TURBULENCE MODELING NEEDS OF COMMERCIAL CFD CODES: COMPLEX FLOWS IN THE AEROSPACE AND AUTOMOTIVE INDUSTRIES

Bizhan A. Befrui
adapco
Melville, New York

CONTENT OF PRESENTATION

• STAR-CD: COMPUTATIONAL FEATURES
• STAR-CD: TURBULENCE MODELS
• COMMON FEATURES OF INDUSTRIAL COMPLEX FLOWS
• INDUSTRY-SPECIFIC CFD DEVELOPMENT REQUIREMENTS
• INDUSTRIAL COMPLEX FLOWS: APPLICATIONS & EXPERIENCES
 - FLOW IN ROTATING DISC CAVITIES
 - DIFFUSION HOLE FILM COOLING
 - INTERNAL BLADE COOLING
 - EXTERNAL CAR AERODYNAMICS
• CONCLUSION: TURBULENCE MODELING NEEDS

STAR-CD: COMPUTATIONAL FEATURES

• BODY-FITTED NON-ORTHOGONAL COORDINATE SYSTEM
• UNSTRUCTURED COMPUTATIONAL MESH, DIFFERENT CELL TOPOLOGIES, IMBEDDED MESH REFINEMENT, DISCONTINUOUS MESH INTERFACE, MOVING BOUNDARY AND INTERNAL INTERFACES
• PRIMITIVE VARIABLE, SELF-ADAPTIVE ELLIPTIC-HYPERBOLIC PRESSURE CORRECTION METHOD
• COLLOCATED-VARIABLE ARRANGEMENT
• EULER-IMPLICIT TEMPORAL INTEGRATION
• UD, CD, LUD, SFCD SPATIAL DISCRETIZATION, WITH BLENDING CAPABILITY
STAR-CD: TURBULENCE MODELS

• TWO-EQUATION MODEL
 - STANDARD k-ε WITH CORRECTIONS FOR BULK DILATATION AND BUOYANCY
 - HIGH REYNOLDS NO. RNG BASED k-ε MODEL

• TWO-ZONE (TWO-LAYER) MODEL
 - HIGH REYNOLDS NO.: k-ε VARIANTS
 - LOW REYNOLDS NO.: k-ε VARIANTS, PRANDTL MIXING LENGTH MODEL

• REYNOLDS STRESS TRANSPORT MODEL
 - TRANSPORT EQUATIONS FOR CARTESIAN STRESS TENSOR IN NON-ORTHOGONAL COORDINATE SYSTEM, ON NON-STRUCTURED MESH
 - LAUNDER, RODI, REECE (1975) FORMULATION WITH LAUNDER (1989) MODEL CONSTANTS
 - GIBSON & LAUNDER (1978) WALL REFLECTION MODEL
Driver & Seegmiller Backward Facing Step
Flow Domain = 0°H to 37°H
Mesh = 105 (Axial) x 45 (Radius)

GRAPH PLOT FRAMES

Legend

△ Exp. data
- RS model
- KE model

Driver & Seegmiller Backward Facing Step
Data Inlet B.C.
Location XO = 1.5
Driver & Seegmiller Backward Facing Step
Data inlet B.C. ; No Wall Damping Funct.
Location 50x e 1.5
COMMON FEATURES OF INDUSTRIAL COMPLEX FLOWS

- THREE DIMENSIONAL WITH MULTIPLE FLOW "COMPLEXITIES"
 - BODY-FORCE FIELDS
 - STREAM SURFACE CURVATURE
 - STRONG PRESSURE GRADIENTS
 - COMPRESSIBILITY EFFECTS
 - LAMINAR-TURBULENT TRANSITION
 - COMBUSTION, SHOCK, MULTIPHASE, NON-NEWTONIAN

- LARGE SCALE DOMAIN AND COMPLEX GEOMETRIC CONFIGURATION

- IRREGULAR, UNSTRUCTURED COMPUTATIONAL MESH

- SPATIAL RESOLUTION DIFFICULT TO ACHIEVE ON O(10^5 - 10^6) MESH CELLS

- INSUFFICIENT AND UNCERTAIN EXPERIMENTAL DATA FOR TURBULENCE MODEL VALIDATION/IDENTIFICATION OF DEFICIENCIES
INDUSTRY-SPECIFIC CFD DEVELOPMENT REQUIREMENTS

• AUTOMOTIVE INDUSTRY
 - EFFICIENT COMPLEX-GEOMETRY, MOVING-BOUNDARY CAPABILITIES
 - MEMORY/SOLUTION PERFORMANCE FOR LARGE SCALE DOMAIN CFD SIMULATION
 - DIAGNOSTIC/COMPARATIVE EVALUATION OBJECTIVES
 - GEOMETRIC FIDELITY AND SPATIAL RESOLUTION ARE PRIMARY ACCURACY FACTORS

• AEROSPACE INDUSTRY
 - REGULAR AND SMALL-SCALE FLOW DOMAIN (BENCHMARK EXPERIMENTAL MODELS)
 - DESIGN/PERFORMANCE OPTIMIZATION OBJECTIVES
 - NUMERICAL AND TURBULENCE MODEL ACCURACY IMPORTANT
 - REQUIREMENTS
 • HEAT TRANSFER
 • LOW REYNOLDS NO. FLOW
 • BODY FORCE FIELDS
FIGURE 1: EXTERIOR BOUNDARY CONDITIONS FOR W202 40 kph ANALYSIS
W202 UNDERHOOD FLOW ANALYSIS
CASE 3: 40 mph SIMULATION

Velocity near the surface of the vehicle.

W202 UNDERHOOD FLOW ANALYSIS
CASE 3: 40 mph SIMULATION

Temperature in degrees C

Local Max: 210.0
Local Min: -0.000E+00

9 Dec 93

80.00
77.00
74.00
71.00
68.00
65.00
62.00
60.00
57.00
54.00
51.00
48.00
45.00
42.00
39.00
36.00
33.00
30.00
APPLICATIONS & EXPERIENCES

<table>
<thead>
<tr>
<th>APPLICATION (DATA)</th>
<th>FLOW COMPLEXITY</th>
<th>TURBULENCE MODEL</th>
<th>FINDINGS</th>
<th>T.M. NEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTATING DISC CAVITY¹</td>
<td>• FORCE FIELD WALL</td>
<td>• k-ε</td>
<td>• EKMAN LAYER RESOLVED</td>
<td>• RSTM + SUITABLE 2 LAYER</td>
</tr>
<tr>
<td></td>
<td>EFFECT</td>
<td>• 2 LAYER k-ε</td>
<td>• FAIR PRESSURE DROP</td>
<td>• LOW RE RSTM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• EXCESSIVE E.V.</td>
<td></td>
</tr>
<tr>
<td>DIFFUSION HOLE FILM COOLING²</td>
<td>• JET-CROSS FLOW WALL</td>
<td>• k-ε</td>
<td>• JET SEPARATION SENSITIVE TO MESH TOPOLOGY/</td>
<td>• RSTM + SUITABLE 2 LAYER</td>
</tr>
<tr>
<td></td>
<td>ANISOTROPY</td>
<td>• RNG, k-ε</td>
<td>RESOLUTION</td>
<td>• LOW RE RSTM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2 LAYER k-ε</td>
<td>• POOR SPANWISE SPREAD</td>
<td></td>
</tr>
</tbody>
</table>

¹ GRABER et al (1987)

COMPRESSOR DRUM TEST RIG STAR-CD CONJUGATE HEAT TRANSFER MODEL

[Diagram of the compressor drum test rig with labels: Upstream Endwall, Downstream Endwall, Borst Tube, Disk 1, Disk 5, Axis of Rotation]
14-Jun-93
VELOCITY
COMPONENTS U W
FT/SEC
PSYS= 2
LOCAL MAX = 22.30
LOCAL MIN = 0.4491

<table>
<thead>
<tr>
<th>Velocity Components</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>22.30</td>
</tr>
<tr>
<td>W</td>
<td>21.21</td>
</tr>
<tr>
<td>U</td>
<td>20.12</td>
</tr>
<tr>
<td>W</td>
<td>19.03</td>
</tr>
<tr>
<td>U</td>
<td>17.83</td>
</tr>
<tr>
<td>W</td>
<td>16.84</td>
</tr>
<tr>
<td>U</td>
<td>15.75</td>
</tr>
<tr>
<td>W</td>
<td>14.65</td>
</tr>
<tr>
<td>U</td>
<td>13.56</td>
</tr>
<tr>
<td>W</td>
<td>12.47</td>
</tr>
<tr>
<td>U</td>
<td>11.38</td>
</tr>
<tr>
<td>W</td>
<td>10.26</td>
</tr>
<tr>
<td>U</td>
<td>9.191</td>
</tr>
<tr>
<td>W</td>
<td>8.099</td>
</tr>
<tr>
<td>U</td>
<td>7.006</td>
</tr>
<tr>
<td>W</td>
<td>5.913</td>
</tr>
<tr>
<td>U</td>
<td>4.820</td>
</tr>
<tr>
<td>W</td>
<td>3.727</td>
</tr>
<tr>
<td>U</td>
<td>2.535</td>
</tr>
<tr>
<td>W</td>
<td>1.542</td>
</tr>
<tr>
<td>U</td>
<td>0.4491</td>
</tr>
</tbody>
</table>

Compressor Drum Test Rig Cold Flow Benchmark Analysis
Secondary Flow in Cavity 2
Velocity Vectors at r = 7.45 inches

CAVITY 2: PRESSURE DROP

Dimensionless Pressure Drop
- STAR-CD Model
- Test Data
- Forced Vortex
- Free Vortex

Dimensionless Pressure Drop vs Dimensionless Radius Ratio
CAVITY 4: PRESSURE DROP

Dimensionless Pressure Drop

- STAR-CD Model
- Test Data
- Forced Vortex
- Free Vortex

Refined mesh, M = 0.5, pipe grid abutting plate grid.
Mesh = 330000 fluid cells
Two-Layer mesh
CFD Discrete Hole Film Cooling Verification Study
Simulation of experiment of Goldstein, et. al. [1968]; Blowing ratio M = 0.5
Velocity vectors on spanwise planes; 2-layer model.

CFD Discrete Hole Film Cooling Verification Study
Simulation of experiment of Goldstein, et. al. [1968]; Blowing ratio M = 0.5
Temperature contours on spanwise planes; 2-layer model.
EXPERIMENTS OF GOLDESTIN ET AL., 1968
COMPARISON OF FILM COOLING EFFECTIVENESS
M = 0.5 - Mesh II.
APPLICATIONS & EXPERIENCES (cont’d)

<table>
<thead>
<tr>
<th>APPLICATION (DATA)</th>
<th>FLOW COMPLEXITY</th>
<th>TURBULENCE MODEL</th>
<th>FINDINGS</th>
<th>T.M. NEEDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERNAL BLADE COOLING³</td>
<td>• FORCE FIELD</td>
<td>• k-ε</td>
<td>• DEPENDENCE ON MESH RESOLUTION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• B.L. DISRUPTION</td>
<td></td>
<td>• GOOD ΔP, h</td>
<td></td>
</tr>
<tr>
<td>EXTERNAL CAR AERODYNAMICS⁴</td>
<td>• B.L. STRUCTURE INTERACTION</td>
<td>• k-ε</td>
<td>• DEPENDENCE ON MESH RESOLUTION</td>
<td>• RSTM</td>
</tr>
<tr>
<td></td>
<td>• COMPLEX WAKE</td>
<td>• RNG k-ε</td>
<td>• GOOD C₀</td>
<td>• LOW Re</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2 LAYER k-ε</td>
<td>• POOR LIFT</td>
<td>• RSTM</td>
</tr>
</tbody>
</table>

³GE AIRCRAFT ENGINES [ABUAF & KERCHER (1991)]
⁴10 FORD 1/4 SCALE MODELS IN WIND TUNNEL TEST [WILLIAMS et al (1994)]
Figure 4a Leading edge channel heat transfer distribution with distance from the inlet. Comparison of model turbulent convex surface maximum, minimum and average measurements with blade CFD average predictions.
EXPERIMENT RESULTS
COMPARISON OF EXPERIMENTAL AND COMPUTATIONAL LIFT COEFFICIENTS
K EPSILON TURBULENCE MODEL - *** INITIAL RESULTS ***

EXPERIMENTAL RESULTS
COMPARISON OF EXPERIMENTAL AND COMPUTATIONAL DRAG COEFFICIENTS
K EPSILON TURBULENCE MODEL - *** INITIAL RESULTS ***
CONCLUSIONS: TURBULENCE MODELING
IMMEDIATE NEEDS

- NEAR-WALL TURBULENCE
 - ECONOMICAL, ROBUST LOW REYNOLDS
 NUMBER 2 EQ. EVM's AND RSTM
 - A GENERAL AND VERSATILE NEAR-WALL
 TREATMENT FOR RSTM
- RSTM MODEL
 - ALTERNATIVE CLOSURE OF THE WALL
 REFLECTION COMPONENT, WITHOUT NEED
 OF WALL TOPOGRAPHY PARAMETERS
- EDDY-VISCOSITY MODELS
 - EXTENSION OF THE NON-LINEAR k-ε TO
 INCORPORATE FORCE-FIELD EFFECTS
- BENCHMARKING
 - A RELIABLE DATABASE OF BENCHMARK SET OF
 REPRESENTATIVE COMPLEX FLOWS
 - BENCHMARK PERFORMANCE CLASSIFICATION
 OF VARIOUS EVM's (k-ε, k-ω, RNG AND NON-
 LINEAR k-ε, MULTISCALE EVM's) AND RSTM
 CLOSURE VARIANTS

CONCLUSIONS: TURBULENCE MODELING
PROGRAM NEEDS

- A LARGER VIEW OF THE RSTM DEVELOPMENT
 TOWARDS IMPLEMENTATION IN GENERAL
 COORDINATE, COMPLEX GEOMETRY DOMAIN,
 UNSTRUCTURED CFD METHOD
- A BROADER APPLICATION OF DNS TO
 COMPLEX FLOWS TO ASSIST TURBULENCE
 MODEL DEVELOPMENT/OPTIMIZATION
- WELL-POSED EXPERIMENTAL DATA,
 OBTAINED IN THE ORIGINAL OR REDUCED
 SCALE MODEL OF THE INDUSTRIAL
 COMPONENT FOR CFD VALIDATION
- COLLABORATIVE INDUSTRY-CFD
 RESEARCH/DEVELOPMENT PROGRAMS FOR
 EXPERIMENTATION - CFD VALIDATION
 (CALIBRATION) FOR SPECIFIC INDUSTRIAL
 APPLICATIONS