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OPTIMAL GUIDANCE LAW DEVELOPMENT

FOR AN ADVANCED LAUNCH SYSTEM

Anthony J. Calise* and Martin S. K. Leung**

Georgia Institute of Technology, GA 30332

SUMMARY

The objective of this research effort was to develop a real-time guidance approach

for launch vehicles ascent to orbit injection. Various analytical approaches combined

with a variety of model order and model complexity reduction have been investigated.

Singular perturbation methods were first attempted, and found to be unsatisfactory. The

second approach based on regular perturbation analysis was subsequently investigated. It

also falls because the aerodynamic effects (ignored in the zero order solution) are too

large to be treated as perturbations. Therefore, the study demonstrates that perturbation

methods alone (both regular and singular perturbations) are inadequate for use in

developing a guidance algorithm for the atmospheric flight phase of a launch vehicle.

During a second phase of the research effort, a hybrid analytic/numerical

approach was developed and evaluated. The approach combines the numerical method of

collocation and the analytical method of regular perturbations. The concept of choosing

intelligent interpolating functions is also introduced. Regular perturbation analysis

allows the use of a crude representation for the collocation solution, and intelligent

interpolating functions further reduce the number of elements without sacrificing the

approximation accuracy. As a result, the combined method forms a powerful tool for

solving real-time optimal control problems. Details of the approach are illustrated in a

fourth order nonlinear example. The hybrid approach is then applied to the launch

vehicle problem. The collocation solution is derived from a bilinear tangent steering law,

and results in a guidance solution for the entire flight regime, that includes both

atmospheric and exoatmospheric flight phases. Assessment of performance and

reliability are demonstrated through closed loop simulations. The hybrid guidance

approach delivers over 99.9% of optimal performance and orbit injection accuracy while

the control computation is completed in tenths of a second on a SPARCstation 1. Wind

shear effects and a control constraint are also addressed.

* Professor, School of Aerospace Engineering.
** Graduate Research Assistant.
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A second effort that paralleled this work under the same grant number was lead by

Dr. Dewey Hodges, of the School of Aerospace Engineering at Georgia Tech. This work

has been documented under a separate contractor report.
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SECTION I

INTRODUCTION

The objective of the Advanced Launch System (ALS) program is to develop an

unmanned, all-weather launch system for placing large payloads (100,0001b - 150,0001b)

into a low Earth orbit at a fraction of present cost. Part of the guidance requirement is to

realize an efficient algorithm for solving the launch vehicle ascent trajectory problem.

1.1 Background

To date, first stage guidance has been realized in open loop form. The vehicle is

typically guided by using a pre-stored steering program. The steering program is calculated

as a part of pre-launched preparation to account for structural loads from aerodynamic

forces and from atmospheric disturbances such as wind shear. Typically it involves flying

with nearly zero angle of attack, and performing a gravity turn [1]. Near zero angle of

attack is employed to avoid creating excessive aerodynamic bending moments, which is

proportional to the product of angle of attack and dynamic pressure. Guidance for the

second stage and any subsequent stages is closed loop, employing various approaches.

The Saturn V vehicle uses an Iterative Guidance Mode (IGM) [2], and the Space Shuttle

employs Powered Explicit Guidance (PEG) [3]. These are retargeting schemes because

the guidance commands are recalculated at each update cycle using the current vehicle's

position and velocity vectors as the initial conditions for the optimization process.

Trafliti0n_l t_uidance Solution Methods

Traditional launch vehicle guidance may involve either two or three different phases

[ 1 - 3]. The first is an open loop guidance phase for the atmospheric portion of flight

which typically flies with a non-optimal piecewise linear attitude program. The second is a

closed loop guidance phase for the exoatmospheric portion of flight. This has an analytic

solution under certain assumptions. Then a third closed loop phase is possibly required

when the vehicle is approaching orbital conditions for final precision orbit injection.

Numerical approaches to optimal guidance typically employ either nonlinear

programming [4 - 9] or multiple shooting [10]. In a direct method formulation such as

nonlinear programming, the optimization problem is transformed into a parametric

optimization problem. The unknown control profile is parameterized with undetermined

coefficients of typically piecewise linear polynomials. The states are considered as

functions of the control through the differential equations of dynamics. Constraints, if any,

are enforced discretely along the trajectory, typically at a finite number of nodal points of

the parameterized control. So the original infinite dimensional problem is approximated by



afinite dimensionalproblemin thereducedspaceof thecontrolparameters,andgradient

techniquesareusedto searchfor asolutionthatoptimizestheperformanceindex. In [8],

HargravesandParishavecombinedthenonlinearprogrammingmethodwith collocationby

approximatingall the stateandcontrol historieswith piecewisesmoothfunctions, thus
avoidingany integrationprocess.Similar to thecollocationmethod,Pamadi[9] hasused

splines as function of velocity to approximate the altitude profile and applied an

optimizationalgorithmto determinetheunknowncoefficientsof thesplines.To beuseful

asafeedbackguidancesolution,it is essentialthattheseapproachesconvergequickly and

reliably at eachinstantthesolutionis updatedduringtheflight.

On the other hand, mul_tipleshootingis a techniqueusedin indirect methods.

Insteadof evaluatingtheperformanceindexdirectly,optimizationis achievedby satisfying

a setof necessaryconditionswhich areexpressedin the form of aTwo-Point Boundary

ValueProblem(TPBVP). For aconstrainedcase,thismayleadto aMulti-Point Boundary

Value Problem(MPBVP), for which a guessof the switching structureis required. To

reducethe sensitivity to an initial guessof thesolution,piecewiseintegrationor multiple

shootingis used. Insteadof integratingfor thecompletetrajectorystartingfrom onesetof

initial conditions, the trajectory is divided into intervals and integration is performed

separatelyfrom different setsof initial conditionsfor eachinterval. Then the boundary
conditionsandcontinuity conditions(or jump conditionsin thecaseof stateconstraintsor

discontinuousdynamics)betweenintervalsareenforced.A relaxedNewton'smethod[11]

is typically usedto iteratefor a solution. Thoughtheindirectmethodproducesextremely

accurate results, it involves complicated programming in formulating the costates

differential equationsandthe control structure. The processis alsocomplicatedby the

requirementto provideaninitial guessfor bothcostateandstatevariables.Onthecontrary,

nonlinearprogrammingis relativelysimpleto formulate.Themethoddoesnotrequirethe

useof costatevariablesor a knowledgeof switchingstructure. In practice,it is favored

over indirectmethodsfor solvingoptimizationproblemsin generalpurposeprograms.

Dueto theintensivecomputationrequirements,directandindirectmethodsareused

only to generateoff-line solutionsfor analysispurposesor to providea first stageopen

loop guidanceprogram. To compensatefor usinganopenloop approachduring thefirst

stageflight, a feedbackguidanceschemeis introducedfor thesubsequentexoatmospheric
stagesof flight whereamoresimplifieddynamicmodelpermitsamoreanalyticsolution.
Using Simplified MQ_I_I$

In [2], Chandler and Smith have developed an IGM for the Saturn V vehicle. It is

based on a flat Earth no-atmosphere model, and is further simplified with linear angle

steering guidance. The guidance solution requires solving only a set of linear equations.

2



Ten yearslater, the BoeingAerospaceCompany[3] adoptedthelinear tangentsteering

guidanceas the baselineprogramfor the SpaceShuttle'sPEG. Using an approximate

gravitymodel,theprogramisextendedto handlethesphericalEarthcase,andthesolution

is solvedby aniterativealgorithm.
Perturbation Methods of Analysis

Perturbation methods of analysis have been shown to be powerful approaches to

spacecraft guidance design. Breakwell and Rauch [12] have used regular perturbation to

solve a low thrust space flight problem. It is a neighboring extremal technique. A linear

feedback control is formulated by linearizing about the reference trajectory and the solution

is solved with a numerically determined state transition matrix. In [13], Jacobson and

Powers have developed an explicit guidance scheme also for low thrust space flight. It is

basically a retargeting procedure and uses an analytic solution for the inertially fixed and

constant acceleration flight. Recently, Feeley and Speyer [14] have used regular pertur-

bations on the expansion of the Hamilton-Jacobi-Bellman (HJB) equation, and have

applied it to the launch vehicle guidance problem for exoatmospheric flight. The approach

requires an analytic zero order solution and quadrature evaluation. The analytic solution is

again based on a flat Earth, no-atmosphere approximation, and the neglected dynamics are

introduced as perturbations. Solution is obtained by expanding the HJB equation. In this

method, higher order state histories are not required and higher order corrections for the

costates are obtained by partial differentiation of the power series solution to the HJB

equation. An alternative approach based on regular expansion of state and costates was

also developed by Leung and Calise [15]. This approach has the advantage that on-line

quadrature can be avoided. However, both the solution approaches of [14, 15] were later

found to be inadequate when aerodynamic effects are included.

1.2 Research Contributions

The major contributions of this research are: (1) an exhaustive study and simulation

effort which demonstrates conclusively that perturbation methods alone (both regular

and/or singular perturbations) are inadequate for use in developing a guidance algorithm for

the atmospheric phase of a launch vehicle trajectory, and (2) the development of a hybrid

approach, that combines the numerical method of collocation and the analytic method of

regular perturbation to make it suitable for real-time guidance, and superior to either method

alone. The hybrid approach retains the desirable and complimentary features of the

individual methods. The collocation method is further improved by providing more

intelligent choices of the interpolation functions, which are derived from the analytically

tractable portion of the necessary conditions for optimality. When applied to the launch



vehicleguidanceproblem,themain resultis a bilinear tangentsteeringlaw for thethrust

vectoranglethat canbeemployedfor all flight phases,includingtheatmosphericphaseof
thetrajectory. Theprogressreportsandpapersthatarerelatedto thisresearcheffort canbe
found in [15 - 25].

A secondeffort thatparalleledthiswork underthesamegrantnumberwasleadby

Dr. DeweyHodges,of the Schoolof AerospaceEngineeringatGeorgiaTech. This work

hasbeendocumentedundera separatecontractorreport[26].

1.3 Report Organization

Sec. 2 presents the formulation of the launch vehicle trajectory optimization

problem, which includes the equations of motion and the vehicle aerodynamic and

propulsion models that are based on a generic model of the ALS. The results for two

purely analytical approaches are documented in Sec. 3. The first is a singular perturbation

approach using an energy state approximation and a 2-state model. The second is a regular

perturbation approach based on the zero order solution for a flat Earth no-atmosphere

assumption. Sec. 4 details the development of a hybrid approach that employs both regular

perturbation analysis and the method of collocation. A fourth order nonlinear system is

treated in depth to demonstrate its application, and to compare it to solutions obtained by

both regular perturbation analysis and purely numerical collocation methods. In Sec. 5, the

launch vehicle guidance problem is presented using the hybrid approach. It includes the

zero and the first order correction formulations and their solutions, and compares the

resulting guided solution with the optimal solution obtained by the method of multiple

shooting. Sec. 6 is the conclusions of this research and the recommendations for future

research.
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SYMBOLS AND ABBREVIATIONS

Symbol

V

Wijk

Z

7

m

ts
r

re

_e

%

h

q

0t

M

C

ce

CD

cL

P

Pe

P

Pe

q

Tv_

S

£2A

v

U

0

ge

- airspeed

- wind speed components in the Cijk frame

- heading angle

- flight-path angle

- vehicle mass

- staging time (158.5s for the ALS vehicle)

- magnitude of radius vector measured from the Earth's center

- Earth mean radius (6.378 x 106m)

- Earth gravitational constant (3.9906 x 1014m3s -2)

- Earth's rotational rate (7.27 x 10-5rads -1)

- altitude, h = r - re

- thrust throttle

- angle of attack, control variable in the wind frame

- sideslip angle, control variable in the wind frame

-Mach number

- sound speed

- reference sound speed on Earth's surface (340.3ms -1)

- aerodynamic drag coefficient CD = CD(Ot, M, _)

- aerodynamic lift coefficient C L = CL(Ot, M, [3)

- amaospheric density

- reference atmospheric density on Earth's surface (1.225kgrn-3)

- atmospheric pressure

- reference atmospheric pressure on Earth's surface (101330Nm -2)

- dynamic pressure

- vacuum thrust

- engine exit nozzle area

- aerodynamic reference area

- state transition matrix for the linear system A

- local vertical velocity component

- local horizontal velocity component

- thrust-vector angle relative to local horizon, the conla'ol variable

- gravitational acceleration on Earth's surface (ge = ge/re 2)
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SymbolsandAbbreviations(cont.)

Symbol

gi

Px

qx

- small nonlinear terms (i = 1, 2)

- interpolated state dynamics in the collocation formulation

- interpolated costate dynamics in the collocation formulation

Abreviations

ALS

HJB

IGM

KSC

LEO

PEG

TPBVP

MPBVP

- Advanced Launch System

- Hamilton-Jacobi-BeUman

- Iterative Guidance Mode

- Kennedy Space Center

- Low Earth Orbit

- Powered Explicit Guidance

- Two-Point Boundary Value Problems

- Multi-Point Boundary Value Problems
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SECTION H

PROBLEM FORMULATION

In this section, we first formulate the optimal launch vehicle guidance problem,

which includes the equations of motion for a point mass model of a launch vehicle that the

subsequent analyses are applied to. The reference aerodynamic, atmospheric and propul-

sion models are also included.

2.1 Equations of Motion

Referring to Fig. 2.1, the point mass equations of motion for a multi-stage launch

vehicle over a spherical, rotating Earth inside a non-stationary atmosphere are:

T (i) cosot cos[_ - D (i) ___sin T + re°e2( sin T c°s2 )t - cosy sin)t cos)t cos Z)
m r-

-'_¢i cost sin Z- _'iCjc°sTc°sx- Wk sinT + 2¢Oe[Wi (sin T cos)t -

cos T sin)t cos X) + cos T(Wj sin)t - W k cos)t) sin X] ; V (t o) = Vo

= {. T (i) cosot sin 13+ y(i) t- ¥2 cos 2 T tan )t sin Z + r¢o2 sin )t cos)t sin
m r

+2¢OeV(cos T sin)t - sin T cos)t cos Z) - _/i cos Z + Wj sin X +

2r,Oe[W i sin)t sin _ + (Wj sin)t - W k cos)t)cosz]} / (VcosT) ; Z(t o) = Zo

{T (i) sin___+ L(i) _e V2
(-_ )cosy + r¢o2 (cos 2 )t cost + sin)t cos)t sin T cos Z)_'= m r

+2¢OeV sin ;_cos)t + VCisin T sin Z + @j sin TcosZ - Wk cosy

+2o) e [W i (cos T cos)t + sin T sin)t cos Z) - sin T(Wj sin )t -

Wk cos)t)sin Z]} / V ; T(to) = To

= Vc°sTsinz+Wi ; _(to) = _bo
rcos)t

7_= VcosTcosz+Wj ; )t(to) = )t o

= VsinT + Wk ; r(to) = ro

(i)3 (i) (2.1)rh = f(rl, r, t) ; m(t o) = m o ; m(ts+_ = m s

where



_ wi
North \ k__aa/M'%, X"-_

Earth-fixed ..--""_ N_''--. \_i

reference system_ / _ _ _._____-..._7¢al

/ / _ r_ horizon=plane
Zw

/ refe_nc¢ 7 \ ,Zw 4 T (along vehicle

I Mc_di= _\ k L__ longitudinal axis)

\ / .,,<--._< I / x x_

Coordinate System
Z Equator

Figure 2.1. Coordinate Systems: Earth-fixed Frame OXYZ, Local Horizontal Cijk, and

Wind Frame*.

* Here Yw and Zw are defined in the opposite from their usual convention.
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•  Wx- h
Wx- +--gg- ; x = {i, j, k}

D (i) = qS(i)cg ) ; y(i) _ qS<i)c(_> ; L(i) = qS<i)c(_)

q = pV 2 / 2 • T (i) = _T (i) • 11e [0, 1] (2.2), ", max '

Here, an inverse-square gravitational field is assumed and _te is the Earth's gravitational

constant (3.9906 x 1014m3s-2). A higher order harmonic model to account for the Earth's

oblateness can be used by replacing _te/r2 with the harmonic expression. The superscript

(i) = { 1, 2 ..... n} indicates different stage values. The above complex model provides

sufficient details for most trajectory analysis purposes.

The state variables in this model are airspeed V, heading angle X, flight-path angle

% longitude ¢, latitude _,, radius vector from the Earth's center r, and vehicle mass m. The

variables V, y, X are relative to the moving air. The wind velocity components W i, Wj, W k

are assumed to be given as functions of {¢, k, h }, where h = r - re is the altitude and re is

the mean Earth radius (6.378 x 106m). The control variables are throttle rl, angle of attack

a and sideslip angle 13. The coefficients of drag C D, side force Cy and lift C L are

functions of a, 13 and Mach number M = V/c. The fuel rate f is a function of throttle

se_ng, altitude and time. The after-jettison stage mass m(ts+), staging time ts, are vehicle

parameters, and are both assumed fixed here. Standard atmospheric properties such as

density p, pressure p, and sound speed c are given functions of h. The coefficients and

properties are given in tabular forms which are interpolated as smooth functions of the

independent variables.

2.2 Assumptions and Simplifications

To simplify the analysis, the following assumptions are exercised:

Analytic thrust expression - As mentioned in the previous section, a typical launch vehicle

employs maximum throttle _ = 1.0 during the ascent phase. For most trajectory analysis

purposes, thrust can be adequately modeled as

T (i) = T (i) _ A_i)pmax vac
(2.3)

where Tva c is the vacuum thrust value and A e is the engine nozzle exit area. The term Aep

represents the back-pressure effect that causes a drop of thrust level as the engine is

operated inside the atmosphere.

9



Constant fuel r_te - For a purely rocket propulsion system the rate of fuel consumption is

proportional to the vacuum thrust

rh = -T(i)vac / (geI_)) (2.4)

where ge = IXe/re2, and Isp is the specific impulse, a measure of the fuel efficiency. Modem

rocket engines have values ranging from 300s to 450s*.

Non-rotating Earth - The Earth's rotation, toe is small (7.27 x 10-Srads -I) and the term rtoe2

which represents the transport acceleration, was neglected. The term 2toeV which

represents the Coriolis acceleration may reach 0.1g e at orbital speed. Here ge is the

gravitational acceleration at the Earth's surface. However, the vehicle reaches orbital speed

sharply near the end of its flight phase. Therefore, the dominant effect of this term is only

apparent for a short period of time, and setting toe = 0 does not produce any significant

error.

Planar motion - In actual flight, the lateral maneuver is short. This magnitude is dependent

on the launch site which is selected as close to the equator as possible so that a wide range

of orbit inclination can be achieved. A large amount of lateral maneuver is typically not

required and the desired flight azimuth can be achieved very early in the flight. Hence for

simplicity, it is assumed that there is no out-of-plane motion by setting 13= Wj = 0 and

considering Cy(_l = 0) = 0. These assumptions allow us to decouple the dynamics of

airspeed, _ght-path angle and altitude from those of heading angle, longitude and latitude,

and the dynamics are reduced to those associated with motion in the vertical plane. For

convenience, the vehicle is assumed to be launched due east on the equator, i.e. Zo = 90°

and 2_o = 0, and _o is arbitrarily set to zero. The resultant system is a 4-state model:

= T (i) cost_ - D (i)

m(t)

I1_

- -_- sin ), - W i cos), - "_k sin),
r-

{T (i) sin ct + L(i) I.te V 2
_' = m(t) ( r"_ r

; V(to) = Vo

)cos)' + W i sin)' - "qgk cosy} 1 ; )'(to) = )'o

= Vcos), + W i ; 0(t o) = 0
r

f = Vsin), + W k ; r(to) = h o + re (2.5)

where

* For comparison, specific impulse of tubojet engine is over 5000s.
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_mo - k(1)(t_ to)
m(t)=] (j) k(j) t t(j)tms - ( - s )

k(i) = T(i)vac/ (geI_))

.(1)
; to <t<t s

; t_j) _<t _<t_ j+l)', t_n) = tf ,'j = 1, ..., n -1

(2.6)

The initial conditions chosen for this problem represent the vehicle states following

a vertical launch and clearing of the launch tower. The terminal constraints represent direct

injection at the perigee of an 80nm x 150nm elliptical transfer orbit.

Vo = 64.49m/s ; To = 89.5 ° ; ho = 400m ; t o = 15s

Vf = 7858.2m / s ; 7f = 0 ° ; hf = 148160m (2.7)

The objective is to minimize the final time, which is equivalent to minimizing the fuel

consumption for this formulation. Since there is no constraint on _f, the _ dynamics in Eq.

2.5 axe ignorable and can be deleted from the analysis. Also, the optimization must be

performed subject to the constraints q < qmax and [ aCl ] < (aq)max.

2.3 Aerodynamic Model and Launch Vehicle Configuration

The aerodynamic model (cf. Figs. 2.3 - 2.8) is obtained from [27]. It corresponds

to a generic model of a heavy-lift capacity 2-stage launch vehicle based on a CFD analysis.

The vehicle has an asymmetric configuration as shown in Fig. 2.2 with the booster

mounted atop the main body. The booster produces a shadowing effect above supersonic

speeds during the fn'st stage flight. This shadow effect reduces the C D at positive angle of

attack and the C D exhibits a nonconvex behavior (cf. Fig. 2.6) in a above Mach 1.3.

Other than this behavior, CD(O 0 and CL(a ) are nearly parabolic and linear respectively at all

Mach numbers.

L

k T

V

D i

mlMr 2

Figure 2.2. Generic Advanced Launch System (ALS) Model in the Cik Plane.
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Due to the nonconvexity in C D, the Hamiltonian also becomes nonconvex. The

control is expected to jump as tx switches from a lower value to higher value when the two

peaks (using Maximum Principle) of the Hamiltonian become equal as time progresses.

The phenomenon is displayed in Fig. 2.9. The study documented in [22] has shown that

the hodograph can be convexized when bank angle is used as a second control variable,

and the angle simply switches from 0 to n to make use of the lower C D at small positive o_.

It has also shown that the effect of a chattering control of the f'LrSt kind [27], if exists, will

be small and that a chattering arc is not expected. This hypothesis is consolidated by the

numerical analysis here, where no high frequency control activity is observed within the

nonconvex region.

at t-At k at t , at t+At

_ Hmax Hmax 4Hmax_ _

si-
/ - / i / \

Figure 2.9. Jump in Control due to Nonconvex Hamiltonian.

Table 2.1. ALS Vehicle Physical Data

lst-sta_e 2nd-sta_e

rno(to); ms(ts+) 1,523,400kg (15s) 546,600kg (158.5s)

Tva c 25,813,000N 7,744,000N

Isp 430s 430s

S 131.34m 2 65.67m 2

A 37.5 lm 2 11.25m 2

qmax 40698.2Nm -2 nil

(ctq)ma x 167,580de_Nm -2 nil

Since sideslip is not considered, the aerodynamic coefficients can be interpolated as bicubic

splines [28] in o_ and M. The interpolation scheme provides up to second order continuous

derivatives. Other physical parameters of the ALS vehicle are given in Table 2.1.

2.4 Atmospheric Model

The atmospheric model is based on the 1975 U. S. Standard Atmosphere [29].

Profiles of normalized density, pressure and sound speed with respect to their reference

values at the Earth's surface (Pc = 1-225kg m-3, Pe = 101330Nm-2, Ce = 340-3ms-1) are
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given in Fig. 2.10. To investigate the effect of wind shear, a mean winter wind profile

over Kennedy Space Center (KSC) is used to model the non-stationary atmosphere. The

profile is shown in Fig. 2.11. It indicates a head-on wind for vehicle launched due east,

and the vertical and horizontal (north) wind speed components are assumed to be zero.
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SECTION III

ANALYTICAL APPROACHES

Two analytical approaches are presented with the objective of simplifying the

optimal guidance problem described in Sec. 2. The analytical and numerical results are

summarized in this chapter. The analysis results are for: (1) a singular perturbation

formulation, and (2) a regular perturbation formulation.

3.1 Singular Perturbations

Singular Perturbation theory is related to the study of a reduced solution of

singularly perturbed systems of O. D. E's and the construction of a matched asymptotic

series representation of the exact solution. For example, consider the following initial

value problem

dx
-- = f(x,y,t) ; x(e,0) = x o
dt

e dy = g(x,y,t) ; y(e,0) = Yo (3.1)
dt

where x and y are scalar functions and _ > 0 is a scalar parameter. Setting E to zero, we

have the reduced system. Generally the reduced solution will not satisfy initial conditions

on y, and the initial behavior of the reduced solution will be quite different from that of the

exact one. This loss of boundary conditions on y (meaning that the reduced solution does

not provide a uniformly valid approximation for y) is a characteristic of singular

perturbation problem formulations. Basically, the system is separated into the slow

variables of x and the fast variables of y. The reduction of higher order problems into

lower order ones and the separation of numerically stiff parts by using different time scales

are the main advantages of the method. Applications of the method are detailed in [30, 31].

a) Energy_ state approximation

The energy state approximation is the most widely used approximation in aircraft

performance optimization, and sometimes referred to as energy management. It has been

applied to minimum time-to-climb, minimum fuel-to-climb and minimum time intercept

problems. First we replace the velocity with the mass specific energy

* A third analytical attempt using matched asymptotic methods is documented in [25].
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E = V2 / 2 - ge[ r (3.2)

as the state variable. Differentiating Eq. 3.2 and using Eqs. 2.5, 2.6 leads to the system

IZ.= T(i) cosa - D (i) V

m(t)

/, = Vsin T

T (i) sin _ + L(i) I.te V 2
)cosy} / V (3.3)

"i' = { m(t) ( r 2 r

where V = _/2(E + ge / r). At the moment, the wind shear effects are not considered. In

earlier studies on supersonic aircraft [30, 31], specific energy and mass are regarded as

slow variables and altitude and flight-path angle are lreated as fast variables. So to put Eq.

3.3 into the singular perturbation form, we artificially in_oduce a bookkeeping parameter E

into Eq. 3.4 as follows:

T (i) cosa - D (i)
V

m(t)

ef = Vsin T

{T (i) sin o_ + L (i) ge V2E_ = (--_ - ) cos T} / V (3. 4)
m(t) r- r

The performance objective is to minimize tf.

The necessary conditions axe formulated by fhst moving 8 to the right hand side of

the differential equations, and define the Hamiltonian as

H = _-E T(i) Cos0_ - D(i) _'r-V + --V sin7 + _'3'__{T(i)
L (i)sino_ +

m(t) 8 8 m(t)

l.te V 2
-) cosT} / V + constraint s

(r 2 r (3.5)

The costate dynamics satisfy:

- OH " OH - OH

_'E =- 0-"E- ;_Lr = -'_-- ;_T - 0T
(3.6)
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Now introducethetransformations_.E= _-E,e_'r = _'r, e_._, = _._, which results in

_-E- OH . ej_r = OH "e_, = OH (3.7)

Note that _'E is a slow variable and that L r , k v are fast variables. The optimality condition

is given by

OH / 0o_ = 0 (3.8)

In the reduced problem (e = 0) r and 3r are treated as control-like variables, which is a

consequence of setting e = 0 in Eq. 3.7. The transformed costates )_r, _'_, (when

substituted in Eq. 3.6) can be interpreted as Lagrange's multipliers used to enforce the

constraints that result from setting e = 0 in Eq. 3.5.

Reduced (outer) solution

The reduced or outer solution corresponds to the solution of Eqs. 3.4, 3.7 and 3.8

when e is set to zero. The condition 0H/0r = 0 (which results from setting e = 0 in Eq.

3.7) is a first order necessary condition for a minimum of the Hamiltonian in Eq. 3.5 (we

are minimizing the final time). Since the costate _.E may be interpreted as 0tf/OE(to), it

follows that in the reduced problem, _'E < 0. Hence a stronger statement for this optimality

condition may be written as

r* = max IT(i)c°st_- D(i)V}I (3.9)
r L m(t) E,m

subject to the conditions:

_/=0

T (i) sinct + L(i) _te V 2
)cos_

m(t) ( r 2 r

q < 40698.2Nm -2

Iraqi < 2924.82radNm -2 (3.10)

The last two conditions are the dynamic pressure and aerodynamic load constraints.

Starting at an initial energy level and initial mass, a one-dimensional search in altitude is

performed. The energy level is then increased and the corresponding change in mass is
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Since the optimal solution also exhibits a large value of flight-path angle (incon-

sistent with the reduced solution approximation), another calculation scheme is used to

estimated as

Am = -k(i)(AE /I_*) (3.11)

where the superscript '*' denotes evaluation on the reduced solution. Hence by sweeping

through all the energy levels of interest, a reduced feedback guidance law that defines the

best altitude profile is obtained. Figs. 3.1 and 3.2 show the results for the reduced

problem when the optimization in Eq. 3.9 is carried out for the fu'st-stage flight. The initial

conditions in E and m are chosen along a reference optimal trajectory. The solutions at low

energy levels result in very large values of angle of attack (> 20 °) that are well beyond the

given aerodynamic model range and therefore should not be considered feasible. The

reduced solution is unrealistic in that the vehicle stays on the cut constraint up to an energy

level of -6.09 x 107Jkg -1.

Since the optimal solution also exhibits a large value of flight-path angle (incon-

sistent with the reduced solution approximation), another calculation scheme is used to

estimate a non-zero flight-path angle and to include the effect of a non-zero flight-path angle

in the reduced solution. Assuming the vehicle is already on the reduced solution and is to

follow the trajectory, the change in altitude along the reduced solution gives an estimate of

the flight-path angle according to

Ah }*sin3'e = (AE-/_)V
(3.12)

By perturbing the energy level from E to E + AE, we have

Ah* = h*(E + AE) - h*(E) (3.13)

and a central difference scheme is used to estimate y. Then the solution of Eqs. 3.9 and

3.10 is recalculated with 3' = 0 replaced with 3' = 3'e- The results are given in Figs. 3.3 and

3.4. The inclusion of 3'e gives a slightly lower value of o_, and both angle profiles behave

reasonably. However, this calculation scheme becomes numerically unstable once the

vehicle left the otq constraint boundary.
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b) Two-state model

Since the energy state approximation does not produce a solution that resembles a

reasonable flight trajectory, a more accurate model is employed. The new reduced-order

model corresponds to a 2-state approximation:

T (i) _ D (i)
I_= V

m(t)

f = Vsiny

T(i)o_ + K(_)o_ _te V 2
= { m )cosy] / V (3.14)

m(t) (r 2 r

where only the flight-path angle is assumed fast. To make Eq. 2.5 analytically tractable,

we adopt the assumptions that the induced drag due to ot is negligible and lift is linearly

proportional to ot (L(i) = KL(i)cz). The necessary conditions for optimality of flight-path

angle and angle of attack on the reduced solution are:

rc/2 ; _'r <0OH _,r V sin 7 =_ Y singular , _-r 0

by I-re/2 ; _-r >0

re(t) la e V 2
= . (,-- .)cosy

T (i) +K 0) r2 r
(3.15)

In [23] it is shown that the velocity hodograph for the 3-state reduced model (including

mass) is nonconvex, and that at kr = 0 the optimal solution chatters between y = :!_/2. The

interpretation here is that when the altitude reaches its optimum value (for the current

energy and mass), then a chattering solution is able to maintain the optimum altitude rate

while maximizing the ratio of the mass rate to energy rate. Therefore this formulation is

totally inappropriate for the analysis of energy climb in that it produces a reduced solution

made up of ve_cal climbs and dives, connected by chattering arcs.

c) Manifold solution and eigenvalue analysis

The fundamental problem inherent in treating launch vehicle dynamics by energy

state approximation relates to the constraints on the y and h dynamics. They are fast in

comparison to energy and mass dynamics and without taking into account the dependency

on the singular perturbation parameter e. For instance, the constraint on altitude dynamics

implies y = 0 along the reduced solution, which is an extremely crude approximation for the
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launch vehicle case. This problem can be alleviated by using a slow manifold solution [32]

in place of the reduced solution, which amounts to solving the exact problem with the initial

flight-path angle chosen to suppress any fast motion that may be present in the solution. A

separate boundary layer analysis could then perform to take into account the actual initial

condition on 2t (cf. Fig. 3.7). This approach has also been carried out, however it is found

that the assumptions regarding the separation of dynamics worsen above supersonic speed,

and the reduced-order model approximation deteriorates. This hypothesis is consolidated

by the eigenvalues investigation described below.

Computation of the equilibrium manifold corresponds to determining the initial

condition on _tso that rapid transients in _/and L r are absent in the exact solution. First a

sweep of the initial condition in T about a nominal value of 3to = 89.5 ° is performed, and the

exact dynamics of the states and costates (with the control eliminated using the optimality

condition) are numerically integrated. This allows us to identify the equilibrium manifold

by visual inspection for the absence of fast transients in _/and Ly.. The closer the actual

initial condition for the fast variable lies to the manifold, the more accurate the subsequent

boundary layer correction in _' becomes. Figs 3.5 and 3.6 demonstrate that the manifold is

estimated to be at _'o = 75°, where it can be seen that there is no apparent boundary-layer-

like behavior in the fast variable _/and the control or.

x

initial

solution

terminal

boundary layer

t

Figure 3.7. Typical Boundary Layer Characteristics.

To shed insight on the separation phenomenon of the fast and slow dynamics of the

launch vehicle problem, an eigenvalue test is carried out. By linearizing the dynamics of E,

r, _/, _,E, Lr, L¢ about the equilibrium manifold, the eigenvalues of the linearized system are

obtained, and the relative magnitudes of the real part of the eigenvalues provide information

about the separation possibility of the dynamics. A Hamiltonian matrix appears in the

linearized system whose eigenvalues characterize the full order system of dynamics (states

and costates) in the vicinity of the equilibrium manifold.

Eigenvalues calculated at discrete points along the trajectory are shown in Figs. 3.8

and 3.9 (only those in the right half s-plane are shown). At the beginning part of the trajec-
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tory (t < 50s), the results clearly show a separation configuration of 2 slow and 1 fast state

(and costate) variables. All the eigenvalues are real. The relative magnitude is separated by

a factor of up to 4 in this interval (cf. Fig. 3.9). As the energy level increases, two of the
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eigenvalues join to form a complex conjugate pair, the real part of which is an order of

magnitude larger than the third (real) root. This suggests a decomposition of 1 slow and 2

fast state variables. An eigenvector analysis indicates that the fast state variable at low

energy levels indeed corresponds to the flight-path angle, whereas at high energy levels

specific energy is the only slow state variable. Altitude, which was a slow variable at low

energy levels, rapidly transitions to being a fast variable at approximately t = 50s as shown

in Figs 3.8 and 3.9.

A nonlinear feedback control solution for angle of attack, based on a boundary layer

correction for the flight-path angle dynamics, can be formulated as follows:

H = -_,mo k(i) + kEol_(Eo, h o , mo, o_)+ _.roVo sin )' + _,7_(Eo, h o, m o , o0 = 0

H a = 0 (3.16)

where m o, E o, h o, kmo, kEo, kro are treated as slow variables* in the manifold solution,

and are constant in the boundary layer analysis. The manifold solution is stored as a

function of energy, and the boundary layer problem defined in Eq. 3.16 is solved at each

control update to form a guided solution. Note that there are two equations for the two

unknowns in o_ and Ly. The guided solution using the pre-computed slow manifold

(chosen for )'o = 75° in Fig. 3.6) with an on-line boundary layer correction is plotted in

Fig. 3.10. The optimal solution approaches the manifold solution. However the guided

solution is f'l_rst attracted to the manifold, and then diverges at about t = 25s. This correlates

almost exactly with the transition that takes place in the eigenvalue associated with the

altitude state in Fig. 3.8. That is, the role of altitude variable has changed, but the

boundary layer analysis has treated the altitude variable as slow (constant to zero-order in

e). This explains the failure of the manifold approach for this problem.

Recalling the previous energy state approximation formulation, even though eigen-

values analysis clearly indicates the existence of a two-time scale behavior, the poor

performance of the zero order reduced solution is attributed to the large value of

longitudinal load factor inherent in the launch vehicle problem. The value of this non-

dimensional variable along the reduced solution is plotted in Fig. 3.10. In comparison with

a subsonic transport aircraft with a load factor of 0.1, the launch vehicle averages above 3

in this case and therefore a zero or even a first order solution is not expected to provide any

reasonable approximation.

* Here we treat m as a state variable, and it is not eliminated by Eq. 2.6.
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3.2 Regular Perturbations

The unsuccessful attempt by singular perturbation analysis led to consideration of

another analytic approach that has been used repeatedly on low thrust spaceflight problems,

the regular perturbation analysis. In this section, the general regular perturbation

formulation for optimal control problems is discussed. An extension over earlier

formulations is that higher order corrections for the free f'mal time are made explicitly in the

formulation developed here. Then an analytic zero order solution based on the maximum

horizontal speed transfer problem in a constant gravity field and in vacuum [33] is extended

to a mass-varying multi-stage rocket. This is then followed by an attempt to compute a first

order correction to account for a central gravitational field, spherical Earth and all the

atmospheric effects.

a) Re_malar perturbations m optimal conn'ol

The optimal control problem formulation consider here is to maximize a perfor-

mance index which is a function of the terminal states and time, subject to dynamic

constraints:

max )}[J = {_)(x, t (3.17)
u tf

/_ = f(x,u,t)+eg(x,u,t) ; X(to) = x o ; t _ [to,t f] (3.18)

and the terminal time constraints _gi(x(tf)) = 0, i = 1..... p < n. In Eq. 3.18, x is an n-

dimensional state vector and u is an m-dimensional control vector. In applications, the

expansion parameter E is sometimes artificially inserted to signify the presence of small

nonlinear effects, and used as a bookkeeping parameter for the regular expansion analysis.

The Hamiltonian and transversality condition are given by:

' I ; _ =(_+vT_ (3.19)H = _T{f+_g} " H(tf) =-_t tf

The costate equations and associated boundary conditions are:

= -H x ; _(tf) = *xltfl
(3.20)

where the subscript is used to denote partial differentiation. In the absence of control

constraints, the optimal control satisfies

Hu = _.T {fu + _gu} = 0 (3.21)
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assumingthat Huu > 0.

In the above final time is free. Thus, we introduce a new independent variable x =

(t - to)/T where T = tf- toand rewrite the necessary conditions of Eqs. 3.18 - 3.20 in the

following equivalent form:

x" = H_T ; x(x = 0) = x o ; _(x('t = 1)) = 0 (3.22)

X' = -HxT ; X(x = 1) = Cx[,_ = 1 (3.23)

Tt=0

H = xT{f(x,u,'cT + to) + eg(x,u, xT+ to) } ; H('_ = 1) = -¢t[xl 1

(3.24)

(3.25)

where (-)' denotes d(-)/d'c. In a regular perturbation analysis, the objective is to approxi-

mate the solution to Eqs. 3.22 - 3.25 by an asymptotic series in x, X, u and T as follows:

x=x 0+Ex 1+£2x 2+ ...

_L = x 0 + E_, 1 + E2_L2 + ...

u=u 0+Eu l+E2u2+ ...

T= T O +ET 1 +E2T2 + ... (3.26)

Assume the functions f, g, 0, _g have piecewise continuous derivatives up to order at least

K+ 1 where K is the order of approximation. Using the Taylor series formula, a finite

series approximation is constructed according to

K k 1 d2FJo002}+1
F(o0+ _Okl_ )=F(o0)+e ._-_-I Ol+E2{_I 1324 (3.27)

k=l do IO0 do IO0 2 ! do 2 "'"

where o = {x, X, v, u, T}. Substituting the series representation for each of the variables

in Eqs. 3.22 - 3.25 and equating like powers in e, we obtain the zero order and higher

order necessary conditions. To zero order we have:

ax0/_t = all0/_'0 ; x0(to) = Xo ; V(x0(to +To)) = 0

c)_'0/igi = -_)H 0/_)x 0 ; X0(i = to +To) = (I)(x0,i) / _)x0li = to +To
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/)H 0 /Du o = 0

H 0 = ETf(x0,u0,i )

I

H0(t = to +To) = -¢(x0't) / 3tltl
o

' =to+T 0
(3.28)

In Eq. 3.28, the new independent variable t = fib has been introduced, where it should be

noted that in the zero order problem T = T 0.

For the higher order problems, they are governed by a set of nonhomogeneous

linear O. D. E's. with the form of

where

rn,,,x0 0T0,A12(x0, '0,T0)I[XkI T r l'X0 0T0'diLZ.kJ LA21(x0,_,0,T0) A22(x0,_.0,T0)J _,k +_00LC2(x0,Z'0,T0)

+[ Plk (x0';L0' TO..... Xk_l,kk-l, Tk-1) ]
LP2k (x0' _'0' TO ..... Xk-1, _'k-1, Zk-1)_l

All = fx - fu[(fT_')ul-l(fT_')x

A12 = -fut(fTX,)ul-lf T

A21 =-(fxT_,)x + (fxT),)ut(fT_,)ul-'(ff;_)x

A2 2 =_fT + (fxT_,)ut(fT_,)u]-lfuT

C 1 = f + (t- to){f i -fu[(fT_,)u]-l(fT_,)i}

C2 = _fT_, _ (__ to){(fTk)i_ (fT)Qut(fTk)u ]-l(fT_.)i}

and for k = 1"

T -I T
Pll = g- fu[(fu _')u] gu _"

T T T -1 T
P21 =-gx_,+(fx _,)u[(fu _,)u] gu _.

(3.29)

(3.30)

(3.31)

All the matrices in Eq. 3.30 are evaluated at the zero order solution values. To complete the

necessary conditions, it is also required to expand the boundary conditions and the

transversality condition in Eq. 3.28. Note that Eq. 3.29 explicitly shows the effect of

higher order corrections to the fial time, T. If the solution process is terminated at say,
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k = 1, then a real-time sampled data implementation of the control solution would be

constructed as follows. For the original system in Eq. 3.18, an expression for the optimal

control is obtained as function of x and k from the optimality condition in Eq. 3.21. Then,

treating the present state as the initial state, a first order approximation is obtained by using

3.0(t o) + e3,1(t o) as an approximation for 3,(to) to compute the control, where k0(to) and

_l(to) are obtained from the solutions of the zero and the fast order necessary conditions.

This process is repeated at the next control update time by regarding the value of the state as

the new initial state. Therefore, it is necessary to repeat the zero and fast order solutions in

updating the estimate of the costate variable.

The non-homogeneous linear ordinary differential equations in Eqs. 3.29 - 3.31

may be expressed in terms of a convolution by first obtaining a state transition matrix. The

state transition matrix _A (t, to) is merely the partial derivative of the zero order solution at

with respect to the initial conditions x0(to) and L0(to), hence it is easily computed given

an analytic zero order solution. In Appendix A it is shown that the result can be expressed

in the following form

^ x k + J-___| / +[Xk(t)]=,A(t, to)[_,k (t°)4 _t ^ ._Tk['CI('C) ] [Plk(_)]_d. C
[_k(t)J to(to)J flA(t":)L'oLC2('C)JL2k()JJ

"^ "[-Xk(t°)+T i-t°['_o(t)1' '_ _ "^ "FPIk(X)I"

= Att, to)L .k(to) k-Co LXo( )j JtoXZA(t,X,Lp2k(x)_ x(3.32)

Using the above expression at t = T O along with the expansions of the boundary condi-

tions, we can solve for B.k(to), v k and T k from a set of linear algebraic equations. Thus the

major part of the computation for the fast order term lies in the quadrature that must be

performed in Eq. 3.32. In a discrete time implementation, if the current state is regarded as

the initial state then Xk(to) = 0 in Eq. 3.32 since x0(to) satisfies the initial condition on the

state variable. Since zero order solution changes at each update of the initial state, it is

necessary to repeat the quadrature at each update for the higher order corrections.

Alternatively, we can fix the zero order solution and treat xk(to) as the deviation between

the current state and the zero order solution computed for the original epoch time, but

evaluated at the present time. In this form it would be possible to pre-compute the

quadrature and store it as a function of a monotonic variable along the trajectory. Thus the

real-time process of solving the zero order problem and the quadrature can be avoided.

The case of discontinuous dynamics, such as might arise in a multi-stage launch

vehicle, can be handled by a simple modification of Eq. 3.32. For example, in a two-stage

representation we would have
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[xk(bl n_)(_,ts){a(')'" " ,['k(to)l - ,_ to[_(o_)(tPl+
Lk(bJ= A,_,'oJLxk(to)]+'k '_TO-'°[_o(_)(tp]

Fpfl)(,ol_ _

ts JLP2(2)(,c)_" ; t> t s
(3.33)

The superscripts (1), (2) denote the expressions for different sets of dynamics and ts is the

interior point where discontinuity occurs.

b) Launch vehicle application

The performance objective is to maximize -tf (ie. minimize fial time) subject to the

terminal conditions V(tf) = 7858.2ms -1, y(tf) = 0, h(tf) = 148160m, open ¢(tf). These

conditions correspond to direct injection at the perigee of an 80nm x 150nm elliptical

transfer orbit. First, it is necessary to derive a closed form, zero order solution which

should be simple, but accurate enough such that the neglected dynamics can be corrected in

a first order term.

Assuming that the dominant forces on the launch vehicle are thrust and gravity, an

attempt is made to treat the atmospheric effects as a perturbation effect. To further simplify

the problem, spherical Earth effects are also considered as perturbations (these effects are

only apparent when the vehicle reaches orbital speed near the end of the flight). The result

is similar to the maximum horizontal speed transfer problem in [33] for a flat Earth no-

atmosphere situation. The differences here are that the mass of the vehicle is varying, the

dynamics are discontinuous and the terminal boundary conditions are specified at an

unknown final time. We now recast the dynamics of Eq. 2.5 in a regular perturbation

format as in Eq. 3.18, in accordance with the above desired approximations:

Tv(_ sin0 (-PA(e i) sin0- D (i) sin'y + L(i) cosy
";' = m(i) _ k(i) t ge + _ m(i) _ k(i) t

k

ge u2

+ge--_- +---_-) ; V(to)= Vo; i= 1, 2

T(ia)ccos 0 (-pA_i) cos0- D(i) cosy - L(i) sinT uv 1t_ = m---(i_-_-k-_t + £I rn-(O-k--_t - ; u(t°) = u°

i"= v ; r(t o) = ro (3.34)
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where

m(1)= mo+ k(1)to ; m(2) = ms+ k(2)ts

v = Vsin T ; u = VcosT ; 0 = tx+y (3.35)

Here e has been artificially introduced as an arbitrary bookkeeping parameter. The

dynamics are expressed in a rectangular coordinate system to facilitate the closed form

derivation of the zero order solution. The state variables v and u are the local vertical and

horizontal velocity components. The control variable is 0, the thrust-vector angle measured

from the local horizon.

The necessary conditions of optimality for the above formulation are:

_,v = -_,r + £(-_Lv _g_ _Lu _'_ )

_r = g(-_Lv _gl_ _Lu_-_)

0 = (Xv cos0- Xu sm 0) mt _ ?(ix t

I
0 = {Z,v£, + Z,uia + Xri'_l - 1

JI tf
(3.36)

where the last two are the optimality and the transversality conditions respectively, and

-pA(i) sin 0- D(i) sin T + L(i) cost __te. _ u2
gl = m(i) _ k(i) t I- ge r2 r

-pA (i) cos0 - D (i) cosy - L (i) sinT uv

g2 = m (i) - k(i)t r
(3.37)

Zero order solution

Setting e = 0, the costate solutions and the optimal control are given as follows

(with some license taken with the zero order time notation):

2Lv0(t ) = Cv0 - Cr0t ; 2Lu0(t) = Cu0 ; _,r0(t) = Cr0
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tan(00(t)) = p = qt ; P - Cv0/Cu0 ; q = Cr0 / Cu0 (3. 38)

The control satisfies a linear tangent law. Substituting Eq. 3.38 into Eq. 3.36, the state

equations can be integrated in closed form. The solution that relates the states at t > ts to the

initial conditions is presented below and for t < ts, the terms involving variables with

superscript (1) would simply be deleted.

where

i (2) It = t
T(_ m (1) k (1) x "c= ts . T_ ,(rn(2 ) k(2) "0

v0(t ) = v o -ge(t-to)+ k'-_-G( , , ) _k(2) v,-. ,- , _=ts'_ t o

(2) 2 2 I x = t
+ Tv(la) F(m(1),k(1),.0 x = ts + T_a_ r:rm( )t-( ) x)

u0(t)=u° _ x=t o k (2)-" ...... x=t s

r0(t) ro+Vo(t-to)-2ge(t-to) 2 " .Tv(_,-,,_(1) ,.(1) t= -(,t-to) k--_-_,m ,r, , o/-

T (2)

- ts)/#G(m(2)'k(2)'ts)L - k"_" _'"T(_ c:,...(1) , k(1) ,ts)} +
(t

w(1) [:=ts T(.2) 2 [-_=tq_ ; t > t s (3. 39)'vac K(m(1),k(1),x) + K(m(2),k (),x) 'c = t sqk (1) t o

F(m(i),k(i),, 0 =
-sinh-l[tan(00('0 - TI)] 1 qm (i) - pk (i)

1_+ A2 ; tanTl = _ ; A = k(i)

G(m (i),k(i),'_)= -AF(m (i),k(i),'c)- sinh-1 [tan(00 (_))]

K(m (i), k (i), 'c) = - sec(00 (_)) - [ tan(00 (x)) + A]G(m (i), k (i), "0 (3.40)

To solve for the solution, Eqs. 3.38 - 3.40 are evaluated at the zero order final time tf0 = to

+ ts + T O where T O represents the zero order, second stage, open flight time, and used to

enforce the zero order expansion of the terminal boundary conditions and the transversality

condition given below:

v(tf0 )=vf ;u(tf0 )=uf ;r(tf0)=hf+r e

"vac cos

2LvO( )t -ge)+_uO m-('_'--k(2---)t +_,rOVO tfo = 1
(3.41)
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Thereis atotalof four unknownsCv0,Cu0,cr0,TOto beevaluatedby thefour conditionsin

Eq. 3.41.
First order solution

Using Eqs. 3.29 to 3.31, the first order correction dynamics for the launch vehicle

pmb_mbecome

d "vl
Ul

rl

dt Xvx

Xul

.2grl.

"0 0 0 a_i4) a_

0 0 0 a(_ o(i)
"25

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 Vl

0 Ul

0 q

-1 Xvl I
0 _ul I

0 .Xrl J

c_i)(t)

c(2i)(t)

v0(t)
-Xr0

0

0
_1

p_i)(t )-

p(i)(t)

0

+ p(2)(t)

D_'(t)

ok"(t)

(3.42)

with vl(to) = ul(t o) = rl(t o) = Vl(tf0) = Ul(tf 0) = rl(tf0) = 0, where

(i) 2
T_a c cos 0 )

a14 = m(iS-k(i) t (Xv0 sin00 + Xu0 cos00

Tv(i2c . - cos 00 sin 00 .

a15 = m(iS-k(i) t (Xv0 sin00 + Xu0 cosOo)

T (i) sin 2 0

vac (Xv0 sin00a24 = a15 ; a25 = m(i_-k(i) t +Xu0COS00 )

.,.(2) cos0
-r,(2) sin00 k(2)( t- ts) • 'vac _;u='_'0 rl k(2)(t- ts) ]

c 1 = lvac [1+ -ge "c2 = m-_-k(-_ tm (2) _ k(2)t m (2) _ k(2)t J , _ - k(2)t " +

Pl = gl - (m(i) _k(i)t)(kvSin0+_.uCOSO) [ v 20 ¢_O--

Tv(i) sin0 _}ac _'v t)gl + _'u ;
P2 = g2 + (re(i) _ k(i)t)(Xv sin 0 + Xu cosO)[ 20 " "

P4 =-_'v_gl _. Og2 . __Lv_gl _'u Og2
_v u _v , P5 = _u 0u

P6 = -_.v 3gl X 3g2
_r U;gr

(3.43)
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All the variables are evaluated along the zero order solution. Since the first stage flight time

is assumed to be fixed, T = tf - t s. Consequently, T 1 = 0 for the dynamics describing t < ts,

and the second term in Eq. 3.42 is discarded for the correction dynamics corresponding to

this time interval. In this example, the state transition matrix has a structure of

1 0 0 (o_i4) co_ ) eo_i6)

0 1 0 ,,(i) ,.,(i) e0(i)w24 '-"25 26

f_(_)(t2,tl) = t2-t 1 0 1 _(_ ,.,(i) ,.,(i)w35 "°36 (3.44)

0 0 0 1 0 t 1 - t 2

0 0 0 0 1 0

0 0 0 0 0 1

Complete expression of the (o's

versality condition for the first order case is

0= _'vl( ge+gl0)+_,ul / _vac 0 +g20)+
'm(2) k(2)tt

T(2)k(2) }1Wl vac
(m(2S_-k-'_-)t) 2 (;Lv0Sin00 +_'u0C°S00) t = tf0

are given in Appendix B, and the expansion of the trans-

(3.45)

From Eq. 3.33, the first order variables at tf0 are related to their initial values at to by

I xl(tf0)] = n(A2)(tf0,ts)
Xl(tf0)J

Tl[X_:)(tf0)"

L .q2)(te0)

z) dz +

L 1( oJJ t o

tfo I"t)(2)"l

+ j
t s Lr:z2[J

(3.46)

where x 1 = {v 1, u 1, rl}, _.1 = {_Lvl, _'ul, _Lrl }, Pll = {Pl, P2, 0} and P21 = {P4, P5, P6}"

Substituting Eq. 3.46 into Eq. 3.45 and using the boundary conditions defined in Eq.

3.42, the unknown costate and final time corrections Xvl(to), Xul(to), _l(to), T1 can be

found from a set of linear algebraic equations.

Figures 3.12 to 3.18 give the zero and first order results for a no-aerodynamic force

case (obtained by setting the reference area S = 0). The optimal solution obtained from a

multiple shooting cede [10] is also included for comparison. As far as spherical Earth and

back-pressure effects are concerned, the regular perturbation approach produces very

accurate results, especially in the state histories. Next the aerodynamic effect is included,
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the resulting angle of attack profile is shown in Fig. 3.19. No reasonable first order

solution is found at low altitudes in the region of high dynamic pressure and aerodynamic

forces. The f'n'st order solution over-corrects the zero order result and gives a very large

value of angle of attack that is not considered feasible. The conclusion that is drawn from

these results has been that the aerodynamic forces are simply too large to be ignored in the

zero order solution. Figure 3.20 show the ratios of the aerodynamic forces to the thrust

components along the optimal solution. The magnitude of lift to thrust ratio reaches almost

40% over some time interval during the first stage flight and indicates that a significant

amount of aerodynamics effects exist in the ALS vehicle.
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SECTION IV

A HYBRID COLLOCATION/REGULAR

PERTURBATION ANALYSIS

This chapter develops a solution approach for nonlinear optimization problems that

seeks to combine the desirable features of analytical methods which are based on the use of

simplified models, and numerical methods that use elementary interpolation functions and

finite elements to represent the solution. The approach is developed for a combination of

regular perturbation analysis and collocation technique. A simple fourth order nonlinear

system is used to illustrate the conceptual approach for several possible levels of

approximation.

4.1 Introduction

Among the proposed analytical approaches for real time guidance in Chapter 3, the

analysis by regular perturbation expansion of the solution is most appealing. However,

crucial to the success of the method is that the optimal solution is reasonably approximated

by the zero order solution, so that the addition of f'trst or higher order corrections to the

series solution (which usually is not convergent) results in an improvement in accuracy.

The approach has had great success when applied to systems with small nonlinear terms

[34, 35] so that the zero order problem is linear. Also, in certain applications a state

transition matrix may be determined for the first and higher order corrections, further

facilitating the solution process. The major limitation in guidance applications appears to be

that significant nonlinearities, such as aerodynamic effects must be neglected in the zero

order problem in order to obtain an analytic solution for the zero order problem, which is

also nonlinear even in the absence of aerodynamic effects. It turns out in this case that the

zero order problem is not sufficiently close to the original problem and the solution begins

to diverge even when a first order correction is attempted (cf. Sec. 3.2b). A second

drawback which is inherent in any attempt of analysis by model simplification is that a

significant amount of re-analysis is required when even a minor change in the optimal

control problem formulation is made.

Collocation [8, 36] is a general method for obtaining an approximate solution of

differential equations. It involves choosing simple interpolating functions and enforcing

the interpolatory constraints at specific points within finite elements to evaluate the

unknown coefficients. Thus when applied to an optimal control problem, it reduces the

associated two point boundary value problem to a set of coupled nonlinear algebraic equat-
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ions. Collocation methodshave the advantagesthat they aresimple to use for a wide

variety of optimization problems,andtheir accuracycanbe improvedby increasingthe

numberof elementsusedin theapproximation.Themajor disadvantagesarethatthereis

no generalguaranteethat the numericalmethodsemployedwill successfullysolve the

nonlinearprogrammingproblemunderall circumstances,andthedimensionof theproblem
increasesproportionatelywith thenumberof elements.

It is apparentfrom the abovediscussionthat the advantagesof analytical and

numericalmethodsarein manyrespectscomplementaryin thesensethatif theadvantages
canbecombinedin someway, thenmostof the importantdisadvantages(from theview-

point of realtimeapplications)canbereduced.In thischapter,twoof possiblymanyways

to obtain such a hybrid methodologyarepresented,with the potential for use in the

developmentof realtimeoptimalguidancealgorithms.Thefin'stapproach uses the method

of regular expansion to improve upon a collocation solution, thereby reducing the error for

a given number of elements. The second approach improves upon the first by using both

regular expansion and analytical methods to identify more intelligent interpolating functions

in the collocation method, again with the objective of improving the level of accuracy

without increasing the number of elements.

4.2 The Method of Collocation

Collocation is a method for constructing an approximate solution to a set of differ-

ential equations by using finite elements of polynomials or simple analytic interpolating

functions. The unknown coefficients are determined by enforcing continuity at the nodes

and that the time derivatives of the interpolating functions satisfy the differential equations

at some specified points within each element. We consider an optimization problem with

unperturbed (ie. g(x, u, 0 = O) dynamics dx/dt = f(x, u, 0 and Hamiltonian H = _Tf. For

simplicity, assume a first order polynomial approximation where the derivative constraints

are enforced at the mid point of each element. These constraints can be expressed as:

xj -- x j_ 1 OH

P J= i j-i j_ 1 - 0_, [=([j+ij_l)/2 ; x=(xj+xj_l)/2 ; _,=(_.j+kj_l)/2

_'j - _'j-1 OH
qj - ^ ------

ij - t j_ 1 0x [=([j+ij_l)/2 ; x=(xj+xj_l)/2 ; _,=(_.j+_,j_l)/2

x(i) = xj_ 1 + pj(i- tj-1) ; J = 1..... N

^ ^

_'(i) = 2Lj-1 +qj(i-ij-1) ; i _[tj-l,tj] ; to =to;iN =to+TO (4.1)
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whereN is thenumberof elements.Thecontrolis assumedto havebeeneliminatedusing

theoptimality condition. In practice,it is moreconvenientto directly evaluatethe nodal
values (x0, _.0..... xtq,_qq)rather than finding the coefficients of the interpolating

functions. Though higher order polynomials such as Hermite's cubic are generally

preferred(becauseof their smoothnessproperties),weconsidera first orderrepresentation

to simplify thepresentation,althoughtheapproachappliesequallywell for higher order

representations.

4.3 Regular Perturbation Formulation

A regular perturbation formulation may be introduced by rewriting the actual

dynamics in the following form:

= pj + e(HTt - p j)

_. = qj + e(-H x - qj)

^ ^

H u = 0 ; _ _ [tj_l,tj] (4.2)

Note that e has again been introduced as a bookkeeping parameter. The justification for

this step is that if the collocation solution alone accurately approximates the true solution,

then the second terms in Eq. 4.2 may be regarded as having a small perturbing effects on

the state and costate derivatives, which is actually zero at the mid points of the elements. If

the control cannot be eliminated explicitly in the collocation formulation in Eq. 4.1, then an

analytic portion H(u, x, _,) of the optimality condition (for which it is possible to eliminate

u) can be extracted such that

0 = H + e(H u - H) (4.3)

Note that in the above equations H is the Hamiltonian corresponding to the original system

without a perturbation parameter. As presented above, a collocation solution may be

viewed as the zero order solution for the regular perturbation problem formulated in Eq.

4.2. Also, as will be shown by example in the next section, more intelligent choices of

interpolating functions can be identified from the necessary conditions, by utilizing to the

extent possible the analytically tractable portions of the solution. This results in a signi-

ficant decrease in the computational requirements for a given level of accuracy.

Now we can apply the perturbation technique described in the Section 3.2 to

improve the approximate zero order solution from collocation. For the higher order

problems defined in Eqs. 3.29 - 3.31, we have:
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All j _PJ a2H[
= a"_- = axa--_ [t=(tj+tj-l)/2 ; x=(xj+xj_ I)/2 ; _-=(_.j+_.j-i )/2

apj a2H[

h12j = _ = a2-"_[t=(tj+tj-1 )/2 ; x=(xj+xj-1)/2 ; _'=(_'j+_'j-1)/2

_:"1
A21 j = _qxj = a2 x [t=(tj+tj_l)/2 ; x=(xj+xj_l)/2 ; Z=(_.j+_.j_I)/2

_ aqj _ a2H

A22j a_ a;_:rnx [=(tj+tj_l)/2 ; x=(xj+xj_l)/2 ; _.=(Zj+kj_l)/2

Clj = pj + (i - i j_ l)ptj

.all .^ ^ a2H[

= l-ff_- + (t - tj_l) a--_}[i=([j+ij_l)/2

C2j = qj + (t - tj-1)qtj

aH ,. a2H

= {--ff _ _tj_l)_.x} _=(ij+_j_l)/2

and for k = 1,

; x=(xj+xj_l)/2 ; B.=(kj+_.j_I)/2

; x=(xj+xj_l)/2 ;_.=(B.j+B,j_I)/2 (4.4)

Pllj = "_ i ; x=xj.l+Pj([-ij_l) ; _,=_,j.l+qj(_-[j_l ) -PJ

P% ,= _.×=xj.1+Pj(L_j_1)•_.=_.j.1+qj(L_j.1)-qj
(4.5)

where all the terms in Eq. 4.4 are constant* within an element, and are evaluated using the

collocation solution. The matrix Aj is simply the perturbation of the original state and

costate dynamics evaluated at the constraint point of each element. The expression in Eq.

3.32, which now corresponds to a piecewise constant system matrix Aj, can be written as

1 -
_.k ([)j f_A(t, to)[B.k= Tk,t . -i -FCl ([,x)[P_: ]dx (4. 6)

/ ]
(to) j ToJtO A('Z)Lc2Ad'+ _u"A

* If higher order interpolating polynomials are chosen, the dynamical system will be a
time varying matrix polynomial with piecewise constant coefficients.
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and for a constant system matrix Aj, it can be written as

[Xk(_) 1 .[Xk(_j_l)], /[_i ] .. ^ [PIj]- ' ,LXk(t)j f Aj(i,ij-, Tkf2A(t'tj-1)Ayl

+AT/qt J) "tj+ (t' " _ [tj,tj-1]

where flAj is the state transition matrix and Ptj, qtj are defined as in Eq. 4.4. Note that _Aj

is not the same as in Eqs. 3.32 and 3.33 because A is defined differently. The state

transition matrix here may not have an analytic expression because the zero order solution

is not necessarily analytic. If this is true, we can solve Eqs. 4.4 and 4.5 using the

sensitivity functions and superposition property of linear systems. This is done by

assigning a unit vector for the initial conditions, and numerically integrates the system from

to to to + T 0. Thus by changing the position of the non-zero element in the unit vector, the

sensitivity functions are obtained. This process can be done in parallel for different unit

vector.

In the zero order solution, ¢ in Eq. 4.2 is set to zero, which means that the standard

collocation constraints in F_x[.4.1 are employed and an approximate solution is obtained by

solving the algebraic equations. Then first and higher order corrections may be computed

by quadrature as explained in the earlier section on regular perturbation.

4.4 A Duffing's Equation Example

This investigation is carded out to demonstrate the hybrid approach outlined in the

preceding section. The example is based on Duffing's equation presented in its first order

form:

= v , x(0) = xo

_, = -x - ax 3 + u ; v(0) = v o (4.8)

and the objective is to

rninu { Sxx2 (tf) + Sv v2 (tf) tf }+ ] (1 + )dt
0

(4.9)

with S x, S v being the weights on the terminal values and tf is free. The problem can be

converted to the Mayer's form in Eq. 3.17 (if desired) through the usual method of introdu-
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cing anadditional stateequationwhoseright handsideis the integrandof Eq. 4.9. We

investigate the problem in different levels of complexity according to how the dynamics of

the full system are treated.

a) Level 0 formulation

This is the degenerate case in which there is an analytic zero order solution, and

therefore collocation is not required (solely a regular perturbation approach as discussed in

Sec. 3.2). Let e = a, thus neglecting the hardening effect ax 3 in the original problem. The

necessary conditions are:

X=V

_, = -x + u - £x 3

_-x = _'v + e3_-v x2

£v = -Xx

; x(0) = xo

; v(0) = Vo

; _,x(tf) = 2Sxx(tf)

; 2Lv(tf) = 2Svv(tf)

H u = u+_, v =0

H = _,xV + _.v(-X + u-ex3) + 1 + u2/21 =0tf
(4.10)

The zero order problem (e = 0) is linear and time invariant, and can easily be solved as

x0(! lF sint

v0(t) cos  xo(t)[ 0
ZvO(bJ o

(sin t - tcost) / 2

isini/2

COSt

-sint

-tsint / 2 ]

J-(sin t + tcost) / 2

sint

cost

xo([o)

vo(to)

XxO(io)

__-vo(to).

(4.11)

where

t = t - to ; [o,t _ [0,T 01 (4.12)

The above state transition matrix is also the state transition matrix _-_A(t,'to) for the higher

order correction. Given the boundary conditions of x0(0) = x o, v0(0) = v o, _,x0(T0) =

2Sxx0(T0), 2Lv0(T 0) = 2Svv0(T0), the remaining unknowns _,x0(0), Xv0(0 ), _Lx0(T0),

2%_0(T0), T O can be solved with a Newton's method using Eq. 4.11 and the corresponding

Wansversality condition
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{H0 = )_x0V0 - )_v0x0 - _,2 0 / 2 + 1}IT0 = 0
(4.13)

From Eq. 3.29, the differential equations governing the higher order correction

dynamics are

E°1° ]Ixk]r ,, 3kt,d v_ = -_ o o v_ T_/-xo(_)-_vO(_)/+/P=_(!)/
0 0 0 _ +Too/ _vO(_)

l_.vkJ 0 0-1 _vk l_ -)_x0 (_) J [-P4k(t)J

(4.14)

with the boundary conditions

Xk(0 ) = Vk(0) = 0 ; _.xk(T0) = 2SxXk(T0) ; _,vk(T0) = 2SvVk(T0) (4.15)

In this case, we have for k = 1, 2:

Pll=0

P12= vlT1/T0

P32 = (_'vl + 3_'v0x2)T1 / TO + 3)_vlX_ + 3_'v0X0Xl

;P21 = -x3 ;P31 = 3_'v0X_ ;P41 = 0

; P22 = -(Xl + )_vl + x3)T1 / TO - 3X2Xl

; P42 = -_'xlT1 / TO (4.16)

and the transversality conditions:

(Ul - _xlV0 - _vl (x0 + _'v0)+ _'x0Vl- _'v0(Xl + x3)}IT0_I
0

H = ;Lx2V0 - )_v2(X0 + ;Lv0) + _.x0V2 + %vlXl - 3_.v0XgX 1

3 2 _l =0

I

-_.vl (Xl + _.vl + x0) + _vl / 2lIT0
(4.17)

which are needed to compute the first and second order corrections by quadrature. The

results are shown in Figs. 4.1 - 4.4 for Sx = S v = 100, and a = 0.4. The f'n'st order state

and costate histories are stored and later retrieved by linear interpolation to construct the

second order solution. The optimal solution generated using a multiple shooting technique

is also included for comparison. These results clearly show that the series is not

convergent, and that the most accurate approximation is obtained using a first order

solution. If we regard this level of accuracy as insufficient, then the conclusion must be

that the nonlinear term (ax 3) is too large to be neglected in the zero order solution.
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b) Level 1 formulation

This case illustrates the hybrid approach as outlined in the section on collocation,

using a piecewise linear representation to approximate the states and the costates for the

zero order solution. The interpolatory constraints for an N equally spaced segmentation

are:

x0j - x0j_ 1 v0j + v0j_ 1

T0/N 2
=Pxj

v0j -- v0j-1 _ x0j + x0j-1 _'v0j + _'v0j-1 a( x0j + x0j-1-) 3 = Pvj
T0/N 2 2 2

_'x0j - _'x0j-1

T0/N = )"vOj + _'vOj-1 [ 1 + 3a(x°j + x°j--1 )2]2 2 =qxj

_'v0j -- _'v0j-1 _ _'x0j - _'x0j-1

To/N - 2 =qvj
(4.18)

with the boundary conditions and transversality condition given by:

x00 = Xo ; v00 = Vo ; _.x0N = 2SxX0N ; _.v0N = 2SvV0N

_x0NV0N + _'v0N (-XON - _'v0N - ax3N) + _,2v0N / 2 + 1 = 0 (4.19)

There are 4N+5 equations to solve for the 4N+5 unknowns of x00, v00, kx00, Lx00 .....

X0N, V0N, 2Vx0N, Lv0 N, T 0. Solutions for several values of N are presented in Figs. 4.5 to

4.8. Note that accuracy improves with increasing N, but at the expense of having to solve

a large nonlinear system of equations.

The higher order dynamics in this case are

liea0im]rXil0 0 Tk/pvj/+/p _kq 
/ 0 0 +r0/qx,/ /p3k(t)

L_.vkj 0 -1 L_,vkj Lqvjj LPak(b.

; t e [tj,tj_l] (4.20)

where

c = l+3ax2[_ ; b = 6a(_.v0X0)[_ ; t = (tj +tj_l)/2 (4.21)
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The state transition matrix expression for this case is given in Appendix C.

the forcing function terms in Eq. 4.20 are:

Pll "" v0 -Pxj , P21 = -x0 -_Lv0 -ax3 -Pvj

P31 = _.v0(1 + 3ax3)-qxj ; P41 = -kx0 -qvj

P12 = (Vl +v0 - Pxj)TI/To

= {-CXl- _'vl- x0- _'v0- ax3 -Pvj }T1/To- 3ax01ix12- (1 + 3ax02 -P22 c)x 1

= {C_.vl + bx 1 + _.v0(1 + 3ax 2 _ qxj)}T1 / TO + 6ax 0 _.vlXl + 3a_.v01ix 2P32
I

+ (1 + 3ax 2 - c)_-vl + (6agvoXO - b)xl

P42 = (-_.xl - _.x0 - qvj)T1 / TO

For k = 1, 2,

(4.22)

where

x0(i) = x0j-1 + Pxj(t - ij--1)

_-x0(i) = _'x0j-1 + qxj({ - ij-1)

; v0(t) = v0j-1 + Pvj( i - tj-1)

; _'v0(i) = _'v0j-1 + qvj(i- ij-1) (4.23)

plus the boundary conditions in Eq. 4.14 by replacing Xk(0 ), Vk(0), Xk(T0), Vk(T0),

2_.xk(T0), _.vk(T0) with Xk0, Vk0, XkN, VkN, _,xkN, _,vkN- The corresponding expansion of

the wansversality conditions in this case are defined as

0 = _.xlNV0N + _.x0NVlN - _,vlN(XON + ax3N) + _.v0N (-X1N - _,v0N - ax3N)

3
0 = _.x2NV0N + _.x0NV2N + _.xlNVlN -- _.v2N(X0N + ax0N) + _.v0N(-X2N

-_'v2N -- 3ax2NX2N) + _'vlN(-XlN - 3ax2NXl) - _-21N / 2 (4.24)

First and second order corrections are computed for the case where N = 3 is used in

the zero order collocation solution (note here e is 1.0). The results are shown in Figs. 4.9 -

4.12. Comparison with the N = 3 results in Figs. 4.5 - 4.8 show that a significant

improvement in accuracy is achievable without requiring a large number of elements. In

Figs. 4.9 - 4.12 the second order solution is indistinguishable from the optimal solution.

The discontinuity in slope (which is a consequence of using f'rrst order interpolation

functions for the collocation solution) is also smoothed as the order of the correction
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increases. Contrary to Level O's results, the second order corrections do not diverge due to

the fact that the nonlinear term has been accounted for in the zero order solution.
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c) Level 2 formulation

As a second illustration of a hybrid solution approach we retain a portion of the

dynamics from the necessary conditions to identify a more intelligent interpolating function

for the hybrid Level 1 formulation. Consider the following simple modification of the
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regular perturbation formulation for this example:

X=V

_'x = qxj + e{kv (1+ 3ax2)- qxj}

= (4.25)

Note that we interpolate only the variables that have nonlinear coupling, and that the result-

ing interpolation retains more of the dynamics in the original problem than in the Level 1

formulation. The interpolating functions in this case are:

x0(t) = x0(tj-1)+[v0j-1 +lpvj(t- tj-1)](t-tj-a)

vo(i ) = voj_ 1 + Pvj(t - ij_l)

)_xO(t) = 2_xOj_ 1 + qxj(t - ij_l)

XvO(t) = 2Lv0(tj_l) - [_x0j-1 + lqxj(t - tj_l)](t - tj_l) (4.26)

Consequently, there are fewer unknowns (2N+5) to be solved and the dynamics retained in

the formulation should improve the zero order collocation approximation. This allows even

fewer elements to be used. To evaluate the zero order solution, conditions in Eq. 4.19 are

enforced by replacing X0N, _Lv0N with x0(tN), _Lv0(t N) from Eq. 4.26, and similarly for

the first order expressions. The forcing terms for this case are:

Pll=0 ; P21 = -xo - _'vO - ax_ - Pvj

P31 = _.vO( 1 + 3ax2) - qxj ; P41 = 0 (4.27)

and the state transition matrix is same as that in Level 1.

Figures 4.13 - 4.16 show the zero and first order state solutions for the case N = 2.

The results show that the zero order solution is dramatically improved especially in the state

variables in comparison to the zero order solution for N = 3 of the Level 1 formulation in

Figs. 4.9 and 4.10. The accuracy of the first order solutions in Figs. 4.13 to 4.16 are very

good and are almost riding on the exact solutions, even though a cruder segmentation has
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been used. A similar trend is also prevailed on the costates histories.
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d) Level 3 formulation

In this last demonstration, the Level 2 formulation is further enhanced. All the

linear terms are retained in the zero order problem, and the nonlinear terms in the v and 2_v

dynamics are approximated by piecewise constants. The resultant expressions become:
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X--V

_ = -x - _v + Pvj + E{-ax3 - Pvj}

_,x = _Lv + qxj + E{3agvX2 - qxj}

= (4.28)

This is equivalent to the Level 0 problem except for the presence of two additional

unknown constants. This formulation represents an attempt to make maximum utilization

of the analytically tractable portion of the solution in selecting the interpolating function for

the collocation solution in the zero order problem. The zero order solutions in this case are

also similar m that for the Level 0 case:

x0(t) = (x0(tj-1) - Pvj - qxj) c°s_ + v0(tj-1)sin t + _Lx0(tj-1)[sin t - tcost] / 2

-(2Lv0(_j_l) + qxj)t sin t / 2 + Pvj + qxj

v0(t) = -(x0(tj-1) - Pvj - qxj) sin_ + v0(tj-1)c°st + _'x0(tj-1 )_ sin_ / 2

-(_.vO (tj_l) + qxj)[sin t + icost] / 2

2Lx0([ ) = _.x0(tj_l)COSt + (Lv0(tj_l) + qxj)Sint

2Lv0(t) = -TLx0 (tj-1) sint + (_Lv0(tj-1) + qxj) cos_ - qxj (4.29)

where

: 31A ( )1Pvj x((ij+tj_l)/2) ; qxj = 3a _.vx2 _.v((ij+ij_l)/2);

i = i - i j_ 1 ; i _ It j_ 1, t j]

x((ij+ij_l)/2)

(4.30)

In this formulation, an efficient way m f'md the collocation solution is to solve for

the 2N+5 unknowns of x0(0), v0(0), gx0(0), _.v0(0), Pvl, qxl ..... PvN, qxN, tf0 using Eq.

4.29 in Eqs. 4.30 and 4.19. The high order formulations are obtained in the same manner

as the previous levels and are not repeated here. The zero and first order results using only

one ¢lement are shown in Figs. 4.17 - 4.20. Though the first order results are not as

accurate as those in Level 2 (because only one element is used), both zero and first order

solutions are far superior than the Level 0 results (Figs. 4.1 - 4.4) which correspond to the

degenerate case of only one element.
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4.5 Conclusions

A hybrid analytical/numerical approach for solving optimization problems using

regular perturbation and collocation methods has been developed. The hybrid approach

shows that it is possible to significantly improve a collocation solution without increasing

the number of finite elements. The loss in accuracy that results from using a smaller

number of f'mite elements is compensated by the addition of higher order corrections to the

solution based on regular perturbation theory. Viewed a second way, using collocation to

solve the zero order problem in a regular perturbation expansion allows more of the

dynamics to be retained in the zero order solution. It has also shown that further dramatic

improvements can be achieved by selecting more intelligent interpolating functions which

are derived from the analytically tractable portions of the necessary conditions. The results

show important implications in real-time guidance applications which will be demonstrated

in Chapter 5 on the launch vehicle problem.
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SECTION V

THE HYBRID APPROACH TO NEAR-OPTIMAL

LAUNCH VEHICLES GUIDANCE

This section applies the hybrid analytical/numerical approach of Section 4 to the

problem defined in Section 2. The feedback guidance approach is based on a piecewise

nearly analytic zero order solution evaluated using the collocation method. Each piecewise

representation of the collocation solution obeys a bilinear tangent law for the thrust vector

angle, which serves as an intelligent interpolating function for the collocation method. The

zero order solution is then improved through a regular perturbation analysis, wherein the

neglected dynamics axe corrected in the first order term. Wind shear effects and constraints

axe also investigated.

5.1 Zero Order Solution

As discussed in Section 4, it is possible to improve a collocation solution by using

more intelligent interpolating functions than the first order representations in Eq. 4.1. The

interpolating functions can be derived from analysis of the analytically tractable portions in

the necessary conditions. In this case if spherical Earth and atmospheric effects are

neglected then the previous linear tangent law guidance solution results (Sec. 3.2b).

However, the costate dynamics are poorly represented as either constant or zero. Hence,

the strategy is to keep the approximation for the state dynamics and use the collocation

method to improve the representation of the costates (cf. Level 2 and 3 formulation in Sec.

4.3). This also reduces the number of unknowns by half. Thus instead of using Eq. 4.1

to interpolate both the states and costates, only the latter are chosen for interpolation. The

perturbed collocation formulation in Eq. 4.2 becomes:

T(i)c - P(i)A(i) _(i) ((-15(i) - P)A(i) sin 0 - D(i) sin T + L(i) c°sT
x' = m(t) sin0- +e( m_

+_(i)__ + _)

T (i) -_(i)A_i)
fi = vac

m(t)

u_v
r

cos0 - _!i) + e((_(i) _ p)A(i) cos0 - D (i) cos T - L(i) sin T
¢"JU m(t)
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/'=V

aHXv
= qvj + e(-_-- qvj)

e" aH
_'r = qrj + (-"_- -qrj)

; _'u = quj + e(-_" u - quj)

; = 0
dO

;j=l ..... N

(5.1)

where

v = Vcosy+W i ; u = Vsiny+W k

( (T (i) - pA (i)) sin 0 - D (i) sin y + L(i) cos y
H = kvl" vac

m(t)

( (T (i) - pA(i)) cos0 - D (i) cosy - L (i) sin y

+Xu_- vac re(t)

r---_-+

(5.2)

The terms _(i), _(i), _(i) are approximations for the average values of the engine nozzle

back-pressure and the spherical acceleration components for each flight stage. From

previous investigation it is found that including partial terms for these effects improve the

approximation, and for the present problem these parameters are chosen as:

_(1) = P(ho ) / 2 ; _(1) = Be / r2 - Uo2 / ro ; g(ul) = 0

• =(2) (1) =(2) = 0 (5.3)_(2) = 0 ' gv = g /2 ; gu

and they are assumed to be updated continuously in closed loop implementation.

In the following we make use of the analytic portion of the optimality condition in

Eq. 5.1 to generate the zero order control, by using the form in Eq. 4.3. This amounts to

regarding the dependence of aerodynamic forces on 0 as a perturbation of the optimality

condition, which results in the celebrated bilinear tangent law

m00(t) = _,v0j-1 + qvj( t - tj-1) (5.4)

_.u0j-1 + quj( t - tj-l)

With the above formulation and using the expression in Eq. 5.4 to eliminate the

control, the zero order solution (e = 0) can be expressed as:
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where

v0(t ) - v0(tj_l) + k(i---ff _ (tan((p _(t

-(t- tj_l)_(v i) ; t e [tj_l,t j]

FE I+A_ . -1

u0(t)= u0(tj-1)+ k(i---ff{1+_-_ smh (tan((P+rl))-_sinh-l(tan(P)}[(p_(jt_)l)

-(t - t j_ 1)g(i)

FDC I tan(p)[ _sinh-l(tan((p+rl)) sinh-l(tan(p)]
r0(t) = r0(tj-1) k(i)A I.(A- _/1 +A"

• -1 (p(t) _(i) t-tj_l

sec(p--gSlnh (tan(p)}l(p(tj_l)+[v0(tj_l)-g v ---_](t-tj_l)-G(tj_l)

2Lv0(t) = _,v0j-I +qvj( t -t j-l)

;Zu0(t ) = _Lu0j_ 1 + quj(t - tj_l)

_-r0(t) = _'r0j-I + qrj( t - t j-l) (5.5)

D=qvj/A

Cv = _.v0j-1 - qvjtj-1

. -l_At +B,

(p(t) =mn

; B = (Cvqvj + Cuquj)/A

; E = (cuA - qujB) / (AC)

; Cu = 2Lu0j_ 1 -qujtj_l

_tan-l(l/A) ,A_>O

; 11 = [_+tan-l(1/A) , A <0

; C = 4C2v +c 2 -B 2

• F = T (i) -_(i)A(i)

; Cm = m (i) + k(i)tj_l

cmA + k(i)B cvA - qvjB
A = k(i) C ; _ = qujC ; g-

cuA - qujB qvj C

FD r _+A . -1 • -1 _(

G(tj-1)
= k-_l_smh (tan((p+rl))-slnh (tan(p)j(p(tj_l) (5.6)

The above expressions constitute a set of nonlinear interpolating functions and the zero

order solution is now expressed in terms of the unknown costate nodal values. To evaluate
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these values, the collocation constraints on the costate derivatives in Eq. 4.1 are enforced:

qvj =
_'v0j -- _'v0j-1

tj -t j_ 1 - --_" t=(tj+tj_ 1)/2; 7_v0=(kv0j+7_v0j_ 1)/2;

_,u0 =(ku0j+_-u0j_l)/2; Xr0=(_,r0j+_,r0j-1)/2

quj =

qrj =

_'uOj - kuOj-1 = _ ()I-I

tj - t j_ 1 ()u t=(tj+tj_l)/2; ... ; _,rO=(_,rOj+_,rOj.1)/2

_'r0j - _-r0j-1

tj - t j_ 1 = _ t=(tj+tj_l)/2;... ; kr0=(_,r0j+_,r0j_l)/2
(5.7)

Since more control activity is expected inside the atmosphere, a denser

segmentation is used for the first stage flight, whereas a 1-piece segment is sufficient for

the subsequent more nearly exoatmospheric second stage flight. The total number of

unknowns to be solved in the zero order problem are 3N+4. Open loop solutions in a

stationary atmosphere for several increasing values of N are given in Figs. 5.1 to 5.6. The

segmentation is N-1 elements for the first stage flight and one element for the second stage

flight. Zero order results using only the regular perttu'bation approach as given in Sec. 3.2

are also included for comparison. Significant improvements are observed in the costate

profiles with the hybrid approach because part of the aerodynamic effects are now

accounted for in the zero order formulation. In particular, note from Figs. 5.4 - 5.6 that the

zero order solution of Sec. 3.2 amounts to ignoring aerodynamic effects and invoking a

fiat, non rotating Earth approximation. This results in _,u and _,r being constant and _,v

being linear in time (see Figs. 5.4 - 5.6), which from Eq. 5.4 gives the linear tangent

steering law. This largely accounts for the failure of the regular perturbation method when

aerodynamic effects are included.
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5.2 First Order Solution

In this case, the linear differential equations satisfied by the first order terms have

the following form:
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Vl

Ul

rl

d _.vl =

_'ul

_rl

" 0 0 0 a14 j a15 j 0 Vl

0 0 0 a15 j a25 j _ Ul
1 0 0 0 0 r 1

Dqvj Dqvj Dqvj _lvj . _tvj Dqvj + f Dqvj

_+tl_ i 1

_ _ D)_'v DO _ 2"_" _'vl

_luj Dquj Dquj _tuj . _luj Dquj+f Dquj
m+Ii_

Dqrj Dqrj &trj &trj . &trj Dqrj+f Dqrj
/

m+t 1
g _UU _ D_,v DO _u 2_ _'rl]

"Clj(t)"]

C2j(t) I

vo(t) I

+ T1 qvj
To

quj

qrj

+

- Plj(t)

P2j(t)

0

P4j(t)

PSj(t)

P6j(t)

; t e [tj_l,tj] (5.8)

Complete expressions are given in Appendix D. As explained earlier, the first stage flight

time is fixed, T = tf- ts, and T O represents the zero order second stage open flight time.

Therefore, T 1 = 0 for the dynamics describing t < ts, and the second term in Eq. 5.8 is

dropped for the elements corresponding to this time interval.

Experience has shown that higher order perturbation corrections are not sensitive to

using an exact state transition matrix. This behavior is analogous to the practice of using an

approximate Jacobian to solve nonlinear algebraic equations. So we introduced the

following approximation to simplify the analysis. The 3 x 5 lower left comer block of the

system matrix in Eq. 5.8 represents the effects that second order variations of the

atmospheric terms have on the costate variables. By neglecting these terms we are able to

derive an approximate state transition matrix for the first order system:

f_(_)j (t, tj_l) =

1 0 0 o_i)j m_i)j m{i)j

0 10 ¢O(_j ¢0(i5)j 0_(2i6)j

t-tj_i 0 1 o,  i4)j4i j j
0 0 0 1 0 t j_ 1-t

0 0 0 0 1 0

0 0 0 0 0 1

; t _ [tj_l,tj] (5.9)
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AppendixD detailsthecotermsin Eq.5.9. Thelowerright handblock in Eq. 5.9accounts

for sphericalEartheffectson thecostatesolution,neglectedin thezeroordersolution. As
will be shown in the numericalresultssection,this is an important correction for the

exoatmosphericphaseof flight. By successivelyapplying Eq. 4.6 of N times, the
perturbationsattNfor afast ordersystemwith piecewiserepresentationarenow givenby

-Xl(tN)"

_,l(tN)_

¢_(2) .Q(1) n(1) rxl(to)-I
= ,,AN (tN,tN-1) AN_I(tN-I,tN-2 ) ... a,A1 (tl'to)t_Ll(to)J+

J'_N_ 1D-(A2)N( tN, "l;){T'_0(C_ ((:))]

... D.Aj+I(1).(tj+l,tj)i-_i_ 1.Q(A1)j(tj, x)

L 2N,-j
"p(1)(x )

lj- -_z

P2(Ij)(z)_

j=N-1 /,_

+ _ K_N(tN'tN-1)'"
j=l

(5.10)

5.3 Numerical Results

Figures 5.7 to 5.10 show the closed loop results for the state variables expressed in

the wind frame coordinates. The control is updated at every second and is held constant

within each update interval. The total number of elements used in this case is N = 8. Note

in Fig. 5.10 that jumps in angle of attack occur at about M = 1.3 and M = 2.3. These are

due to the shadowing effects of the booster which causes the control solution to first follow

a higher ct profile (to reduce drag) followed by a lower profile to correct the trajectory.

There is another third small jump at the staging time due to the discontinuous dynamics.

This figure also shows a major difference between the zero order and first order solution

for ot during the end of the second stage flight, which is due to the absence of the spherical

Earth corrections in the zero order solution. Even though a large difference exists between

the two solutions, the trajectory and the performance index stay very close, and imply that

the optimal result is insensitive to control variations.
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Next, we include the effects of non-stationary atmosphere on the solution. The

wind profile used is the interpolated mean winter profile for Kennedy Space Center, shown

in Fig. 2.11, and this profile is accounted for in the guidance solution. From earlier

investigation it is learned that the performance is not sensitive to control variations, there-
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foreattemptis notmadeto incorporatethecontrolconstraintin theanalysis.Insteadahard
boundon thecontrolis enforcedin thesimulation,butnot in theguidancederivation. The

boundsin thiscaseare

-167580degNm-2 < o_q < 167580degNm -2 (5.11)

They represent the dynamic loading limits on the vehicle. In addition, the first stage C D

profile was convexized, as shown in Fig. 5.11. This is done to eliminate the objectionable

jumps in control that are observed in Fig. 5.10, which have negligible effect on the

performance. The results of the closed loop simulation for the unconstrained case are

depicted in Figs. 5.12 and 5.15, which show excellent agreement between the first order

guided solution and the optimal solution. Fig. 5.16 illustrates the effect of the o_q

constraint, which is active only over a minor portion of the trajectory. The performance

results for this case summarized in Table 5.1.

Table 5.1. Performance Comparison for ALS Vehicle Guidance.

optimal 1st-order 0th-order

h(tf) 148160m 148160.0m 148160.0m

_tf) 0 ° 0.000 ° -0.001 °

V(tf) 7858.2ms -1 7858.20ms -1 7858.14ms -1

tf 377.372s 377.382s 378.397s
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Figure 5.13. Closed Loop Flight-path Angle Profile Under

Wind and oat Constraint.
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In this example, the aerodynamic forces have a major effect in the middle portion of

the first stage ascent. This is illustrated in Fig. 3.20 which shows the ratios of the lift and

drag forces to the thrust components. This explains why the regular perturbation analysis

in Sec. 3.2 is not able to correct for the effect of aerodynamic forces in the first order

analysis. These forces are simply too large to be treated as perturbation effects, and

consequently the calculated first order correction diverged. Use of the collocation method

in forming a zero order solution largely accounts for the aerodynamic effect through the

mid-element constraints in Eq. 5.7.

5.4 Remarks on the Numerical Results

The results show a high level of fidelity and justify the approximation we have

introduced to obtain the state transition matrix in Eq. 5.9. In particular, the f'u'st order

solution shows significant improvement by correcting for the spherical Earth effects, as

illustrated in Fig. 5.10. In this case the zero order solution fails to anticipate the sharp

change in the radial acceleration as the orbital condition is approached, even using a

continuously updated guess of gv. This results in an excessive pull-up of the vehicle

during the initial portion of the second stage flight, and is later forced to correct with a large

negative (x to meet the terminal conditions. However, both zero and first order results give

extremely good orbit injection accuracy without requiring a high rate of control update.

79



E

"o
o
o
Q.

U)

"o
c-

lOO

50

0

-50

-100
0 1OO00 200O0 30000

Altitude (m)

Figure 5.17. A Hypothetical Wind Shear Profde.

A

Q
"O

O

C

Q

2
r-

I--

1°°1 i.......... Open-loop

75 -J _ Guided I

50 t . *" N°minal I

25 ..

-25

0 100 200 300 400

Time (s)

Figure 5.18. Comparison of the Thrust Vector Angle Profiles

under Wind Shear.

80



The computations for the cases presented here are done on a SPARCstation 1. The

CPU time needed for a control update ranges from 0.65s for an 8-element case to less than

0.15s for a 1-element solution during the second stage flight. The Newton's method with

Broyden's update of the Jacobian [11] is used in the zero order collocation evaluation and

the solution converges typically in 4 iterations. It is apparent from the numerical results

that the first order correction is needed mainly to correct for spherical Earth effects which

are dominant only in the second stage of flight. Therefore a significant additional savings

in computation time would have resulted had we computed this correction only for that

phase.

5.5 Wind Shear Investigation

To assess the effectiveness of the hybrid approach against wind shear, we show a

typical scenario. First, an open loop trajectory using piecewise linear thrust vector angle

program for the first stage flight, followed by the closed loop hybrid approach guidance for

the second stage flight is simulated with a hypothetical wind shear (cf. Fig. 5.17). The

open loop part of the guidance is derived from a linear interpolation of the previous results,

which is based on the nominal mean wind profile. Second, a guided trajectory using

closed loop guidance for both the first and second stage flight is simulated. This guided

solution is assumed to have detected the wind shear, and is therefore included in the

calculation. To assure structural integrity, both cases are incorporated with the ctq

constraints. The first case represents the approach for present launch vehicle operation, ie.

an open loop guidance for the endoatmospheric flight using pre-flight atmospheric

conditions, and compensated by a closed loop guidance for the exoatmospheric flight. The

second case represents the proposed approach for ALS, ie. real-time near optimal guidance.

Figs. 5.18 - 5.20 compare the 'Open loop' and the 'Guided' solutions. A point of interest,

the 'Nominal' solution with the same linear piecewise control program flying under the

nominal wind condition is also included. The 'Open-loop' solution gives poorer

performance (cf. Table 5.2). The final lime to orbit is 1.13s longer (equivalent to a loss of

45501bs in payload) than the guided solution, and is also worse than the guided solution

Table 5.2. Performance Comparison under Wind Shear.

Guided (lst) Guided (0th) Open loop

h(tf) 148160.0m 148160.0m 148160.0m

_(tf) 0.000 ° -0.000 ° 0.000 °

V(tf) 7858.20ms -1 7858.18ms -1 7858.20ms 1

-J = tf 377.287s 378.243s 378.413s
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using only a zero order solution. If the magnitude of the wind shear is further increased by

22%, then open-loop guidance will result in a catastrophic failure unless the aq limit is

exceeded.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The fundamental problem in treating launch vehicle dynamics by singular

perturbation methods relates to the inherent large value of longitudinal load factor. As a

result, the zero order reduced solution gives a very poor approximation. A manifold

solution was also attempted to account for flight path angle dynamics, but this method also

fails due to the fact that the dynamics are not separable in the same manner throughout the

ascent profile. Regular perturbation analysis gives a better solution in the absence of

aerodynamic forces. However, the approach cannot handle guidance for the atmospheric

flight phase, which is the main issue of this research. The neglected aerodynamic forces in

the zero order solution are simply to large to be considered as a perturbation effect.

A new hybrid approach for the solution of nonlinear problems in optimal control

has been developed for this application. This approach is hybrid because it combines the

desirable features of numerical and analytical methods. The numerical method of

collocation allows a simple formulation for solving a wide variety of optimization

problems. The disadvantage of requiring a large number of approximation elements and

solving a large dimension set of algebraic equations are compensated for by the analytical

approach of regular perturbation. The regular perturbation approach provides higher order

correction over the collocation solution without increasing the number of approximation

elements. It can also be used to identify intelligent interpolating functions for the

collocation solution, which results in a further substantial reduction in the number of finite

elements needed for a given level of solution accuracy. These attractive features promise an

enhanced real time capability in the solution of optimal control problems, which has been

demonstrated in the launch vehicle guidance application. The main results on this problem

are that a bilinear tangent steering law can be employed in all flight phases, including the

atmospheric phase, and that the collocation solution can be obtained using a small number

of elements.

6.2 Recommendations for Future Work

Many important issues remain for future research, and the following

recommendations are made in increasing order of complexity:

Identifying More Intelligent Interpolating Functions - Though the zero order solution is

capable of handling partial aerodynamic effects, spherical Earth effects were not directly
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incormorpatedin theanalysis.This leadsto a poor representation of the zero order solution

as the vehicle approaches orbital speed. An investigation should be made to account for

this effect in the formulation, and a proposed way to set up the problem is to add a constant

perturbation term, similar to the Level 3 formulation in See. 4.3.

More Accurate Model - Improvements can be made in the launch vehicle problem by

considering a more elaborate dynamic model. The rotating Earth effects and a more

complex propulsion model should be considered. It may be necessary to modify the

interpolating solution in the collocation approach, depending on the magnitudes of these

nonlinearities.

Multi-flight Task Rcquircment_ - The hybrid guidance approach can be extended to handle

various flight tasks such as deorbit and rendezvous. These requirements will pose terminal

constraints on both the downrange and crossrange values, which can be included in a 3-D

formulation. Such multi-flight task guidance capability would be very useful to manned

vehicles like the Space Shuttle.

Constrained Problem Analysis - For the launch vehicle problem, it is coincidental that the

performance is insensitive to control variations, thus allowing the exclusion of the control

constraint in the analysis. However, it would be useful to complete the hybrid approach to

include analysis of constrained optimization problems. To address the constrained problem

requires a guess of the switching structure and a formulation of variable time intervals in

which the constraint becomes active.

Launch Vehicles Range Safe_ Concerns - The range safety issues related to the launch

vehicle ascent trajectory occur in the form of state constraints. To avoid potential disaster

or to facilitate the retrieval of reusable boosters, the vehicle may be constrained to fly within

a narrow corridor of air space. Present methods to handle this type of problem are not

efficient and rely purely on numerical means. Future study should include a systematic and

simplified formulation that is tractable by analytic methods such as the hybrid approach.

Hybrid Approach with the HIB Expansion - As demonstrated in [14, 37], the regular

perturbation analysis can be carried out using the Hamilton-Jacobi-Bellman equation. In

this formulation, the perturbation corrections are not represented by a set of linear O. D.

E's., and the calculation of the state transition matrix or sensitivity functions are not

required. Instead the perturbation corrections are evaluated simply by quadrature.

Proposed future research should include a study of the relationships between these two

types of formulations (the HJB and the state/costate expansion) and the hybrid approach

using the HJB expansion, which promises a much simpler and more efficient evaluation of

the perturbation corrections.
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Manifold Investigation - The failure of the energy approximation analysis indicates that the

zero order (e = 0) reduced solution is far from satisfactory and a higher order

approximation is needed. One distinguishing feature of Manifold Theory is the inclusion of

e in the manifold condition [24] which considers the fast variable as a function of the

singular perturbation parameter in addition to the slow variable. Although this approach

was not successful for this application, due to the varying role of the altitude state, it may

be highly useful in other nonlinear optimization problems. A drawback in our analysis is

that we had to numerically experiment to determine a solution close to the manifold. This

has been accomplished by visual examination of the trajectories in Fig's. 3.5 and 3.6. It

would be highly desirable to develop an algebraic test for when the initial condition lies on

the manifold solution. An alternative would be to develop an iterative process that

converges to the manifold solution.
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APPENDIX A

Derivation of Eq. 3.32

We want to show that

Oto L _, ,J k TO[Lo(t)J
(A.1)

in Eq. 3.32.

recall that

C1 = fl + (x - to) _

The left hand side of (A. 1) becomes

Let fl = R0(x0,_.0,x); f2 = _0(x0,_,0,x), assuming u being eliminated and

; C2 = f2 + (x - to)_x2

Tk }_A(t,'01 d {(x-to)[_] ] ('c F_fl / 8x°
TO to [d%k. - -t°)k z/Oxo

^

Tk/i('c - t°)(d f2A (_"c))[_ ]dxTO

_f_ / _Z'° 1

Using integration by parts on the first term in (A.3), we have

^ fi _=_
T----g'k_(X- t°)f2A (t"0[f2 ]}[,C = to.10 t ---

Tk _('C- to)f_A(t,'C ) _f2/3x0
TOto

Substituting the state transition matrix property

d ,^ _,[_f_/_xo _f_/ _Zo1

into (A.4), the last two terms cancel and the result is demonstrated.

transition matrix is also used to derive Eq. 4.7.

(A.2)

(A.3)

(A.4)

(A.5)

The above state

86



where

APPENDIX B

State Transition Matrix Expression in Eq. 3.44

The state transition matrix used in the regular perturbation approach in Sec. 3.2 is

- 1 0 0 co_i4) o)_ ,.,,16".'(i)

0 1 0 ,.,(i) ,.,(i) ,.,(i)w24 w25 w26

f_(_)(t2,tl) = t2-t 1 0 1 co(i) ,.,(i) (i)
w35 0)36

0 0 0 0 t 1 - t 2

0 O 0 0 1 0

0 0 0 0 0 1

(B.1)

toni4) = _i4)(t2) - _i4)(t 1)

co_i5) = n_(t2)- n_is)(tl)

co i) = rc_ (t2)- _(t 1) + tlco_16

co(i) ,.(i)
24 = "'15

CO(i) = _(i5)(t2)- _(i5)(tl)25

co(i) _(2_(t2) (i) (i)26 = - _26 (tl) + tlco24

co(_ = n(_ (t2)- _:(_ (t 1)-(t 2 -t 1)_i 4)(tl)

co(i) (i) (i) t -tl)_(t 1)35 = _35 (t2) - x35 (1) - (t2

co(i) _-(i)(t2)_x(3i6)(tl)_(t2-tl)_(tl)+ tlco_36 = '_36

-sinh-l[tan(0(t))- rl)] Asin(0(t))+ cos(0(t))"n_i4)(t ) = A _-_ +---_ A2 + 1

g_(t) =" [-Asinh-l[tan(O(t))-B)] sin(O(t))-Acos(O(t))l
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a _ m

T (i) A
vac ; B=--

Cu0 k(i) q

-A sinh-l[tan(0(t)) - rl)]x(i5)(t)= A (A2 + 1)3/2

A sin(0(t)) + cos(0(t)) ]

+ A2+I

A(p + A)sinh -1 [tan(0(t)) - rl)] (p + A) sin(0(t)) - (pA - 1) cos(0(t)):x(i6)(t) = B (A2 + 1)3/2 Aff+l 7 'j

_(_(t) = B{ [A +

tan(0(t))] sinh-l[tan(0(t)) - lq)] Asec(0(t))

(A 2 + 1)3/2 t A2 + 1

n(3is)(t)= B{A[A + tan(O(t))]sinh-l[tan(0(t))-rl)] sec(0__(t_))_
(A 2+1) 3/2 A2+1 J

x(_(t) = B{.-(p + A)[A + tan(0(t))]sinh-l[tan(0(t))(A2 + 1)3/2 - _)]

(pA- 1) sec(0(t))

k: i J (B.2)

All the variables are evaluated at the zero order values.
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APPENDIX C

State Transition Matrix Expression of Level 1 Formulation in Sec. 4.3

The state transition matrix of Level I case for the Duffing's example is

_A(i, to) =

all a12 a13 a14 ]

/a21 all -a14 a24

-ba24 ba23 all -a21

-ba23 -bal3 -a12 all J

(C.1)

For b > 0:

; -- ^

; t=t-t o

(/,--C - C--_ -

_--C

a12 = (ot_13)_f_sin(t'q_)+
c-13 sin(taft)

-1 sin(t-q_) + 1 sin(Lf_)
a13 = (or - [_)'x/-_ (ix - [_),f_

1 1
a14 = --COS(t_') cos(i.f_)

 -13

c 2 - o_c - b b + c13- c 2

a21 = (-_--_'_ sin(t_t-_)q (_-13)-f_ sin(bf_)

a24 = _ sin(t'_) + _-___ sin(t-f_) (C.2)

For b < 0:

0 = (42_c2- b -2c)/2

al 1 = cosh(O_)cosO[) +
c + 02 - 02

20(_ sinh(0i) sin({_t) ; a14 = _ sinh(0i) sin(_t)

02 +(_2 +C

02 + g)2 _ c sinh(0t)cos(_t) -_ #2 cosh(0t)sin(_t)a12 - 20(02+_2) 2_(02 + )
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al3 - 20(02 2(_(0'_ + #'_)

2 c.O 2 + _.2.

c 2 _b-c(02 _._p2)sinh(Oi)cos(_)+b-c -,t, ,_ _ ).cosh(0ilsin(_)
a21 = 20(02 + _) ) 2_(0 "_+ _")

a24 = _ sinh(0t) cos(_) - 2_c°sh(0t) sin(_)t)

(C.3)

The state transition matrix has the same structure of that in Level 0 for b = 0.
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APPENDIX D

System Matrix and State Transition Matrix Expression

of the First-orderFormulation in Sec. 5.2

The terms defined in Eq. 5.8 have the following expressions:

T(i) - pA(i)[ 2 _'20
al4j = V_m(t) (_v0 + _,20)3/2 ]

T (i) (i °vac - -_v0_'u0

alSj = m(t) (_v0 + _,20)3/2

T(i) - pA(i)[ 2 _'2_00)3/2 ]a25j = m(t) (kvO +

h

-cos00

_.v0 sin00 + ku0 c°s00

sin 00

f2 = 2Lv0 sin00 + _,u0COS00

Clj = T(i) m(t)- pA(i) [ 1

(t - t j_ 1)k (i) 1 _v_.0
q 2 2

m(t) JCkv0 + ku0 gv

c2j = Tv(i2Cm(t)-_A(i) [1-1

(t - tj_l)k (i) 1 _u0
2 2

m(t) J 4_:v0 + _u0

gu

Plj = gl 4
_'u0 {_. 3gl +_. 3g2

vO_--_o u0 3-_0 f

P2j = g2 _vO { 3gl + "_ 3g2+

qvj wm

3qvj [ _'v03gl / 300 + _,u03g2 / 300

30 _ (_,v0 sin00 + Lu0 eos00)(Tv(_ -_A(e i)) / m(t) J

Psj-

3H

0u
quj __m,

&tuj / _'vo3gl / 300 + _'uo3g2 [ 300

30 [(_.v0Sin00 + 2Lu0cos00)(Tv(_ -_A_i)) / m(t) J
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OH _lrj 2Lv0/ggl / _00 + _'u0C3g2 / _)00 tP6J- _r % _0 (Xv0sin00+Xu0COS00)(T_c-_gCei))/m(t)
)

Oqvj { O2H I-_ = , _-_ t=(tj+tj_l)/2; ... ;Xr0=(_r0j+Xr0j_l)/2

_-0 = ' 000u Jlt=(tj+tj_l)/2: ... ; _.r0=(_.r0j+_.r0j.1)/2

[ OOOrjlt=(tj+tj-1)/2; ... ;_.r0=(_r0j+2Lr0j_l)/2
(D.1)

where

gl =
(P - P)A (i) sine0 - D (i) sinT0 + L(i) cos_/0

m(t)

(p - p)A(e i) cos0 0 - D (i) cos _/0 - L (i) sinT0
g2 = I-gu

m(t)
u0v0

r0
(D.2)

The remaining partial derivatives (Oqvj/0v, Oqvjf0u .... ) are similar to the last three

expressions in (F. 1).

The approximate state transition matrix in Eq. 5.9 can be obtained by taking the

partial derivatives of the zero-order solution in Eq. 5.5 with respect to the initial conditions

{v0(tj-1), uo(tj-l), r0(tj.1), Xv0(tj.1), Xu0(tj.1), Xr0(tj_l)}. So we have:

0v0(t) 0v0(t) 0v0(t) 3v0(t)
0)14 - _ ; 0)15 - _

_)2Lv0(t j_ 1) 0C v O_,u0(tj_l) t)Cu

0)16 =
/)v0(t) 0v0(t) Ou0(t) _ Ou0(t)

O_,r0(tj_l ) = 0qvj ; 0)24 - O_,v0(tj_l ) 0c v

0)25 -
Ou0(t) _ 0u0(t) Ou0(t) Ou0(t)

O_.u0(tj_l ) _)Cu ; 0)26 = 02Lr0(tj_l ) = Oqvj

0r0(t) _ &'0(t) 0r0(t) _ _r0(t)

0)34 - O_,v0(tj_l ) Oc v ; 0)35 = 3_,u0(tj_l ) Oc u

0)36 =
0r0(t) Oro(t)

m

0_'r0(tj-1) Oqvj
(D.3)
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Forexample,usingthechainrule,0)14 is given by

Ov0 OD Ov0 3A _v0 _ Ov0 Oq) Ov0 3rl (D.4)0)14 - + _ +
_D _c v _A _c v _ _c v _tp _c v 0r I _c v

Symbolic manipulation programs such as Mathernatica, MACSYMA can be used to obtain

the analytic expressions of the above derivatives, and to write the subroutines needed for

their computation.
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