attack on the reduced solution are:

SH n/2 ;A <0
?}-Y_=A,eriny=> Y = { singular s Ap =0
-n/2 i A >0
o= ) (Ee__Y_z_) (3.15)
oA il |

In [23] it is shown that the velocity hodograph for the 3-state reduced model (including
mass) is nonconvex, and that at A; = O the optimal solution chatters between ¥ = +x/2. The
interpretation here is that when the altitude reaches its optimum value (for the current
energy and mass), then a chattering solution is able to maintain the optimum altitude rate
while maximizing the ratio of the mass rate to energy rate. Therefore this formulation is
totally inappropriate for the analysis of energy climb in that it produces a reduced solution
made up of vertical climbs and dives, connected by chattering arcs.
¢) Manifold solution and eigenvalue analysis

The fundamental problem inherent in treating launch vehicle dynamics by energy
state approximation relates to the constraints on the y and h dynamics. They are fast in
comparison to energy and mass dynamics and without taking into account the dependency
on the singular perturbation parameter €. For instance, the constraint on altitude dynamics
implies y = 0 along the reduced solution, which is an extremely crude approximation for the
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launch vehicle case. This problem can be alleviated by using a slow manifold solution {32]
in place of the reduced solution, which amounts to solving the exact problem with the initial
flight-path angle chosen to suppress any fast motion that may be present in the solution. A
separate boundary layer analysis could then perform to take into account the actual initial
condition on 7 (cf. Fig. 3.7). This approach has also been carried out, however it is found
that the assumptions regarding the separation of dynamics worsen above supersonic speed,
and the reduced-order model approximation deteriorates. This hypothesis is consolidated
by the eigenvalues investigation described below.

Computation of the equilibrium manifold corresponds to determining the initial
condition on 7y so that rapid transients in Y and )“Y are absent in the exact solution. First a
sweep of the initial condition in y about a nominal value of Y, = 89.5° is performed, and the
exact dynamics of the states and costates (with the control eliminated using the optimality
condition) are numerically integrated. This allows us to identify the equilibrium manifold
by visual inspection for the absence of fast transients in yand A, . The closer the actual
initial condition for the fast variable lies to the manifold, the more accurate the subsequent
boundary layer correction in y becomes. Figs 3.5 and 3.6 demonstrate that the manifold is
estimated to be at Y, = 75°, where it can be seen that there is no apparent boundary-layer-
like behavior in the fast variable y and the control c.

initial
boundary layer

terminal
boundary layer
reduced

solution
Y

t
Figure 3.7. Typical Boundary Layer Characteristics.

To shed insight on the separation phenomenon of the fast and slow dynamics of the
launch vehicle problem, an eigenvalue test is carried out. By linearizing the dynamics of E,
T, ¥, A, Ap, Ay about the equilibrium manifold, the eigenvalues of the linearized system are
obtained, and the relative magnitudes of the real part of the eigenvalues provide information
about the separation possibility of the dynamics. A Hamiltonian matrix appears in the
linearized system whose eigenvalues characterize the full order system of dynamics (states
and costates) in the vicinity of the equilibrium manifold.

Eigenvalues calculated at discrete points along the trajectory are shown in Figs. 3.8
and 3.9 (only those in the right half s-plane are shown). At the beginning part of the trajec-
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tory (t < 50s), the results clearly show a separation configuration of 2 slow and 1 fast state
(and costate) variables. All the eigenvalues are real. The relative magnitude is separated by
a factor of up to 4 in this interval (cf. Fig. 3.9). As the energy level increases, two of the
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Figure 3.8. Eigenvalue Analysis along the Reference Trajectory of ¥, = 75°.
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eigenvalues join to form a complex conjugate pair, the real part of which is an order of
magnitude larger than the third (real) root. This suggests a decomposition of 1 slow and 2
fast state variables. An eigenvector analysis indicates that the fast state variable at low
energy levels indeed corresponds to the flight-path angle, whereas at high energy levels
specific energy is the only slow state variable. Altitude, which was a slow variable at low
energy levels, rapidly transitions to being a fast variable at approximately t = 50s as shown
in Figs 3.8 and 3.9.

A nonlinear feedback control solution for angle of attack, based on a boundary layer
correction for the flight-path angle dynamics, can be formulated as follows:

H = —Apok® + Ap E(Eq, o, Mg, &) + Ao Vo siny + Ay ¥(Eq,ho,m,00) =0
Hy =0 (3.16)

where mg, Eq, ho, Amos MEo» Aro are treated as slow variables™ in the manifold solution,
and are constant in the boundary layer analysis. The manifold solution is stored as a
function of energy, and the boundary layer problem defined in Eq. 3.16 is solved at each
control update to form a guided solution. Note that there are two equations for the two
unknowns in o and Ay. The guided solution using the pre-computed slow manifold
(chosen for 7y, = 75° in Fig. 3.6) with an on-line boundary layer correction is plotted in
Fig. 3.10. The optimal solution approaches the manifold solution. However the guided
solution is first attracted to the manifold, and then diverges at about t = 25s. This correlates
almost exactly with the transition that takes place in the eigenvalue associated with the
altitude state in Fig. 3.8. That is, the role of altitude variable has changed, but the
boundary layer analysis has treated the altitude variable as slow (constant to zero-order in
€). This explains the failure of the manifold approach for this problem.

Recalling the previous energy state approximation formulation, even though eigen-
values analysis clearly indicates the existence of a two-time scale behavior, the poor
performance of the zero order reduced solution is attributed to the large value of
longitudinal load factor inherent in the launch vehicle problem. The value of this non-
dimensional variable along the reduced solution is plotted in Fig. 3.10. In comparison with
a subsonic transport aircraft with a load factor of 0.1, the launch vehicle averages above 3
in this case and therefore a zero or even a first order solution is not expected to provide any

reasonable approximation.

* Here we treat m as a state variable, and it is not eliminated by Eq. 2.6.
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3.2 Regular Perturbations

The unsuccessful attempt by singular perturbation analysis led to consideration of
another analytic approach that has been used repeatedly on low thrust spaceflight problems,
the regular perturbation analysis. In this section, the general regular perturbation
formulation for optimal control problems is discussed. An extension over earlier
formulations is that higher order corrections for the free final time are made explicitly in the
formulation developed here. Then an analytic zero order solution based on the maximum
horizontal speed transfer problem in a constant gravity field and in vacuum [33] is extended
to a mass-varying multi-stage rocket. This is then followed by an attempt to compute a first
order correction to account for a central gravitational field, spherical Earth and all the
atmospheric effects.
a) Regular perturbations 1n optimal control

The optimal control problem formulation consider here is to maximize a perfor-
mance index which is a function of the terminal states and time, subject to dynamic
constraints:

max
T= {o(x,D) (3.17)
u tf
x = f(x,u,t)+eg(x,u,t) s X(tg) = Xg 3 t € [tg, 5] (3.18)
and the terminal time constraints y;(x(t)) =0,i=1,..,p<n. InEq. 3.18, x is an n-

dimensional state vector and u is an m-dimensional control vector. In applications, the
expansion parameter £ is sometimes artificially inserted to signify the presence of small

nonlinear effects, and used as a bookkeeping parameter for the regular expansion analysis.
The Hamiltonian and transversality condition are given by:

H=2T{f +eg} ; Htg) = - @

P =0+viy (3.19)
tf
The costate equations and associated boundary conditions are:

A = —H, : Atp) = Oy (3.20)

te

where the subscript is used to denote partial differentiation. In the absence of control
constraints, the optimal control satisfies

H, = AT(f, +eg,)} =0 (3.21)

29



assuming that Hy, > 0.
In the above final time is free. Thus, we introduce a new independent variable T =
(t- to)/T where T = t¢ - t, and rewrite the necessary conditions of Egs. 3.18 - 3.20 in the

following equivalent form:
x"=H,T ;X(T=0)=x4; Yx(t=1)=0 (3.22)
A =-H,T s AMT=1) =D, =1 (3.23)
T=0 (3.24)
H = AT{f(x,u,7T +t,) +£g(x,u, 1T +1t,)} ; H(t = 1) = ~®, i (3.25)

where (-)' denotes d(-)/dt. In a regular perturbation analysis, the objective is to approxi-
mate the solution to Egs. 3.22 - 3.25 by an asymptotic series in x, A, u and T as follows:

X=XO+8x1+€ZX2+
A= 2
=Xo+EA +EAy + ...
— 2
u=ug+eu;+&€uy+ ...
T=Ty +£T1+82T2+ (3.26)

Assume the functions f, g, ¢, y have piecewise continuous derivatives up to order at least
K+1 where K is the order of approximation. Using the Taylor series formula, a finite
series approximation is constructed according to

1 d%F

9 dF
G +¢€ {— 2 -3
O 2!'do“ |0

do

K
k dF
F(cg+ Yore ) =F(cy)+e—
@0 k2=:1k )=F(c0) do|og

where 6= {x, A, v, u, T}. Substituting the series representation for each of the variables
in Egs. 3.22 - 3.25 and equating like powers in €, we obtain the zero order and higher
order necessary conditions. To zero order we have:

dxg /3t =0Hy/ohg ; Xg(ty) = X ; W(Xg(ty +Tp)) =0

axo/a’t\=—aH0/aX0 5 XO(E=IO +T0)=¢(X0,E)/8XOE_t +T
—toT 10
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dHg /dug =0

Ho =ATf(xg,u0.)  ; Ho(t =ty + Tp) = —~®(xq, 1)/ 3 (3.28)
t=ty+Tp
In Eq. 3.28, the new independent variable t = TTj has been introduced, where it should be
noted that in the zero order problem T = Ty,

For the higher order problems, they are governed by a set of nonhomogeneous
linear O. D. E's. with the form of

_c_l_[xk} =[A11(xo,7~o’To) Alz(xo,lo,To)] [xk]+fg[cl(xo,7~0aTo)]
di|Mc] |[A21(x0.M0.To) Aa(x0.20.To)J{Ak] To[Ca(x0,10.To)

[Plk(xo’lo’To’ '--’xk-l’lk—lka—l)iI (3.29)
Poy (%0525 Tos -+sXk-1 k-1, Tk-1)
where

Apr = fx ~flETMT G V),

App =~ [ETATTE

Ag1 = ~(E7 My + BT [ET A T (B M

Agy = £ +(E M) (Eg Vo] £y

Cy = £+ - to)fy - £ lET AT BTN

Ca = ~£7 A - (i~ to){ (6T W — (B AW E M) (B b (3.30)
and fork = 1:

Py = g—fyl(fg M)yl gg)

Py1 = —g A+ (f Mul(Eg Vo] 02 (3.31)

All the matrices in Eq. 3.30 are evaluated at the zero order solution values. To complete the
necessary conditions, it is also required to expand the boundary conditions and the
transversality condition in Eq. 3.28. Note that Eq. 3.29 explicitly shows the effect of
higher order corrections to the final time, T. If the solution process is terminated at say,
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k = 1, then a real-time sampled data implementation of the control solution would be
constructed as follows. For the original system in Eq. 3.18, an expression for the optimal
control is obtained as function of x and A from the optimality condition in Eq. 3.21. Then,
treating the present state as the initial state, a first order approximation is obtained by using
Ao(ty) + €A4(t,) as an approximation for A(t,) to compute the control, where Ao(t,) and
A(t,) are obtained from the solutions of the zero and the first order necessary conditions.
This process is repeated at the next control update time by regarding the value of the state as
the new initial state. Therefore, it is necessary to repeat the zero and first order solutions in
updating the estimate of the costate variable.

The non-homogeneous linear ordinary differential equations in Egs. 3.29 - 3.31
may be expressed in terms of a convolution by first obtaining a state transition matrix. The
state transition matrix Q5 (t, to) is merely the partial derivative of the zero order solution at
t with respect to the initial conditions xo(to) and Aq(t,), hence it is easily computed given
an analytic zero order solution. In Appendix A it is shown that the result can be expressed
in the following form

["k("} = Qa ) k) i QA(i,r){E[C‘“)]Jr[P‘k“)]}a

Ak (D) | Ak (to) ] To | C2(D)] | Pk (D)
o [xk(to)] t-ty[ Xo®] 3 . [Pi(D)
=Q A(t’t°)_lk (to)] + Ty _To [ XO(E)}L fto Qa (1,7) Py, (7) T (3.32)

Using the above expression at t= To along with the expansions of the boundary condi-
tions, we can solve for A(t,), vy and Ty from a set of linear algebraic equations. Thus the
major part of the computation for the first order term lies in the quadrature that must be
performed in Eq. 3.32. In a discrete time implementation, if the current state is regarded as
the initial state then x(t,) = 0 in Eq. 3.32 since x¢(1,) satisfies the initial condition on the
state variable. Since zero order solution changes at each update of the initial state, it is
necessary to repeat the quadrature at each update for the higher order corrections.
Alternatively, we can fix the zero order solution and treat x;(t,) as the deviation between
the current state and the zero order solution computed for the original epoch time, but
evaluated at the present time. In this form it would be possible to pre-compute the
quadrature and store it as a function of a monotonic variable along the trajectory. Thus the
real-time process of solving the zero order problem and the quadrature can be avoided.

The case of discontinuous dynamics, such as might arise in a multi-stage launch
vehicle, can be handled by a simple modification of Eq. 3.32. For example, in a two-stage
representation we would have
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I R AT b e P O

(D] c @
;ttng{)(E,r) K (9 g b+ s {XO (f)}
0o

me(r) To |AP®)
- (2)
t ~(2),° (T) o
Jts Q(A)(t,t) (2)(1) dt ;1> (3.33)

The superscripts (1), (2) denote the expressions for different sets of dynamics and tg is the
interior point where discontinuity occurs.

b) Launch vehicle application
The performance objective is to maximize -t¢ (ie. minimize final time) subject to the

terminal conditions V(tf) = 7858.2ms" Ly(te) =0, htp = 148160m, open ¢(tg). These
conditions correspond to direct injection at the perigee of an 80nm x 150nm elliptical
transfer orbit. First, it is necessary to derive a closed form, zero order solution which
should be simple, but accurate enough such that the neglected dynamics can be corrected in
a first order term.

Assuming that the dominant forces on the launch vehicle are thrust and gravity, an
attempt is made to treat the atmospheric effects as a perturbation effect. To further simplify
the problem, spherical Earth effects are also considered as perturbations (these effects are
only apparent when the vehicle reaches orbital speed near the end of the flight). The result
is similar to the maximum horizontal speed transfer problem in [33]} for a flat Earth no-
atmosphere situation. The differences here are that the mass of the vehicle is varying, the
dynamics are discontinuous and the terminal boundary conditions are specified at an
unknown final time. We now recast the dynamics of Eq. 2.5 in a regular perturbation
format as in Eq. 3.18, in accordance with the above desired approximations:

- T sin@ . {—pAg) sin@ — DD siny + LV cosy
€

OEONS QRGN
b u?)
ro—TE+— L v(ty)=veii=12
R}
T\(,;)C cosO —pAg) cos6-DWecosy —LWVsiny  uv .
m® — kO te IONRON -— i ulty) =y,
r=v ; T(tg) =1 (3.34)
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where

m®) = m, + k(l)to ; m®) = myg +k(2)tS
v = Vsiny ; u=Vcosy ;0=0+7Y (3.35)

Here € has been artificially introduced as an arbitrary bookkeeping parameter. The
dynamics are expressed in a rectangular coordinate system to facilitate the closed form
derivation of the zero order solution. The state variables v and u are the local vertical and
horizontal velocity components. The control variable is 6, the thrust-vector angle measured
from the local horizon.

The necessary conditions of optimality for the above formulation are:

Ay =—A+ e(—xv %—i—l -Ay %gv—z)

: d 0

o 91, , 9%
0= O\. cos6 — )\. Sme)TE(th 8(}\. 3 }\.u ae)

0={A¥+hgi+ii}l -
f

(3.36)

where the last two are the optimality and the transversality conditions respectively, and

N —pAg) sin - D@ siny + L0 cosy He u?

= - . +g. —E& 4=
£1 m(,) — k(l)t ge I’2 "

~pAY cos8 - DV cosy - L(’)smy uv
82 = m® _ Dy r

(3.37)

Zero order solution
Setting & = 0, the costate solutions and the optimal control are given as follows
(with some license taken with the zero order time notation):

Avo() =cyp—crpt ;5 Ayo(t) = Cu0 s Aro(t) = cpg
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tan(Bg()) =p=qt ;Pp=Cyp/Cyo ;a=crp/Cyo (3.38)

The control satisfies a linear tangent law. Substituting Eq. 3.38 into Eq. 3.36, the state
equations can be integrated in closed form. The solution that relates the states at t 2 tg to the
initial conditions is presented below and for t < tg, the terms involving variables with
superscript (1) would simply be deleted.

()

Ty M () o
vo(t) = v, —go(t—ty)+—5% ) Y& G(m'",k ‘C)

=ty T, T=t
vac 2) .2
.y +——k(2) G(m*“/,k\“’, 1)

=ts

=1

T 1=t, T®
— vac @ @ vac (2) ,(2)
ug(t) =uy + —k(l) F(m',k"",1) T=t, + —aL e F(m .k t)

T=tg
1 2 To v () ()
ro(t)=ro+v0(t—to)—5ge(t—t0) (t—to) D L Gm'", k", 1) -
o) T(l)
(t—ts){ 2 G(mP k1) -~ GmD k1) +
o)

T"ac K(m(l) k(l) t)
qk

2
ts T\(/ag —va K (m@ k@ t)

sttty (3.39)
q

where

F(m® k@, 1) = —sinh~[tan(@y (1) - Tl)]

\/ 1+ A2 k)
G(m®,k®,7) = ~AFmM®, kD, t) - sinh~[tan(89 (v))]

To solve for the solution, Egs. 3.38 - 3.40 are evaluated at the zero order final time tg) = t,
+ tg + T where T represents the zero order, second stage, open flight time, and used to

enforce the zero order expansion of the terminal boundary conditions and the transversality
condition given below:

v(teg) =ve  ;ultgg) =ugp ; r(tgg) = hf +1

T sin@ TR cosd
vac VaC
{ 0 @, 8 Mo —— y, HAovol

=1 (3.41)
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There is a total of four unknowns c,q, ¢y0, cr. T to be evaluated by the four conditions in
Eq. 3.41.
First order solution

Using Eqgs. 3.29 to 3.31, the first order correction dynamics for the launch vehicle
problem become

[ v1 ] 0 af) af ol[vi] chi)(t)- Pﬁ)(t)
uy 0 af) af) o || w wy| [pPw
i n n Tl Vo(t) 0

dt| Ay 0 0 0 -1||Av] To|-Ag| |P¥®
At 0 0 0 O0fra o | [p¥Pw®
| Ag ] 0 0 0 0]|rl o | [pPm

(3.42)

S O O O O O
o
(o]
o
o

o O O = O O

with Vl(to) = ul(to) = I'l(to) = Vl(tf()) = ul(tfo) = rl(th) =0, where

T\(,;)C cos2 @

m® — k@t "%, sin by + Ayo cos6p

a4 =

T —c0s8 sin B

_ vac
15 m(l) - k(i)t A.vo sin 60 + 7\,“0 COSOO

a

T(i) sin®@

vac
m® — kO 2 v0$infg + A ;o cos6y

a4 =35 ;a

vac

@ @ @, 8 2= (2)t[ D o),

T(i) cos6 8g1 g7
D _ @ g th
(m'V - k") (A, sin+ A, cos) 09

i \(I;I)c sin® {x agl +2 ag2 }
(mW - k(‘)t)(kv sin6 + A, cos6) Yoo " 0

_ 1D sindy k(z)(t_ts) T2 coshy , k(-1

€=

P1=81—

P2=8+

ag; dgy dg) dgy
Ay 2B, s ps = —Ay—BL_jy 282
v oy Ps ="M "M

d 3
P = ~Ay % ~ Ay 75} (3.43)
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All the variables are evaluated along the zero order solution. Since the first stage flight time
is assumed to be fixed, T = t; - t,. Consequently, Ty = 0 for the dynamics describing t <t
and the second term in Eq. 3.42 is discarded for the correction dynamics corresponding to
this time interval. In this example, the state transition matrix has a structure of

[ 1 00 co%) m§‘5) mgig ]
0 10 off of off
QW=7 0 1 of] of) o (3.44)
0 00 1 0 -t
0 00 0 1 0
| 0 00 0 0 1

Complete expression of the @'s are given in Appendix B, and the expansion of the trans-

versality condition for the first order case is

TX) sin6 T2 cos6
_ vac 0 _ vac 0
0= )"vl(m(z) _ k- '(2)‘t 8¢ +810)+ 7\'ul(m(g) IRYON +820) +

2),,(2
T

Tl (m(z) — k(z)t)2 ()\.vo sin 90 + 7\.u0 Coseo)} (3.45)

t=tfo

From Eq. 3.33, the first order variables at tg are related to their initial values at t, by

xl(tfo)] ® o [xl(to)} t 0 [P0
= Q¥ (tep, t X Q% (tep,t + | QY (te,T dt >+
[)"l(tf()) A ( f0 S) A ( fo S) A’l(to) [{) A ( S ) Péll)

—

@Dyl HO p2)
Tl[i%f)gtisi_ + tjs Q§A2>(tf0,t)[P1§1%)}dr (3.46)
where x; = {vy, u1, 1}, A = {Avi, Auts A Pry = {p1, P2, 0} and Py; = {pa, Ps. Pe}-
Substituting Eq. 3.46 into Eq. 3.45 and using the boundary conditions defined in Eq.
3.42, the unknown costate and final time corrections Ay (ty), Ay1(to)s Ar1(ty), Tq can be
found from a set of linear algebraic equations.

Figures 3.12 to 3.18 give the zero and first order results for a no-aerodynamic force
case (obtained by setting the reference area S = 0). The optimal solution obtained from a
multiple shooting code [10] is also included for comparison. As far as spherical Earth and
back-pressure effects are concerned, the regular perturbation approach produces very
accurate results, especially in the state histories. Next the aerodynamic effect is included,
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the resulting angle of attack profile is shown in Fig. 3.19. No reasonable first order
solution is found at low altitudes in the region of high dynamic pressure and aerodynamic
forces. The first order solution over-corrects the zero order result and gives a very large
value of angle of attack that is not considered feasible. The conclusion that is drawn from
these results has been that the aerodynamic forces are simply too large to be ignored in the
zero order solution. Figure 3.20 show the ratios of the aerodynamic forces to the thrust
components along the optimal solution. The magnitude of lift to thrust ratio reaches almost
40% over some time interval during the first stage flight and indicates that a significant
amount of aerodynamics effects exist in the ALS vehicle.
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Figure 3.12. Regular Perturbation Results in v with
Spherical Earth and Back-pressure Effects.
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SECTION 1V

A HYBRID COLLOCATION/REGULAR
PERTURBATION ANALYSIS

This chapter develops a solution approach for nonlinear optimization problems that
seeks to combine the desirable features of analytical methods which are based on the use of
simplified models, and numerical methods that use elementary interpolation functions and
finite elements to represent the solution. The approach is developed for a combination of
regular perturbation analysis and collocation technique. A simple fourth order nonlinear
system is used to illustrate the conceptual approach for several possible levels of
approximation.

4.1 Introduction

Among the proposed analytical approaches for real time guidance in Chapter 3, the
analysis by regular perturbation expansion of the solution is most appealing. However,
crucial to the success of the method is that the optimal solution is reasonably approximated
by the zero order solution, so that the addition of first or higher order corrections to the
series solution (which usually is not convergent) results in an improvement in accuracy.
The approach has had great success when applied to systems with small nonlinear terms
[34, 35] so that the zero order problem is linear. Also, in certain applications a state
transition matrix may be determined for the first and higher order corrections, further
facilitating the solution process. The major limitation in guidance applications appears to be
that significant nonlinearities, such as aerodynamic effects must be neglected in the zero
order problem in order to obtain an analytic solution for the zero order problem, which is
also nonlinear even in the absence of aerodynamic effects. It turns out in this case that the
zero order problem is not sufficiently close to the original problem and the solution begins
to diverge even when a first order correction is attempted (cf. Sec. 3.2b). A second
drawback which is inherent in any attempt of analysis by model simplification is that a
significant amount of re-analysis is required when even a minor change in the optimal
control problem formulation is made.

Collocation [8, 36] is a general method for obtaining an approximate solution of
differential equations. It involves choosing simple interpolating functions and enforcing
the interpolatory constraints at specific points within finite elements to evaluate the
unknown coefficients. Thus when applied to an optimal control problem, it reduces the
associated two point boundary value problem to a set of coupled nonlinear algebraic equat-
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ions. Collocation methods have the advantages that they are simple to use for a wide
variety of optimization problems, and their accuracy can be improved by increasing the
number of elements used in the approximation. The major disadvantages are that there is
no general guarantee that the numerical methods employed will successfully solve the
nonlinear programming problem under all circumstances, and the dimension of the problem
increases proportionately with the number of elements.

It is apparent from the above discussion that the advantages of analytical and
numerical methods are in many respects complementary in the sense that if the advantages
can be combined in some way, then most of the important disadvantages (from the view-
point of real time applications) can be reduced. In this chapter, two of possibly many ways
to obtain such a hybrid methodology are presented, with the potential for use in the
development of real time optimal guidance algorithms. The first approach uses the method
of regular expansion to improve upon a collocation solution, thereby reducing the error for
a given number of elements. The second approach improves upon the first by using both
regular expansion and analytical methods to identify more intelligent interpolating functions
in the collocation method, again with the objective of improving the level of accuracy
without increasing the number of elements.

4.2 The Method of Collocation

Collocation is a method for constructing an approximate solution to a set of differ-
ential equations by using finite elements of polynomials or simple analytic interpolating
functions. The unknown coefficients are determined by enforcing continuity at the nodes
and that the time derivatives of the interpolating functions satisfy the differential equations
at some specified points within each element. We consider an optimization problem with
unperturbed (ie. g(x, u, t) = 0) dynamics dx/dt = f(x, u, t) and Hamiltonian H = ATf. For
simplicity, assume a first order polynomial approximation where the derivative constraints
are enforced at the mid point of each element. These constraints can be expressed as:

oo XXt _OH
J 'fj _’t\j—l oA E=(fj+fj_1)/2 ;x=(Xj+Xj_1)/2 ;7L=(7~j+7~j_1)/2

¢ = Aji-Aj1_ oH
J E] - Ej—l ax [=(lj+tj_l)/2 ;X=(Xj+Xj_l)/2 ;K=(AJ+XJ_1)/2

X(t) = xj1+pjt-t-)  ;j=1..,N

A.(E) = xj_l +Qj(i—ij_1) ; te [EJ—I’EJ] s E() =ty EN =t,+Tp 4.1)



where N is the number of elements. The control is assumed to have been eliminated using
the optimality condition. In practice, it is more convenient to directly evaluate the nodal
values (Xg, Ag, -.., XN» An) Tather than finding the coefficients of the interpolating
functions. Though higher order polynomials such as Hermite's cubic are generally
preferred (because of their smoothness properties), we consider a first order representation
to simplify the presentation, although the approach applies equally well for higher order
representations.

4.3 Regular Perturbation Formulation
A regular perturbation formulation may be introduced by rewriting the actual
dynamics in the following form:

X = pj+£(Hx—pj)

A =qj+e(-Hy —q;)
H, =0 s te[tjop i) (4.2)

Note that € has again been introduced as a bookkeeping parameter. The justification for
this step is that if the collocation solution alone accurately approximates the true solution,
then the second terms in Eq. 4.2 may be regarded as having a small perturbing effects on
the state and costate derivatives, which is actually zero at the mid points of the elements. If
the control cannot be eliminated explicitly in the collocation formulation in Eq. 4.1, then an
analytic portion IT(u, x, A) of the optimality condition (for which it is possible to eliminate
u) can be extracted such that

0=T+eMH, - (4.3)

Note that in the above equations H is the Hamiltonian corresponding to the original system
without a perturbation parameter. As presented above, a collocation solution may be
viewed as the zero order solution for the regular perturbation problem formulated in Eq.
4.2. Also, as will be shown by example in the next section, more intelligent choices of
interpolating functions can be identified from the necessary conditions, by utilizing to the
extent possible the analytically tractable portions of the solution. This results in a signi-
ficant decrease in the computational requirements for a given level of accuracy.

Now we can apply the perturbation technique described in the Section 3.2 to
improve the approximate zero order solution from collocation. For the higher order
problems defined in Eqgs. 3.29 - 3.31, we have:
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Ay === . .

Ui axan[i=GyHio /2 s x=tx a2 A=A )2
A 2P _ o’H

lzj oA 32}" t= (tJ+tJ_1)/2 x—(x +X; 12 X-—(l +7» /2
A, 224 _H

2570k Pk [t 2 s x=xex 2 s A=/
Ay =20 PH

2j 790 Rk [i=GHi )2 s x=(xjexj)/2 A=A /2

Clj =Pj + (E - Ej—l)ptj

oH 9’H
= {a— (t- )atal}

b=l )2 s x=(x4x;g /2 5 A=l _p)/2

Cz; =4q; +(f—fj—1)qtj

H . . &H
={——=(t=t,_ ) — 4.4
v O }—(tJ+t /2 X=X 4R p)/2 s A=(h A )2 (4.4)
and fork =1,
p, =0 b
llj di t > x=x]-l+p](i-i]-l) ;7&=7&.J_1+q1(i-i]_1) pJ
oH
P == A A A A =4, 4.5
21] ox t X=Xj_l+pj(l-tj-1);l=lj_l+qj'(t~lj_l) q-] ( )

where all the terms in Eq. 4.4 are constant™ within an element, and are evaluated using the
collocation solution. The matrix A is simply the perturbation of the original state and
costate dynamics evaluated at the constraint point of each element. The expression in Eq.
3.32, which now corresponds to a piecewise constant system matrix A, can be written as

xk®] o k(o) | Ty i i ~ | Pk
[Xk(f):l_QA(t’to)[lk( 0)] jt Q(, ’C)[ ]dt+jtoQA(t,t) Py dt (4.6)

*

If higher order interpolating polynomials are chosen, the dynamical system will be a
time varying matrix polynomial with piecewise constant coefficients.
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and for a constant system matrix Aj, it can be written as

x| _ ~a —xk(ij—l) Ty sa ol [P, s Py
[lk(f)]—QAj(t’t’—l)_lk(fj_l) +TO QAj(t,tJ_l)AJ Q +(t-tj1) a

_ Pt. ~ - Plk(t) ~ PN
+A] 1[ J} +jft_ IQAj(t,‘C)[ T; teltj,tjg] (4.7)
|

i Pk (D)

where Q Aj is the state transition matrix and Pr;> Q; are defined as in Eq. 4.4. Note that Q4

is not the same as in Eqs. 3.32 and 3.33 because A is defined differently. The state
transition matrix here may not have an analytic expression because the zero order solution
is not necessarily analytic. If this is true, we can solve Eqgs. 4.4 and 4.5 using the
sensitivity functions and superposition property of linear systems. This is done by
assigning a unit vector for the initial conditions, and numerically integrates the system from
to to to + Tg. Thus by changing the position of the non-zero element in the unit vector, the
sensitivity functions are obtained. This process can be done in paralle! for different unit
vector.

In the zero order solution, € in Eq. 4.2 is set to zero, which means that the standard
collocation constraints in Eq. 4.1 are employed and an approximate solution is obtained by
solving the algebraic equations. Then first and higher order corrections may be computed
by quadrature as explained in the earlier section on regular perturbation.

4.4 A Duffing's Equation Example

This investigation is carried out to demonstrate the hybrid approach outlined in the
preceding section. The example is based on Duffing's equation presented in its first order
form:

X=v ; X(0) = x4
v=—x-ax’+u  ;v(0)=v, (4.8)

and the objective is to

t

: 2
mm{sxxz(tf) FS 2+ [ A+ B—)dt} (4.9)
u 0 2

with S, S, being the weights on the terminal values and t; is free. The problem can be
converted to the Mayer's form in Eq. 3.17 (if desired) through the usual method of introdu-
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cing an additional state equation whose right hand side is the integrand of Eq. 4.9. We
investigate the problem in different levels of complexity according to how the dynamics of
the full system are treated.
a) Level 0 formulation

This is the degenerate case in which there is an analytic zero order solution, and

therefore collocation is not required (solely a regular perturbation approach as discussed in
Sec. 3.2). Let € = a, thus neglecting the hardening effect ax3 in the original problem. The

necessary conditions are:
X=v ; X(0) =x4
V=-x+u-ex ; v(0) = v,
Ay = Ay +E3A x> s Ay (tg) = 28,%(tg)
Ay = —Ay s Ay(te) = 28, v(ts)
Hy=u+A, =0
{H=Xxv+lv(—x+u—8x3)+l+u2IZ}Itf =0 (4.10)

The zero order problem (€ = 0) is linear and time invariant, and can easily be solved as

xo(t) cost sint (sint-—tcost)/2 ~tsint/2 x0(to)
vo(t) _|—sint cost tsint/2 —(sint+tcost) /2 || vo(ty) @10
Ao®D| | 0 0 cost sint o) |
Ayo(D) 0 0 —sint cost Avo(to)
where
t=t-t, ; to-t €[0,Tp] (4.12)

The above state transition matrix is also the state transition matrix Q4 (t,t,) for the higher
order correction. Given the boundary conditions of xy(0) = x,, vg(0) = v, Ay(Tp) =
28,x0(Tp), Ayo(Tg) = 28,v(Tp), the remaining unknowns A4(0), A(0), A,o(To),
Avo(Tp), Tg can be solved with a Newton's method using Eq. 4.11 and the corresponding
transversality condition
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{HO = A.x()VO - xvo)(() - )\.2‘,0 12+ 1} =0 (413)

To

From Eq. 3.29, the differential equations governing the higher order correction

dynamics are
Xk 01 0 07[xg vo(t) Py (D)
_(_j: Vi _ -10 0 -1 Vi +T_k —XO(E)-?‘\'VO(t) + sz(f) (414)
dt ka 0 0 0 1 ;"xk TO kvo(t) P3k(t)
Av] L0 0 -1 0 f[Aw ~Axo(® Py (D)
with the boundary conditions
Xk (0) = vi(0) = 0 5 Ay (To) = 284xx (Tp) 5 Ayk (Tp) = 28y vi (Tp) (4.15)

In this case, we have fork =1, 2:
P, =0 Py =—x3  :Pay=3hox3 Py =0
11 » F21 = 7Xp » F31 voX0 > Y41
P12 = V1T1 / TO ; P22 = —(Xl + )"Vl + X%)Tl /TO - 3)((2))(1
Py = (hyp + 3y ox3)Ty / To + 3Ay x5 +3hyoxoX) 1 Pp =-AqTy /Ty (4.16)

and the transversality conditions:

{Hy = Axtvo = Avi(ro +Av0) + Axovi = Avo(x1 + X(3))}

T(,:O

{Hz = AyaV0 — hv2 (Ko + o) + Axov2 + Ayixg = 3hy0x3%g

=0 4.17)

A1 (g + Ay +X0)+ A4 /2} T
0

which are needed to compute the first and second order corrections by quadrature. The
results are shown in Figs. 4.1 - 4.4 for S, = S, = 100, and a = 0.4. The first order state
and costate histories are stored and later retrieved by linear interpolation to construct the
second order solution. The optimal solution generated using a multiple shooting technique
is also included for comparison. These results clearly show that the series is not
convergent, and that the most accurate approximation is obtained using a first order
solution. If we regard this level of accuracy as insufficient, then the conclusion must be
that the nonlinear term (ax3) is too large to be neglected in the zero order solution.
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b) Level 1 formulation

This case illustrates the hybrid approach as outlined in the section on collocation,
using a piecewise linear representation to approximate the states and the costates for the
zero order solution. The interpolatory constraints for an N equally spaced segmentation
are:

X0j —X0j-1 _ Voj t Voj-1

To/N 2 P
V0j Vo1 _ _X0j*tX0j1 _ Avoj+Avojl it X0y
Ty /N 2 2 2 K
Ax0j —Ax0j-1  Avoj+Avoj-1 X0j+X0j-1.2
- 143 L2 | g
To/N 2 2
Avoj=Avoi-1 _ Ax0j—Axoj1 _ 418
To/N =- > = Qyj (4.18)
0

with the boundary conditions and transversality condition given by:
X00 = Xo SV00 =Vo 5 AxoN =2S5xXoN  ; AvoN =2SyVoN
A xONVON *+AvoN(—XoN —AvoN ~aXgN) +MooN /2 +1=0 4.19)

There are 4N+5 equations to solve for the 4N+5 unknowns of X, Vg0, Ax00> Ax00> - »
XON> VON» AxoN» AvoNs To- Solutions for several values of N are presented in Figs. 4.5 to
4.8. Note that accuracy improves with increasing N, but at the expense of having to solve
a large nonlinear system of equations.

The higher order dynamics in this case are

Xk 0 1 0 O7[xg Pxi| [Py
v - 0 0 -1f|v il [P ~ . .
df Vi |_ kTP POl b e b @20
dt }"Xk b 0 0 ¢ }"xk TO qxj P3k(t)
Avk 0 0 -1 0 [|[Ay Qvj | | Page (1)
where
c= 1+3a1x(2)E + b=6a(hyoxo): i=@+1.)/2 (4.21)
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The state transition matrix expression for this case is given in Appendix C. Fork=1, 2,
the forcing function terms in Eq. 4.20 are:

o 3

Py =vo—Pyxj s Pap = —xg —Ayp —axg — Pyj
3

P3; = Ayo(1+3ax3)—qxj 5 Pa1= —Ax0 —Qyj

Py =(vi+vo—px)T1 / To

P22 = {—cxl — 7\.\,1 ~-Xg - lvo - ax(3) - pvj }Tl /TO - 38.)(0 Ex% -1+ 38){(2) - C)Xl

Pyy = {chyy + by +Ayo(l +3ax§ ~ )Ty / Ty +6axg Ay +3akyo Ex%
+ (14 3ax3 — €)Ay; + (62ky0X( — B)X
Py = (—Ax1 —Ax0 —qv)T1 / To (4.22)
where
xo(t) = X0j-1+ pxj(f - fj_l) s vo(t) = voj-1+ pvj(f - Ej_l)

Axo () = Axoj-1+Qxj(t = tj-1) s Avo® =Ayoj1 +Qujt - 5= (4.23)

plus the boundary conditions in Eq. 4.14 by replacing xk(0), vi(0), x¢(To), vi(To),
Ak (To)» Ayk(Tg) With Xgg, Vko» XkN»> VN> AxkN»> AvkN- The corresponding expansion of
the transversality conditions in this case are defined as

_ 3 3
0 = Ay iNVON + AxONVIN — AviN(XoN +3XgN) + AyoN (=X1N —AvoN —2XQN)

3
0 = A oNVON + AxONV2N + AxINVIN = Avan(XoN +axpN) + AyoN(—X2N
—Ayan = 3axXGNXaN) + AyN(-XIN - 3axnx)) - 3N /2 (4.24)

First and second order corrections are computed for the case where N = 3 is used in
the zero order collocation solution (note here € is 1.0). The results are shown in Figs. 4.9 -
4.12. Comparison with the N = 3 results in Figs. 4.5 - 4.8 show that a significant
improvement in accuracy is achievable without requiring a large number of elements. In
Figs. 4.9 - 4.12 the second order solution is indistinguishable from the optimal solution.
The discontinuity in slope (which is a consequence of using first order interpolation
functions for the collocation solution) is also smoothed as the order of the correction
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increases. Contrary to Level 0's results, the second order corrections do not diverge due to
the fact that the nonlinear term has been accounted for in the zero order solution.
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¢) Level 2 formulation

As a second illustration of a hybrid solution approach we retain a portion of the
dynamics from the necessary conditions to identify a more intelligent interpolating function

for the hybrid Level 1 formulation. Consider the following simple modification of the
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regular perturbation formulation for this example:
X=v

v= pvj+E{—x—xv —ax3 —pvj}

Ay =qy+ e{kv (1+ 3ax?) - qxj}
Ay = —Ay (4.25)

Note that we interpolate only the variables that have nonlinear coupling, and that the result-
ing interpolation retains more of the dynamics in the original problem than in the Level 1
formulation. The interpolating functions in this case are:

n - 1 . . A
xg(t) = XO(tj-1)+[V0j-1 +5ij(t - tj-l)](t = tj-1)
vo(®) = voj-1 +Pyj(t— 1)

Ax0(D) = Axgj—1 +ax;(i - tj_1)
~ ~ 1 ~ A n A
Ayot) = lvO(tj—l) - I:)»xoj_l + quj(t - tj_l)](t - tj—l) (4.26)

Consequently, there are fewer unknowns (2N+5) to be solved and the dynamics retained in
the formulation should improve the zero order collocation approximation. This allows even
fewer elements to be used. To evaluate the zero order solution, conditions in Eq. 4.19 are
enforced by replacing xgn, Avon With xg(in), Ayo(in) from Eq. 4.26, and similarly for
the first order expressions. The forcing terms for this case are:

D= 3
P;=0 » Py = =xg = Ayg —axp — Py;
P3; =Ayo(1+ 33-7‘%)—ij ;P41 =0 (4.27)

and the state transition matrix is same as that in Level 1.

Figures 4.13 - 4.16 show the zero and first order state solutions for the case N = 2.
The results show that the zero order solution is dramatically improved especially in the state
variables in comparison to the zero order solution for N = 3 of the Level 1 formulation in
Figs. 4.9 and 4.10. The accuracy of the first order solutions in Figs. 4.13 to 4.16 are very
good and are almost riding on the exact solutions, even though a cruder segmentation has
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been used. A similar trend is also prevailed on the costates histories.
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d) Level 3 formulation

In this last demonstration, the Level 2 formulation is further enhanced. All the
linear terms are retained in the zero order problem, and the nonlinear terms in the v and A,

dynamics are approximated by piecewise constants. The resultant expressions become:
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X=v

V=—x—Ay+pyjt+ e{—ax3 - pvj}

ix = Ay + 0y +£{3a)tvx2 - qxj}

Ay = —Ay (4.28)

This is equivalent to the Level 0 problem except for the presence of two additional
unknown constants. This formulation represents an attempt to make maximum utilization
of the analytically tractable portion of the solution in selecting the interpolating function for
the collocation solution in the zero order problem. The zero order solutions in this case are
also similar to that for the Level 0 case:

x0(1) = (xo (1) — Pvj — Gxj)cOSt + Vo(tj-p)sint + Axo(tj—)[sint —tcost]/2
—()"VO(Ej—I) + qxj)i sint/2+ Pvj +Qxj

vo(t) = —(xo(fj_l) —Pvj~ qxj)sini +vg (Ej_l)cosf + lxo(ij_l)i sint/2
—(lvo(ijq) + qxj)[sinf +tcost]/2

Axo(®) = Ago(tj-1)cost+(Ayg(tj—)) +ayj)sint
Avo(®) = —Axo(tj_1)sint+ (hyo(tj-1) + qxj) cost — gy; (4.29)

where

= _ax? 0 = 3alhx?
P = T ety 3e{ax)

Ay (41725 x((@j+E_/2)
E=E—Ej_1 s ’t‘E[tj_l, t]] (4.30)

In this formulation, an efficient way to find the collocation solution is to solve for
the 2N+5 unknowns of x((0), v9(0), A0(0), Ay(0), Py1> Ax1» - PyN»> GxN> to using Eq.
4.29 in Eqgs. 4.30 and 4.19. The high order formulations are obtained in the same manner
as the previous levels and are not repeated here. The zero and first order results using only
one_element are shown in Figs. 4.17 - 4.20. Though the first order results are not as
accurate as those in Level 2 (because only one element is used), both zero and first order
solutions are far superior than the Level 0 results (Figs. 4.1 - 4.4) which correspond to the
degenerate case of only one element.
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4.5 Conclusions

A hybrid analytical/numerical approach for solving optimization problems using
regular perturbation and collocation methods has been developed. The hybrid approach
shows that it is possible to significantly improve a collocation solution without increasing
the number of finite elements. The loss in accuracy that results from using a smaller
number of finite elements is compensated by the addition of higher order corrections to the
solution based on regular perturbation theory. Viewed a second way, using collocation to
solve the zero order problem in a regular perturbation expansion allows more of the
dynamics to be retained in the zero order solution. It has also shown that further dramatic
improvements can be achieved by selecting more intelligent interpolating functions which
are derived from the analytically tractable portions of the necessary conditions. The results
show important implications in real-time guidance applications which will be demonstrated
in Chapter 5 on the launch vehicle problem.



SECTION V

THE HYBRID APPROACH TO NEAR-OPTIMAL
LAUNCH VEHICLES GUIDANCE

This section applies the hybrid analytical/numerical approach of Section 4 to the
problem defined in Section 2. The feedback guidance approach is based on a piecewise
nearly analytic zero order solution evaluated using the collocation method. Each piecewise
representation of the collocation solution obeys a bilinear tangent law for the thrust vector
angle, which serves as an intelligent interpolating function for the collocation method. The
zero order solution is then improved through a regular perturbation analysis, wherein the
neglected dynamics are corrected in the first order term. Wind shear effects and constraints
are also investigated.

5.1 Zero Order Solution

As discussed in Section 4, it is possible to improve a collocation solution by using
more intelligent interpolating functions than the first order representations in Eq. 4.1. The
interpolating functions can be derived from analysis of the analytically tractable portions in
the necessary conditions. In this case if spherical Earth and atmospheric effects are
neglected then the previous linear tangent law guidance solution results (Sec. 3.2b).
However, the costate dynamics are poorly represented as either constant or zero. Hence,
the strategy is to keep the approximation for the state dynamics and use the collocation
method to improve the representation of the costates (cf. Level 2 and 3 formulation in Sec.
4.3). This also reduces the number of unknowns by half. Thus instead of using Eq. 4.1
to interpolate both the states and costates, only the latter are chosen for interpolation. The
perturbed collocation formulation in Eq. 4.2 becomes:

T(i) _ 'I‘,(i)A(i)

. Tyac e sing—g0 + F{ 3D - p)AD sin6 — DD siny + LV cosy
- v

m(t) m(t)
s _ T\(zia)c - ﬁ(i)Ag) cos0 -0 + e{ @® - p)Agi) c0s0—D® cosy - LD siny
m(t) u m(t)
+§l(,i)—%'}
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r=v
: oH . oH .
Ay = Qvj +8(_§;_ij) s Ay = qyj +8(_‘a‘;—qm) 3J=L ..., N

- oH d . . . .
A =qy +£(_§r—_qrj) ; -a-a(l,vv+7..uu+krr) =0 5.1

where

v=Vcosy+W; ;u=Vsiny+W

(T‘(’;)c -p Ag)) sin® — DWsin Y+ L® CoSY I u?
H=1, 2t
m(t) .t
+Ay (T~ pAD)cos6 - DD cosy — LD siny LA (5.2)
m(t) r

The terms B, g‘(,i), El(,l) are approximations for the average values of the engine nozzle

back-pressure and the spherical acceleration components for each flight stage. From
previous investigation it is found that including partial terms for these effects improve the
approximation, and for the present problem these parameters are chosen as:

5(1) =plhg)/2 ; gsl) = He /rg —u(2, /1o ) -g-‘(ll) =0
@ =0 ;80 =50 /2 gD =0 (5.3)

and they are assumed to be updated continuously in closed loop implementation.

In the following we make use of the analytic portion of the optimality condition in
Eq. 5.1 to generate the zero order control, by using the form in Eq. 4.3. This amounts to
regarding the dependence of aerodynamic forces on 0 as a perturbation of the optimality
condition, which results in the celebrated bilinear tangent law

Avoj—1 +Qyi(t—t;_
tan B (£) = v0j-1*Qvj( 1)

(5.4)
Au0j-1+Quj(t —tj-1)

With the above formulation and using the expression in Eq. 5.4 to eliminate the
control, the zero order solution (€ = 0) can be expressed as:
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¢+A . JPTIRRS | 0
vo(t) =vo(tj-)+—3 Q) {msmh (tan(¢ +M)) —sinh (tan(p)} ot
—(t— tJ_l)g(’) sy te [tj—l’tj]
FE [ 1448 -1 0
ug(t) =up(ti-p+—7y @ {m sinh™" (tan(¢ +n)) — Esinh ™ (tan (P)} o(tj-1)

—(t—t; 1)8(')

() = 1(tj1) - F(lD)C (A - tan @) ~22 sinh™!(tan(g + ) - sinh ! (tan )]
A 1+ A2

®
secg—csinh ™ (tan@)ll 7 +vo(tj-)-EP—

ot 1 -t )-Gatjp)
Avo(®) = Ayoj-1 +Qvj(t —tj-1)

Auo(t) = Ayoj-1 +Quj(t — tj-1)

Aro(t) = Ar0j-1+qr(t - tj-1) (5.5)

where

A=qd+dd i B=(c,qyj+Culy)/A 5 C=+c2+ck-B?

D=q,/A ;E=(cyA-qyB)/(AC) :F=T AP
=Aoni 1 —Quit: . =Auni 1 =il . = (i) + k(l)t .
Cy v0j-1 ~ Qvjtj-1 > Cu u0j-1 ~—Qujtj-1 »Cm =M j-1
_ At+B tan '(1/A) ,A20
o(t) = tan” (——) ;M= (/)
w+tan (1/A),A<0
_cpA+kUB ‘- qyiC . cyA-qyB
ke , CyA —qy;B ’ qy;C

(5.6)

c+A
G(t J_1) @ { m sinh™ (tan((p +M))—sinh™ (tan (p)} 0 (tj—l)

The above expressions constitute a set of nonlinear interpolating functions and the zero
order solution is now expressed in terms of the unknown costate nodal values. To evaluate
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these values, the collocation constraints on the costate derivatives in Eq. 4.1 are enforced:

gy s o
vj t—ti g v [1=(tj+t;_1)/2 Ay =Ry j+Ay0j.1 /2
a0=(hy0j+ry0j1)/2: Aro=(hroj+rr0j-1)/2
q; = M0 ~huoi1 __OH
uj G-t ou |t=(tj+t;1)/2; . 3 Apg=(hpqj+hrgj1)/2
q.___)\rOj_erj—l __oH 5.7
By tj - tio1 or [t=(t;+t;_1)/2; . .. s Apg=(Argj+2roj1)/2

Since more control activity is expected inside the atmosphere, a denser
segmentation is used for the first stage flight, whereas a 1-piece segment is sufficient for
the subsequent more nearly exoatmospheric second stage flight. The total number of
unknowns to be solved in the zero order problem are 3N+4. Open loop solutions in a
stationary atmosphere for several increasing values of N are given in Figs. 5.1to 5.6. The
segmentation is N-1 elements for the first stage flight and one element for the second stage
flight. Zero order results using only the regular perturbation approach as given in Sec. 3.2
are also included for comparison. Significant improvements are observed in the costate
profiles with the hybrid approach because part of the aerodynamic effects are now
accounted for in the zero order formulation. In particular, note from Figs. 5.4 - 5.6 that the
zero order solution of Sec. 3.2 amounts to ignoring aerodynamic effects and invoking a
flat, non rotating Earth approximation. This results in Ay and Ar being constant and Ay
being linear in time (see Figs. 5.4 - 5.6), which from Eq. 5.4 gives the linear tangent
steering law. This largely accounts for the failure of the regular perturbation method when
aerodynamic effects are included.
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5.2 First Order Solution
In this case, the linear differential equations satisfied by the first order terms have
the following form:
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i v 7 i 0 0 0 a14j a15j 0- [ Vi T
u 0 o0 0 a15j 22sj 0 yu
r 1 0 0 0 ol r,
aclvj aqvj a(lv_| aqvj vj aqu a‘lvj
d| a fy +1f; 1| a
o M=l o a @ T a2 e vi
t dqyj 94y 94y 9qy _ 9qy 9q 0qy;
uj uj uj u, g uj W, Y 0
Ml 15 e T o, T Moe w2 7o hal
94y 99y 095 99y _0q g 9qyj
A 3 1 0 D4f—3 D46, —L 0 || A
M T o o, ‘e o, 2ee LM
[c1i®] [ py®
c2i(M | | p2j(®)
vo(t) 0
+% Qvj {+ P4j(t) s te[tjg,t;l (5.8)
0
Qyj Ps;(t)
Ay Psj(t)

Complete expressions are given in Appendix D. As explained earlier, the first stage flight
time is fixed, T = t¢ - t5, and Ty represents the zero order second stage open flight time.
Therefore, Ty = 0 for the dynamics describing t < t;, and the second term in Eq. 5.8 is
dropped for the elements corresponding to this time interval.

Experience has shown that higher order perturbation corrections are not sensitive to
using an exact state transition matrix. This behavior is analogous to the practice of using an
approximate Jacobian to solve nonlinear algebraic equations. So we introduced the
following approximation to simplify the analysis. The 3 x 5 lower left corner block of the
system matrix in Eq. 5.8 represents the effects that second order variations of the
atmospheric terms have on the costate variables. By neglecting these terms we are able to
derive an approximate state transition matrix for the first order system:

L o0 ) o) of)
0 10 m(zlzj m(2'5)j mggj
QE&)J (t, tj-l) =|t— tj—l 01 (D§14)J (D:(;S)J C!)glgj ;te [tj—l’tj] (5 9)
0 00 1 0 t 1~ t
0 00 O 1 0
0 00 O 0 1
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Appendix D details the @ terms in Eq. 5.9. The lower right hand block in Eq. 5.9 accounts
for spherical Earth effects on the costate solution, neglected in the zero order solution. As
will be shown in the numerical results section, this is an important correction for the
exoatmospheric phase of flight. By successively applying Eq. 4.6 of N times, the
perturbations at ty for a first order system with piecewise representation are now given by

[Xl(tN)

2) a ) 1)) x1(to)
xl(tN):| Q (tN,tN——l)Q (tN—l’tN-—Z) QAI (tl’to)|: +

ll(to)
| [PR@] =N

2

T+ Q() tas EN
T C(Z)() P(2)(‘C)}d Pa (N N 1)

iy 0 i

P(l)(’t)

1 t. 1
D WRCHENHIRYMCR) p<1> © (5.10)

5.3 Numerical Results

Figures 5.7 to 5.10 show the closed loop results for the state variables expressed in
the wind frame coordinates. The control is updated at every second and is held constant
within each update interval. The total number of elements used in this case is N = 8. Note
in Fig. 5.10 that jumps in angle of attack occur at about M = 1.3 and M = 2.3. These are
due to the shadowing effects of the booster which causes the control solution to first follow
a higher o profile (to reduce drag) followed by a lower profile to correct the trajectory.
There is another third small jump at the staging time due to the discontinuous dynamics.
This figure also shows a major difference between the zero order and first order solution
for o during the end of the second stage flight, which is due to the absence of the spherical
Earth corrections in the zero order solution. Even though a large difference exists between
the two solutions, the trajectory and the performance index stay very close, and imply that
the optimal result is insensitive to control variations.
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Next, we include the effects of non-stationary atmosphere on the solution. The
wind profile used is the interpolated mean winter profile for Kennedy Space Center, shown
in Fig. 2.11, and this profile is accounted for in the guidance solution. From earlier

investigation it is learned that the performance is not sensitive to control variations, there-
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fore attempt is not made to incorporate the control constraint in the analysis. Instead a hard
bound on the control is enforced in the simulation, but not in the guidance derivation. The
bounds in this case are

~167580deg Nm ™2 < aq < 167580degNm™2 (5.11)

They represent the dynamic loading limits on the vehicle. In addition, the first stage Cp
profile was convexized, as shown in Fig. 5.11. This is done to eliminate the objectionable
jumps in control that are observed in Fig. 5.10, which have negligible effect on the
performance. The results of the closed loop simulation for the unconstrained case are
depicted in Figs. 5.12 and 5.15, which show excellent agreement between the first order
guided solution and the optimal solution. Fig. 5.16 illustrates the effect of the aq
constraint, which is active only over a minor portion of the trajectory. The performance
results for this case summarized in Table 5.1.

Table 5.1. Performance Comgarison for ALS Vehicle Guidance.

optimal 1st-order Oth-order

h(tp) 148160m 148160.0m 148160.0m
Ytp) 0° 0.000° -0.001°
V(tp 7858.2ms!  7858.20ms-!  7858.14ms"!

te _ 377.372s _377.382s 378.397s
100

1st
A optimal

gamma (deg)

0 T T v T T
0 100 200 300 400
Time (s)
Figure 5.13. Closed Loop Flight-path Angle Profile Under
Wind and aq Constraint.
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Figure 5.15. Closed Loop Angle of Attack Profile Under
Wind and aq Constraint.
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Figure 5.16. Closed Loop aq Profile Under Wind
and oq Constraint.

In this example, the aerodynamic forces have a major effect in the middle portion of
the first stage ascent. This is illustrated in Fig. 3.20 which shows the ratios of the lift and
drag forces to the thrust components. This explains why the regular perturbation analysis
in Sec. 3.2 is not able to correct for the effect of aerodynamic forces in the first order
analysis. These forces are simply too large to be treated as perturbation effects, and
consequently the calculated first order correction diverged. Use of the collocation method
in forming a zero order solution largely accounts for the aerodynamic effect through the
mid-element constraints in Eq. 5.7.

5.4 Remarks on the Numerical Results

The results show a high level of fidelity and justify the approximation we have
introduced to obtain the state transition matrix in Eq. 5.9. In particular, the first order
solution shows significant improvement by correcting for the spherical Earth effects, as
illustrated in Fig. 5.10. In this case the zero order solution fails to anticipate the sharp
change in the radial acceleration as the orbital condition is approached, even using a
continuously updated guess of 8. This results in an excessive pull-up of the vehicle
during the initial portion of the second stage flight, and is later forced to correct with a large
negative o to meet the terminal conditions. However, both zero and first order results give

extremely good orbit injection accuracy without requiring a high rate of control update.
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The computations for the cases presented here are done on a SPARCstation 1. The
CPU time needed for a control update ranges from 0.65s for an 8-element case to less than
0.15s for a 1-element solution during the second stage flight. The Newton's method with
Broyden's update of the Jacobian [11] is used in the zero order collocation evaluation and
the solution converges typically in 4 iterations. It is apparent from the numerical results
that the first order correction is needed mainly to correct for spherical Earth effects which
are dominant only in the second stage of flight. Therefore a significant additional savings
in computation time would have resulted had we computed this correction only for that
phase.

5.5 Wind Shear Investigation

To assess the effectiveness of the hybrid approach against wind shear, we show a
typical scenario. First, an open loop trajectory using piecewise linear thrust vector angle
program for the first stage flight, followed by the closed loop hybrid approach guidance for
the second stage flight is simulated with a hypothetical wind shear (cf. Fig. 5.17). The
open loop part of the guidance is derived from a linear interpolation of the previous results,
which is based on the nominal mean wind profile. Second, a guided trajectory using
closed loop guidance for both the first and second stage flight is simulated. This guided
solution is assumed to have detected the wind shear, and is therefore included in the
calculation. To assure structural integrity, both cases are incorporated with the aq
constraints. The first case represents the approach for present launch vehicle operation, ie.
an open loop guidance for the endoatmospheric flight using pre-flight atmospheric
conditions, and compensated by a closed loop guidance for the exoatmospheric flight. The
second case represents the proposed approach for ALS, ie. real-time near optimal guidance.
Figs. 5.18 - 5.20 compare the 'Open loop' and the 'Guided' solutions. A point of interest,
the 'Nominal' solution with the same linear piecewise control program flying under the
nominal wind condition is also included. The 'Open-loop' solution gives poorer
performance (cf. Table 5.2). The final time to orbit is 1.13s longer (equivalent to a loss of
45501bs in payload) than the guided solution, and is also worse than the guided solution

Table 5.2. Performance Comgarison under Wind Shear.
Guided (1st)  Guided (0Oth) Open loop

h(tp) 148160.0m 148160.0m 148160.0m
Yt 0.000° -0.000° 0.000°
V(tp) 7858.20ms-1  7858.18ms-1  7858.20ms"!
J=t 377.287s 378.243s 378.413s
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using only a zero order solution. If the magnitude of the wind shear is further increased by
22%, then open-loop guidance will result in a catastrophic failure unless the oq limit is

exceeded.

200000
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Figure 5.19. Comparison of the aq Profiles under
Wind Shear.
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Figure 5.20. Experienced Horizontal Wind Speed for the
3 Different Simulations.
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SECTION VI
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The fundamental problem in treating launch vehicle dynamics by singular
perturbation methods relates to the inherent large value of longitudinal load factor. Asa
result, the zero order reduced solution gives a very poor approximation. A manifold
solution was also attempted to account for flight path angle dynamics, but this method also
fails due to the fact that the dynamics are not separable in the same manner throughout the
ascent profile. Regular perturbation analysis gives a better solution in the absence of
aerodynamic forces. However, the approach cannot handle guidance for the atmospheric
flight phase, which is the main issue of this research. The neglected aerodynamic forces in
the zero order solution are simply to large to be considered as a perturbation effect.

A new hybrid approach for the solution of nonlinear problems in optimal control
has been developed for this application. This approach is hybrid because it combines the
desirable features of numerical and analytical methods. The numerical method of
collocation allows a simple formulation for solving a wide variety of optimization
problems. The disadvantage of requiring a large number of approximation elements and
solving a large dimension set of algebraic equations are compensated for by the analytical
approach of regular perturbation. The regular perturbation approach provides higher order
correction over the collocation solution without increasing the number of approximation
elements. It can also be used to identify intelligent interpolating functions for the
collocation solution, which results in a further substantial reduction in the number of finite
elements needed for a given level of solution accuracy. These attractive features promise an
enhanced real time capability in the solution of optimal control problems, which has been
demonstrated in the launch vehicle guidance application. The main results on this problem
are that a bilinear tangent steering law can be employed in all flight phases, including the
atmospheric phase, and that the collocation solution can be obtained using a small number
of elements.

6.2 Recommendations for Future Work
Many important issues remain for future research, and the following
recommendations are made in increasing order of complexity:

Identifying More Intelligent Interpolating Functions - Though the zero order solution is
capable of handling partial acrodynamic effects, spherical Earth effects were not directly
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incormorpated in the analysis. This leads to a poor representation of the zero order solution
as the vehicle approaches orbital speed. An investigation should be made to account for
this effect in the formulation, and a proposed way to set up the problem is to add a constant
perturbation term, similar to the Level 3 formulation in Sec. 4.3.

More Accurate Model - Improvements can be made in the launch vehicle problem by
considering a more elaborate dynamic model. The rotating Earth effects and a more
complex propulsion model should be considered. It may be necessary to modify the
interpolating solution in the collocation approach, depending on the magnitudes of these

nonlinearities.
Multi-flight Task Requirements - The hybrid guidance approach can be extended to handle

various flight tasks such as deorbit and rendezvous. These requirements will pose terminal
constraints on both the downrange and crossrange values, which can be included in a 3-D
formulation. Such multi-flight task guidance capability would be very useful to manned
vehicles like the Space Shuttle.

Constrained Problem Analysis - For the launch vehicle problem, it is coincidental that the
performance is insensitive to control variations, thus allowing the exclusion of the control
constraint in the analysis. However, it would be useful to complete the hybrid approach to
include analysis of constrained optimization problems. To address the constrained problem
requires a guess of the switching structure and a formulation of variable time intervals in
which the constraint becomes active.

Launch Vehicles Range Safety Concerns - The range safety issues related to the launch
vehicle ascent trajectory occur in the form of state constraints. To avoid potential disaster
or to facilitate the retrieval of reusable boosters, the vehicle may be constrained to fly within
a narrow corridor of air space. Present methods to handle this type of problem are not
efficient and rely purely on numerical means. Future study should include a systematic and
simplified formulation that is tractable by analytic methods such as the hybrid approach.
Hybrid Approach with the HIB Expansion - As demonstrated in [14, 37], the regular
perturbation analysis can be carried out using the Hamilton-Jacobi-Bellman equation. In
this formulation, the perturbation corrections are not represented by a set of linear O. D.
E's., and the calculation of the state transition matrix or sensitivity functions are not
required. Instead the perturbation corrections are evaluated simply by quadrature.
Proposed future research should include a study of the relationships between these two
types of formulations (the HJB and the state/costate expansion) and the hybrid approach
using the HJB expansion, which promises a much simpler and more efficient evaluation of
the perturbation corrections.
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Manifold Investigation - The failure of the energy approximation analysis indicates that the
zero order (¢ = 0) reduced solution is far from satisfactory and a higher order
approximation is needed. One distinguishing feature of Manifold Theory is the inclusion of
¢ in the manifold condition [24] which considers the fast variable as a function of the
singular perturbation parameter in addition to the slow variable. Although this approach
was not successful for this application, due to the varying role of the altitude state, it may
be highly useful in other nonlinear optimization problems. A drawback in our analysis is
that we had to numerically experiment to determine a solution close to the manifold. This
has been accomplished by visual examination of the trajectories in Fig's. 3.5 and 36. It
would be highly desirable to develop an algebraic test for when the initial condition lies on
the manifold solution. An alternative would be to develop an iterative process that
converges to the manifold solution.
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APPENDIX A
Derivation of Eq. 3.32

We want to show that

T ¢ 1( )] t—to | Xo(1)
Q =T —2[ 20 Al
T tf AT )[C( 9 S PO (A1)

in Eq. 3.32. Let fi = Xg(xg,A0,7); £ = Ag(X0,A0,7), assuming u being eliminated and
recall that

ofy of,
—_ - 1 ; =f — —_ A2
Ci=f1+(t—-ty) 3t Cr=fH+(1-1ty) 3t (A.2)

The left hand side of (A.1) becomes

_ afl / aXO afl / 87\.0 fl
T thA(t t){ [(t to)[ D ¢ )[afz Joxg o, /87»0} [fz]}dt (A.3)

Using integration by parts on the first term in (A.3), we have

T, - A=t et (_g . )[fl]
To{(r to)QA(t,T)l:fz]}T=to TOt{)(t to) dtQA(t’T) £, dt

A

1 / aXO afl / 87»0 fl
-k - A.4
To t{,(t 2t t)[afz 13xg 3y 13hg || £ I (A.4)

Substituting the state transition matrix property

(A.5)

- , f;
219% Qniry = QA(t,t)[a 1/9%g afl/axo}

ofy /9xg ofy /dAg

into (A.4), the last two terms cancel and the result is demonstrated. The above state
transition matrix is also used to derive Eq. 4.7.
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where

State Transition Matrix Expression in Eq. 3.44

APPENDIX B

The state transition matrix used in the regular perturbation approach in Sec. 3.2 is

100 ol ol ol
1 1
0 10 o)%,‘§ co(z‘s) co(%)
R 1 1 i
A2 0 1 ol off ol
0 00 1 0 tl—t2
0 00 O 1 0
0 00 0 0 1
ol (t) -7 )
o = 1{d(ty) - 22ty
ol =2y - Dy + ol
o -of

offd = 78d(t7) - 752t

® = (1) - 1Dty + o)

off) = 1 (ty) - 2§l (t) - (12 — tm{R )

ol = 7§ (ty) - n{2(t) - (1 —tpm{d(ty)

o = 7 (ty) - 7§t - (1 — (1) + 1ol

Asin(6(t)) + cos(6(t))

T14

Dy = A {-sinh”lltan(e(t)) -m] _

@? +1°?

Asmh_l[tan(e(t)) T])] sin(0(t)) — A cos(B(t))

A2+1

@ = A{

(A +1)%2

)

Al +1

(B.1)
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i)/ _ o) (PFA)sinh™ U tan(0(t)) - m] (p + A)cos(6(t)) + (pA — D)sin(6(t))
Tig(t)=B

(A2 + 1)3/ 2 A2 +1
T
A= va((:l) ;B=2
Cuok q

20y = Al =27 sinh~[tan(®(©) - ) | Asin(®(t) +cos(®(®)
» (A& +1? A +1

7)1y = l A@+ Dsinh~ [1an(8(1)) =) _ (p+A)sin(B(t)) = (pA ~ Dcos(B(t))
26 (A2+1)3/2 A2+1

(A% +1)>/2 A2 41

OES:

0o = B{[A + tan(8()]sinh~"[tan(@() -] Asec(e(t))}
{ (A% +1)%2 A +1

A[A + tan(8(t))]sinh ™ [tan(®(®) - m)] _ sec(e(t))}

7)) = BJ =@+ ANA+ tan(®()sinh fran(B() =] _
q @ +1¥?

(pA - l)se<:(9(t))}
A +1

All the variables are evaluated at the zero order values.
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APPENDIX C
State Transition Matrix Expression of Level 1 Formulation in Sec. 4.3

The state transition matrix of Level 1 case for the Duffing's example is

a1 12 413 a4
a2 a;; a4 ax4

Qa(tt,) = C.1
Altto) —bayy bayy ap -ap ©v
—bazy -—bajz -a;p ap

For b > 0:

a=c-vb ;B=c+b st=1-tg

a11=:;l ;cos(t«/—)+; [;cos(t\[_)

app = ~Bo \/._sm(tw/_ o)+ \/_sm(t\/— )

aj;3 = @ _B\/_sm(t«/—)+ \/_sm(t\/—)

a14=a Bcos(t\/_ a)-— cos(t\/— B)

C2 ‘\/— J—
+ t

az = (—ﬁ)\/—S( ) (_B\/—sn( B)

ags = a‘/_[;sm(t«/_ o)+ — */_ sm(tJ_ B) (C.2)
For b <0:

0= 2\/c2—b—20)/2 ;¢=\j(c+\/c2—b)/2

2_ 4?2

aj) = cosh(Bt)cos(ot) + c+6 sinh(Ot)sin(¢t) ; a4 = ?;lasinh(ef) sin(¢t)

92+¢2—

c ) 2 142
26(92 N 2) sinh(Bt)cos(¢t) +

apy = %(-gﬁ;—)cosh(ef) sin(1)
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a3 = ;G(OT—iq)T)Sinh(ei) COS(¢E) + m cosh(6t) Sin(qﬁ)

2 2 2 2 2 2
2y, == —23(;; Tq;) L) sinh(6t) cos(¢t) + b —;b(;g (_? ¢;) 0 )cosh(ef) sin(¢t)
agy = gelsinh(ef) cos(ft) — %cosh(ef) sin(ft) (C.3)

The state transition matrix has the same structure of that in Level O for b = 0.



APPENDIX D
System Matrix and State Transition Matrix Expression
of the First-orderFormulation in Sec. 5.2

The terms defined in Eq. 5.8 have the following expressions:

ag; = Teae ~ DAY Nag |
TR (B
ajs; T\(';)c ﬁAgl) ~Avoruo
ITTTm (g +3) 2
e T(l) pA(l) )\'2‘,0 :
BT w02 +a30) "
£ = —~cos6y
! Ay sinOg + Ay cosfy
£ = sinBg
2 A'VO sin 90 + 7»“0 COSGO
U X R W
! m(t) mt)  [iZg+ A
)= T —PAL| -t kD] A
T m m(t) |52 +A
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b2y = g3 =0 {x B0 gz}

TR +02 | 038y 036,
p =—H g - Nyj Avodg1 / 989 +Aygdg) / 98g
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m(t) o

The remaining partial derivatives (9gyj/dv, 9qyj/du, ... ) are similar to the last three
expressions in (F.1).

The approximate state transition matrix in Eq. 5.9 can be obtained by taking the
partial derivatives of the zero-order solution in Eq. 5.5 with respect to the initial conditions

{votj-1)» u0(t-1) T0(tj-1)> Avo(ti- 1) Auo(tj-1) Aro(tj-1) ). So we have:

ovo(t)  ovp(t) dvp(t)  dvg(t)

T ey O ot de

e R R
S rran
S o T

or or
W36 = o) _ _dro®

= = D.3)
axro(tj_l) aqvj (
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For example, using the chain rule, ;4 is given by

=aV08D+aV()aA+aV0 ag+av08(p+avoan
oD doc, O0A doc, 9g dcy, 0@ dc, In dcy

W14 (D.4)

Symbolic manipulation programs such as Mathematica, MACSYMA can be used to obtain
the analytic expressions of the above derivatives, and to write the subroutines needed for
their computation.
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