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Abstract

In this paper, an optimal batch estimator and filter based on the Minimum

Model Error (MME) approach is developed for three-axis stabilized spacecraft.
Three different MME algorithms are developed. The first algorithm estimates the
attitude of a spacecraft using rate measurements. The second algorithm estimates

the attitude without using rate measurements. The absence of rate data may be a
result of intentional desi.gn or from unexpected failure of existing gyros. The third
algorithm determines mput-torque modeling error trajectories. All of the

algorithms developed in this paper use attitude sensors (e.g., three-axis
magnetometers, sun sensors, star trackers, etc). Results using these new
algorithms indicate that an MME-based approach accurately estimates the attitude,
rate, and input torque trajectories of an actual spacecraft.

Introduction

The attitude of a spacecraft can be determined by either deterministic methods or by utilizing
algorithms which combine dynamic models with sensor data. Three-axis deterministic methods, such as
TRIAD [1], QUEST [2], and FOAM [3], require at least two simultaneous vector measurements to
determine the attitude (direction-cosine) matrix. An advantage of both the QUEST and FOAM
algorithms is that the attitude of a spacecraft can be estimated using more than two measurements. This
is accomplished by minimizing a quadratic loss function In'st posed by Wahba [4]. However, all
deterministic methods fail when only one vector measurement is available, (e.g., magnetometer data
only). Estimation algorithms utilize dynamic models, and subsequently can (in theory) estimate the
attitude of a spacecraft using measurements of a single reference vector. Although all spacecraft in use
today have at least two on-board attitude sensors, estimation techniques can be used to determine the
attitude during anomalous periods, such as solar eclipse and/or sensor co-alignment.

The most commonly used technique for attitude estimation is the Kalman filter [5]. The Kalman filter

utilizes state-space representations to both estimate plant dynamics and also filter noisy data. Errors in
the dynamical model and measurement process are assumed to be modeled by a zero-mean Gaussian
process with known covariance. The optimality criterion in the Kalman filter minimizes the trace error

covariance between estimated responses and model responses. In theory, the Kalman filter does not
require actual measurements to satisfy this optimality criterion; however, in actual practice measurements
are often used to properly "tune" the filter estimates.

Smoothing algorithms further refine state estimates by utilizing both a "forward f'dter" and a
"backward filter" (see e.g., Gelb [6]). An advantage of smoothing algorithms is that the error covariance

is always less or equal to either the forward or backward filter alone. A disadvantage of smoothing
algorithms is that they cannot be implemented in sequential (real-time) estimation.

In order for the Kalman f'dter to be maly optimal, both the measurement error process and model
error process must be random Gaussian processes with known covariance. In most circumstances,
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propertiesof the measurement error process are known a priori by utilizing statistical inferences applied
to sensor measurements. However, model error statistics are not usually well known. In actual practice
the determination of the model error covariance in the Kalman filter is usuaUy obtained by an ad hoc

and/or heuristic approach, which can result in suboptimal filter designs (e.g., determining random gyro
drift rate). Also, in many instances, such as nonlinear model errors or non-stationary processes, the
assumption of a stationary Gaussian process can lead to severely degraded state estimates.

For spacecraft attitude estimation, the Kalman filter is most applicable to spacecraft eq.uipped with
three-axis gyros as well as attitude sensors [7]. However, rate gyros are generally expensive and are
often prone to degradation or failure. Therefore, in recent years rate gyros have been omitted (e.g., in
Small Explorer (SMEX) spacecraft, such as Solar Anomalous Magnetosphefic Particle Explorer
(SAMPEX) spacecraft). To circumvent the problem of rate gyro omission or failure, analytical nxxiels of
rate motion can be used. This approach has been successfully used in a Real-Time Sequential Filter

(RTSF) algorithm which propagates state estimates and error covariances using dynamic models [8]. The
estimation of dynamic rates by the RTSF is accomplished from angular momentum model propagation,
and then correcting for these rates by using a "gyro bias" component in the filter design. A clear
advantage of using dynamic models is shown for the case of sun-magnetic field near co-alignment. For
this case, deterministic algorithms, such as TRIAD and QUEST, show anomalous behaviors with extreme
deviations in determined attitudes. Since the RTSF propagates an analytical model of motion, attitude

estimates are improved even when data from only one attitude sensor is available. However, the RTSF is
essentially a Kalman filter in which the "gyro bias" model (and subsequently the angular momentum
model correction) is assumed to be a Gaussian process with known covanance. Also, fairly accurate
models of angular momentum are required in order to obtain accurate estimates. Subsequendy, the

design process for choosing the model error covariancc becomes difficult.

In this paper, an optimal attitude estimation algorithm is developed which is capable of robust and
accurate state estimation for spacecraft lacking accurate or any rate measurements and/or accurate

dynamic models. This algorithm is based on the Minimum MOdel Error (MME) [9] batch-estimation
approach. The advantages of the MME estimator over conventional Kalman strategies include: (i) no a
priori statistics on the form of the model error are required, (ii) the actual model error is determined as

part of the solution, and (iii) state estimates are free of jump discontinuities, which greatly smoothes out
high measurement noise. The MME estimation approach has been successfully applied to numerous
poorly-modeled dynamic systems which exhibit highly nonlinear behaviors (see, e.g. [10-11]). Previous
MME studies used TRIAD-determined quatemions as measurements [12]. The formulations developed

in this paper expand upon this method to include attitude sensors, such as three-axis magnetometers

(TAM), fine sun sensors (FSS), star trackers, etc.

The organization of this paper proceeds as follows. First, a summary of the spacecraft attitude
kinematics and sensor models is shown. Then, a brief review of the MME estimator for nonlinear

systems is shown. Next, various MME-based algorithms are developed for the purpose of attitude
estimation, which include: a simple linear algorithm which is used to smooth noisy rate measurements, an
attitude estimator using rate measurement information, an attitude estimator without the utilization of any
rate measurements, and an input torque estimator. Finally, these MME designs are used to estimate the
attitude, rate, and input torque trajectories of the SAMPEX spacecraft in order to demonstrate the

usefulness of these algorithms.

Attitude Kinematics and Dynamics

In this section, a brief review of the kinematic and dynamic equations of motion for a three-axis

stabilized spacecraft is shown. The attitude is assumed to be represented by a quaternion, defined as

with
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rql ] ^

q13 -/q2[ =_nsin(0/2) (2a)

Lq3J

q4 = cos(O/ 2) (2b)

where n_" is a unit vector corresponding to the axis of rotation and 0 is the angle of rotation. The

quaternion kinematic equations of motion are derived by using the spacecraft's angular velocity (_),

given by

(3)

where t'_) and _(q) are defined as

t2_)=- .......... (4a)

fq4,3x3+Eq3xj]
L...... ......J

The 3 x3 dimensional matrices [_ x]

a x_b= [a x] b, with

and [_.q13x] are referred to as cross product matrices since

0 -a 3 a 2
[_ax] - a 3 0 -a 1

-a 2 a 1 0

(5)

Since a three degree-of-freedom attitude system is represented by a four-dimensional vector, the
quaternions cannot be independent. This condition leads to the following normalization constraint

T 2
qTq = ql3ql 3 +q4 = 1 (6)

Also, the matrix _q_) obeys the following helpful relations

ET(q)=---,(q)=qTql3x 3 (7a)

"=(q) ET k)= qTq I4x4 _qqT (7b)

ETk)q= 03xl (7c)

=T k)__ = _ET (__)q for any 2,,,4x1 (7d)

139



The dynamic equations of motion, also known as Euler's equations, for a rotating spacecraft are

given by ([13])

[_,= N-to ×L = [b_ (8)

where L is the total angular momentum, N__is the total external torque (which includes, e.g., control

torques, aerodynamic drag torques, solar pressure torques, etc.), and It, is the inertia matrix of the

spacecraft. If reaction or momentum wheels are used on the spacecraft, the total angular momentum is

given by

L=ibCO+h (9)

where h is the total angular momentum due to the wheels. Thus, Equation (8) can be re-written as

L = N -[I'bl(L- h)] x L_
(10)

The measurement model is assumed to be of the form given by

BB=A(q)BI (11)

where B__tis a 3xl dimensional vector of some reference object (e.g., a vector to the sun or to a star, or

the Earth's magnetic field vector) in a reference coordinate system, _Bn is a 3xl dimensional vector

defining the components of the corresponding reference vector measured in the spacecraft body frame,

and A(q) is given by

A(q) :(q2 _ qlT3ql3) 13x3 + 2ql3qT 3 _ 2 q,[ql 3 X] (12)

which is the 3 x 3 dimensional (orthogonal) attitude matrix.

Minimum Model Error Estimation

In this section, a brief review of the Minimum Model Error (MME) estimation algorithm is shown.
The essential feature of this batch estimator is that actual model error trajectories are determined during

the estimation process, unlike most filter/smoother algorithms which assume that the model error is a
stochastic process with known properties. The MME algorithm determines the correction added to the
assumed model which yields an accurate representation of the system's behavior. This is accomplished by

solving an optimality condition using an output residual constraint. Therefore, accurate state estimates
can be determined without the use of precise system representations in the assumed model.

The MME algorithm assumes that the state estimates are given by a preliminary model and a to-be-

determined model error vector, given by

_'(t) = fib(t), _u(t), d_if), t] (13a)

__(t)=g_.[X_(t),t] (13b)

where f is an nxl model vector, _(t) is an nxl state estimate vector, u(t) is a pxl vector of known

inputs, and d(t) is an nxl model error vector, g__is a qxl measurement (sensitivity) vector, and __(t) is a

q x 1 estimated output vector. State-observable discrete measurements are assumed for Equation (13b) in

the following form
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_(tk): gk[X(tk),tk]+ vk (14)

where y_.-(tk)is a qxl measurement vector at time tk, and v k is a qxl measurement noise vector which is

assumed to be a zero-mean, Gaussian distributed process with known covariance.

In the MME algorithm, the optimal state estimates are determined on the basis that the measurement-
minus-estimate error covariance matrix must match the measurement-minus-truth error covariance
matrix. This condition is referred to as the "covariance constraint," shown as

{_(tk)_g_k[S(tk),tk]}{_(tk) ^ T--gk[X(tk),t k]} = R k (15)

where R k is the element-by-element (known) measurement error covariance. However, problems may

arise using Equation (15) which are attributed to "small sample" statistics [14]. Therefore, in the typical

case where the measurement error process is stationary, the average covariance can be used, given by

m

1 Z {_(tk )- gk[ _-(tk )' tk ]}{_(/k)- gk[_(tk), tk ]}T R (16)
k=l

where m is the total number of measurements.

Next, the following cost function is minimized with respect to d(-c)

m

j= 1 Z {_(tk)-gk[x-(tk)'- tk]} TR-1 {_(tk)-gk[_(tk)'tk]} +ltf2f dT('c)Wd('c)d'c

k=l to

(17)

where W is an n × n positive-def'mite weighting matrix. The necessary conditions for the minimization of

Equation (17) lead to the following two-point-boundary-value-problem (TPBVP) [9]

__(t) = f[_(/), _u(t), d(t), t] (18a)

_w-lIO f ] T

d(t)= L_--_j _(t)
(18b)

(18c)

_.(t_)= _(tk-)+ H T (,k){_(tk)-g_k[_(tk),tk]} (18d)

° xl_(tk),t k

(18e)
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where _Mt) is an n×l co-state vector which is updated at each measurement point using Equation (18d).

The boundary conditions axe selected such that either __(to)= 0 or x_.'(t0) is specified at the initial time and

either __(t_)= 0 or £_.(tf) is specified at the final time.

The solution of the TPBVP for a given weighting matrix yields a state estimate time trajectory which

can be used to determine a measurement residual covaxiance matrix. The covaxiance constraint is

satisfied when the proper balance between model error and measurement residual has been achieved. If

the measurement residual covaxiance is higher than the known measurement error covaxiance (R), then W

should be decreased to less penalize the model error. Conversely, if the residual covariance is lower than

the known covariance, then W should be increased so that less unmodeled dynamics axe added to the

assumed system model. The optimal weighting matrix is therefore obtained when the covaxiance

constraint in Equation (16) is satisfied.

Gvro Noise Smoother

Gyros tend to be noisy and have an inherent drift. Also, gyros axe usually sampled at a higher
frequency than attitude sensors. In order to first f'dter the noise, a simple MME-based smoothing

algorithm can first be applied. This algorithm minimizes

tf
m

jg_2X{_gItk)___gItlclITR-_ll_gIticI-CogItlclI+2_dT('c)Wgdg(x)d'_ (19)

k=l to

subject to

_Og(t)=dg(t), _g(to)=(Og 0 (20)

where __s(t) is the estimated gyro output, and ds(t) is the model error correction. Minimizing Equation

(19) leads to the following TPBVP

_Og(t)=_Wgl__g(t), _g(tO)=_g 0 (21a)

_xg=0 (21b)

The solution of Equation (21) can be determined by using a steady-state Riccati transformation (see [15]

for details). This transformation leads to the following

Pi _RgAt

tli(t)=[ wP-_il hi(t)
- L g_l-

(22a)

(22b)

hi(t_) = 0 (22c)

142



[1]ff,#,(o=L%,j_#,(t)- _h,(,), (22d)

where the subscript (i) represents each gyro measurement set, and At is the sampling interval. For a
given weighting and measurement covariance, the first step is to determine the steady-state Riccati
solution in using Equation (22a). Then, the inhomogeneous Riccati trajectory is solved backwards in
lime using Equation (22b), with discrete jumps at each measurement point given by Equation (22c).
Finally, the smoothed gyro estimates are determined using Equation (22d). An advantage of this
algorithm is not only the inherent smoothing properties, but also that the gyro estimates are totally
continuous. Therefore, the generally discrete gyro measurements can be replaced with the continuous
gyro estimates given by Equation (22d).

Attitude Estimation Using Rate Measurements

The MME attitude angular velocity estimation formulation using rate measurements minimizes the
following cost function

m

k=

t/

to

(23)

subject to

__(t): 1 f_[t_ g (t) + d(t)] __(t), _q(t0) = _0 (24)

where me(t ) is the rate measurement vector, __(t) is the estimated quatemion, and _a and _o_tare the

spacecraft body measurement and corresponding inertial field vector, respectively. The model error (d)

is a correction to the rate measurements, which forces the model responses to satisfy the covariance
constraint in Equation (16).

The TPBVP given by Equation (18) can be written as

__(t)=l "[_g(t)+ d(t)] q_(t), Cl(to)= q_o (25a)

d(t)+ 1 W_IE T __)__(t): 0 (25b)

(25c)

HTI, -

The sensitivity matrix H in Equation (25d) can be derived as

H = 2_,T(/) (26)

where
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/= V(_)BI (27a)

(27b)

The extension to using multiple attitude sensors is accomplished by using a partitioned residual output

and sensitivity matrix, given by

The co-state update in Equation (25d) shows a nonlinear relationship with respect to the q.uatemion
estimate. However, this nonlinearity can be reduced to be a linear function if the quatemlons obey
normalization and each attitude sensor is assumed isotropic. This can be shown by deriving the co-state

update using

l a {[_B_A(_)BI]T[_B_A(_)BI]} (29)
2r a_

where the measurement covariance is now assumed to be isotropic for each sensor (i.e., the measurement

errors in each one of the axes are assumed equal). Therefore, R = rl3x 3, which is a valid assumption for

almost all attitude sensors. In order to determine the partial derivative in Equation (29), the following

I 0,xl 1°°°°°° °*

L _.5

identities and definitions are used

(30a)

A(_) = -£T(_q)W_) (30b)

V(__)B/= E(B/)__ (30c)

E(_BI) E(_B/) = -14 x4 BT BI (30d)

Equation (29) can now be re-written as

1 _ {_TBB_2_ITD.(__B)E(BI)__+I4x4(B_TB_I)(__T__)2}
2r b_ -- -

(31)

The partial derivative in Equation (31) is given by

(32)
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Hence, if the quaternions obey normalization the following identity is true

{,(B- B)E(BI )__+ (B T B I )__} = E_){B- B - A(_I)B I } (33)

Therefore, if the sensor measurements are isotropic, the co-state update in Equation (25d) is linear with
respect to the quaternion estimate.

The TPBVP shown in Equations (25a)-(25d) can be solved by using gradient techniques. The basic
gradient procedure is to first guess for the model error trajectory (d). Then, integrate the quaternion
states forward using Equation (25a) and co-states backward using Equation (25c) accounting for discrete
jumps in Equation (25d). The next search direction is given by Equation (25b). This procedure is
continued until convergence is achieved.

Attitude Estimation without Rate Measurements

In this section, the MME estimator is derived for spacecraft which lack any rate information.
formulation is based upon using Euler's equation for modeling the angular momentum.
problem for this case minimizes the following cost function

m tf

J= _B -A_)_B,}T R_I{ _ _A(__)B_IIt+
= tk to

The

The MME

(34)

subject to

(t)l = I2 fl(t_)

_L(t)J L 03x4

04x3 + +
L'3x3

(35)

where

_(t)=Ibl{L(t)-h_(t)} (36)

where h_-is the measured angular momentum due to the wheels.

following TPBVP

Minimizing Equation (34) leads to the

+ [04X31d(t),

L 13×3 .J-
(37a)

d(t)+w-l&L(t)=O (37b)

04x3lr q t,1
"°*''"

x]+zg-' x]jL_ L(O_l
_L(tf):O (37c)

with discrete jumps in the co-states given by
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(38)

The TPBVP given by Equations (37) and (38) can be solved by using a simple gradient-based search

technique.

Input Torque Estimation

In this section, the MME estimator is used to estimate model error torques using angular rate

trajectories. These angular rate trajectories are assumed to be known (e.g., from finite differenced
attitude estimates, or from angular rate estimates from an MME design or other estimator). First, a

measured angular momentum vector is determined by

= lbO__ + h_ (39)

In general, the angular momentum measurements in Equation (39) will be noisy due to the angular

velocity measurements of the wheel speed. However, this noise is inherently smoothed by the MME

estimator. The MME problem for determining the errors in the torque input of Euler's equation

minimizes the following cost function

m tf

2 z'_ -- - Itk -- 2 -
k=l to

(4O)

subject to

L(t)- -[_(t) X]__.(t) + N(t)+ _d(t), _(t0) =_L 0 (41)

Minimizing Equation (40) leads to the following TPBVP

_L(t)= w L(to)= _0 (42a)

_(t)= -[_(t) X]___(t) (42b)

The solution to the TPBVP in Equation (42) can be determined by using a Riccati transformation [15].

Applying this technique leads to the following equations

['(t) = P(t)[to(t) x]+ P(t)W-1p(t)+[co(t) x]P(t) (43a)

p(t-_):P(t_)+R -1 , P(t_) : 0
(43b)

_(t)= {P(t)W -I -[_(t)x]} h(t)-P(t)N(t)
(43c)

, h(,_)=0 (43d)
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_L(t)= {-[fo(t)×]-w -I P(t)}_(t)- w -I __h(t)+ N(t), _(t0) =_ 0 (43e)

Therefore, the first step is to solve for the Riccati and inhomogeneous trajectories backwards in time
using Equations (43a) and (43c), accounting for discrete jumps by Equations (43b) and (43d). Then, the
angular momentum estimates are determined by integrating Equation (43e) forwards in time.

Attitude Estimation of an Actual Spacecraft

In this section, the MME estimation algorithms previously developed are used to estimate the
attitude, rate, and input torque trajectories of the SAMPEX spacecraft using vector measurement

observations. The SAMPEX general mission is to study energetic particles and various types of rays.
The spacecraft is three-axis stabilized in a 550 by 675 km elliptical orbit with an 82 ° inclination. The

attitude control hardware consists of a magnetic torquer assembly (MTA) and a reaction wheel assembly
(RWA). The attitude determination hardware consists of five coarse Sun sensors (CSS) (primarily for
Sun-acquisition), one fine Sun sensor (FSS), and a three-axis magnetometer (TAM). Also, no rate
gyroscopic instruments are present on the spacecraft.

The onboard computer routine to determine attitude is based upon the TRIAD [1] deterministic

method. The spacecraft is controlled by the MTA to maintain the timed solar arrays perpendicular to the
sun-line. The RWA is used to point the instrument boresight axis as required by the scientific mission.

During eclipse no sun measurements are available from the FSS. Attitude control is maintained by using
a constant sun-line vector as a "pseudo-measurement," so that both the MTA and RWA are still utilized.

During vector co-alignment, the spacecraft is placed in a "coast" mode in which the MTA is not used (see
[16] for more details). The required nominal attitude determination accuracy is +_2° . During anomalous
conditions (eclipse and/or measurement vector co-alignment) the attitude cannot be determined by
deterministic methods, such as TRIAD. The MME algorithms presented in this paper can determine the
attitude using TAM measurements only, so that attitude accuracy may be checked for any deviations from
nominal performance.

The inertial field trajectories are obtained by using a 8th order spherical harmonic model of the
Earth's magnetic field with International Geomagnetic Reference Field (IGRF) coefficients.

Magnetometer measurements by the TAM are known to be extremely accurate (within 0.3 mG).
However, experience has shown that errors in the magnetic field model have a standard deviation of
about 3 mG [17]. Therefore, 9 mG 2 is chosen for the diagonal elements of the measurement covariance
matrix.

The first test case involves using both TAM and FSS measurements. A plot of the finite differenced

angular rates using TRIAD determined attitudes is shown in Figure 1. These rates are extremely noisy,
which is due to the large digitization noise associated with the FSS measurements. The TRIAD

determined rates are next used in the first MME formulation (with rate information), along with the TAM
and FSS measurements. A plot of the MME estimated rates is shown in Figure 2. Clearly, these rates are
smoother than the TRIAD determined rates. Next, the MME input torque estimator is applied using
these estimated rates. A plot of the MME determined input torques is shown in Figure 3. These torques
correspond to a correction to the dynamic model, so that the model responses match the vector
measurement observations.

The second case involves using TAM measurements only to estimate the attitude and angular rates.
The MME attitude estimator without rate measurements is used for this case. A plot of the estimated
angular rate trajectories is shown in Figure 4. These angular rate estimates clearly show a rotation about
the spacecraft's y-axis, which is the desired motion. A plot of the error between the estimated MME

attitudes and the attitudes determined by TRIAD is shown in Figure 5. A slight hangoff is seen in the
pitch axis. This may be due to nonlinear effects in the magnetic field model (this hangoff is also seen in
Kalman falter approaches for other spacecraft such as UARS). However, the MME algorithm is able to
determine attitudes to within 0.3 ° using TAM data only. This can be useful in determining the attitude
when deterministic methods fail.
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Conclusions

In this paper, several MME algorithms were presented for use in attitude estimation using vector
measurement observations. The fu'st algorithm used angular rate measurements to determine attitude

estimate trajectories. The second algorithm estimated the attitude trajectories without any rate
measurement information. The third algorithm determined the required torque input trajectories so that

the model responses match the vector observations. An advantage of all of these algorithms is that
quaternion normalization was maintained, since linearization of the dynamic model was not needed. The
MME-based algorithms were then applied to an actual spacecraft. Results indicated that an MME-based

approach provides a robust algorithm which can be used to determine the attitude, rate, and modeling
error torque trajectories of a spacecraft from vector measurements.

Acknowledgments

The first author's work is supported by a National Research Council Postdoctoral Fellowship tenured
at NASA-Goddard Space Flight Center. The author greatly appreciates this support. Also, this author
wishes to thank D. Joseph Mook for many the comments and suggestions made throughout this work.

References

[1] Lerner, G.M., "Three-Axis Attitude Determination," Spacecraft Attitude Determination and Control,
edited by J.R. Wertz, D. Reidel Publishing Co., Dordrecht, The Netherlands, 1978, pp. 420-428.

[2] Shuster, M.D., and Oh, S.D., "Attitude Determination from Vector Observations," Journal of
Guidance and Control, Vol. 4, No. 1, Jan.-Feb. 1981, pp. 70-77.

[3] Markley, F.L., "Attitude Determination from Vector Observations: A Fast Optimal Matrix
Algorithm," The Journal of the Astronautical Sciences, Vol. 41, No. 2, April-June 1993, pp. 261-280.

[4] Wahba, G., "A Least-Squares Estimate of Satellite Attitude," Problem 65-1, SIAM Review, Vol. 7,

No. 3, July 1965, pg. 409.

[5] Kalman, R.E., "A New Approach to Linear Filtering and Prediction Problems," Transactions of the
ASME, Journal of Basic Engineering, Vol. 82, March 1962, pp. 34-45.

[6] Gelb, A., Applied Optimal Estimation, MIT Press, Cambridge, Mass., 1974.

[7] Lefferts, E.J., Markley, F.L., and Shuster, M.D., "Kalman Filtering for Spacecraft Attitude
Estimation," Journal of Guidance, Control and Dynamics, Vol. 5, No. 5, Sept.-Oct. 1982, pp. 417-429.

[8] Challa, M.S., Natanson, G.A., Baker, D.E., and Deutschmann, J.K., "Advantages of Estimating Rate
Corrections During Dynamic Propagation of Spacecraft Rates-Applications to Real-Time Attitude
Determination of SAMPEX," Proceedings of the Flight Mechanics�Estimation Theory Symposium,

NASA-Goddard Space Flight Center, Greenbelt, MD, 1994, pp. 481-495.

[9] Mook, D.J., and Junkins, J.L., "Minimum Model Error Estimation for Poorly Modeled Dynamic

Systems," Journal of Guidance, Control and Dynamics, Vol. 3, No. 4, Jan.-Feb. 1988, pp. 367-375.

[10] Stry, G.I., and Mook, D.J., "An Analog Experimental Study of Nonlinear Identification," Nonlinear
Dynamics, Vol. 3, No. 1, pp. 1-11.

[11] McPartland, M.D., and Mook, D.J., "Nonlinear Model Identification of Electrically Stimulated
Muscle," Proceedings of the IFAC Symposium on Modeling and Control in Biomedical Engineering,
Galveston, TX, March 1994, pp. 23-24.

[12] DePena, J., Crassidis, J.L., McPartland, M.D., Meyer, T.J., and Mook, D.J., "MME-Based Attitude
Dynamics Identification and Estimation for SAMPEX," Proceedings of the Flight Mechanics/Estimation
Theory Symposium, NASA-Goddard Space Flight Center, Greenbelt, MD, 1994, pp. 497-512.

[13] Markley, F.L., "Equations of Motion," Spacecraft Attitude Determination and Control, edited by
J.R. Wertz, D. Reidel Publishing Co., Dordrecht, The Netherlands, 1978, pp. 510-523.

148



[14] Freund, J.E., and Walpole, R.E., Mathematical Statistics, Prentice-Hall Inc., Englewood, N J, 1987.

[15] Crassidis, J.L., Mason, P.A.C., and Mook, D.J., "Riccati Solution for the Minimum Model Error

Algorithm," Journal of Guidance, Control and Dynamics, Vol. 16, No. 6, Nov.-Dec. 1993, pp. 1181-
1183.

[16] Flatley, T.W., Forden, J.K., Henretty, D.A., Lightsey, E.G., and Markley, F.L., "On-board Attitude

Determination and Control for SAMPEX," Proceedings of the Flight Mechanics�Estimation Theory
Symposium, NASA-Goddard Space Flight Center, Greenbelt, MD, 1990, pp. 379-398.

[17] ChaUa, M.S., Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) Real-Time
Sequential Filter (RTSF), Evaluation Report, NASA-Goddard Space Flight Center, Greenbelt, MD, April
1993.

x 10-3

 1ol
o

I "
!

0.5

TRIAD Determined Rates
I I I

i Itllli
1.5 2

I I

Iill
2.5 3 3.5 4

x 10-3

0 ' , I i , ,
0 0.5 1 1.5 2 2.5 3 3.5 4

x 10 -3

_" lr ) !JlJ 1 ! JllJx.lJ !J IJ i !lJ iJ] J[rJ Jj ! I i jj I1 rr r l r
-1 i i ; i i

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (Hrs)

Figure 1 Plot or"TRIAD Determined Attitude Rates

149



x 10 "4 MME Estimated Rates

_i
I

0 0.5 1.5 2 2.5 3 3.5 4

X 10 -3

.-- 1"21 ! ! ' ' ' ' ': I

1.1

_o.;I..........i............i...........t............i............i............i............i..........1
0 0.5 1 1.5 2 2.5 3 3.5 4

x 10 4

!

0 0.5 1 1.5 2 2.5 3 3.5 4
_me(Hm)

Figure 2 Plot of MME Estimated Rates

x 10 -s MME Determined Torques

21 ' '/_' ' ' r_ ': : : ; : : i

"_ o ........... _............ !. ..! ............ i............ !.......... !.. •

x -2 .................. i ........... i

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10 .-6
21 = I ! I i . I I ! I

_o
-2

0 0.5 1.5 2 2.5 3 3.5 4

x 10 -s

0 0.5 1 .5 2 2.5 3 3.5 4
Time (Hrs)

Figure 3 Plot of MME Determined Input Torques

150



2 x 10 -4 MME Estimated Rates

0 0.5 1 1.5 2 2.5 3 3.5 4

_ ........... i............ _........... i ............ i............ i ............ i............ i ..........
i i ! i i i i

._n.°_ = a i J l = i
0 0.5 1 1.5 2 2.5 3 3.5 4

X 10-4

O_ r_ ....................

::i ,

i

I

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (Hrs)

Figure 4 Plot of MME Estimated Rates Using TAM Data Only

Error Angles Between MME Attitudes and Determined Attitudes

0.5_ _

O ...... . " . ....

_-0 5

0 0.5 1 1.5 2 2.5 3 3.5 4

o.5[_ , , I I ! '_

051 I

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1.5 2 2.5 3 3.5 4
Time (Hrs)

Figure 5 Plot of Attitude Errors Between TRIAD and MME

151




