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ABSTRACT

Structural analyses are developed to determine the linear elastic and the geo-
metrically nonlinear elastic response of an internally pressurized, orthogonally stiff-
ened, composite material cylindrical shell. The configuration is a long circular cylin-
drical shell stiffened on the inside by a regular arrangement of identical stringers
and identical rings. Periodicity permits the analysis of a unit cell mode] consisting
of a portion of the shell wall centered over one stringer-ring joint. The stringer-
ring-shell joint is modeled in an idealized manner; the stiffeners are mathematically
permitted to pass through one another without contact, but do interact indirectly
through their mutual contact with the shell at the joint. Discrete beams models of
the stiffeners include a stringer with a symmetrical cross section and a ring with
either a symmetrical or an asymmetrical open section. Mathematical formulations
presented for the linear response include the effect of transverse shear deformations
and the effect of warping of the ring’s cross section due to torsion. These effects
are important when the ring has an asymmetrical cross section because the loss of
symmetry in the problem results in torsion and out-of-plane bending of the ring,
and a concomitant rotation of the joint at the stiffener intersection about the cir-
cumferential axis. Data from a composite material crown panel typical of a large
transport fuselage structure are used for two numerical examples. Although the
inclusion of geometric nonlinearity reduces the “pillowing” of the shell, it is found
that bending is localized to & narrow region near the stiffener. Including warping
deformation of the ring into the analysis changes the sense of the Joint rotation.

Transverse shear deformation models result in increased Joint flexibility.
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CHAPTER 1
INTRODUCTION

1.1 COMPOSITE MATERIALS IN PRIMARY STRUCTURES

Composite materials are being used increasingly for variety of structural applica-
tions in aerospace engineering and other related weight sensitive applications where high
strength-to-weight and stiffness-to-weight ratios are required. The success of composite
materials results from the ability to make use of the outstanding strength, stiffness and
low specific gravity of fibres such as glass, graphite or Kevlar. When superior specific
mechanical properties are combined with the unique flexibility in design and the ease of
fabrication that composites offer, it is no wonder that their growth rate has far surpassed

that of other materials.

Development of the state-of-the-art manufacturing techniques has made it possible
to replace complicated structural components/assemblies by single co-cured or adhesively
bonded composite parts, thereby minimizing the number of fasteners to be used in a
structure, and hence, enhancing the structural integrity. While the use of bonded com-
posite structures as secondary and tertiary load carrying members has been widespread
in aerospace industry, their use as primary load carrying members is still very limited.
Most of the applications of composites as primary structural components have been in the
area of fabrication of empennage or control surfaces of an aircraft. Thus, the potential of
composite materials as a primary load carrying structure, such as fuselage of an aircraft,
has not been fully realized yet. One of the main reasons for this could be the lack of
confidence of aerospace industry in utilizing composite materials for fuselage manufactur-

ing, which, in turn, could be due to the lack of a full scale analysis, design, and testing

1



to qualify composite materials for use in the fuselage of both civil and military transport

aircraft.

1.2 FUSELAGE LOADS AND DESIGN

As described in the text by Niu!, the loads affecting fuselage design of a transport
aircraft can result from flight maneuvers, landings, cabin pressurization and ground han-
dling, etc. Fuselage (or cabin) pressurization of a transport aircraft induces hoop and
longitudinal stresses in the fuselage. The fuselage internal pressure depends on the cruise
altitude and the comfort desired for the flight crew and/or passengers, and can cause a
pressure differential of up to 10 psi across the fuselage skin. An unstiffened, or monocoque,
fuselage would carry this internal pressure load as a shell in membrane response, like a
pressure vessel. However, internal longitudinal and transverse stiffeners are necessary to
carry the loads resulting from flight maneuvers, landings, and ground handling, etc. The
longitudinal stiffeners, called stringers or longerons, carry the major portion of the fuse-
lage bending moment. The transverse stiffeners, called frames or rings, are spaced at
regular intervals along the length of the fuselage to prevent buckling of the longitudinals
and maintain cross-sectional shape of the fuselage. The presence of these internal stiffen-
ers introduces the following two important aspects in the fuselage design of a transport
aircraft:

1. The stiffeners, i.e. stringers and rings, are attached to the fuselage skin by some
kind of fasteners, or perhaps bonded to it. Thus, thereis a transmission of loads between
the skin and the stiffeners all along their attachment lines, and at the stiffeners’ intersection
a local concentration of the interacting loads due to joint stiffness occurs. Understanding of
the load transfer mechanism in the stiffener-to-skin joints under pressurization is necessary
for determining the load capacity of these joints.

2



2. The presence of internal stiffeners, particularly the presence of frames or rings,
prevents expansion of the fuselage skin as a membrane, and the skin bulges, or “pillows”,
between the stiffeners under the action of the internal presure as shown in Fig. 1.1. Hence,
where the skin is restrained against its expansion as a membrane along the stiffeners, a

bending boundary layer is formed.

1.3 STIFFENER-TO-SKIN JOINTS

The design of stiffener-to-skin joints was cited by Jackson et al.? as one of the major
technology issues in utilizing graphite/epoxy composites in the fuselage of a large transport
aircraft. In order to realize the full potential of advanced composites in lightweight aircraft
structure, it is particularly important to ensure that the joints, either adhesively bonded
or mechanically fastened, do not impose a reduced efficiency on the structure and should
be cost effective as well. The use of graphite/epoxy composites in conjunction with metal
fasteners in conventional, mechanically fastened joints is a critical design factor. Improper
coupling of joint materials can cause serious corrosion problems to metals because of the
difference in electric potential between these metals and graphite. In other words, insuring
the galvanic compatibility of fastener materials with graphite composites is essential to
avoid corrosion problems in the structure®?.

It has been established that materials such as titanium, corrosion-resistant steels,
nickel and cobalt alloys can be coupled to graphite composites without such corrosive
effects. In contrast, aluminum, magnesium and stainless steel are most adversely affected
because of the difference in electric potential between these materials and graphite, and
their use would lead to serious corrosion problems in the structure. However, fasteners
made of materials such as titanium, corrosion-resistant steels, nickel and cobalt alloys
are much more expensive than the more conventional fastner materials like aluminum,

magnesium and stainless steel, etc. With thousands of fasteners, e.g., rivets, bolts, nuts,

3
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etc. required to assemble stiffeners to the fuselage skin for a large transport aircraft.
mechanically fastened joints using corrosion-resistant materials are costly and may offset
the advantages of using high strength-to-weight composite materials in structures where
assembly of two or more components is imperative. Niu! has pointed out that, in general,
adhesively bonded joints are more cost efficient for lightly loaded joints, and mechanically
fastened joints are more cost efficient for highly loaded Joints. Thus, if the loads transferred
between the stiffeners and the fuselage skin are small enough, the adhesively bonded joints
can be used thereby eliminating all or most fasteners. Elimination of fasteners. or even
a reduction in the number of fasteners, would enhance the use of advanced composite
materials in fuselage of a transport aircraft. As an example, a graphite-epoxy crown panel
for the fuselage of a large transport aircraft was recently fabricated without fasteners
by co-curing the stringers and co-bonding the rings, or frames, to the skin®®. Also, the
curved graphite-epoxy fuselage frames were manufactured by resin transfer molding into
two-dimensional braided preforms of net structural shape’. Clearly, the strength of the
bond line is a critical issue for these primary fuselage structures made from advanced

composite materials.

1.4 CONTACT PROBLEMS

As described in the monograph by Grigoluk and Tolkachev®, contact (or load dif-
fusion) problems occur in the theory of plates and shells when dealing with interaction
of plates and shells with rigid and elastic bodies (stamps), stiffening ribs/stiffeners, and
with plate-shell contacts. The class of contact problems can also include laminated plates
and shells, if one introduces reactions of interaction between layers. Furthermore, they
pointed out that the selection of the theory used to formulate the given contact problem

may also influence the final results.



The study of load diffusion in the stiffener-to-skin joints of an orthogonally stiffened
shell subjected to internal pressure is also a shell contact problem. The type of structural
theory used to model the discrete elements, i.e., the shell, the stringer, and the ring.
influences the distribution of the interacting loads at the shell-stiffener interface. A brief
literature survey on the work done in the area of contact problems is presented in the
remainder of this section.

Contact problems have always attracted scientists, academicians and designers alike
because of their inherent importance for any structure analysis involving an assembly of
two or more components. The first work is by Melan?, who considered a semi-infinite
plate with an infinite stiffener attached to its edge. A concentrated longitudinal force is
applied to the stiffener. In 1932, Melan obtained a closed form solution for tangential
forces in the plate along the line of stiffener attachment and also for the axial force in the
stiffener. Buell'®, in 1948, analyzed a semi-infinite plate to which a semi-infinite stiffener
is attached, loaded at the origin with a longitudina.l force. An infinite series solution for
the airy stress function reduced the problem to an infinite set of algebraic equations, and
Buell obtained a numerical solution by reducing the set to six equations in six unknowns.
A solution to Buell’s problem and an identical problem for an infinite plate were obtained
by Koiter!! in 1955. Using as a Green's function the solution with a concentrated force,
Koiter obtained a singular integral equation for the interacting tangential force between
the stiffener and the plate. Through a series of complex mathematical steps using Mellin
transformation, Koiter found the longitudinal force in the stiffener as an infinite series.
Koiter’s solution can serve as a criterion of exactness of Buell’s numerical solution.

The load diffusion problem for a finite stiffener attached to an infinite plate was first
solved by Benscooter!? in 1949. He obtained an integro-differential equation, of the same
form as the Prandtl equation for the distribution of aerodynamic forces in aircraft wing
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(also known as monoplane equation), with stiffener axial force as an unknown variable.
First, Benscooter expanded the variable into a series of Chebyshev polynomials of the
second kind to obtain the discretized equations, and then solved them for unknown coef-
ficients. Budiansky and Wu'!® extended Melan’s problem for the case where the stiffener
i1s rivetted to the plate at discrete points with constant spacing. Subsequent to some of
these landmark works, numerous authors have studied the load diffusion problem between
sheet and stiffener. An extensive biblography on the subject is given in Chapter 3 of Ref.
[8].

As for circular cylindrical shells stiffened by longtudinal stiffeners, studies are few.
Fischer!! was the first to analyze an infinitely long circular cylindrical shell reinforced by
equally spaced, continuously attached longitudinal stiffeners, each stiffener being loaded by
a single concentrated longitudinal force (a counterpart of Melan’s plate problem). Fischer
accounted for bending of stiffeners and obtained a solution for the membrane shearing
stress transmitted by a loaded stringer to the shell, and the axial stress developed within
the stringer. Grigoluk and Tolkachev® also analyzed this problem but did not take into
account the bending of stiffeners. A detailed biblography on some other types of shell

contact problems can be found in Chapter 8 of Ref. [8].

1.5 PRESSURIZED, STIFFENED SHELLS

A literature survey on the work done in the area of stiffened shells under internal
pressure suggests that in the past, only a few studies have been carried out in this area. In
1952, Fliigge!® studied the stress problems in pressurized cabins of high altitude aircraft
by dividing it into two problems. First problem was concerned with curved walls of the
cabin or pressure vessel, hence was called shell problem. The second problem, called the
plate problem, was concerned with small rectangular panels of the cabin wall, framed

by stiffeners. Of interest here are the former problems where Fliigge obtained analytical
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expressions for stresses in the shell and the stiffeners (i.e., stringer and ring) for a single
cylinder model, and a double cylinder model, using a smeared stiffness approach. In 1958,
Houghton!® computed the stresses occuring in stringer reinforced pressurized cylindrical
shells due to restraining action of the frames. He presented results showing the effect of
variation of frame pitch and stiffness on the bending moment and shear force in the skins,
and the hoop stress in the skins between the frames. Houghton’s analysis was limited
to metallic components, and did not take into account the eccentricity of stiffeners with
respect to the skin. Pressure-cabin problems are described in Chapter 9 of Williams!”
1960 text on aircraft structures. In the preface Williams justified the need for a chapter
devoted to this subject on the importance of high speed civil air-transport. The effect of
frames and bulkheads on the stresses in a cabin shell was considered in some detail, and
it was shown how the presence of reinforcing stringers de-localizes the constricting effect
of a frame or bulkhead. Williams analyses were also limited to metallic components, and
did not take into account the eccentricity of stiffeners with respect to the skin. Wang!®, in
1970, carried out a discrete analysis of a metallic, orthogonally stiffened cylindrical shell
subjected to internal pressure. Stiffener eccentricity, the normal component of interacting
load between shell and stiffeners, and closed-end pressure vessel effects were taken into
account. In 1985, Wang and Hsu!® improved the earlier work by including in the analysis,
a composite material shell wall, interacting shear forces between the skin and stiffeners,
and a direct accounting of closed-end pressure vessel effects. In both of these works, the
results were obtained for a linear elastic response and symmetric stiffeners. Skin-stiffener
interactions were computed but results for them were not presented. In 1985, Boitnott??
examined by experiment and analysis the pressure pillowing of a cylindrical composite
panel clamped in a stiff fixture. Boitnott’s geometrically nonlinear analysis correlated
well with the experiments when panel slip from the fixture was taken into account. The

8



analysis showed that the boundary layer decay length decreased with increasing pressure

and decreasing panel thickness.

1.6 OBJECTIVES

In the light of the foregoing discussions, it seems pertinent and timely to extend
the work in the area of pressurized, stiffened shells by including in the analysis some of
the features which would improve the understanding of the subject and hence, further
reinforce the support for the design of a composite material fuselage for a large transport
aircraft. The objectives of the present research work are to develop analyses of an or-
thogonally stiffened, laminated composite, cylindrical shell subjected to internal pressure.
The stiffeners and shell are modeled as distinct elements in order to make available in the
analyses

e the distribution of the interacting loads between the shell and stiffeners, and
e the stress concentration in the shell adjacent to the stiffeners due to “pillowing”.
Other analysis issues to be addressed in support of these objectives include
¢ geometrically nonlinear response versus linear response, and
e the influence of a ring, or frame, with an asymmetrical open cross section on the
linear elastic response.

The intent is to develop analyses that could be used for the design of stiffener-
to-skin joints and the design of laminated wall construction for the skin. A potential
benefit of such an analysis/design capability is (i) to use fewer expensive fasteners in the
graphite/epoxy fuselage, and (ii) to obtain an optimum structural geometery (e.g. shell
wall thickness and lay-up, frame and stringer stiffnesses, and stiffener spacing etc.) for an

optimum interface load distribution.



1.7 PROBLEM DEFINITION

An idealized model is assumed for the semi-monocoque fuselage. This configuration
is a closed-end, stiffened, pressurized shell in which closure is mathematically presumed to
occur at infinity. The long circular cylindrical shell is stiffened on the inside by a regular
arrangement of identical stringers and identical rings (frames). With respect to the applied
internal pressure load, which is assumed spatially uniform, the model is periodic in the
circumferential and longitudinal directions both in geometry and in material properties.
Periodicity of this configuration permits the analysis of a portion of the shell wall centered
over a generic stringer-ring joint as shown in Fig. 1.2 i.e., deformation of a structural
unit cell (or repeating unit) determines the deformation of the entire stiffened shell. The
radius of the middle surface of the undeformed cylindrical shell is denoted by R, and the
thickness of the shell is denoted by t. Axial coordinate z and the circumferential angle 6
are lines of curvature on the middle surface, and the thickness coordinate is denoted by =.
with —t/2 < = < t/2. The origin of the surface coordinates is centered over the stiffeners’
intersection so that - <« < [ and —© < 6 < O, where 2/ is the axial length, and 2RO
is the circumferential arc length of the repeating unit. The stringer is assumed to have
a symmetrical cross section, and the frame is assumed to have either an asymmetrical
or a symmetrical open section. Asymmetrical open section frames are commonly used
as transverse stiffeners in the fuselage structure. The stiffeners are modeled as discrete
beams perfectly bonded to the inside shell wall, so that the interacting loads between
the stiffeners and shell wall are line load intensities. These line load intensities represent
resultants of the tractions integrated across the width of the attachment flanges of the
stiffeners.

Mathematical formulations for the linear elastic and a geometrically nonlinear elastic

response are presented in this work. The formulations for the linear elastic response
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Fig. 1.2. Repeating unit of an orthogonally stiffened cylindrical shell.
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include the effect of transverse shear deformations and the effect of warping deformation
of the ring’s cross section due to torsion. These effects are important when the ring has
an asymmetrical cross section, because the loss of symmetry in the problem results in
torsion of the ring, as well as out-of-plane bending, and a concomitant rotation of the
joint at the stiffener intersection about the circumferential axis. For symmetric section
stiffeners. the response of the unit cell (see Fig. 1.2) is symmetric about the stringer axis
and the ring axis, and there is no rotation of stringer-ring-shell joint. The formulations
for a geometrically nonlinear response are presented for symmetric stiffeners only, and are
based on classical theory. The stringer-ring-shell joint is modeled in an idealized manner;
the stiffeners are mathematically permitted to pass through one another without contact,

but do interact indirectly through their mutual contact with the shell at the joint.

On the basis of the symmetry about the z-axis for the unit, only the interacting line
load components tangent and normal to the stringer are included in the analysis. However,
due to the ring’s asymmetrical cross section, the components of line loads between shell
and the ring consist of three force intensities and two moment intensities. The shell-
stringer interacting force components per unit length along the contact lines are denoted
by Azs(z) for the component tangent to the stringer, and A.s(z) for the component normal
to the stringer. The three shell-ring interacting force components per unit length along
the contact lines are denoted by Azr(8) for the component acting in the axial direction,
X¢r(8) for the component tangent to the ring, and X..(6) for the component normal to
the ring. The two shell-ring interacting moment components per unit length along the
contact lines are denoted by Agr(8) for the component tangent to the ring, and A,-(6) for
the component normal to the ring. These interacting loads acting in a positive sense on

the inside surface of the shell are shown in Fig. 1.3.
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Fig. 1.3. Interacting line load intensities shown in the positive
sense acting on the inside surface of the shell.



1.8 ANALYSIS APPROACH

For both the linear elastic and geometrically nonlinear elastic response of the repeat-
ing unit to internal pressure, the Ritz method is used. The principle of virtual work is
applied separately to the shell, stringer and ring. Displacements are individually assumed
for the shell, stringer, and the ring as Fourier Series expansions. The virtual work func-
tionals are augmented by Lagrange multipliers to enforce kinematic constraints between
the structural components of the repeating unit. Asa result, point-wise displacement con-
tinuitv between structural elements is achieved. The Lagrange multipliers represent the
interacting line loads between the stiffeners and the shell, and are also expanded in Fourier
Series. Closed-end pressure vessel effects are included. Data for the example problems are

representative of the dimensions of large transport fuselage structure.

The primary advantage of using the analysis approach discussed above results from
the fact that a point-wise displacement continuity is achieved between the structural
elements. In commercial finite element analysis codes viz., ABAQUS?, NASTRAN?Z,
etc., the interpolation functions used for the displacement fields of the structural elements
(e.g.. the shell and beam elements) are, in general, not the same. Thus, the continuity
between the structural elements can only be satisfied at discrete points, i.e., at the nodes.
Another shortcoming of these finite element codes is that they can not model the torsional
warping deformation of an open section, laminated, curved beam. This is a disadvantage
since the restraint of warping deformation in the ring due to continous contact with
the shell results in significant circumferential normal stresses in the ring. To account
for torsional warping deformation in the ring, the ring would have to be modeled as a
branched shell with these finite element codes. Branched shell models of the stiffeners
would significantly increase the degrees-of-freedom in the finite element model. 1t should

be mentioned that beam models including torsional warping deformation require seven
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nodal degrees of freedom between elements. The seventh degree of freedom is related to
the rate of twist. However, it is standard in finite element codes to have only six nodal
degrees of freedom (three displacements and three rotations) between one-dimensional

elements.
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CHAPTER 2
GOVERNING EQUATIONS FOR LINEAR ANALYSES

2.1 STRUCTURAL MODEL AND ASSUMPTIONS

Linear elastic analyses are carried out for a unit cell model (Fig. 1.2) defined in
Section 1.7 of an internally pressurized, orthogonally stiffened, long circular cylindrical
shell. The interacting line loads between the shell and stiffeners acting in a positive
sense on the inside surface of the shell are shown in Fig. 1.3. For a symmetrical section
ring, the repeating unit (or unit cell model) is symmetric about #-axis as well, which
implies that there is no out-of-plane bending and torsion of the ring, and consequently, no
rotation of the joint at the stiffener intersection about the circumferential axis. Thus, for
the symmetrical section stiffeners only the interacting line load components tangent and
normal to the stiffeners are non-zero.

Mathematical formulations for the linear elastic response presented in this chapter
include the effect of transverse shear deformations and the effect of warping deformation
of the ring’s cross section due to torsion. These effects are important when the ring has
an asymmetrical cross section, because the loss of symmetry in the problem results in
torsion of the ring, as well as out-of-plane bending, and a concomitant rotation of the
joint at the stiffener intersection about the circumferential axis. This stringer-ring-shell
joint is modeled in an idealized manner; the stiffeners are mathematically permitted to
pass through one another without contact, but do interact indirectly through their mutual
contact with the shell at the joint. Restraint of cross-sectional warping, as occurs here in
the ring due to contact with the shell, is an important contributor to the normal stresses in
thin-walled open section bars, as was demonstrated by Hoff?3. Based on transverse shear

deformation and cross-sectional warping of the ring, four structural models are defined.

16



The simplest model uses non-transverse-shear-deformable theory, or classical theory, and
neglects warping due to torsion. The most complex model includes both effects. Models
of intermediate complexity occur for inclusion of one effect without the other.

The purpose of linear elastic analyses is two fold. First, the linear elastic analy-
sis developed in this chapter is compared with a geometrically nonlinear elastic analysis
developed in Chapter 3 for the unit cell model with symmetrical cross section stiffeners.
Second, the effect of skin-stringer-ring joint flexibility, and the effect of warping of the
ring’s cross section due to torsion, on the response are quantified. The following gen-
eral assumptions, which are valid for classical as well as transverse shear deformation
formulations, are made for linear elastic analyses of the unit cell model:

1. Normals to the undeformed reference surface remain straight and are

inextensional.

2. Material behavior is linearly elastic.

3. The thickness normal stress is assumed to be small with respect to the normal

stresses in the axial and circumferential directions, and hence it is neglected

in the material law.

2.2 TRANSVERSE SHEAR DEFORMATION FORMULATIONS

2.2.1 SHELL

A consistent first order transverse shear deformation theory is developed to model
the shell. Based on the assumption that the shell thickness ¢ is relatively small and hence,
does not change during loading, the displacements at an arbitrary material point in the

shell are approximated by

U(z,6,2) = u(z,0) + z(2,6) (2.1)
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V(z,0,z) = v(z,0) + 2¢4(z,0) (2.2)
W(z,0,z) = w(z,0) (2.3)

where u(z,8), v(z,0) and w(z,f) are the displacements of the points of the reference
surface, and ¢-(z,8) and ¢¢(z,8) are the rotations of the normal to the reference surface
as shown in Fig. 2.1. Assuming small displacement gradients, the three-dimensional

engineering strains are related to the displacements by

aU 1 9V oW
m = Gy = EralaptWl e = g (2.4)
oV 19U
“ = G T Rva 00 (25)
oU oW oV 1 0w
€2z = 52 +a_$ €: = H- (RTZ)[CM —L] (2.6)

in which the polar radius r in cylindrical coordinates is replaced by R + z. Substituting
Eqgs. (2.1) to (2.3) into Eqs. (2.4) to (2.6), and rearranging the terms results in the

following expressions for the three-dimensional engineering strains:

€gg + 2K44
€rz = €rz + 2K €gg = ————— €., = 0 (2.7)
z rr rr (1+ _]2:'?) zzZ
s = Yo + 2(1 + ﬁ)fiu) + Qz;gk.rﬁ (28)
1+ %
Y6z
€z; = 7 €5, = (2.9)
xrz rz r4 (1+ %)

in which €.z, K52, €46, K08, Y26, K28, Rzgs Yoz, and g, are the shell strains independent of z-
coordinate. These shell strains are defined in the following sub-subsection. The transverse
shear strains e;, and eg, given in Eqgs. (2.9) were obtained through differentiation of Eqs.
(2.1) to (2.3) with respect to z. However, Egs. (2.1) to (2.3) are approximate in the
2-coordinate, so that differentiating with respect to z cannot capture the distribution

of the transverse shear strains through the thickness of the shell. Since the material is
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assumed rigid in the zdirection (e, = 0), the distribution of the transverse shear strains,
and consequently the distribution of the transverse shear stresses, does not influence the
shell behavior. It is the integral of the transverse shear stresses through the thickness,
or transverse shear resultants, that influences shell behavior. Thus, Egs. (2.9) should be
viewed as average values of the transverse shear strains, or as the transverse shear strains

evaluated at the reference surface (2 = 0).

2.2.1.1 STRAIN-DISPLACEMENT RELATIONS

In Eqs. (2.7) to (2.9), the two-dimensional, or shell, strain measures, which are

independent of the z-coordinate, are defined by

€rr = % Kezr = 6;;1 (2.10)

€os = le% % Ko = %%%9- (2.11)

e = %;1 . %.‘2_"‘; (2.12)

g 200 L0 (214)
ML Yo = 00— S+ B (2.15)

If we set the (average) transverse shear strains in Egs. (2.9) to zero, then the

rotations of the normal are

¢ =~ 57 (2.16)
v 1 dw -
d,ezﬁ_.}_{.a_g (2.17)
so that
2 0w 2 Ov .

Kpg = Kz = —Em + 72--3—5 Frg =0 (218)

20



Hence, the thickness distribution of the shear strain reduces to

Yz6 + 2(1 + 55 )Kze
1+ %)

(2.19)

€z =

which coincides with the results of Novozhilov’s?? classical shell theory.

It is evident from Eq. (2.8) that three shell strain measures are needed to represent
the distribution of the in-plane shear strain through the thickness in the transverse shear
deformation shell theory. Whereas, only two shell strain measures are required in classical
shell theory to represent the shearing strain distribution through the thickness (refer to
Eq. (2.19)). Also it can be shown that under rigid body motions of the shell, the nine shell
strain measures, given by Eqs. (2.10) through (2.15) vanish. (For Novozhilov’s classical
shell theory, six shell strain measures given by Egs. (2.10-2.12) and (2.18) vanish under

rigid body motions.)

2.2.1.2 VIRTUAL WORK

In the three-dimensional elasticity theory, the internal virtual work for the shell is

given by

SWie! :.///v [0zzbers + ogsb€sg + 02206, + Trpbers + 0rsbes: + Tg.6e0.] AV
(2.20)
where V' denotes the volume of shell and dV = (1+ &) da R df dz. Substitute the variation
of Egs. (2.7) to (2.9) into Eq. (2.20), and note that the virtual strains are explicit functions
of z. Integrals of the stresses with respect to z give force and moment resultants conjugate
to the shell strains. Hence, the volume integral in Eq. (2.20) reduces to an area integral,

and the internal virtual work becomes

sWihetl - / / 6€T 011 Fsnen dS, (2.21)
S
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where S denotes the area of the reference surface with dS = dz Rdf. The generalized 9 x 1

stress vector for the shell in Eq. (2.21) is defined by
ashell = [*Nxa:v NG@, N91‘7 M:z‘za M@@a M:L'B-, Msz Q.r’ QG]T» (222)
and the generalized strain vector for the shell is

- o T .y
€shell = [exx’ €96, V8 Rzxs Koo, "":1:9,"51:9»7:02»792] (223)

The physical stress resultants and stress couples for the shell, some of which appear in
Eq. (2.22), are defined in terms of stress components of the symmetric stress tensor in

cylindrical coordinates by

(N.I‘x’ M.rx) =/(1’ z)azx(l + %) dz
t
(Nog, Mag) =/(1,Z)000 dz
t
Z
(Neos M) = (1 2)0s0l1 4 3) d

(2.24)
(Noz, Moz) =/(1,2)0'9;,; dz
t

r = le'z—d
Q= [t + ) @2

Q€ :/002(12
t

In Eq. (2.22), M, and M4 are the mathematical quantities conjugate to the modified
twisting measures K4 and Kzg, respectively, and are defined in terms of the physical stress

couples by

_ 1 1
A’Ixﬂ = §(JM:L‘€ + MOJ:) Mr€ = §(M:c9 - M@:r) (225)

The nine elements of the stress vector in Eq. (2.22) and the relations of Eq. (2.25)
determine all the stress resultants and stress couples listed in Eq. (2.24) except for shear
resultant Nzg. The shear stress resultant N4 is determined from moment equilibrium
about the normal for an element of the shell. This so-called sixth equilibrium equation is

M9$

Ngo = Noz + 7

(2.26)
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Written out in full, the internal virtual work for the shell is given by

Wit = // [Nocberr + Nogbegs + Nogbyps + Mogbrioy + Mepbrgg + Mpg0R 1o
s

+ Mg6Fzo + Qrbves + Q667s:) dS

(2.27)
The external virtual work for the shell is
SW2iE! = swshell L syyghelt (2.28)

where 6W§he“ is the external virtual work due to the spatially uniform internal pressure
load, and §Wshe!! is the external (or augmented) virtual work due to interacting loads.
The external virtual work for a cylindrical shell under uniform internal pressure, including

an axial load due to the closed-end effect, is written as

2
-0

©
sWshell //p SwdS + p/ R 4 [6u(l,8) — bu(—1,8)] (2.29)
S

The discussion on the augmented virtual work due to interacting loads is given in Section

2.5.

2.2.1.3 CONSTITUTIVE RELATIONS

The material law for an orthotropic lamina with one material axis in the normal
direction is given by
Oz Qu Q12 Qi | [ €zs

00 0= | Q12 Q22 Qas |4 ess (2.30)
Oz Qe Q2 Qe | | €zs

where Q;; are the transformed reduced stiffnesses given in the text by Jones?>. (The
thickness normal stress is assumed to be zero in the material law.) Substitution of Eq.
(2.30) into Egs. (2.24) in conjunction with Egs. (2.25), and use of Eqs. (2.7) to (2.9) for

the three-dimensional engineering strains, results in the following linear elastic constitutive
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law for a laminated composite shell wall:

Nzz ) M Ajl
Nys Ay
Ny Ais
My } = | Bn
Mg B2
Mz@ B%s
\ M,e) LB

A, A Bn B Bis
Ays Aze Bz B2 Bie
Arxs Aes Ber  Bs2 Bis
Bi» Beir Dit D Dis
Bzg BGQ Dl?, D22 Dée
Bls Bi Dis D}s Dgs
B%s Big D} Dig D§

in which stiffnesses A;j, Bij and D;; are given by

€xr )
€40
Yz6
Krr
Koo
Ko

(A1, Bi1, D) =/(1,z,z2)Q11(1 + %)d~
t

(A12,312,D12)=/(1 z
(A22,322,D22):/ L 2,28)Qaa(1 + ;Z)
(A16,361)=/(

(Aas, Bs2) /(1 Q26(1+I;) dz

22)Q12dz

t

t

1,2)Q16dz

-1
Agg = 14+ —= dz
66 /ths( + R)
1 —~ z
BlG = Q162(1 + 'E)dz

Bis —/Qle——dz

-1

dz

“~

s -1

Bl = [ Qe + g1+ ) 4

> =1

Bos —/Q262R 1+ R) dz

2 -1
Blo = [Quii+ g1+ ) &
B? AN
66 _/QGGQR( + = z
D%(; Z/ngz’(l + -R-)dz
~ -
1 _ e z -
D%—ﬁQ%z s S+ R
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D') /Q_ 33 (1 z )-ld
26 = [ Kl + — z
2= | 5R

— > =1
DééZ‘/stZ l-l-—)(1+R dz

-1
2y de

Dgg /Qee——(l-i- = N1+ 7

> -1
D2 =[Qee—(1+ =) d=
66 /tQ664R2( + )

The lamina material law relating transverse shear stresses and strains is
Ozz Cy C .
zrz — 44 45 617., (2.33)
09z Cys Css €4z

Cyq = G]gCOSQQ + GggSinQa
Cys =(Gh13 — Gaz)CosaSina

where

Css =G23C082Cl + GwSiTLQOL‘

in which « is the ply orientation angle. Substitution of Eq. (2.33) into the last two of
Eqs. (2.24), in conjunction with Eqs. (2.9) for the transverse shear strains, results in
the following linear elastic constitutive law for a laminated composite shell wall relating

transverse shear resultants and strains:

Qr} [A44 A45:|{‘7.rz}
= 2.34
{ Qs Ags  Ass RLCE ( )
The transverse shear stiffnesses, A4q, A4s, and Ass in Eq. (2.34) are given by

Agq =/tC44(1 + %)dz

A45 :/C'45dz (235)

t
> -1
Ass = [ Css(1 4+ =) dz
55 /t 55(1 + R)

Since Eqgs. (2.9) represent average values of the transverse shear strains, the constitu-

tive law relating transverse shear resultants and strains, Eq. (2.34), can be viewed as
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2 Hooke's law based on the assumption of constant transverse shear strain distribution
through the thickness. Alternatively one can obtain the constitutive law relating trans-
verse shear resultants and strains based on the assumption of constant transverse shear
stress distribution through the thickness. A detailed discussion on the subject is given in
Chapter 2 of the text by Vasiliev26. However, both the methods result in a shear correction
factor of one (as opposed to 5/6) for isotropic materials. Cohen?®” derived the transverse
shear stiffnesses of laminated anisotropic shells without making either of the assumptions
mentioned above. He employed Castigliano’s theorem of least work to minimize the shear
strain energy, and obtained the desired constitutive law, which for homogeneous isotropic

materials gives a shear correction factor of 5/6.

2.2.1.4 EQUILIBRIUM EQUATIONS

The equilibrium equations for the shell can be derived using the principle of virtual

work which is stated as

6W-Sh€” — 6)/\)-9h€”1 (2.36)

int ert

for every kinematically admissible displacement field. For the purpose of deriving the
equilibrium equations of the shell, the contribution of the augmented virtual work due
to interacting loads is neglected in Eq. (2.28) for the external virtual work. Thus, sub-
stituting Egs. (2.27) and (2.29) for internal and external virtual work, respectively, into
Eq. (2.36), using the definitions of the strain-displacement relations given by Eqgs. (2.10)
through (2.15), performing integration by parts, and recognizing the arbitrary nature of
the first variation of the displacements, results In the following set of equilibrium equa-
tions. or Euler equations, for the shell:

ONzy 1 0Ng:
+ —_

) ON g 1 ONgg 1 . .
bv: Xt oot 7@ =0 (2.38)
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8@1 1 dQB _ '1—N€0 +p -0 (239)

Sw : i 1
v TR TR
OM.. 10My,
66c:  —+ 5 8; Q. =0 (2.40)
oMy 10M
g b 8 _0s=0 (2.41)

oz R 00

2.2.1.5 BOUNDARY CONDITIONS

The derivation of Euler equations from the principle of virtual work results in the

following boundary integrals:

(S
pR +
[(Vew = B2 )6 + Nobv + Qubw + Masbs + Magbs] "R
© (2.42)

{
+0
+ / [Nowbu + Noobv + Qubuw + Macbps + Mogbos] _ dz =0
Z

Boundary integrals in Eq. (2.42) can be made to vanish individually by specifying the
boundary conditions in two ways. One way is to prescribe periodic boundary conditions;
alternatively either an essential or a natural boundary condition can be prescribed. In the

first case. the periodic boundary conditions at @ = £/ are expressed as

]Vl-g(l,o) = Nre(_l’9)3
Q:(1,0) = Q(-1.9),
A4J:J‘(l’9) = Mz‘.l‘(—l’g)v

A/IIG(LO) = M:L‘G(—l’o)s

dv(l,0) = bv(-1,8)

§w(l,8) = 6w(—1,6)

For the closed-end pressure vessel effect, prescribe

Nuo(l,6) = % and Nyg(~1,8) =

(2.43)
6¢1‘(l’0) = 6¢.’L‘(_170)
5¢9(l,0) = 6¢9(—1,0) 0 e [—@,@]
2L gel-0.0] (2.44)

27



Thus, du(+!,8) is not prescribed to vanish. Periodic conditions at § = 0 edges are

Neg(2,0) = Noo(2,-09), du(z,0) = bu(z,-0)
Ngo(z,0) = Nygo(z,—-09), §v(z,0) = bv(z,-0)
Qo(z,0) = Qo(z,-09), dw(z,0) = dw(zx,—0) (2.45)
Mgp(z,0) = Mge(z, - ©), $¢:(2,0) = §¢:(2,-0)
Myr(2,0) = Mg (z,-0). §do(z,0) = bps(2,-0) 2z € [-1.1]
In the second case, the associated boundary conditions at z = +! edges are to

prescribe
either Nyz — PQ—R or u but not both,
either Nyg or v but not both,
either Q. or w but not both,
either M, or ¢, but not both, and
either Mg or ¢ but not both.
The associated boundary conditions at 6 = 40 edges are to prescribe
either Ny, or u but not both,
either Ngg or v but not both,
either 4 or w but not both,
either My, or ¢ but not both, and

either Mgg or ¢ but not both.

2.2.2 STRINGER

Let us(z) and ws(z) denote the axial and normal displacements, respectively, of a
material point on the stringer reference axis, and let ¢g5(z) denote the rotation of normal

as shown in Fig. 2.2. Thus, the axial and normal displacements of a generic material
point of the stringer are given by
Us(z,€) = us(z) + Eos(2) (2.46)
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Fig. 2.2. Displacements and rotations for stringer.
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W,(z,€) = ws(z), (2.47)

respectively. The coordinate system (z,0,€)is located at the centroid of the stringer as per
the right-hand rule (see Fig. 2.2), in which £ is the normal coordinate. Using Eqgs. (2.46)
and (2.47) and assuming small displacement gradients, the three-dimensional engineering
strains are

s

€. = €po+Ehgs €, =0 ez, = Yas (2.48)

xxr

which are independent of the §-direction coordinate because of the symmetric deformation
assumption. In Eq. (2.48), the one-dimensional strain-displacement relations are defined
by

!

€rs = U Rgs = ¢193 Yzs = Pos + w,s (249)

in which €, is the normal strain of the centroidal line, the product kg is the portion of
the axial normal strain due to bending, 7. is the transverse shear strain, and the prime
denotes an ordinary derivative with respect to z.

The physical force and moment resultants for the stringer in terms of stress compo-

nents of the symmetric stress tensor are given, in usual way, by

(Ngsy Mas) =// ’(l,f)a;r dA,

Vs :// os, dAs
As

in which N, is the axial force in the stringer, My, is the bending moment, Vz; is the trans-

(2.50)

verse shear force, and Ag is the cross-sectional area of the stringer. Based on transverse

shear deformation theory, the internal virtual work expression for the stringer is

{
éwisrtl:ingeT :/ [NesOers + Mgg0rgs + Vas67zsldz, (2.51)
-1

and the Hooke’s law is

Nys = (EA)sfws Mg, = (EI)SK’GS Vis = (GA)s7Vzs (2.52)
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2.2.3 RING

The structural model is based on transverse shear deformation theory and includes
cross-sectional warping due to torsion. Warping is a distinctive feature of thin-walled,
open section beams. Restraint of cross-sectional warping, as occurs here in the ring
due to its contact with the shell, leads to additional longitudinal normal strains in the
ring as a result of torsion. The extension of classical thin-walled, open section, curved
bar theory to laminated composite materials was developed by Woodson, Johnson, and
Haftka’®. However, Woodson et al. did not consider transverse shear deformations. Most
of the developments for the ring theory presented here are obtained from Woodson’s
dissertation®®. The coordinate system (2,0,() is located at the centroid of the ring as
per the right-handed system as shown in Fig. 2.3, in which { is the normal coordinate
in the radial direction. Let the displacements of a material point on the ring reference
axis in the z-, 6-, and (-directions be denoted by u,(8), v.(8), and w,(8), respectively.
Let the rotations about the z-, 8-, and (-axes be denoted by ¢:-(8), ¢4-(8), and ¢..(8).
respectively. See Fig. 2.3 for the positive sense of these quantities. The displacements of
a generic point in the cross section are related to the displacements and rotations of the

point on the reference surface by the approximations

Ur(2,0,¢) = ur(8) + (g, (0) (2.53)
Vi(2,0,C) = vr(0) + (@2r(0) + 2¢.-(0) — w(z,)T(0) (2.54)
Wi (z,6,¢) = wr(8) — z¢g,(8) (2.55)

The cross section of the ring is normal to the §-axis, that is, the z — ¢ plane, so that U,
and W, are interpreted as in-plane displacement components, and V, is the out-of-plane
component. It is assumed that the cross section is rigid in its own plane. Hence, in-plane

displacements in Eqs. (2.53) and (2.55) are composed of a translation of the cross-sectional
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Fig. 2.3. Displacements and rotations for ring.
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origin plus a small rigid body rotation ¢, about the 6-axis. The out-of-plane displacement
given by Eq. (2.54) is composed of a translation of the origin v,, a component (Prr due
to bending about the z-axis, a component z¢., due to bending about the (-axis, and a
component —wr, due to warping of the cross section out of the flexural plane. In Eq.
(2.54), w(z,() is the warping function for the ring’s cross section, and Tr(6) is the twist

rate which is given after the next equation. The internal virtual work is

©
6W:;:;Lg = / [JV@r(SfBr + Mzrbhor + M bk, + Tsrbrr + er(s('f'r/RO) + Vrra'Y.rr (2 56)
-@ ’

+ Virby2r]Ro d6

in which Ny, is the circumferential force, M, is the in-plane bending moment, M,, is the
out-of-plane bending moment, M, is the bimoment, T, is the St. Venant’s torque, Vi,
is transverse shear force in the z-direction, V,, is transverse shear force in the (-direction,
€gr is the circumferential normal strain of the centroidal arc, k., is the in-plane bending
rotation gradient, K, is the out-of-plane bending rotation gradient, ~Yzr is the transverse
shear strain in 2-6 plane, 7., is the transverse shear strain in #-¢ plane, and Ry is the

radius of ring reference arc. The rotations and strain-displacement relations are

1 . 1. 1 .
€or = R—(UT + wr) Ker = R_0¢17T Kzr = '}Z_O(¢zr - ¢07‘)

L . ) (2.57)
Ty = R‘O‘(QSGr + ¢zr) Yzr = ¢r'r - R_O(vr - wr) Yer = @2r + R_Our
in which the over-dot denotes an ordinary derivative with respect to §. The material law

is based on the assumption that the shear forces are decoupled from extension, bending,

and torsional deformations of the ring. Thus, Hooke’s law for the ring is

Noy EA ES, -FES, -FES, EH €gr
Mgy, ES; El.. -El., —-FEl,, FH, Ker
M. } = | -ES. -EL. EL, El, -EH|{ x. %,  (2.58)
M, -ES, -FEI,, EFEI,, El,, -EH, 7r/ Ry
T EH EH. -FEH, -EH, GJ Tr
and
“fzr _ GA:D@ GA.I’Z 71‘7‘
{ Vir } - [Gsz GAzH] { Yar } (259)
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The stiffnesses in Eq. (2.58) are commonly referred to as modulus-weighted section
properties. The «EH” terms are unique to laminated thin-walled beams (see Bauld and
Tzeng®®). If the laminate construction for each branch of the ring is specially orthotropic
with respect to z-, 8-, and (-directions, then the “EH” terms are all equal to zero. The
stiffness elements are evaluated from a computer code developed by Woodson. The reader
is encouraged to refer to Chapters 9 and 3 of Ref. [29] for further details on this subject.

The transverse shear stiffness elements in Eq. (2.59) are given by

K

GArg :[A55 hvw + E(AGG)IC (bw)k]

k=1

K
GAzs =[Ass hu+ D _(Ass)i (bl (2.60)
k=1
K
G Ass =[Aes hw+ D _(Ass)k (bu)k]
k=1
in which the transverse shear stiffnesses, A4, A4s, and As; are calculated based on the
assumption of constant transverse shear strain distribution through the thickness, and
are given by Eq. (2.35). In deriving the transverse shear stiffness elements given by Eqs.
(2.60) above, it is assumed that cross section of the ring is made up of a vertical web and
horizontal flanges. That is, the web is assumed to be parallel to the (-axis, and flanges
are assumed to be parallel to the z-axis. In Eqs. (2.60), the parameters h, and b, denote
the web height and flange width. respectively, and " is the total number of flanges in the
ring cross section.
For structural models in which the effect of warping of the ring cross section is
excluded. the contribution of the bimoment, My, to the virtual work of the ring in Eqg.

(2.56) is neglected, and the fourth row and column of the stiffness matrix, Eq. (2.58), are

ignored. Also, the warping function w(z,() is taken as zero.
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2.3 CLASSICAL FORMULATIONS

2.3.1 SHELL

The shell is modeled with Sanders’ theory®!, in which first approximation thin shell
theory is used; i.e., the effects of transverse shear and normal strains are neglected. The
displacements at an arbitrary material point in the shell are approximated by Eqgs. (2.1)
to (2.3), in which the rotations ¢, and ¢4 are related to the displacements by Egs. (2.16)
and (2.17), respectively. Thus, transverse shear strains e,, and eg, in Eqgs. (2.9) vanish.
For small displacement gradients, the three-dimensional engineering strains in Sanders’
theory are given by Egs. (2.7) and

(1+ 55 + 352 )7z + 2(1 + )RS,
(1+ %)

in which the quantity &}, is the twisting strain measure in the Sanders’ theory, which is

(2.61)

€rg =

defined in the following sub-subsection.

2.3.1.1 STRAIN-DISPLACEMENT RELATIONS
Define a generalized strain vector in terms of the shell strain measures by

- T
€shell = [€22+€08, Y28, Koz, Kag, Kog) (2.62)

The first five strain measures of the shell reference surface in Eq. (2.62) are related to the

displacements by Eqs. (2.10-2.12), and the sixth strain measure, K24, is given by

s _ qu@ 1 8¢1‘ 1

=42 g, 2.
%= 5. TRoe T R? (2.63)
in which the rotation about the normal, ¢, is given by
1. 0v 10u
= (=__= 2.

The Donnell-Mushtari-Vlasov (DMV) approximation, or quasi-shallow shell theory is ob-
tained by neglecting the term % in Eq. (2.17) for the rotation ¢4, and the rotation about

the normal ¢, in Eq. (2.63).
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2.3.1.2 VIRTUAL WORK

Define a generalized stress vector in terms of the stress resultants and couples of

Sanders’ theory by

Gonett = |Nuzr Nooy N2g> Mua, Mes, Mz)T (2.65)

such that the internal virtual work is still given by Eq. (2.21) except that the stress
and strain vectors are 6 X 1 vectors in Sanders theory. Quantities N7y and M3, are the
modified shear and twisting moment resultants. In terms of physical stress and moment

resultants of the shell these are given by
S —_l(N + N )-+———1 (M Mgz) 2.66
T8 2 z6 oz 4R z8 6z, ( . )

1 ,
A’Iso = E(MIB + Myz) (2-67)

x

In the Sanders’ original paper®! the term g%(Mxe — My,) in Eq. (2.66) was considered
to be small as compared to %(Nzg 4+ Ng.), and was, therefore, neglected. However, this
approximation is not made here. For infinitesimal virtual displacements, the internal

virtual work for the shell can be obtained by substituting Eqgs. (2.62) and (2.65) into Eq.

(2.21), which results in

int

swihell = // [N“.éerr-{—Ngg&égg-}-N;Bé‘)’xe+]\/1115Kxx+Alag(ﬁng@—i-lﬂgoéfcie] dS (2.68)
S

where S denotes the area of the reference surface. The external virtual work expression

for the classical shell theory is still given by Eq. (2.28).

2.3.1.3 CONSTITUTIVE RELATIONS

Consider the material law for an orthotropic lamina given by Eq. (2.30). To get the
material law for the shell, substitute Eq. (2.30) into the definitions of the resultants in

terms of stresses, Egs. (2.24); substitute Eqgs. (2.7) and (2.61) for the three-dimensional
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strains; and then perform the integration with respect to the thickness coordinate. Using

the definitions of the modified resultants in Eqs. (2.66) and (2.67

the material law as
N.’L‘l‘
Nog
s
z6
MI'I'
Mg

5
8

[A1n A1z A Bun Bz Big] [ €xx
Aa Ay Agg Bia By By €66
A Az Age Be1 DBgy Beg Y6
By1 B2 Bsi Du Dy Dig| | Kes
Bz Byy Bgy Dy Dy Dy K66
LB1e Bas Bes Dis D Dgsd kS,

) gives the final form of

(2.69)

where the stiffnesses A1y, A12, Ag2, B11, B2, B2z, D11, D12 and D»» in Eq. (2.69) are given

by the first three of Egs. (2.32), with the remaining stiffnesses defined by

z

32
(A16,361)=/t( el + o+ e

. z 22 z -1
Bgy) = z =
(A2, Be2) /t(l’ Q1+ 57 + T+ 5) dz

2.3.2 STRINGER

2 -1
4;2]2 14 %) dz

Ass = | Oes[l + —
66 /tQ66[+2R+
Bis = [ Q162(1 id
16 /tQ16(+2R)2
- z z -1
.B = 262(1 — (1 —_ dz
26 ,/tQ'6(+2R(+R)

-1

22 Z
= 2y d
4R2](1+2R)(1+R) P

Bes =/st~’[1 + —z— +
Dis —/Qlﬁ» 1+ —)
s -1

= 2 — dz
Dy /Q26 +2R (14 )

Deg —/Q6622(1 + ) (14 ——) d~

(2.70)

The stringer is modeled with Euler-Bernoulli beam theory thereby neglecting the

transverse shear strain. Hence, equating 7,5 in the last of Eqs. (2.49) to zero results in

the following expression for ¢gs:

Pos = —w
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It may be noted that neglecting the transverse shear strain would also modify the virtual
work statement given by Eq. (2.51), and the third equation in the Hooke’s law, Eq. (2.52),

is neglected.

2.3.3 RING

The ring is modeled with thin-walled, open section, curved bar theory developed by
Woodson, Johnson, and Haftka2®. For classical formulations, the transverse shear strains
are neglected. Hence, equating 7z, and 7zr in the last two of Eqs. (2.57) to zero results

in the following expressions for the rotations ¢, and ¢z,.

1 . 1.
Gor = Ea(vr — W) bor = "'R—Our (2.72)

It may be noted that neglecting the transverse shear strains would also modify the virtual
work statement given by Eq. (2.56), and Hooke’s law for the shear resultants, Eq. (2.59),

is neglected.

2.4 DISPLACEMENT CONTINUITY

In order to maintain continuous deformation between the inside surface of the shell
and stiffeners along their lines of contact, the displacements and rotations should be
continuous at the shell-stiffener interface. For a symmetrical section stringer, the unit cell
model is symmetric about z-axis, and the only non-zero displacements for the stringer
are the axial and normal displacements. The axial and normal displacements at the top
flange of the stringer in contact with the shell are obtained from Egs. (2.46) and (2.47)
for £ = e,, where €, is the radial distance from the stringer centroid to the contact line
along the inside surface of the shell. Similarly, the corresponding shell displacements

at the inside surface of the shell (i.e., at z = —t/2) are obtained from Egs. (2.1) and
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(2.3). Hence, the following displacement continuity constraints are imposed along the

shell-stringer interface (ie., = [ <2<, 8 = 0).
t
Jzs = u(.r, 0) - 5‘1’1:(1, O) - [Us(-r) + es¢03($)] =0 (2.73)
Gzs = w(x,0) — we(z) =0 (2.74)

The asymmetrical section ring bends out-of-plane and twists, in addition to in-plane
bending and stretching along its circumference. Hence, the displacement field for the ring
consists of axial, circumferential, and normal components given by Egs. (2.53) to (2.55).
From Eqs. (2.54) and (2.55), it can be observed that the circumferential and normal
displacements of the ring vary along the width of the attachment flange.

Point-wise continuity of the circumferential displacement between the inside surface

of the shell and the attachment flange of the ring implies
V(ZE,G,—t/Q) = ‘/'7‘('7”03 eT‘) S (_bflﬂbf'-’)v b € (_070) (275)

in which bs; + bg2 = by > 0 where by is the width of the attachment flange, and e, is
the distance from the ring reference arc to the contact line along the inside surface of the
shell. Since the kinematic assumptions in the ring theory give V,. as an explicit linear
function of z, Eq. (2.54), and the z-distribution of the shell displacement V', Eq. (2.2), is
not known apriori, pointwise satisfaction of Eq. (2.75) across the width of the attachment
flange cannot be achieved. To proceed, the shell displacement is approximated in a Taylor

series in  about # = 0. That is,
. . 1% 9. o
‘/($7oa_t/2): "(0,0,—1/2)+$*5—$’|m=0+0(1‘ ) (2‘6)

Substituting Eq. (2.76) into Eq. (2.75), the continuity of the circumferential displacement
across the width of the attachment flange can be achieved through terms of order z. Thus,

V(0,6,-t/2) = V,(0,6,¢,) leads to
gsr = v(0, 9) - '%d)é(oy 0) - ['Ur(a) + er¢xr(9) - WOT'I‘(G)] =0, (2-77)
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and l’%—glmo = V.(z,0,e5) - V,(0,0,¢€,) leads to

[81) t Doy

Gor = |ggle=0 " 202

|x=o] — [620(8) — w1 7:(8)] = 0 (2.78)

The constraint G, = 0 imposed through Eq. (2.78) also implies that the rotation about
»-axis of the shell’s line element tangent to z-curve, %{-, equals the rotation of the ring
around (-axis along their contact line. In Egs. (2.77) and (2.78), parameters wo and wiy
are the constant coefficients in the contour warping function, w(z,() = wo + zwi, for the
attachment flange of the ring. (Thickness warping is neglected and ¢ =constant along the
flange contour.) For structural models in which the effect of warping of the ring cross
section is excluded, the contour warping function w(z, () is taken as zero.

Similarly, point-wise continuity of the normal displacement between the inside sur-

face of the shell and the attachment flange of the ring implies

W(z,0,-t/2) = We(z,0,€r) z € (=bs1,bs2), 8 € (-0,0) (2.79)

Since the kinematic assumptions in the ring theory give W, as an explicit linear function
of z, Eq. (2.55), and the r-distribution of the shell displacement W, Eq. (2.3), is not
known apriori, pointwise satisfaction of Eq. (2.79) across the width of the attachment
flange cannot be achieved. To proceed, the shell displacement is approximated in a Taylor

series in x about = = 0. That is,

ow

oz |z=0 + O(z") (2.80)

W(z,0,—t/2) = W(0,8,-t/2) + 2

Substituting Eq. (2.80) into Eq. (2.79) the continuity of the normal displacement across
the width of the attachment flange can be achieved through terms of order z. Thus.

W(0,8,—t/2) = W.(0,6,¢;) leads to

gzr = w(0, ) — we(0) =0 (2.81)
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and ff%l];:o = W.(z,0,e,) — W,.(0,8,¢,) leads to
ot %6:(0)=0 (2.82)

The constraint Gg, = 0 imposed through Eq. (2.82) also implies that the rotation about
6-axis of the shell’s line element tangent to z-curve, —%—p:—, is equal to the twist of the ring,
¢sr, along the contact line.

Point-wise continuity of the axial displacement between the inside surface of the

shell and the attachment flange of the ring implies
U(z,0,-t/2) = Us(2,0,e,) r € (=bs,bs), 8€(-0,0) (2.83)

Since the kinematic assumptions in the ring theory give U, independent of z, Eq. (2.53),
and the shell displacement U, Eq. (2.1), is an arbitrary function of z, pointwise satisfaction
of Eq. (2.83) across the width of the attachment flange can be achieved only through terms

of order z°. Thus, U(0,6, ~t/2) = U,(0,6,e,) leads to
t
gzr = u(0,8) — 5%(0,0) — [ur(6) + er0r()] = 0 (2.84)

In order to include the axial load sharing between the shell and stringer due to closed-
end pressure vessel effects directly into the analysis, a seperate constraint is imposed. This
constraint is that the elongation of the shell at # = 0, z = 0 and the elongation of the

stringer at £ = 0 are the same; i.e.
[U(1,0,0) = U(=1,0,0)] — [Us(1,0) — Us(~1,0)] = 0 (2.85)
Substituting Eqgs. (2.1) and (2.46) into Eq. (2.85) leads to

[u(1,0) — u(=1,0)] = [us(1) — us(=1)] = 0 (2.86)
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2.5 AUGMENTED VIRTUAL WORK FOR THE ASSEMBLY

Inter-element continuity is enforced by augmenting the virtual work functional with
the integrals of Lagrange multipliers functions times the variations in the displacement
constraints. Refering to Fig. 1.3 the Lagrange multipliers are interpreted as the compo-
nents of the interacting line loads between the stiffeners and the shell, and are defined
positive if acting on the inside surface of the shell in positive coordinate directions. Thus,

for the shell, the augmented (or external) virtual work due to the interacting loads is

swshell = [u(z,0) - -5¢I(x 0)] + Ass(a)bu(z, 0)}

+ ,rw> 6u(0,6) — —6@(0 8)] + Xor(6)[60(0,6) — —we(o 0)] (2.87)

!
J bt
O]
/!
ow v t Oy «
T lemo) T A (005 o = 579;|x=o)}*

(R - %)d() _ Q[bu(l,0) - bu(~1,0)]

+ Ao (0)6w(0,8) — Agr(8)6(

The axial force Q in Eq. (2.87) is an additional Lagrange multiplier that accounts for axial
load sharing between the stringer and shell. Similarly, for the stringer, the augmented (or

external) virtual work due to the interacting loads is

!
6wy§tringer I / {,\m(z)[éus(m) + eséq')gs(:c)] + /\zs(x)éws(m)} dx

7, (2.88)
T QUous(l) — bus(~D)]
and. for the ring is given by
©
WY = — / {/\N(e)[éurw) + ,666:(0)] + Xor(8)[60r(8) + €:6¢2r(8) — wobTr(8)]
-0
+ /\zr(o)éwr(o) + ABr(9)6¢9r(9) + Azr(a) [6¢zr(0) - "‘)167-7‘(6):1}(1 + %)*
Ry df
(2.89)
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The displacement constraints (Eqs. (2.73), (2.74), (2.77), (2.78), (2.81), (2.82),
(2.84) and (2.86)) are enforced by vanishing of the inner product of these equations with
the variations in the Lagrange multiplier functions. The variational form of these con-

straints are 1

/[6’\$sg:vs+6/\zsgzs] dr = 0 (2.90)
~1

©
/ [6’\1'7'91'7' + 6/\97'981' + 6/\zrgzr + ‘SAOTGHT + 5Aerzr] (RO + 67‘) dd = 0 (291)
-0

§Q{ [w(1,0) = u(~1,0)] - [uy(l) - us(=0)]} = 0 (2.92)
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CHAPTER 3
GOVERNING EQUATIONS FOR NONLINEAR ANALYSIS

3.1 ANALYTICAL MODEL AND ASSUMPTIONS

A geometrically nonlinear elastic analysis is carried out for the orthogonally-stiffened
cylindrical shell subjected to internal pressure. The structural repeating unit (or unit cell
model) of Fig. 1.2 is analyzed to obtain response of the entire structure. The shell is
modeled with Sander’s nonlinear theory of thin shells, and the stiffeners are modeled with
a nonlinear Euler-Bernoulli beam theory. The purpose of nonlinear elastic analysis is
twofold: First, the distributions of interacting loads between the shell wall and the stiff-
eners are obtained and compared with those obtained from a geometrically linear elastic
analysis. Second, the influence of geometric nonlinearity on the the stress concentration

in the shell adjacent to the stiffeners due to “pillowing” is studied.

Only stiffeners with symmetrical cross sections are considered for the nonlinear re-
sponse. Hence there is no out-of-plane bending and torsion of the ring, and no rotation of
the joint at the stiffener intersection about the circumferential axis. Also, on the basis of
the symmetry about the z- and 6-axes for the repeating unit, only the interacting line load
components tangent and normal to the stiffeners are included in the analysis. The shell-
stringer interacting force components per unit length along the contact lines are denoted
by Azs(z) for the component tangent to the stringer, and As(z) for the component normal
to the stringer. The two shell-ring interacting load components per unit length along the
contact lines are denoted by Agr(8) for the component tangent to the ring and A,-(6) for
the component normal to the ring. These interacting loads acting in a positive sense on

the inside surface of the shell are shown in Fig. 1.3. In this chapter nonlinear formulations
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are presented for the shell and stiffeners based on classical theory. The following general

assumptions are made for nonlinear elastic analysis of the repeating unit:
1. Normals to the undeformed reference surface remain straight and normal
to the deformed reference surface, and are inextensional.
2. Material behavior is linearly elastic.
3. The thickness normal stress is assumed to be small with respect to the normal
stresses in the axial and circumferential directions, and hence it is neglected

in the material law.

3.2 SHELL

3.2.1 STRAIN-DISPLACEMENT RELATIONS

Sanders3? nonlinear theory of thin shells is employed to model the shell. The gen-
eralized strain vector for the shell is given by Eq. (2.62). Assuming the strains are small

and rotations are moderately small, the membrane strain-displacement relations are

du 1 4, 1,4
e = gy T30t g%
_10v w1, 1, ,
“=Tg T RT2% 3% (3-1)
ov 10u
719—5;+‘E5§+¢z¢0

in which the rotations ¢, ¢¢ and ¢, are given by Egs. (2.16), (2.17) and (2.64), respec-
tively. The change in the normal curvature components, Kz, K66, and k3, in terms of the
shell rotations are linear and are given by Egs. (2.10), (2.11) and (2.63), respectively. The
Donnell- Mushtari-Vlasov (DMV) approximation, or quasi-shallow shell theory, is obtained

by neglecting the rotation about the normal in the strains of Eqs. (3.1) and (2.63), and
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the term % in rotation ¢¢ of Eq. (2.17). In this work, it is assumed that the contribution
of the rotation about the normal to the strains is negligible for the shell. However, the

DMYV approximation is not assumed initially.

3.2.2 INTERNAL VIRTUAL WORK

The generalized stress vector in terms of the stress resultants and couples of Sanders’
theory is defined by Eq. (2.65), and the internal virtual work for the shell in deformed
state is given by Eq. (2.68). However, the stress resultants and stress couples are now
defined in terms of second Piola-Kirchhoff stress tensor, which is based on the undeformed
configuration of the body. Substituting for strains from Egs. (3.1), Kzz from (2.10), Kgs
from (2.11), and 3, from (2.63) into Eq. (2.68), in conjuction with Eqs. (2.16) and (2.17)
for the definitions of rotations, results in the following expression for the internal virtual

work for the shell:

du. N? du N 10w v N$, fw
shell _ z8 _ e 2O Ty xe YT
sWshs _//S{N” 65+ 6(60)+[ ( ) ] 8o

B E 'R96 R~ R Oz
b [ 2] a5+ [+ T a5 + T v M 5 Z¥)
-t - S 4 (W2 4 (5 - )] 65
G- 6(%%1)} as
(3.2)

3.2.3 EXTERNAL VIRTUAL WORK

Mathematically the stiffened shell is considered closed at £ = o0c. The work done
by hydrostatic pressure on an enclosed volume can be derived from a potential energy
functional, since hydrostatic pressure is a conservative load. However, the infinite volume
is inconvenient to deal with. Instead, a repeating volume element of the structure that is

of finite size can be considered, and the potential energy functional for it can be derived.
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Fig. 3.1 Enclosed volume of a repeating unit.
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An enclosed volume to contain the pressurized medium can be modeled by joining the
edges of the repeating unit to the axis of revolution of the cylinder as shown in Fig.
3.1. The shaded portions are assumed to represent diaphragms (or end caps) enclosing
the so-formed pie-shaped volume. These diaphragms do not resist deformation of the
repeating unit, but act to transmit loads normal to the edges of the repeating unit due to
the internal pressure. Under the action of uniform internal pressure, the right cylindrical
sector expands to acquire larger volume. Thus, for the deformed volume of Fig. 3.1, the

external virtual work for the shell due to internal pressure is written as
hell __ hell hell .
oW = W + W54¢ (3.3)

where 6W;£‘e” is the virtual work done by the internal pressure acting on the deformed
panel area A'B'C'D’, and 6W;Q‘e“ is the virtual work done by the internal pressure acting
on the deformed diaphragm areas O'A'B’ and O"C'D'. The virtual work done by the
internal pressure acting on the deformed panels O'A'C'O" and O'B'D’'O" is zero due to
the periodicity of displacement boundary conditions at § = £0©.

Expression for 6W§fe”

Consider a material point at P on the undeformed reference surface of the shell that
goes to point P’ on the deformed surface. Let the position vector of point P be R and
of point P’ be R* , and further let the displacement vector from point P to P’ be U, as
shown in Fig. 3.2(a). In terms of components along the directions of unit vectors i, t(8),

and n(#) of a generic point on the undeformed surface, these vectors are represented as

R==zi+ R i(f) (3.4)
U = u(z,8) i+ v(z,0) t(8) + w(z,6) a(f) (3.5)
R-=R+U (3.6)
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Fig. 3.2 Position vector and elemental area of the deformed upper surface.
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Using the geometric property of the cross products of position vectors (Fig. 3.2(b}), an

elemental area d5* of the deformed surface can be written as
] OR* OR*

dS™ n =—ax—d1x 89

where n* is the unit vector normal to the deformed surface element. Substituting Eqs.

dé (3.7)

(3.4) and (3.5) into Eq. (3.6), using the resulting expression for R* in Eq. (3.7), and
noting that 3“ =t and at = —n, the following expression for the elemental area of the

deformed surface is obtained.

mlg =

i i
ds* n* = |1+ 2% gv ds (3.8)

R 5% 1+R(ao+“’) (5 -v)
where dS = Rd# dz is the elemental area of the undeformed surface. For the hydrostatic

pressure p acting on the deformed surface A'B'C'D’, the external virtual work is given by

gwshell = // pdS* n*) e 6U (3.9)
where 6U = éu(z,0) 1+ 6v(z,0) t(8)+éw(z,8) 1(h) is the virtual (infinitesimal) displace-
ment vector, and §* is the area of the deformed reference surface. Upon substituting Eq.
(3.8) into Eq. (3.9) and carrying out the algebra, the following expression for the first
component of external virtual work is obtained:

Y L N e
Jdu

ou 1 ,0v 1 0ud
—”)(“%)] o+ [+ 21+ g (G )] - 35 o] w) as
(3.10)

in which S denotes the area of the undeformed reference surface. Equation (3.10) is
expanded and the terms are rearranged to obtain the following intermediate expression

for the first component of external virtual work:
sWaret —p// —(v + w?)( 1+——) (- Ou ;f);)wtw] - -1+ 5 )
L Lovgn ooy 1(@_@_@@)5v+1(@@_@@)w
R0z 060 08 0x R'0z 068 06 0z R0z 060 060z
1,5 9 du v dv w v 1 dw
- [ﬁ(l" 4+ w) + 111]6(

o) - Faetu— FolG) = ggbv s

(3.11)
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The terms containing derivatives of the virtual displacements in Eq. (3.11) are integrated
by parts, and then the terms are further rearranged to obtain the following expression for

the first component of external virtual work functional:

she Ju ou 1 0v Jvdw Ovow
! _p// g e G ulG g+ 3R(8r 55~ 95.32)"

or dx RO
()w du OJw du oudv Oudv
7 5~ 5 a0+ 3n (e — ap amyw+ u]ds

! A :
+P/{1[wg§—vg—f] 5U+[—w+%(u%—ura—r)] v

11 Ou Jv +6
+ g[vb—- — ud_x] 6w}_@d1
e
1 1 ow ov 1 Ju
b o [{[- - gp 040+ g5 0G5 - v )] eus g
-0
Jw 1 Jv du +i
LW) bv + ﬁ(u% — va—g) 6w}_l R d6
(3.12)

Expression for 6)’\/’;5‘3”

The stiffened shell has a periodic symmetry about its axis of revolution in the sense
that a rotation of the structure through integer multiplies of 20 brings the structure into
self-coincidence. That is, after a rotation through 20 about the axis of revolution the
stiffened shell is indistinguishable from its original position. Since the pressure load is
spatially uniform, the deformed structure exhibits the same periodic symmetry about the
axis of revolution. That is, a rotation of the deformed stiffened shell through an integer

multiple of 20 about the axis of revolution brings the deformed shell into self-coincidence.

The #-curves of the shell’s reference surface at x = £/, both in undeformed and
deformed states, serve to define the end diaphragms. In the undeformed state the -curves
are circles and the end diaphragms are circular areas of radius R. The diaphragms in the
deformed state are defined by the displacement of diametrical lines. Deformed images

of diametrical lines remain straight and pass through the axis of revolution. Consider a
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Axis of revolution

Fig. 3.3 Image of diameter POQ in the deformed state is
P'O'Q' with O' on the axis of revolution.

52



typical diameter PQ in the undeformed diaphragm as shown in Fig. 3.3. The material
point at P displaces to P’ and the material point Q displaces to Q'. The displacements
of particles P and Q are such that the vector P’-Q’ passes through the axis of revolution
at point O'. The deformed image of every diametrical is a straight line through the same
point on the axis of revolution. Thus, the point O’ on the axis of revolution is common to
every displaced diametrical line. The displacement of the center of the diaphragm from O

to O' is denoted by upi. The position vectors of points P’ and Q' relative to point O are
rp = up i+ vp t(8) + (R+ wp) A() (3.13)
rg = ug i—vg t(8) — (R + wg) n(6) (3.14)

in which unit vectors t(6) and h(#) are tangent and normal to the #-curve at P. (Note that
point Q is on the opposite end of the diameter so its tangent and normal are —t(8) and
—1(#), respectively.) The displacement of the center of the diaphragm is determined by
the fact that points P’, O', and Q' lie on a straight line. In vector notation this straight
line condition is

(1P —ug 1) X (rg —up 1) = O (3.15)
Substituting Eqs. (3.13) and (3.14) into (3.15), and carrying out the cross product results

in two independent conditions, which are

uQ — to R+wQ

= 3.16
uUp — Up R+ wp ( )
vQ R+ wg 5 1=
—_— - '3-1
vp R+ wp ( )
Solve Eq. (3.16) to get
u = fi up + fo ug (3.18)
where
R+ wQ .
- @ 3.19
fi 3R+ wp + vo (3.19)
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R+ wp

- 3.20
2R+ wp + wg ( )

fa

From Egs. (3.19) and (3.20), it can be seen that the sum fi + f» = 1. Equation (3.18)
shows that the displacement of the center of the diaphragm can be written in terms of the
displacements of material points on the opposite ends of the diameter of the undeformed
diaphragm. Since all deformed diametrical lines pass through O, displacement uo is
independent of 6.

Since displacement ug is independent of 8, the periodicity of the deformation pattern
of the 8-curve can be used to write ug in terms of the displacements of points on the 6-
curve in the first unit cell. Consider an odd number of unit cells, such as N, = 3 as shown
in Fig. 3.4(a), and an even number of unit cells, such as N, = 4 as shown in Fig. 3.4(b).
For the case of N, = 3, identify point P as C and point Q as F. A clockwise rotation
of 20 = 2r/3 brings diameter CF to position EB, and the conditions of self-coincidence
implies

wp =ug ,VF =vVB ,WF=WB (3.21)

where point B is at the stiffener (8 = 0) in the first unit. Using Eq. (3.18) the displacement

of the center of the diaphragm can be written as

uo = f1 w(©) + f2 u(0), N, odd (3.22)
with
f = R + w(0)
V= 9R + w(0) + w(0)
fr = R+ w(0O)

2R + w(©) + w(0)
in which displacements at C correspond to § = © and displacements at B correspond to
f = 0 in the first unit. For the case of N, = 4, diametrically oppposite points must have

the same displacement components due to periodicity. That is, a rotation of diameter CG
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(b)

Fig. 3.4 Stiffened shell of (a) three, and (b) four unit cells.
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in Fig. 3.4(b) through N, /2 multiples of 20, i.e., 7 radians, implies u¢c = ug, v¢ = VG,
and we = wg, with 8 = © for point C in the first unit. Identify points C and G with
P and Q, respectively, in Eq. (3.18) such that the periodicity condition gives ug = u(9).
Similar considerations for diameter BF connecting the two stringers leads to up = u(0).

Therefore, for even number of unit cells one gets
up = u(©) = u(0), N, even (3.23)

The condition for displacement ug for N, odd is more complex than for N, even.
Consider a point S in the circular sector OAB of the diaphragm at z = [ as shown

in Fig. 3.1. The polar coordinates of S are r and § with 0 < r < Rand -0 <8 < o.

The particle at S displaces to point S’ in the deformation. The position vector of point

S’ relative to point O is

r=(l,7,8) = r a(0) + u(l,r,0) (3.24)

in which r f(8) is the position vector of point S, and (l,r,8) is the displacement vector
of S. Since the deformed image of a diameter is a straight line, the displacement vector

for point S can be interpolated by

[u(l,6) § 4+ v(1,8) £(8) + w(l,8) BB + (1 = =)uo() § (3.25)

r

u(l,r,0) = 7

in which wuo(!) is the axial displacement of the center of the diaphragm at z = [, and
it is given by Eq. (3.22) if N, is odd and Eq. (3.23) if N, is even. At 7 = R the
displacement vector for the diaphragm coincides with displacement vector of the shell’s
reference surface at z = [. The virtual work of the pressure acting on the deformed
diaphragm O'A'B’ referenced to the undeformed diaphragm OAB is

—

© R
ar* or . » .
at r=I - //p (-50_ da X a,r dr):r:l OOu(l,r,B) (326)
-00

shell
sWSh
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Substituting Eqs. (3.24) and (3.25) into Eq. (3.26) results in the following expression for

the internal virtual work.

. O B\ fup + %[éﬁlu(q 6) — éuo] %gv Bﬁéw
Wed at o=t //p 1 7 2% LHa(G+w) RGE o)) rdrd
“00 ﬁ[u(l,e)—uo] % 1+% r=!

A similar procedure is used on the circular sector of the undeformed diaphragm at
x = —I. Note that the displacement of the center of the diaphragm at z = ~{ is uo(-/),
and it is given by either Eq. (3.22) or Eq. (3.23) as long as the displacements of the

§-curve at z = —[ are used in these formulas. The external virtual work of the hydrostatic

pressure on the deformed sector O"C'D" is
¢ 8 ] -
swiiet = —//p (%% df x %— dr)___, e6d(-1,r,9) (3.28)
-00

where [ is replaced by -/ in Eqgs. (3.24) and (3.25). The total external virtual work of the
pressure on the diaphragms is the sum of the virtual work of the pressure on each of them.
Expanding the determinate in Eq. (3.27) and performing integration with respect to polar
radius 7 (since r appears explicitly in the integrand), and following a similar procedure for
the virtual work done by the pressure acting on the end diaphragm O"C'D’ (Eq. (3.28)),

the second component of the external virtual work is written as

shell _ [ Lo oy, 1 Ov  Odwy vy 1. 1
W —P/{.R+2w+3(” tu)+ g (v ”69)+89] (Féut Gowo)
-0
1 7,0w ou
+§E_(Ta§—v)(u—uo)——é§(}2+w)] bv
11 Ou Ov H
+§E.055_ (u.—uo)(R+w+—@)] 6w}_l R do

(3.29)
The total external virtual work for the shell due to internal pressure can now be
obtained by substituting Eqs. (3.12) and (3.29) into Eq. (3.3). In this substitution process,
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the line integrals at edges @ = %! from Egs. (3.12) and (3.29) combine and simplify.
(Several terms combine to add to zero, and integration by parts in 6 are performed to
eliminate derivatives of the virtual displacements. Periodicity of the displacements at
§ = +0O result in vanishing of the boundary terms in the integration by parts.) After
these manipulations, the following expression for the total external virtual work for shell

results:

1 du Ou 1 0v 1 ,0vdw Ovow
ushell___ & — " ’2 htind el -z Rl it I
oW, 7’//5 [5p0" + w0+ g0+ el + 5550 * 37 (50 7 575"
I}
1 dwdu Owdu 1 ,Budv  Oudv 17 ov
+ ol - Gt s - et el o[ GGl
0

—v%—lq fu + [—w+ %(u%}- -ng)] ov + %[vg—z-u%] 5w}+ed$

Oov . u  ug 1 ov Jw
+é {p/[(R+%)(§+F)+ﬁ(w5§—v%) Uug

(3.30)
On the basis of periodicity of the shell’s displacements at § = £© edges, it can be shown
that the first of the line integrals in Eq. (3.30) vanishes, and the final result for the

external work functional for the shell under hydrostatic pressure is

Arshell _ y _1_ 2 2 @ v @ lgl_, _1_ Qg_aﬂ_%?ﬂ
Weri —p/ﬂ“’*zﬁ(” +et)1+ g0+ el + 5ae) 38 50 00 5 92"
1 ,0wdu Owdu 1 Oudv Oudv
(o - e (e s ~ sa ) 45

o
Oov_u U 1 v Jw
+ P/[(R+ %)(54'?)*‘@(“’55_”‘8—9) o
e
WL Y
_ [§+@(v +w )](u—uo) .

(3.31)
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3.3 STRINGER

For a symmetrical cross section, the internal virtual work statement for the stringer
is
!
sypsiringer /[Nrséfrs + Mysbrgs)de (3.32)

int

=

in which N, is the axial force in the stringer, My is the bending moment, €5 is the
extensional normal strain of the centroidal line, and x¢s is the change in curvature of the
centroidal line. Based on Euler-Bernoulli nonlinear beam theory, the strain-displacement

relations for stringer are
S

1 )
€rs = Us+ rz-(w' )* Kgs = — Wy (3.33)

in which the prime denotes an ordinary derivative with respect to z. Substituting Eq.

(3.33) into Eq. (3.32) results in the following expression for internal virtual work for the

stringer.
! 2
owigrnar = [ [y 60504 N O 65 — (] de (334)
-1
Hooke’s law for the stringer is
Nas = (BA)sens Mg = (EI)skgs (3.35)

34 RING

For a ring with symmetrical cross section, there is no out-of-plane bending and

torsion. Hence, the statement of internal virtual work for the ring is

nt

e
SWIinI = / [Nopbeor + Mzrérizr]Ro dO (3.36)
-0
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in which Ny, is the circumferential force, M, is the bending moment, €4r is the circum-
ferential normal strain of the reference arc, Kzr is the change in curvature of the reference
arc, and Rp is the radius of ring reference arc. Based on small strains and moderate

rotations, and the kinematic relations for the ring are

1 . 1
€or :Eg(vr + wr,) + §¢:2vr
1 -
Kpr :E’afbxr (3.37)

Drr :jzl_o'(vr — W)

in which the over-dot denotes an ordinary derivative with respect to 8. Substituting Eqs.
(3.37) into Eq. (3.306) results in the following expression for internal virtual work for the

ring:

[S]
6W-Ti"9 :/ {NGT (_1_’7'__ _l_awr) v, + ‘:Nﬁr + Alrr] 6(0UT)+ Ngr sw,

int Ry ‘Ro Ro 08 R RZ1IT 09T R e
EA 0 0 0 0 0 0 (3.38)
Ngr 1 Ow, vy ow, . Mg 0w,
— (= - — - é d
w7~ r) ae) T m Caer )f b
Hooke’s law for the ring is
Ng, = (EA)re€or Mz = (EDrEzr (3.39)

3.5 INCREMENTAL VIRTUAL WORK

The internal and external virtual work functionals obtained above contain terms
that are nonlinear in the displacements times virtual displacements of the first degree.
Newton's method is employed to solve the nonlinear equilibrium equations that result
from the principle of virtual work. It is convenient to derive the incremental virtual
work functionals for each structural element for implementation of the update procedure

in Newton's method. At fixed values of external loads, consider replacing the (actual)
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displacement field in the virtual work functional of an element by an approximation. Let
this approximation be a known displacement field plus a small incremental displacement
field. The approximatioh is substituted into the virtual work functional of the element and
the functional is linearized in the incremental displacement field. As an example of the
replacement procedure. the case of shell is explained in detail. Let the shell displacement
field

{8} — {d} +{ad) (3.10)

in which {d} on the right hand side of Eq. (3.40) is assumed to be known and {Ad} is
an unknown small increment. As a result of replacement illustrated by Eq. (3.40), the

strains and curvatures become
{e} — {&} +{a¢ (3.41)

{F} — {R} +{AR} (3.42)

in which {Aé} and {AR} are linear in {Ad}. The stress and moment resultants are

replaced as

{N} — {N} +{AN} (3.43)
(M} — {M} +{AM} (3.44)

in which {AN} and {AI\?I} are determined by the constitutive law (Eq. (2.69)) by using
incremental strains and curvatures; viz., {A€} and {A&}.

The virtual displacements are not incremented since they are any of a set of kine-
matically admissible (test) functions and it is only the (actual) displacements (in the space

of trial functions) that are being determined by iteration. Consequently,

6 (AF) = 0 (3.45)
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Substituting the replacements (Eqgs. (3.40) through (3.44)) in the virtual work functional
(Eq. (3.2) or (3.30)), and linearizing in the increments results in the incremental virtual
work functionals. The above procedure is repeated for the stiffeners as well to obtain

respective incremental virtual work functionals.

3.5.1 SHELL

The linearized incremental strains and curvatures for shell are obtained by following
the incremental procedure described above. Substituting Eq. (3.40) to (3.42) into Eqs.
(3.1). (2.10), (2.11), and (2.63) in conjunction with Eqgs. (2.16) and (2.17). results in the

following linearized incremental strains and curvatures for shell:

JAu Jw  O0Aw

Aegr = “674”('5;)( 5 ) (3.46)
1 0Av  Aw 1ow v 130Aw Av .
Beo=%% "R VR TR R R (3.47)

JAv 1 0Au dAw. 1 dw v ow. 13JdAw Av

Aygg = 220 4 2020 gawy w0y, 28y 22y 20 348
M=t e Vg 5 "B Y S v ~®) B
a*A

Afixr = —,—,,w (349)
ozx?
1 0°Aw 1 0Av -
Ahgg = —EW + Ez‘"‘(ﬁ' (3.50)
Aps ___Q_BQAw_i_lOAv 351
R26 = TR 5200 T R 0z (3.51)

Similarly following the replacement procedure explained above, from Eq. (3.2) the lin-

earized incremental internal virtual work for the shell is obtained as

78 N o NS Do
A)v.?hf“ //{A]Vzr ()U +AA1,95(0U)_ [A 00(_1_(?10 l)+él\_rﬂ()i

int R 6 R ‘Rd9 R R o2

Ngg lf)Au Av, N2, 0Aw ANS AMZ1,, Ov
Y R TR L }6 +[ New + —p ]‘S(%)
ANgs AMye1. dv AN 5 AMay . 0w
kit ik R“b“’"AM”é(gr?“ Afi”é(‘;oli
2A1\I *w Jw 1 Jw v 1 dAw
7 g [M“T“LANT"(R 5~ 1) Tl aeu
Av . 0Awy dw ANgeg , 1 0w v ANZ, Ow
— )t Ve ]‘5($) == 7 %98 R TR ox

N2, 0Aw  Ngg 1 0Aw  Av dw .
% o0r T R R 00 -] 45 } 43,
(3.52)
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and from Eq. (3.30), the linearized incremental external virtual work for the shell due to

internal pressure load is obtained as

6 A),vshell

// _1_8Av8_w 8Av8_w+@6Aw_8_véAw} au+[Aw
3R Wae' 80 9z Oz 06 88 Oz

v dAw JAv dw Jdu
—(UAU+1UAQU)+§E(A'I.U&6 l’—a—b—-f-'wa—e—A'L )]6(0'1))
1 JAw dv ow OAv Av ou
+ﬁ[” gz S tAYe TV ] (ao [R(H%)

v 0Au 1 (dAw@ ()Aw@_FQEE)Au_@E)Au)]é'
"R 9z T3k 9: 96 96 9z T 9z 98 98 oz )%
1 . Ow O0Au OAw Aw JAu
+3EMugg ~ v iy - awglaG + [ +3R( 9z
Jw du JAw ov w, JAu Ju, Aw
- S+ dug —uT )G + [ ) G+ (14 ) T
1 0Av 1 ,0Audv BAudv OudAv du 8A1v)J Sw

* 2 96 Y38 o 90 0 5: T a2 6 "8 9

1 Ju 0Av 8Au dvy . Ow 1 ov O0Au
+ﬁ[mao ~U5e TV e O ao]é(a HsR[A”d—a'“ oz
)
JAv ouy . Ow 1 0Av ow
tugy TAY (9:c]6(80)} ds”{ /ﬁ | (w55 = Mg
-0
ov aAw ov dw JAv u  wug
+Awgs —0=g ) + (v 2" Vag) At 5 3T )
Jv Au Ay Aw 1
5‘6(—3— + 'b_) - [T + E(’L’Al + wAw)](u — U())
+1
[3 + @(1 +wh))(Au - Aw)| R dG}_I

(3.53)

It may be noted that Eq. (3.53) leads to a symmetric load stiffness since constant pressure

acting on a fully enclosed volume is a conservative force system.

3.5.2 STRINGER

Following the incremental replacement procedure Eq. (3.33) results in the following

linearized incremental strains and curvatures for the stringer:

J0Aug ows . OAw,
+

50 T (a7 —5) (3.54)

A€, =
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(3.55)

Simularly, from Eq. (3.34) the linearized incremental internal virtual work for the stringer

is obtained as

l

S s s a 8
S AWSTTT) :/ AJ\“ 5(31)+ (ANstw—wLNn——aAw ) 6(==)
Oz oz oz or
4 (3.56)
a")
~ AMey 8] da

3.5.3 RING

The application of incremental replacement procedure to Eq. (3.37) results in the

following linearized incremental strains and curvatures for the ring:

1 8Av, Aw, 1 dw, v, 1 0Aw, Av,

T8 TR T\ Roan R\ ) B

R, 08 Ro

Aegr =

1 0Av, 1 9*Aw,

RZ 96 ~ R} 06° (3:58)

AKgr =

Similarly, from Eq. (3.38) the linearized incremental internal virtual work for the ring is

obtained as

e

A’\er vy 1 dw, Nor  Avy 1 0Aw,

A .rzng L 4 ]

W) / { Ry Ro " Ro 06 )+ Ry ( Ry Ry 06 )] bv
-0

or

AN, AMzy ov, ANy, ANg., 1 w, vy
P é 6 r D
+[ RO + R(‘i ] (88)+ Ro v +{ Ro (R() 69 Ro)
Ngr, 1 0Aw, Avr 3w,~ AM,,. . 0w,
- - 6 - ) ,
Ro \Re 09 Ro )] 650 TR )} Ro df
(3.59)

3.6 DISPLACEMENT CONTINUITY

For the symmetrical cross section stiffeners, the repeating unit is symmetric about

2- and @-axes, and the only non-zero displacements for the stiffeners are the axial and
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normal displacements. For a symmetrical cross section, there is no out-of-plane bending
and torsion of the ring. Thus, axial displacement of the points on the reference arc of the
ring, U,, in Eq. (2.53)V is zero. In addition the rotations about 6- and (-axes, ¢y, and
¢zr, in Egs. (2.54) and (2.55) for the circumferential and normal displacements of the
ring, are set to zero. Hence, for the symmetrical cross section stiffeners, the displacement
continuity constraints imposed between the shell and stringer at their interface are given
by Eqgs. (2.73) and (2.74), and the constraints imposed between the shell and ring at their
interface are given by Eqs. (2.77) and (2.81). Note that in Eq. (2.77) the twist rate 7, is
equal to zero for a symmetrical cross section ring.

The advantage of enforcing the displacement continuty constraints, as opposed to the
strain compatibility constraints (as was done by Wang and Hsu'®), between the discrete
elements is more evident in the nonlinear analysis. The displacement based continuity
constraints result in equations which are linear in displacement and rotations of the el-
ements (Eqs. (2.73), (2.77), etc.). On the other hand the strain based compatibility
constraints would yield nonlinear equations in terms of the displacements and rotations

of the structural elements (see e.g., Egs. (3.1), (3.33) and (3.37)).

3.7 AUGMENTED VIRTUAL WORK TERMS

Based on the discussion for the displacement continuity constraints in the foregoing

section, the augmented (or external) virtual work terms for the shell due to the interacting

loads are given by

!
swishell — / {)\“(x)[éu(x.O] - ;;-6¢T(x,0)] + /\zs(m)éw(z,())} dz

—1
© (3.60)

+ / {20n(0)[60(0,0) = £604(0.6)] + X.r(8)60(0.0)} (R~ 2)d6
“o
- Qféu(l,0) — du(—1,0)]
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Similarly, the augmented (or external) virtual work terms for the ring due to the inter-

acting loads are
©
W9 = — / {,\g,(o)[évr(ew €-60:0(0)] + Azr(f))éwr(ﬂ)} (1+ ;—”) Ro df  (3.61)
0
-0

The augmented (or external) virtual work for the stringer due to the interacting loads is

still given by Eq. (2.88). The variational form of the constraints in the nonlinear analysis

are
{

/[6’\xsgxs+6/\zsgzs] dr = 0

2

©

/ [6/\91'907' + 6/\zrgzr}(R0 + er) dd = 0 (3.62)
e

§Q{ [u(1,0) — u(=1,0)] = [us(l) - us(~1)]} = 0

66



CHAPTER 4
FOURIER APPROXIMATIONS AND SOLUTION PROCEDURE

4.1 INTRODUCTION

The structural model is periodic in the circumferential and longitudinal directions
both in geometry and in material properties. With respect to the applied internal pressure
load, which is assumed spatially uniform, the model is periodic in the circumferential
direction. For a closed-end pressurized shell. in which closure is mathematically presumed
to occur at * = Z£oco, there is an axial stretching that corresponds to a non-periodic
axial displacement field. However, for each equal length segment of the shell obtained
by sectioning it perpendicular to the z-axis, the total axial force is the same. Thus. the
elongation of each segment is the same. These periodic conditions and uniform axial
extension due to a closed-end pressure load permit definition of a structural repeating

unit or unit cell model as shown in Fig. 1.2.

The periodic nature of the repeating unit or unit cell model requires that the stress
and moment resultants, and the conjugate displacements and rotations for the discrete
elements are also periodic in nature so that the repeating units, when placed together,
form the complete stiffened cylindrical shell model. An analogy to this approach can be
a jigsaw puzzle with “fully interlocking™ identical pieces. This implies that the boundary
conditions for the repeating unit are periodic in nature. The periodicity of the forces and
displacements at the edges of the repeating unit (or in other words, the periodicity of
boundary conditions) is ensured by assuming a Fourier Series solution to the linear elastic
and nonlinear elastic response of the repeating unit. The Ritz method is utilized and the

principle of virtual work is applied separately to each structural element. Displacements
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are seperately assumed for the shell, stringer and ring. The periodic portions of the dis-
placements and rotations are represented by truncated Fourier Series having fundamental
periods in the stringer and ring spacing. The non-periodic portions of the displacements
due to axial stretching are represented by simple terms in z. The Fourier Series reflect
symmetry about the r-axis only for the repeating unit since the ring can be either sym-
metrical or asymmetrical in cross section. In this chapter the assumed Fourier Series
approximations for the actual, virtual and incremental (for nonlinear analysis only) dis-
placement fields, and the actual and virtual interacting line load intensities are presented.

The system of discrete equations is obtained and their solution procedure is outlined.

4.2 DISPLACEMENTS AND ROTATIONS APPROXIMATIONS

4.2.1 SHELL

For the shell, actual displacements of the middle surface (see Fig. 2.1) are repre-

sented as
T N M N
u(z,0) = (10 + Z ZulmnSzn (amz)Cos(B3,0) + Z ZUanCOS anmz)Cos(f,0)
m=1n=0 m=1n=1
(4.1)
M N M N
Z Z VimnCos(anz)Sin(B,0) + Z Z Vymndin(amz)Sin(8,6) (4.2)
m=0n=1 m=1n=1
M N M N
w(z,8) Z Z WimnCos{anz)Cos(8,0) + Z Z WoemnStn(amz)Cos(F,0), (4.3)
m=0n=0 m=1n=1
and rotations of the normal are
M N M N
$2(2.0)= D> Y brimnSin(amz)Cos(Br8) + > Y ¢ramnC0s(@mz)Cos(Ba0) (4.4)
m=1n=0 m=1n=1
M N M N
= Z ZqﬁmmnC'os(amz)Sin(ﬂnﬂ)-f- Z ZqﬁgomnSzn (amz)Sin(B,0) (4.5)
m=0n=1 m=1n=1
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in which ap, = 5% and 3, = % where m and n are non-negative integers. Coefficient
go in the axial displacement field of the shell represents elongation caused by either an
axial mechanical load or due to closed-end pressure vessel effects. Note that some terms
in the truncated Fourier Series of Eqs. (4.1-4.5) have been omitted. The coefficients of
the omitted terms are w200, U2m0, Y20ns Wm0, Pz200s Pz2mo, ald Gzo0n, In which m € Sy
and n € Sy where Sy = {1,2....,M} and Sy = {1,2,...,N}. The rationale for their
omission is discussed in Section 4.4.

The test space of the virtual displacements and rotations is the same space used for

actual displacements and rotations. The virtual displacements are represented as

o 6
bu(z,8) G{ ?7 burpoSin(apa), buypy Sin(a,z)Cos( 3,60 )6u2quOS(ap:r)Cos(/3q0)}

(4.6)

bv(z,0) € {Mlquin(ﬂqH),6v1pq003(apz)5in(ﬂq0),6'Lv2pq5in(a'px)5in(ﬂq€)} (4.7)

bw(z,0) € {5w100, dwipoCos(apz), 6wi0qC08(8,0), dwipaCos(apz)Cos(B46),
(4.8)

bwapeSin(a,r)Cos(B,0)},

and the virtual rotations of the normal are

bd(z,0) € {6d>rlp05in(apl’ ), 802195 tn(apz)Cos(5,6), (5<z5x2qu'os(ap:c)Cos(/3q0)}
(4.9)

bdg(z,0) € {6¢>910q5in(ﬁq ), 6091peC0s(apx)Sin(3,0), 6¢92pq5in(apx)5in(ﬁq0)} (4.10)

in which a, = ZF and g, = L5 where p € Sps and ¢ € Sn.
4.2.2 STRINGER
The actual displacements of the centroidal line of stringer (see Fig. 2.2) are

Cos(amz) (4.11)

||M§

T
us(z) = (h + Z Usim Stn(QmT)
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M
we(z) = Z Wsimdin{a,z) + Z wemCos(amT), (4.12)
m=1

m=1
and the rotation of the normal of the stringer about the #-axis is

M
Bos(z) = Z $oa1m Sin(amz) + Z $452m Cos(amz) (4.13)

m=1
where the coeffcients usg , W20 and @gsao are omitted. Coeflicient ¢ in the axial dis-
placement field of the stringer represents elongation caused by either an axial mechanical
load or due to closed-end pressure vessel effects.

The virtual displacements of the centroidal line of stringer are

dug(z) € 6u51p5m(ap:c) 6usopC'os(apx)} (4.14)

21
bdwy(z) € {6w51p5m(ap z), 6w32pCos(apx)} (4.15)

and the virtual rotation of the normal of the stringer about the #-axis is
6d)63 E {6(2)6511)5777( pl) 6(])952PC0Q(0 1‘)} (416)
where p € Sys.

4.2.3 RING

The actual displacements of the reference circle of the ring (see Fig. 2.3) are

N
=) urmCos(6,6) (4.17)
N
v, (8) = ) v Sin(Bab) (4.18)
n=1
AV
w,(8) = D wrnCos(Bad), (4.19)
n=0
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and rotations are

N
$2r(0) = D OrrnSin(3.6)

n=1

N
¢0r(0) = Z @67'71005([3729)
n=1

N
qbzr(a) = Z @zrnfhn(lgna)

n=1

where the coeficients u,¢9 and @4, are omitted.

The virtual displacements of the reference circle of the ring are
6ur(8) € {burqCos(B,8)}
6v,(8) € {8vrgSin(B3,6)}
bw,(8) € {6urr0,5quCos(/3q0)}.
and the virtual rotations are
§62r(8) € {8argSin(5,0)}
6@gr(6) € {80arqCos(B,6)}
60:1(0) € {86:r,5in(3,0)}

where ¢ € Sn.

4.3 INTERACTING LOAD APPROXIMATIONS

4.3.1 SHELL-STRINGER

(4.20)

(4.21)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

The distributions of the actual interacting line loads hetween the shell and stringer

(see Fig. 1.3), or Lagrange multipliers, are taken as

M M
Azs(T) = Z AzsimSin(an,z) + Z ArsamCos(am)
m=1 m=1

!

(4.29)



M M
As(z) = Z ArsimSin(apmz) + Z AzsomCos(amT) (4.30)
m=1

m=1

where the coefficients Azp56 and A.ps0 are omitted.

The test space of the virtual interacting loads is the same space used for actual in-
teracting load approximations. The shell-stringer virtual interacting loads are represented
as

6Azs(2) € {8Azs1pSin(@pT), bAzs2pCo8(ap2)} (4.31)

6X25(2) € {8X251pSin(apa), 6A252pC08(0px)}, p € Snr (4.32)

4.3.2 SHELL-RING

The distributions of actual interacting line loads between the shell and ring (see Fig.

1.3) are taken as

M) =

Aer(8) = S Aern C05(Bnb) (4.33)
n=1
AY

/\9,.(6) = /\GrnSin(ﬂng) (434)
n=1
N

A(0) = AornCos(3,6) (4.35)
n=0
A7

Agr(8) = ) AgrnCos(5nb) (4.36)
n=1
N

/\zr(g) = Z AzrnSin(B,0) (4.37)
n=l

where the coefficients A;0 and Agro are omitted.

The test space of the virtual interacting loads is the same space used for the actual
interacting load approximations. The distribution of the shell-ring virtual interacting
loads are taken as

6Xzr(60) € {8AzrqCos(B,0)} (4.38)
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6X6r(0) € {6XgrgSin(3,0)} (4.39)

6A2r(0) € {6Azr0.6A:rqCos(3,0)} (4.10)
6Ag-(8) € {6AgrqCos(3,8)} (4.41)
6A:r(0) € {6A;rqSin(B,8)}, g€ SN (4.42)

4.4 TERMS OMITTED IN THE FOURIER SERIES

Terms omitted in the truncated Fourier Series for the displacements, rotations, and
interacting loads are determined from the rigid body equilibrium conditions for the ring
and stringer, and from the displacement continuity conditions between the shell and stiff-
eners. The external virtual work for the stringer and ring must vanish for any possible

rigid body motions of these elements.

4.4.1 RIGID BODY EQUILIBRIUM FOR RING

Consider the ring in its entirety, that is, as made up of an integer number of repeating
units around its circumference. Let ¢ be the global coordinate such that 0 < ¢ < 27 (see
Fig. 3.4). The global coordinate ¢ is related to the local coordinate # in the ** repeating
unit by ¢ = ¢; + 6. ¢ = 1,.... N, where N, is the total number of repeating units and
¢; = (1 — 1)?—,’:. Rigid body motion of the ring is considered as a translation of its center
point O to O' plus an infinitesimal rotation about point O’. The displacement of a generic

point P in the ring is then given by
URigid = UTransIation + URotation (443)

The ring is referred to a fixed cartesian system (z,y,z) with unit basis vectors i, j, and

k as shown in Fig. 4.1. Also it is convenient to use cylindrical coordinates (2,¢. Ry + ()
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Fig. 4.1 Cylindrical coordinates (x, ¢, Rg+() of a typical
point P in the ring.
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with unit vectors i, t(¢), and A(&) as shown in Fig. 4.1. The translational displacement
of point O is given by U Transiation = U+ ij + U.k. For infinitesimal rotations, the
rotation can be represehted as a vector 0 = Q.1+ Qyj + 0.k. The displacement of P

relative to O due to rotation is
ﬁRotation =QxP (4.44)

where P =z 1+ (Ro + () 5’171¢j +{(Ro + () Coso k. Thus, the total displacement vector

in cartesian components becomes

U higia = [Us + (Ro + C)2,C0s6 — (Ro + ()Q.5ine] i
+[U, — (Ro + ¢)0.Cosp + 2Q.] ) (4.45)

+[U. + (Ro + ().5in¢ — 2Q,] k

In Chapter 2, the displacement vector of a generic point P is represented in cylindrical

coordinates as
U Ring = U280, O + Vilz, 0. OUB) + Wila, ¢.()A(0) (4.406)
where the cylindrical coordinate components, U,, V. and W,, are given by Egs. (2.53) to

(2.55). Note that the local polar angle 6 has been replaced by the global polar angle ¢.

The direction cosines between the unit vectors in cartesian and cylindrical coordinates are

| i i k
1 1 0 0
t 0 Coso -Sing
n 0 Sing Coso

Thus, ﬁmmd in cartesian components, Eq. (4.45), can be transformed to cylindrical
components, and then like components can be equated between it and Eq. (4.46). As a

result of this process the displacements of the reference arc of the ring become

ur =Uz + Ro(yCosgp — 2,5ing)
vr =UyCosg — U,Sing — RS, (4.47)
wr =U,5ine + U.Coso,
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and the (infintesimal) rotations become

dor =, Cosp — Q. 8ing (4.48)
@zr =y Sing + Q:Cos¢
From the last two of Eqs. (4.48), the rate of twist 7, as given by Eq. (2.57) vanishes. It
may be noted that the strains and changes in the curvatures in Eqgs. (2.57) also vanish
identically for all values of U, Uy, U, Oz, £y, and 2.
Substitution of displacements and rotations from Egs. (4.47) and (4.48) above into

the external virtual work for the ring, Eq. (2.89), results in

sWhigd = _[F, 6U, + FpbUy + ForbUs + CorbQp + Cyr8Qy + C216Q] (4.49)

where R
For= [ der (Ro+ ) do (4.50)
0
Fyr = / [Nor Cosp + Azr Sing) (Ro + €,) do (4.51)
0
F.p = | [Aer Cosg = Ny, Sind] (Ro + €r) do (4.52)
0
Cor = //\Gr (Ro + fr):2 do (4.53)
0
Cyr = | {[Roder + Asr)Cos0 + Az Sind j(Ro + €,) do (4.54)
0
C. = / { = [Roder + g, )Sing + AorCoso} Ro + €,) dé (4.55)
0

Equation (4.49) represents the external virtual work for the complete ring, and is obtained

by replacing the local polar angle 8 in Eq. (2.89) by the global polar angle ¢. Since the
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external virtual work for the ring in Eq. (4.49) must vanish for any possible rigid body
motions, the components of the force and moment resultants defined in Eqs. (4.50-4.55)
should vanish individually; i.e.. Fpr = Fy, = Fop = Czr = Cyp = C.r = 0. Consider the
force resultant in y-direction for the complete ring as given by Eq. (4.51). Substituting

¢ = ¢; + f and writing the integral as a sum over all units, one gets

Ny
Fyr = Y [FCos¢; + FrSingi] (1.56)
i=1
in which o
= / [/\M Cost + M., 5'7170] (Ro +¢€,) df
e
©
F, = / [/\:r Cos — Mg, Sin()] (Ro +€,) df
-0
In the 7** unit the force component F; is tangent, and component F), is normal. to the

ring at ¢ = ¢;. Since the magnitudes of the components F; and F;, are the same for each

repeating unit, Eq. (4.56) can be rewritten as

N, N,
F, = th C'osoi-f-FnZ Sing; (4.57)
=1 i=1

For the complete ring Zi\__'] Cosp; = Z;\zl Sing; = 0. Hence. the total force resultant F,
is equal to zero. Similarly, it can be shown that the force component F., in Eq. (4.52),
moment component 'y, (Eq. (4.54)). moment component C'., {Eq. (4.55)). all vanish
for a complete ring. Thus. the rigid body motions that lead to non-trivial equilibrium
conditions are the force and moment resultants in the a-direction. These resultants must

vanish for each repeating unit. Hence. the non-trivial z-direction equilibrium equations

are
]
/ Arr(0) (Ro +€-) df =0 (4.58)
and
©
/ Aer(8) (Ro-}—r'f,«)‘2 dé =0 (4.59)



4.4.2 RIGID BODY EQUILIBRIUM FOR STRINGER

For the stringer the rigid body motions are spatially uniform z-direction and =
direction displacements. (A rigid body rotation of the stringer in the 2-: plane is not
considered since this motion would violate longitudinal periodicity of the repeating units.)
Vanishing of the external virtual work for an arbitrary rigid body displacement of the

stringer in the axial direction leads to the z-direction equilibrium equation
!
/ Ars(z)dz =0 {4.60)
-1

Similarly, the equilibrium equation for a rigid body displacement of the stringer in the

=direction is

/ Azs(z)de =0 (4.61)

4.4.3 TERMS OMITTED

Equilibrium Eqgs. (4.58), (4.60) and (4.61) imply that coeflicients
/\1‘1‘0 =0 /\xs”O =0 /\:520 =0 (4.()2)

in the Fourier Series for the interacting loads, and these conditions have been taken into
account in Egs. (4.33). (4.29). and (4.30). The sine series for Ay, given in Lq. (4.34)
satisfies the equilibrium condition given in Iq. (4.59).

Consider the variational form of the constraints, Egs. (2.90) and (2.91), for the

spatially uniform components of the virtual interacting line loads. These equations are

A’
t t
U00 = 5%300 + nz_:l(uzon - 5%20n) — (U520 + €5Pus520) |6 Azs20 = 0 (4.63)
Af
[Z Wion — Ws20[6Azs20 = 0 (4.64)
n=0
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M
t t -
w200 — =®@z200 + Z(Uzmo ~ =®ramo) — (Uro + €,06r0)|6Arr0 = 0 (4.65)
2 = 2

Since these equations are satisfied on the basis that dAz500 = 0, éA:00 = 0 and
6Mero = 0, consistent with Eq. (4.62), the bracketed terms in Egs. (4.63) to (4.65)
do not necessarily vanish. The implication that these bracketed terms in Egs. (4.63) to
(4:65) do not vanish is that displacement continuity conditions are not satisfied pointwise.
Pointwise continuity can he achieved by taking each Fourier coefficient appearing in the
bracketed terms of Eqgs. (4.63) to (4.65) to be individually zero. Fourier Series given in
Eqgs. (4.1), (4.4), {4.11), (4.13), (4.17), and (4.21) reflect this choice. Moreover, Fourier
coefficients uagg, Useo, and unq represent rigid body displacement in the axial direction
for the shell, stringer, and ring. respectively, and setting them to zero can be justified
on the basis that rigid body displacement does not contribute to the deformation of the
structural elements. Since Fourier coefficient wysg represents rigid body displacement of
the stringer in the =direction, it would seem that it should be set to zero as well. However.
to maintain continuity between the stringer and the shell in the x-direction, the condition
N
D wion — ws20 = 0 (4.66)
n=0
is imposed to determine wg g after obtaining the solution for the displacement components
that deform the shell; i.e., Fourier coefficients wyg,, n = 1,..., N, are taken to be non-zero
independent degrees of freedom since the stringer coefficient wyyo is not a part of the
solution vector.
Finally. consider the constraint equation associated with éAgro. the spatially uniform
component of the interacting moment intensity, which is omitted in the series given by

Eq. (4.36). Derived from Eq. (2.91). this constraint equation is

Af
[ S amtwamo + 0ur0]6her0 = 0 (4.67)

m=1
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The constant component of the twist, @40, is equated to zero from the considerations
associated with Eq. (4.65). Consequently, a non-zero value of the uniform component of
the interacting moment -intensity, Agro # 0. would not contribute to the equilibrium of the
ring, since Agro and ¢,y are conjugate variables in the external work for the ring (refer to
Eq. (2.89)). Since ¢gro = 0. it is necessary that Ago = 0 to achieve consistent conditions
for the torsional and out-of-plane bending equilibrium of the ring. With éAg,0 = 0 in Eq.
(4.67), the bracketed term does not necessarily vanish, and as a result pointwise rotational
continuity betwen the shell and the ring is not assured. Pointwise rotational continuity is
achieved if the coefficients wamg = 0, m = 1,..., M, as is done in the Fourier Series for the

normal displacement of the shell given by Eq. (4.3).

4.5 DISCRETE EQUATIONS AND THEIR SOLUTION

The Ritz method is used to obtain the system of discrete equations. The principle
of virtual work is applied separately to the shell, stringer, and ring. The virtual work
functionals are augmented by Lagrange multipliers to enforce kinematic constraints be-
tween the structural components of the repeating unit. Discrete equations for the linear
analvses are solved directly. For the nonlinear analysis an iterative solution procedure is

emploved.

4.5.1 LINEAR ANALYSES

The approximations in Eqs. (4.1) through (4.28) for the actual and virtual displace-
ments, and Eqgs. (4.29) through (4.42) for the actual and virtual interacting loads are
substituted into the virtual work functionals for each structural element, and also substi-
tuted into the variational form of displacement continuity constraints. Then integration
over the space is performed. This process results in a 10A/ N + 13Af 4 14N 4+ 6 system of

equations for the transverse shear deformation model and 6AM/ N + 10M + 11N + 6 system
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of equations for the classical model, governing the displacements and the interacting loads.

These governing equations are of the form

rhy 0 0 Bu Bz Bzl [ @shen ) 1

0 I\'gg 0 Bg] 0 ng TAl:.str 0

0 0 K33 0 ng 0 22rin.g _ 0 .o
BL, B, 0 o0 0 0 |YJde [T)O (4.6%)
BL 0 BL o0 0 0 Aring 0
LB, BL 0o 0 0 0. Q 0

in which submatrices L3y, Ia» and L33 are the stiffness matrices for the shell, stringer.
and ring. respectively, obtained from their respective internal virtual work statements.
The submatrices B;;,7,7 = 1.2,3, in Eq. (4.68) are determined from the external (or
augmented) virtual work terms involving the interacting loads, and the constraint Egs.
(2.73), (2.74), (2.77), (2.78), (2.81), (2.82), (2.84) and (2.86). The vector on the right-
hand-side of Eq. (4.68) is the force vector, determined from the external virtual work
terms involving pressure. The constraint equations correspond to the last three rows of
the partitioned matrix in Eq. (4.68). The non-zero elements of the matrices A’;;, B;; and
F11 for the transverse shear deformation and classical models are given in Appendices A
and B, respectively. The symbolic manipulation software Mathematica is used to derive
these submatrices. The discrete vectors of unknown variables (i.e. shell and stiffeners’
displacements, and shell-stiffener interacting loads) in Eq. (4.68) for the transverse shear

deformation model and classical model are given in the following two sub-subsections.

4.5.1.1 TRANSVERSE SHEAR DEFORMATION MODEL

The discrete displacement vector for the shell is the (10MN + 3M + 3N 4+ 2) x ]

vector

(4.69)
in which subvectors are

A , T -
o = [0, w100, V1015 W101, D61015 ) VION , WION , P810N | (4.70)

81



Uy = [ulm()w Wim0, Pzim0s U1m1s ¥2m1s Vimls V2mls Wiml, Wami v Ozimis Pr2mils
Po1m1y P62mls -+ UIm N+ L2 N s VImN» V2m N> Wim N, W2m N @rimN- (4.71)

, T
@ram N> Po1mN» ¢02m/\']

where m=1...., M
The (6M + 1) x 1 discrete displacement vector for the stringer and (6N + 1) x 1 vector

for the ring are
Ustr = [q1 Us11- Us212 Wsl14 W21+ Dhs11, POs21s s UsTAL Us2AT
(4.72)
T
Wel M Ws2 M Dos1M > Pos2M
. , ‘ ; ‘ ‘ T -
Uring = [ers Urls Urls Wrly @arls @orls @zrls cees UrN s Up N Wr N+ @or N QorN (D:rN] (4.73)
in which the term wyo for the stringer has been omitted as discussed in reference to Eq.

(4.66). The 4M x 1 discrete interacting loads vector for the shell-stringer interface and

(5N 4 1) x 1 vector for the shell-ring interface are

T -
Astr = [’\xsll B ’\:rsQl ) /\zsll ) /\:s’.!l-‘ ey /\rslhls /\1'321\1«, Azs1Ms ’\:3‘2}\1] (4'4)

/\ring = [’\:r()w /\rrl . /\87‘] . /\zrl’ A67‘1 ) A:rl 3oy ArrN- ’\GTN, ’\era A(‘erw A:v'N

4.5.1.2 CLASSICAL MODEL

The discrete displacement vector for the shell is the (6M N + 2M + 2N + 2) x 1
vector
tanen = [0 7. .aly)” (4.76)
in which subvectors are
o = [g0-w100. V101, w101 --~~,1)10Naw10N]T
Uy = [UlmOawlmO-U]ml-u‘lmlwvlmlaU2m1-w1mlaw2mla---vUImN~u‘.}mNs
VImN-»V2mN: WimN w?mN]

82



where m = 1..... M
The (4M + 1) x 1 discrete displacement vector for the stringer and (4N + 1) x 1 vector

for the ring are

T -
Ustr = [(]1-, Us11+Us21« W11 W15 o UsI AL Us2A« WAL u"s‘l/\l] (4.79)

)7 (1.80)

Gring = [Wr0s Url. Urly Wrl; @61 ooy Ur N, Ur N WeN L DN
The 4 M x 1 discrete interacting loads vector for the shell-stringer interface and (58 +1)x 1
vector for the shell-ring interface are the same as for the shear deformation model and are
given by Eqs. {4.74) and (4.75).

The stiffness submatrices h'y;. h'ao and A3y in Eq. (4.68) are symmetric. From
Appendices A and B, it may be noted that the elements of the shell stiffness matrix A'y;
are sparsely populated because of the orthogonality of the Fourier Series. The structure
of L'y is block diagonal; i.e.. nonzero elements occur for index p of the test function equal
to index m of the trial function. and index ¢ of the test function equal to index n of the
trial function. See Fig. 4.2. Furthermore, there is a decoupling of the elements obtained
from the displacement and rotation approximations using single and double Fourier series.
This special nature of the shell stiffness matrix h'y; makes it possible to invert the matrix
in blocks (i.e., as blocks of 2 x 2 or 6 x 6 submatrices. etc.) instead of inverting the
matrix as a whole (i.e.. as (GAIN +2A + 2N +2) x (GMN +2M 4+ 2N +2) matrix). This
results in considerable saving of the CPU time. As an example consider the linear analysis
with Fourier Series approximations truncated at & harmonics in z- and #-directions. i.e..
M = N = 8 This results in 418 x 418 L'y; matrix for the classical structural model. Tt
takes 20 seconds of CPU time on IBM 3090 machine when the shell stifflness matrix h'q;
is inverted in blocks compared to 71 seconds of CPU time on the same computer when
the matrix is inverted as a whole.
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Equation (4.68) is first solved for the displacements in terms of interacting loads.
then this solution is substituted into the constraint equations to determine the interacting
loads. Thus, the total solution is obtained. An LU decomposition procedure is used to

invert the blocks in the stiffness submatrices, A'y1. A2 and A'a3.

4.5.2 NONLINEAR ANALYSIS

As stated earlier, the nonlinear analysis is performed for the repeating unit with
symmetrical section stiffeners only. On the basis of symmetry of the repeating unit about
z- and #-axes, the displacements and interacting loads approximations are modified for the
nonlinear analysis. In Eqs. (4.1) through (4.3) for shell displacements. in Egs. (4.11) and
(4.12) for stringer displacements, in Eqs. (4.17) and (4.20) to (4.22) for ring displacements.
in Egs. (4.29) and (4.30) for the shell-stringer interacting loads, and in Egs. (4.33), (4.36)
and (4.37) for the shell-ring interacting loads, the coefficients 2,0, Vamn. Wamas Ugamm .
Wslms Urns Qrrns Pbrns Corns Arsdms Azsims Arrn. Ngrn, alld A, all are set to zero where
m=1,2,....M and n = 1,2,.... N. Note that the corresponding coefficients in the virtual
displacements and interacting load approximations (Eqs. (4.6-4.8), (4.14), (4.15), (4.23).
(4.26-4.28), (4.31). (4.32). (4.38), (4.41), and (4.42)) for the shell and stiffeners are also
set to zero. These modified approximations for the displacements are substituted into the
actual and the incremental virtual work functionals derived for each structural element
in Section 3.5. The incremental displacements have the same functional forms as the
actual displacements, with the amplitudes denoted by the prefix A. The integration over
space is performed after substitution for the Lagrange multipliers, or interacting loads,
and after substitution for each virtual displacement. This process results in a 3MN +
6AM 4+ 6N + 6 system of equations governing the increment in displacements (indicated
by a A preceding the displacement subvector symbol) and the Lagrange multipliers. The
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governing equations are of the form

AN T, [ Rsnett(Ushett; P
Aﬂstr _Rstr(_ﬁstr)
v A{tr _Rr(ﬂr)
[C] oty 5 (4.81)
Ar 0
Q L 0 J
where the system matrix [C] is given by
[ Wy @shen) — pL(Ushen) 0 0 By Biz Bis]
0 Ky (itser) 0 By 0 Bag
q 0 0 K3(ir) 0 By O .
[} = BT, B, 0 0 0 0 (4.52)
B, 0 - B 0 0 0
! BE, B, 0 0 0 0]

Submatrices A1, A2 and A3z are the tangent stiffness matrices for the shell. stringer,
and ring. respectively, that are functions of the displacements. These matrices are ob-
tained from their respective incremental internal virtual work statements. The matrix L
results from the incremental external virtual work functional for the hydrostatic pressure.
Eq. (3.53). and is a function of displacements as well. The submatrices B;;,,7 = 1.2,3.
in Eq. (4.82) are determined from the external virtual work terms involving the Lagrange
multipliers, and the constraint Eqs. (2.73), (2.74), (2.77) and (2.81). These B;; submatri-
ces are not functions of the displacements. The vector on the right-hand-side of Eq. (4.81)
is the residual force vector. The subvectors of Rgnenr, Rstrr and R, of the residual force
vector are obtained from the internal and external virtual work (due to internal pressure.
Eq. (3.30)) statements of the respective structural element. The constraint equations
correspond to the last three rows of the partitioned matrix in Eq. (4.82). The elements of
submatrices A’;; and L are given in Appendix C, and the elements of subvectors Rgjei.
Ry and R, are given in Appendix D. The elements of submatrices B;; are obtained from
those given in Appendix B for the classical model by neglecting the elements corresponding

to the coefficients set to zero based on the symmetry of the stiffeners.

86



The discrete displacement vector for the shell in Eq. (4.81) is the (3M N + 2AMf +
2N + 2) x 1 vector

- ~T ~T ~T17T
Gghen = [tig  0f 1o ilhg] (4.83)

in which the subvectors are
N T
Uo =[(10-w00-?101-U101,----’L’01\*sw0AN']
(4.84)

Uy = [UmO Wm0 Um1«Uml« Wmlsooos U N U N s me]
where m = 1...., M. In Eq. (4.81) the (2M + 1) x 1 discrete displacement vector for the

stringer and (2N 4 1) x 1 vector for the ring are

. T
Ustr = [(/1 sUst Wstyeeoa UshSs ’UJ_;;\{]
(4.85)
Uy = [wrﬂa Urly Wrls ey Ur N, wrN]
The discrete vectors of the Lagrange multipliers are
3 T
Astr = [/\zsl s Azsly eees Azsh s /\zs)\l]
(4.86)

;\r = [/\21'0- Aori s Azrly oo Agri, /\:TN] T

The iterative method of solution is based on Eq. (4.81). At a fixed value of the
pressure p, a sequence of displacements is defined by adding an increment to the previous
member of the sequence to determine the next member in the sequence. For a good
initial displacement estimate, the sequence converges to the displacement solution of the
nonlinear problem. The initial estimate used here is the converged solution at the last
pressure load step. The update procedure to determine the increment is based on the
modified Newton method. In the modified Newton method the matrices Ky, K9y and
K33, and L in Eq. (4.82) are only computed for the initial displacement in the sequence,
and are not updated for each new member in the sequence. As shown in Eqgs. (4.81) and
(4.82) the constraints are applied to the increments in the displacements. If the initial

estimate of the displacement satisfies these constraint equations and the increments satisfy
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these same equations, then the final displacement in the sequence will satisfy these same

equations.

The convergence éf the solution at a fixed load step implies that the equilibrium
of the repeating unit is attained at that load step. Thus, at the converged solution the
residual defined by éWepy — 6Winy = 84T R, and the change in displacements Au should be
sufficientlv small. A reasonable criterion for convergence test can be to minimize AaT R.
where the virtual displacements are replaced by the (admissible) incremental displacement
vector. An error function defined as A4T R is used to check the convergence against a
preset tolerance. i.e., A4TR < TOL at the converged solution. In the present analysis.
this error function is formulated as

A@TR = ABS[AdlculRoner = Buhar = Buh, = B15Q]|
+ ABS| A, [~ Ror = Bnawr - B (4.87)
+ ABS[Adl[-R, - By |

The stiffness submatrices (A1; — pL). K22 and A33 in Eq. (4.82) are symmetric.
From Appendix C. it may be noted that the elements of the stiffness matrix for the shell.
I'y;. are densely populated inspite of orthogonality of the series. Furthermore, in the
nonlinear analysis there is a coupling of the elements obtained from the displacement
approximations using single and double Fourier Series. Thus. the shell stiffness matrix
(K41 — pL) cannot be inverted in the blocks as is done in the case of linear analysis.
Instead. the matrix is now required to be inverted as a whole (i.e., as (3MN + 20 +
AN +2)x (3MN +2M + 2N +2) matrix), and hence. is computationallv more expensive.
Equation (4.81) is first solved for the displacements in terms of interacting loads, then this
solution is substituted into the constraint equations to determine the interacting loads.
Thus. the total solution is obtained. An LU decomposition procedure is used to invert
the stiffness submatrices.
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4.5.3 VERIFICATION OF NUMERICAL SOLUTION

Separate FORTRAN computer programs are written for the linear and nonlinear
analyses. In each program several checks on the numerical results are coded to establish
necessary conditions for the solution accuracy. These are

1. The solution for the Fourier coeflicients for the displacements and interacting
loads are substituted into the left-hand side of the Eq. (4.68) to compute the force vector.
This computed force vector is compared to the input force vector to check the accuracy
of the numerical solution to Eq. (4.68).

2. From free body diagrams of the shell, stringer, and ring, overall equilibrium
conditions are established for each. These overall equilibrium conditions are evaluated
using the numerical solution to check if thev are satisfied.

3. Pointwise equilibrium equations, or the Euler equations for the functionals. are
not necessarily satisfied by the Ritz method. However, for the stringer and ring in the
present analysis, the Ritz solution is an exact solution of the Euler equations as well.
Consequently. the Euler equations for the stiffeners are programmed and evaluated at
many points using the numerical solution to assess accuracy.

4. For the nonlinear analyvsis the accuracy of the numerical results at each load step
is ensured by checking the error function defined by Eq. (4.87) against a preset tolerance.
At the converged solution the left-hand and right-hand sides of Eq. (4.81) are individually
equal to zero, and this is verified by the error function given by Eq. (4.87). Furthermore,
for the converged solution at final load step. the final displacements in the sequence are
substituted into the displacement constraint equations at the shell-stiffener interface to
verifv them.

All numerical results presented in the following chapters satisfy these checks on

numerical accuracy.
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CHAPTER 3
A UNIT CELL MODEL WITH SYMMETRIC STIFFENERS

5.1 INTRODUCTION

Numerical results are obtained for a linear elastic and a geometrically nonlinear
elastic response of the unit cell model subjected to internal pressure. The stiffeners are
assumed to have symmetrical cross sections. The purpose of the linear elastic analysis is
two fold: First, the results obtained are used to validate the structural model employed in
the analysis by comparing to the results presented by Wang and Hsu'®. Second, these re-
sults for the linear elastic response are subsequently used to compare with a geometrically
nonlinear elastic response. Data used in the example are representative of the dimensions

and cabin pressure of a large transport fuselage structure.

5.2 NUMERICAL DATA

Numerical data for the example are R = 117.5 in., 2/ = 20 in., 2RO = 5.8 in.,
t = 0.075 in., Ry = 113.72 in., ¢5 = 1.10 in., e, = 3.78 in., (FA), = 0.592 x 107 1b.,
(EI), = 0.269 x 108 Ib-in., (EA), = 0.404 x 107 1b., (EI)s = 0.142 X 10% 1b-in?., and
with the shell wall stiffness matrices given by

0.664 0.221 0
A= |0221 0577 0 | x10°/in. B =0
0 0 0.221

262 159 4.33
D = | 159 210 4.33| lbin.
433 4.33 159

This data was originally used in an example by Wang and Hsu!®. In their analysis,

Wang and Hsu neglected the contribution of bend-twist coupling terms D¢ and Dqg in
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the bending stiffness matrix of shell. This implies that the shell wall is assumed to be
specially orthotropic. The present analysis is also based on the same assumption. All the
results presented for this example are for an internal pressure p = 10 psi. The Fourier
Series are truncated at M = N = 16 (unless otherwise indicated), and this results in 966
degrees of freedom (or equations to be solved) in the structural model. Since 20 = 2.83°,
the shell in this example is shallow and the DMV shell theory should be adequate. It is
found that the numerical results using Sanders theory with the rotation about the normal

neglected and the numerical results using DMV theory were essentially the same.

5.3 VALIDATION OF STRUCTURAL MODEL

The results obtained from the linear elastic analysis are compared with those ob-
tained by Wang and Hsu!® to validate the structural model. They presented the results for
the normal displacement and strains of shell, which are limited to linear analvsis. Wang
and Hsu included the interacting loads in their analysis but did not present results for
them. The distributions of the shell’s normal displacement w in the circumferential and
axial directions are shown in Figs. 5.1 and 5.2, respectively, for the linear analysis. The
w-distributions shown for the linear analysis compare very well with those presented by
Wang and Hsu (see Fig. 5in Ref. [19]). The distributions of the circumferential and axial
normal strains on the inner and outer surfaces of the shell from the linear analysis are
shown in Figs. 5.3 and 5.4, respectively. The values of the ¢, and eg¢ strains compare
very well to those presented by Wang and Hsu (see Figs. 6 and 7 in Ref. [19]), except in
one respect. The exception is that the circumferential distribution of the axial strain €z
at v = —/ (Fig. 5.4) does not exhibit a decrease in value as the stringer is approached.
Wang and Hsu's results, however, show ¢,, (Fig. 6 in Ref. [19]) decreasing to nearly
zero as the stringer is approached along the circumference. Several changes to the shell

displacement approximations were attempted, but any of these attempts could not give
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Fig. 5.1 Circumferential distribution of the shell’s normal
displacement from the linear analysis at 10 psi.
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Fig. 5.2 Axial distribution of the shell’s normal
displacement from the linear analysis at 10 psi.
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Fig. 5.3 Circumferential normal strain on the inner and
outer shell surfaces from the linear analysis at 10 psi.
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Fig. 5.4 Axial normal strain on the inner and outer
shell surfaces from the linear analysis at 10 psi.
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a solution showing a decrease in the axial normal strain at the stringer. As a last resort
Wang and Hsu's solution was programmed. However, as shown in Figs. 5.1 to 5.4, the
solution thus obtained only reconfirmed the results obtained from the current analysis.

and did not show a decrease in the axial normal strain at the stringer.

5.4 LINEAR RESPONSE VERSUS NONLINEAR RESPONSE

5.4.1 PILLOWING

Circumferential distributions of the normal displacement w for the shell are shown
in Fig. 5.1 for the linear analysis and in Fig. 5.5 for the nonlinear analysis. Axial
distributions of the normal displacement for the shell are shown in Fig. 5.2 for the linear
analysis and in Fig. 5.6 for the nonlinear analysis. For reference, the normal displacement
for the unstiffened shell, or membrane reponse, is w = 0.2287 inches for the linear analysis.
and w = 0.2290 inches for the nonlinear analysis. The presence of the stiffeners reduces
the normal displacements from these membrane values as is shown in these figures. The
pillowing effect is much more pronounced for the linear analysis (Figs. 5.1 and 5.2) than
for the nonlinear analysis (Figs. 5.5 and 5.6). The largest normal displacement occurs
midway between the stiffeners. and this value for the linear analysis is 0.1796 inches
while it is 0.1541 inches when geometric nonlinearity is included. The minimum normal
displacement occurs at the stiffener intersection, and its value is 0.1392 inches in the
linear analysis and 0.1490 inches in the nonlinear analysis. Normal displacements along
the stiffeners vary only slightly from their values at the intersection for both analyses.
Thus. including geometric nonlinearity in the analysis increases the minimum value of the
normal displacement of the shell and decreases its maximum value, which is an indication

that pillowing is reduced in the nonlinear response.
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Fig. 5.5 Circumferential distribution of the shell’s normal
displacement from the nonlinear analysis at 10 psi.
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Fig. 5.6 Axial distribution of the shell’s normal
displacement from the nonlinear analysis at 10 psi.
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The circumferential and axial normal strain distributions on the inner and outer
surfaces of the shell also show the reduced pillowing effect in the nonlinear analysis. See
Figs. 5.7 and 5.8. The circumferential bending strain (difference in €44 between the inner
and outer surfaces) is maximum at the stringer midway between the rings (Figs. 5.3
and 5.7), and axial bending strain is maximum at the ring midway between the stringers
(Figs. 5.4 and 5.8). These maximum bending strains are substantially reduced in the

geometrically nonlinear response.

5.4.2 BENDING BOUNDARY LAYER

Compare the circumferential normal strain distributions midway between the ring
stiffeners (z = %!) from the linear analysis (Fig. 5.3) to the nonlinear analysis (Fig. 5.7).
The bending strain magnitudes, which are differences between the outer and inner normal
strain values, are less in the nonlinear response than in the linear response. In the linear
analysis the shell exhibits bending over its entire circumference. In nonlinear analysis the
shell behaves like a membrane in the central portion with bending confined to a narrow
zone, or boundary layer, adjacent to the stringer. Since the bending is confined to a narrow
zone near the stringer, the strain gradients are larger in the nonlinear response than in the
linear response. These observations are confirmed by plotting the circumferential bending
moment Mgy and the circumferential transverse shear resultant Q4 versus 8/0 at z = -/
as is done in Figs. 5.9 and 5.10, respectively. The bending moment magnitude is less in the
nonlinear analysis compared to the linear analysis. Moreover, for the nonlinear analysis
the bending moment is significantly different from zero only in the boundary layer. This
is similar to the distributions of the circumferential strains. By the shell equilibrium,
the transverse shear resultant Q¢ is proportional to the derivative (gradient) of bending
moment, OMgg/08. Because the bending moment gradients, or the strain gradients, in

the nonlinear analysis are larger than in the linear analysis, the transverse shear resultant
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has a larger magnitude in the nonlinear analysis than in the linear analysis as is shown
in Fig. 5.10. A larger transverse shear resultant in the nonlinear analysis means that the
interlaminar shear stresées are larger in the nonlinear analysis than in the linear analysis.
Thus, while pillowing is reduced in the nonlinear response, the confinement of bending
to a boundary layer near the stringer results in larger interlaminar shear stresses near
the stringer in the nonlinear response than in the linear response. These features of the

nonlinear response are consistent with the results found by Boitnott2°.

5.4.3 INTERACTING LOAD DISTRIBUTIONS

The distributions of the interacting line loads between the ring and the shell are
shown in Figs. 5.11 and 5.12. The distributions of the circumferential component, Agr, are
antisymmetric about the origin, and Ag, has reduced magnitudes due to the geometrically
nonlinear effect. As shown in Fig. 5.12, the distributions of the normal component of the
interacting load, A, are symmetric about the origin, attain extremum at the origin, and
exhibit severe gradients at the origin. The negative value of A, at the origin indicates
that the action of the ring is to pull the shell radially inward against the action of the
pressure to expand the shell outward. The peak normal load intensity is changed from

-1,674 1b/in. in the linear analysis to -1,045 Ib/in. in the nonlinear analysis.

The distributions of the interacting line loads between the stringer and the shell are
shown in Figs. 5.13 and 5.14. The distributions of the tangential component, Az;, are
antisymmetric about the origin and Azs has reduced magnitudes due to the geometrically
nonlinear effect as shown in Fig. 5.13. The distributions of the normal component, A.s,
are symmetric about the origin as shown in Fig. 5.14. The normal component A, is
maximum at the origin and has a steep gradient there. The maximum value of normal

component is reduced from 484.7 Ib/in. in the linear analysis to 320.3 1b/in. in the
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magnitude of the interacting normal load intensity at the stiffener intersection as A and
N increase. The total normal load intensity acting on the shell at the stiffener intersection
is denoted by A,, where Az = A0 (0) + A.5(0). This value is -1,190 1b/in. from the linear
analysis and is changed to -725 lb/in. in the nonlinear analysis for M = N = 16. A
normalized value of A, is plotted versus increasing Af and N values, with M = N, in Fig.
5.17 for the linear analysis, and in Fig. 5.18 for the nonlinear analysis. The normalization
factor, A:maz, is simply the value of A for the largest values of M and N considered in
each analysis. As shown in figures, A. is steadily increasing with an increasing number of
terms in the truncated Fourier Series. Consequently, the series for A. does not exhibit,
in the range of M and N considered, a convergent behavior. In spite of the fact that the
normal load intensity at the stiffener intersection is exhibiting singular behavior, the total
radial resultant load at the stiffener intersection converges rapidly with increasing values
of M and N as shown in Figs. 5.17 and 5.18. The total radial resultant plotted in these

figures is defined by
©
F. = / [Aer Cost = Aoy Sinb] (Ro + ey db, (5.1)
-0

since the resultant from the stringer vanishes by Eq. (4.61). (A more general approach to
the resultants at the stiffener intersection is discussed in subsection 6.3.2.) From the linear
analysis F, = —357.5 lbs, and from the nonlinear analysis F. = —382.8 lbs. Since the
applied radial load due to internal pressure acting on the repeating unit is 1,160 lbs (= 10
psix20in.x5.8 in.), the ring resists about 30.8% of this applied load in the linear response,
and this percentage is increased to 33% in the nonlinear response. The remaining portion

of the applied radial pressure load is carried by the shell.
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Fig. 5.18 Normal load intensity A, and total normal load F, at the stiffener inter-
section for increasing number of harmonics in the nonlinear analysis at 10 psi.
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of geometric nonlinearity into the analysis. The axial force carried by the stringer due
to the closed-end pressure vessel effect is increased in the nonlinear analysis with respect
to its value in the linear analysis. Also, the circumferential force carried by the ring is
increased in the nonlinear analysis with respect to its value in the linear analysis. Thus.
the stiffeners resist an increased portion of the internal pressure load. accompanied by a

commensurate decrease in the load carried by the shell, when geometric nonlinearity is

included into the analysis.
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474.937 256.071 45.074 0

p - |256.071 615.194 54.003 —0.47 x 107° b in
T | 45.074 54.003 276.965 -0.75 x 10~°% ‘
0 —-047x10"° —-0.75x10"° 0.75x10°

The elements of the transverse shear stiffness matrix in Eq. (2.34) are
Ay = Ass = 0.69264 x 10° Ib/in., Ay = 0

The bending and stretching-bending coupling submatrices for classical model are given by
474.937 256.071 0
D = [256.071 615.194 0 Ibin. B =0
0 0 276.965

The extensional stiffness submatrix A is essentially the same for classical theory and the
transverse shear deformation theory.

Cross sections of the stiffeners and their dimensions are shown in Fig. 6.1. The
stringer is an inverted hat section laminated from twelve plies of AS4/938 graphite-epoxy

tow prepreg with a [£45,02,90.%15,90,0,,£45]; lay up and total thickness of 0.0888 in.

The stiffnesses in Hooke’s law for the stringer in Eq. (2.52) are
(EA)s = 0.6675 x 1071b, (EI), = 0.2141 x 10716 in.2, (GA), = 0.843 x 105/b

The frame, or ring, is a 2-D braided graphite-epoxy J-section consisting of 0° and 90°
tows. The wall thickness is 0.141 inches, and the elastic modulii are assumed to be
Ey = 7.76 x 10°1b/in2, By = 8.02x 10%1b/in.?, G1a = Gi3 = Gz = 1.99 x 10816 /in.%, and
vig = 0.187. Using the ring material properties and the cross-sectional dimensions, the
stiffness matrix for the ring in Eq. (2.58) is computed from the computer code developed

by Woodson®®. The non-zero stiffnesses are
EA=009088 x 10°b, El,, =3.915x 10716 in.2, EI.. = 0.1867 x 107/b in.?

EI,=0.2993 x 107lb in.2, EI,, = —1.322 x 10716 in.®, GJ = 0.1346 x 10°Ib in.2
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474.937 256.071 45.074 0

D - 256.071 615.194 54.003 ~0.47 x 10~° b i
T | 45.074 54.003 276.965 -0.75 x 10~° n
0 —0.47 x 107% —0.75x 1075 0.75x 1073

The elements of the transverse shear stiffness matrix in Eq. (2.34) are
Ay = Ass = 0.69264 x 10° Ib/in., Ays = 0

The bending and stretching-bending coupling submatrices for classical model are given by
474.937 256.071 0
D = |[256.071 615.194 0 lbin. B =0
0 0 276.965

The extensional stiffness submatrix A is essentially the same for classical theory and the
transverse shear deformation theory.

Cross sections of the stiffeners and their dimensions are shown in Fig. 6.1. The
stringer is an inverted hat section laminated from twelve plies of AS4/938 graphite-epoxy

tow prepreg with a [£45,02,90,+15,90,0,, £45]7 lay up and total thickness of 0.0888 in.

The stiffnesses in Hooke’s law for the stringer in Eq. (2.52) are
(EA), = 0.6675 x 107lb, (EI), = 0.2141 x 107(b in.?, (GA), = 0.843 x 10810

The frame, or ring, is a 2-D braided graphite-epoxy J-section consisting of 0° and 90°
tows. The wall thickness is 0.141 inches, and the elastic modulii are assumed to be
Ey = 7.76 x 105{b/in.2, Ey = 8.02x 108b/in.?, G12 = G13 = Gaz = 1.99 x 10°lb/in.?, and
via = 0.187. Using the ring material properties and the cross-sectional dimensions, the
stiffness matrix for the ring in Eq. (2.58) is computed from the computer code developed

by Woodson®9. The non-zero stiffnesses are
EA = 0.9088 x 10710, El.; =3.915x 107l in.2, EI,, = 0.1867 x 1071b in.?

EI., = 02993 x 107b in.2, El.. = -1322x 107lbin>, GJ =0.1346 x 10°1b in.?
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El,, =1.705x 1071 in.t, EI,. = —0.1865 x 10%/b in.3
GAze = GA.g = 0.2396 x 107 b

All the results presented are for an internal pressure p = 10 psi, and the Fourier Series
are truncated at twenty-four terms in the 2- and é-directions (M = N = 24). Based on
M = N = 24, the transverse shear deformation model consists of a total of 6414 degress

of freedom, and classical model consists of 3966 degress of freedom.

6.3 INFLUENCE OF AN ASYMMETRICAL SECTION RING

6.3.1 INTERACTING LOAD DISTRIBUTIONS

The distributions of the interacting line load intensities between the stiffeners and
the shell are shown in Figs. 6.2 through 6.8. The effects of transverse shear deformations
and of warping deformation of the ring’s cross section due to torsion on the magnitudes
of the interacting line loads are summarized in Table 6.1. For the component A,; tangent
to the stringer (Fig. 6.2), there are only small differences in the distributions as predicted
by the four structural models. However, the peak value of the component normal to the
stringer, A,;, is reduced in the transverse shear deformation models with respect to its
peak value in the classical models (Fig. 6.3 and Table 6.1).

The distributions of axial force intensity, A.,, between the ring and shell predicted
by the classical and shear deformation models with warping are nearly the same (Fig.
6.4). However, the distributions of this force intensity predicted by the classical and shear
deformation models without warping have significant differences. Thus, this interacting
load intensity is more sensitive to the inclusion or exclusion of warping of the ring cross
section into the structural model. As shown in Fig. 6.5, the differences in the results for

circum{erential force intensity, Ay,. between the ring and shell from the four models are
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the shell are shown in Figs. 6.2 through 6.8. The effects of transverse shear deformations
and of warping deformation of the ring’s cross section due to torsion on the magnitudes
of the interacting line loads are summarized in Table 6.1. For the component Ars tangent
to the stringer (Fig. 6.2), there are only small differences in the distributions as predicted
by the four structural models. However, the peak value of the component normal to the
stringer, As, is reduced in the transverse shear deformation models with respect to its
peak value in the classical models (Fig. 6.3 and Table 6.1).

The distributions of axial force intensity, Az, between the ring and shell predicted
by the classical and shear deformation models with warping are nearly the same (Fig.
6.4). However, the distributions of this force intensity predicted by the classical and shear
deformation models without warping have significant differences. Thus, this interacting
load intensity is more sensitive to the inclusion or exclusion of warping of the ring cross
section into the structural model. As shown in Fig. 6.5, the differences in the results for

circumferential force intensity, Agr, between the ring and shell from the four models are
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small, except in the vicinity of the stiffener intersection where the effects of including the
transverse shear deformation into the models are manifested. However, the differences in
Agr OCCUr Over one wave length of the highest frequency i.e., A8/0 = 2/24. Differences
occuring over the shortest wavelength may not be significant; more terms in the Fourier
series are required to verify this. The distributions of the normal force intensitv. A.,.
between the ring and shell predicted by the four models are essentially the same (Fig.
6.6). The distributions of the circumferential moment component, Ay,. predicted by the
classical models have higher magnitudes as compared to shear deformation models (Fig.
6.7 and Table 6.1). Also note the change in sign of Ay, distributions in the vicinity of
the joint as a result of inclusion of warping into the models. The classical theory predicts
much larger magnitudes of normal moment component, A.,, compared to the transverse
shear deformation theory for the models in which warping is included (Fig. 6.8 and Table
6.1). However, the reverse is true for the structural models with no warping. Also. there is
a change in sign in the distributions of A., for classical models with and without warping
effects.

The distribution of the normal component of the traction across the width of the
attachment flange of the ring is represented by line force intensity A., and line moment
intensity Agr. The values of A, are nearly the same in the classical and transverse shear
deformation models (Fig. 6.6), but magnitudes of Ay, are substantially decreased in the
transverse shear deformation models with respect to the classical models (Fig. 6.7). Thus,
the asymmetry of the normal traction across the flange width of the ring is decreased in
the transverse shear deformation models with respect to the classical models.

The distribution of the circumferential component of the traction across the width of
the attachment flange of the ring is represented by line force intensity Ag, and line moment
intensity A.,. The values of Ay, are nearly the same in the classical and transverse shear

126



small, except in the vicinity of the stiffener intersection where the effects of including the
transverse shear deformation into the models are manifested. However, the differences in
A, occur over one wave length of the highest frequency i.e., A@/© = 2/24. Differences
occuring over the shortest wavelength may not be significant; more terms in the Fourier
series are required to verify this. The distributions of the normal force intensity, Asr
between the ring and shell predicted by the four models are essentially the same (Fig.
6.6). The distributions of the circumferential moment component, Agr, predicted by the
classical models have higher magnitudes as compared to shear deformation models (Fig.
6.7 and Table 6.1). Also note the change in sign of Ag, distributions in the vicinity of
the joint as a result of inclusion of warping into the models. The classical theory predicts
much larger magnitudes of normal moment component, A.., compared to the transverse
shear deformation theory for the models in which warping is included (Fig. 6.8 and Table
6.1). However, the reverse is true for the structural models with no warping. Also, there is
a change in sign in the distributions of A, for classical models with and without warping
effects.

The distribution of the normal component of the traction across the width of the
attachment flange of the ring is represented by line force intensity A, and line moment
intensity Ag,. The values of A, are nearly the same in the classical and transverse shear
deformation models (Fig. 6.6), but magnitudes of Ay, are substantially decreased in the
transverse shear deformation models with respect to the classical models (Fig. 6.7). Thus,
the asymmetry of the normal traction across the flange width of the ring is decreased in

the transverse shear deformation models with respect to the classical models.

The distribution of the circumferential component of the traction across the width of
the attachment flange of the ring is represented by line force intensity Ag, and line moment

intensity A... The values of Ay, are nearly the same in the classical and transverse shear

126

AT

AL Rl [ SR
EREREINS (T P07



A, (Ib infin)

Shear deform. theory

--------- Classical theory

— - - Shear deform. theory w/o warping
— ---- Classical theory w/o warping

20.0

Lie ) ]

‘.: E'Jlffji
LIRSV

; o :‘.;": /

t AR

AN

10.0

A,, (b in/in)
o
o

-10.0 -

-20.0 -
100.0
F

500

-50.0 | C
-100.0 |

-150.0 + ,

-200.0 n L i : [ L

Fig. 6.7 Ring-shell tangential moment intensity in circumferential
direction at 10 psi.

. *128



A,, (b infin)

A, (Ib in/in)

Shear deform. theory

--------- Classical theory

—_ - . Shear deform. theory w/o warping
— ...- Classical theory w/o warping

20.0

10.0

-10.0

200 L
100.0

50.0 - Ly

-50.0 | ]

-100.0

-150.0

-200.0 — PR T S T T
-1 -0.5 0 0.5 1

Fig. 6.7 Ring-shell tangential moment intensity in circumferential
direction at 10 psi.

128

PRECEDING PAGE BLANK NOT FILMED



deformation models (Fig. 6.5). However, the magnitude of A., is substantially increased
in the transverse shear deformation model with respect to the classical model with warping
excluded, and is substa-ntially decreased in the transverse shear deformation model with
respect to the classical model with warping included (Fig. 6.8). Thus. the asymmetry
of the circumferential traction across the flange width of the ring is increased in the
transverse shear deformation model with respect to the classical model without warping.
and is decreased in the transverse shear deformation model with respect to the classical
model with warping.

The inclusion of transverse shear deformation and warping of ring's cross section
into the analyses influences the distributions and magnitudes of interacting line load com-
ponents A.s, Azr. Agr, Agr.and A,,. The distributions of interacting line load components
Azs and A., remain essentially the same. The cause of sensitivity to transverse shear de-
formations is two-fold: First, the tangential displacements of the shell along the contact
lines are de-coupled from the out-of-plane rotations of the reference surface of the shell.
and for the stiffeners the longitudinal displacements along the contact lines are de-coupled
from the rotations of the longitudinal reference axes. Second, in the transverse shear
deformation model, the torsional rotation of the ring at the shell-stringer-ring joint is de-
coupled from the in-plane bending rotation of the stringer at the joint, thereby allowing
for increased joint flexibility. In the classical model, the torsional rotation of the ring at
the joint is constrained to be the same as the bending rotation of the stringer (see Fig.
6.9). The values of these joint rotations for the four structural models are given in Table
G.2. Notice from Table 6.2 that the sense of the rotation changes if warping is included.
and that the transverse shear deformation results in a torsional rotation of the ring that

is about twice as much as the bending rotation of the stringer.
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deformation models (Fig. 6.5). However, the magnitude of A, is substantially increased
in the transverse shear deformation model with respect to the classical model with warping
excluded, and is substantially decreased in the transverse shear deformation model with
respect to the classical model with warping included (Fig. 6.8). Thus, the asymmetry
of the circumferential traction across the flange width of the ring is increased in the
transverse shear deformation model with respect to the classical model without warping,
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formations is two-fold: First, the tangential displacements of the shell along the contact
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deformation model, the torsional rotation of the ring at the shell-stringer-ring joint is de-
coupled from the in-plane bending rotation of the stringer at the joint, thereby allowing
for increased joint flexibility. In the classical model, the torsional rotation of the ring at
the joint is constrained to be the same as the bending rotation of the stringer (see Fig.
6.9). The values of these joint rotations for the four structural models are given in Table
6.2. Notice from Table 6.2 that the sense of the rotation changes if warping is included,
and that the transverse shear deformation results in a torsional rotation of the ring that

is about twice as much as the bending rotation of the stringer.



Table 6.2 Rotations About The Circumferential Axis At The Stiffener Intersection.

Rotations in 10”3 radians

Description of the Rotation of

the Structural Component Classical Theory Transverse Shear Theory

No Warping Warping No Warping Warping
Shell normal ¢ _(0, 0) -2.56 2.58 -1.06 2.65
Ring twist ¢, (0) -2.56 2.58 -2.67 3.64
Stringer normal ¢, (0) -2.56 2.58 -0.29 1.85
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Table 6.2 Rotations About The Circumferential Axis At The Stiffener Intersection.

Rotations in 1073 radians

Dfszr;ﬁi?u(;;mgo;?::::t of Classical Theory Transverse Shear Theory
No Warping Warping No Warping Warping
Shell normal ¢, (0, 0) -2.56 2.58 -1.06 2.65
Ring twist ¢, (0) -2.56 2.58 -2.67 3.64
Stringer normal ¢, (0) -2.56 2.58 -0.29 1.85
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Fig. 6.10.Components of the resultant of the interacting line load
intensities acting on the inside wall of the shell at the origin.
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Fig. 6.10.Components of the resultant of the interacting line load
intensities acting on the inside wall of the shell at the origin.
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Table 6.3 Resultants At Stiffener Intersection.

Classical Theory

Transverse Shear Theory

Components of the

Resultant No Warping Warping No Warping Warping
Cg from stringer, - 1.1696 - 0.0921 -0.2953 -0.7797
Ib-in.
Cp from ring, Ib-in. 1.627 5.645 1.363 6.0192
Cy total, 1b-in. 0.457 5.5526 1.0676 5.2396
F, 1b. - 564.06 - 564.56 -562.27 - 563.15
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asymmetric about the origin. Only small differences are predicted by the four structural
models in the distribution of 17,

The distributions of the circumferential force and in-plane bending moment in the
ring are shown in Fig. 6.13. The differences in these distributions predicted by the four
models are very small.- The distributions of the in-plane shear force, 1%,, in the ring
predicted by the four structural models have negligible differences, as shown in Fig. 6.14.
The out-of-plane bending moment M., and torque 7, in the ring are more sensitive to
the change in models as shown Fig. 6.15. The distributions of the out-of-plane bending
moment are symmetric about the origin, and their magnitudes predicted by the models
with warping included are substantially larger as compared to their magnitudes predicted
by the models without warping. The distributions of total torque. T, (= Ty, — A.IW/RO),
are antisymmetric about the origin. As shown in Fig. 6.15. the torque has reduced
magnitudes in the transverse shear deformation model compared to the classical model
when warping is included. The torque predicted by the models without warping is St.
Venant’s torque T}, and this is negligible as shown in Fig. 6.15. The distributions of out-
of-plane shear force, 17,, in the ring are shown in Fig. 6.16, and these distributions are
antisymmetric about the origin. The magnitudes of V., predicted by the transverse shear
deformation model are larger compared to the classical model when warping is included.
However the reverse is true for the V,, distributions without warping. The distributions
for My, M.,, T, and V. shown in Figs. 6.11, 6.15 and 6.16, respectively, indicate that
these stiffener actions are sensitive to both transverse shear deformations and warping

deformations.

6.3.5 SHELL RESPONSE

The distribution of the normal displacement along 2-curve midway between the

stringers (f = —0), and along the f#-curve midway between the rings (x = —[), are
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asymmetric about the origin. Only small differences are predicted by the four structural
models in the distribution of V.

The distributions of the circumferential force and in-plane bending moment in the
ring are shown in Fig. 6.13. The differences in these distributions predicted by the four
models are very small. The distributions of the in-plane shear force, V., in the ring
predicted by the four structural models have negligible differences, as shown in Fig. 6.14.
The out-of-plane bending moment M., and torque T, in the ring are more sensitive to
the change in models as shown Fig. 6.15. The distributions of the out-of-plane bending
moment are symmetric about the origin, and their magnitudes predicted by the models
with warping included are substantially larger as compared to their magnitudes predicted
by the models without warping. The distributions of total torque, T, (= Tsr — M./ Ro),
are antisymmetric about the origin. As shown in Fig. 6.15, the torque has reduced
magnitudes in the transverse shear deformation model compared to the classical model
when warping is included. The torque predicted by the models without warping is St.
Venant’s torque Ty, and this is negligible as shown in Fig. 6.15. The distributions of out-
of-plane shear force, Vs, in the ring are shown in Fig. 6.16, and these distributions are
antisymmetric about the origin. The magnitudes of Vy, predicted by the transverse shear
deformation model are larger compared to the classical model when warping is included.
However the reverse is true for the V,, distributions without warping. The distributions
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shown in Fig. 6.17. As depicted in this figure, there is a negligible difference between
the results from the transverse shear deformation model and classical model (warping of
the ring is included in both models). Also, there is negligible difference in the axial and
circumferential normal strain distributions between the two models as shown in Figs. 6.18
and 6.19. Thus, the normal displacement and in-plane normal strains for the shell are not
significantly influenced by the inclusion of either transverse shear deformations or warping
deformation of the ring into the structural models, in part because the shell is very thin

for the example studied (R/t = 1268).

6.4 A RING WITH SYMMETRICAL CROSS SECTION

As a benchmark for comparing the transverse shear deformation model with the
classical model, analyses were performed for a ring with symmetric cross section. In this
case the changes made to the numerical example under discussion are to set the bending-
coupling stiffeness EI., the out-of-plane bending-to-warping coupling stiffness Ef.;, and
the contour warping function parameter wp of the ring, all to zero. Consequently, the
-axis. as well as the z-axis, are axes of symmetry for the repeating unit in terms of
geometry, load, and material properties. Symmetry about the #-axis implies there is no
out-of-plane bending and torsion of the ring; i.e., ur(0) = ¢or(8) = D-r(0) = Apr(0) =
Agr(8) = A.(08) =0 for —O < § < ©. Thus, for the symmetrical section stiffeners only
the interacting line load components tangent and normal to the stiffeners are non-zero.
Since there is no torsion, warping of the ring cross section does not play any role in the
analyses.

The distributions of the tangential interacting load intensity between the shell and
ring are shown in Fig. 6.20. The differences in the results from the two models are small
except in the vicinity of the stiffener intersection. The peak magnitude of Ag, in the

transverse shear deformation model is smaller than the peak value for Mg, in the classical
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model (50.8 1b/in versus 64.5 lb/in.). However, this difference occurs over one wave
length of the highest harmonic retained in the analysis, and may not be significant. The
distributions of the tangential and normal interacting load intensities between the shell
and stringer, and the normal load intensity between the shell and ring are not significantly
different in the two models.

For a symmetrical cross section ring, in Eqgs. (6.1) through (6.6) F, = Fy = Cr =
Cy = C. = 0. The only non-zero component of the force resultant is the radial force F7.
The values of F, coméuted from the classical and transverse shear deformation models

are -563.72 Ib. and -561.89 1b., respectively.

6.5 SUMMARY OF RESULTS

The asymmetrical section ring complicated the analysis of the unit cell, since sym-
metry about the plane of the ring is lost. Out-of-plane bending and torsion of the ring
occur as well as a rotation of the shell-stringer-ring joint about the circumferential axis.
Iuclusion of transverse shear deformations, and warping deformation of the ring’s cross
section due to torsion, into the mathematical model significantly influenced several aspects
of the response.

The sense of the rotations of the structural glements at the joint is changed with the
inclusion of warping deformation in the ring, and the twist rotation of the ring at the joint
increases by 40% with the inclusion of transverse shear deformation, as is shown in Table
6.2. That is, joint flexibility increases since element rotations at the joint are de-coupled
by using transverse shear deformation models.

The interacting loads that are strongly affected by the structural modeling are those
components associated with the asymmetric response. These are the axial force intensity

Arr, the normal moment intensity A.r, and the tangential moment intensity Ag,, between
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the ring and shell. At the joint the magnitude of A, is increased by the inclusion of
warping and reduced by the inclusion of transverse shear (Fig. 6.4). The normal moment
intensity A, is a measure of the asymmetry in the distribution of the circumferential
traction across the width of the ring’s attachment flange. The sense of A,, is changed
when both transverse shear and warping are included, and its magnitudes are reduced
by the transverse shear effect (Fig. 6.8). However, the magnitude of the resultant of
the circumferential traction across the flange width of the ring, as measured by the line
load intensity Ag,, is only moderately affected by the changes in the structural models
(Fig. 6.5). The tangential moment intensity Ag, is a measure of the asymmetry in the
distribution of the normal traction across the width of the ring’s attachment flange. At the
joint, the sense of Ay, is changed by the inclusion of warping deformation and additionally
its magnitude is reduced by the inclusion of transverse shear deformation (Fig. 6.7).
However, the magnitude of the resultant of the normal traction across the flange width,
as measured by the line load intensity A,,, is essentially unaffected by changes in the
structural models (Fig. 6.6).

The distributions of the normal actions between the shell and stiffeners (A, A.., and
Agr) all show significant magnitudes only in the vicinity of the joint, with much smaller
magnitudes away from the joint. In fact, they all appear to exhibit singular behavior at the
joint, but only finite maguitudes are represented by the truncated series approximations.
The distributions of the actions tangent to the stiffeners (Azs, Asr, and A..), on the other
hand, have small magnitudes in the vicinity of the joint and larger magnitudes away from
the joint. These tangential actions do not exhibit singular behavior. (These results are
similar to those found for the symmetric stiffeners problem discussed in Chapter 5.)

In spite of the singular behavior of the line load intensities associated with the normal
actions, the resultant of these distributions resolved at the joint converge relatively quickly
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with the number of terms retained in the series approximations. The resultant consists
of a radial force F. and a moment Cy about the circumeferential axis. F. represents the
action of the stiffeners to pull the shell radially inward against the pressure load, and
Cp is primarily due to asymmetry in the actions between the ring and shell. Force F is
essentially unaffected by the structural modeling (Table 6.3). and its magnitude for the
example studied is about 17% of the total pressure load carried by the unit cell. The
remaining pressure load is carried by the shell itself. The moment Cy is very sensitive to
the structural modeling, in particular to the effect of warping as shown in Table 6.3. This
moment (s vanishes for a completely symmetric problem.

The out-of-plane bending moment and torque in the ring are very sensitive to the
structural modeling, as might be expected. The magnitudes of the both the out-of-plane
bending moment and torque increase with the inclusion of warping and transverse shear
into the mathematical model (Fig. 6.15). However, the shell’s normal displacement and
strains are insensitive to the changes in the structural models for the very thin shell

(R/t = 1268) used in the numerical example.
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CHAPTER 7
CONCLUDING REMARKS

7.1 SUMMARY

Structural analyses are developed to determine the linear elastic and geometrically
nonlinear elastic response of an internally pressurized, orthogonally stiffened cylindrical
shell. The structural configuration is of a long circular cylindrical shell stiffened on the
inside by a regular arrangement of identical stringers and identical rings. Periodicity of
this configuration permits the analysis of a unit cell model consisting of a portion of the
shell wall centered over one stringer-ring joint; i.e., deformation of a structural unit cell
determines the deformation of the entire stiffened shell. See Fig. 1.1. The stringer-ring-
shell joint is modeled in an idealized manner; the stiffeners are mathematically permitted
to pass through one another without contact, but do interact indirectly through their
mutual contact with the shell at the joint. The stiffeners are modeled as discrete beams.
The stringer is assumed to have a symmetrical cross section and the ring either a symmetric

or an asymmetric open section.

The formulations presented for the linear elastic response include the effect of trans-
verse shear deformations and the effect of warping of the ring’s cross section due to torsion.
These effects are important when the ring has an asymmetrical cross section, because the
loss of symmetry in the problem results in torsion of the ring, as well as out-of-plane
bending, and a concomitant rotation of the joint at the stiffener intersection about the
circumferential axis. Restraint of cross-sectional warping, as occurs here in the ring due
to contact with the shell, is an important contributor to the normal stresses in thin-walled

open section bars. Based on transverse shear deformations and cross-sectional warping
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of the ring, four structural models are defined. The simplest model uses non-transverse-
shear-deformable theory, or classical theory, and neglects warping due to torsion. The
most complex model includes both effects. Models of intermediate complexity occur for
inclusion of one effect without the other. The formulations presented for the geometrically
nonlinear response take into consideration only the symmetrical cross section of stiffeners,
and are based on classical structural theories.

For all the structural models, the response of the unit cell under internal pressure is
obtained by utilizing the Ritz method. Displacements are assumed as truncated Fourier
Series plus simple terms in the axial coordinate to account for the closed-end pressure
vessel effect. Equilibrium is imposed by virtual work. Pointwise displacement continuity
between the shell and stiffeners is achieved by Lagrange multipliers which represent the
interacting line load distributions between the stiffeners and the inside shell wall (see
Fig. 1.2). Data from a composite material crown panel typical of a large transport
fuselage are used for two numerical examples. The first numerical example is used to
validate the structural model, and also to compare the linear response and geometrically
nonlinear response of the unit cell model with symmetrical section stiffeners. In the second
numerical example the linear elastic response of the unit cell model with an asymmetrical

cross section ring is analyzed.

7.2 CONCLUDING REMARKS

7.2.1 EFFECT OF GEOMETRIC NONLINEARITY

1t is found that the spatial distribution of the normal displacements of the cylindrical
shell are more uniform, and the bending strains are reduced, in the geometrically nonlinear
elastic analysis with respect to what is predicted by the linear elastic analysis. That is,

pillowing of the skin is reduced by the inclusion of geometric nonlinearity into the analysis.
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However, in the nonlinear analysis the most severe circumferential bending is confined to a
narrow boundary layer adjacent to the stringer midway between the rings. and the interior
portion of the shell behaves as a membrane. In the linear analysis the bending occurs over
the entire circumference of the shell. The development of the bending boundary layer
due to the inclusion of geometric nonlinearity into the analysis causes an increase in the
circumferential transverse shear resultant in the shell adjacent to the stringer compared
to the linear analysis. Increased interlaminar shear stresses can be expected as a result of
the increased transverse shear resultant.

The axial force carried by the stringer due to the closed-end pressure vessel effect is
increased in the nonlinear analysis with respect to its value in the linear analysis. Also,
the circumferential force carried by the ring is increased in the nonlinear analysis with
respect to its value in the linear analysis. Thus, the stiffeners resist an increased portion
of the internal pressure load, accompanied by a commensurate decrease in the load carried

by the shell, when geometric nonlinearity is included into the analysis.

7.2.2 INFLUENCE OF AN ASYMMETRICAL SECTION RING

The asymmetrical section ring complicated the analysis of the unit cell, since sym-
metry about the plane of the ring is lost. Inclusion of transverse shear deformations,
and warping deformation of the ring’s cross section due to torsion, into the mathematical
model significantly influenced several aspects of the response. The interacting loads that
are strongly affected by the structural modeling are those components associated with
the asymmetric response. These are the axial force intensity Azr, the normal moment
intensity A.r, and the tangential moment intensity Agr between the ring and shell. At the
joint the magnitude of Az, is increased by the inclusion of warping and reduced by the
inclusion of transverse shear (Fig. 6.4). The normal moment intensity A., is a measure

of the asymmetry in the distribution of the circumferential traction across the width of
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the ring’s attachment flange. The sense of A, is changed when both transverse shear and
warping are included, and its magnitudes are reduced by the transverse shear effect (Fig.
6.8). However, the magnitude of the resultant of the circumferential traction across the
flange width of the ring, as measured by the line load intensity Agr, is only moderately
affected by the changes in the structural models (Fig. 6.5). The tangential moment inten-
sity Agr is a measure of the asymmetry in the distribution of the normal traction across
the width of the ring’s attachment flange. At the joint, the sense of Agy is changed by the
inclusion of warping deformation and additionally its magnitude is reduced by the inclu-
sion of transverse shear deformation (Fig. 6.7). However, the magnitude of the resultant
of the normal traction across the flange width, as measured by the line load intensity A:r,
is essentially unaffected by changes in the structural models (Fig. 6.6).

The sense of the rotations of the structural elements at the joint is changed with the
inclusion of warping deformation in the ring, and the twist rotation of the ring at the joint
increases by 40% with the inclusion of transverse shear deformation, as is shown in Table
6.2. That is, joint flexibility increases since element rotations at the joint are de-coupled
by using transverse shear deformation models.

The out-of-plane bending moment and torque in the ring are very sensitive to the
structural modeling, as might be expected. The magnitudes of the both the out-of-plane
bending moment and torque increase with the inclusion of warping and transverse shear
into the mathematical model (Fig. 6.15). However, the distributions and magnitudes
of the normal displacement and strains of the shell midway between the stiffeners are

unaffected by the change in the structural models.
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7.2.3 SINGULARITY AT THE SHELL-STRINGER-RING JOINT

The distributions of the normal actions between the shell and stiffeners (A5, A.r. and
Agr) all show significant magnitudes only in the vicinity of the joint, with much smaller
magnitudes away from the joint. In fact, they all appear to exhibit singular behavior at the
joint, but only finite magnitudes are represented by the truncated series approximations.
The distributions of the actions tangent to the stiffeners (Azs, A¢r, and A, ), on the other
hand, have small magnitudes in the vicinity of the joint and larger magnitudes away
from the joint. These tangential actions do not exhibit singular behavior. In spite of
the singular behavior of the line load intensities associated with the normal actions, the
resultant of these distributions resolved at the joint converge relatively quickly with the
number of terms retained in the series approximations (e.g., see Fig. 5.17). The resultant
consists of a radial force F, and a moment Cy about the circumferential axis (see Fig.
6.10). F, represents the action of the stiffeners to pull the shell radially inward against
the pressure load, and Cj is primarily due to asymmetry in the actions between the ring
and shell, The magnitude of force F, represents the portion of the total pressure load
carried by the stiffeners. The remaining pressure load is carried by the shell itself. Force
F. is essentially unaffected by the structural modeling (Table 6.3). The moment Cy is

very sensitive to the structural modeling, in particular to the effect of warping as shown
in Table 6.3. This moment Cy vanishes for a completely symmetric problem.

The series for the interacting normal load intensity A, at the stiffener intersection
does not appear to converge even in the geometrically nonlinear analysis. However, the
Fourier Series for the total radial resultant load carried by the stiffeners, which is resolved
at the intersection, exhibits rapid convergence in the geometrically nonlinear analysis (see
Fig. 5.18). The total radial resultant load carried by the stiffeners is slightly increased in

the geometrically nonlinear analysis with respect to its value in the linear analysis.
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7.3 RECOMMENDATIONS FOR FUTURE WORK

The analysis could be extended to include the important load cases of torsion and
bending in addition to internal pressure. Torsion of the stiffened shell is equivalent to
a shear load of the unit cell, and this loading case corresponds to an antisymmetric de-
formation pattern of the unit cell model. Bending is somewhat more complex since the

displacement field has period of 27 rather than the periodicity of the stringer spacing.

Singular solutions can be investigated to improve the solution methodology. To
begin with, the simplest configuration can be analyzed; i.e., consider the linear response
of a classical structural model with symmetric section stiffeners. This problem can be
reformulated in terms of four integral equations in which the unknowns are the magnitudes
of the interacting load components Agzs(z), Aes(2), Agr(6), and A;(6). These integral
equations are associated with either the tangential or normal displacement constraints
between the shell and stiffeners. The kernels to these equations are Green’s functions
(or influence functions), which are displacement solutions to the shell, stringer, and ring
problems under the actions of concentrated forces. This approach is appealing because
the solution reduces to solving for the interacting load components in integral expressions
along the contact lines rather than solving for the displacements and interacting loads
over the entire solution domain. The difficulty with this approach is in obtaining the
Green’s functions, and solving singular integral equations that may result from the contact

problems.
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APPENDIX A

ELEMENTS OF MATRICES FOR LINEAR ANALYSIS USING
TRANSVERSE SHEAR DEFORMATION MODEL

The non-zero elements of the submatrices K;;, B;; and F1; in Eq. (4.68) for the trans-
verse shear deformation model are listed below. The parameter é;; is Kronecker delta assuming

the values zero for i # j, and one for ¢ = j, respectively.

Elements of (10MN +3M + 3N +2) x (10MN + 3M + 3N + 2) submatrix [A11]
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K33 (3,3) =(EAS; + GAzo),%énq
Kz (3.4) =(BA + GA)n b
K33 (3,6) =—GA24Obng

K (4,4) =(EA + GAxpf2) o-bng

11’33 (4, 6) :“GAzﬂﬂn@énq

: 2er | Pl
Ko (5.5) =[EL: + (GJ + == 62)ﬁn] bnq
0
I\'33 (57 6) :(EIZJ: + wzﬁn)ﬂn nq
EIW El

EIwz ww n
1‘33 (5 7 [(GJ + EIzz + )+( RZ )ﬁn] ﬁ 67‘“1

Ry

Ry
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K33 (6,6) =(GA,eR3 + Elmﬁi)ganq

Lz, By

on
Ro 'Ry R, Q0

) 2FI,. EIW
K33 (7,7) =|(GJ + GAzRy) + (El. + RO“’

I"33 (637) (EIzr+

)ﬂ

Elements of (10MN + 3M + 3N + 2) x 4M submatrix [B1i]

(=D™

Bi1 (3,1) ==lbpp

By (1,1) =

Bu1 (4,4) =—16myp
B (5, 1)_ Bmp
Bi1 (9,2) =16y
By (10,1) =—16my
By (13,4) =—l6mp
By (14,3) =—16mp
By (15,1) = tzam,,

B11 (16,2) :§lémp

Elements of (10MN + 3M + 3N + 2) x (5N + 1) submatrix [Bi:]

By2 (2,1) =-2a0©
Bz (4,1) =—2a0
By (6,3) =—aBby,,
By (7,4) =—aBdy,

t
By (8,3) =-§a@6nq
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Bis (9,2) =—aO8n
Bis (11,3) =—aOdy
Bia (12,6) =—0,a06,,
Bi; (13,4) =—aBdy,

Bia (14,5) =0paBéy,

o~

Bis (15,2) ==aO6n,

~ N

Bia (17,3) ==a@6n,

o

Bis (18,6) =—a,a0by,

| o~

Elements of (10MN +3M + 3N +2) x1 submatrix [B;s]

B13 (111) =1

Elements of (6M + 1) x 4M submatrix [Ba1]

(_1)m+1
:-——————am

By (2,1) =lémp

By (1,1)

Bay (3,2) =lémyp
Bt (4,3) =l6myp
By (5,4) =lémp
Bay (6,1) =lesbmp

B2] (7, 2) =l€36mp
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Elements of (6M + 1) x 1 submatrix [Bas]

By (1,1) = ~1
Elements of (6N + 1) x (5N + 1) submatrix [B3;]

B3y (1,1) =2a0
B32 (2,2) :a@énq
B3Q (3,3) :a@énq
ng (4,4) :a@énq
B3, (5,2) =€7-(1®(5nq
) W
Bsy (5,3) =—-BnaO8n,
Ro
B3y (535) :a®6nq
Bsa (5,6) :ﬂﬂnao&zq
Ry
B32 (6,3]) zera@énq
wo
B32 (7,3) :—EaOénq

Bz (7,6) =(1 — 211006,
Ry
Elements of (10M N + 3M + 3N + 2) x 1 submatrix [F,]

F11 (1) :pR2®

Fn (2) :4])1@R
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APPENDIX B

ELEMENTS OF MATRICES FOR LINEAR ANALYSIS

USING CLASSICAL MODEL

The non-zero elements of the submatrices K;;, B;; and F1; in Eq. (4.68) for the classical

model are listed below. The parameter 6;; is Kronecker delta assuming the values zero for

i # 7. and one for i = j, respectively.

Elements of (6M N + 2M + 2N + 2) x (6MN + 2M + 2N + 2) submatrix [/11]

A1OR
l

1\'11 (1,2) =2A12@R

4A2001
R

K11 (3,3) =24110%,10 R,
Alo

K“ (1,1) =

Ky (2,2) =

Ky (3,4) 2( + By102))amlORém,

Ao 2B1s
i (4,4) =2 Z7 + ~50% + Dnal, IO Rém,
e o o A 2Ba D22

B (5,5) =2(—~ + 7 == )BE106,

. Agn B B D
Ry (5,6) =2[( 2 4 ”)+(—ﬂ+—33ﬂ2]ﬁnzeanq

‘R? R?
. A2 2B D
K1y (6,6) =22 + 5320 + 2 B2 ]10éng
o Ae¢s Bes D
Ky (7,7) =[Anel, R+ (—ﬂ - fi‘i 4£§)ﬂn]195mp6nq = K11 (8,8)

Ay By Aes . Bes  3Dss .
[—RT + RZ + (T + T‘?,_z— - 4R3 )]amﬂnlgRémP‘an = —I1; (8,9)

_ Bi» 2Bss D .
Ky (7,12) =—[A12 + Bural, + ( };2 + R"‘“ - —‘i‘i)ﬁn]am@wmpanq ~ Ky (8,11)

]\'11 (T, 10) =
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2322 D22 3B66 9D¢ge

A22
K (9,9) =[G + 5 + i P+ (Aso + —5= + gz )0 m]R_zeampénq
=K1 (10,10)
. Agas | By | Ba D22 Bia | 2Bes | D1 3D
Fu (01) =55 + 55 +(75 + )ﬂ2+(—1—+ Rs Rf ers) CENE
Brl®Rbpmpbng = K11 (10,12)
, Ay 2B D 2(Dys + 2D
Ky (1L,11) =[F + 580 + 5Bt ADrz + 2Des) 12; ) o2 62 + (2B12 + Duro, R)+

02 ]106mpdng = K11 (12,12)
Elements of (4M + 1) x (4M + 1) submatrix [K;]

(EA)s
2

Kaz (2,2) =(EA)sa,16mp

Ky (1,1) =

Ky (3,3) =(EA)sa2, l6m,
.Il'22 (4,4) :(Elgg)sa?.nl(smp

Ka2 (5,5) =(Elgg) s 0 mp

Elements of (4N + 1) x (4N + 1) submatrix [A33]

2FAO

K 1,1) =
a3 (1,1) e
, 2EL: | Eluw, 2] B2
¥ 2 E zz ;L =~ 671
133 (2, ) GJ+( I + RO + —R% )ﬁ Rg@ q
. Loz .\ By
Ki3 (2,3) =—(El,; + o )R3@5nq
. EI,. B4
K35 (2,4) :—(EIZI + —RF-)E%-(')&W
. El,, El,.  El,,

=— L., " bn
K33 (2,5) (GJ + EIL. + To )+ ( o I )85 R3@
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EI.’L‘Z‘)ﬂn
R} "Ry
EIxr/jz)

EIw,

K33 (3,3) =(EA + Obng

B

K3 (3,4) =(EA + T O%n

K33 (3a 5) :(EIzz + ﬂQ)ﬂn 96"9

Ky (4,4) =(EA + —R—?ﬂi)—énq
0

EL,, ., 3
Ro P )R

2EIwz ww 24\ 22 —6—(5
RO + 2 n)ﬂn RO ng

Ki3 (4,5) =(Elz + —5— Qb

Il'gg (5,5) = EIZZ + (GJ -+

Elements of (6M N 4 2M + 2N + 2) x 4M submatrix [B11]

=™

Qm

By (11) =
Buy (3,1) =—16mp

By (4,1) _§0m15mp
Buy (4,4) =—16mp

Buy (7,2) =—16mp

Buy (8,1) =—l6mp

By (11,1) :%amzam,,
By (11,4) =16y

By, (12,2) =—%amlém,,

By (12,3) =—1bmp
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Elements of (6M N + 2M + 2N +2) x (5N + 1) submatrix [Bi2]

B12 (2, 1) =—2a0

Biz (4,1) =-2a0

t
2R

t
Bl? (6a 3) = ﬁﬁna@‘an

Bi; (5,3) =—(1 — 75)a0by,
By (6,4) =—aBédy,
B12 (7,2) :——a@énq
t
312 (9,3) =—(1 - Q—E)a(%nq
t
312 (10,6) =—(1 — -Q-R)Olpa@énq
t
B2 (11,3) :ﬁﬁna@‘an
By (11,4) =—aBOén,
t
B]2 (12.2) :—iapa®6nq
B]2 (12,5) :a,,a@énq

t
B12 (12,6) :ﬁﬂnapaé)énq

Elements of (6M N + 2M + 2N + 2) x 1 submatrix [Bis]

B3 (1,1) =1

Elements of (4M + 1) x 1 submatrix [Ba;]
B3 (1,1) = -1
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Elements of (4M + 1) x 4M submatrix [Bai]

_1ym+1
Bay (1,1) = a)m
Boy (2,1) =l6my
By (3,2) =lbmp
Bs1 (4,2) =—amlesbmp
By (4,3) =lomp
By (5,1) =apmlesbmp

By1 (5,4) =lémp

Elements of (4N + 1) x (5N + 1) submatrix [Bs;]

B33 (1,1) =200
B3z (2,2) =aBéy,
Baz (2,3) =— =2 3,408,
Rj

Wi
Bjs (2, 6) =(1- —)ﬁnaeénq

Ry
Bas (3,3) =(1 + ~=)aOén,

Ry

€r
B3y (4,3) -_-‘R—Oﬂnaeénq
ng (4,4) :a@énq
B32 (5,2) :eTaOénq
wo €r
=—(1 - =)BraBé,
B32 (5,3) Ro(l Ro )ﬁ a q
B33 (5,5) =aBbn,
. €r €y Wy
9 =|— — —)—1|Bra0b,

Bsa (5.6) =7 + (1 = 35) 5| ra®bng

Ry
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Elements of (6M N + 2M + 2N +2) x 1 submatrix [Fi;]

Fiy (1) =pR’0©

F]l (2) :4[)[@R
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APPENDIX C

ELEMENTS OF TANGENT STIFFNESS AND LOAD STIFFNESS

MATRICES FOR NONLINEAR ANALYSIS

The non-zero elements of the tangent stiffness submatrices A’;; and load stiffness sub-
matrix L in Eq. (4.82) for nonlinear analysis are listed below. The parameter §;; is Kronecker

delta assuming the values zero for i # j, and one for ¢ = j, respectively.

Elements of (3MN +2M + 2N +2) x (3MN +2M + 2N +2) submatrix [K11(@shen)]

A1 OR
{

I\'u (1, 2) =2A120

I\,ll (1, 1) =

Ku (1,3) =0

K11 (1,4) =A11ORe wibjm

. A120
i1 (1,5) =—5—(on + Brwn)bkn
. A120
Ry (1,6) = =2=Bn(vn + Brtn)okn
K1 (1,7) =0
. A120
I\ll (19 8) = .21;2 (vmn + /anmn)‘sjmékn
. A120 2
K11 (1,9) = 2R Bn(Vmn + Hnwmn)éjmékn + O-E’All@Ramwmn(Sjmékn
) 445,01
K1 (2,2) = Z

K11 (2,3) =0

K11 (2,4) =2Ay2 G)lafnwméjm

245,01
R2

. 244,01
K11 (2,6) =—§2——ﬁn(vn + Brtwn)bkn

K (2»5) = (vn + ﬂnwn)ékn
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K1 (2,7)

1\711 (2, 8) =

Il'n (2, 9)
K11 (3,3)

K11 (3,4)

1\711 (3, 5) =

K11 (3,6) =

K11 (3,7)

Ik’u (3, 8) =

K11 (3,9) =

K11 (4,4)

=2(

=0

Ay 01
R‘)
Agg ol

(Vmn + ﬁnwmn)éjmékn

)Bn( VUmn + ﬂnwmn)égmékn + AIZOIQ 'U«’mn‘s]m‘skn

:2A110m91R6mp

J

=2A120, Olémp + Z 24110mapa;©ORw;l,

Jj=1
Aq201

ap(vpn + Bruwpn )0 pbkn

A1201
R

apﬂn(vpn + /BnU7pn)6jp6kn

=0

129

p(vjn + /anjn)éknll

(o)
12 am(vn + ﬂnwn)émpékn + Z
j=1
A12® AlZO

R

amﬂn(vn + ﬂnwn)émpékn + Z apﬂn(vjn + ﬂnwjn)éknll

j=1

J
+ Z Allamapaj@ijnéanQ

i=1
A
R” + Di1ad YOIRGm, + 241202, 0lwodmp + A1107,0 Robmp
K J
1 A |, 2466
+ ; e 10lal, (vk + Bews)?bmp + ;2A11®Rama ol
J J K
A 2A
+ Y 24A10an0jwily + Z Ll 8 )0 amay(vk + Brwk)virls
j=1 i=1 k=1
J J K
+ 3A11®Ra§a,,amw;'7123 + Z Z 1.5A119Ra§amapw§k123
=1 =1 k=1
J K J
1 A 2A
+ Z 5(—};—2 + RﬁS )@ amay,(vik + Brwix)* Iaa + Z 241200 apw;ls
j=1 k=1 j=1
J K 4 2As J
+ Z (—‘R}?‘ + R6 )@amapﬂk(vk + ﬂkwk)wjklﬁ + Z 2A12®apajwj15
i=1k=1 =1
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K11 (4,5) =(A_]1{2- + 2?266 )0la?, (vg + Bawg ) wmbkedjm + Ar20la, By wmgbrgbjm
Ay 0l
B Asgelamﬁqumq‘skqéjm + _%r(vmq + BywWma)dkqd jm

K
A | 24
— Aas@l0,vmgbkglim + I (5 + —p N (vk + Brwe)wmk N1s65m
k=1

A 2A
+ Z(—I;— + 366 )@ama;(vig + Bywiq)wil140kg

J
i=1
J

N A 246
+ z (-ﬁ— + yajem(vik + Brwjk)wiklialrs
=1 k=1
Al’) 2A66 2
R )Ola, Br(vn + Brwn ) wpbrndjp + A12@la Wpndrnbjp

[ Aq0 0!
_ AGGG apﬂnupn‘sknéjp + —21;2—-ﬂn(vpn + ﬂnwpn)ékn Jjp

K1 (4.6) =(

A 2A
—AGGOIQ ﬁn'l)pnakn‘S]p + Z 12 ];6 )laiﬁn(vk + ﬂkwk)wpkllméjp

z 2 2A66 )OO!pOfJﬂn Vjn + ,Bn’w]n)w_71336kn

.
—

bl
~

2A66

)a]apﬂn(v]k + ﬂku’Jk)w]kI3OI33

J
J A
a (%

Z
T Age®

Age®©l
6; amPn(vn + Brwn)mpbin — ; R

amﬁn(vjn + ﬂnwjn)lsékn

K (4,7)=—

J
+ Z Au@RamapajwjnIgékn
i=1
Aqy 0l
I"ll (,43 8) :_ASGOlaz (Un + ﬂnwn)émpékn + 2};) (Un + ,an'n)é'mpakn

J
Ay 2A
B Z Ass@"pﬂnumkékn Z —E_ RG6 )00p0;(vn + Brwn)w;lsbkn
= j=1

J

2A
- Z Age©Qapa;vinlsin + 66 )0apa;(vin + Brnwin)w;l340kn
A0 Z
+ Z 92 (vjn + Brwjn)l10kn — Z AssOapoim(vVjn + Bnwin ) Isbkn
I=1 3=1
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~

J K J
K1 (4, 8) An QAGG
cont'd. zz: pot R R —Jajap (vjk‘*'ﬁkwjk)wjkfsofu+JZ;A1«_>OQJ-
J
Aqp 2A
*apﬁnwm156kn+zz L2 RGG)a] o0k + Brwi)wjxls Iso
j=1k=1
: A Ol
K1y (4,9) = 4120107 (Bnvn + wn)bmpbin + =2 Bn(vn + Baton)émpbin

A2 0
+ Z 2 ﬁn(vjn + ﬁnwgn)llékn + Z A12®amap(ﬂnv]n + w_;n)IG‘SLn

.71 _]1

+ Z 3A11@Ra apamw]wjnlnékn + Z A11®Ra]a amujnlgﬁ;m

j=1 j=1
J
1 A 24 5 o
+ 3 A0ajapwinlsbin + Z T TR a0k + Brwk) 6mp Iy
J=1
J !, 4650
— ) A6600,0;8jnls6kn + Z A0 0mwinlzbkn — D T
j=1 j=1 j=1
At 2A
*,B 1L_1n156kn + Z 12 R66 )eapajﬁn(v + ﬂnwn)wyfsékn
T A 24
+ Z(——R}Q‘ + R66 )@apajﬂn(vjn + ﬁnwjn)wjl;;,;ékn
i=1
L E 1 Ay | 246
+ 225(% Re)amap(vjk + Brwjk) T2 Tog
7=1 k=1
L X A 24
+Y > ( 1:’," + R66 Jamap(ve + Brwi)(vik + Brwjr)lel2o
=1 k=1
I K g 54
+ Z Z(‘}%Z + R66 JajopBa(vi + Brwk)wikds I3o
7=1k=1
J K
A 2A
+ Z (—1;3 + '—%)aja’p,@n(vjk + Brwjk )wirI30134

+
M3
= 114

LY

Il
—
=

1
—

1.5A11 Ra?apamwg’kb:;[%
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. Aga D')Q 2A99 At
K1 (5,9) = (R )ﬁgewnq‘*' R? elw(}énq'*' R OqO‘an

K 2A2

I

k=1

K 34
22 Bul(vi + Brwe)l7 + Z 22

== Byl (vk + Brwi) s

I(vx + Brwi)* o

k=1

J J
1A 24 3A
+3 5+ T )ejol ~6nq+zz S sk + Brwie) s

7=1k=1

J K J
1A 24 A | 24
+ o2 66)a21w1kho+§ § (& 12 R“) alwjwsely

j=1 k=1 i=1k=1
A ,» D 2A; A1
= + n R232 )ﬁn@lénq + — 22 O,Bnlwoénq —Eeﬁnqoénq

K
24 2A
+ Z 22 218 Brvr + wi )y + Z 22

5= BnBl(vi + Brwi) s

3A02

+Z 22; (Uk-{-ﬁk’lUL I7+Z ,gn (Uk+,6kwk) 9

J 1 A 24 J K 34,
+ Z 5(—1—2 + 66 )ﬁn()f?@lwzénq + Z Z 2 ﬂnl(vjk + ﬂ;,wjk) Iy

A 2A
——)a ﬁnlekho + (-—1-3 + 280 iﬁnlew]kh

R

K
LA 2A66
2 R R

A
O~"m/anménqéjm - Z 136 lamﬁqwmkha]m
k=1

Age o!
R

K

Ato
+ _aml(vmk + ,Bkwmk)135_1m
k=1 R

A A A
K (5,8) =(3;3 2 VQlwmbimbng + —};l@lamuméjménq +y —};Zlamumkhéjm
k=1 ’

A
Z _ﬁﬁnl(vmk + 6kumk)l7 jm + Z (vmk + ﬁkwmk)IBé]m
k=1 k=1
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1 2A66
2

) QOwEIménq

Ix“ Afm
cont'd =+ Z

k=1
K 3A K
+y R;? vk + Bewi)(Ompk + BeWmk ) o6 im kzl Ag 0 lwmils85m
k=1
J X 1 A1 2Age J A12 2A66
+ZZ§(-R—+ 7 )aj w1k11011°+22 )a wiwkladv2
7=1 k=1 j=1 k=1

+
M“
Mz
(WS
IJ:.

R3 2 (v ik + Brwik) IoIny

o .
D)
—
x
L}
—

Ao
+ A1202,)O1B w8 imbng + 2Ol Bt 6 jmbng

1\—11 (5,9) —_-( R

R?

K
A A
+ § j 22 (v + Bxwmi ) Ir65m + } j ”wqﬁn(vmk + Brwmi )36 im
k=1

Aqa 1 A 2 Age
+ 2 218 (Bkvmk + Wk ) I465m + Z S+ TR a3 80w liabng
k=1

K

3492
+ Z 222 Bl(vk + Brwi) (Vmk + Brwmi)08im — Y Ass @i lvmkl765m
k=1 k=1

A ZA
+ Z Arzlay, Bywmilgbjm + Z =2 RSS Yol (vk + Brwi)wm 178 jm

A 2A
L % Va2, (vk + Brwr)wmkT168;m

A
- Z ﬁamﬂklumk176]m

Aqa 3A99 (
_!;lamﬂnumkjtt 6im + ZZ 22 3 (v + Brwse)* Io I

> 3k
k=1 j=1k=1
J

+2

J
1. Aq2 2A A ZA
( 12 06 )azﬁn ]kIIOII” + ZZ £z 66 )ama]

j=1k= 2" R j=1k=1
J
A1o 2A 6
*(vjk + Brwik)wilr g + Y Z( 12 126 Yok Bnwjwielsly2
i=1k=1
J K
A 2A
+ Z —]—12-2- —éﬁ Yamo (v + Brwjx)wikl14 16
J=1k=1
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Agg 3t Dy 2432

Aits 2
Ay ((),6) :2(__"— n 73 )@lﬁnq + — G Olﬁn Oénq + — @,B qO(an

) 24
+ Z‘ 2‘42 202213 B, (Bevk + wi) s + Z 222 Bol(vk + Brwe)la

k=1

+ Z 24 22ﬂql(vk + Brwi )17 + Z 342 —51BnBe(vk + Brwi)*Io

a~
n
—

i 34
(A 2A66 a2 3201wk, + Z Z vk + Brw;r)’ BaBylo

+
(R

3
]=1 R "'lk 1 2R
T E 1 A | 2466, 5 2
+z 5(—}'3— + R )ajﬂnﬂqlekIlO
j=1k=1
J K
A 24
+ 3D ()i Baalwiwinl
i=1k=1
{ A
Ky (6.7) __As® B2 WrmbngBim — Z —éﬁlamﬂnﬁqwmkhéjm
k=1
Ao
+ Z Ozmﬂn Umk + ,Bkwmk)IS jm
. A22 A1 ] 5 &
K11 (6,8) =( Ra — Ag60?,)OIBn w8 jmbng + -é‘@ U fBntimdjmdng

+ Z [ﬁq(/jkvmk + me)I4 jm + Z

K
+ Z Az —5 BrnBl(vmk + Brwmi ) [765m — Z Ags 0’ Bylwmilsbim

k=1

1 A 24
+ Z A];? lamﬁqumkl‘l jm + Z 12 + R66 )aﬁﬁnewﬁjménq
k=1

3Aa2
R3

F

22218, (vk + Brwi )(Vmk + BrWmi Madjm

M

“\

A 24
(—I;—Q + RGG Yo Bgw? o T1a

N | b=

+
M-I

<
1}
—

k

—

M~

24
Z(%_z_ + 66 Ja} Bgwjwjilalry

<
i
—
—

k=
* 34
Z 2}2232 ﬂq(vjk + ﬁkwgk) Iyl

Ma..

K
kK
k

[
1
—
—
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A’?’) A
En (6,9) =(55 8% + Auan, )ezwméménﬁ%elamﬂiuméménq

+ Z Az lﬂq(Umk + ﬁkwm}\ Jm + Z Az lﬁn vmk + ﬂkwmk)jséjm

A 1, A 2A66
+ Z 218, Be( Bevmk + Wk ) 46 jm + Z (G R )aiAa0w] iabng

K

+ Z 3422 —3-1BnBe(vi + Brwi)(vmik + Brwmk ) objm Z Age 0 BqlvmiI78im
k=1

K
- A 9 2A 9 .
+ E Apgla, wimklgbim + E ( 1;: + Rse)la‘;nﬂq(”k+ﬁkwk)wmf75jm
k=1 k=1

K
Ags

A1
+ kz };- lamﬁnﬁqumk.[«iéjm - ; -—R—Otmﬁqﬁklumk[75jm
1 .=

K Ao 24
+ Z(y 11{ + 2229162 By (vk + Brwi)wmikT1685m

R
k=1
L& 34y
+ Z Vi S22 BBy (v + Brwik) ToIny
i1=1k=1
L& A | 2A66
+ Z 5( 7 o} Bubywhhio o
=1 k=1
J K
A1 24
+ Z ( IIZ + RSG)OgﬂnﬁqijjkLiIlz
j=1 k=1
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Elements of (3MN +2M + 2N +2) x 3MN +2M + 2N + 2) submatrix [L(@she)]
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Elements of (2M + 1) x (2M + 1) submatrix [Kos(tgy)]
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The integrals Iy to I34 in the elements of the submatrices &’;; and L are given by

!
I =/ Cos(ajz)Cos(anz)Cos{apz)dz
-1
!
I =/Sin(ajx)Sin(amz)Cos(apx)dx
2

©
I = / Sin(Bx0)Sin(Bn0)Cos(B,0)d0
-8

(S]
Iy = / Cos(Bx8)Sin(Bn0)Sin(B,6)d6
)

{
Iy =/C'os(amx)Sin(ajx)Sin(ap:c)dx
2

!
Is :/ Cos(a;z)Sin(amz)Sin(apz)dr
2

e
I =/ Cos(fn8)Sin(50)Sin(B,0)df
)

C]

Iy = / C03(B,0)C03(Bx0)Cos(B,6)d6
)
©

Iy = / Sin*(Br0)Sin(B.0)Sin(3,0)d6
-0

]
Io =/ Cos*(B8)Sin(f,8)Sin(3,6)do
-0

i

Iy :/ Cos*(ajz)Cos(apmz)dz
2

!
iy =/ Sin*(a;z)Cos(amz)de
-
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2

©
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-e
e
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-0

I
:/ Cosz(aj:v )Cos(apr)dz
ey,

!
:/ Sin®(a;x)Cos(apz)de
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!
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I
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= / Sin®(3x0)Cos(B8)d0
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]
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-0
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e

(]
Iq :/ Cos*(Bi8)Cos(3,08)Cos(3,8)db
-e

@
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|
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e

[C]
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APPENDIX D

ELEMENTS OF RESIDUAL FORCE VECTORS

FOR NONLINEAR ANALYSIS

The non-zero elements of the residual force subvectors Rgspeil, Rstr and Ry in Eq. (4.81)

for nonlinear analysis are listed below. The parameter 6;; is Kronecker delta assuming the

values zero for 7 # j, and one for ¢ = j, respectively.

Elements of (3M N +2M + 2N + 2) x 1 residual force subvector [Rsneu{usheit; P)]

For the sake of simplicity the residual force subvector [Rshe”] is written as
Ronent = p F&E5 — Fien

in which the elements of [Fi7!; ] are

AllOR

Firin (1) =

S

4Ago®l N
Fity (2) =2A12090 + Z 2 (v + fBnwn)’ + z A20la’ w?,

R m=1
M N M N
@ 9 2@1
Z Z adwlh, + Y Z (Vmn + Br®mn )’
n=1 m=1n=1
Apan 0l
Fint, (3) =24110%,01 Rmmp + 2A120m Olwm brmp + Z—lf——( Vmn + Bntmn)
n=1
Au@ o anw?
(Vn + Brwn)omp + Z Au@Ra apw I + Z Z s oWy 1o
m=1 m=1n=1
M N A @a
+ Z Z 2 p 'Umn +ﬁnwmn)211

m=1n
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n=1 R n=1
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n=1 m=1
N M M
Z AgeOla2,(vy + Brt0n)Vmnbmp + Z A1 ORa3 a,wd Iz + Z Apaj,
n=1 m=1 m=1
M AN
*Quw? I, + Z 24120ama,w? Iy — Z Z Ass O pam(Vmn + BnWmn)Vmnls
m=1 m=1n=1
M N
CArs 2A¢6 .
+ Z( }; + RGG )Oamap(vn + B wn )W Vmnly
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M N
1 Ais 2Ags A0
+ mZZI 7;1 5(_1:2— + R )eamap(vmn + ﬁnwmn) W I15 + mz:l nz:] OR?
M X 4 L 24
2 66
*(Umn + Pnwmn)’ 11 + mzl nzl( 2 =)0 0 (v + B wn ) wimn Ly
M N M N A0
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m=1n=1 m=1n=1
M N M N
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m=1n=1 m=1n=1
Ags©
- Z Z o8 apﬁn(vmn + ﬂnwmn)umn14
m=1n=1
Aq D D
Fifly (5) = 222 + 222)5201unbny + 22 + 67 R‘j Ba®lunbng + 2 Ogo(vr + 5
2A22
W )bng + “z- OLwo(vn + Gntn)bng + Z L2 6 Ol(Vmn + BnWmn )tm by
m=1
1 Alo 2A66 l 2
+ Z )a @l(vn +/6nwn) nq + z Al‘lamﬁnelwmwmnénq
m=1

_ Z ﬂsgGlamﬁnwmum.n Ong — Z AecOlal Wi Vmnbng + Z Aaa 22 0l
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