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Case Studies for SeaWiFS Calibration and Validation, Part 3

PREFACE

he scope of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Calibration and Validation Program
encompasses a broad variety of topics, as evidenced by the contents of two previous case studies volumes in

the SeaWiFS Technical Report Series--Volumes 13 and 19. Each case studies volume contains several chapters
discussing topics germane to the Calibration and Validation Program. Volume 27, the third collection of case

studies, further demonstrates both the breadth and complexity of the issues that the Program must address,
and provides further justification for a comprehensive calibration and validation effort.

The chapters in this volume present discussions of:

a) Results on the measurement of immersion coefficients for submersible radiometers;

b) The effect of oxygen absorption on the 765 nm SeaWiFS channel;

c) The results of the second SeaWiFS ground-based solar calibration experiment, which was performed
after the instrument was modified to reduce internal stray light;

d) Ship shadow effects on subsurface radiance and irradiance measurements; and

e) The definition of the SeaWiFS data day for level-3 data binning.

GreenbeIt, Maryland

January 1995
-- C. R. McClain
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ABSTRACT

This document provides brief reports, or case studies, on a number of investigations sponsored by the Cal-

ibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project.

Chapter 1 describes a comparison of the irradiance immersion coefficients determined for several different ma-
rine environmental radiometers (MERs). Chapter 2 presents an analysis of how light absorption by atmospheric

oxygen will influence the radiance measurements in band 7 of the SeaWiFS instrument. Chapter 3 gives the

results of the second ground-based solar calibration of the instrument, which was undertaken after the sensor
was modified to reduce the effects of internal stray light. (The first ground-based solar calibration of SeaWiFS

is described in Volume 19 in the SeaWiFS Technical Report Series.) Chapter 4 evaluates the effects of ship

shadow on subsurface irradiance and radiance measurements deployed from the deck of the R/V Weatherbird

H in the Atlantic Ocean near Bermuda. Chapter 5 illustrates the various ways in which a single data day of

SeaWiFS observations can be defined, and why the spatial definition is superior to the temporal definition for

operational usage.

Prologue

The purposes of the Sea-viewing Wide Field-of-view

Sensor (SeaWiFS) Project is to obtain valid ocean color

data of the world ocean for a five-year period, to process

that data in conjunction with ancillary data to meaning-

ful biological parameters, and to make that data readily
available to researchers. The National Aeronautics and

Space Administration (NASA) Goddard Space Flight Cen-

ter (GSFC) will develop a data processing and archiving

system in conjunction with the Earth Observing System

Data and Information System (EOSDIS), which includes

a ground receiving system; EOSDIS will oversee a calibra-
tion and validation effort which is designed to ensure the

integrity of the final products.
The Calibration and Validation Team (CVT) has three

main tasks:

1) Calibration of the SeaWiFS instrument;

2) Development and validation of the operational

atmospheric correction algorithm; and

3) Development and validation of the derived prod-

uct algorithms, such as chlorophyll a concentra-
tion.

Some of this work will be done internally at GSFC, while

the remainder will be done externally at other institu-

tions. NASA and the Project place the highest priority

on assuring the accuracy of derived water-leaving radi-

ances globally, and over the duration of the entire mission.

If these criteria are met, the development of global and

regional biogeochemical algorithms can proceed on many
fronts. These various activities are discussed in detail in

The SeaWiFS Calibration and Validation Plan (McClain

et al. 1992).
Because many of the studies and other works under-

taken with the Calibration and Validation Program are

not extensive enough to require dedicated volumes of the

Sea WiFS Technical Report Series, the CVT has decided to

publish volumes composed of brief, but topically specific,
chapters. Volume 13 was the first volume, and consists

primarily of contributions related to atmospheric correc-

tion methodologies, ancillary data sets required for level-2

processing of Coastal Zone Color Scanner (CZCS) and Sea-
WiFS data, laboratory techniques for instrument calibra-

tion relevant to calibration round-robins, and field obser-

vations designed for transferring the prelaunch calibration

to orbit, and in interpreting the on-orbit lunar calibration
data. The second case studies volume, Volume 19, con-

tains chapters on atmospheric and glint corrections, solar-,

lunar-, and integrating sphere optical measurements, data
format considerations, and the use of ancillary data (in-

cluding surface wind velocities) in SeaWiFS processing.
Volume 26 is the third in the set of such volumes. A short

synopsis of each chapter in this volume is given below.

1. Comparison of Irradiance Immersion
Coefficients for Several

Marine Environmental Radiometers (MERs)

This chapter describes how spectral immersion coeffi-

cients were measured experimentally for 12 irradiance col-

lectors on underwater profiling radiometers. These coef-

ficients are used to convert spectral radiance responsivity

calibration factors, measured in air, for use underwater.

At any given wavelength, the immersion coefficients typ-

ically had standard deviations between collectors ranging

from 3-5%. The total variations at some wavelengths were

as large as 10%. Repeated measurements on several of

the collectors showed that experimental uncertainty is not

greater than 1%. The primary conclusion of this study is

that accurate underwater radiometry absolutely requires

experimental characterization of each individual irradiance

collector, rather than assuming a value based solely on its

design and material specifications.
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2. The Effect of Oxygen Absorption
on Band-7 Radiance

Atmospheric oxygen absorbs about 13% of the available

sunlight reflected from the Earth in band 7 of the Sea_,ViFS

instrument. If a correction is made for the average amount

of absorption, then the measured radiance would vary by

-t-0.004 for a two standard deviation (2a) variability in the

amount of oxygen in a vertical column. For comparison,
the instrumental noise is about one-half, or 0.002, of this

variation. A correction based on the regional changes in
absorption as a function of season would not significantly

reduce the statistical variation in absorption.

3. Second SeaWiFS Preflight Solar
Radiation-Based Calibration Experiment

This paper describes the second solar radiation-based

calibration of SeaWiFS. The experiment was done on 1

November 1993 in the rock garden at the Santa Barbara

Research Center (SBRC). The results of the calibration

are presented, along with a comparison to the spherical
integrating source (SIS) calibration done at SBRC. The

estimated uncertainty of the SIS calibration is 2.8%, com-

pared to the 4% estimated uncertainty for the solar-based

calibration. There is also an uncertainty in the value of the
exoatmospheric solar irradiance used to make this com-

parison, which is probably on the order of 1%. In addi-

tion, the integrated out-of-band blocking for SeaWiFS is

in the 1-3% range, which can introduce significant differ-
ences between the lamp- and solar-based calibrations. This

agreement is better than anticipated, and better than the

agreement achieved in March 1993 from the first experi-

ment. The better agreement is probably due to a sphere
recalibration between the two experiments.

4. In Situ Evaluation of a Ship's Shadow

In situ measurements of optical properties made from

a ship can be biased by the ship's shadow. In an effort

to evaluate the ship shadow perturbation created by the
R/V Weatherbird II, profiles of downwelling irradiance,

Ed(Z,)_); upwelling radiance, Lu(z,A); and derived ap-

parent optical properties (AOPs), were obtained at four

distances--1 m, 3 m, 6 m, and 20 m or more--off the ship's

stern. Two statistical analyses of these data are explored.

The first analysis uses data from pairs of simultaneously-
obtained light profiles, one profile obtained at a distance

greater than 20 m from the stern of the ship, and the other

taken either 1 or 6 m off the stern. The second analy-

sis compares the derived AOPs for each profiling distance
from the ship, using data obtained throughout the length
of the experiment. Significant differences are rare in com-

parisons of profiles obtained at least 3 m off the ship's stern.
At 1 m off the stern, however, significant discrepancies are

intermittently observed. This work illustrates that the in-

herent sources of noise in determining radiative fluxes and

AOPs in the upper ocean are generally greater than the

effects incurred by the ship's own shadow under optimal
conditions.

5. Sea WiFS Global Fields:

_Vhat's In a Day?

This chapter defines the procedure to be employed to

delineate data corresponding to one day of SeaWiFS op-

eration. The definition is required for data analysis with

minimal temporal aliasing in tile same region of observa-
tion. The definition also allows proper assignment of data

into daily fields that will be used for the generation of

weekly and monthly average products.
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Chapter 1

Comparison of Irradiance Immersion Coefficients for Several

Marine Environmental Radiometers (MERs)

JAMES L. MUELLER

San Diego State University

San Diego, California

ABSTRACT

Spectral immersion coefficients were measured experimentally for 12 irradiance collectors on underwater pro-

filing radiometers. These coefficients are used to convert spectral irradiance responsivity calibration factors,

measured in air, for use underwater. All of the irradiance collectors were the same design, however, 11 were
made of Plexiglas® diffusing material and 1 was made of Teflon ®. At any given wavelength, the immersion

coefficients typically had standard deviations between collectors ranging from 3-5%. The total variations at
some wavelengths were as large as 10%. The coefficients of the Teflon diffuser were well within the bounds

of one standard deviation from the sample mean. Repeated measurements on several of the collectors showed

that experimental uncertainty is not greater than 1% (one standard deviation, or la). The primary conclu-

sion of this study is that accurate underwater radiometry absolutely requires experimental characterization

of each individual irradiance collector, rather than assuming a value based solely on its design and material
specifications.

1.1 INTRODUCTION

The spectral responsivities of underwater (irradiance)
radiometers are calibrated in air using an FEL lamp, which
has a spectral irradiance scale traceable to the National In-

stitute of Standards and Technology (NIST). The spectral
immersion coefficients for an underwater irradiance meter

represent the differences between the instrument's spec-

tral responsivities in air and in water. The responsivity
will change due to the fact that the refractive index of the

plastic (or Teflon ® ) diffuser is smaller, relative to the re-
fractive index of water, than it is relative to the refractive

index of air. Less incident light is reflected at the water-

plastic interface, and therefore, more of the light reflected
from the collector's inner surface escapes back into the

water. The net result is that a smaller fraction of incident

flux is transmitted through the irradiance collector in wa-

ter and therefore, the instrument's irradiance responsivity
is decreased.

At present, the practice of the oceanographic commu-

nity is to experimentally characterize the spectral immer-
sion coefficients of only a small sample of irradiance col-

lectors in a given class of collectors (with the same ma-

terials and design specifications). These coefficients have
subsequently been associated with all collectors in that

class, which assumes negligible variability between indi-

vidual items. In a previous report (Mueller 1994), this

assumption was tested by comparing irradiance immer-
sion coefficients for several MER-series radiometers man-

ufactured by Biospherical Instruments, Inc. (BSI) of San
Diego, California. The results of that preliminary compar-
ison between measured spectral immersion coefficients for

six Plexiglas ® diffusers of the same material and design
specifications show significant variations, with standard

deviations (a) ranging from 3.2-3.5% and ranges (max-
imum minus minimum) as large as 9%. In this earlier
work, however, the immersion tests on each instrument

were not replicated, and thus, no estimates of the exper-
imental uncertainty of the mehsurements could be made.

The conclusions were, therefore, only tentative.
This report presents results of an extended series of

immersion characterization experiments on an expanded
sample of irradiance collectors. The new series of charac-

terization experiments were repeated two or more times,
at different lamp-to-collector distances, to provide an esti-

mate of the uncertainty in this laboratory's experimental
determinations of immersion coefficients. The new results

were then pooled with the earlier sample (Mueller 1994) to
analyze overall variability between individual collectors.

1.2 METHOD AND RESULTS

The laboratory procedure for determining an irradi-
ance meter's spectral immersion coefficients is described in

3
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MuellerandAustin(1992).Immersioncoefficientstaken
fromMueller(1994)wereeachbasedona singleexperi-
mentalmeasurement.Subsequently,a newsetof experi-
mentalmeasurementswererepeated2-4timesoneachof
sevenirradiancecollectorsasa basisfor uncertaintyes-
timates.In eachcase,the immersiontest (Muellerand
Austin1992)wasdonefirst at onelamp-to-collectordis-
tance,andthenthelampwasmoved12.5cmtowardthe
collectorandthetestwasrepeated.In addition,theentire
procedurewasrepeatedondifferentdaysfor fourof the
collectors,andfor a fifth instrument[MER-1012f,Serial
Number(S/N) 8107]thesingledayresultsfromthis lab-
oratorywerecombinedwith theresultsofanindependent
immersioncharacterizationbyBSI.

Table 1. Immersioncoefficientsfor severalMERs
characterizedat CHORS. The column headings de-
note the MER model number and irradiance type.
The data is extracted from Mueller (1994).

Wavelength MER-lO48t MER-2040_

[nm] E_l E,, Ed E,,

408

410

439

440

441

465
488

489

518

1.3686

1.4315

1.4289

1.4456

1.4138

1.4169

1.3841

1.3882 1.3019

1.3846 1.3212

1.3751 1.3158
1.3591 1.3012

519

520

548

550
560

589

632

655

671
683

693

709

1.3704
1.3693

1.3654

1.3339

1.3425

1.3236
1.3997

1.3724

1.3389

1.3952

1.3822

1.3699

1.3344

1.3233

1.3470 1.2865

1.3265 1.2695

1.3088 1.2557

1.2804 1.2332

MER S/N 8302. $ MER S/N 8716.

Table 1 lists spectral irradiance immersion coefficients

for two MER instruments (i.e., four irradiance collectors)

characterized at the San Diego State University (SDSU)

Center for Hydro-Optics and Remote Sensing (CHORS)

during 1993 (Mueller 1994). Immersion coefficients for

seven additional collectors are listed in Tables 2-8, to-

gether with mean, standard deviation, and range for repli-

cated tests at each wavelength. Spectral immersion coef-

ficients from all collectors are illustrated in Figl 1 (which

includes all data from Table 1, and mean coefficients from

Tables 2-8). Coefficients from replicate experiments, and

the experimental mean values, for each individual collector

(Tables 2-8) are illustrated in Figs. 2-8, respectively.

Linear regression analyses provide a reasonable fit for

many of the instrumental immersion coefficients, Fi, to an

equation of the form

bA

F_ = a -- 10---_ (1)

where A is the wavelength in nanometers. Regression co-

efficients a and b; residual standard deviations, s,y; and
squared linear correlation coefficients, R2; are compared

for these instruments in Table 9, and the regression lines

are illustrated in Figs. 2 and 4-8.

Mean, range, and a of immersion coefficients for sub-

samples of different collectors were computed at selected

wavelengths and are presented in Table 10.

1.3 DISCUSSION

This report compares the experimentally determined
immersion coefficients for the irradiance collectors on nine

MER-series underwater radiometers manufactured by BSI.

There are 12 irradiance collectors involved in these experi-

ments, all having the same basic design--ll have Plexiglas

diffusers and 1 (MER-2040 S/N 8738) has a Teflon diffusers
(Table 8 and Fig. 8).

The replicated experiments summarized in Tables 2-

8 show that, for the majority of channels tested, the la

uncertainties in experimentally determined immersion co-

efficients are approximately 1% or less. The notable excep-

tions are the Ed(A) channels at wavelengths greater than

550nm of the MER-1012f S/N 8107 (Fig. 2 and Table 2)

and MER-1015 S/N 8205 (Fig. 3 and Table 3). It is sus-
pected that these larger uncertainties may indicate non-

linearities in the responsivities of these channels. Non-

linearity may be due to a voltage discontinuity across a

gain change in replicated experiments at different lamp-
to-collector distances.

The total range between the immersion coefficients of

the 12 collectors is as large as 15% at some wavelengths

(Fig. 1 and Table 10). The standard deviation of disper-

sion in immersion coefficients is generally between 3.5-5%,

at least at those wavelengths for which collector sample

sizes were large enough to estimate a reasonable standard

deviation (Table 10).

Immersion coefficients vary linearly with wavelength for

many of the diffusers (Table 9, and Figs. 2 and 4-8), with

residual standard deviation s,y x 100% <__1% (except for

the MER-2040 S/N 8725, where s,_ x 100% = 1.7%). The

immersion coefficients for the MER-1015 S/N 8205 are not
a well-behaved linear function of wavelength.

The dispersion in immersion coefficients between these

irradiance collectors (Fig. 1 and Table 10) is too large to
neglect, and the results of the replicated experiments in-

dicate that only a small fraction of this variation can be

4
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Table 2. Immersioncoefficientsmeasuredexperimentallyfor the MER-1012f(S/N 8107).Thedataare
)resentedherein orderof decreasinglamp-to-collectordistance.

Wavelength

[nm]
406.9

442.5

487.1

517.8

564.9

632.3

681.3

24 June 1994 24 June 1994 17 March 1994t
144.5 cm 130.0 cm 106.3 cm

1.3510 1.3492 1.3512

1.3673 1.3643 1.3685

1.3499 1.3454 1.3501

1.3383 1.3344 1.3391

1.3178 1.3388 1.3195

1.3130 1.2961 1.3246

1.3044 1.2636 1.2807

Immersion Coefficient

p a Range

1.3505 0.0009 0.0020

1.3667 0.0018 0.0042

1.3485 0.0022 0.0048

1.3373 0.0020 0.0047

1.3254 0.0095 0.0210

1.3112 0.0117 0.0286

1.2829 0.0167 0.0408

t Immersion coefficients calculated from experimental measurements by BSI.

Table 3. Immersion coefficients measured ex _erimentally for the MER-1015 (S/N 8205).

Wavelength 1 September 1994 2 September 1994 Immersion Coefficient

[nm] 152.2 cm 137.8 cm 152.2 cm 137.8 cm p a Range

406.0

438.5

462.4
485.5

517.9

536.8

558.5

588.4

624.2

673.3

696.2

762.4

1.4159 1.4217

1.4335 1.4473

1.4253 1.4371
1.4210 1.4248

1.4031 1.4083

1.3929 1.4004

1.3843 1.3196

1.3104 1.4189

1.4494 1.4065

1.4325 1.3993

1.3846 1.3507

1.3120 1.3131

1.4233 1.4104

1.4351 1.4398

1.4309 1.4291
1.4227 1.4177

1.4071 1.4022

1.3965 1.3930

1.3879 1.3183

1.3169 1.4171

1.4448 1.3955

1.4482 1.3861

1.3730 1.3418

1.3151 1.3109

1.4178 0.0051 0.0130

1.4389 0.0054 0.0138

1.4306 0.0043 0.0118

1.4215 0.0026 0.0071

1.4052 0.0026 0.0060
1.3957 0.0031 0.0075

1.3525 0.0336 0.0696
1.3658 0.0522 0.1086

1.4240 0.0235 0.0539

1.4165 0.0249 0.0621

1.3625 0.0171 0.0428

1.3128 0.0016 0.0042

Table 4. Immersion coefficients measured experimentally for the MER-1032 (S/N 8301). The data are
_resented here to allow comparison for similar lamp-to-collector distances.

Wavelength

[nm]
411.1

441.9

452.9

489.6

508.9

528.6
555.3

588.9

632.1

654.8

670.7

30 December 1993
120.0 cm

1.4053

1.3946
1.3897

1.3754

1.3795

1.3529
1.3451

1.3329

1.3071

1.3013

1.3032

22 July 1992
138.0cm 123.5cm

26 July 1992
137.9 cm 123.5 cm

1.4112 1.4037

1.4146 1.4005
1.4089 1.4096

1.3945 1.3925

1.3889 1.3819

1.3795 1.3735

1.3679 1.3622

1.3577 1.3490

1.3348 1.3280
1.3184 1.3151

1.3279 1.3219

1.4172 1.4136

1.4302 1.4016
1.4091 1.4129

1.3887 1.3918

1.3877 1.3854

1.3790 1.3753

1.3664 1.3618

1.3540 1.3450

1.3337 1.3271
1.3222 1.3153

1.3285 1.3232

Immersion Coefficient

Iz a Range

1.4102 0.0057 0.0135

1.4083 0.0143 0.0356

1.4060 0.0093 0.0232
1.3886 0.0077 0.0191

1.3847 0.0039 0.0094

1.3720 0.0110 0.0266

1.3607 0.0091 0.0229

1.3477 0.0096 0.0248

1.3261 0.0112 0.0276

1.3145 0.0079 0.0209

1.3209 0.0103 0.0253
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['able 5. Immersion coefficients measured ex )erimentally for the MER-1032 (S/N 8301).

Wavelength 22 July 1994 26 July 1994 Immersion Coefficient

[nm] 131.6 cm 123.5 cm 131.6 cm 117.2 cm # a Range

411.3

442.0

489.9

509.1

555.4

529.1

633.0

670.9

1.4532 1.4508

1.4216 1.4214

1.3999 1.4017

1.3859 1.3877

1.3664 1.3658
1.3788 1.3783

1.3108 1.3271

1.3237 1.3113

1.4458 1.4427

1.4165 1.4156

1.3987 1.3961
1.3845 1.3819

1.3664 1.3595

1.3773 1.3735

1.3103 1.3204

1.3249 1.3068

1.4481 0.0041 0.0105

1.4188 0.0027 0.0060

1.3991 0.0020 0.0056

1.3850 0.0021 0.0058

1.3645 0.0029 0.0069

1.3770 0.0021 0.0053

1.3172 0.0070 0.0168
1.3167 0.0078 0.0181

Table 6. Immersion coefficients measured ex )erimentally for the MER-2040 (S/N 8724).

Wavelength 22 July 1994 26 July 1994 Immersion Coefficient

[nm] 121.6 cm 107.2 cm 121.6 cm 107.2 cm # a Range

453.2

440.3

486.7

516.9

530.2
565.1

664.0

1.4086 1.4077

1.4144 1.4143

1.3942 1.3931

1.3783 1.3825
1.3724 1.3762

1.3560 1.3554

1.3175 1.3167

1.4116 1.4117

1.4186 1.4187

1.3987 1.3980

1.3828 1.3870

1.3770 1.3807
1.3604 1.3602

1.3218 1.3213

1.4099 0.0018 0.0040

1.4165 0.0021 0.0044

1.3960 0.0024 0.0056

1.3827 0.0031 0.0087
1.3766 0.0029 0.0083

1.3580 0.0023 0.0050

1.3193 0.0022 0.0050

Table 7. Immersion coefficients measured experimentally for the MER-2040 (S/N 8725).

Wavelength 2 September 1994 Immersion Coefficient

[nm] 125.4 cm lll.0cm # a Range

408.6

438.9
484.9

617.6

564.0
662.6

1.3150 1.3177

1.3451 1.3380

1.3449 1.3394

1.3366 1.3398

1.3223 1.3206

1.3011 1.2997

1.3164 0.0014 0.0028

1.3415 0.0035 0.0071
1.3421 0.0028 0.0056

1.3382 0.0016 0.0032

1.3215 0.0008 0.0016
1.3004 0.0007 0.0014

Table 8. Immersion coefficients measured experimentally for the MER-2040 (S/N 8738).

Wavelength 24 June I994 29 June 1994 Immersion Coefficient

[nm] 120.7 cm 106.2 cm # a Range

340.0

380.0

412.0

443.0
395.0

665.0

455.0

490.0

510.0

532.0

555.0

570.0

1.4281 1.4170

1.4127 1.4033

1.3996 1.3917
1.3870 1.3804

1.4053 1.3977

1.3126 1.3078

1.3835 1.3772

1.3714 1.3652
1.3638 1.3580

1.3570 1.3467

1.3486 1.3380

1.3447 1.3325

1.4225 0.0055 0.0111

1.4080 0.0047 0.0094

1.3956 0.0039 0.0079

1.3837 0.0033 0.0066
1.4015 0.0038 0.0076

1.3102 0.0024 0.0047
1.3803 0.0032 0.0064

1.3683 0.0031 0.0062

1.3609 0.0029 0.0058

1.3518 0.0052 0.0103

1.3433 0.0053 0.0106

1.3386 0.0061 0.0122
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Fig. 1. Immersion coefficients (F,) for several MER-series radiometers.
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least-squares regression fit to the mean coefficients.



Mueller,Fraser,Biggar,Thome,Slater,Holmes,Barnes,Weir,Siegel,Menzies,Michaels,andPodesta

1.5

E

"_j
tJ_

1.4

1.3

i.2

i.i

i.0

400

#

! t + "

÷

" 450 500 5 0 600 6 0 700
Wave]ength (nm)

9/1/94, R = 152.2 ¢m: x

9/1/94, R = 137.8 cm:

9/2/94, R = 152.2 cm: o

9/2/94, A = 137.8 cm: ÷

NEAN: #

Fig. 3. Immersion coefficients from replicate immersion tests on the MER-1015 (S/N 8205) Ed channels.
The legend in the figure provides experiment dates and lamp-to-collector distances.

9



Case Studies for SeaWiFS Calibration and Validation, Part 3

1.5

1.4

1.3

"'-_1

u. 1.2

1.1

1.0

w

x

400
''''l''''l''''

45O 5OO
I I I I I I I I I I I I I I I I I I I I I

550 600 650 700 750
Wavelength (nm)

12/30/93, R = 120.0 cm: x

7/22/94, R = 137.9 cm: w

7/22/94, R = 123.5 cm: o

7/26/94, R = 137.9 cm: +

7/26/94, R = 123.5 cm: #

MEAN:
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Table9. Linearregressionfitsto immersioncoefficients,asexpressedin (1),forirradiancecollectorsonseveral
MERunderwaterradiometersmanufacturedbyBSI.In addition,thesquaredcorrelationcoefficient,R 2, and

the residual standard deviation, sxu, are listed.

MER Number of Measurement Regression Coemcient

Model S/N Channels Type a b R 2 sxu

1012 8107

1032 8301

1032 8301
2040 8724

2040 8725

2040 8738t

7 E d

11 Ea

8 E_
7 Ed
6 Ed

12 Ed

1.4745 2.6759 0.900 0.010

1.5833 4.0050 0.980 0.005

1.6496 5.1186 0.980 0.007

1.6084 4.3755 0.998 0.002

1.3826 1.0907 0.355 0.015

1.5405 3.5163 0.998 0.002

t MER-2040 S/N 8738 is equipped with a Teflon diffuser. All other instruments tested have Plexiglas diffusers.

Table 10. Statistics of variability between immersion coefficients for different irradiance collectors at selected
wavelengths.

Wavelength Number of Immersion Coefficient

d:2 nm Collectors # a Range

406

410

442
489

555

664

670

3

7

8

8

3
3

5

1.3791 0.0346 0.0668

1.3966 0.0520 0.1513

1.3920 0.0377 0.1244

1.3744 0.0387 0.1157

1.3562 0.0113 0.0212

1.3194 0.0191 0.0382

1.3424 0.0419 0.0998

explained by experimental uncertainty in the characteri-
zation procedure. The observed scatter far exceeds the

allowable uncertainty implied by the radiometric calibra-

tion goals (that is, 1% uncertainty) of the SeaWiFS Call-

bration and Validation Program. It is essential, therefore,

to experimentally characterize immersion factors for every

profiling irradiance sensor to be used as part of SeaWiFS
validation.
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Chapter 2

The Effect of Oxygen Absorption on

Band-7 Radiance

ROBERT S. FRASER

NASA Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT

Atmospheric oxygen absorbs about 13% of the available sunlight reflected from the Earth in band 7 of the

SeaWiFS instrument, which has a bandwidth spanning 745-785 nm. If a correction is made for the average

amount of absorption, then the measured radiance would vary by +0.004 for a two standard deviation (2a)

variability in the amount of oxygen in a vertical column. For comparison, the instrumental noise is about

one-half, or 0.002, of this variation. A correction based on the regional changes in absorption, as a function of

season, would not significantly reduce the statistical variation in absorption, but a correction based on surface

pressure would be accurate.

2.1 INTRODUCTION

Atmospheric oxygen absorbs approximately 13% of the

radiant energy in SeaWiFS band 7, which has a width

spanning 745-785 nm. Since the total amount of oxygen is

: proportional to the surface pressure, the amount of oxygen

varies directly with the variation in surface pressure. The

standard deviation (la) of the surface pressure over the

entire ocean is only about 1%. It is expected, therefore,

that oxygen will cause a variability, equivalent to 2a, in the

radiance in band 7, i.e., about 0.02 x 0.13 =0.0026. This

variability is about 1.5 times the instrument radiance noise

(Hooker et al. 1992). The detailed analysis presented here

supports this conclusion.

2.2 THEORY

The radiance (Lt), measured at a satellite, can be ex-

pressed as

Lt = Latm -t- Lsfc, (2)

where Latin is the radiance of light reflected from the at-

mosphere, and Lsfc is the radiance of light leaving an ocean

surface and passing through the atmosphere. Although

Lat m receives contributions from light scattered through-

out the atmosphere, a slightly more conservative approach

to estimating the effect of oxygen absorption is to assume

that the scattering occurs in a thin layer near the surface,

and that the absorbing oxygen lies entirely above the sur-

face layer.

In this simulation, sunlight is considered to reflect from

both the sea surface and a concentrated layer of air just

above the sea surface. The combined reflectance (for the
sea surface and the layer of air) is equal to p. Light would

be absorbed along a two-way path through the entire at-

mosphere. Then the total radiance measured by the Sea-

WiFS instrument (in orbit) would be

Lt = /p(A)f(A)T()_)S(A)d)_, (3)

where f isthe instrument spectralresponse function,S is

the solarspectralirradiance,T isthe two-way transmission

through the volume ofoxygen

T(A,O,00) = e -m(°'°°)r°x(:q (4)

where fox is the oxygen absorption optical thickness, and

m represents the air mass:

1 1

m =cosOo + (5)cos 0"

In (5), 00 is the solar zenith angle, and 0 is the zenith

angle of the line-of-sight in a plane-parallel atmosphere.

In (4), the oxygen absorption optical thickness, %x(A), is
defined as

Vo×(A) = k(k)N, (6)

where k is the molecular absorption cross-section area, and

N is the total number of oxygen molecules per unit area

in a vertical column of the atmosphere.
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Fig. 9. Oxygen absorption band (A-band), the integrand of (13), for an air mass m = 2. The curve is

adapted from data given by Wu (1985).

Two models, one with oxygen and another without oxy-
gen, will be examined and compared with regard to the ra-
diance SeaWiFS will measure in orbit. In the model with-

out absorbing oxygen, L0 represents the radiance. The

number of absorbing molecules above the reflecting layer,

N, is then equal to 0, the optical thickness r=0, the trans-

mission T=I, and from (3) the radiance is

L0 = pS(Ax)./f(A)dA
(7)

= pS(A1)B.

In this expression, the reflectance, p, can be considered

constant without loss of generality, and S(765) has a value
of 122.5mWcm-2#m -1 when A1 is equal to 765nm. The

width of band 7, B, is approximately 40.5 nm, as defined by

the integrated SeaWiFS spectral response function, f(A),
supplied by Barnes (1994). The wavelength A1 = 765 nm

is selected so that (3) and (7) are equal.
If oxygen absorption is accounted for, the radiance, L,

of light transmitted through the absorbing oxygen along a

two-way path is, from (3) and (4),

= /p(A)f(A)e-ra(O'O°)r(1)S(A)dA. (8)L
J

With T = 1 in (3), the absorbed radiation is then found

as the difference between (3) and (8):

AL = Lo - L, (9)

= /p(A)f(A)[1-e-m(O'O°)r(X)]S(A)dA, (10)

= ill)

= pf(A2)S(,k2)W, (12)

w = f[1-e-m(°'°°)r(_)]d_, (13)

with the following values in effect: A2 = 764nm, f(_2) =

0.94, and S(A2) = 124mWcm-2#m -1. Note that A2

is a wavelength within the absorbing band (758 < As <

771 nm) and not within the total band (735-800 nm). The

integral in (13) represents an equivalent bandwidth, W, of

complete absorption and depends on the amount of oxygen.

The integrand of (13) is given in Fig. 9. The absorption

band is restricted to a width of 13nm (758 < A < 771 nm).
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Fig. 10. The equivalent width, W, of the oxygen A-band for sunlight reflected from surfaces at increasing

pressure levels in the atmosphere. Curves are given for air masses 2 and 3. This figure is adapted from

computations made by Curran (pers. comm.).

Table 11. Equivalent width, W, of oxygen A-band

for sunlight passing to the surface (1,013 mb) and
reflected into space. The data presented are taken
from Fig. 10. The symbol p represents surface pres-
sure.

Air W A W / Ap b-_actional

Mass [nm] [nm/mb] Absorption W/B

2 4.6 0.0031 0.1]

3 5.2 0.0035 0.13

The change in W with respect to the total surface pres-
sure of all atmospheric gases (N2, 02, etc.) is shown in

Fig. 10. Table 11 gives W for band 7, calculated for sun-

light reaching sea level and then reflected to space. The
change in W with respect to pressure appears in the third

column, and the fraction of energy absorbed in band 7,

from (15), appears in the last column.
The relative loss of radiance caused by oxygen absorp-

tion is found by dividing (12) by (7):

AL pf(A_)S(A2)W

Lo pS(A1)B
(14)

W

=_-E'

where for air mass m = 2,

f(_=)s(_)
s(_)

0.94 x 124 (15)

122.5

= 0.95.

The relative amount of absorbed energy taken out of

the band is approximately that given by letting fl = 1 in

(14):
AL W

(16)
Lo B

The relative loss in radiance equals the ratio of the equiv-

alent width W of the oxygen band, to band 7 width B.

The change in the equivalent bandwidth caused by a

change in the amount of oxygen can be calculated from

(14):
AL AW

Lo B
(17)

AW Ap

Ap B'
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where p is the total sea level pressure of all atmospheric

gases, i.e., surface pressure.

Statistical data on the atmospheric surface pressure are

not available with high spatial and temporal resolution.

The median value of pressure over the oceans is 1,012.5 mb,

and the extreme monthly values are 969 and 1,043 mb (Mc-
Clain et al. 1994). The extremes and reference pressure

(P_ef) data are given in Table 12. The deviations of -44
and +30 mb are the changes of the monthly extreme pres-

sures from 1,013 mb (United States Navy 1978). The max-

imum presssure variations occur in the middle latitudes

during the winter. The deviations of -30 and +34 mb, ap-

pearing in the last column of the second row, are based on

the maximum data given by Cantor and Cole (1985); the

deviations are computed as the local average (+ 2a) minus
the worldwide average. For example, the All ocean devi-

ations=l,015 =t=32 - 1,013 = -30, +34 mb. The tropical

deviation for a 2a variability in pressure (-6, +2 mb) is

much weaker. Because extreme low-pressure cyclones are

associated with strong winds, rain, and overcast clouds,

satellite observations of the surface would not be possible
under such conditions.

Table 12. Sea level pressure data for oxygen ab-
sorption estimation. The deviation column values
(Pdev) are the differences between the minimum and
maximum surface pressures compared to 1,013 mb.

StatisticaI

Basis

All-ocean averaget

Monthly extreme low

Monthly extreme high

Tropicst

Pref Pdev

[mb] [mbl

1,015 -30, +34
969 -44

1,043 +30

1,011 -6, +2

Cantor and Cole (1985); all others from McClain et
al. (1994).

Absorption changes caused by extreme variations in

oxygen absorption are given in Table 13 for air masses 3

and 4. The minimum (-44 rob) and maximum (+34 mb)

pressure changes are taken from Table 12. The changes in

equivalent bandwidth (AW/Ap) are taken from Table 11

for air mass 3 and extrapolated for air mass 4. The mag-
nitude of the variations is 0.003-0.004, which can be com-

pared with the instrumental noise, 0.002, estimated from

the signal-to-noise ratio (SNR) for band 7 (Hooker et al.

1992). As seen from Table 12, the small pressure varia-

tions in the tropics would have a small effect on absorption

changes in band 7.

Table 13. Absorption changes for band 7.

Air

Mass

3

3

4

4

AW/Ap Pdev

[nm/mb] [mb]

0.0035 -44

O.0035 +34

0.0041 -44

0.0041 +34

W Absorption
Change

-0.15 -0.004

+0.12 +0.003

-0.18 -0.004

+0.14 -0.003

2.3 CONCLUSION

The simplest correction for oxygen absorption is based

on a constant amount of atmospheric oxygen in a vertical

direction. In this case, oxygen absorbs about 13% of the

radiant energy available for remote sensing by SeaWiFS

band 7. The absorption depends on the length of the path

through the atmosphere: from the sun [i.e., total solar irra-

diance at the top of the atmosphere (TOA)] to the surface,
and back to SeaWiFS. Even if the amount of oxygen in a

vertical direction is assumed to be constant, oxygen correc-

tions have to be adjusted for the geometry. Statistical data
are not available for making a precise estimate of the vari-

ation in absorption caused by the change in the amount of

oxygen that occurs when the atmospheric pressure varies
from an average value of 1,013mb. For a 2a variation in

the amount of oxygen, however, the variable absorption in
band 7 is not more than twice the instrumental noise.

The operational procedure for making an atmospheric

correction for molecular scattering will use the surface pres-

sure in the correction algorithm. This pressure data can

also be utilized to make a correction for oxygen absorption.
In this case, the statistical variations discussed here would
not occur.

In the above discussions, the vertical gradient of at-
mospheric optical properties has been neglected, but Ding

and Gordon (1994) have shown that the vertical profile

must be included for the derivation of the water-leaving

radiance to be sufficiently accarate. Corrections based on

a single reference profile are adequate except for the fol-
lowing three cases: large amounts of stratospheric aerosol,

such as occurred after the volcanic eruptions of El Chich6n

and Mount Pinatubo; thin cirrus clouds; and aeolian dust,
such as that from the Sahara or Gobi Deserts.
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Chapter 3

Second SeaWiFS Preflight Solar Radiation-Based

Calibration Experiment

STUART F. BIGGAR

KURTIS J. THOME

PHILIP N. SLATER

Remote Sensing Group, Optical Sciences Center

University of Arizona, Tucson, Arizona

ALAN W. HOLMES

Santa Barbara Research Center

Goleta, California

ROBERT A. BARNES

ManTech, Inc.

Wallops Island, Virginia

ABSTRACT

This paper describes the second solar radiation-based calibration of SeaWiFS. The experiment was done on 1

November 1993 in the rock garden at SBRC. The results of the calibration are presented, along with a comparison

to the SIS calibration done at SBRC. The estimated uncertainty of the SIS calibration is 2.8%, compared to
the 4% estimated uncertainty for the solar-based calibration. There is also an uncertainty in the value of the

exoatmospheric solar irradiance used to make this comparison, which is probably on the order of 1%. In addition,

the integrated out-of-band blocking for SeaWiFS is in the 1-3% range, which can introduce significant differences
between the lamp- and solar-based calibrations. This agreement is better than anticipated, and better than the

agreement achieved in March 1993 from the first experiment. The better agreement is probably due to a sphere

recalibration between the two experiments.

3.1 INTRODUCTION

The basic concept for a solar radiation-based calibra-

tion of a satellite sensor is to attempt to simulate the solar

irradiance incident on the diffuser in space while doing
the experiment on the ground. A thorough discussion of

the concept was presented in April 1993 at the Society of

Photo-optical Instrumentation Engineers (SHE) meeting

in Orlando, Florida (Biggar et al. 1993). This presentation

included results from the first calibration performed on

SeaWiFS. After this calibration, a stray light, or transient

response, problem was discovered in SeaWiFS. The sensor
was subsequently modified to reduce the response to out-

of-field radiation, such as that caused by clouds, within 10

pixels of the SeaWiFS instantaneous field-of-view (IFOV).
After the modifications, the sensor was recalibrated in the

laboratory using the 100em SIS at SBRC. Another solar
radiation-based calibration was scheduled for late October

1993, to coincide with a look at the full moon on 29 Octo-

ber. Cloud and visibility conditions, caused in part from

haze and smoke from fires in the Southern California area,

prevented the calibration from taking place on 29-31 Oc-

tober. On 1 November, sky conditions were good enough

for calibration purposes. The sensor was taken outside at

about 1115 Pacific Standard Time (PST), and measure-
ments were taken at about 1215, 1255, and 1400 PST. The

instrument was covered immediately after the last data set
was collected.

3.2 EXPERIMENTAL METHOD

The transmittance along the path to the sun was mea-
sured with a solar radiometer possessing 10 bands cover-

ing the spectral range of about 370 1,040nm. Table 14

shows representative radiometer data for the nine bands

that were not affected by water vapor absorption. The

sky conditions on 1 November 1993 were not sufficiently
favorable to allow a Langley plot determination of the op-

tical depth; therefore, instantaneous measurements of the

transmittance were made by using previous calibrations
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Table 14.Solarradiometeropticaldepthmeasurements.
Band

Number

5
6

7

8

10

Wavelength Optical

[nm] Depth ¢r

368.9 1.0109 0.0061

399.1 0.8279 0.0070

440.0 0.6623 0.0061

518.6 0.4633 0.0050
608.5 0.3499 0.0045

669.0 0.2756 0.0039

779.7 0.2008 0.0033

869.8 0.1643 0.0028

1,027.2 0.1284 0.0020

Table 15. SeaWiFS measurements on 1 November 1993 at 1400 PST. Pixel 312 (the center pixel) and
pixel 0 (zero offset) were used for the determinations of the total and diffuse only signals.

Band Shaded Shaded Unshaded Unshaded Diffuse/ A Unshaded

Number (zero offset) (312) (zero offset) (312) Global vs. Shaded

20 60 20 254 0.17094 194

17 58 17 294 0.14801 236

20 52 20 282 0.12261 229

20 55 20 332 0.11218 277

22 60 22 421 0.09520 361

24 60 24 508 0.07438 448
24 55 24 508 0.06405 453

21 58 21 591 0.06491 533

of the instrument zero-airmass intercept. Measurements

by the same solar radiometer were also made, after the

calibration described here, during subsequent satellite cal-
ibration campaigns at White Sands National Monument in

New Mexico. For the intercepts done before and after the

solar radiation-based calibration, the standard deviation

(a) is about 1% of the intercept value. It is expected that

the error in the transmittance measurement when using

these intercepts will be less than approximately 3% at the
measurement wavelengths.

The optical depths and the barometric pressure are

used to separate the optical depth components due to Ray-

leigh scattering, aerosol scattering and absorption, and ab-

sorption due to ozone (Biggar et al. 1990). The proce-
dure employed here assumes a Junge power law distribu-

tion for aerosol particle size. The results on 1 November
give a Junge parameter of 3.50-3.43, and a derived colum-

nar ozone amount of 0.246-0.260 cm-atmt for the three
measurement times. Using the Junge parameter, ozone

The centimeter-atmosphere (cm-atm) is a measure of trace
gas columnar amount. It can be envisioned as if the entire
trace gas content within a 1 cm _ column of the Earth's at-
mosphere was accumulated at the base of this column under
standard temperature and pressure conditions. The cm-atm
would give the length of this volume of gas in centimeters.

amount, and the barometric pressure, the optical depth
components can be computed for each of the SeaWiFS

bands. MODTRANwas used to compute the effects of gaseous

absorption for each band. The only band that exhibits any

significant absorption is band 7, and the oxygen slant path

transmittance for this band is computed to be 0.927.
The transmittance measurements described above were

performed when the sensor was actually taking data from
the illuminated solar diffuser. Measurements of the diffuser

were made with the diffuser illuminated by the sun and the

sky (unshaded), and by only the sky (direct beam blocked,

or shaded). Data from pixel 312, the center pixel from the

diffuser, along with that from pixel 0 (the zero offset) were

used to determine the total and diffuse only signals. The

choice of pixel 312 is not critical, as the variation across

the diffuser is no more than one digital count (DC) for any
band.

3.3 RESULTS

The measurements from the diffuser are presented in
Table 15. These data are from the 1400 PST measure-

ment sequence. The data in the table include the zero off-

set for each band for both the shaded and unshaded mea-

surements, the actual measurements, and two computed
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Table 16. Transmittance and predicted DCs in orbit.

Band Vertical slant Predicted

Number Path Path TOA DCs

1

2
3

4

5

6

7

8

0.4651 0.2860 677.5

0.5274 0.3512 671.1

0.6004 0.4342 526.8

0.6238 0.4622 598.7

0.6654 0.5136 702.2

0.7575 0.6349 705.1

0.7507 0.6565 689.7

0.8437 0.7573 703.5

Table 17. Sphere calibration computations.

Band Integrated Calibration BRDFt Spectral Offset Predicted

Number Irradiance ( E) Correction DCs

1

2

3

4

5
6

7

8

170.827 0.00704 0.02682 0.963 20 695.8
188.992 0.00810 0.02786 0.983 17 678.3

193.383 0.01045 0.02751 0.980 20 539.5

189.022 0.00923 0.02806 0.998 20 595.8

187.431 0.00744 0.02755 0.991 22 722.4

151.546 0.00629 0.02800 1.011 24 691.3

121.715 0.00512 0.02854 0.995 24 705.9
98.168 0.00422 0.03011 1.011 20 712.8

Bidirectional Reflectance Distribution Function

quantities--the ratio of the diffuse signal to the global

(or total) signal, and the difference between unshaded and
shaded measurements. This difference is the direct solar

beam signal without the diffuse sky contribution.
A forward-scatter correction must be made to account

for the small amount of forward-scattered diffuse light that

is blocked by the disk. This corrected measurement of the
direct solar beam is then further corrected for the trans-

mittance in order to compute an expected solar diffuser
measurement at TOA, i.e., in orbit. The forward-scatter

correction is wavelength dependent, but in all cases it is

very small, i.e., less than 1 DC. This correction is sub-
tracted from the difference in measurements.

The DCs for each SeaWiFS band are then divided by

the slant path transmittance, which has been computed

for each band. This transmittance is computed with Beer's

Law, using the optical depth components in each band, and

further multiplied by the oxygen transmittance in band

7. The transmittance values computed for each band are

given in Table 16. These values correspond to a time of
14:00:30 and an effective airmass of 1.6354. The uncer-

tainty in airmass for a five-minute period around this time

is 0.0079, which corresponds to an uncertainty in trans-
mittance of less than 0.5%.

The predicted DCs have some associated uncertain-

ties, which can be difficult to quantify. The major source
of uncertainty is the transmittance measurement. Other

sources of uncertainty are interpolation from the radiome-

ter wavelengths to the SeaWiFS wavelengths, the forward-

scatter correction, the oxygen transmittance computation

for band 7, and atmospheric variability. The transmit-

tance measurement uncertainty is probably less than 3%,

as this uncertainty is dependent on the radiometer calibra-

tion. The interpolation uncertainty can be estimated by

using the calculated optical-depth components to compute

the expected transmittance, which was also measured in

the solar radiometer bands. The largest difference is for

band 4 of the radiometer, and it corresponds to an error

in transmittance of about 0.9%. The second error term in

Equation 3 of Biggar et al. (1993), representing the air-

mass uncertainty, is less than 0.2% for all bands. The at-

mospheric variability can be estimated by comparing the
standard deviation of the transmittance measurements to

the average. The variability in transmittance in the ra-

diometer bands was about 1%. The average transmittance

was used so that this variability should not cause a signifi-

cant uncertainty. A total uncertainty on the order of 4% is

expected, with the radiometer calibration being the domi-

nant term. The solar radiometer gives a much more repeat-

able measurement, so it would be better if the sky condi-

tions were stable enough for a Langley plot determination
of the transmittance. Conditions in Santa Barbara were

not good enough, however, for such a determination.
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Fig. 1 1. Measured atmospheric transmittances during the two solar calibration experiments. The transmit-
tances are given at the wavelengths of the Arizona solar radiometer.
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Fig. 12. Comparison of the laboratory- and solar-based calibrations of SeaWiFS. The laboratory measure-

ments were made by SBRC with a 100 cm SIS. For the 1 November 1993 solar calibration, the two techniques
agreed to better than 3%.
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3.4 DISCUSSION

As a check on the results, and in an effort to relate

these results to the International System of Units (Sit),

these results were compared to the calibration of the Sea-

WiFS system with the SBRC 100 cm SIS. The SIS results

were taken from the SeaWiFS Calibration and Acceptance

Data Package, which is described in Barnes et al. (1994).
Exoatmospheric solar irradiance data, based on Neckel and

Labs (1984), were used; these data were integrated over
the SeaWiFS band and then divided by the radiance-to-

DC calibration. This value was then multiplied by the

diffuser BRDF and divided by the correction for spectral

shape. The zero signal offset was then added to give the

predicted TOA DC value. The results are summarized in
Table 17. The results in Table 17 can be easily compared

to those in Table 16. The summary of this comparison is
shown in Table 18.

For all bands, the differences between the solar-based

and sphere-based methods are less than 3%. The esti-

mated uncertainty of the SIS calibration is 2.8%, compared
to the 4% estimated uncertainty for the solar-based cali-

bration. There is also an uncertainty in the value of the

exoatmospheric solar irradiance used to make this compar-

ison, which is probably on the order of 1%. In addition,

the integrated out-of-band blocking for SeaWiFS is in the

1-3% range, which can introduce significant differences be-
tween the lamp- and solar-based calibrations.

This agreement is better than anticipated, and better

than the agreement achieved in March 1993 for the first

experiment. The better agreement is probably due to a

sphere recalibration between the two experiments.

It is also instructive to compare the SeaWiFS band

transmittances from the two dates (Fig. 11). The at-

mosphere was clearer in March compared to late Octo-

ber, when smoke from fires in the Los Angeles area af-
fected conditions in Santa Barbara. The measurements

in March were also at a lower solar zenith angle than in

November. Both of these factors could possibly make the

November data more uncertain; however, the results still

compare well with laboratory measurements. This favor-

able comparison leads to the conclusion that the trans-

mittance measurements are fairly accurate even though a
Langley plot was not possible. Figure 12 shows the per-

centage difference between the calibration methods for the
two dates.

Table 18. Comparison between solar radiation-
based and laboratory (SIS based) calibrations.

Band Solar SIS Difference

Number Based Based [%]

677.5 695.8 2.6

671.1 678.3 1.1
526.8 539.5 2.3

598.7 595.8 -0.5

702.2 722.4 2.8

705.1 691.3 -2.0

689.7 705.9 2.3

703.5 712.8 1.3

The SI acronym is derived from the original French title,

Syst_me International d' Unitds.
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Chapter 4

In Situ Evaluation of a Ship's Shadow
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ABSTRACT

In situ measurements of optical properties made from a ship can be biased by the ship's shadow. In an effort to

evaluate the ship shadow perturbation created by the R/V Weatherbird II, profiles of downwelling irradiance,

Ed(Z, A); upwelling radiance, Lu(z, A); as well as derived AOPs were obtained at four distances--1 m, 3 m, 6 m,

and 20 m or more--off the ship's stern. Two statistical analyses of these data are explored here. The first

analysis uses data from pairs of simultaneously-obtained light profiles, one profile obtained at a distance greater

than 20 m from the stern of the ship, and the other taken either 1 or 6 m off the stern. The second analysis

compares the derived AOPs for each profiling distance from the ship, using data obtained throughout the length

of the experiment. Significant differences are rare in comparisons of profiles obtained at least 3 m off the ship's
stern. At 1 m off the stern, however, significant discrepancies are intermittently observed. This work illustrates

that the inherent sources of noise in determining radiative fluxes and AOPs in the upper ocean are generally
greater than the effects incurred by the ship's own shadow under optimal conditions.

4.1 INTRODUCTION

Accurate measurements of AOPs are required to de-

velop a detailed understanding of the processes regulat-
ing bio-optical property distributions and their relation-

ship to remotely sensed signals. Instrumentation designed
to measure properties of the underwater radiation field,

when deployed at relatively close proximity to a ship, may
encounter perturbations caused by the ship's shadow (e.g.,

Poole 1936, Strickland 1958, Gordon 1985, Voss et al. 1986,
Waters et al. 1990, and Helliwell et al. 1990). This source

of error is of obvious importance and must be accurately
assessed. Poole (1936) estimated that the ship shadow er-

ror under diffuse skylight is about 10% at a depth of 5 m
when the radiometer is deployed approximately 2 m off the
stern, and also noted that this source of error decreases in

significance with increasing depth. The Monte Carlo simu-

lations performed by Gordon (1985) indicate that the error

Editors' Note: This chapter originally appeared as an article
in Ocean Optics XII, published by SPIE (Weir et al. 1994),
and is being included in this volume with the permission of the
authors and SPIE. Minor editorial changes have been made to
reflect the style of The Sea WiFS Technical Report Series.

in downwelling irradiance rarely exceeds 2% as long as skies
are clear and the sun is within 45 ° of the stern. At low so-

lar elevations, however, these errors can increase to about

10%. Gordon (1985) also shows that the errors are reduced

as the instrument is moved horizontally away from the

ship, although errors during diffuse light conditions may

remain as high as 30%. Voss et al. (1986) conducted an ex-

periment with an extendable sea-going crane that showed

values of upwelling radiance, L_ (z, A), decrease by 10-20%
unless the instrument is deployed more than 5 m from the

ship.

Ship shadow perturbations are likely to be the greatest
near the sea surface. This factor is critical for the devel-

opment of ocean color algorithms, as maximum accuracy

must be sought for the determination of calculated pa-

rameters such as the remote sensing reflectance, Rcs(A).
Several studies have attempted to completely avoid the

ship's shadow by floating optical instrumentation a consid-

erable distance from a ship (Gordon and Clark 1980, Clark

1981, and Waters et al. 1990). These deployment strate-

gies are difficult to conduct operationally, particularly in

rough seas. Such strategies also place severe limits on the
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amount of data that can be collected, restrict linkages to

other oceanographic observations, and limit time-scale res-

olution, e.g., Dickey and Siegel (1993).
In order to completely avoid the ship's shadow when

measurements of downwelling irradiance, Ed(z, A), are be-

ing made, Mueller and Austin (1992 and 1995) suggest that

the deployment of optical instrumentation should be at a

distance, _d- Mueller and Austin (1992 and 1995) define

_d using

sin(48"4°) (18)
44 = Kd(A) '

where Kd(A) represents the vertical attenuation coefficient
for downwelling irradiance. Typical values for Kd(A) off

Bermuda range from 0.02-0.08 m -1 (Siegel et al. 1994),
which result in recommended deployment distances of 9-

40 m from a ship's stern. Similarly, recommendations for

deployment distances for E_(z, ),) and L_(z, A) (_ and _L,

respectively) are given by Mueller and Austin (1992 and

1995) as

3

_'- gu(A)' (19)

and
1.5

_L- KL(A)' (20)

where K,,(A) and KL(A) are the vertical attenuation coef-
ficients for upwelled irradiance and radiance, respectively.

Values of K,(A) and KL()_) are roughly equal to values

of Kd(A). Typical values of _ and _L are usually greater
than 30 m, which is nearly the length of the ship used in

this study. The distances recommended by (18)-(20) are

based only on geometric relations, and are independent of
ship size, sky conditions, sea state, deployment method,
and the orientation of the ship with respect to the solar

beam.

In this study, the effects of ship shadows upon data col-

lected from the R/V Weatherbird//--length 35.05 m, beam

8.53 m, and draft 2.60 m--are examined. The Weatherbird

H is used by the Bermuda Bio-Optics Project (BBOP) to

make routine spectroradiometer casts in conjunction with
the Joint Global Ocean Flux Study (JGOFS) Bermuda At-

lantic Time-Series Study (BATS). Spectroradiometer pro-

files were made using an extendable boom to deploy the

BBOP package, which allowed profiles to be made up to
6 m off the stern of the Weatherbird II. These data are

compared with data collected using the optical free-falling

instrument (OFFI) described by Waters et al. (1990). The

OFFI data provide a control which can be used to search
statistically for the effects of the ship's shadow. The mea-
surements used were made under optimal conditions (i.e.,

clear skies, stern-to-ship solar orientation, near-constant

illumination, etc.), and thus, provide the basis for evalua-

ting the role of the ship shadows in developing ocean color
remote sensing algorithms using the BBOP data set.

4.2 EXPERIMENTAL METHODS

The observations presented here were made from the

Weatherbird II off Bermuda on 7 July and 9-10 July 1992.

Two underwater spectroradiometers--the BBOP and the
OFFI--were lowered simultaneously from the Weatherbird

H to about 50 m (Fig. 13). The BBOP package consisted
of a BSI MER-2040 underwater spectroradiometer, inter-

faced with a SeaTech transmissometer, chlorophyll fluo-

rometer, and SeaBird conductivity, temperature, and pres-

sure sensors (Siegel et al. 1994). The OFFI is a modified
BSI MER-2020 underwater unit with a case outfitted with

buoyant fins to provide stability and control in its descent

rate (Waters et al. 1990).
The BBOP was lowered at three distances off the stern

(1, 3, and 6 m) using the extendable boom. The OFFI was
fished out, i.e., deployed astern of the ship, at least 20m
before descent. Profiles were made simultaneously so that
instantaneous fluxes from the two instruments could be

compared. Both instruments were deployed with the sun
off the stern so that the ship's shadow trailed away and

behind, which is part of the normal BBOP sampling pro-

cedure. Both instruments sampled Eu(z,A) and Lu(z,A)

in spectral wavebands centered at 410, 441,488, 520, and
565 nm.

Using laboratory facilities at the University of Cali-
fornia at Santa Barbara (UCSB), radiometric calibrations

were performed on both instruments two weeks prior to,
and two months after, this cruise. The same calibration

lamp (UCSB lamp F-303) was used for both calibrations.
The calibration coefficients for the BBOP instrument var-

ied by less than 0.5% for irradiance, and less than 3% for

radiance, between both calibration dates. The OFFI cali-
bration coefficients differed by 1-4% for both the irradiance

and radiance channels. Calibration coefficients, which were

obtained from the precruise determinations, were used for

the analysis presented here.
The two individual bio-optical data sets were processed

using the BBOP data processing system (Sorensen et al.

1994). The BBOP data processing system is used to:

1) Eliminate radiation values that are below a spec-
ified threshold;

2) Identify time segments where cloud perturba-

tions are minimal;

3) Smooth specified channels of data and remove
spikes, although not for Ed(Z, A) or L_(z, A); and

4) Bin the data into 1 m vertical depth bins.

The derived AOPs, such as Kd(z, A) and the remote sens-

ing reflectance R_s(z, A), are also calculated. In addition,
the downwelling irradiance and upwelIing radiance spectra

just beneath the sea surface, Ed(O-, A) and Lu(0-, A), are

determined by fitting profile data from the upper 20 m to

the Beer-Lambert relation. Sorensen et al. (1994) gives a

complete description of the BBOP data processing system

and data handling procedures used by BBOP.
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Fig. 13. Diagram of the BBOP ship shadow evaluation experimental design.

4.3 RESULTS

Two distinct statistical analyses are performed to eval-

uate the effects of the shadow cast by the R/V Weatherbird
II. The first analysis compares the statistical differences

between simultaneously sampled BBOP and OFFI data as

the BBOP radiometer is deployed at various distances off
the ship's stern. Differences between the two data sets are

interpreted here to indicate the effects of the ship shadow,

after accounting for a constant calibration error and the

occurrence of random errors, i.e., noise. This analysis will
be referred to as the simultaneous comparison. The sec-

ond analysis, referred to as the muIti-distance comparison,

uses data obtained throughout the experiment to compare

mean derived AOP values at each of the four distances (1,
3, 6, and greater than 20 m). The object of this compar-

ison is to address whether any significant differences can

be found among the AOP determinations.

4.3.1 Simultaneous Comparison

The simultaneous comparison evaluates the statistical
difference between the fluxes and AOPs measured by the

BBOP profiler at two distances off the ship's stern, and

identical parameters determined using the OFFI profiler.
The BBOP casts with _ = 1 m are referred to as the BI

casts, and the BBOP casts with _ = 6 m are denoted as
B6. A total of 15 paired OFFI-BBOP casts, 7 B6 and 8

B1 casts, are used in this analysis. In the following discus-
sion, the OFFI casts are designated 020. Data from the

two instruments are estimated to be collected simultane-

ously to within 5 sec. The statistical differences between

OFFI (O20) and BBOP (B1 or B6) measurements of down-

welling irradiance, upwelling radiance, and derived AOPs
are compared. A positive difference means that the BBOP

measurements underestimate the 020 values, which may

indicate a ship shadow influence. The error bars shown

correspond to 90% confidence intervals (c.i.) for the mean

estimates throughout the analysis.

For the experimental measurement of downwelling ir-

radiance at 441 nm, there are no statistically significant

differences (at the 90% confidence level) between the O20
casts and either the B1 or the B6 casts (Fig. 14, top).

However, the B1 mean differences are consistently posi-

tive, suggesting that the B1 casts may be affected by the

ship's shadow, although not in a statistically significant
manner. The B1 - 020 difference increases as the sea sur-

face is approached, which also suggests the signature of a
ship shadow. The vertical profile of the B6 - 020 differ-

ences does not give any indication of a ship shadow in-

fluence. The other matching wavelengths (410, 488, 520,

and 565 nm) for Ed(z, A) gave similar results, which are
not shown here. The differences between the B1 and O20

upwelled radiance data at 441 nm, Lu(z,441), are signifi-
cantly different from zero and show a ship shadow pattern

with depth, as the mean difference increases significantly

towards the sea surface (Fig. 14, bottom). This divergence

of the measurements is particularly apparent over the top

20 m, and the differences become smaller with increasing
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depth. The B6 - 020 mean difference for L,_(z, 441) shows

no statistically significant pattern with depth. This ob-

served reduction in ship shadow effects with distance from

the ship is consistent with previous studies.
In terms of the derived AOPs Kd(z, _) and/_8(z, _),

no significant differences are found between either the B1
or B6 BBOP casts and the O20 data (Fig. 15). In par-

ticular, there are no consistent variations in these differ-

ences with depth that may be simply attributed to a ship

shadow. This is true even for the mean Rrs(z, )_) differ-

ences (Fig. 15, bottom) where the 020 -B1 Lu(z, _) obser-
vations showed some deviations attributed to ship shadow.

This lack of a signature in Rrs(z, )_) may be due to the fact
that both the 020 - B1 Lu(z, )_) and Ed(z, )_) determina-

tions axe affected by the ship shadow. The decrease in both

L_,(z, )_) and Ed(z, )_) due to the ship shadow, may actually
cancel the effects of the shadow on values of Rr_(z, )_).

Accurate measurement of both the upwelling and down-

welling light streams just beneath the sea surface is critical
to the development of algorithms for estimating bio-optical

properties from satellite sensors. The differences between
the 020 and B1 or Be estimates of Ed(O-, )_) and L_(0-, _),

for both the B1 and Be distances off the stern, are shown

in Fig. 16. The mean Ed(O-, _) differences show no signifi-
cant differences from zero, or between the two deployment

distances (Fig. 16, top). Significant divergence from zero
is found, however, for the mean L_(0-, _) differences for

all wavelengths except 565 nm.

Significant differences are also found for some of the

wavelengths in the B6 - O20 comparison, although it is

unclear how large of a calibration difference remains be-
tween the two instruments. In particular, the size of the

disparity in the mean differences between the two BBOP
deployment distances increases as )_ is decreased. These

spectral observations are consistent with numerical results

that indicate that the ship shadow effects scale as c(A)_,

where c(A) is the beam attenuation coefficient and _ is the

distance from the ship (Gordon 1985). The value of c(A)
at 565 nm is likely to be larger than its value at 441 nm.

These results further show that the influence of the ship's

shadow will be more critical for the upwelling light stream

rather than for downwelling light, as is expected. These

results can be compared to Mueller and Austin (1992 and

1995).

4.3.2 Multi-Distance Comparison

The second analysis compares the mean values of de-

rived AOPs using data obtained for each of the four dis-

tances (1, 3, 6, and greater than 20 m) throughout the ex-
periment. All available casts are used for this analysis and
the AOP determinations are classified by their distance

from the stern of the Weatherbird II. The variations in Kd

and R_s at 441 nm with depth and deployment distance are

shown in Fig. 17. Only rarely are there statistically signif-

icant differences (i.e., non-overlapping error bars), for the

four deployment distances, though trends with distance are
apparent. Similar results, not shown here, are found with

the other wavelengths sampled by the BBOP.

Spectral differences in the remote sensing reflectance

just beneath the sea surface, R_ (0-,)'1, can be used to sur-

mise the spectral structure of the ship's shadow (Fig. 18).
Again, no significant differences are found for any of the

wavelengths. This analysis again suggests that the effects

of the ship shadow on the upwelled light field may be ef-

fectively canceled out when normalized by the downwelling
irradiance.

4.4 DISCUSSION

In order to correctly interpret the present results, it

must be recognized that the observed mean differences
are a composite of one or more signals: the actual ship

shadow perturbation, a constant calibration difference be-

tween the OFFI and BBOP, and random errors due to the

poor sampling of short time-scale noise (i.e., wave glint,

small clouds, ship roll, and other effects). The influence

of random noise can be reduced by averaging over many

individual casts; however, the sample size for the simulta-
neous comparison is relatively small (N = 7 or 8). Com-

parisons between the pre- and post-cruise calibrations in-

dicate the occurrence of only small calibration differences.

The mean difference observed is, therefore, primarily com-

posed of the ship shadow perturbation as modulated by

an incompletely sampled random noise field. Elucidation

of the ship shadow perturbation above this random noise

element is the present goal.
The results of the simultaneous comparison show that

there are no significant differences between the comparison

of 020 Ed(z, _) values and either B6 or B1 irradiance de-

terminations (Fig. 14, top). This result is consistent with

the irradiance direct beam cone remaining off the stern

(Gordon 1985 and Voss et al. 1986). The determination

of upwelled radiance, however, clearly shows the effects of
the ship shadow for the B1 comparison, but not for the Be

comparison (Fig. 14, bottom). A significant difference is
also observed between the B1 and Be mean L_ (0-, A) dif-

ferences (Fig. 16, bottom). At all wavelengths, B1 mean

differences were consistently larger than those calculated
from B6 data, with the 020 value being predictably and

significantly greater than its simultaneous BBOP measure-

ment. These results clearly show that BBOP data must
be taken more than 1 m off the stern of the Weatherbird

II, but does not have to be taken beyond 6 m, in order to

avoid the ship's shadow perturbation.

The results of the multidistance comparison provide ad-

ditional information for fine tuning of the distance criteria

for the Weatherbird II. The derived AOP profiles showed

little variability among the four different deployment dis-

tances. The multidistance comparisons support the notion

that the effects of the ship's shadow may be effectively

masked by random errors associated with the many sources
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of geophysical and sampling noise. Voss et al. (1986) found

very little differences (less than 6%) in values of Kd(Z, A)

and Rrs(z, _) profiles taken at 0 and 9 m from the ship.

The differences were 0-3% and 1-6%, respectively, in the

upper 20 m. Below 20m, moreover, they found that the

effects of the ship shadow have altogether disappeared, as

is shown in this study.

In conclusion, little variability in downwelling irradi-
ance is observed for any of the deployment distances off

the Weatherbird H. Significant variations are found, how-

ever, for upwelling radiance when the deployment distance

is less than 3 m. These findings suggest that the ship's

shadow exerts its greatest influence in the upper 20 m, with

the largest perturbation at the sea surface. Measurements

of optical properties from the Weatherbird H during clear
skies with the stern pointed into the sun can be made as

long as the deployment distance off the stern is 3m or

greater. It is stressed that this analysis holds only for
deployments made off the stern of the R/V Weatherbird

H under clear sky conditions. The effects of variable sea

state, sun glint, diffuse sky, and different hull shapes and

sizes have not been evaluated, and additional experiments

are necessary.
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SeaWiFS Global Fields: What's In a Day?
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ABSTRACT

This chapter defines the procedure to be employed to delineate data corresponding to one day of SeaWiFS
operation. The definition is required for data analysis with minimal temporal aliasing in the same region of

observation. The definition also allows proper assignment of data into daily fields which will be used for the

generation of weekly and monthly average products.

5.1 INTRODUCTION

The basic products to be generated by the SeaWiFS

Project are global daily fields of geophysical quantities,

such as phytoplankton pigment concentration. The daily

fields will be the basis of subsequent temporal compositing

into weekly and monthly products. One basic question,

however, is: what constitutes a day's worth of data? This

question is the subject of this chapter.

The need for a consistent definition of a data day is

only truly relevant to the production or analysis of global

data fields. If one is dealing with a limited area (although

in this case, limited means anything less than global, and

can encompass entire ocean basins), one takes advantage

of the fact that satellite sensors usually sample a region

at approximately the same time, or times, every day. In

this way, data separated by approximately 24-hour periods
can be assigned to different data days. Analyses of the

resulting daily data fields will introduce a minimal amount

of temporal aliasing, as the difference in sampling times

will be on the order of a couple hours over an approximate

repeat cycle of a few days.

In contrast, when daily global satellite data fields are

to be constructed, a consistent definition of a data day

needs to be adopted. This definition should be easy to im-

plement in practice and should minimize temporal aliasing

and discontinuities in the resulting products. In the fol-

lowing sections, some of the various alternatives will be

explored.

5.2 TEMPORAL DEFINITION

The most obvious definition of a data day is a 24-hour

period. For instance, a daily field would encompass all

the data collected between 00:00:00 Coordinated Univer-

sal Time (UTC) (or any other arbitrary start of the day)

and 23:59:59UTC. This definition is simple, intuitive, and

extremely easy to implement. Its negative aspects, how-

ever, will become apparent when one considers the orbital

characteristics of the SeaStar spacecraft on which SeaWiFS
will be flown.

To illustrate the problem, a plot of nadir tracks is pre-

sented for the SeaStar spacecraft (Fig. 19). To simplify

the visualization, only the descending tracks are displayed,

i.e., the spacecraft is flying from north to south. The Sea-

Star descending tracks correspond to daytime data, which

is the only data archived for SeaWiFS other than special

calibration measurements. The nadir tracks were gener-

ated using the program SeaTrack, made available by the

SeaWiFS Project. A dummy set of orbital elements for the

SeaStar spacecraft [in North American Air Defense (NO-

RAD) Command two-line format] was also obtained from

the Project.

For comparison with subsequent cases, the choice is to

begin the hypothetical 24-hour data day on 2 April 1994

at 00:00:00 UTC, when the nadir track intersects the 180 °

meridian (marked _eg on Fig. 19). The descending orbit

immediately after the beginning of the data day is labeled

N. Subsequent descending tracks pass to the west, and are

offset by a distance of about 25 ° of longitude at the equa-

tor. The swaths viewed by SeaWiFS in consecutive orbits

have an increasingly larger overlap with latitude. This

means that areas at high latitudes (greater than about

50 °) may be sampled twice or more during a data day.

When an area is sampled in two consecutive descending

orbits, measurements will be separated by about an hour

and a half. Unless one is concerned with features having
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Fig. 19. Descending SeaStar tracks for a 24-hour data day beginning on 2 April 1994 00:00:00UTC.

The data day begins at the point labeled Beg. The day ends during an ascending orbit (not shown). The

first orbit after the beginning of the data day is labeled N, and subsequent orbits are labeled N+I...N+14.

very small scales, or with calculation of rates, it is prob-

ably safe to assume that the ocean fields will not change

significantly between consecutive passes; thus, temporal

aliasing should be negligible. At the same time, at low

and intermediate latitudes (approximately between 50°S

and 50 ° N), the swaths do not overlap, and there will be

gaps in the daily coverage (Hooker and Esaias 1993).

The SeaStar polar platform, which will carry SeaWiFS,

is planned to have an orbital period of approximately 99

minutes. The actual period will depend on the spacecraft

altitude, and therefore, may vary with time as the altitude

of the satellite changes. Given an orbital period of about
99 minutes, the number of revolutions that the SeaStar

spacecraft will complete in a 24-hour period is approxi-

mately 14.55. The last descending orbit of the 24-hour

data day is labeled N+14. It is apparent from Fig. 19 that

the 24-hour day leaves a large gap in coverage north of the

beginning of the day, between orbits N+I and N+14.

A second problem inherent in the temporal definition

of a data day is the existence of areas on the global fields

with large temporal discontinuities in sampling times, even

though these areas may be spatially contiguous. For in-

stance, consider descending track N+14 in Fig. 19, the last

track of the data day. To the north of that track, i.e., over

the Arctic Ocean north of Alaska, data are contributed by

track N+I and, possibly N+2, although this orbit appears

to be too far north. These two tracks, however, were sam-

pled near the beginning of the data day, more than 20 hours

before track N+14. The daily fields will then contain, in

addition to a wide gap, large temporal discontinuities be-
tween data swaths from tracks N+14 and N+I. If there is

overlap between the two swaths, data collected far apart

in time may be averaged, once again introducing potential

aliasing. Similar problems occur in the area south of track

N (south of New Zealand), which is sampled by tracks N+14
and N+13 much later in the day.

The large gaps in coverage, as well as potential aliasing

and temporal discontinuity effects associated with the 24-

hour definition, are further complicated by the fact that

the locations where gaps occur change in time. Figure 20
shows the locations, along the SeaStar nadir tracks, of the

boundaries between 24-hour data days for a 10-day pe-

riod beginning on 2 April 1994. The dot labeled 1 cor-

responds to the beginning of the period on 2 April 1994
at 00:00:00UTC. The dot labeled 2 indicates the begin-

ning of the second 24-hour data day, and so forth. The

dot marked 11 corresponds to the end of the period on 12

April 1994 at 00:00:00UTC. The shift in the location of

the daily boundaries is a direct result of the difference be-

tween the 24-hour data day and the longer time it would

take the spacecraft to complete a number of revolutions

which would ensure global coverage.

5.3 SPATIAL DEFINITION

Because of the problems associated with a temporal

data day definition, the implications of adopting a spatial

definition have been explored. In this case, the bound-

ary between data days is not defined by time, but by a
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Fig. 20. Locations of the boundaries of 24-hour data days for a 10-day period beginning on 2 April
1994 00:00:00 UTC, at the dot labeled 1.

fixed geographic reference. A similar criterion is commonly
used for designating orbit numbers in several spacecraft--

the orbit number usually is incremented upon crossing the

equator. For initial investigations, the 1800 meridian was
selected as the boundary between data days.

Figure 21 shows SeaStar nadir tracks for a spatially-

defined data day. Because the nadir tracks cross the ref-
erence line seven or eight times during a day, one of the

crossings must be selected to be the beginning of a data
day. An operational definition for the selection of the cross-

ing, which initiates the data day, is presented in Fig. 21.

For this discussion, the day is defined to begin on 2 April
1994 at 00:00:00 UTC, when the spacecraft crosses the 180 °

meridian flying from north to south. Notice that this is the

same time at which the 24-hour data day shown on Fig. 19

started, but it is entirely fortuitous that the 180 ° crossing
took place at 00:00:00. The first descending track of the

day is labeled N.

In this case, the end of the data day is defined as the
moment when the nadir track crosses the 180 ° meridian

during revolution N+I5. This happens, for the example

given, approximately on 3 April 1994 at 00:30:00UTC.

The observation most readily apparent is that a spatial

definition will result in a data day that does not necessar-

ily correspond to a 24-hour day; in this case, the data day

is approximately 24 hours and 30 minutes long.

Note that Fig. 21 is approximate for two reasons. First,
sometimes one less revolution is required to ensure almost

complete global coverage, that is, the last orbit of the day

would be N+I4. The data day would be about 23 hours and

22 minutes long in this case. Second, the spatial definition

is applied on a pixel-by-pixel basis, that is, pixels along the

same scan line on a given orbit can be assigned to different

days, depending on whether they are on one side or the
other of the 180 ° meridian.

Figure 22 illustrates the pixel-by-pixel assignment of

data to a given day. The figure shows a schematic descrip-
tion of the sampling pattern of the SeaWiFS instrument as

it flies over the 180 ° meridian. Because there is not yet a

scanner model for SeaWiFS, nadir tracks and scan lines are

shown for the Advanced Very High Resolution Radiometer

(AVHRR), which has slightly wider scans than SeaWiFS.

The figure shows about 20 minutes of nadir track, i.e.,

±10 minutes from the 180 ° meridian crossing. The scan

lines shown on Fig. 22 are separated by one minute. Pixels

along a given scan line that are located east of 180 ° are
assigned to day K (K is an arbitrary designation for a given

day). If pixels along the same scan line are west of 180 °,

those pixels are assigned to the following day (K+I). It

is appareat from Fig. 22 that even before the nadir track

crosses the 180 ° meridian, pixels are already being assigned

to day K+l. Conversely, after the nadir track has crossed

the reference meridian, pixels east of the meridian are still

being allocated to day K. It is this allocation mechanism

that makes it difficult to precisely define the duration of a

data day.

5,3.1 Beginning of the Data Day

How is the spatial definition of a data day implemented

in routine processing of global satellite data fields? The
first step is to define a meridian, which will serve as the
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Fig. 21. SeaStar descending orbits for a spatially-defined data day beginning on 2 April 1994 00:00:00

UTC. At this time, the nadir track crosses the 180 ° meridian. The day ends when the nadir track crosses
the 180 ° meridian (square labeled End) on 3 April 1994 00:30:00UTC.

60"N
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Day K+I Day K
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Fig. 22. AVHRR nadir track and scan lines for a 20 minute period centered about the 180 ° meridian

crossing. Pixels to the east of the 180 ° meridian (marked in a thicker line) get assigned to a given data

day K, whereas the pixels to the west of the meridian correspond to data day K+I.
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referenceforthespatialdefinition.The180° meridian used

in the previous examples is a good choice, as it minimizes
differences between actual dates and the dates assigned

to the data days. As the spatial data days are not 24

hours long, a suitable naming convention will have to be
established.

A second step in defining a data day is to decide which

of the descending crossings of the reference meridian will

mark the beginning of each data day. As mentioned above,

there are either seven or eight descending crossings of the
reference meridian in a day. This pattern is illustrated in

Fig. 23, which shows the latitude of descending crossings
of the 180 ° meridian as a function of time for the SeaStar

spacecraft, beginning on 2 April 1992 at 00:00:00UTC. A

period of about 10 days duration, ending on 12 April 1994
at 00:37:00 UTC, is shown in the figure. Most of the cross-

ings (shown as dots) take place at high latitudes, and one
or two crossings per day occur at tropical-to-intermediate
latitudes.

For a given day, any of the crossings of the 180 ° merid-
ian shown on Fig. 23 can be potentially selected as the

one marking the beginning of a data day for descending

orbits. For operational purposes, the following definition

is proposed: A data day for descending orbits is defined

to begin at the descending crossing of the 180 ° meridian
that is closest to the equator. Crossings that satisfy this

definition are shown as large squares in Fig. 23. Such a

definition will be the easiest to implement because there is

always only one crossing in a day that fulfills the condition.
Consecutive crossings may, however, in certain instances

have very similar absolute latitudes of intersection, one in
the Southern Hemisphere, and the other in the Northern

Hemisphere.

The alternating solid and dashed lines in Fig. 23 in-
dicate consecutive data days. Initially, the latitude of

data day initiation seems to follow a regular progression to

the south, alternating between the Northern and Southern

Hemispheres. Note, however, that the progression is inter-

rupted near the end of the period illustrated. In this case,
the next to last crossing would continue the progression,

but the following crossing (the last square in the sequence)

is actually closer to the equator. Following the proposed

definition, the data day is extended until the next crossing,
which is located in the Northern Hemisphere, i.e., the data

day is slightly longer_ne more revolution in this case.
The southward progression of the crossings subsequently

resumes.
Table 19 lists the start times of descending data days

for a 15-day period beginning on 2 April 1994, as well
as the latitude where the crossing of the 180 ° meridian

occurs. It must be stressed that, because of the pixel-

by-pixel allocation described above, parts of the field will
include data collected both before and after the times listed

in Table 19. In addition, as stated above, an appropriate

naming convention will have to be worked out for the data

days. For instance, the data day considered as April 4

actually begins on 3 April 23:52 UTC and ends on 5 April
00:23 UTC.

Table 19. The beginning times of 15 data days for
descending orbits of the SeaStar spacecraft. The
latitude of the 180 ° meridian crossing is also shown.

Date Beginning Time Latitude of

[April 1994] [UTC] 180 ° Crossing

2 00:00:00 -16.1

3 00:30:00 35.7

3 23:52:00 -22.9

5 00:23:00 27.4

5 23:46:00 -31.8

7 00:17:00 18.0
7 23:39:00 -39.5

9 00:11:00 7.8

9 23:32:00 -46.0

11 00:05:00 - 2.7

12 00:37:00 42.9

12 23:59:00 -13.0
13 23:52:00 -22.9

15 00:24:00 27.4

15 23:46:00 -31.7

5.3.2 Advantages of the Spatial Definition

In the previous sections, a spatial definition was pro-

posed for a data day, together with an objective definition
for the temporal beginning and end of such a data day.

So far, however, the advantages or disadvantages of the

proposed definitions have not been discussed.

Problems associated with the temporal definition of the

data day were:

1) The potential presence of gaps,

2) Aliasing and large temporal discontinuities, and

3) The changing locations of the 24-hour data day
boundaries.

The spatial definition avoids temporal changes in the loca-

tion of boundaries, as the boundary is fixed, e.g., the 180 °

meridian. Furthermore, the spatial definition, to some

extent, reduces gaps in the coverage. The presence of
large temporal discontinuities among adjacent areas is still

present, however.

The large temporal discontinuities identified on Fig. 19,
north of Alaska and south of New Zealand, are still present

in Fig. 21. It is clear that the large temporal discontinu-

ities occur in two places near the meridian that define the
separation between data days. The first place is the area

south of the first track of the data day and west of the
reference line. The second area with discontinuities occurs

north of the last track of the data day, east of the reference

line. As a result of the large temporal discontinuities that
occur between adjacent swaths when the swaths overlap

at higher latitudes, data that were sampled far apart in

time will once again be averaged. Elsewhere on the global
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Fig. 23. Latitude of crossing of the 180 ° meridian for SeaStar descending orbits. The data shown are

for a period approximately 10 days long, beginning on 2 April 1994 00:00:00UTC and ending on 12

April 1994 00:37:00 UTC. Crossings are indicated by small dots. Large squares indicate crossings that

begin data days. The alternating solid and dashed lines indicate consecutive data days.

fields, any given track is surrounded by tracks sampled one

orbital period (about 99 minutes) earlier or later.

The presence of temporal discontinuities, or the aver-

aging of data collected at very different times, may not be

too important for some applications, although users should
certainly be made aware of the occurrence of these events.

In other situations, however, such temporal discontinuities

may cause significant problems. Examples of such appli-

cations may be the estimation of the translation speed of
certain features, or the computation of fluxes.

In order to limit the large meridional temporal discon-

tinuities near the data day boundary, the short track seg-
ments north and south of the first and last tracks of the

data day could simply be eliminated (e.g., parts of N+I,

N+2, N+3, N+13, and N+14). This approach is illustrated

in Fig. 24, which shows descending tracks between 2 April
1994 00:00:00UTC and 3 April 1994 00:30:00UTC, i.e.,

the data day shown on Fig. 21. The map is now centered

at 0 °, rather than at 180 °, as in Fig. 21. Note that the
nadir tracks, for which segments were eliminated, seem to
end a bit before or after the 180 ° line. This break occurs

because positions were predicted at one-minute increments

by the orbital model used.

The elimination of segments may result in areas not be-

ing sampled, e.g., upper left and lower right corners of the
map. These gaps might possibly be filled by the swath of

the first and last tracks of the data day (tracks N and N+15

in the south and north, respectively). The size of the gaps

is, however, a function of the latitude of the reference line

crossing which defines the beginning of the data day. As

shown in Fig. 23, this latitude changes with time, moving

north and south approximately between 50°N and 50 ° S.

When the crossing is farther north, the gap to the south of

the first track will be larger. Conversely, when the cross-

ing is further south, the gap north of the last track will get
larger.

It is proposed that one additional swath be aclded at

each end of the data day in order to replace the elimi-

nated segments. Plots of nadir tracks for days in which

the crossings are farthest nJth or south (not shown here)

have shown that one additional swath is enough to fill each

of the gaps, and a second swath would not make a signifi-

cant contribution. The added swaths would be temporally

continuous with the first and last tracks of each data day,
thus eliminating the problems of temporal discontinuities.

An operational scheme would involve the following steps:

1. The times corresponding to the beginning and

end of a spatially-defined data day are found

following the definition suggested above. These

times will be referred to as the beginning and

end of the data day.

2. Data east of the 180 ° meridian, collected up to

12 hours after the beginning of the data day,
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Fig. 24. SeaStar descending orbits for a spatially-defined data day beginning on 2 April 1994 00:00:00

UTC. Segments that introduce large north-south temporal discontinuities (see text) are excluded.

will be excluded. Data west of the 180 ° merid-

ian, sampled up to 12 hours before the end of the

data day, will be similarly excluded. The net re-
sult of these actions is similar to the elimination

of segments shown in Fig. 24.

3. To ensure full coverage, data collected up to 99

minutes before the beginning of the data day,

and covering the area west of the 180 ° meridian,

will be added to the beginning of the data day.

This addition fills the gap to the south of the

first track of the day. Data collected up to 99

minutes after the end of the data day, sampling

the area east of 180 ° , are also added. These data

fill the gap north of the last track of the data day.

The end result is illustrated in Fig. 25.

Figure 25 shows the descending orbits for the data day

beginning approximately on 2 April 1994 00:00:00UTC.

The gaps shown in Fig. 24 have been filled by the addi-

tion of two short segments, indicated by arrows and dotted

lines, on Fig. 25. Note that these segments have been sam-

pled before (N-l) and after (N+16)--the times estimated

for the beginning and end of this data day (see Table 19).

However, because the added segments are close in time to

orbits N and N+15, the large temporal discontinuities have

been eliminated. The segments excluded from this data

day are the first portion of tracks N+I, N+2, and N+3 east

of 180 °, and the last portion of tracks N+13 and N+14 west
of 180 °.

5.3.3 An Alternative Explanation

To facilitate comprehension of the methodology, a sim-
ple analogy may be helpful. Envision a continuous strip
chart on which the continents are drawn. Above the chart

recorder there is a clock showing UTC time and date. As

the chart moves from left to right, a pen draws descending

tracks one at a time. The speed of the chart movement is

appropriate to ensure that the nadir track's latitude and

longitude, corresponding to any given UTC time, are cor-
rect, i.e., the nadir tracks should look similar to those on

Figs. 24 and 25.

Suppose the chart is positioned so that the pen is just
crossing the 180 ° meridian, near the equator, on 2 April
1994. The clock time should be about 00:00:00 UTC. The

chart recorder is then allowed to run for almost 24 hours,

until a track crosses the 180 ° meridian again at about

36° N. The time should be about 00:30:00 UTC on 3 April

1994. If the cha:t is cut along the two 180 ° meridians

drawn (left and r,ght), the tracks on the chart should look

exactly like Fig. 24. As in Fig. 24, there will be some gaps

in the coverage. On the right side of the chart, there is

a gap south of the first track (N) of the day. This gap
should have been filled by the last portion of tracks N+13

and N+14, which have been drawn to the left of the 180 °

meridian on the left side of the chart. These lines, how-

ever, were eliminated when the chart was cut along the left

180 ° line. Similarly, the gap north of the last track of the

day should have been filled by the initial portions of tracks
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Fig. 25. The data day beginning on 2 April 1994 00:00:00UTC, showing the addition of two segments
(indicated by arrows and dotted lines) in order to minimize temporal discontinuities. The first track

sampled after the estimated beginning time of the day (Beg) is track N. The added segment south of
this track corresponds to the previous orbit (N-l). The last track before the estimated end time of the

data day (End) is track N+15. The added segment to the north corresponds to the next orbit (N+16).

N+I, N+2 and N+3. These segments were drawn east of the

180 ° meridian on the right side of the plot. As the 180 ° line

was cut along on the right, however, these segments were

excluded. It is apparent that the chart recorder analogy
reproduces the action of eliminating tracks which cause

large temporal discontinuities, as the end result looks ex-

actly like Fig. 24. The gaps can be filled in the global fields

using the same chart recorder analogy.
Now envision the case in which the chart recorder does

not start at 00:00:00 UTC on 2 April 1994, but rather, the
chart is moved backwards and is started about 99 min-

utes earlier. If the recorder starts then, an additional

track (N-l) will he drawn before the nadir track of orbit N

crosses the 180 ° meridian at 00:00:00UTC, which defines

the temporal beginning of the data day. The southern por-

tion of track N-1 will fall west of the 180 ° meridian, filling
the gap previously existing in the south. Then the recorder

is allowed to run up to 99 minutes past the time originally

defined as the end of the day (3 April 1994, 00:30:00 UTC),
and again, an additional track will be drawn. If the last

track of the day is N+15, the northern portion of track
N+16 will fill the northern gap. Once the recorder has

been allowed to run for the estimated duration of the data

day, plus the additional 99 minutes on either end, a pair

of scissors is used to cut the chart along both 180 ° merid-

ians. By doing this, the spatial pixel-by-pixel assignment

of data is applied to a given data day. The end result

should look exactly like Fig. 25. Finally, envision running

the recorder for long periods and repeatedly cutting the

long chart along the 180 ° meridians. Each of the maps
would correspond to one data day.

When discussing an elimination of orbital segments that

would result in large temporal discontinuities, the presen-

tation could have given the impression that data in these
segments would be unused, and therefore wasted. If the

analogy presented above is followed, however, it is easy to
see that the data will not be deleted, but rather the data

will be assigned to the previous, or the following, data

days. For instance, the northern portions of tracks N+I,

N÷2. and N+3 (not labeled) in Fig. 24 would be plotted to
the east of the right 180 ° meridian on the chart. When

the chart is cut, these portions get assigned to the previ-

ous data day, which begins on 1 April 1994 UTC. In the
same way, the southernmost portions of tracks N+13 and

N+14 are plotted to the west of the left 180 ° meridian;

thus, being assigned to the next data day after the chart
is cut along the meridian. The end result of the scheme

proposed is a daily global field where all parts of a field

are temporally separated from adjacent areas by, at most,
one orbital period.
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5.4 OTHER ISSUES

An aspect that has not been discussed so far is that at
both the extreme north and extreme south of the fields,

data from several tracks might be averaged within a data

day. At high latitudes, the spacecraft is flying in nearly an
east-west direction and, thus, the scan lines have a north-

south orientation. For instance, there are five or six passes

a day at high latitudes (Fig. 23) near the 180 ° meridian.

Some of these passes are excluded at high latitudes, as de-
scribed above. In other high latitude regions, however, the

fields will contain the average of several passes. This over-

lap should not have too many consequences on SeaWiFS

products, as the areas affected will be mostly on land in
the Southern Hemisphere and under permanent ice cover

in the Northern Hemisphere. Furthermore, in these regions

the sensor may encounter limitations in available sunlight,

which may preclude sampling.
One final issue requiring discussion is that the spatial

scheme proposed above will result in temporal discontinu-
ities in areas that straddle the reference line. Suppose that

a study is made of an area of the North Pacific Ocean, en-

compassed between 150 ° W and 150 ° E, and straddling the
180 ° line. If this study obtains a global field for a given

data day, it must be realized that the portion of the study
area west of 180 ° has been sampled much earlier than the

portion to the east. Again, this may not be relevant for
some research, but it could be in some cases. A solution

would be to place the reference line elsewhere, e.g., along

0°, but there will always be some location where areas on

either side of the line will be sampled far apart in time.

Alternatively, a user might obtain product fields for two
consecutive data days and paste the appropriate portions.

In the Pacific example presented above, the eastern part

of the study area would be extracted from data day K and

the western part from day K+I.

To study the daily data of a region that includes 180 °

longitude, two consecutive daily products should be joined

at the seam. This procedure will produce data that are
continuous across the 180 ° meridian. These daily scenes

can then be averaged over time using a time binning algo-
rithm to construct weekly or longer period composites of an

area straddling the 180 ° meridian. This method would pro-
duce the most accurate long-term composites. One could,

however, use the standard global products by joining areas
east and west of 180 ° from the same weekly, monthly, or

annual product. The latter method will result in a slight

temporal discontinuity across the 180 ° meridian, since the
earliest data contributing to the composite west of 180 ° is

not matched by continuous data east of 180 ° . Similarly,

data east of 180 ° is not matched by data west of 180 ° on

the final day of the composite.
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A-band

AOP

AVHRR

BATS

BBOP

BRDF

BSI

CHORS

c.i.

CVT

CZCS

DC

EOSDIS

FEL

GSFC

IFOV

JGOFS

MER

NASA

NIST

NORAD

OFFI

PST

R/V

SBRC

SDSU

SeaWiFS

SI

SIS

S/N
SNR

SPIE

TOA

UCSB

UTC

a

b

B

B1

Bs

¢(_)

Ed
Ed(z, ;q

E_
E_(z, ,_)

f(A)

Fi

GLOSSARY k

Absorption Band Kd(z, A)

Apparent Optical Properties KL(Z, A)
Advanced Very High Resolution Radiometer

Bermuda Atlantic Time-Series Study Ku(z, h)

Bermuda Bio-Optics Project
Bidirectional Reflectance Distribution Function

Biospherical Instruments, Inc. L

Center for Hydro-Optics and Remote Sensing Lt
confidence interval

Calibration and Validation Team L0

Coastal Zone Color Scanner L_tm

Digital Count Lsfc

Earth Observing System Data Information System L_ (z, A)

Not an acronym; designates a type of irradiance

lamp. m

Goddard Space Flight Center N

Instantaneous Field-of-View

Joint Global Ocean Flux Study O20
P

Marine Environmental Radiometer Pdev

National Aeronautics and Space Administration

National Institute of Standards and Technology Pref

North American Air Defense (Command) R_

Optical Free-Falling Instrument R_ (z, X)

Pacific Standard Time S(A)

Research Vessel sxu

Santa Barbara Research Center T(A)

San Diego State University

Sea-viewing Wide Field-of-view Sensor T(A, 9, _0)

International System of Units (Systdme Internation-

al d' Unitds)

Spherical Integrating Source
Serial Number

Signal-to-Noise Ratio

Society of Photo-Optical Instrumentation Engineers

Top of the Atmosphere

University of California at Santa Barbara

Coordinated Universal Time

SYMBOLS

Regression coefficient.

Regression coefficient.
Band 7 width.

BBOP casts 1 m from the ship's stern.

BBOP casts 6 m from the ship's stern.

Spectral beam attenuation coefficient.

Incident downwelling irradiance.

Downwelled spectral irradiance.

Incident upwelling irradiance.

Upwelled spectral irradiance.

Instrument spectral response function.
Immersion coefficient.

W

AL

Ap

0

Oo

X

P

(7

_ox(_)

_d

_L

Molecular absorption cross-section area.

Vertical attenuation coefficient for downwelling it-

radiance.

Vertical attenuation coefficient for upwelled radi-

ance.

Vertical attenuation coefficient for upwelled irradi-

ance.

Radiance of light transmitted through absorbing ox-

ygen.

Radiance measured at a satellite, i.e., orbiting sen-

sor.

Model radiance without absorbing oxygen.

Radiance of light reflected from the atmosphere.

Radiance of light leaving an ocean surface and pass-

ing through the atmosphere.

Upwelled spectral radiance.

Air mass.

Total number of oxygen molecules per unit area in

a vertical column of the atnmsphere.

OFFI casts 20 m from the ship's stern.

Surface pressure.
Pressure deviation between the minimum and max-

imum surface pressures compared to 1,013 mb.

Reference pressure.

The square of the linear correlation coefficient.

Remote sensing reflectance.

Solar spectral irradiance.

Residual standard deviation.

Two-way transmission through oxygen in the model

•layer.

Two-way transmission through oxygen in the model

layer in terms of zenith angle (0), and solar angle

(00).

Equivalent bandwidth.

The difference between L and Lo.

The difference in atmospheric pressure.

Zenith angle of the line-of-sight in a plane-parallel

atmosphere.

Solar zenith angle.

Wavelength.

Reflectance.

Standard deviation.

Optical thickness due to oxygen absorption.

Actual deployment distance.

Calculated deployment distance for downweUing ir-
radiance measurements.

Calculated deployment distance for upweUing irra-

diance measurements.

Calculated deployment distance for upwelling radi-

ance measurements.

X Proportionality constant.
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