Outline

- Profiles
 - ASC
 - Application
 - Client
- Needs
 - Clients'
 - ASC's
- ASC Directions
 - Research
 - Development
 - Products
- How Can CMOTT Help?
Profile of ASC

- Established in 1985
- Components of business
 - development
 - applications
 - licensing and service
- Geographic markets
 - North America
 - Europe
 - Pacific rim countries

Application Profile

- Rotating machinery components
 - hydraulic turbines
 - pump
 - compressors
 - turbines
 - stators
 - wicket gates
 - scrolls
 - volutes
 - inlets and diffusers
 - seals
 - stage
 - rotor stator
Application Profile cont’d

- Combustion
 - gas turbine combustor
 - coal fired boilers
 - gasification
 - fire suppression
 - emissions reduction
 - safety
- High speed external - ballistics
 - explosively formed projectiles
 - finned projectiles
 - sabot discard
- Heat transfer
 - turbine cooling
 - nuclear reactors
 - heat exchangers
 - electronics system cooling
- Typical uncertainties
 - geometry
 - initial and boundary conditions
 - transient effects
 - transition
 - limitations of physical models
 - numerical error
Client Profile

- Companies or divisions
 - industrial/manufacturing/research
 - 10 - 200 employees
 - limited or no access to high performance computing

- Users
 - design and/or analysis
 - < 3 people
 - network of engineering workstations
 - turnaround time in less than a day for analysis, hours for design

Clients’ Needs

Needs are most readily identified through typical questions from clients.

- General
 - I am using k-ε or two-layer or k-ω, or RNG ..., what does it mean to my calculation? Tell me in words what the deficiencies of the model means for my application?
 - What is the relative price/performance of the various turbulence models?
 - Has the model I am using been validated for type of flows I am trying to model? If so, when, where, how ... ?
 - How well does the model handle the interaction between turbulence and rotation, curvature, adverse pressure gradients, separation, swirl, bouyancy, extinction, droplets and particles, anisotropies ...?
 - How can I use Navier-Stokes solvers for design? Can I tune the turbulence model to suit my needs? If so, what are the appropriate settings for my application?
Clients' Needs cont’d

• Grid
 - I don’t have access to high performance computing, I don’t have any more time, I have a coarse non-orthogonal mesh, is my CFD result useful?
 - I have just made my grid finer, why should I have to worry about whether y+ is in a given range?

• High speed flows
 - I am solving a flow with many speed regimes including low speed separations and shocks, why do turbulence levels become unphysical as the grid is refined through shocks?
 - How should experimental data be compared to results from time or Favre averaged calculations?

Clients’ Needs cont’d

• Combustion
 - Which of the many different combustion models in combination with which turbulence model works best for my application?
 - How appropriate is the single scale implicit in the turbulence model for the combustion model?
 - How can the Boussinesq assumption be valid in the presence of counter-gradient diffusion?
 - How important are turbulent fluctuations to my problem?
 - If I had all the mean flow and fluctuating components of the turbulent flow, how can the effects of stretch and curvature on the instantaneous flame front be modelled.
 - Can extinction due to vortex stretching be modelled?
 - What is the influence of the flame front on the turbulence?
Clients' Needs cont'd

- **Calculated pdf models**
 - If I use a more detailed chemistry model - like a pdf transport model - how much improvement can I expect in the results for my application? How can I measure that?
 - Is it the case that the results for my application will not be sensitive to the shape of the pdf? If not, then why should I incur the costs associated with a pdf transport equation.
 - I am solving a pdf transport equation, how much are the results dominated by the limitations of modelling of the diffusion transport term?

Clients' Needs cont'd

- **Flamelet models**
 - I am using a flamelet model in modelling my gas turbine combustor, but in some regions of the combustor the model is not strictly appropriate - can any of the results be used? If so, how much?
 - In some models like the flamelet model, it is assumed that the turbulent time scale is inversely proportional to the velocity gradient of a “laminar” model flame. What is the validity of this assumption?
 - How sensitive are my results to the assumption of statistical independence of the quantities in a joint pdf?
ASC’s Directions

- Develop in-house model expertise
 - two-layer model
 - alternative two-equation models
 - second moment closure models
 - expanded EBU models
 - flamelet model
- Develop in-house expertise applying models
 - turbomachinery
 - combustion
 - heat transfer
- Promote high performance computing
 - parallel computing

How Can CMOTT Help?

- Model improvements to address between turbulence and
 - rotation
 - curvature
 - adverse pressure gradients
 - separation
 - swirl
 - bouyancy
 - droplets and particles
 - anisotropies ...

 as well issues related to
 - extinction
 - trace species
 - vortex stretching
 - flame fronts
 - time and length scales
 - ...

- Great, but is this what users really want?
How Can CMOTT Help? cont'd

- Curator of information on existing models
 - define
 - validate
 - process
 - educate

as an independent agency

How Can CMOTT Help? cont’d

Define models
- unified conceptual framework
- establish baseline for various models
- set context for model improvements
- for each model
 > document derivation
 > identify assumptions
 > clearly state implications of assumptions
 > separate physics from numerics
How Can CMOTT Help? cont’d

Validate models
- fundamental flows
 > validate assumptions
- benchmark problems
 > select real engineering problems relevant to identified applications (in propulsion)
 > review selection of benchmark on regular basis
- experimental data
 > collect and review existing data
 > define new experiments
 > review quality of resulting data for validation of models

How Can CMOTT Help? cont’d

Process data
- collect
- distil
- review
- interpret
- describe
- compile
How Can CMOTT Help? cont’d

Educate
- document
- publish
- workshops
- seminars
- short courses
- market

Summary

Provide information so users, for their applications can:
- make an educated choice of model
- understand how to appropriately use existing models
- move forward with existing models and technology
- understand implications of improvements to existing models