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Abstract

Algorithms and computer code developments were performed for the overset grid
approach to solving computational fluid dynamics problems. The techniques developed
are applicable to compressible Navier-Stokes flow for any general complex configurations.
The computer codes developed were tested on different complex configurations with the
Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and
user-friendly codes were produced for grid generation, flow solution and force and moment
computation.

1. Introduction

Computational fluid dynamics (CFD) analysis is widely used to simulate the flow
field around complex multiple-body configurations, e.g. integrated Space Shuttle launch
configuration,! V-22 tiltrotor,? Stratospheric Observatory For Infrared Astronomy (SOFIA)?
and many others. In a structured grid approach, the complexity of the body usually re-
quires the decomposition of the domain into a number of smaller blocks. An efficient
method to use for this task is the Chimera overset grid scheme.* The first goal of this
project is to enhance the capabilities of overset grid technology in the form of more robust
and efficient algorithms and user-friendly computer codes. These include developments in
the areas of grid generation, flow simulation and other pre-processing and post-processing
utilities.

Overset grid methods have been effectively applied to the simulation of the time
dependent flow over the integrated Space Shuttle vehicle during its ascent mode.! The
second goal of this project is to assist the Shuttle group at NASA Johnson Space Center
to obtain better comparisons between numerical simulations and flight data. With the
accuracy of the numerical simulations verified, new simulations can then be performed to
predict the aerodynamic behavior over a wide range of flight conditions.

The cover illustration shows the pressure coefficient plot for the Space Shuttle launch configuration
with Mach number = 1.25, angle of attack = -5.1 degrees and Reynolds number = 270 million. The
computation was performed by the shuttle group of NASA JSC. Computer software used include ICEM-
CFD for surface grids, HYPGEN/HGUI for volume grids, BOXGR for Cartesian box grids, PEGASUS
for intergrid connectivity and OVERFLOW for flow solution.
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2. Grid Generation

Grid generation is typically the most time consuming step in CFD analysis. Some sig-
nificant advances have been produced by this project in the form of more robust algorithms
and user-friendly computer codes that reduce the user’s effort required to generate high
quality grids. Volume grid generation and the associated code HYPGEN are described
in §2.1. Surface grid generation and the associated code SURGRD are described in §2.2.
Other useful grid support tools are described in §2.3.

2.1. Hyperbolic Volume Grid Generator - HYPGEN

Volume grid generation for overset grids is most conveniently accomplished using
hyperbolic methods. In addition to providing good grid point clustering and orthogonality
control, hyperbolic methods are also one to two orders of magnitude faster than typical
elliptic methods. Major enhancements to the robustness of the hyperbolic volume grid
generation algorithm are described in Ref. 5. Earlier versions of the hyperbolic volume
grid generation code HYPGEN are described in Ref. 6.

In October 1993, a major new version of HYPGEN and a major new version of its
graphical user interface HGUI were released (version 2.0). The graphical user interface
was developed by Dr. Ing-Tsau Chiu. A completely new set of examples with many
aerospace applications was compiled. A more comprehensive user’s manual was written
for the combined HYPGEN/HGUI package. The final manuscript was published as a
NASA TM.” The major new features of version 2.0 are described briefly below.

(1) A variable far field distance, a variable initial grid spacing and a variable end grid
spacing can be specified in the input file zetavar.i.

(2) A user-defined stretching function in the normal direction can be specified in the input
file zetastr.i.

(3) The input parameter list has been simplified. Only 4 parameters are now needed to
specify the boundary conditions instead of 12 before.

(4) More robustness is introduced to the algorithm for treating constant planes boundary
conditions by a metric rotation scheme.

(5) Algorithms were developed for some new boundary condition types: (a) floating col-
lapsed edge with matching upper and lower sides for C and O-topologies, (b) constant

interior planes in z, y or z.

The HYPGEN/HGUI package is used by many different groups within NASA Ames
and it has also been widely distributed to various groups outside of Ames. These include:

Industry - Boeing Commercial and Military, McDonnell Douglas Commercial and Aerospace,
General Electric, Pratt and Whitney, Rockwell International, Northrop, Bell Helicopter,
McDonnell Douglas Helicopter Company, Gulfstream Aerospace, Ford Motors Corp., Ap-
plied Research Associates,Inc., Nielson Engineering, Northern Research and Engineering,
Sverdrup Technology Inc., Loral Aeronutronic, High Technology Corporation, Sparta, Inc.,
Bechtel Corporation, EER Systems Corp., Science Applications Internaional Corp., W. J.
Schafer Associates, Inc.

Government agencies - NASA Johnson, Langley, Marshall, Lewis and Dryden, Sandia
National Lab., Wright Lab., Eglin AFB, Department of the Navy, Naval Surface Warfare
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Center, US Army Research Lab., Department of the Army.

Universities - Stanford University, Penn State University, University of California at Davis,
University of California at Los Angeles, University of Southern California, Arizona State
University, Naval Postgraduate School, Johns Hopkins University, University of Texas
at Austin, Massachusetts Institute of Technology (Lincoln Laboratory), Carnegie Mellon
University, Wichita State University.

NGP - Version 2.0 of HYPGEN has been incorporated as an option in the National Grid
Project (NGP) headed by Prof. Joe Thompson at Mississippi State University.

2.2. Hyperbolic Surface Grid Generator - SURGRD

Although algebraic and elliptic methods can provide satisfactory surface grids for most
applications, there are situations when it is more convenient to use hyperbolic methods.
A good example is found in the generation of collar grids® in the Chimera overset grid
scheme* for intersecting geometric components where there is no exact constraint on the
location of three of the four grid boundaries. Furthermore, desirable grid attributes such
as grid point clustering and orthogonality control are more easily attained using hyperbolic
methods.

Surface domain decomposition and surface grid generation are the most time consum-
ing steps in the overset grid generation process. Unlike the patched grid approach which
requires neighboring grid boundaries to abut each other, the overset grid approach allows
the surface grids to overlap each other. The implications of this freedom have not been
fully utilized in most of the surface grid generation tools available today which are pri-
marily tailored for the patched grid approach, e.g. GRIDGEN, EAGLEView, ICEMCFD.
With the introduction of a hyperbolic surface grid generation tool, surface grid generation
time can be reduced since only one edge of a four-sided surface grid needs to be specified.
The edge that is chosen as the initial curve is typically some special control curve of the
surface, e.g., a leading edge curve, an intersection curve between two components, a line
along the symmetry plane, or a crease in the surface geometry. Thus there is some poten-
tial for automation in selecting the initial control curves. It must be emphasized that the
scheme is not intended as a replacement for algebraic and elliptic methods but to serve
as a useful and convenient alternative. The full advantages of the overset grid approach
can be utilized by combining the scheme with algebraic or elliptic methods in an overset
surface grid generator where the user can choose the appropriate scheme depending on the
particular grid attributes desired.

Earlier developments of the hyperbolic surface grid generator SURGRD are described
in Ref. 6. Recently, further significant enhancements have been made to SURGRD. These
include methods to improve side and far field boundary control, a more robust projection
scheme and extensions of the basic scheme to march over a collection of panel networks
which implies that more complex geometric surfaces can now be treated. Each network
consists of a rectangular array of panels (quadrilateral cells). Triangular cells are allowed
only at the network boundary i.e., a singular collapsed point. Since the projection scheme
is independent of the grid marching scheme, straight forward extensions can be made to
grow the grids on a bicubic or NURBS representation of the reference surface instead of
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the bilinear representation assumed in the present scheme. More details of the algorithm
and code development for SURGRD are given in Ref. 9 and Appendix A.

2.3. Grid Support Tools - PROGRD, GRIDED, BOXGR

There are a number of other useful and essential tools that were developed to support
the grid generation effort. These are described in detail in Ref. 10. A brief summary of
each tool is given below.

The first is the PROGRD code that performs projection of a subset of an active surface
grid on to a subset of a reference surface grid where bilinear representation of the reference
grid is assumed. This procedure is needed in the overlapped regions between grids.

The second is the GRIDED code which is grid editor that has the capability to perform
many operations that are common needed on a single grid in PLOT3D format, e.g. inter-
change J, K and L families, reverse grid indices, scale, translate, rotate, mirror, extraction
of subsets, extrapolation of boundaries, concatenation into a second grid, etc. Before the
existence of GRIDED, each of these tasks would require running a different code.

The third is the BOXGR code which is used to generate grids that enclosed the near
field volume grids emanating from the body surface. Two types of grids are produced by
BOXGR: The first type are layered and stretched Cartesian boxes that connect to the
outer layers of volume grids from the body surface. These Cartesian boxes supply uniform
resolution in the region between components. The second type is a stretched ellipsoidal
grid that provides an efficient topology to connect the outer layers of the Cartesian boxes
to the far field.

3. Overset Grid Flow Solver - OVERFLOW

Earlier developments of the 3-D compressible Navier-Stokes flow solver for overset
grids, OVERFLOW,!! are described in Ref. 6. Developments of OVERFLOW are pri-
marily carried out by Dr. Pieter Buning. The author’s contributions include the imple-
mentation of the Pulliam/Chaussee diagonal algorithm, the Jameson second and fourth
order artificial dissipation, the force and moment computation routines and the symmetric
Jacobian computation routine. The diagonal algorithm was adapted for overset grids by
including iblank information and remains one of the most used options in OVERFLOW.
More recent work by the author on OVERFLOW includes the investigation of a Carte-
sian solver option (§3.1) and the study and implementation of various central and upwind
schemes for species convection (§3.2).

3.1. Investigation of Cartesian Option

The current grid generation strategy for complex configurations using the overset grid
approach involves growing body conforming volume grids a short distance away from the
solid body surfaces and then enclosing the volume grids in Cartesian box grids!? (see also
§2.3). These Cartesian box grids can take up a significant fraction of the total number of
grid points (about 30% for the new grid system of the Space Shuttle Launch Configuration).
In OVERFLOW, these Cartesian grids are treated like any other grids using generalized
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coordinates. Therefore, an investigation was performed to estimate how many operations
can be saved if subroutines using Cartesian operations are available in OVERFLOW. The
results are summarized in Table 1. They indicate that only about a 20% savings in CPU
time can be achieved using Cartesian subroutines for the box grids. It was concluded that
the savings in CPU time is not significant enough to justify the development of Cartesian

subroutines.

RHS Generalized | Cartesian |Percentage
Euler 141 120 85%
Viscous 282 195 69%
Smoothing 357 333 93%
Norm 17 17 100%
Delta ¢ 6 6 100%
Total (viscous) 803 671 83%
Total (inviscid) 521 476 91%
(a)
LHS Generalized | Cartesian | Percentage
Eigenvector 292 131 45%
Euler 105 84 80%
Viscous 72 60 83%
Smoothing 234 210 90%
Delta t/iden. 8 8 100%
Matrix inv. 114 114 100%
Total (viscous) 825 607 4%
Total (inviscid) | 753 547 73%
(b)
MISC. Generalized |Cartesian |Percentage
Delta t scaling 73 46 63%
Turb. model (B-L) 105 78 74%
Laminar viscosity 17 17 100%
Add delta q 11 11 100%
Total 206 152 74%
(c)
TOTAL Generalized [Cartesian |Percentage
viscous & turbulent 1834 1430 8%
inviscid 1480 1175 79%

(d)

Table 1. Comparison of operation counts of diagonal scheme for generalized coordinates
option versus Cartesian option. The percentage given is the ratio of the operation counts
for the Cartesian option over the generalized coordinates option. (a) Right-hand-side
operations. (b) Left-hand-side operations. (c) Miscellaneous operations (B-L stands for
Baldwin Lomax turbulence model). (d) Total number of operations.
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3.2. Species Convection

Several different gases are contained in the plumes produced by the Space Shuttle
Main Engines and the Solid Rocket Boosters. It is assumed that diffusion of the plume
gases is negligible and that there are no finite rate chemical reactions occuring. Hence, only
convection will be modelled for the different gas species. A convection equation for the
partial density of each species is solved. The Navier-Stokes equations and the convection
equations are solved sequentially and weak coupling between the two sets of equations is
obtained through the density and ratio of specific heats.

The present work involves investigating improvements that can be made to the nu-
merical schemes used to solve the species convection equations in OVERFLOW. Two
options were available in OVERFLOW to solve these equations: a basic implicit first or-
der upwind scheme with no flux limiting and an implicit central differencing scheme with
constant coefficient fourth order smoothing. Both of these schemes were not able to pro-
duce satisfactory results. The first order upwind scheme is too dissipative and the central
differencing scheme with fourth order smoothing tends to produce undesirable overshoots.
This prompted the investigation of three more schemes that can potentially provide some
improvements:

(1) Implicit second order upwind with no flux limiting
This is just the second order version of the basic first order scheme already in OVER-
FLOW.

(2) Implicit second order symmetric TVD

A TVD scheme is chosen for its ability to capture sharp discontinuities. The second
order symmetric TVD scheme of Yee-Roe-Davies!? was selected since it is one of the
cheapest TVD schemes in its class in terms of operation counts. A MUSCL scheme was
also investigated but was abandoned due to difficulties in the linearization of the scheme
for the implicit LHS of the equations.

(3) Implicit second order central differencing with nonlinear second and fourth order
smoothing
The second and fourth order nonlinear artificial dissipation scheme of Jameson (same
as the dissipation scheme in ARC3D) was modified for the species convection equation.
The pressure sensor in the second order coefficient was replaced by a normalized second
derivative of the species partial density. Since each species can have discontinuities in
different regions of the flow, a different sensor for each species was necessary.

The 3-gas example in OVERFLOW was used to compare the above three schemes
with the first order upwind scheme. In the example, the domain is a 2-D Cartesian grid
and three gas species are introduced in the left inflow boundary of the grid. Gas one enters
in the lower-third of the boundary, gas two enters in the middle-third of the boundary and
gas three enters in the upper-third of the boundary. The entire domain is initially filled
with gas one and the species are convected by a flow at 30 degrees to the lower boundary.

The partial density contours for gas two after 100 steps are shown in Figure 1 for the
different schemes. Operation counts were also tallied for the three new schemes plus the
first order upwind and central with fourth order smoothing schemes (see Table 2). The
first order upwind is the cheapest but gave the most smeared result. The second order
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upwind is the next cheapest and gave sharp discontinuities but the overshoots were quite
significant. The TVD scheme gave fairly sharp profiles with no overshoot but is more
expensive than the second order upwind. The central scheme is the most expensive with

profiles similar to that of the TVD but has very slight overshoots.

Central-2/4 Upwind-1 Upwind-2 TVD-sym Central-4
RHS
convection | (7+4N)Ny [(22+5N)Ng |(22+ 11N)Ny [(T4+1TN)Ng | (7 + 4N)N4
smoothing (34 + 24N)N, 0 0 0 (49 + 11N)Ny
total  |(41 + 28N)Ny | (22 + 5N)Nu [(22+ 11N)N, | (7+ 17N)Ny | (56 + 15N)N,
LHS
convection | (8 +2N)Ny 27Ny 35N, (T+27N)N,4 11Ny
smoothing |(34 + 32N)Ny 0 0 0 63Ny
delta t, I (8N)Nd 6Ny 8N, (6N)Nd 8Ny
pen/triinv. | (20N)Ny (7T+5N)Ng [(16 +9N)N, (9N)Ny4 (16 + 9IN)N,
total _ |(42+ 62N)Ny | (40 + 5N)Ny | (59 + 9N)N, |(7+42N)Ny | (98 + 9NN,
Grand Total |(83 + 90N)N, (62 + 10N) Ny |(81 + 20N)Ng [(14 + 59N )N, |(154 4 24N) N,
Test Case
CPU sec. 7.56s 5.94s 6.08s 7.09s NA

Table 2. Comparison of operation counts for various schemes. Central-2 /4 = new central
differencing scheme with 2nd and 4th order smoothing, Upwind-1, Upwind-2 = 1st and
2nd order upwind schemes, TVD-sym = symmetric TVD scheme, Central-4 = old central
differencing scheme with 4th order smoothing, N = number of species, N; = number of
dimensions. The last row reports the CPU time in CRAY Y-MP seconds for 100 steps for
the 3-gas example in the OVERFLOW package (NA=not available).

These results indicate that the TVD-sym scheme and the new Central-2 /4 scheme can
provide better results than the old schemes available in OVERFLOW. Further testing of
these two new schemes were performed using an axisymmetric SRB (Solid Rocket Booster)
case and an axisymmetric SSME (Space Shuttle Main Engine) case. In Figure 2, the old
central scheme is compared with the TVD-sym scheme for the axisymmetric SRB plume.
The TVD-sym scheme gives less overshoots and resolves more plume features. Not shown
are the results for the new Central-2/4 scheme which are similar to that of the TVD-sym
scheme. Although the TVD-sym scheme results in smaller overshoots, it is less robust than
the Central-2/4 scheme, i.e. the TVD-sym scheme goes unstable more easily.

4. Force and Moment Computation

An important area of technology currently lacking in overset grid methods is that
there is no accurate way to integrate the pressure and viscous stresses on solid surfaces to
obtain force and moment information. This is because there is no simple scheme available
to account for the overlapped zones on the surface grids. The work in this project involves
the development of robust algorithms and computer codes to accurately compute the force
and moment coefficients for a solid surface with proper accounting of overlapped regions.
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This task is accomplished by blanking out points in the overlapped zones and then
building triangular cells in the resulting gaps between neighboring grids. The pressure
and viscous stresses can then be integrated accurately on the hybrid composite surface
consisting of non-overlapping quads and triangles where the quads are just the unblanked
cells in the original surface grids and the triangles are the newly generated triangular cells
in the gaps.

Two modules are developed to perform the above task. The first module named
MIXSUR is used to generate the hybrid composite surface and the second module named
OVERINT is used to integrate the forces and moments on the composite surface. These
modules are described in more detail below (further details on the algorithm are given in

Appendix B).

4.1. Hybrid Composite Surface Grid Generation Module - MIXSUR

This module reads in a PLOT3D multiple grid file with iblanks and an input param-
eters file. The input parameters file is used to specify the subsets from the different grids
that make up the solid surface where forces and moments are required The following are
then performed:

(a) Automatically blank out points in the overlapped region between grids. For any pair of
grids that overlap, grid points on the finer of the two grids in the overlapped region are
retained. Grid points on the coarser of the two grids are blanked out. An integration
iblank array is used to store this information.

(b) Automatically identify and order the points on the boundaries of the gaps created
between grids due to the blanking operation.

(c) Automatically construct triangles in the gap between grids without introducing new
points.

(d) Write out a multiple grid file with the integration iblank array and a multiple grid file
containing information on the triangular cells.

The algorithms developed to perform steps (a), (b) and (c) are non-trivial and work
is still in progress to improve the robustness of the algorithm such that a wide variety of
case can be treated.

4.2. Force and Moment Integration Module - OVERINT

This module reads in a PLOT3D multiple grid file, a PLOT3D multiple grid solution
file (OVERFLOW q file), an input parameters file plus the integration iblank array file
and triangular cells connection file generated by MIXSUR. Integration of the pressure force
and viscous force is performed on the hybrid composite surface consisting of quadrilateral
and triangular cells. The user can input a reference area and length for the computation
of the force and moment coeflicients, and the x, y, z coordinates of the center of the axes
about which moments are taken. Output from the module includes:

(a) the total area over which integration is performed,
(b) the lift, drag, side and the X, Y, Z pressure and viscous force coefficients,
(c) the roll, pitch and yaw moment coefficients.




5. Applications

The software tools developed in this project are applicable to any general complex
configurations. These tools are used by many different groups within NASA Ames and
they are also widely distributed to industry and government laboratories (see §2.1). The
primary test bed during the development of these codes is the integrated Space Shuttle
launch configuration, e.g., grids are generated for the various Space Shuttle components
using HYPGEN, the diagonal scheme implemented into OVERFLOW was tested on the
old grid system for the launch configuration consisting of 9 grids (see Ref. 6 for more
details). The work in this project was performed in collaboration with the Shuttle group
at NASA Johnson Space Center. Extensive use of the grid generation and flow simulation
software described in this report have been made by members in the Shuttle group at
NASA JSC in performing launch vehicle calculations.!415:16

In 1992, a major effort was taken to build a new grid system for the entire launch
vehicle which included the modelling of many of the fine geometric features on the surface
of the integrated vehicle. The development of the grids for the External Tank (ET), Solid
Rocket Boosters (SRBs) and the Orbiter/ET Attached Hardware was carried out at NASA
JSC. The development of the grids for Orbiter, the Cartesian box grids around the entire
launch vehicle and the far field grid was performed by the author at NASA Ames. The
final complete grid system consisted of 111 overset grids and 16 million points. An Orbiter
alone flow solution was computed using OVERFLOW to test the robustness of the new
Orbiter grids which included the modelling of the elevon gaps (see Ref. 10 for more details).

6. Concluding Remarks

Algorithms and computer software tools have been developed for the Chimera over-
set grid approach. Special attention was paid to the enhancement of robustness of the
algorithms, improvement of efficiency (code optimization, increase of speed of execution),
generality, user-friendliness of the software. Significant advances have been made in the
area of hyperbolic surface and volume grid generation, flow solution computation, accurate
force and moment computation, supporting software for pre-processing and post-processing
of grid and solution. The recent work on SURGRD, version 2.0 of HYPGEN and prelimi-
nary developments on the force and moment integration modules MIXSUR and OVERINT
were presented at the 2nd Overset Composite Grid and Solution Technology Symposium,
October, 1994 (see Appendix C).

The computer codes developed are extensively used within NASA Ames and also have
been widely distributed to U.S. industry, government laboratories and universities. The
success of the software in treating very complex configurations has been demostrated in
the accurate flowfield simulation of the integrated Space Shuttle launch vehicle using the
new grid system at NASA JSC. Favorable agreement was obtained with wind tunnel and
flight data.
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Abstract

Efficient methods for performing surface grid generation for overset (overlapping) grids are presented.
These include a scheme using hyperbolic partial differential equations and an algebraic marching scheme. The
combined use of hyperbolic and algebraic methods in easing the task of surface domain decomposition and
surface grid generation for the Chimera overset grid approach is discussed. Extensions of a basic hyperbolic
scheme are made to march over a collection of panel networks where each network consists of a rectangular
array of panels (quadrilateral cells). Other enhancements include a more robust projection scheme and
methods to improve grid boundary control. Examples are given for general applications in overset grid
methods such as collar grids for intersecting geometric components and cap grids at fuselage noses and wing

tips. More complex examples include surface grids for the Space Shuttle Orbiter and the V-22 tiltrotor.
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1. INTRODUCTION

Computational fluid dynamics (CFD) analysis has become widely used in applications involving complex
configurations [1-5]. In a structured grid approach to solving such problems, one of two different methods
are commonly employed. The first is the patched grid method [6] where boundaries of adjacent grids
are restricted to abut each other, and the second is the Chimera overset grid method [7] where the grid
boundaries are not constrained as long as some overlap exists between adjacent grids (see Figure 1). As
we will discuss below, the procedures for efficient grid generation using the two methods are quite different.
While many algorithms and software tools have been developed for the generation of patched grids, the

number of algorithms and software tools designed for overset grids is limited.

Fig. 1. Overset surface grids (thin lines) and volume grids (thick lines) for a fore-body geometry composing
of a fuselage grid and a nose grid.

* Author for correspondence.



11 Overview of Grid Generation Process

The grid generation procedure for overset grids can be broken into four main steps: (1) Surface domain
decomposition, (2) Surface grid generation, (3) Volume grid generation and (4) Inter-grid connectivity.
Typically, the first two steps combined can take up to 70% of the total grid generation time. With the
introduction of more robust hyperbolic grid generation methods [8], volume grid generation typically requires
less than 5% of the total time. The remainder of the time is spent on inter-grid connectivity.

It is worth examining the software tools that are available to the user to perform each of the steps.
Surface domain decomposition involves partitioning the surface geometry into four-sided domains on which
surface grids will be generated. Three-sided domains where one of the edges is collapsed to a point is
allowed at the surface boundary. Very few software tools are available to assist the user in determining a
choice of domain decomposition. Moreover, the time required to obtain a satisfactory domain decomposition
depends heavily on the experience of the user. Many software tools are available for surface and volume
grid generation using algebraic or elliptic methods, e.g. GRIDGEN [9], EAGLE [10], EAGLEView [11],
ICEMCFD [12]. These are particularly suitable for the patched grid approach where all the boundaries of
a grid have to be specified and constructed prior to the generation of the interior grid points. However,
there are no general software packages available that are tailored for overset surface grid generation. Overset
volume grid generation can be efficiently performed using tools based on hyperbolic methods such as the
HYPGEN/HGUI package [13]. Software tools to perform inter-grid connectivity for complex configurations
include the PEGSUS code [14], the DCF3D code [15], the BEGGAR code [16] and the CMPGRD code [17].

A more comprehensive list of grid generation software for overset grids can be found in Ref. [18].

1.2. Domain Decomposition

For the patched grid approach, domain decomposition is a complex process since both the surface and
the 3-D space around an object have to be decomposed into abutting blocks. For the overset grid approach,
only the surface geometry needs to be decomposed in such a way that neighboring surface grids overlap.
Volume grids will overlap naturally if sufficient overlap is provided on the surface.

Due to the lack of overset surface grid generation tools, overset grid users have been forced to employ
patched grid tools to generate surface grids [1-5]. However, the overlap requirements for overset surface
grids imply that not all four boundaries of the surface grid need to be precisely defined before generating
the grid. A good strategy would be to first locate special control curves of the surface, e.g., a leading edge
curve, an intersection curve between two components, a line along the symmetry plane, a curve along a slope
discontinuity of the surface, or an open boundary of the entire surface. These curves can be used to assist
the domain decomposition process since they can be employed as boundary curves for domains. Surface
grids can then be grown by marching away from these control curves using hyperbolic or algebraic methods.

Such a surface grid generator is described in this paper. Sometimes, a non-orthogonal grid with four-sided
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control is required. The control curves can then be used as boundary curves for an algebraic or elliptic grid

generator.

1.3. Surface Grid Generation

Although algebraic and elliptic methods can provide satisfactory grids for most applications, there
are situations when it is more convenient to use hyperbolic methods. For the overset grid approach, it
is frequently the case that only one of the four boundaries of the surface grid needs to be specified and
constructed prior to the generation of the interior grid. A good example is found in the generation of
collar grids [19] for intersecting geometric components where the surface grid is generated hyperbolically
by marching away from the intersection curve. Domain decomposition is simplified under the overset grid
approach and the grid generation time with a hyperbolic scheme is relatively fast since only one boundary
needs to be specified. Hence a significant reduction in the total grid generation time can be attained by
the development of general and robust surface grid generation software tools tailored for the overset grid
approach. The design cycle time for applications such as advanced subsonic and high speed civil transports
can then be shortened as a result of the reduction in grid generation time.

The hyperbolic method of surface grid generation [20] involves marching a grid away from an initial
boundary curve by a user-specified distance. This is achieved by the numerical solution of a set of hyperbolic
partial differential equations. Desirable grid attributes such as grid point clustering and orthogonality control
are naturally achieved. The predicted grid points are projected on to the underlying surface (reference
surface) after each marching step. Different underlying surface definitions can be used, for example, a
collection of panel networks (a collection of structured grids), a collection of triangular cells (unstructured
grid), or a set of non-uniform rational B-spline patches (NURBS). Since the projection step is independent
of the grid generation step, different types of reference surface definitions can be used without modifications
to the grid marching scheme.

In the original scheme by Steger [20,21], the reference surface is a single panel network (single structured
grid) and very limited side and far field boundary control is available. The possibility of covering a complex
surface with overlapping hyperbolically generated surface grids was suggested by Steger [22]. However, at
that time the capabilities of the algorithm and code were not general enough to perform such a task. In this
paper, the methods used to enhance the generality and robustness of the overset surface grid generation code
SURGRD are described. More complex surface geometry can now be accommodated by allowing a panel
network collection (multiple structured grids) as the reference surface definition. A more robust projection
algorithm and techniques for finer controls of the grid boundaries are developed and implemented. An
algebraic marching scheme is included into the code for non-orthogonal grids.

The grid generation procedure has been formulated in physical space rather than parameter space.
This is preferred since the physical space formulation provides direct grid spacing and orthogonality control.

Moreover, working in parameter space becomes difficult when multiple panel networks are present in the
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reference surface where the parameterization is usually discontinuous across network boundaries. Special
treatment would also be needed for three-sided panel networks containing a singular point.

The contents of the paper are organized as follows. In §2, the governing equations for hyperbolic
surface grid generation are given. The numerical procedures used to solve these equations and the algebraic
marching scheme are described in §3. The various boundary conditions available for the hyperbolic option
in the code are given in §4. Pre-processing that needs to be performed on the surface definition is discussed
in §5. The projection algorithm used to ensure that the grid lies on the given reference surface is outlined
in §6. In §7, applications of the current schemes to collar grids and cap grids are illustrated. Applications
of the code on complex surfaces are illustrated by examples for the Space Shuttle Orbiter and V-22 tiltrotor

in §8. Concluding remarks are given in §9.

2. HYPERBOLIC GOVERNING EQUATIONS

Consider generalized coordinates £(z, y, z) and 7(z, y, z) where £ runs along some initial boundary curve
and 7 is the marching direction away from the curve on the reference surface. Also, let #t = (#,, iz, #3)T be
the local unit normal that is assumed to be computable anywhere on the reference surface. The constraints

of orthogonality of grid families and specified mesh cell area are
e Ty =0, (2.1)

i (Fe x 7y) = AS, (2.2)

where 7= (z,y,z)T is a position vector and AS is a user-specified surface mesh cell area. A third equation
needed to close the system is provided by requiring that the marching direction of the grid be orthogonal
to the surface normal at the local grid point, i.e., the marching direction is along the tangent plane of the

underlying surface at the point (see Figure 2). This gives
f-7p = 0. (2.3)

A unit vector in the marching direction 5 can be obtained by the cross product of #i with a unit vector in
the initial curve direction £.

Equations (2.1)-(2.3) can be written out as

TeTn + Yeyn + 229 = 0, (2.4a)
iy (Yezn — 2eyn) + B2(2¢ 2y — Ze2y) + Ra(Teyn — yezy) = AS, (2.4%)
2y + N2y + N3z, = 0. (2.4¢)
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Initial curve

Geometry definition
(reference surface)

(a) (b)
Fig. 2. (a) Diagram showing a reference surface and an initial curve where £ runs along the initial curve, 5
is the marching direction along the local tangent plane of the reference surface and n is the direction of the
local unit normal of the reference surface. The unit vectors in the three directions £,  and n form a right
handed set. (b) Surface grid obtained after marching one step from the initial curve.

In order to analyze Egs. (2.4a-c), it is convenient to locally linearize about a known state 7. This can

be written as

Aofe + Boy = f, (2.5)
with
Zy Yn Zn
A= | fayy — Nazy 12y — Razy Rz, — My, (2.6a)
0 0 0
Ze Ye %
B = | —faye + faze —Ny12¢ + fiaze —RaZTe + NaYe (2.6b)
iy 7 ni3
. 0
f=1AS+AS |. (2.6¢)
0

The equations in (2.5) have been shown to form a hyperbolic system for marching in the 7 direction [21].

3. NUMERICAL MARCHING SCHEME

Marching schemes are used to perform surface grid generation in SURGRD. Two options are available:
(1) the hyperbolic scheme for marching orthogonally from the initial boundary curve, and (2) the algebraic
scheme for marching non-orthogonally from the initial boundary curve. A one-dimensional stretching func-
tion is used to prescribe the step size and marching distance in the marching direction. SURGRD employs

a hyperbolic tangent stretching function [23] where the user can specify the number of grid points used, the
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approximate distance to march out and the grid spacing at either one or both ends of the domain, i.e., at

the initial curve boundary and at the far field boundary.

3.1. Hyperbolic Marching Scheme

The nonlinear system of hyperbolic surface grid generation equations (2.4a-c) is solved with a finite-
difference scheme. An unconditionally stable implicit scheme is used so that the marching step size in n
can be selected based only on considerations of accurately generating the grid. The nearby known state 0 is
taken from the previous marching step. The product of the local arc length with the step size from the 1-D
stretching function used to determine the input mesh cell area AS.

Central differencing with explicit and implicit second order smoothing is employed in & while a two-
point backward implicit differencing is employed in 7. The elements of A contain derivatives in 1. These

derivatives can be expressed in terms of derivatives in £ using (2.4a-c) and they are computed as

(zn)yﬂ)zn)T = B_1g~) (31)
where
1 Te — fll‘w fzng - flaye fl182 - Tew
B~ = E Yg — Raw  fizTe — Ny 2¢ ﬁzsf —Yew |, (3.2a)
2z — flaw ﬁlyf - ﬁzre flasg - ZgWw
w=n- 1'-2- = ﬁlxc + ﬁzyf -+ fl32€, (32b)
3?:;'-’5'1'-‘5 =z?+y?+z€2, (3.2¢)
B = Det(B) = s — w?, (3.2d)
7=(0,A50)". (3.2¢)

After putting the equations in delta form, the scheme can be written as
1+ Bjx Ajxbe — 6(AV)e] (Fea1 = 75.) = Bjg Giea1 = [ee(AV)e] F, (3.3)

where

- F. - F._ g - -~ -
b¢fy = LIQ_J“I (AV)efj = 41 — 275 + 4, (3.4)

and I is the identity matrix, j, k are the grid indices in £ and 7, respectively, ¢, and ¢; are the explicit and
implicit smoothing coefficients, respectively with ¢; ~ 2¢,. These can be chosen to vary spatially depending
on geometric demands [8] or simply taken as constants. In (3.4), only the indices that change are indicated,

ie. 1-‘}+1 = 17,'+1,),, etc.



3.2. Algebraic Marching Scheme

It is sometimes necessary to march away from an initial curve in a non-orthogonal direction where the
hyperbolic marching scheme is not applicable (see Figure 3a,b). Frequently, the desired direction is along
a family of curves defined by a panel network on the reference surface. The SURGRD code provides an
algebraic marching option for this purpose.

Let the two families of curves defined by a panel network on the reference surface be labelled by ¢, and
7s, respectively. The particular panel network on which to march on and the direction in which the grid
should grow are specified by the user. Four marching directions are possible: +£, and +7,. For each point
on the initial curve, the local §, and 7, are determined (see §6). Suppose the grid is to be generated in the
+¢, direction. Then, each point on the initial curve is advanced in the &, direction along local , = constant
curves by an arc length using linear interpolation. The arc length used is given by the step size prescribed by
the 1-D stretching function [23] in the marching direction. Since no smoothing mechanism is present in this
scheme, it is intended to be used for smooth initial curves and that the total marching distance is assumed

to be not large.

(a) (b)
Fig. 3. Comparison of hyperbolic and algebraic marching options (reference surface panels are represented
by thin lines, points on initial curve are indicated by open circles, surface grid is represented by thick lines).
(a) Hyperbolic marching results in a grid that is orthogonal to the initial curve. (b) Algebraic marching
results in a grid that is parallel to a family of curves defined by the surface panels.

4. BOUNDARY TREATMENTS

For the hyperbolic option in SURGRD, boundary conditions are needed at the two boundaries ema-
nating from the two ends of the initial curve. The different boundary condition types available in SURGRD
are classified under the following three types.

(1) Periodicity - This is used when the initial curve is periodic.
(2) Floating - Under this class of boundary conditions, the grid points on the boundary can
(a) float freely with no constraint,

(b) float along an z, y or z =constant plane,



(c) float along a coordinate line on a specified network of the reference surface, or
(d) float along a user-specified 3-D curve defined by a set of points.
(3) Exact prescription - This is used when the exact locations of the grid points along the side boundaries
are given by the user.

Boundary condition types 1, 2a, and 2b are treated implicitly in the solution of the governing equations.
For boundary condition types 2c, 2d, and 3, the points on the boundary are predicted explicitly in advance
and then a corrector step is applied to improve smoothness with the interior.

An important feature of the current approach is the ability to specify arbitrary boundary curves for
the grid to follow (conditions 2¢, 2d, and 3). The prescribed boundary is defined by an ordered string of
points. For boundary conditions 2¢ and 2d, the predicted point on the boundary is made to lie on the linear
segment between two consecutive points on the prescribed boundary curve. Since the prescribed boundary
curve can be non-orthogonal to the initial curve, the smoothness of the grid near the boundary is maintained
by allowing some non-orthogonality in the neighborhood of the prescribed boundary. This is achieved by
rotating the 7 derivatives in (2.6a) which represent the direction in which the grid marches. In the interior,
this direction is normal to the previous n = constant shell. Near the boundary, the 5 derivatives are made
to blend with the direction of the prescribed boundary curve where the amount of blending diminishes with
distance from the boundary.

Further control of the stretching function in the marching direction is provided by allowing the far
field distance and the initial and end grid spacing to vary for different points on the initial curve, i.e., the
far field distance and grid spacings are functions of arc length along the initial curve. A convenient way
to specify such a function is to supply the value of the function at specific node points (including the end
points) on the initial curve. The value of the function for points between the node points are obtained by

linear interpolation. Such a scheme is found to work well in SURGRD (see examples in §8).

5. PRE-PROCESSING OF SURFACE DEFINITION

The panel networks that define the surface geometry are allowed to be abutting, overlapping or have
small gaps in between them. Four pre-processing steps have to be performed. The first step involves
identifying deficiencies on the surface definition. It is the user’s responsibility to fill in any large gaps
between neighboring panel networks by supplying more networks or extrapolating the existing ones. Small
gaps within a set tolerance level are acceptable for the current scheme. The user should also ensure that
a sufficient number of points is provided on the panel networks to resolve regions of high surface curvature
such as wing leading edges. Insufficient resolution can result in a faceted grid when bilinear interpolation is
used.

The second pre-processing step involves checking the outward normals of the panel networks. The
outward normal of a network is determined by the right-hand rule applied to the two families of grid lines

defining the network. Normals from all the networks have to be made to point outwards from the surface.
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An inconsistent normal direction for a network can be corrected by reversing the grid index of one of the
grid families on the network.

The third pre-processing step is the identification of the neighbors of each panel network and it is
automatically performed by the code. Each panel network is first labelled by a number. There are four
distinct boundaries for a regular non-periodic network, three distinct boundaries for a network with a singular
point at one end, and two distinct boundaries for a network with a periodic direction. For each point on
the distinct boundaries of each network, three quantities N, J, and K, are identified and stored. The label
number of the neighboring network is stored in N,. If there is no neighboring network, the point is an outer
boundary point of the entire domain and Ny is set to zero. If there is a neighboring network, the j and &
indices of the nearest cell on the neighbor are identified and stored in J, and K}, respectively.

The algorithm used to identify N3, Jy and K} utilizes a ‘minmax’ box concept similar to that used by
Chiu {24]. Each minmax box is defined by six numbers: the smallest and largest z, y and z coordinates of
an object. A big minmax box is computed for the entire collection of points on each network and a small
minmax box is computed for each cell of each network. For any point on the boundary of a panel network,
the big minmax boxes are used to quickly eliminate networks that are not in the neighborhood of the point.
The small minmax boxes are used to locate the cell (given by the J, and K} indices) on which the point lies.
Tolerances are built into the code to allow for small gaps in between the panel networks.

The fourth pre-processing step is needed for the projection algorithm and is also automatically per-
formed by the code. This involves generating a new point above each point of the surface networks by
marching a small distance along the local surface normal. The new layer of points can be regarded as a
phantom volume grid for the surface networks with a thickness of one cell. Surface normals for points on
the boundary of a network are adjusted to blend with the surface normals of points on the corresponding
boundary of a neighboring network. A point situated near the surface is then guaranteed to be within one
of the cells or within the extrapolated volume of one or more cells in the phantom volume grid. Further

discussions on the projection scheme are given in §6.

6. SEARCH AND PROJECTION ALGORITHM

After each grid marching step in &, the newly generated line of grid points are projected on to the
reference surface. The projected points and the local surface normals at these points are used to perform the
next grid marching step. For this paper, the reference surface is assumed to be a bilinear surface defined by a
collection of panel networks. Each panel network consists of an ordered set of quadrilaterals. The projection
is performed on to the set of bilinear surfaces formed by the quadrilaterals of all the networks. A singular
point degeneracy is allowed on a network located on the outer boundary of the reference surface. For such a
network, all the points at one boundary of the network are allowed to be coincident resulting in triangular

cells rather than quadrilaterals.



For projection purposes, it is convenient to introduce the concept of families of networks which is
described in §6.1. No projection is performed for points on the initial curve but the correct local surface
normal must be selected in order to produce the desired marching direction. These issues are discussed in

§6.2. The search and projection procedures performed after each marching step are outlined in §6.3.

6.1. Families of Panel Networks

On the reference surface, a subset of the collection of networks that form a continuous surface is called
a family, i.e., the entire collection of networks may consist of one or more families. This concept of a family
allows the reference surface to contain networks that intersect each other. For example, at a wing/fuselage
Junction, the networks defining the wing are allowed to pierce into the networks defining the fuselage so
that part of the wing is inside the fuselage. The wing networks belong to the wing family and the fuselage
networks belong to the fuselage family. The user would then specify which family to project the current grid
on to.

Consider an initial curve at the wing/fuselage intersection with points labelled such that +¢ goes from
trailing edge to leading edge on the upper surface of the wing. If the family concept is not invoked, then
there are two valid directions to grow the grid: one along the wing into the inside of the fuselage and the
other along the fuselage outside of the wing. Reversing the ordering of points (i.e. reversing the direction
of +£) on the initial curve would result in two other possibilities being valid: one onto the wing outside
the fuselage and the other on the fuselage but into the interior of the wing. Hence in order to avoid this
ambiguity, a family needs to be specified to uniquely determine the marching and projection directions.

In general, points on the initial curve may not necessarily lie on the networks on which we wish to grow
the grid on. For the wing/fuselage example above, the points on the initial curve may originate from and
lie on the wing network. Note that these initial points are not projected and we can march a grid on to the

fuselage side by specifying the fuselage family.

6.2. Initial Curves on Geometric Discontinuities

Before the first marching step, the appropriate local surface normals for points on the initial curve are
determined. For an initial curve lying on a smooth region of the reference surface, a unique local surface
normal can be easily determined. However, for an initial curve lying along a slope discontinuity in the
surface geometry (such as an airfoil trailing edge), the local surface normal on each side of the initial curve
can be pointing in quite different directions. Special tests are performed to ensure that the correct normal is
selected such that the desired marching direction is achieved by the right hand rule #¢ x #, = /i where e is
a unit vector in the positive direction of the initial curve, #, is a unit vector in the marching direction and #
is the local unit normal. Given #¢, the choice of one normal would result in #, pointing to the interior of the
reference surface (a valid marching direction) while choice of the other normal would result in #, pointing

outside the reference surface (an invalid marching direction).
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6.3. Search and Projection after Each Marching Step

After each marching step (k > 1), the new line of points are projected on to the bilinear representa-
tion of the reference surface and the local normals at the projected points are also determined by bilinear
interpolation. Given a point r; to be projected, the following steps are performed.

(1) For the jth point at level k, the initial guess for the network number N,, the cell indices J, and K, are
taken from the corresponding quantities at the jth point at level k — 1.

(2) Local metrics based on the eight corners of the current cell in the phantom volume grid are constructed.
Then a Newton iteration is performed to find the trilinear interpolation coefficients £, 5. and ¢, within the
cell. Since we are interested in projection on to the surface, (. is ignored when considering convergence and
projection.

(3) A tolerance parameter ¢ (chosen to be about 0.005 or 0.5% of a cell dimension) is used in the convergence
test. At convergence, if —e <§. < 14 ¢€ and —¢ < 7 < 1+¢, then the point r, must lie within this cell and
the projected point is given by the bilinear coefficients £, and 7. for the four points of the cell that lie on
the surface. If either £, or 7 is outside the above range, we move to the adjacent cell with direction given
by £ and n.. The current cell index J, is increased by one if £, > 1+ ¢ and decreased by one if £, < —¢.
Similar movements for the current cell index K, are determined by 7. If the current cell indices Js, K,
have not changed, then we have reached a boundary of the current network. Now we check if there is a
neighboring network. If there is a neighboring network, we move to the appropriate cell in the neighboring
network and go to step (2). If there is no neighboring network, the iteration is stopped since we have reached

the boundary of the entire reference surface.

7. APPLICATIONS IN COLLARS AND CAPS

The primary applications of hyperbolic surface grid generation methods are currently found in the
Chimera overset grid approach to gridding complex geometries. Two main types of grids are particularly
convenient to generate using hyperbolic methods. The first type consists of the class of grids known as collar
grids [19] while the second type is labelled as cap grids [4].

When two geometric components intersect, holes are created in the component grids by the overset grid
approach and these holes overlap in the intersection region [19]. A collar grid serves as a convenient means
to provide proper interpolation and resolution in such a region. Viscous grid clustering is needed in one
direction only since the surface grid of the collar wraps around the intersection region. For example, a collar
grid 1s employed at wing/body junctions (see Figure 4). The intersection line is used as the initial curve and
surface grids can be grown on both sides of the initial curve using hyperbolic methods on the body side, and
the algebraic marching method on the wing side. The two half-grids are then concatenated automatically in
SURGRD to form the surface for the collar grid.

In order to close off the surface grid in geometric components such as fuselage noses and wing tips, grid

singularities such as axis points or collapsed edges are quite often used. This can be detrimental to the flow
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Fig. 4. (a) Surface grids g wing and body. Initial curve for collar grid is indicate(zs)by thick black line. (b)
Surface grid of collar for wing/body junction.
solution for two reasons. First, introduction of a singular line or plane in the field where grid points collapse
at the grid boundary can result in jaggedness in the flow solution where it should be smooth. In the case of
wing tips, these singularities occur in regions where the flow may have high gradients. Second, for many flow
solvers, the maximum time step that can be taken is governed by numerical stability based on the maximum
Courant number in the flow field. This maximum is inversely proportional to the smallest cell size of the
grid. The smallest cell size for grids with singular axis points or collapsed edges can be quite small near the
singularity.

The grid singularities mentioned above can be removed by the introduction of a rectangular patch or
cap grid. A cap grid over the nose of the Space Shuttle Orbiter fuselage is shown in Figure 5. The upper

surface of a cap grid for a rounded wing tip is shown in Figure 6a. Various slices of the volume grid for the

cap grid are shown in Figure 6b.

8. APPLICATIONS IN COMPLEX CONFIGURATIONS

Figure 7 shows overlapping surface grids for the Space Shuttle Orbiter where the reference surface is a
single network of rectangular cells (with triangular cells at the nose). All grids are generated hyperbolically
except the two grids on either side of the crease line separating the Orbital Maneuvering System (OMS)
pod and the main fuselage where the grids are generated by the algebraic option of SURGRD. The far field
distance and the boundary control are specified by the user in a simple input file. A different far field distance
is specified at two or three nodes and linear interpolation is used to produce a variable far field distance for
most of the grids (see §4). If a grid is generated on each side of an initial curve such as at the wing fuselage
junction and wing leading edge, the code automatically concatenates the grid from each side into a single
grid. The system of 10 surface grids shown in Figure 7 (total of 10567 points) required 11 seconds of CPU

time to generate on a Silicon Graphics Indigo 2 workstation.

12



\\\\mﬁ“ \
\ \\\\\\\\\\\\\\\\\\\\\‘\‘\‘\
3\\\\\\\\\\\\\\\\\\\\\“"‘|'
\

Fig. 5. Cap surface grid for the nose of the Orbiter fuselage (points on the initial curve are marked by open

circles).

(a) (b)
Fig. 6. Cap grid for a wing tip. (a) Surface grid for the upper side of the wing is indicated by thin lines,
surface grid for the upper side of the tip cap is indicated by thick lines, points on the initial curve are marked

by open circles. (b) Various slices of the volume grid.

Figure 8a shows the surface definition for the right half of the V-22 tiltrotor [4] which consists of 22
panel networks. Most of the networks are abutting while some have gaps in between them. Initial curves are
selected from subsets of the networks and grid points are redistributed on these initial curves. Overlapping
surface grids are then grown on the 22-network reference surface. All grids are generated hyperbolically
except for the wing part of the wing/fuselage collar and wing part of the wing/nacelle collar which are
generated by the algebraic option. Overlapping surface grids for the fuselage, wing and nacelle are shown in
Figure 8b. This system of 24 surface grids (total of 9441 points) required 9 seconds of CPU time to generate
on a Silicon Graphics Indigo 2 workstation. The user’s effort required to generate overset surface grids for

the V-22 [4] could have been reduced significantly if a hyperbolic scheme such as the one described here was

available.
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Fig. 7. Overlapping surface grids for the Space Shuttle Orbiter where points on the initial curves are
indicated by circles joined by thick lines. (a) Front view, (b) back view.
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grids for the
indicated by circles.
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Figure 8 (a) Surface definition for the right half of the
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22 panel networks.
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9. CONCLUSIONS

Overset surface grid generation methods, consisting of a hyperbolic surface grid generation scheme and
an algebraic marching scheme, have been presented together with some of their applications. Surface grid
generation time for overset grids is reduced since only one edge (instead of four that are required for typical
algebraic and elliptic methods) needs to be defined for each surface grid. Extension of the scheme to admit
multiple panel networks for the surface definition implies that more complex geometric surfaces can now be
treated. Since the projection scheme is independent of the grid marching scheme, straight forward extensions
can be made to grow the grids on a bicubic or NURBS representation of the reference surface instead of the
bilinear representation assumed in the present scheme.

The SURGRD code offers a first step towards a surface grid generator tailored for overset grids which
can potentially reduce the grid generation time by a significant amount. It must be emphasized that the
hyperbolic scheme is not intended as a replacement for algebraic and elliptic methods but to serve as a useful
and convenient alternative. The full advantages of the overset grid approach can be utilized by combining
hyperbolic, algebraic and elliptic methods in an overset surface grid generator where the user can choose the
appropriate scheme depending on the particular grid attributes desired.

A valuable addition to SURGRD would be a graphical interface to assist users in the selection of the
initial curves. In the future, an algorithm can perhaps be developed to automatically construct the initial

curves based on special control curves of the complex geometry.
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ZIPPER GRIDS FOR FORCE AND MOMENT COMPUTATION ON OVERSET GRIDS

William M. Chan * and Pieter G. Buning
NASA-Ames Research Center
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Mofiett Field, California 94035-1000

Abstract

A scheme is developed to account for the over-
lapped zones on overset structured surface grids when
computing forces and moments for the surface. Grid
points in the overlapped zone between grids are blanked.
The resulting gaps are then filled by ‘zipper grids’
which are strings of triangular cells which conform
to the original surface. A hybrid composite surface
grid is then formed which consists of non-overlapping
quadrilaterals and triangles, where the quadrilaterals
are the unblanked cells in the original surface grids
and the triangles are the newly generated triangular
cells in the gaps. Pressure and viscous stresses which
are known at the grid points can then be integrated
accurately on the hybrid surface. Results obtained by
applying the current scheme to numerical solutions are
compared with data from wind tunnel tests for sev-
eral complex configurations. These include the Space
Shuttle Launch Vehicle, a subsonic transport and an
oblique all wing configuration.

1. Introduction

Chimera overset grid methods! have been suc-
cessfully applied in the numerical flow simulations of
complex configurations such as the Space Shuttle Launch
Vehicle,234 the V-22 tiltrotor,® the SOFIA Airborne
Observatory,® and many others. Very good agreement
of many flow characteristics has been obtained be-
tween the numerical solution and wind tunnel/flight
tests. One of the most important set of quantities
sought from numerical solutions is the set of force and
moment coefficients for the solid surfaces in the flow
field. Accurate computation of these quantities is cru-
cial for aerodynamics design, optimization and moving
body problems.

* Research Scientist, MCAT Institute, Member AIAA.
t Research Scientist, NASA Ames Research Center, Senior
Member AIAA

Copyright @1995 by the American Institute of Aeronautics and
Astronautics, Inc. No copyright is asserted in the United States
under Title 17, U.S. Code. The U.S. Government has a royalty-
free license to exercise all rights under the copyright claimed herein
for Governmental purposes. All other rights are reserved by the
copyright owner.

Forces and moments are usually computed by in-
tegrating the pressure and viscous stresses on the sur-
face grids. Since the surface grids for overset grids
are allowed to overlap arbitrarily, the regions in the
overlapped zones are counted more than once if inte-
gration is performed over all the surface grids. In order
for overset grid methods to be widely accepted for use
in practical applications, a scheme must be available
to accurately extract force and moment information
from the numerical solution. A procedure developed
to solve this problem is described in this paper.

The method for computing force and moment co-
efficients is broken into two main steps performed by
two separate computer codes. The first step is to con-
struct a hybrid composite surface grid consisting of
non-overlapping quadrilaterals (quads) and triangles
(the MIXSUR code), while the second step is to inte-
grate the pressure and viscous stresses on the hybrid
grid (the OVERINT code). Generation of the hybrid
composite surface grid only needs to be performed once
before the flow solver is called. The integration mod-
ule OVERINT can be called just once at the end of the
run to compute the final force and moment coefficients.
It can also be called every N number of iterations to
supply the force and moment coefficients as indicators
of convergence, or as input to a six-degrees-of-freedom
rigid body dynamics package for moving body appli-
cations. In both cases, the connections between the
quads and the triangles in the hybrid composite sur-
face grid do not change with iterations.

Steps involved in the generation of the hybrid
grid are described in §2. The integration scheme is
presented in §3. In §4, the results of applying the
current scheme on numerical solutions are compared
with data obtained in wind tunnel tests, and results
from using an alternative force/moment computation
scheme. Summary and conclusions are given in §5.
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Figure 1. (a) Surface grids for four overlapping subsets. (b) Surface grids after blanking of points in overlapped

regions.

2. Hybrid Composite Grid Generation

An overset grid system consists of a collection
of overlapping volume grids together with information
on inter-grid connectivity. Let J, K and L be the grid
indices of a typical volume grid. The surface domain
on which forces and moments are to be computed can
be described by a collection of surface subsets. Each
surface subset is a subset of a J, K or L = constant
slice of a volume grid in the system. For the rest of
this paper, a surface subset will be referred to as a
subset for short. An example with four overlapping
subsets is shown in Figure la. A hybrid composite
grid will be generated from the collection of subsets.
This procedure consists of the following three main
automated steps which are described in more detail in
the subsections below.

(a) Points in the overlapped regions between subsets
are blanked resulting in gaps between subsets.

For any overlapping pair of subsets, only points

from the coarser of the two subsets are blanked.

(b) Points on the boundaries of the gaps are iden-
tified and ordered. This creates a collection of
strings of gap boundary points.

(c) Each pair of strings of gap boundary points are
connected to form a zipper grid which is a single
layer of triangular cells that fill the gap between
neighboring subsets and conform to the original
surface. In regions where more than two sub-
sets overlap, multiple zipper grids are allowed to
converge in a pocket of triangular cells.

An alternative to the above procedure is to re-

tain all the points in all the subsets including those in
the overlapped zones and then perform triangulation
over the entire surface domain.” We have chosen not
to do this for the following reason. If there are flow
gradients not fully resolved by neighboring grids in
the overlapped region, the solution will differ slightly.
Use of points from all neighboring grids in this region
would result in integration of an unsmooth pressure
and/or viscous stress field. Although the hybrid grid
generation procedure is more complex in the zipper
grid approach, the effect of any solution mismatches is
minimized by keeping as many non-overlapping quads
as possible and introducing just a single layer of tri-
angular cells. For conservation purposes, hybrid grids
have also been used to replace overlapping structured
grids in a 2-D or 3-D domain.® In that approach, all
points in the overlapped region are blanked and the
entire overlapped region is triangulated.

2.1. Grid Point Blanking Scheme in Overlapped Zone

The integration of forces and moments is per-
formed on the set of non-overlapping quads and trian-
gular cells. The set of non-overlapping quads is derived
from the defined subsets where some of the points are
blanked to ensure that the quads do not overlap. This
information is stored in an integration iblank variable
B; ¢ for each point on the subsets, where B is de-
fined by

IBj,k = -{ é’

if point is used for integration;
if point is not used for integration,

(2.1)



and j, k are grid indices for a subset. A quad is inte-
grated if all four of its vertices have B;; = 1.

Initially, B; x is set to the value 1 for all points
on the subsets. Any point that is a hole point as a re-
sult of Chimera inter-grid connectivity! will have B; ;
set to 0. Points in the overlapped region between sub-
sets are then identified. For any pair of subsets that
overlap, grid points on the coarser of the two subsets
are blanked, i.e. Bj set to 0. The coarser subset is
defined to be the one with the fewer grid points in the
overlapped region.

Points are identified to be inside an overlapped
zone by the minmax box approach.!? A minmax box is
a collection of 6 numbers that indicate the smallest and
largest z, y and z coordinates of the objects enclosed.
A big minmax box is defined for each subset and small
minmax boxes are defined for each quad of each subset.
Then the blanking procedure goes as follows.

(1) Let S; and Sj be any two subsets. Given a point
in S, the big minmax box of S; is used to quickly
determine whether the point falls inside of S;. If
it does, then the small minmax boxes of S; are
used to determine whether the point falls inside
any quad in S;. If such a quad is found, then the
point is counted as falling in the overlapped zone
between S; and S;.

(2) The number of points in S; that falls in the over-

lapped zone with S; is computed and stored in

N(Si, S;j). Similarly, N(Sj, S;) is also computed.

If N(S;,Sj) < N(S;j,Si), then all the points in

S; that falls in the overlapped zone with S; are

blanked. This guarantees that all unblanked points

in S; are not contained in any quad in S;. How-

ever, the reverse is not necessarily true. Hence, a

further test is necessary to blank any unblanked

points of S; that falls inside an unblanked quad
in S;. The procedure follows similarly with the

role of S; and S; reversed if N(Sj, S;) < N(Si, S;).

This is performed for all pairs of subsets.

(4)
(5) After all the blanking is completed, some loose
strings of unblanked points may remain which
are surrounded by blanked points. A final test is
thus performed to blank out these loose strings

of points.

Figure 1b shows the remaining non-overlapping
quads after the blanking step is performed on the ex-
ample in Figure la. Since the surface grid lines are

generally not aligned with the Cartesian coordinates
axes, the use of minmax boxes will tend to blank out
more points than is necessary. A more accurate buit
also more expensive test can be used to reduce the size
of the gaps created.

2.2. Stringing of Gap Boundary Points

The second step in the hybrid grid generation
procedure is to identify and order the points on the
gap boundaries created by the blanking step. These
points fall under two types: (I) points on the boundary
of holes defined by the integration iblank variable, and
(IT) points on the boundary of subsets that lie in the
overlapped region with another subset.

Type I points are identified by examining B; .
First, it must be an unblanked point. For an interior
point (j, k) to qualify as a Type I point, at least 3
and no more than 7 of its 8 neighboring points must
be unblanked. The neighboring points are located at
G=1k=1),G=1,k), G+1,k), G, k—1), G, k+1),
(j—1,k+1),(j,k+1)and (j+ 1,k +1). For a point
on the boundary or a corner of a subset, it is a Type |
point if any one of its 3 or 2 neighbors are blanked,
respectively. Type II points are identified by testing if
any boundary points on a given subset lie inside any
small minmax box of a cell from another subset.

After identifying the gap boundary points, they
need to be connected to form ordered strings of points.
Two gap boundary points are connected if an edge of
a subset exists between them. The connection of the
gap boundary points then results in a collection of gap
boundary strings (see Figure 1c).
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Figure 1. (c) Points on gap boundary strings are
indicated by circles joined by thick lines.
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Figure 1. (d) Gaps between pairs of boundary segments are filled by zipper grids where each consists of a
single layer of triangular cells. (e) Final hybrid composite surface grid with remaining polygonal gaps filled with

triangles.

2.3. Construction of Zipper Grids

Triangles are constructed by connecting points
between pairs of gap boundary strings resulting in a
set of zipper grids. Each zipper grid is a single layer of
triangular cells. No new points are introduced in the
generation of these cells which are required to conform
to the original surface geometry. The steps involved
in this procedure are described below.

2.3.1. Boundary Segment Matching

A zipper grid is formed by connecting points be-
tween segments of two boundary strings. Each bound-
ary string R; is divided into segments as follows. For
each point P; on R;, the nearest point on another
boundary string R; is located. The point P; is now
mapped to the boundary string R;. A segment of R;
is a set of contiguous points on R; that is mapped
to R;. A segment from R; that is mapped to R; is
matched with a segment from R; that is mapped to

R;.

2.3.2. Zipping

The matching step identifies segment pairs that
should be connected via a zipper grid. Let A and B be
a segment pair to be connected. The algorithm used
to construct a zipper grid is as follows.

(a) Selection of initial points
The first connection between A and B is formed
by searching for a starting point in A and a starting
point in B to connect to each other. For a non-periodic

segment pair A and B, the two end points of segment A
and B that are closest to each other are chosen as the
starting points of the zipping process. For a periodic
segment pair A and B, any two closest points between
the two segments can be used as starting points.

(b) Connection to form triangles

Let P; be the ith point on segment A and P; be
the jth point on segment B where : = j = 1 at the
starting points. Also let iax, and jmax be the number
of points on A and B, respectively. For i < ipa, and
J < Jmax, P; may be connected to P;;; or P; may be
connected to P;y;. The first step is to test if the quad
formed by the points P;, Pi;1, Pj41 and P; is con-
vex. The connection of P; to P;4; splits the quad into
two triangles. If the normals of these triangles have
the same sign, then the connection is valid. A similar
test is performed for the P; to Pj4, connection. In
cases where only one of the two connections is valid,
the valid connection is chosen. In cases where both
connections are valid, the quad is convex and the con-
nection with the shortest distance is chosen. However,
if both connections are invalid, the quad is crossed in-
side out. The shortest distance test is still performed
and can result in good triangulations in some situa-
tions. When bad triangulations are obtained, we will
proceed to the next connection but the bad triangles
are flagged. When i = ipay is reached (last point of
segment A), all remaining points in segment B are con-
nected to the last point in segment A, and vice versa.



(c) Reconnection to remove bad triangles

When there is a large discrepancy between the
grid resolutions of the neighboring grids in the over-
lapped zone, and when the grid lines are not aligned,
the zipping procedure described above can sometimes
produce bad triangles. These triangles are bad in the
sense that they overlap some existing quad or good
triangle. From experience, typically only less than 1%
of the triangles created are bad under the conditions
stated above. Some of these bad triangles can be re-
moved and good triangles can be formed by perform-
ing the zipping step (b) in the reverse direction in the
region of bad triangles. Zipper grids for the example
started in §2.1 are shown in Figure 1d.

2.3.3. Closing of Pockets

After connecting pairs of gap boundary segments,
most of the gaps created by the blanking procedure
described in §2.1 are now closed by triangular cells.
However, there may be small gaps left in regions where
three or more subsets overlap. Each small gap is in the
form of a closed polygon where each edge of the bound-
ary is either an unconnected edge of a gap boundary
segment or an end edge of one of the zipper grids.
These edges are identified and connected to form a
closed loop. The gap inside the closed loop is then
triangulated without introducing new points using a
similar zipping algorithm as described in the previous
subsection. First, a starting edge has to be chosen.
This is selected to be the edge whose end points con-
tain interior angles that are closest to 90 degress. Zip-
ping then proceeds from the starting edge until the
entire polygon is filled with triangles. The complete
hybrid composite grid for the example started in §2.1
is shown in Figure le.

3. Pressure and Viscous Stress Integration

Integration of the pressure and viscous stresses
is performed on the hybrid composite surface consist-
ing of a collection of non-overlapping quadrilaterals
and triangles. For each quadrilateral or triangle, the
value of the function being integrated is known at the
vertices. A number of quadrature rules can be used to
perform the integration. For simplicity, the function is
assumed to be a constant inside the area of the quadri-
lateral or triangle where the constant is the arithmetic

average of the values of the function at the vertices.
This can be written as

. 1 Nv
/ f¢4z(xr§:ﬁ)-ﬁAA, (3.1)
polygon v izt

where f is a scalar function to be integrated, polygon
is either a quadrilateral or a triangle, N, is the number
of vertices of the polygon, f; is the value of the scalar
function at the vertices, i1 is the unit normal of the
polygon, and A A is the area of the polygon. A similar
expression can be written for the integral of a vector
function f For a triangle, the normal is uniquely de-
fined. For a quad, the normal is computed by the cross
product of the diagonals. The integral in (3.1) is per-
formed over all the unblanked quads and triangles and
the results are summed and normalized to obtain the
force and moment coefficients.

There are three possible ways to perform the
quadrature over a quad by treating it as (1) a 4-point
polygon, (2) two triangles by connecting one diagonal
of the quad, (3) two triangles by connecting the other
diagonal of the quad. Let I , I;; and I;» be the value
of the integral computed using options (1), (2) and (3),
respectively. It can be shown analytically that if the
quadrature rule given by (3.1) is used on a parallelo-
gram, then

In <1, < In. (3.1)

Hence, for a quad that is a parallelogram, option (1)
is the better choice since options (2) and (3) tend to
produce undesirable biases. However, as a quad degen-
erates to a triangle as in the case of two adjacent points
becoming very close together, option (2) or (3) is more
attractive since the two close points are not counted
twice. On typical surface grids for CFD applications,
most of the quads are approximately parallelograms
in shape. We have therefore chosen option (1) for the
quadrature on quads. Cells adjacent to a singular axis
point on a surface subset are integrated as triangles.



4. Comparison with Wind Tunnel Data

The scheme described above is used to compute
the force and moment coeficients for a number of
CFD solutions on complex configurations obtained us-
ing overset grids. These include the Space Shuttle
Launch Vehicle, a subsonic transport configuration and
an oblique all wing configuration. The results are com-
pared with data from wind tunnel tests. In the case of
the Space Shuttle Launch Vehicle, results from another
independent force and moment computation scheme
are also available for comparison.

4.1. Space Shuttle Launch Vehicle

Figure 2. Components of the Space Shuttle Launch
Vehicle.

The highly complex configuration of the Space
Shuttle Launch Vehicle?-3* (see Figure 2) offers a good
test bed for the scheme described in this paper. The
overset grid system contains 113 grids and 16.4 million
grid points. Numerical solutions were computed by the
Ascent Wing Aerodynamic Loads Verification Team at
NASA Johnson Space Center (JSC) using the Chimera
Navier-Stokes flow solver OVERFLOW.19 In addition,
wind tunnel measurements are available where the data
is compiled and recorded in a data base - the Op-
erational Aerodynamic Databook (OADB) database.®
Although measurements were carried out under wind
tunnel Reynolds numbers, the data has been adjusted
using flight measurements to allow predictions for flight
Reynolds numbers. This data is compared with the co-
efficients obtained using the scheme described in this
paper applied to a CFD solution at a Mach number of

1.05, angle of attack of -3.08 degrees, and a Reynolds
number of 306 million. As a further check of the cur-
rent scheme, the results are also compared with the co-
efficients obtained by a different integration program
developed by Dr. Thomas Wey at Lockheed Engineer-
ing under consortium with NASA JSC.4 The JSC pro-
gram triangulates the entire vehicle and performs in-
tegration on the resulting triangles.

The following notation is used in Tables 1, 2, 3a
and 3b in the subsections below.

Databook = value from Operational Aerodynamic
Databook database with uncertainties,

CFD-JSC = CFD solution with independent
integration procedure at NASA JSC,

CFD-ZIP = CFD solution with current zipper grid

procedure.
C, = Axial force coeflicient,
C, = Side force coefficient,
Cn = Normal force coefficient,

Cmr = Rolling moment coefficient,
Crmp = Pitching moment coefficient,
Cmy = Yawing moment coefficient.

Results for the External Tank, Orbiter and Solid
Rocket Boosters are given in the subsections below.

4.1.1. External Tank

The first comparison is performed on the Ex-
ternal Tank (ET). Zipper grids generated in the for-
ward attach hardware region and the base region of
the ET are shown in Figures 3a and 3b. Compari-
son of force and moment coefficients with wind tunnel
data is given in Table 1. The discrepancy in the axial
force coefficient is due to the fact that the Databook
and CFD-JSC values include the blockage effects of
the Orbiter/ET attach hardware while the CFD-ZIP
value does not include such effects.

Coefs Databook CFD-JSC |CFD-ZIP
Ca 0.1591 £ 0.0319 0.1339 0.1238
C, 0.0027 £+ 0.0119 0.0026 0.0028
C, }-0.14384+0.0145 —0.1472 —0.1488

Cmr | —0.0005 £ 0.0016 —0.0001 —0.0001

Cmp 0.0351 £ 0.0097 0.0273 0.0338

Crmy 0.0025 + 0.0067 0.0016 0.0022

Table 1. Force and moment coefficients for the Exter-
nal Tank. The Databook and CFD-JSC values include
the effects of the Orbiter/ET attach hardware but the
CFD-ZIP value does not include such effects.



AN
MR
o A\

VERLRY

A
\\\\\%&&&\\\\\\\\\\\\\\\\\vm\\\\‘\\‘\\\

Ll N N ‘
AR I e SRR
AW AN,
‘\\\\‘“““‘\““&\“ LI A

Wiy \
\ W AN
uniain
Attt
. i-\l\lllu 1y

’ll,,, ’l

uf,:;,’//lll ,I’I’
iyl
gl

Dl )

iy

Il

92,7
il s

Figure 3. Hybrid composite surface grids for the External Tank in the (a) forward

base region looking from interior of tank to downstream.

1
1
1SR
1T
T
RN

A

IRRBERRRARALAAN

JRRBRRLLNANANY
JRRLRTRARLRTIANY

BRI
FERERRALIANN

THTTTTITL

T T3 T i17
JRRTETRRAERNANNNY

| .

1

| R T S T R W |

T 1T 1T Ty

]
1

1
T

T
]
THTT
U1t

(a)

(b)

L TN N
7700000, N\ SRR
%% ‘\\\‘\\\\\\\\‘\\‘

(b)

N
NN

attach hardware region, (b)

~0,%0)% 12

0

'l"l"l//,',‘
%

AL
\\\\;‘," /24,

Figure 4. Hybrid composite surface grids for the Orbiter in the (a) wing leading edge region, (b) base region

(nozzles not shown).

4.1.2. Orbiter

The second comparison is performed on the Or-
biter. Zipper grids for the fuselage/wing region and
the base region are shown in Figures 4a and 4b, respec-
tively. Comparisons with the Databook values and
the JSC integration procedure are presented in Ta-
ble 2. The results obtained using the current scheme
are close to those obtained by the independent JSC
integration program which shows that the procedure
described in this paper is working fine. Discrepancies
with the Databook values are probably caused by in-
complete modelling of the physics by the flow solver,
and difficulties in interpreting the uncertainty bounds
in the Databook.

Coefs Databook CFD-JSC |CFD-ZIP
Cs 0.0820 £ 0.0161 0.1101 0.1067
C, 0.0019 + 0.0100 0.0004 0.0006
Chn 0.0753 & 0.0267 0.1023 0.0990
Cmr 0.0015 + 0.0038 —0.0007 —0.0006
Cmp |—0.0341 1+ 0.0205 —0.0537 —-0.0499
Cmy | —0.0035 +0.0075 0.0005 0.0007

Table 2. Force and moment coefficients for the Or-

biter.




4.1.3. Solid Rocket Boosters

The next comparison is performed on the Left
and Right Solid Rocket Boosters. Force and moment
coefficients are given in Table 3a and 3b. Again, good
agreement is obtained between the CFD-JSC results
and the CFD-ZIP results.

Coefs Databook CFD-JSC |CFD-ZIP
Ca 0.0349 4+ 0.0128 0.0357 0.0348
C, 0.0265 + 0.0123 0.0051 0.0007
C, |-0.029440.0103 —-0.0306 -0.0308

Cmr | —0.0054 4+ 0.0018 0.0060 0.0060

Crnp 0.0034 + 0.0086 0.0064 0.0066

Cmy |—0.0386 % 0.0094 0.0131 0.0124

Table 3a. Force and moment coefficients for the Left
Solid Rocket Booster.

Coefs Databook CFD-JSC |CFD-ZIP
C, 0.0348 + 0.0128 0.0354 0.0343
C, |[-0.0257+0.0123 —0.0051 —0.0009
C, |-0.02784+0.0103 -0.0289 —0.0294

Cmr 0.0051 + 0.0018 —0.0056 —0.0058
Cmp 0.0005 3 0.0086 0.0047 0.0052
Cmy 0.0390 &+ 0.0094 -0.0132 —0.0126

Table 3b. Force and moment coefficients for the
Right Solid Rocket Booster.

4.2. Subsonic Transport Configuration

This test case involves a subsonic transport con-
figuration where the data was supplied by Dr. Lie-
Mine Gea.!! The geometry consists of a fuselage, wing,
pylon, nacelle and cowl (see Figure 5). The overset
grid system consists of grids for the above compo-
nents together with collar grids for the pylon/wing
junction, pylon/nacelle junction and the pylon/cowl
Junction. The numerical solution was obtained using
the flow solver OVERFLOW.!® Zipper grids gener-
ated for some of the regions are shown in Figure 6a,b.
Force coeflicients are computed by applying the proce-
dure described in this paper on the numerical solution.
Comparisons are made with data obtained from wind
tunnel tests performed at the National Transonic Fa-
cility. For a lift coefficient of 0.61, the difference in
drag coefficient between the wind tunnel data and the
CFD result is 0.0003. However, an inviscid wall was
assumed for the fuselage in the CFD run. Hence, the
difference in drag coefficient is expected to be larger
than that stated above.

Figure 5. Surface geometry of subsonic transport
configuration.

4.3. Oblique All Wing Configuration

5. Summary and Conclusions

A critical missing piece of technology for over-
set grid methods has been filled by the development
of a scheme to account for the overlapped zones when
computing force and moment coeflicients on overset
surface grids. The procedure is divided into two main
steps and is performed by the two computer codes de-
veloped: MIXSUR to generate the hybrid composite
surface grid and OVERINT to perform the integra-
tion. A simple quadrature rule is used to perform the
integration on the hybrid composite surface grid which
consists of non-overlapping quads and triangles that
conform to the original surface. Very good comparison
was obtained between data extracted from numerical
solutions and wind tunnel tests for various complex
configurations.
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Figure 6. (a) Hybrid composite surface grid in the lower wing and the pylon/wing collar grid region (top
view). Part of the pylon/wing collar surface grid wraps over the leading edge of the wing as shown. (b) Hybrid
composite surface grid in the upper outer nacelle and pylon/nacelle collar grid region.
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Recent Developments in Grid Generation and
Force Integration Technology for Overset Grids

William M. Chan .
MCAT Institute
NASA-Ames Research Center
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Moffett Field, California 94035

Abstract

Recent developments in algorithms and software tools for generating overset
structured grids for complex configurations are described. Three areas of research
will be addressed: surface grid generation, volume grid generation and force/moment
integration.

1. Surface Grid Generation

The surface grid generation process for structured grids typically consists of
the following two steps. The first step involves decomposing the surface geometry
into topologically simpler domains and the second step involves generating grids
on these domains that conform to the surface. Despite the availability of a wide
selection of grid generation software packages, e.g. GRIDGEN, ICEMCFD, surface
grid generation remains a very time consuming process for complex configurations.
The main reasons for this are discussed below.

For the domain decomposition step, the time required to complete the task de-
pends heavily on the experience of the user and the complexity of the geometry. As
far as the author is aware, there is no software tool available that can automatically
analyze the surface geometry and produce a satisfactory domain decomposition.

For the grid generation step, most of the surface grid generation tools available
are based on the patched grid approach where the boundaries of adjacent blocks are
required to abut each other. These tools utilize algebraic or elliptic methods where
all four boundaries of the domain must be specified prior to surface grid generation.
Since there are no general software packages available that are tailored for overset
grids, overset grid users have been forced to employ patched grid tools to generate
surface grids. However, the overset grid strategy suggests that many grids can be
conveniently generated by specifying only one of the four boundaries - a task well
suited for hyperbolic methods.

The development of the SURGRD code is an attempt to take a first step at
constructing a surface grid generator tailored for overset grids. A basic version

1



was introduced by Steger! that generates a hyperbolic surface grid with a single
panel network as the geometry definition. The hyperbolic scheme requires the
specification of an initial curve on the geometry definition that is to be one of the
boundaries of the desired surface grid. The grid is generated by marching away
from the curve with the marching distance and step sizes prescribed by a stretching
function. Recently, major new developments to the SURGRD code include the
following. .

(1) Complex configurations can now be treated by the admission of multiple panel
networks as the geometry definition. Surface grids are generated and projected
on to the networks. The networks are allowed to be abutting, overlapping or
have small gaps in between.

(2) More sophisticated boundary treatments have been implemented to allow gen-
eration of a wider variety of grids. Options for the side boundaries include
periodic, free floating, free floating along x, y or z constant planes, free floating
along constant family lines on a panel network of the geometry definition. Lim-
ited control of the far field boundary shape is achieved via a variable marching
distance for each point on the initial curve.

(3) A more robust projection algorithm has been implemented for the multiple panel
network surface definition.

(4) An interpolation option is included which performs grid generation by marching
along constant family lines of a panel network in the surface definition. This
scheme is used in situations where a non-orthogonal marching direction from
the initial curve is desired, e.g. the wing part of a wing/body collar grid.

Surface grids for the V-22 fuselage, wing and nacelle generated from a multiple
panel network definition using SURGRD are shown in Figure 1. More details on
the hyperbolic surface grid generation scheme and new developments on SURGRD
are described in Ref. 2.

2. Volume Grid Generation

The volume grid generation step for overset grids is usually most efficiently
achieved via hyperbolic methods. Recent developments for the hyperbolic volume
grid generator HYPGEN (version 2.0) are described. The HYPGEN program is
used to generate a 3-D volume grid over a user-supplied single-block surface grid
by marching away from the initial surface with the step size given by a stretching
function in the normal direction. This is accomplished by solving the 3-D hyper-
bolic grid generation equations (two orthogonality relations and one cell volume
constraint).?

HYPGEN is a fully self-contained code and can be run in batch mode on any
machine supporting Fortran 77. Users on Silicon Graphics (SGI) workstations have
the option to use the graphical user interface HGUI for preparing and fine tuning
the input parameters. Hooks to HYPGEN and PLOT3D are provided in HGUI for
grid generation and visualization, respectively.

2



The main new features in version 2.0 of HYPGEN include

(1) For the stretching function in the marching direction, the initial spacing, final
spacing and marching distance can be made to varying for each point on the
surface grid. Further generality is achieved by having an option to read in a
stretching function specified by the user.

(2) New boundary condition types are introduced to treat different grid topologies,
e.g. collapsed edge for C or O grids at wing tips, constant interior x, y or z
planes.

Figure 2a shows an airfoil C-mesh where grid lines in the wake are fanned out
using the variable initial grid spacing option. This type of mesh is desirable over the
conventional C-mesh if the wake outflow boundary overlaps another coarser mesh
such as in the case of multi-element airfoils. The viscous spacing at the C-cut is
avoided to allow better communication in the overlapped zone. Figure 2b shows
slices of a volume grid for a wing C-mesh where the tip is closed using a collapsed
edge. More details on HYPGEN and HGUI are described in the user’s manual.*

3. Force and Moment Integration

An important area of technology currently lacking in overset grid methods is
that there is no accurate way to integrate the pressure and viscous stresses on solid
surfaces to obtain forces and moments information. This is because there is no
simple scheme available to account for the overlapped zones on the surface grids.
A scheme that can be used to solve this problem is described briefly below. More
details are given in a paper submitted to the AIAA 12th CFD conference.®

Points in the overlapped zones between surface grids are first blanked out. For
any pair of grids that overlap, grid points on the coarser of the two grids are blanked.
Triangular cells are then generated to fill in the resulting gaps between neighboring
grids without introducing new points. The result is a hybrid composite surface
consisting of non-overlapping quadrilaterals and triangles where the quadrilaterals
are just the unblanked cells in the original surface grids and the triangles are the
newly generated triangular cells in the gaps. A function whose values are known at
the grid points can then be integrated accurately on the hybrid composite surface.

Two software modules are developed to perform the above task. The first mod-
ule named MIXSUR is used to generate the hybrid composite surface. The second
module named OVERINT is used to integrate the pressure and viscous stresses to
obtain force and moment coefficients on the composite surface. Input files required
from the user include (1) a PLOT3D multiple volume grid file with iblanks indicating
hole points generated from a domain connectivity program such as PEGASUS® or
DCF3D7, (2) a corresponding PLOT3D multiple grid solution file, and (3) an input
parameters file. Files (1) and (2) are the input grid and output solution files, respec-
tively, for the overset grid compressible Navier-Stokes flow solver OVERFLOW.®
The input parameters file is used to specify the subsets from the different grids
that make up the solid surface where forces and moments are required. Both the
MIXSUR and OVERINT modules have been tested on a number of configurations
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including the Space Shuttle Launch Vehicle (see Figure 3), a generic wing/body,
a subsonic transport and a wing/pylons/nacelles/fins combination. Both modules
are almost ready for beta release.
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(b) Overset surface grids for the fuselage, wing and nacelle where

Figure 1 (a) Surface definition for the right half of the V-22 tiltrotor consisting of
points on the initial curves are indicated by circles.

22 panel networks.
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Figure 2. (a) Airfoil C-mesh where grid lines in the wake region are fanned out using the variable initial
grid spacing option. (b) Various computational planes of the volume grid for a wing (C-topology) with a
collapsed edge boundary condition applied at the tip.
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Figure 3. (a) Overlapping surface grids in the wing/fuselage region of the Space Shuttle Orbiter.

(b) Composite surface grid consisting of non-overlapping quads and triangles generated using MIXSUR..
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for the Right Half of the V-22 Tiltrotor
Consisting of 22 Panel Networks

initon

Surface Def
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