NASA Contractor Report 4348

TranAir: A Full-Potential,
Solution-Adaptive, Rectangular
Grid Code for Predicting
Subsonic, Transonic, and
Supersonic Flows About

n
~0
P -
» L) o])
Arbitrary Configurations Noomoom
wn ¥ Ta]
o c o
P4 > o
~N
Theory Document g
T
]
- Z
VU] g
F. T. Johnson, S. S. Samant, M. B. Bieterman, > .- -
R. G. Melvin, D. P. Young, J. E. Bussoletti, A Sed
. [=4 Z - 3
and C. L. Hilmes o O==>
L~ - ¢ v
} X 2 QO Q
wZ O a0 C
| S I VIR« 4 2]
s b > -
< b= Do Q.
CD{O .DSLQ
CONTRACT NAS2-12513 Coo2ayse
DECEMBER 1992 T e & n T
L I €s BN SR T WO o]
~ . O O C M
VDI QDL
IS) (Vo B VR GO IET WP N
M- ——
N Z9AC U -C
b id d 21 X% @
o> b D F o E
WDV =12 D i
[I = V" I 7 B CANN il o]
I | L Y et - -
VI = Gl O G
< dowa 0 >
DL DO a @
VLLIYQ_(J"‘»JVLJ

NASN

NASA Contractor Report 4348

TranAir: A Full-Potential,
Solution-Adaptive, Rectangular
Grid Code for Predicting
Subsonic, Transonic, and
Supersonic Flows About
Arbitrary Configurations

Theory Document

F. T. Johnson, S. S. Samant, M. B. Bieterman,
R. G. Melvin, D. P. Young, J. E. Bussoletti,
and C. L. Hilmes

Boeing Military Airplane Company

Seattle, Washington

Prepared for
Ames Research Center
under Contract NAS2-12513

NASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1992

Contents

SUMMARY 1
1 INTRODUCTION 3
1.1 MOTIVATION, 3
1.2 REPORT ORGANIZATION 8
2 METHOD 9
2.1 PROBLEM DEFINITION 9
2.1.1 Governing Equation 9
2.1.2 Boundary Conditions 9
2.1.3 Variational Formulation 10
2.1.4 Regions with Differing Total Properties 12
2.2 OUTLINEOF THE METHOD 13
2.3 DISCRETIZATION. 15
2.3.1 Boundary Representation 15
2.3.2 Finite Computational Domain 15
2.3.3 Computational Grid 17
2.3.4 Finite Element Operators 18
235 GridInterfaces 23
2.3.6 Modifications to the Bateman Principle 24
23.7 Dissipation 25
2.3.8 Accuracy of Discretization 28
2.4 SOLUTION ALGORITHM 29
2.4.1 Linear Solution Algorithm 29
2.4.2 Nonlinear Solution Algorithm 32
243 GridSequencing L 35
2.4.4 Solution AdaptiveGrids 40
25 POSTPROCESSING 51
2.6 SUPERSONIC FREE STREAM FORMULATION 53
2.6.1 Far Field Treatment, .. 53
2.6.2 Solution of Discrete Equations 53
2.7 PROGRAMMING CONSIDERATIONS 57
2.7.1 Memory Management 57
272 Input/Output 58
2.7.3 Vectorization Issues 58
2.7.4 Data Structures 60
2.7.5 Program Libraries. 61
iii
e G & BLANA 0T .
o i INTENTIONALSS BRIV PRECEDING PAGE ELAN FILMED

3 RESULTS

3.1 RESULTS FOR LINEARFLOW
3.1.1 Sphere L
3.1.2 ONERAM6Wing
3.1.3 F16 Fighter Aircraft

3.2 RESULTS FOR NONLINEAR FLOW
3.2.1 Sphere
322 ONERAM6Wing
3.2.3 F16 Fighter Aircraft
3.24 Boeing 747-200
3.2.5 Axisymmetric Nacelle with Powered Plume
3.2.6 Analysis of an Installed Transport with Power Effects

3.3 RESULTS FOR SUPERSONIC FREE STREAM FLOW
3.3.1 Cone-Sphere Configuration.
3.3.2 Delta Wing Configurations.
3.3.3 F16 Configuration.
334 BowShocks
3.3.5 General Observations.

FUTURE DIRECTIONS

4.1 IMPROVEMENTS TO THEMETHOD
4.1.1 Reliability and Efficiency Improvements
4.1.2 Upwinding Improvements
4.1.3 Solution Adaptive Grid Improvements
4.1.4 Higher Order Elements

4.2 EULER FORMULATION
4.2.1 Properties of Euler Equations
4.2.2 Problems with Euler Equations

43 WAKE CAPTURING o e

4.4 BOUNDARYLAYER

4.5 DESIGN AND OPTIMIZATION

CONCLUSIONS
Acknowledgements

OCT-TREE DATA STRUCTURES

A.1 DATA STRUCTURE ORGANIZATION
A1l BaseGrid e
A.1.2 Oct-Trees v v i i i e e e e e
A.1l.3 Terminology

A.2 DATA STRUCTURE REPRESENTATION
A21 Header i i e
A.2.2 BaseGrid Descriptors
A.2.3 Refinement Families

iv

63
64
64
68
73
75
75
79
85
92
98
98
102
102
103
103
119
122

123
124
124
125
126
128
129
129
133
134
139
141

A.2.4 ScratchStack
A25 T-boxMap
A.2.6 Refinement Pointers
A3 MAJOR ALGORITHMS

OPERATOR DEFINITION
B.1 IMPLEMENTATION
B.2 TESTCASE

GMRES
C.1 GMRES ALGORITHM
C.2 PRECONDITIONING

POISSON SOLVER

D.1 SUMMARY OF THE POISSON SOLVER
D.1.1 Summary of the Green’s Function Algorithm
D.1.2 Summary of the Convolution Algorithm

D.2 THEORY OF GREEN’S FUNCTION ALGORITHM
D.2.1 The Green's Function Definition
D.2.2 The Asymptotic Expansion
D.2.3 The Three Plane Representation
D.2.4 The Downstream Green’s Function

D.3 THEORY OF THE CONVOLUTION ALGORITHM
D.3.1 FFT Dirichlet and Neumann Poisson Solvers
D.3.2 Transform Algorithms
D.3.3 Implementation of the James Algorithm

SPARSE SOLVER

E.1 NESTED DISSECTION ORDERING.
E.2 MATRIX ASSEMBLY
E.3 MATRIXDECOMPOSITION
E.4 FORWARD/BACKWARD SUBSTITUTION
E.5 PERFORMANCE

REFERENCES

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

Complete Transport Configuration.
Typical Fighter-Type Configuration with Store.
TRANAIR Geometry Scheme.

Overview of the Numerical Method in TRANAIR.
Configuration Boundary Description in Terms of Networks of Panels .
Box Finite Element With Eight Corner Unknowns.
Placement of Unknowns. All Grid Points Have ® Unknowns.
Pseudo-Unknown in Two Dimensions.
Upwinding Stencils in Two Dimensions for Negative ¢ Edge.
Reduced Set and Possible First Dissector.
Iterate for Newton’s Method With Residual Damping for ONERA M6
Wing Case, My, = 0.84,« = 3.06°, 91% Span Station.
Iterates for Newton’s Method With Residual and Local Mach Number
Damping for ONERA M6 Wing Case, M, = 0.84,a = 3.06°, 91%
Span Station.
Partially Converged Iterate for the Second Continuation Step Using
Viscosity Damping for ONERA M6 Wing Case, M, = 0.84,a = 3.06°,
91% Span Station.
Convergence Histories for Newton’s Method with Various Damping
Strategies for ONERA M6 Wing Case, M, = 0.84,a = 3.06°.
Convergence Histories for Newton’s Method, Newton’s Method with
Viscosity Damping, and Grid Sequencing for ONERA M6 Wing Case,
M, =084,a=3.06°
Cuts Through The Coarse and Medium Grids Generated by Grid Se-
quencing for ONERA M6 Wing at 91% Span, M, = 0.84,a = 3.06°.
Cut Through the Fine Grid Generated by Grid Sequencing for ONERA
M6 Wing at 91% Span, Mo, =0.84,=3.06°.
Cuts Through the Coarse and Medium Grids Generated by Grid Se-
quencing for ONERA M6 Wing at the Plane of Symmetry, M, =
0.84,a=3.06%
Cut Through the Fine Grid Generated by Grid Sequencing for ONERA
M6 Wing at the Plane of Symmetry, M, = 0.84,a = 3.06°..
Surface Pressure for the Three Grids Generated by Grid Sequencing
for ONERA M6 Wing, M, =084, a=3.06°

vi

14
16
19
21
25
27
32

36

37

38

39

42

43

44

45

46

2.18

2.19

2.21
2.22
2.23
2.24

3.1
3.2
3.3
3.4

3.5
3.6

3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

3.16
3.17

3.18
3.19
3.20
3.21

3.22

Directions for Velocity Component Differences in Error Indicators for

Elements A-E 47
Initial Grid and two Grids Created in an Application of the Adaptive

Method. 50
Solutions With and Without Post Processing for a Sphere in Linear

Flow, M., = 0.0, and Transonic Flow, M., =0.7. 52
Solution Adaptive Grid (No. 1) for the Supersonic Cone 54
Solution Adaptive Grid (No. 2) for the Supersonic Cone 55
Solution Adaptive Grid (No. 3) for the Supersonic Cone 55
Solution Adaptive Grid (No. 5) for the Supersonic Cone 56
Paneling Used for Sphere in Linear Flow, 1600 Panels. 65
Cuts Through Four Grids for a Sphere in Linear Flow, M, =0. . .. 66
Solutions on Four Grids for a Sphere in Linear Flow, M., =0. 67
Cuts Through Two Grids for the ONERA M6 Wing in Linear Flow,

Mo =0,a=3.06° 69
Waterline Cut Through ONERA M6 Coarse Grid. 70
Three Solutions for the ONERA M6 Wing in Linear Flow at 20% span,

Mo=0,a=306°, 71
Three Solutions for the ONERA M6 Wing in Linear Flow at 60% and

80% Span, M, =0, a=3.06° 72
F16 Aircraft Configuration. 73
Surface Pressure at Two Stations on the F16 Wing, M., = 0.6, a = 4.0°. 74
Cut Through the Grid for a Sphere in Transonic Flow, 1/, =0.7. .. 76
Convergence Histories for Viscosity Damping Method and Grid Se-

quencing Method for Sphere Case, M, =0.7. 7
Surface Mach Numbers for Sphere, M, =0.7. 78

Two Cuts Through Grid for ONERA M6 Wing, M., = 0.84,a = 3.06°. 80
Waterline Cut Through Grid for ONERA M6 Wing, M., = 0.84,a =

3.06° . . L 81
Comparison of Surface Pressure at Four Span Stations on ONERA M6
Wing, M, =084, =3.06°. 82

Grid Cuts at 70% Span for the ONERA M6 Wing, M., = .84, a = 3.06°. 83
Grid Cuts at 0% and 44% Span for the ONERA M6 Wing, M., =

B4, a=3.06° 83
Pressure Coefficients for ONERA M6 Wing, M, = .84, = 3.06°. . . 84
Wing Pressures for the F16, M, =09, =4.0° 85
Cuts Through the Grid for the F16 With Tanks and Missiles, M., =
0.9,a=4.0°% 86
Computed Wing Pressures for the F16 with Tanks and Missiles, M., =
0.9,a=4.0°%, 87
Cuts Through the Final Adaptive Grid for the F16 With Tanks and
Missiles, M, =09, =4.0°.. 89

vil

3.23

3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34

3.35
3.36

3.37

3.38

3.39

3.40

3.41

3.42
3.43

3.44

3.45
3.46

3.47

3.48
3.49

Computed Wing Pressures for Adaptive Grid Run of the F16 with
Tanks and Missiles, Inboard Side of Strut and Crown Line, M, =

09,0 =4.0° 90
Cuts Through Adaptive Grid for the F16 With Tanks and Missiles near

the Strake, Mo, = 0.9, =4.0°. 91
747-200 Transport Configuration. 93
Two Cuts Through TRANAIR Grid for 747-200 Case. 94
Wing Pressures for 747-200, M, =08, a=27° 95
Grid Cuts at 69% and 96% Wing Span for 747-200, M, = .80, a = 2.70°. 96
Wing Pressures for 747-200, M, = .80,a=2.70°. 97
Cut Through Grid for an Axisymmetric Powered Nacelle, M, =0.1. 98
Convergence History for Grid Sequencing Method for Axisymmetric
Powered Nacelle Case, Mo =0.1. 99
Static Pressure for Axisymmetric Powered Nacelle Compared to Ex-
periment and Navier-Stokes Code Results, Mo =0.1. 100
TRANAIR Analysis of a Transport with Wing/Body/Nacelle/Strut

and Power. e 101
Cp Distribution on Cone Sphere at Mach 1.414. TRANAIR vs SIMP

vs EMTAC and Analytic Solution. 105
Final Computational Grid for Cone-Sphere Configuration. 106
Cp Distribution on Subsonic Leading Edge Delta Wing at Mach 1.414.
TRANAIR vs A502 Solution. 107
Final Computational Grid for Subsonic Leading Edge Delta Wing Con-
figuration. e 108
Cp Distribution on Supersonic Leading Edge Delta Wing at Mach
1.414. TRANAIR vs A502 Solution.. 109
Final Computational Grid for Supersonic Leading Edge Delta Wing
Configuration. 110
Cp Distribution on Upper Surface of F16, M., = 1.414, TRANAIR vs
SIMP. . . . e 111
Cp Distribution on Lower Surface of F16, M, = 1.414, TRANAIR vs
SIMP. e 112
Cp Distribution on Side View of F16, M, = 1.414, TRANAIR vs SIMP.113
Cp Distribution on Upper Surface of F16, M, = 2.0, TRANAIR vs .
SIMP. e e e e e 114
Cp Distribution on Lower Surface of F16, M, = 2.0, TRANAIR vs
SIMP. . . . e 115
Cp Distribution on Side View of F16, M, = 2.0, TRANAIR vs SIMP. 116

Cp Distribution on F16 Configuration with Tip Missiles, M, = 1.2
and o = 4°, Comparison of TRANAIR with Test Data. 117
Representative Cuts Through Computational Grid for F16 Configura-
tion With Tip Missile. 118
Cp Distribution on Sphere-Cone Configuration, M, = 1.414. 120
Computational Grid for F16 Configuration With Tip Missiles and Wing
Tanks, Moo = 1.2, a=4° e 121

41 W-¥ S =0 (Good Upwind Discretization Scheme) Smooth Inflow
Distribution e 135
42 W-v § =0 (Good Upwind Discretization Scheme) Discontinuous
Inflow Distribution oo 136
43 W-.v S = 0 Non-Diffusive Scheme, Every Value of Entropy Equal to
Some Upstream Value. No Interpolation Allowed. 137
4.4 Transonic Analysis Demands Viscous Coupling 140
A.l1 Grid “Legalization” Example. 148
A.2 Pseudo-refinement to Represent the Nodes 148
A.3 The Overview of the Oct-tree Data Structure 150
A4 A Refinement Family 151
A.5 A Refinement Pointer Block 153
A.6 Finding Neighboring Boxes. 155
B.l Grid Box. . . . v o i e e e e e e 158
B.2 Bateman Laplace Coefficients 165
B.3 Standard 7-Point Laplacian 166
B4 OnePanelWing. 169
B.5 D-regiond 171
B.6 Operator Coefficients for , = ¢z L 173
B.7 Operator Coefficients for ¢go oL 175
B.8 Operator Coefficients for 3 =115 177
B.9 Operator Coefficients for 7 =119 o o oo oo oL 178
B.10 Wake Networks oo 181
E.1 Block Structure of a Sparse Matrix Ordered with Nested Dissection. . 232
E.2 Examples of Cutting Planes and Nodes in Resulting Dissector. 233
E.3 Sorting and Merging Procedure. 235
E.4 Cost versus drop tolerance for the ONERA M6 TRANAIR solution. . 238

E.5

SSD storage versus drop tolerance for the ONERA M6 TRANAIR
solution. e 239

List of Tables

D.1
D.2
D.3

E.l

E.2

Eigenvectors and Eigenvalues
Transforms and Their Inverses
Transform Operation Counts

......................

Performance Characteristics for the Sparse Solver with No Drop Tol-
erance. Ten to Twenty Nonlinear Newton Steps are Required for each

Performance Characteristics for the Sparse Solver with Drop Tolerance.
Each Linearized Solution Requires About 20-40 GMRES Iterations. .

237

NOMENCLATURE

Q
W

T Qe

(I,J,K)

WIS ORGP RSN
i

<N
=

I

upwinding operator, see Eqn. (2.43)

discrete Fourier transform

line moment integral

fast Fourier transform

nonlinear partial differential operator, see Eqn. (2.1)
surface moment integral

discrete function representing the boundary value problem
Neumann boundary condition parameter, see Equation (2.4)
Dirichlet boundary condition parameter, see Eqn (2.5)
continuous Green'’s function

discrete Green’s function

total enthalpy

volume moment integral

identity matrix

Bateman functional, see Eqn. (2.9)

discrete operator for the given boundary value problem
linearized version of L

Mach number

sparse solver preconditioner, or

number of grid points

unit normal

symbol designating “order” of magnitude

static pressure,

magnitude of the velocity

source strength unknowns

radial distance from the origin

ratio of local total pressure to that at oo

ratio of local total temperature to that at co

residual, or

computational domain (box), or

distance away from the boundary

blending function used in upwinding density
continuous far field (Prandtl-Glauert) operator
discrete far field operator

velocity

xi

M® €0 O

W5 D

Subscripts

8N‘:H‘EO|

I

Il

mass flux vector = pV

angle of attack, or

average operator across a boundary
GMRES unknowns

discrete delta function, or

variation

difference (or jump) across a boundary, or

undivided difference

gradient, or divergence operator
small change

adiabatic exponent

A¢ across a wake, see Eqn. (2.7), also
switching function, see Eqn. (2.40)
cutoff operator, or

edge normal vector

total potential

perturbation potential

boundary potential

density, see Eqn. (2.2)

boundary or discontinuity surface

or summation sign

domain of integration

integral over volume or surface region P
boundary of the domain R

onesided derivative

cut off value

pseudo unknown

derivative in the coordinate direction z
derivative in the coordinate direction y
derivative in the coordinate direction z

at infinite distance from the configuration

xii

SUMMARY

A new computer program, called TRANAIR, for analyzing complex configurations
in transonic flow (with subsonic or supersonic freestream) has been developed. This
program provides accurate and efficient simulations of nonlinear aerodynamic flows
about aritrary geometries with the ease and flexibility of a typical panel method
program.

The numerical method implemented in TRANAIR is described in this report.
The method solves the full potential equation subject to a set of general boundary
conditions and can handle regions with differing total pressure and temperature. The
boundary value problem is discretized using the finite element method on a locally
refined rectangular grid. The grid is automatically constructed by the code and
is superimposed on the boundary described by networks of panels; thus no surface
fitted grid generation is required. The nonlinear discrete system arising from the finite
element method is solved using a preconditioned Krylov subspace method embedded
in an inexact Newton method. The solution is obtained on a sequence of successively
refined grids which are either constructed adaptively based on estimated solution
errors or are predetermined based on user inputs. Many results obtained by using
TRANAIR to analyze aerodynamic configurations are presented.

Chapter 1
INTRODUCTION

1.1 MOTIVATION

The role of computational modeling in engineering design has been well recognized
for many years. Engineering problems are routinely solved through numerical simu-
lations. In the aerospace industry, for example, aerodynamic flow about aircraft is
often simulated using computational tools. Computational Fluid Dynamics (CFD)
is rapidly becoming an equal partner with the wind tunnel and flight testing in the
design of aerodynamic shapes [1, 2, 3].

Many engineering designs are geometrically complex. In aerodynamics, problems
such as the analyses of close-coupled nacelles and high lift systems on a typical trans-
port aircraft configuration (see Figure 1.1) can involve extremely complicated geome-
tries and highly nonlinear flows containing shock waves and convected wakes. The
geometry and flow become even more complex for a fighter type aircraft (see Fig-
ure 1.2). There is a lack of tools that can routinely handle such complex geometries
and treat the appropriate physical phenomena.

Such tools should be reliable, accurate, flexible and efficient. Among the currently
available computational tools, panel methods [4]-[14] have long been able to han-
dle complex configurations and boundary conditions in a reliable manner, but they
are limited to linear flow models. Aerodynamicists who use panel methods take for
granted the ability to add, move, or delete components at will, readily select and
change boundary condition types, and obtain accurate solutions at reasonable cost.
Multiply connected regions (flap gaps, nacelle interiors), varying length scales, and
flow features such as oblique shocks (in supersonic freestream flow), present few prob-
lems to a good panel method. Consequently, there are many instances where designers
have compromised the physics of the problem and used panel methods in order to
try to understand the aerodynamic effects of complex geometry [15],[16]. However,
there are other instances involving transonic flows with normal shocks where such
compromises are not possible.

The state of the art in calculating transonic flows has progressed significantly
since the initial breakthrough by Murman and Cole [17]. Much success has been
achieved in solving various forms of the potential equation, the Euler equations, and
even the Navier-Stokes equations for special configurations [18]-[35]. Nevertheless,

3
s [TAVENTIONKERS PRECEDING PAGE BLANK NOT FILMED

Figure 1.1: Complete Transport Configuration.

S5\
A ’\:.“‘\
\ s‘\oi\“”"‘.\"\“"

'I;"“i R n
Ry

Figure 1.2: Typical Fighter-Type Configuration with Store.

routine analysis of complex configurations using more realistic physics has remained
a somewhat distant goal. There are several reasons for this.

First and foremost, most current methods use surface fitted grids. Generation of
such grids for complex, multiply connected domains is an extremely difficult task.
Although significant progress has been made in grid generation techniques over the
last five years, timely treatment of configurations similar to those shown in Figures 1.1
and 1.2 still remain beyond the capabilities of these methods.

Second, current transonic algorithms place severe demands on grids. Few algo-
rithms can adequately handle the anomalies which would result from the application
of present grid generation techniques to complex configurations, e.g., non-analytic
grids, collapsed edges, fictitious corners, oblique and/or high aspect ratio cells, etc.

Third, many transonic methods are limited to normal flow boundary conditions.
Panel methods routinely allow design boundary conditions, porous wall boundary
conditions, surface jump conditions, etc. These types of boundary conditions are
difficult to implement in the field grid methods.

Fourth, computer run costs can be very high. In the course of airframe design,
engineers make hundreds of runs varying angle of attack, Mach number, flap set-
tings, inlet mass ratios, nacelle placement, etc. Thus it is imperative that individual
runs be fairly economical. This is clearly a difficult goal to achieve for large config-
urations, especially when the grid must be fine enough for the reliable prediction of
drag increments. For many methods use of additional grid points causes substantial
degradation in convergence with corresponding increase in cost.

In this report an approach developed to overcome these problems is described. This
approach has been implemented in a computer program called TRANAIR([36}-[51].
It has all the modeling generality and flexibility offered by the PAN AIR technology
panel code [10] while solving the nonlinear full potential equation.

The most important feature of this approach is the use of rectangular grids com-
bined with an independently-described configuration definition. The grid is superim-
posed over the configuration surface. The configuration surface is defined in terms of
panels. (see Figure 1.3). This makes the program very easy to use since no surface fit-
ted grids are required. Clearly a rectangular grid can always be superimposed on the
configuration regardless of surface topology. But, there are several issues associated
with rectangular grids that must be addressed.

First, in order to accurately capture small scale effects, even for relatively simple
geometries, local grid refinement is essential. (It should be noted that local grid
refinement is also necessary for other approaches that use surface fitted grids for
complex configurations, since bunching grid lines is only feasible when there are just
a few regions requiring dense grids.) The grids used in TRANAIR are therefore locally
refined.

Second, rectangular grids cannot take advantage of a directional difference in
length scales in a straightforward manner since high aspect ratio cells skew to the
coordinate axes cannot be created by varying grid density. However, this leads to
only modest increases in the number of grid points for inviscid solutions if the locally
refined grid is located judiciously.

Third, combining a general boundary configuration with a rectangular grid pro-

S
T I T T
|41 -\.-_\\

-
| - R
—""/\\-\4 B
\\1

L —~4

ey

L -

.
—~1 |]
o B Tt
\\
L 1]
—~]
| ~t—
—~— | |
— | —
N}\\
—~—{ | |
—~]__| —
]
"’

Figure 1.3: TRANAIR Geometry Scheme.

duces irregularly shaped regions near the boundary. The problem of defining accurate
discrete equations (operators) at node points adjacent to these regions can be solved
by using a finite element method. In TRANAIR the finite element method is imple-
mented using the Bateman variational principle [52]. A generalization of the Bateman
principle allows easy implementation of nonstandard boundary conditions. Away from
the boundary, application of the finite element method is straightforward except ‘or
the treatment of infinite domains. The condition at infinity is satisfied using con-
cepts from integral equation methods whereby potential unknowns are transformed
to source unknowns. The inverse transformation is easily accomplished through the
use of fast Fourier transforms (FFT’s) on rectangular grids.

The finite set of equations thus generated is solved iteratively by an inexact New-
ton method. At each step of the Newton method the Generalized Minimal RESidual
algorithm (GMRES) [53],[54] is used as a driver to solve the linearized problem. GM-
RES is preconditioned by a Poisson solver and a direct sparse solver. Fast and reliable
convergence is achieved by combining these preconditioners in a unique manner. The
robustness of the method is achieved through the use of a sequence of refined grids
which are either constructed adaptively based on estimated solution errors or are

predetermined based on user inputs.

1.2 REPORT ORGANIZATION

This is the Theory Document for the TRANAIR program. In this document the
theoretical aspects of TRANAIR are described. A fairly comprehensive description of
the method is provided in Chapter 2. Results obtained using the TRANAIR code are
described in Chapter 3. In Chapter 4 ideas on future directions are discussed. Many
topics which require more detail are discussed in the Appendices. The appendices are
oct-tree data structures (Appendix A), implementation of the Bateman variational
principle (Appendix B), GMRES algorithm (Appendix C), the exterior Poisson solver
(Appendix D), and the sparse solver preconditioner (Appendix E).

Information on how to use TRANAIR is provided in the User’s Manual [55]. Specif-
ically, the preparation of input required by the program and the scripts (job control
cards) required to run the code on the Cray Y-MP at NASA Ames Research Center
(UNICOS) and the Cray X-MP at Boeing (COS) are described.

Chapter 2
METHOD

In this chapter a comprehensive description of the numerical method used in TRANAIR
is provided. This numerical method combines diverse component algorithms in an
effective manner.

There are eight sections in this chapter. In Section 2.1, the boundary value problem
to be solved is presented. In Section 2.2, an outline of the method is provided. In
Sections 2.3 and 2.4 the discretization and the solution techniques respectively, are
described. In Section 2.5 a postprocessing technique to obtain smooth aerodynamic
quantities is presented. In Section 2.6, the extension of the method to problems
in supersonic free stream flow is described. In Section 2.7, certain programming
considerations are discussed.

2.1 PROBLEM DEFINITION

2.1.1 Governing Equation

The full potential equation of aerodynamics is

F(®) =V pVd =0 (2.1)
where @ is the total velocity potential to be determined, and the density is given by
2
Y=l _ 0|7
=poo |1 + —— M (1 — =— 2.2
P = poo |1+ —S—M(1 Z) (2.2)

Here, ¢ = |V®| is the local speed, V., is the uniform onset flow, goo = |Viol is the
free stream speed, po, is the free stream density, M, is the free stream Mach number,
and + is the ratio of specific heats. Equation (2.1) describes the conservation of mass
in inviscid irrotational compressible flow.

2.1.2 Boundary Conditions

Boundary conditions on the configuration surface are required to define a well posed
problem. The far field condition is

4=0(3) (2.3)

as z — —oo, i.e,, upstream of the object. The perturbation potential is given by
¢=®&— P, where Vo, = V.

A wide variety of boundary conditions may be specified on the aircraft configura-
tion. Normal mass flur may be specified via

022 = g, (2.4)
where n represents the direction normal to the surface. On an impermeable surface
¢, vanishes, whereas, on surfaces such the engine inlets nonzero values for g, can be
specified.

On engine exhaust surfaces, it is possible to impose the Dirichlet condition

®=gs (2.5)

where tangential flow can be prohibited by specifying g; to be constant.

Wakes must extend downstream from lifting bodies. These surfaces allow nonzero
circulation in potential flow and can be thought of as thin sheets of concentrated
vorticity [5]. The boundary conditions on a wake are

n-A(pVP) =0 (2.6)
and
Ap=0 (2.7)
where
=Ir
_ Y=lye |7

fi is the unit normal vector, and A represents the jump across the wake surface. Equa-
tion (2.6).is an expression of conservation of mass across the wake. Equation (2.7)
is required for conservation of normal momentum. Equation (2.7) is often linearized
about the free stream pressure p = p,, assuming small perturbation velocity V. This
leads to the Dirichlet condition that A® is constant along the wake in the direction
of V.o. The circulation p at the trailing edge is determined by imposing a Kutta
condition there (see Appendix B.3).

2.1.3 Variational Formulation

The full potential equation may also be derived from the Bateman variational prin-
ciple [52], namely, that the integral of pressure over the flow field

10

J = /deQ (2.9)

is stationary. This principle can be used to derive finite element formulas for the full
potential equation, (see Section 2.3 below). Taking a variation of J in Eqn. (2.9) and
using

Op - —
—==—-W=—-pV 2.10
50 p (2.10)
it can shown that
6J=/—v_f/-4517dﬂ (2.11)
0
Integrating by parts,
5J=/nv-w 6<I>d9_j2n-w 5& ds. (2.12)

where ¥ is the boundary of the domain or surface of discontinuity with unit normal
7. (‘The second integral on the right applies to both sides of ¥ in the case of a surface
of discontinuity.) If J is stationary with respect to arbitrary variations in ®, the first
integral on the right of Eqn. (2.12) yields the mass conservation equation

V-W=0 (2.13)
This equation is identical to Eqn. (2.1). The second integral on the right yields
conservation laws for surfaces of discontinuity. For a shock surface across which mass
is continuous it follows that

Alh-W) =0 (2.14)

For a slip surface across which ® may be discontinuous, #- W must vanish on both

sides. The discontinuity in ® is determined by Eqn. (2.7).

The natural boundary condition for Eqn. (2.9) may be deduced from Eqn. (2.12), i.e.,
A W=0 (2.15)

A generalization of the Bateman variational principle which incorporates the bound-
ary conditions described above is that the functional

_ 2
J /dev+/ml 9:19dS (2.16)

od
- /am a(p=)(A® - p)dS
od

50 Pa_n(q’ - 93)‘15

11

is stationary. Here, g; is the specified mass flux on 00,, A® is the jump in ® across
the wake surface 0f,, a denotes the average of the upper surface and lower surface
values, and g3 is the specified potential on 3. The unknown g represents the jump
in ® on 89, and is determined by Eqn. (2.7).

2.1.4 Regions with Differing Total Properties

A minor modification of the above formulation allows the simulation of flows involving
regions of differing total temperature and total pressure. The flow in each separate
region is still potential as long as total temperature and pressure are constant in the
region, but pressure and density must be redefined in the following way:

=Ir

— Y=l 'NE
p—pwrp[u Ly qgm)] 2.17)

2z

Tp vy—=1,/ ' v
e 14 =M1 - 2.1
p=p TT[+ 5 ool q&,rr)] (2.18)

Here, r,, is the ratio of the total pressure in the region to the free stream total pressure
and rr is the ratio of total temperature in the region to free stream total temperature.
The regions are assumed to be separated by fixed wake surfaces on which two jump
boundary conditions are applied. The first is the standard static pressure continuity
condition Eqn. (2.7). If the total pressure and/or temperature differences across the
wake are large, the pressure formula, Eqn. (2.7) cannot be linearized, i.e., u can not be
assumed to be constant in the downstream direction. The second condition is similar
to Eqn. (2.6) but requires a modification to make the answer less sensitive to wake
position when total pressure and temperature differences are large. Equation (2.6) is
replaced by

A-AW* =0 (2.19)
where . .
W = L=l G (2.20)
Poqo

Here, qo is the speed which makes p = peo in the given region and po is the density
at this speed. Equation (2.6) becomes a natural jump boundary condition for ®* =
oo ®/qo if the Bateman principle is modified so that

J= /n p"dV (2.21)
where
Poods
P =p poq:;:. (2.22)

Using this feature, exhaust from engines can be modeled as long as the exhaust can be
divided into a finite number of regions each of which has a constant entropy. Section
3.2.5 gives an example of this type of modeling.

12

2.2 OUTLINE OF THE METHOD

An overview of the numerical method in TRANAIR is shown in Figure 2.1.

TRANAIR uses a locally refined rectangular grid. This grid is generated (Sec-
tion 2.3.3) in a computational domain which extends only as far as is required to
enclose all configuration surfaces and any nonlinear flow (Section 2.3.2). First a uni-
form global grid is constructed over the rectangular computational region. Grid cells
in the global grid are refined by subdividing a given cell into eight similar cells. The
decision to refine or not is controlled by two criteria. In the first specified minimum
and maximum cell sizes are used. In the second the density of paneling used to define
the surface geometry is used. The size of the local grid box is forced to lie within
these two limits. Denser grid is automatically generated where the panels are smaller.
Both these forms of control can be exercised over a global region or over certain spe-
cially prescribed hexahedral regions. Thus, it is possible to specify arbitrary local
hierarchical refinement.

The solution process is carried out over a sequence of grids. This sequence of grids
is either predetermined by successively derefining the above constructed grid (in the
grid sequencing option); or is constructed adaptively (in the solution adaptive grid
option) where the solution is started on the coarsest grid in the above sequence and
the subsequent grids are constructed based on estimates of solution error.

The process of obtaining a solution on each grid is essentially the same in either
option and involves two steps. The first involves discretization of the continuous
problem and the other involves the solution of the discrete equations.

In the discretization step, the field unknowns ® are defined at the eight corners
of each grid cell and the potential in the cell is defined via trilinear basis functions
(Section 2.3.4). The unknown parameters are supplemented by boundary unknowns
¥ which are values of potential extrapolated across a boundary, and wake unknowns
4 which are introduced to satisfy the normal momentum jump condition Eqn. (2.7).

The Bateman variational principle is used to accurately discretize the continuous
problem (Section 2.3.4). In particular, this discretization is flux conservative. Special
discrete operators are generated for the unknowns near the boundary.

The nonlinear discrete equations are solved iteratively using a Newton method
(Section 2.4.2). An initial guess required to start the Newton method is obtained
by interpolating the solution on a coarse grid to the next finer one; except on the
coarsest grid, where the perturbation potential ¢ is taken to be exactly zero.

For complex configurations involving correspondingly complex physical phenom-
ena, it is advantageous to use more than one technique to solve the algebraic equa-
tions. Each technique by itself might reduce errors more rapidly in some subsets
of physical and frequency space than in others. Hence it is desirable to treat these
techniques as “preconditioners” for an overall convergence stabilization and acceler-
ation scheme such as GMRES (Section 2.4.1). The operators from the finite element
method are used to compute residuals and the Jacobian matrix which is inverted
using a sparse matrix solver and used as one of the preconditioners (see Appendix E).
The iteration is stopped after the converged solution is obtained on the final grid in
the sequence.

13

1. Generate finest grid based on geometry and user specified
controls

2. Extract a sequence of grids from the finest grid by repeatedly
coarsening all parts of the grid by one refinement level

3. For each grid (starting with the coarsest) solve the problem
3.1 Generate Boundary Operators
3.2 Generate Green’s function for the current global
grid
3.3 Interpolate initial solution for the current grid

3.4 Solve the discrete equations using Newton’s
method
3.4.1 Generate and decompose the Jaco-
bian if needed
3.4.2 Solve the linearized problem via GM-
RES

Compute residuals
Combine sparse solver and Poisson
solver preconditioners

3.4.3 Compute nonlinear update

3.4.3 Return to 3.4.1 if Newton’s Method
did not converge

3.5 If solution adaptive gridding used
3.5.1 Compute local error estimates
3.5.2 Compute new grid

3.6 If not on final grid then return to 3.1

4. Extract aerodynamic output

Figure 2.1: Overview of the Numerical Method in TRANAIR.

14

At the conclusion of the solution process, the potential at each grid point is avail-
able. From the potential, a wide variety of information concerning the flow about the
configuration may be obtained. Velocities in the field about the configuration may
be computed, from which streamlines, Mach contours, density distributions, pres-
sure coefficients, force and moment coefficients about the configuration, etc., can be
computed.

2.3 DISCRETIZATION

In this section, the discretization process is described. First, the representation of the
surface boundary is described. Next, the restriction of computations to a finite region
is justified. Then, the computational grid and its generation are described. This is
followed by a description of the finite element operators. Grid interfaces between
different levels of refinement, modifications of the Bateman principle, and artificial
dissipation are described at the end.

2.3.1 Boundary Representation

In TRANAIR, the boundary is described independently of the volume discretization.
The geometry of the configuration is represented by a set of networks each consisting
of a rectangular array of corner points which form arbitrarily shaped quadrilaterals
called panels (see Figures 2.2). The panels serve the purpose of limiting the region of
integration for the Bateman variational functional. No fundamental unknowns (such
as the doublets or sources in linear panel methods) are associated with the panels
except for wakes, where a discrete set of doublet unknowns, u, are defined at various
corner points of the wakes.

2.3.2 Finite Computational Domain

The computations are restricted to a finite subset of the infinite space. The restriction
to a finite computational domain can be justified in the following way.
Suppose that the partial differential operator F is equal to a constant coefficient

differential operator 7 everywhere outside a finite rectangular region. Let G be a

Green’s function for T such that 7(G * Q) = Q for all Q (where Q are called sources)
and ® = G * Q + P satisfies the far field condition. Then the original differential
equation F® = 0 is equivalent to

Q+(F-TYNG*Q+ ®x)=0. (2.23)

Outside the finite rectangular region, F = 7 so that @ = 0. Thus, the unknowns Q
are confined to a bounded region.
For full potential flow, the far field operator is the Prandtl-Glauert operator

Té=(1-M2)d,.,+®,+®,, (2.24)
Equation (2.24) is a linearization of the full potential Eqn. (2.1) about V..

15

%né plate

aidwing
Jower W-8 fairing
upper W-B8 fairing
Tower body t —
}
T Q
- P~
——
nose T upper body ' aft-dody

Figure 2.2: Configuration Boundary Description in Terms of Networks of Panels

16

For most problems @ approaches zero (away from the boundary) much more
rapidly than ® approaches ®,,. This enables the termination of the computational
domain a short distance away from the boundary or regions of nonlinear flow. Wakes,
which extend to infinity, are exceptions which produce sources and sinks that extend
to infinity downstream of the configuration. By assuming that such sources and sinks
are constant in the downstream direction, their influence can be computed by using
a downstream Green'’s function (see Appendix D).

If the continuous operators are replaced by discrete ones, the same argument holds.
The requirement on T', the discrete version of 7, is that a discrete Green’s function
G is available that satisfies an appropriate discrete far field condition and T(G *
Q@) = @ for all Q. In practice, this means that T is a constant coefficient elliptic
operator discretized on a uniform Cartesian grid [36],[39],(89],(90],(94),[96]. Thus, the
computational domain need only cover the region where nonlinear flow occurs and
where the discrete version L of the operator F is not approximated well by a discrete
far field operator T. The discrete operator T used in the method is the standard
seven point finite difference operator.

2.3.3 Computational Grid

The volume grid in the finite computational domain is generated automatically by the
code. TRANAIR can operate in one of two modes, either grid sequencing (discussed
in Section 2.4.3) or solution adaptive gridding (described in Section 2.4.4). In either
case it is necessary to specify a starting grid. The process for constructing the grid
is described below.

First, the finite computational region is chosen to be rectangular and is divided
into a coarse uniform rectangular grid, called the global grid, which is independent
of the boundary surfaces. To facilitate matching between the nonlinear flow inside
and the linear flow outside, the global grid includes one plane of unrefined global grid
boxes on each face of the computational domain where L = T. These boxes remain
unrefined and no boundary surface is allowed to cut these boxes (except boxes on the
downstream face of the computational domain which can be cut by wakes). This is
required because the source Q is assumed to be zero on the boundary points of the
global grid.

The global grid is locally refined in a hierarchical manner, i.e., any grid box can
be refined into eight geometrically similar boxes of equal volume. This process is
repeated to give a grid with any desired local resolution and is controlled by two
criteria.

The first criterion for local refinement is based on the length scale of the surface
panels used to describe the boundary. Every box element that is sufficiently close
to a panel is refined if a weighted length scale (the panel diameter multiplied by a
panel tolerance factor which is provided as input) associated with the panel is smaller
than the length scale associated with that box element. A box is deemed to be in the
neighborhood of a panel if a scaled version of it generated by expanding it around
its center intersects that panel. The ezpansion factor by which the boxes are scaled
can also be specified. This factor is useful if it is desired to extend the effect of the

17

presence of the boundary on the grid refinement further out into the volume grid.
The panel based criterion is effective in providing local refinement near the boundary
surface.

The second criterion is the requirement that the local boz size is restricted to be in a
specified range (dZmin,dTmazr). Boxes are refined recursively until their size is smaller
than dz,,,,. Further refinement depends on the panel based criterion. Refinement
based on comparison with dz,,,, is useful in problems where high gradients, such as
shock waves, exist in regions away from the boundary surface.

Both criteria for refinement can be invoked over either the entire computation
box or over certain special regions of interest or disinterest where different desired
ranges of box sizes and panel tolerance factors are defined. The special regions are
hexahedral and provide ample flexibility in generating desired local refinement.

Once all specified refinements are done, the grid is legalized so that two boxes
abutting on a face or an edge differ by at most one refinement level. This ensures
sparse stencils for the finite element operators and simplifies certain data structures
[56], but allows sufficiently rapid changes in grid level.

Locally refined box elements formed by the process described above are usually
an unstructured collection of box elements. To completely describe these elements
an oct-tree data structure is used. The tree is formed as boxes are created through
refinement. A box and node numbering system is developed from the tree and adja-
cency and other information is extracted. (See [41], [57] and Appendix A for more
details.)

A grid generated in this manner may be considered to be a prescribed grid. This
grid is sequentially derefined to generate a set of coarse to fine grids. If no solution
adaptation is used then the iterative solution is obtained on this sequence of grids
by starting with the coarsest and moving through the finer grids. If the adaptive
method is used then the coarsest grid is used to start the solution and all subsequent
grids are determined according to estimated local solution errors. In either case the
initial guess for the starting grid is zero and for each subsequent grid is obtained by
interpolating the solution from the previous grid.

2.3.4 Finite Element Operators

The discrete operators on every grid in the sequence are constructed using a finite
element method. Implementation of the finite element method for rectangular boxes
away from the boundary and irregular boxes near the boundary is described below.

Element Trial Functions

Every rectangular element is geometrically identical except for a scale factor. The
standard trilinear element trial function, parameterized by eight corner unknowns is
used (see Figure 2.3). The trial functions used for elements near the boundary are
also represented in a similar manner (see below). In order to generate as compact
a stencil as possible (e.g., standard seven point operator for Poisson’s equation on a
uniform grid) certain lumping terms are added (see Appendix B).

18

o s

’ v ¢, o,

X Q] q>2

Figure 2.3: Box Finite Element With Eight Corner Unknowns.

Implementation of the Variational Principle

Element stiffness matrices are generated by taking variations of the functional J with
respect to each degree of freedom. If only natural boundary conditions are present,
(reiterating Eqn. (2.11) and noting that W = pV and 6§V = Vé¢) variation of J are
given by

§J = —/n,ﬁ(pﬁ&pdv (2.25)

- —;Lipv¢-V6®dV
~ -):p,-/n_%ﬁ&bdv

Here, p; is the value of p at the centroid of the elemental region Q;. The last step
in equation (2.25) is equivalent to replacing p by a piecewise constant function. This
approximation of the operator coeflicients maintains second order accuracy for the
potential in the L, norm and first order accuracy in the energy norm [58].

Near Field and Far Field Boxes

Near field bozes are boxes not cut by any boundary surface, but where L # T.
Equation (2.25) defines the element stiffness matrices by considering variations of J
with respect to each of the eight corner unknowns of the element. Thus, every near
field box has the same element stiffness matrix up to a constant factor that depends
only on the refinement level of the element and p;. This results in large savings in
storage. In addition, p is a nonlinear function of the velocity and is evaluated at the
centroid of each element during every iteration. Thus, discrete formulas for velocity
at the centroids in terms of the unknowns at the corners of the element are needed.
Since all near field box elements are similar, only one velocity formula needs to be
stored, resulting in additional large savings in storage.

The far field bozes lie on faces of the computational domain where L = T. These
boxes are geometrically identical. Also the density is constant in these boxes since

19

the linear flow properties are matched. Hence the operators for all such boxes are
identical.

Boundary Boxes and D Regions

Boundary bozes are those cut by a boundary surface. A connected subset of a bound-
ary box is referred to as a D-region, (see Figure 2.4). Each D-region is bounded by
a subset of the boundary surface as well as possibly subsets of the box faces. No D-
regions are defined in the interior of the configurations since the flow there is defined
to satisfy ¢ = 0. Hence, a box cut by a boundary surface with flow on one side and
no flow (referred to as stagnation) on the other would have only one D-region, for
example region D3 in Figure 2.4. It is possible to have more than one D-region in a
boundary box. This is the case in Figure 2.4 for D-regions D; and D, where a wake
divides an element.

Since boundary conditions on a surface can induce discontinuities in ¢ or 6@, a
separate element trial function is needed for each D-region. The element trial function
for each such D-region is parameterized by unique unknowns at the corners of the
grid box. Corner unknowns on the other side of a boundary surface from their D-
region can be viewed as extrapolated values and are denoted by ¥. In Fig. 2.4 the
¥, unknowns correspond to the element trial function in D, and the ¥y unknowns
correspond to the element trial function in D;. There is a one-to-one correspondence
between element trial functions in the box and D-regions.

Stiffness Matrices for D-regions

Each D-region also has a distinct element stiffness matrix that must be stored. The
coefficient of the differential operator, p, is evaluated at the centroid of the D-region
and hence distinct velocity operators are also required for each D-region. However,
these boundary elements represent typically only 10 to 20% of the elements needed
to give an accurate solution of the boundary value problem.

The element stiffness matrices D-regions are derived from an expanded version of
Eqn. (2.25) including appropriate surface integral terms. The domain of integration
for the volume integral is the relevant D-region. The domain for the surface integrals
is the intersection of the boundary with the boundary of that D-region. Since the
integrand is a product of polynomials, volume moments must be computed over the
D-region.

Consider the volume moment

H(I,J,K) = /D #-1y7-1,K-1qy. (2.26)

Since the boundary is parameterized by piecewise flat panels, this moment can be
computed exactly via the following procedure. By Gauss’ theorem

H(I,J,K) = I-1,J-1,K-1(4 . B)dS (2.27)

ery A

20

o,
s

D/’ 1] W\

v ow v |y, W, D, 7 27
y v Stagnation
/ ‘I’/ Dy
v v] Yy Yy Yy
Lw v |y —

Figure 2.4: Placement of Unknowns. All Grid Points Have & Unknowns.

21

where S is the bounding surface and R= (z,y,z). Since S is the union of flat surfaces
Siv

1

N 5 9
where
Fs, = n,F(I+1,J,K)+n,F(I,J+ LLKY+n,F(I,J,K +1) (2.29)
and
F(1, J,K):/S 211y K14 (2.30)

Each S; is assumed to be a polygon whose perimeter is the union of straight lines
T;;. Using Stokes’ theorem, F(I,J, K) for fixed i may be evaluated recursively by the
formula

F(I,J,K) = I+J—iK—1 [(fz-R.)F,,+ZE.,} (2.31)

where

F, = n(I-1)F{I-1,J,K)+n,(J -1)F(I,J-1,K)
+n, (K - 1)F(I,J,K - 1)
E, = v.EI+1,J,K)+v,E(I,J+1,K)+v.E(1,J,K +1)

where with ¢ denoting the edge tangent vector, ¥ is the edge normal vector t®n, and

E(I,J,K) is defined by

E(I,JK) = / g1y~ 1K g, (2.32)

T,
Using simple one dimensional integration formulas E(/, J, K') may be evaluated re-
cursively by the formula

1

E(LLK) = 1057k =2

(E; + D) (2.33)

where

E. = (I-1)GEI-1,J,K)+(J - 1)E(UI,J-1,K)
+(K - 1)¢.E(I,J, K - 1)

D = t,D(I+1,J,K)+t,D(I,J +1,K)+t.D(I,J,K +1)

22

where E: (t® é) ®t (constant along Ti;), and D(I,J,K) = l-1y/-1,K-1 2 where
1 and 2 represent the initial and final points of T};. Thus, the original integrals (2.26)
defined over a complicated volume can be systematically reduced to point evaluations
at vertices of the bounding surface. The surface moments arising out of the surface
integrals in Eqn. (2.17) can be computed starting with Eqn. (2.30). Note that the
location of the centroid in each D-region can be computed from the zero and first
order moments. Further details on the operator generation including an example of

operator calculations are given in Appendix B.

Identifying D-regions

There remains, of course, the problem of identifying D-regions and their bounding
surfaces. This is done in three stages.

First, for each panel, a list of grid boxes containing any part of the panel is con-
structed. Because the grid is rectangular and hierarchical in nature it is relatively
easy to isolate the subset of boxes which are located within a neighborhood of a given
panel. Moreover, because the boxes are rectangular and the panels are divided into
flat triangles it is straightforward to determine if boxes in a neighborhood of a panel
in fact contain any part of the given panel. This list is then inverted to find all the
panels intersecting a given boundary box.

In the second stage a list of equivalence classes of panel sides for each boundary
box is constructed. A panel side is either the upper or lower surface of a panel. An
equivalence class consists of all panel sides which are connected to each other through
panel edges. A panel side is connected to another panel side if the two panels share
a common edge that is partially or wholly contained within the given boundary box
and if there is no intervening panel also connected to that edge.

In the third stage separate connected regions of the boundary box are identified.
This is done by choosing points on different panel side equivalence classes and then
joining them with straight lines. The set of panels cutting these straight lines is
examined and the panel side equivalence classes of panels responsible for successive
cuts are identified as members of a new equivalence class of panel sides which bound
a connected region. Polygonal subsets of a face of the boundary box are included in
such an equivalence class whenever a panel side is discovered to intersect the face.
This algorithm determines connected regions within a boundary box. However it is
also necessary to determine which such regions are connected to regions in adjacent
boxes. This is because of the necessity of maintaining continuity of element trial
functions across box faces and edges. For this purpose a list of which panels in each
boundary box region intersect box faces is stored. These intersections are compared
with those in an adjacent box and connections between regions are established. The
W parameters at common nodes of connected regions are then identified.

2.3.5 Grid Interfaces

In the finite element method, conservation of mass results if the element trial functions
are continuous from box to box. This property can be retained in the presence of

23

grid refinement by introducing pseudo-unknowns. By definition a pseudo-unknown is
any unknown located at a node on the boundary of some element but not at a corner
of this element. This can occur only at a coarse to fine grid interface. In the two
dimensional case, pictured in Figure 2.5, ®, is a pseudo-unknown whose parents are
®, and ®3. In the situation pictured in Figure 2.4, ¥,, is a pseudo-unknown whose
parents are ®, and ¥,.

In order to maintain continuity of the element trial functions across element bound-
aries, ®, in Figure 2.5 must be the average of its parents, that is

1

In three dimensions, pseudo-unknowns can occur at the midpoints of element edges
or the centers of element faces. For a pseudo-unknown @, at the center of an element
face with four parents ®,,®3,94, and &,

1

Thus, pseudo-unknowns are not true degrees of freedom and could be eliminated at
the outset from the element stiffness matrices through Equation (2.35). However,
this would result in loss of uniformity in these matrices, many special cases, and loss
of vectorization. Hence these unknowns are treated as degrees of freedom when the
element stiffness matrices are generated. In the process of evaluating the discrete
operator L, pseudo-unknowns are first assigned values by averaging their parent un-
knowns. Residuals of the governing equations are produced at these unknowns but
are then distributed to the residuals for their parents. This process of distributing
residuals to parents is justified by Eqn. (2.35) and a straightforward application of
the chain rule

dJ _0J 0J0% _0J 10] 236
%, ~ 0%, ' 09,00, 00, 409, -

Thus, the component of the residual of the discrete version of Eqn. (2.25) calculated
for @, should be equally distributed to the residuals for the four parent unknowns.
This technique has the advantage that every element stiffness matrix produces con-
tributions only to the 8 corner unknowns of its box element, thereby simplifying the
generation of the stiffness matrices and enhancing vectorization. Vectorizing over
large blocks of similar elements can be done using an outer loop over the eight corner
unknowns and an inner loop over the elements in the block.

2.3.6 Modifications to the Bateman Principle

To achieve a stable numerical formulation, the treatment of Dirichlet boundary con-
ditions and wake surfaces must be modified. In addition, the natural Neumann condi-
tion must be modified to account for boundary curvature, since the solution is often
sensitive to this quantity and the boundary is discretized using flat panels. These
modifications are described below.

24

®;

o3
Figure 2.5: Pseudo-Unknown in Two Dimensions.

The introduction of the last surface integral in the variational principle (2.17)
enforces a Dirichlet condition on 993. Equation (2.17) can then be used to calculate
the element stiffness matrices in a finite element formulation. It turns out that the
resultant discrete problem is somewhat unstable. In certain instances one can show
that the boundary unknowns ¥ actually satisfy a discrete Helmholtz equation and
an oscillatory solution is, in fact, obtained. This phenomenon is probably related to
the fact that J is no longer maximized in subsonic flow with Dirichlet data. This
suggests a remedy which has been implemented and which has been found to be very
reliable numerically. The last integral in Eqn. (2.17) is replaced by

o® P 2
/. {p-é;l-@ — g3) — (@ - gu)?| dS (2.3

where Al is the minimum diameter of the box containing the trial function. A similar
term may be added to the second integral.

All surfaces are represented by flat panels. Resultant discontinuities in slope from
panel to panel will be reflected in the solution as the grid is refined. In most cases,
this effect is spurious, since the surface slope discontinuities are artifacts of the panel
description of the surface. To eliminate this problem, a curved surface is simulated
by adding to the variation of Eqn. (2.17) a surface integral

8J = oJ + /m PV - (7 — 77)0BdS (2.38)

where 2" is a polynomial interpolation of 7 and 3® denotes the variation of ®. The
endpoints for the polynomial interpolation of the normal are user controlled to allow
discontinuities in slope where they are actually present.

2.3.7 Dissipation

First order upwinding of the density is used to produce the artificial viscosity required
when supersonic flow is present [22, 25]. Such upwinding is given by replacing p in

25

the full potential equation with

p=p—uV-A_p (2.39)

where V is the normalized local velocity and ﬁ_p is an upwind undivided difference.
In Eqn. (2.39) p is the switching function given by

u = maz(l — M?/M?,0) (2.40)

where M is the local Mach number and M, is the cut-off Mach number assigned the
value M2 = 0.95 chosen to introduce dissipation just below Mach 1.0.

An alternative to upwinding the density is to use flux biasing i.e. upwind the flux
pq where ¢ = || V ||2 . Flux biasing may be expressed in a form similar to Eqn.(2.39)
by writing

((pg) - V- A_ (P0)) (2.41)

where

(2.42)

Here, p*q*is the value of pg at sonic flow conditions.

For either form of dissipation, the upwinding is done across the face of a box with
a precomputed stencil. A density or flux is chosen for each of the six faces of an
element when the operators are generated. For a uniform grid with no boundaries,
each box has a single box adjacent to it across each of its six faces. In case of grid
refinement, there are two other cases. If the adjacent box is refined, the density used
for upwinding is obtained by averaging the densities for the four adjacent refined
elements. If the adjacent box is coarser, then three densities are averaged. In two
dimensions, the possibilities for upwinding to the left across an edge are illustrated
in Figure 2.6.

Upwinded density p is defined by

6
p=p+up)y maz(=V -7, 08(V) > Ci (pi; — p) (2.43)
=1 7

where ¢ runs over the 6 faces of the given box, j runs over the densities averaged to
obtain the density upwinded to, C, ; is the coefficient for each of the four densities
contributing to the density upwinded to, V is the normalized velocity at the centroid
of the given element, #; is the outward pointing normal to face : of the element,
and S{(V) is a cubic blending function to make the upwinding differentiable. This
upwinding is first order accurate, introducing an error comparable to replacing the
density p with a piecewise constant approximation in each element. In the case of
D-regions, special operators must be constructed based on local information about
box adjacency. This information is extracted from the oct-tree (see Appendix A) and
D-region lists in a preprocessing step.

26

TPy P " P2

Face Adjacent Box at Same Level

* P

Face Adjacent Box is Less Refined

* P2

‘P, ‘P23

Pr;

Face Adjacent Box is Less Refined Face Adjacent Box is More Refined

Figure 2.6: Upwinding Stencils in Two Dimensions for Negative z Edge.

27

2.3.8 Accuracy of Discretization

By keeping the trial functions parameterized by values at the corners of similar boxes,
uniformity of the basis [58] is guaranteed. Thus, in the limit, standard approximation
theory and finite element error estimates hold. The asymptotic convergence of the
method has been verified with uniform grids for the case of a sphere in incompressible
flow where an analytic solution is available [36]. Sections 3.1 and 3.2 contain compu-
tational examples that demonstrate the method’s accuracy for locally refined grids.
There is no theoretical guarantee of good conditioning. However, experience to date
with the code has not uncovered any conditioning problems for the cases in the range
from 8000 to 600000 grid points and refined grids with relative levels of 10 below the
global grid level.

28

2.4 SOLUTION ALGORITHM

2.4.1 Linear Solution Algorithm

The solution technique used in TRANAIR was designed for nonlinear problems. How-
ever, it is useful to describe the algorithm applied to the special case of a linear
boundary value problem.

Discrete System

The generic linear potential equation

V- (pV®) = f (2.44)

is considered with p = p(z,y,z) assumed to be given and strictly positive. The
boundary conditions are those described earlier in Section 2.1.

In order to enforce the far field condition given by Eqn. (2.3), source unknowns @
are introduced on the global grid and replace unknowns @ there. Since @ is known
to be zero on the boundary of the global grid, the residual does not need to be
computed there. The extrapolated values in boundary boxes are denoted by ¥, all
other variables on the refined grid are denoted by ®, and the doublet parameters on
wakes are denoted by . The finite element operator described in Section 2.3.4 will be
denoted by L. It is defined over the whole grid except on the boundary of the global
grid and is evaluated by multiplying the element stiffness matrices by the vector of
unknowns.

Thus it is necessary to solve the linear system of equations

T-1Q
L = f. (2.45)

Preconditioned System

Since the system (2.45) (depending on boundary conditions) is non-symmetric and
non-definite the GMRES method of Saad and Schultz {53] is chosen as the basic
iterative solver.

The operator, T ™!, used to obtain the potential from the sources acts as an effective
right preconditioner for the global grid points. It is also necessary to use a left
preconditioner, to approximate the problem near the internal boundaries. The left
preconditioner, N, is taken to be the global stiffness matrix restricted to a reduced set
of unknowns. The reduced set is defined to consist of all unknowns located at corners
of boundary boxes, refined boxes, or boxes with total pressure or temperature different
form free stream values, and the doublet parameters u. The stagnation unknowns
(those that are located in the interior of the configuration) are not included in the
reduced set. The reduced set is closed by closure unknowns which are outside the
reduced set but in the stiffness matrix stencil of some unknown in the reduced set.

29

The boundary condition at closure unknowns is an approximation to the far field
condition for the original problem, i.e., ¢ = 0.

Note that there is some overlap between the @ unknowns on the global grid precon-
ditioned by T~! and those in the reduced set preconditioned by N~'. For unknowns
@ at global grid points in the reduced set, an additional preconditioner T must be
applied on the left to make the equation dimensionally correct.

Hence, in all there are five classes of unknowns in a given flow problem. They are:

e QW the source unknowns at global grid points which are not in the reduced set
and not in stagnation regions;

e QW the source unknowns at global grid points in the reduced set or in stagnation
regions;

o O, the values of the velocity potential at points on locally refined grids;
e ¥, the values of velocity potential in the boundary basis functions;
e 4, the doublet strengths at leading edges of wake networks.

The preconditioned equation can then be written as

TN'l(f — LT"IX) =0 (2.46)
where
Q(l)
Q(2)
X = d (2.47)
p
U

The operators T and N are defined as:

Ty Tayzy 0 0 0
Ty Tizpz) 0 0 0
T = 0 0 100 (2.48)
0 0 0171 0
0 0 0 0 I
I 0 0 0 0
0 Neya Noe Ny Nays)
N=10 Ngw@ Noym Naw Nees |- (2.49)
0 Ny Nae Naw Ny

0 Noya Nsya Ny Ny
To achieve invariance with respect to units, the source unknowns Q must be scaled
relative to the potential unknowns (the scale factor has the dimension of the inverse

length squared). After scaling, the GMRES convergence history is independent of
the physical units used to define the problem.

30

Preconditioned Residual

The calculation of the preconditioned residual R (the function evaluation subroutine
for GMRES) is now described.

For unknowns Q") (those on the global grid but not in the interior of the reduced
set)

RQM =f-1L d . (2.50)

7

For unknowns Q{? (those on the global grid and in the interior of the reduced set
or located at global grid points in stagnation regions)

1)
T (8(2))
RQP)=TN" | f-L) . (2.51)
¥
U

In Eqn. (2.51), special account must be taken of unknowns @ located in stagnation
regions, such as the interior of wings and fuselages. For these unknowns, it is impor-
tant to realize that N~! is just the identity, f = 0, and L® = ¢. Thus T is applied to
the global grid unknowns in the reduced set, closure point unknowns, and stagnation
unknowns. But the input for T' at stagnation unknowns comes from a different pro-
cess than that used for the other two classes of Q unknowns. Another special class
of @ unknowns in Eqn. (2.51) are those at closure points. N~! does apply to the
residual at these points producing input values for T to give residual values for points
in the reduced set. But for these closure unknowns, the residual is actually given by
Eqn. (2.50).
For unknowns ® not located on the global grid and for all unknowns ¥ and u

R(¥)) . (2.52)
R(p) v
7

For ® unknowns located at points not in the global grid but in stagnation regions,
the residual is given by R(®) = L® = ¢.

[

Preconditioners

The operator T~! represents the discrete Green’s function and is defined over the
uniform global grid. Construction and application of the discrete Green’s function
(Poisson Solver) is extremely fast since one can take advantage of the constant grid

31

spacing and use discrete Fourier transforms. More details on this preconditioner are
give in Appendix D.

The left preconditioner matrix N is sparse and it is feasible to do a direct sparse
incomplete factorization of N. This works for the following reasons. First, a drop tol-
erance can be introduced into the sparse elimination process allowing small elements
in the decomposition to be dropped as they are generated. This has a cascading effect
and reduces fill dramatically [43]. Second, a grid based nested dissection ordering can
be generated which reduces fill during elimination and therefore the total amount
of work. In most cases the drop tolerance is the most effective strategy. Figure 2.7
shows the reduced set and a possible first dissector for a grid for a sphere case. More
details on the sparse solver preconditioner are given in Appendix E.

-

A

-
.
-

aa
=

=
?

b
H

Figure 2.7: Reduced Set and Possible First Dissector.

2.4.2 Nonlinear Solution Algorithm

When the problem is nonlinear it is necessary to use the Newton method. Each step
of the Newton method requires the solution of a linear problem of the type discussed
in Section 2.4.1.

Newton Method

Consider the nonlinear system of equations

F(z) =0. (2.53)
Given an initial approximate solution z°, for n = 0, 1,2, ... until the residual is suffi-
ciently small, set

32

™ =™ 4+ A6z (2.54)

where §z7*! is the solution of the linear system

Fon(6z™) = —F(2") (2.55)

and A is a step length to be determined. Here F',» is the Jacobian for F linearized
about 2™. This linear operator can be defined by giving its action on any vector y

tim F(z + ey) ——F(z)‘

F.yy=€¢—0 ; (2.56)
The step length X is selected so that
IF™* I < [IF =) (2.57)

in some appropriate norm.

The GMRES algorithm can be used to solve Eqn. (2.55). This algorithm requires
only the ability to calculate the action of the linear operator 7, on any vector y.
Equation (2.56) can be used to approximate this action

F(z +ey) — F(z)

€

F.(y) ~ (2.58)

where ¢ is small in some appropriate sense. Thus, the linear problem, Eqn. (2.55),
can be solved without ever explicitly generating the Jacobian for the full nonlinear
problem.

To control the cost of the method Eqn. (2.55) is solved only approximately with
GMRES, i.e., 6z satisfies

[Fan(82™*1) + F(z™)]| < 1.

This makes the method an inexact Newton method [59]. If 7 is constant, the method
converges linearly. If 7 goes to 0 as convergence takes place, the convergence is
superlinear. More details can be found in [54}.

Preconditioning GMRES

Preconditioning Eqn. (2.55) is identical to that used for linear systems and given in
Eqn. (2.46). If f is replaced by — F(z"), L by Fz», and T~' X by z, Eqn. (2.46) is the
same as Eqn. (2.55) preconditioned on the left by TN~!. For convenience, the finite
difference formula (2.58) is applied to TN~!F rather than F. The matrix forms of
T, N, and T™! are given in Section 2.4.1.

33

The matrix NV is an approximation to the Jacobian for F about the current solution
restricted to a reduced set as described in Section 2.4.1 above. The reduced set now
also includes all elements where upwinding is used.

The matrix N is generated on an element by element basis using the element
stiffness matrices. The density function p and its derivatives are evaluated at element
centroids. For unknowns one of whose eight contributing elements has upwinding in
effect, the row of the matrix N depends on more than just these eight elements. The
algorithm can be simplified by applying the chain rule to the calculation of a matrix
entry,

dF(®); OF(® Z F(®); 96
ae, a<1> “op 0%,

where § is given by Eqn. (2.39). The first term on the right is the contribution from
the subsonic stencil, i.e., the element stiffness matrices. The second term is generated
using a sparse matrix-matrix multiply. This technique enables vectorization even
though the upwinding is element dependent.

The convergence of the inexact Newton method depends on how well the matrix
N represents the Jacobian of F. If the damping strategies described below are used
it is usually necessary to compute and invert matrix N infrequently.

(2.59)

Local Damping of Newton Method

Newton’s method is rarely globally convergent. Also, its convergence rate is generally
quadratic only sufficiently close to the solution. The initial iterate is usually taken
to be ¢ = 0, which is not a good approximation to the solution. Thus, Newton’s
method works well only for moderate to small problems or those with only weak or
no shocks. For large problems or problems with reasonably strong shocks, Newton's
method must be damped to prevent divergence or very slow convergence.

Various damping strategies have been tested in the present method. One due to
Bank and Rose [60] for determining the step length A is based on the residual for
Eqn. (2.1). This strategy is fairly simple to implement and provides adequate local
damping in many cases.

Another strategy is to limit A to prevent local Mach numbers greater than some
prescribed cut off value. This prevents spurious large velocities from causing stagna-
tion of convergence. In the ONERA M6 wing results reported below, this strategy
was used with a local Mach number cutoff of /5.

However, local damping strategies of this kind are only effective by themselves in
cases that almost converge anyway. In more difficult transonic cases, a steep shock
can form in the wrong location early in the iterative process and the Newton method
can stagnate. In this case, a local method can rarely move the shock more than one
grid point per iteration, resulting in very slow convergence. This situation seems to
be due to the fact that the residual is much larger near the shock than elsewhere.

The shortcomings of the local damping strategies can be seen in the case of the
ONERA M6 wing at M, = 0.84 and angle of attack a = 3.06° on a grid having about
311,000 elements. This case exhibits a strong shock outboard as well as an oblique

34

shock. If Newton’s method is used with an initial iterate ¢ = 0 and the Bank-Rose
strategy for limiting A, the convergence stagnates at the iterate shown in Figure 2.8.
The final converged solution is shown for reference. If A is further limited to control
local Mach numbers as described above, the convergence is still very slow. Figure
2.9 shows the Newton iterate after six and twelve Newton steps. Newton’s method is
moving the shock toward the correct location very slowly.

Viscosity Damping

To improve convergence in the presence of shock waves, a problem dependent dissi-
pation is used. Here a larger amount of dissipation is introduced during the early
iterations and it is reduced to appropriate levels as the solution develops. This type
of damping strategy can be implemented through a continuation process which can
be based on many types of parameters.

In the first, and more direct approach (called the viscosity damping strategy), the
discrete problem is modified by multiplying the switching function of Eqn. (2.54) by
a constant factor (1.5 to 3.0) and by reducing the cut-off Mach number during the
initial steps in the Newton method. This has the effect of increasing the amount
of artificial viscosity and applying it to a larger part of the flow field. After several
Newton steps, the problem is modified by reducing the multiplying factor and raising
the cut-off Mach number. This process is repeated until the desired level of dissipation
is reached. This continuation process works very well since it has the effect of locating
the supersonic zone and the shock position fairly early in the process, even though
the shock is quite smeared.

When, viscosity damping is used in the case of the ONERA M6 wing, conver-
gence improves considerably after the initial viscous problems are partially solved.
A partially converged solution at the second continuation step (Newton step seven)
is shown in Figure 2.10. Figure 2.11 shows the convergence histories for these runs.
The residual jumps in this figure correspond to discrete changes in the continuation
parameter. The drawback of this continuation approach is the high cost of even
partially solving the viscous problems that are introduced.

Several other parameters were used as continuation parameters including free
stream Mach number (M) and the total pressure of the free stream. In both cases,
the shock location was sensitive to the continuation parameter and convergence was
poor in certain cases.

2.4.3 Grid Sequencing

A strategy that has proven to be very reliable for ensuring convergence for difficult
transonic problems is grid sequencing. Basically the process involves the following
steps. A sequence of coarse to fine grids are generated a priori. The solution is found
on the coarsest grid. The converged solution is interpolated onto the next finer grid
and the problem is solved on that grid. This is repeated until the solution is obtained
on the finest grid. A gradual change in viscosity is brought about by the fact that the
grid cell size in the initial stages (on coarse grids) is larger and thus the dissipation

35

-1.8

0.0 0.2 0.4 0.6 0.8 1.0

—eo— Converged Solution — — Standard Newton Iterate

Figure 2.8: Iterate for Newton’s Method With Residual Damping for ONERA M6
Wing Case, M, = 0.84,a = 3.06°, 91% Span Station.

36

LI T T T

04 0.6 0.8 1.0
XOC
Converged Solution —— ~ 6th Newton Iterate

—— 12th Newton Iterate

Figure 2.9: Iterates for Newton’s Method With Residual and Local Mach Number
Damping for ONERA M6 Wing Case, M,, = 0.84,a = 3.06°, 91% Span Station.

37

C
P
0.0 0.2 04 0.6 08 1.0
XOC
Converged Solution —— - 6th Newton Iterate

o Tth Viscous Damping Iterate

Figure 2.10: Partially Converged Iterate for the Second Continuation Step Using
Viscosity Damping for ONERA M6 Wing Case, M, = 0.84,a = 3.06°, 91% Span
Station.

38

RELATIVE RESIDUAL

0.0001 |

1E-05 |

1E-06 |

1E-07

1E-08

1E-09 |

1E-10

-

Ll L) 1

0 4 8 12 16
NEWTON STEPS

——&— Residual Damping
—— Residual and Local Mach Number Damping
—o— Residual, Local Mach Number, and Viscosity Damping

Figure 2.11: Convergence Histories for Newton’s Method with Various Damping
Strategies for ONERA M6 Wing Case, M, = 0.84,a = 3.06°.

39

is larger. As the grid becomes finer the dissipation is automatically reduced. The
process of interpolating the solution naturally positions the nonlinear features in the
solution. It is also possible to employ viscosity damping on any or all the grids in
the sequence with some simple code modifications. The benefits of this approach are
more reliable convergence and lower computer cost.

The results for the ONERA M6 case are presented below. With grid sequencing,
this case converged rapidly. As discussed in Section 2.4.1, this case did not converge
when residual and local Mach number damping was used with Newton’s method with
an initial guess of # = 0. Convergence was obtained in two ways. Initially, viscosity
damping was used and it was found that four continuation steps were required. With
grid sequencing, this case converged more rapidly and CPU times were proportionally
reduced. Figure 2.12 compares convergence histories for these three methods. Iter-
ations in the grid sequencing run are scaled by the approximate size of the problem
for the early small grids (this scaling corresponds approximately to CPU cost). Grid
sequencing offers a substantial advantage in both rate of convergence and storage
requirements. For the grid sequencing run, CPU time was about half of that needed
for the viscosity damping run.

Cuts through the three grids used are shown in Figures 2.13 through 2.16. The
final fine grid is the last of these three grids. The grids had about 19,000, 56,000, and
311,000 elements respectively. Figure 2.17 shows surface pressures obtained on the
three grids used in this case. On the coarser grids, the shock is in the right location
but smeared.

2.4.4 Solution Adaptive Grids

The grid sequencing method described in Section 2.4.3 operates on a set of pre-
constructed grids in which the refinement is governed a priori by the configuration
surface definition and other specifications (see Section 2.3.3). The solution adaptive
grid method starts with the coarsest grid in the preconstructed sequence of grids.
The overall procedure in discretizing the problem on the current grid and solving
the discrete equations is identical to that described so far (see Sections 2.3 and 2.4).
However the solution adaptive method differs from the grid sequencing method in two
regards. The first difference is that in the adaptive method, the next grid is generated
anew and the local resolution of the new grid is determined by a posteriori computed
local error estimates and user inputs (rather than being taken from the pre deter-
mined sequence). The second difference is that in creating the new grid single-level
local refinement as well as derefinement may be used. In refining, a rectangular box
element is replaced by eight smaller similar elements, whereas, in derefining, eight
sibling elements are coalesced to form a larger similar element.

The goal of the adaptive grid method is to obtain a final grid with a (specified)
target number of elements, N, and a numerical solution on that grid that is nearly
as accurate as the best solution one could obtain using N elements in any grid. To
achieve this goal five sequential steps are carried out in creating each new grid. These
steps consist of estimating local errors on the previous grid, computing local error
predictors, applying a priori grid refinement controls, applying a grid refinement

40

RELATIVE RESIDUAL

Tao

b

]
M
i}
m

gl
};

0.1]

\4

0.01 j%

0.001 1l

0.0001

1E-05 |

1E-06 |

1E-07 |

1E-08]}

1E-09 |

1E-10

Li 1) 1

0 4 8 12 16
NEWTON STEPS

—&— Standard Newton Damping
—— Viscosity Damping
—o— Grid Sequencing

Figure 2.12: Convergence Histories for Newton’s Method, Newton’s Method with Vis-

cosity Damping, and Grid Sequencing for ONERA M6 Wing Case, M, = 0.84,a =
3.06°.

41

1]

Coarse Grid

Medium Grid

Figure 2.13: Cuts Through The Coarse and Medium Grids Generated by Grid Se-
quencing for ONERA M6 Wing at 91% Span, M,, = 0.84,a = 3.06°.

42

18PUARONNENIORNINEN) 1

Fine Grid

Figure 2.14: Cut Through the Fine Grid Generated by Grid Sequencing for ONERA
M6 Wing at 91% Span, M., = 0.84,a = 3.06°.

strategy, and constructing the new grid.

Use of the method components in these steps is novel in the present context, but
the basic ideas behind them have been proposed before by other researchers (61]-[68].
The performance of the present solution adaptive grid method depends somewhat
strongly on the characteristics of individual applications, and the specific method
components employed. The specific method components were chosen after substantial
but nonexhaustive, testing and analysis.

Computing Local Error Estimates

Local differences of velocity components are used as estimates of the error for each
rectangular' element in the grid. The error estimate for an element consists of

errest = max {max{(Av])? + (Av}¥)? + (Av57)?} 4}, (2.60)

region r b
where, for the rth solution region contained in the element, Av!’ denotes the dif-
ference across the element’s jth face of the region centroid values of the ith velocity
component. The outer maximum in Eqn. (2.60) is taken over all regions contained

It should be recognized that the finite element method is applied on the regions over which the
element trial functions are defined. These regions are part of the rectangular box elements. The
grid refinement process refines box elements, and new regions are determined for the subdivided box
elements. The grid refinement process does not refine individual regions.

43

1/

Coarse Grid

Medium Grid

Figure 2.15: Cuts Through the Coarse and Medium Grids Generated by Grid Se-
quencing for ONERA M6 Wing at the Plane of Symmetry, M, = 0.84,a = 3.06°.

44

1
HH
T HiH

Fine Grid

Figure 2.16: Cut Through the Fine Grid Generated by Grid Sequencing for ONERA
M6 Wing at the Plane of Symmetry, M, = 0.84,a = 3.06°.

in the element. The inner maximum is taken over all element faces connecting to
a region not contained in a larger element. Figure 2.18 illustrates in the case of a
two dimensional airfoil the directions in which velocity components are differenced to
compute error estimates for five elements, labeled A-E, each of which contains only
one solution region.

This error measure providés a natural way to detect flow features having different
length scales near different configuration components and does not lead to excessive

grid in the far field.

Computing Local Error Predictors

A simple local smoothing algorithm is used to form error predictors from the local
error estimates. In this algorithm, nodal values are first set equal to the largest of
the error indicators for adjacent elements and then interpolated at element centroids
to form the predictors. This algorithm implicitly predicts the need for grid refine-
ment near elements where large errors have been detected and spreads the effect of
estimated errors by one or two elements, thus preventing holes in subsequent grids.

Applying A Priori Grid Refinement Controls

For accurate and efficient analyses of complex configurations, it is important that
one is permitted to communicate regions of greatest and least interest to a solution
adaptive grid code. In many cases this is essential so that flow features of interest can

45

0.8

06
| : . : : . 08 : . . :
0.0 02 04 0.8 [¥ 10 0.0 02 04 06 08 10
x0C Xxoc
Plane of Symmetry (Root) 44% Span
-1.4 14

0.8]
o'. Al T T T T o. T T L T T
0.0 02 04 0.0 (X] 1.0 0.0 0.2 04 06 (X] 1.0
) (o o Xoc
70% Span 91% Span
— — Coarse Grid - - - - Medium Grid
—— Fine Grid

Figure 2.17: Surface Pressure for the Three Grids Generated by Grid Sequencing for
ONERA M6 Wing, M., = 0.84, o = 3.06°.

46

N~
4

——

i

|

Figure 2.18: Directions for Velocity Component Differences in Error Indicators for
Elements A-E

47

be resolved most accurately with a given target number of elements. The reasons for
this are as follows. Unless otherwise instructed, the solution adaptive grid method
gives equal weight to all regions with equal estimated errors in considering local grid
refinement. Such regions could include those about wing tips, leading edges of many
components in a configuration, irregularities in geometry, and wake regions, not all
of which may be of equal importance to a person using the code. It can also happen
that one flow feature that is easily detectable may dominate another flow feature that
is latent (a feature that cannot be detected until sufficiently fine grid is present). For
a given target number of elements, one often can significantly enhance the detection
and resolution of latent flow features by restricting or de-emphasizing grid refinement
in regions with dominant features.

The mechanism for exercising such a priori grid refinement controls in the solution
adaptive grid method is the use of the same hexahedral shaped special boxes of interest
(LBOs) used in constructing the initial fine grid (see Section 2.3). With each LBO,
one specifies trilinearly varying minimum and maximum local grid sizes allowed in the
LBO and a weight used to scale the corresponding local error predictors. The results
of applying these controls in the method are an element refinement/derefinement
eligibility list, a list of elements whose sizes are above specified maximum values, and
a list of scaled error predictors ordered by size.

Applying Grid Refinement Strategy

In this step the elements are either marked for refinement, derefinement, or to be
retained unchanged. Of the elements eligible for refinement, those with the largest
scaled error predictors are marked for subdivision, with elements having grid sizes
above specified maximum values taking precedence. Of the elements eligible for dere-
finement, those with the smallest scaled predictors are marked for derefinement (if all
eight sibling elements are so eligible). The decisions regarding how many elements to
refine and how many to derefine depend on a grid refinement strategy.

In examining strategies for deciding how many elements of each type to mark,
two principles have proven useful. First, direct control should be exercised over the
rates at which numbers of elements in successive grids increase. This excludes, for
example, a prevalent strategy that refines/derefines solely on the basis of cut-off values
which are proportional to the current mean local error indicator. Direct control is
important because problem size can increase very rapidly with grid refinement in
three dimensions. Second, for early and intermediate grids, grid refinement should be
limited in regions where dominant flow features have been detected and be forced to
occur in other regions. Failure to adhere to this principle can allow some flow features
(e.g., leading edge expansions) to attract all available grid before other important
features (e.g., shocks) develop.

A simple and flexible strategy following these principles is incorporated in the
present method. It consists of

e refining and derefining fixed percentages of elements for most coarse and inter-
mediate grids,

48

e attempting to more equally distribute local errors without significantly changing
the number of elements in an intermediate grid, and

e only refining on the last grid.

More specifically (using a particular choice of input parameters for the method), with
given intermediate and final target numbers of elements N; and Nf, respectively, and
N denoting the number of elements in the current grid such that N; < Np < 4Ny,
and N < Ny

if N < 4Ny, 20% of the elements are marked for refinement and up to 40% for
derefinement;

if 4AN; < N < 9Ny, only refinement is used to increase the number of elements to
about Ny; and

if N is approximately equal to Ny, 2% of the elements are refined and up to 20%
are derefined, and the next (final) grid adaptation consists of (only) refining enough
elements so that the final grid has about Ng elements.

It is noted that the implementation of this and related grid refinement strategies
consists of “solution adaptive grid cycles”, where in each cycle, input consists of a
target number of elements and various control parameters, and one or more adaptive
grids are constructed. In the specific strategy described above, three cycles are used
with target numbers of elements equal to Ny, Ny and Np, respectively. In the second
cycle only one adaptive grid is constructed.

Constructing a New Grid

Using a list of marked elements and a grid legalization constraint, a grid is constructed
by building a new oct-tree structure. The legalization constraint, (see Appendix A),
requires that additional elements be marked for refinement, if necessary, in order to
prevent face-neighbor and edge-neighbor elements in the resulting grid from differing
by more than one refinement level. In the newly constructed grid, the uniform global
grid is expanded on the inflow or outer boundaries whenever a global grid box in the
previous grid on the respective boundary is marked for refinement. Since linear flow
assumptions are used on all inflow and outer boundary grid boxes, expansion of the
grid (and problem domain) occurs whenever significant nonlinear effects are present
in the flow near these boundaries.

Figure 2.19 illustrates the types of grids created in an application of the solution
adaptive grid method. Pictured there are cuts of the initial grid and the second and
fourth adaptive grids in a run.

49

-

Figure 2.19: Initial Grid and two Grids Created in an Application of the Adaptive
Method.

50

2.5 POSTPROCESSING

A finite element postprocessing capability has been implemented to smooth out irreg-
ularities in surface pressure distributions [69, 70]. The irregularities in the pressure
distribution are illustrated in Figure 2.20 and arise due to the fact that the trilinear
functions used to approximate the potential lead to essentially constant velocity in a
given box. If more that one panel corner point is located in a given grid box then the
pressure at these points (calculated from the velocity using the isentropic formula)
also appears to be essentially constant.

To eliminate this apparent anomaly, a velocity V is computed for each unknown
® or ¥, located at a grid point using the following procedure.

o All regions influenced by the unknown are found.

e At the spatial location of the unknown the velocity basis functions of these
regions are evaluated.

e V is given by the average of these velocity vectors.

To evaluate the velocity at any point in space, the region containing the point is
found and the velocity components at the eight corner unknowns of the region are
trilinearly interpolated.

For the sphere, the surface pressure is shown with and without the postprocessing
step outlined above in Figure 2.20 for a linear flow case and a transonic case . The
effect of post processing is evident.

51

1.0 |
0.8
48
04
c_,_ 02,
0.0
02
04|
08

0.8

190

09

08

08

0.4

02

03

03 0.6 0.9

Uniform Grid - Linear Flow

03

Coarse Grid - Transonic Flow

—— Analytic Solution

Uniform Grid With Post Processing

0.9
-0.7
-0.5

0.3

0.1
0.3}
0.5 |
0.7 4

0.8

1.1

09

18,

1.6

1.4]

1.2

1.0

0.8

0.4

0.0

08 03

03

08

08

Coarse Grid With Post Processing

1
ﬁ

&
©
=3

o TRANAIR

03

Y]

Figure 2.20: Solutions With and Without Post Processing for a Sphere in Linear
Flow, M., = 0.0, and Transonic Flow, M., = 0.7.

52

2.6 SUPERSONIC FREE STREAM FORMULA-
TION

The grid generation, discretization, and dissipation used to solve problems in super-
sonic free stream are essentially identical to that used in the problems in subsonic
free stream. However, due to the difference in the character of the full potential equa-
tion in supersonic flow there are certain differences in the way the far field boundary
conditions are imposed and the discrete equations are solved.

2.6.1 Far Field Treatment

The same governing equation is applicable in supersonic free stream flow. However the
far field behavior of the flow is different from that in subsonic free stream flow. The
source parameterization (Section 2.3.2) cannot be employed in the case of supersonic
free stream flow. The Poisson solver constructed for the Prandtl Glauert equation
(Appendix D) is no longer valid. Instead other types of boundary conditions are
applied at the outer boundary of the computational domain.

Due to the hyperbolic nature of the flow initial conditions are required at the
inflow boundaries (typically the upstream boundary). Since in supersonic flow the
configuration has no upstream influence, the appropriate boundary condition is that
the perturbation potential there be zero. In implementing this boundary conditions
the perturbation is forced to be zero at two upstream planes of the global grid.

At the outflow boundaries of the computational domain no boundary conditions
are required in principle, because the solution can be obtained in a marching process.
However, since the present method uses a sparse solver on a reduced set that includes
all the unknowns in the field it is essential to impose some boundary conditions that
do not feed their influence upstream. In this case a ¢.; = 0 boundary condition is
imposed at the downstream boundary.

On the side boundaries the initial conditions at the upstream boundary and the
¢z boundary conditions imply that the perturbation potential at the side boundaries
also be zero.

It is noted that the imposition of these conditions on the outer boundary of the grid
may cause shock reflections which could influence downstream portions of the flow
field, particularly at low supersonic free stream Mach numbers when the Mach cone
angles are large. A better approach would be to assume supersonic linear flow outside
the computational grid and impose a conical flow condition at the outer boundary.
This has not yet been implemented.

2.6.2 Solution of Discrete Equations

As mentioned earlier, all equations are included in the sparse matrix preconditioner,
including the equations corresponding to the global grid points away from regions of
local grid refinement and away from the configuration surface. To take advantage of
the hyperbolic nature of the flow, the equations in the sparse solver are ordered by

53

increasing r coordinate value, rather than by nested dissection. The system is solved
by the nonlinear GMRES procedure exactly as is done in the subsonic free stream
case.

For the supersonic free stream case, the convergence of the linear problem in
the Newton method is essentially the same as in the subsonic free stream cases.
The non-linear Newton iterations converge better with grid sequencing and viscosity
damping. However, on occasion supersonic free stream cases have been observed to
“stagnate” for a few cycles before converging further. In addition, when using solution
adaptive gridding, it has been observed that more robust convergence behavior occurs
if viscosity damping is used on each successive grid. This requires more iterations
on the finer grids before turning off the extra viscosity, but provides more reliable
convergence.

The solution adaptive grid features of TRANAIR are the same in supersonic free
stream flow as in subsonic free stream flows. Normal shocks and expansion regions
are easily detected and grid is generated to resolve gradients. When the shocks are
oblique, it takes more cycles of solution adaptivity to begin to detect their presence.
Figures 2.21 through 2.24 illustrate a sequence of grids generated about a sphere-cone
configuration.

Figure 2.21: Solution Adaptive Grid (No. 1) for the Supersonic Cone

The early solution adaptive grid refinements concentrate on the gradients in the
expansion region near the upstream stagnation point on the spherical face. Three
cycles of solution adaptation were required to get errors in the stagnation region
reduced sufficiently so that the bow shock was well-recognized. After five cycles of
grid refinement the bow shock is clearly developed up to the point where it becomes
quite oblique. At that point, the grid is too coarse to sufficiently resolve the oblique
shock and it diffuses badly. The relative distribution of the computed local error
estimates indicates that the next cycles of solution adaptive refinement will better
resolve the oblique portions of the bow shock, but it is clear that it is desirable to

54

LIITIIT

Figure 2.22; Solution Adaptive Grid (No. 2) for the Supersonic Cone

1T
E s
T RHEHT i
mmwiiiliii il
SRR
! T
-l... 3 ¥
PR H
| |
{

Figure 2.23: Solution Adaptive Grid (No. 3) for the Supersonic Cone

55.

-—

-
=
-4

sw

4

|44
1

Figure 2.24: Solution Adaptive Grid (No. 5) for the Supersonic Cone

modify the solution adaptive grid strategy in a way to allow it to detect oblique shocks
earlier in the solution adaptive gridding cycles.

56

2.7 PROGRAMMING CONSIDERATIONS

The numerical method incorporated in TRANAIR has many algorithms. In imple-
menting these algorithms a significant amount of effort was spent ensuring that these
algorithms make efficient use of vector supercomputer hardware features. Since no
assumptions were made regarding availability of machines with extremely large cen-
tral memory, the code was designed to use out-of-core storage, e.g., the Cray SSD.
(TRANAIR also can be easily modified for in-core applications.) This also required
that special attention be paid to memory management and input/output issues. Data
structures are of paramount importance to any application code and TRANAIR is
no exception. Due to the unstructured nature of the grid and large amount of data
to be handled, TRANAIR uses some unique data structures. Finally, it is also worth
noting that the code has been developed by a team of people. To facilitate team work
and minimize maintenance problems, “black box” (modular) coding was used where
possible, leading to a large collection of library routines performing various standard
functions.

In the following these issues are discussed in some detail. No attempt is made to
provide a complete list of subroutines nor to discuss any specific algorithm at great
length. The purpose of this section is to set forth ideas that have gone into building
the modules that make up the TRANAIR code.

2.7.1 Memory Management

To maximize the size of the problem that can be solved with a given amount of
memory it is imperative that the available central memory be used efficiently. This
issue becomes especially important when many programmers are involved in coding
different modules and need to access the same memory locations.

To resolve this issue, a self contained memory management system was developed.
Most of the memory space used in the code is contained in a single large one di-
mensional scratch array. This array is divided into smaller arrays as needed in any
subroutine. The remaining portion of the big array is passed down through the call-
ing sequence of any subroutine needing further scratch space. The latter routine can
then further subdivide the array as needed. The subdivision is hierarchical and is
implemented using several FORTRAN subroutines. When storage for an array is re-
quested, an identifier and the length of the array are supplied. A pointer to the array
is returned. This allows reference to the array even after “garbage collection” (defined
below). Array storage is freed when no longer needed. When storage for an array is
requested, if possible, a consecutive block of storage is found and allocated. However,
if storage for many arrays have been allocated and de-allocated the available storage
may be fragmented with no sufficiently long consecutive block of storage in the big
scratch array. In this case, storage in the scratch array is garbage collected, i.e., all
allocated array storage is moved to the front of the scratch array (the pointers are
changed) leaving a contiguous block of available storage at the back. If this block is
still not large enough, the program will abort. The simple remedy then is to increase
the dimension of the main scratch array.

57

2.7.2 Input/Output

TRANAIR uses a centralized 1/O system for temporary files. The temporary files
are typically used to store data so that central memory can be freed for some other
purpose. The data stored on such files includes that for the oct-tree data structure,
the boundary operators, the GMRES search directions, and the decomposition of the
Jacobian matrix used as a preconditioner. These files are made to reside on the SSD,
the disk, or in central memory if available. For most purposes these files are treated
as temporary files that are generally lost at the end of program execution.

Data I/O is carried out through special routines. Some of the bigger datasets
are written using unblocked FORTRAN I/O. The datasets are accessed using unit
numbers which are determined and stored within the program. When the dataset
under question has outlived its utility the unit can be closed, thus freeing it for other
use as needed. This process is automatic.

A good example of I/O usage is the residual computation procedure. The residual
calculation requires the potential at unknown locations (nodes) and density at the
centroids of regions. In addition, quantities such as the velocity, switching function,
etc. are also required at region centroids. If all these quantities could be held in core
at one time the computation of residuals would indeed be extremely fast. However,
since the available central memory on many Cray computers is small, some of the data
is blocked and stored on a mass storage device and computations are performed one
block at a time. The field quantities (those defined at the nodes) are held in core as
fields and the region based quantities are blocked and brought into central memory as
the computations proceed. The I/O required in these operations is performed using
the central I/O system.

In the case of subsonic flow, two passes through the “blocks” are necessary to
compute residuals. First, with the array of potential values at unknown locations
stored in core, velocity operators and corner unknown indices are brought into core
a block at a time. For each block, velocity components at element centroids and
hence densities are computed and stored, before considering the next block. This
step easily can be vectorized with vector length equal to the length of the block.
Second, with arrays of potential and residual values in core, divergence operators,
densities at centroids and corner unknown indices are brought into core a block at a
time and used to scatter contributions to residuals at the corners.

Other examples of blocking are found in generating and decomposing the sparse
solver matrix (see Appendix E).

2.7.3 Vectorization Issues

The locally refined structure of the computational grid and the need to achieve good
performance on vector machines makes many aspects of the coding more complex.
The fundamental change from the basic structure of a uniform Cartesian grid code
[39] and many logically rectangular body fitted grid codes is that many of the opera-
tions involve indezed (indirectly addressed) arrays, i.e., in many instances, instead of
directly addressed vector operations such as

58

X(I) = X(I) + C * Y(I),

vector operations are required of the form
X(I) = X(I) + C = Y(IND(I))

or

X(IND(I)) = X(IND(I)) + C * Y(I).

With recent Cray compilers it is possible to vectorize loops with such operations
when no vector dependencies exist. Through use of careful coding to avoid the need
for many double-indexed arrays, e.g., arrays of the form Y(IND1(IND2(I))), such
operations in TRANAIR have been made to execute at high rates (typically at a third
to a half of the peak rate possible with direct addressed arrays). Much use of this
is made in the sparse matrix decomposition and forward and backward substitution
phases (see Appendix E).

The residual computation also uses indexed operations. As described in Section 2.4
and Appendix B, finite element operators and velocity operators are computed for
each element. These operators depend only on the geometry of the element. When
the element is in a box not cut by a boundary, only the grid refinement level (relative
to the global grid) of the box is needed to define the operator. D-region operators are
computed and stored out-of-core. In order to apply such an operator it is necessary to
know the indices of unknowns located at all eight corners of the element. Because of
local grid refinement, these corner unknowns are not stored in a contiguous manner,
thus making the resulting operations indexed.

The residual calculations consist of two phases: gathering information for each
region and scattering information from the regions to the corner nodes. In the first
phase, velocity, density and switching function values are computed at the centroids of
every region. At the ith region centroid, the density p; is obtained from the magnitude
of velocity, the kth component of which is computed via

8

vf =Y VE®(IRU(S, j)), (2.61)
J=1
where ® i potential, V is the operator coefficient giving the contribution to the kth
velocity component at the centroid of the ith region from the jth corner unknown of
the region, and JRU(3, 5) is the index of the jth corner unknown of the ith region. The
coefficients V"J‘ for D-regions are stored out-of-core. While & is held in core, velocity
components are computed for a block of regions at a time. By ordering elements
not cut by boundaries (standard regions) in separate blocks, each block consisting
of regions at the same level of grid refinement, the FORTRAN loop implementing
Eq. (2.61) involves single-indexed arrays and executes at a rate approaching 100
megaflops on a single-processor Cray X-MP (having 9.5 nanosecond cycle time).
When some or all of the regions have supersonic flow, an extra step in the first
phase of the residual calculation is necessary for each block to incorporate upwinding
effects. The upwinded density, 5, in region number it is given by

59

8 4

Pir = pit + pie 3 SFip(vie) D Cirisir(P1BB(it,is,ir) = Pit)y (2.62)

if=1 ir=1

where {Citis.ir} are the operator coefficients and {IBB(it,if,ir)} are the indices of
regions adjacent (viz. index tr) to region number it across element face number if.
The symbol u in Eq. (2.62) denotes the switching function and SF is a blending
function (see Eq. (2.43)). In these equations the doublet parameters have been omit-
ted for simplicity. The calculation of region centroid values of j is done by blocks
of regions, as was described above for values of p, with ® stored in core. The FOR-
TRAN loop implementing Eq. (2.62) is over all supersonic regions in a block (i.e.,
over block regions on which u is greater than zero). In the loop, the region number
it of Eq. (2.62) is obtained via it = IND(I), where I is the loop counter ranging
from one to the number of supersonic regions in the block. This means the array
IBB = IBB(IND(I),-,") is an indexed array, and, consequently, the FORTRAN ar-
ray representing prpp(it,if,ir) of Eq. (2.62) is double-indexed. The peak execution rate
for this FORTRAN loop on a single-processor Cray X-MP (having 9.5 nanosecond
cycle time) is about 50 megaflops. However, the work done in this loop accounts for
an insignificant portion of the total work done in an application.

In the second phase of the residual calculation, the region-centered quantities ob-
tained in the first phase are used to compute the residuals associated with the nodal
solution unknowns. This phase is the dominant cost in the residual calculation and so
efficiency is very important. The residual R; for the lth solution unknown is obtained
via

8 8
Ri= Y p) Dy®(IRUG,)))+ 3 (pi—p) D Din®(IRU(,j)) (263)
region 1 j=1 region 1 =1

where D;;; is the finite element divergence operator coefficient contribution to the lth
unknown for the ith region from the unknown at corner j. The FORTRAN imple-
mentation of Eq. (2.63) uses two nested loops, reversing the order of the summations
so that the outer loop is over the eight corner unknowns and the inner (vectorizable)
loop is over the elements of the block. Vectorization is possible because for any outer
loop index j, the jth corners of all the regions in the block are distinct, and so no
vector dependency occurs. This would not be true for an arbitrary block of D-regions,
but in TRANAIR, the corners are made distinct within a block by separating possible
duplicates into different blocks.

Careful design of these algorithms was necessary to minimize storage, allow effec-
tive use of the Cray SSD, and achieve reasonable CPU speed.

2.7.4 Data Structures

TRANAIR uses a number of different data structures to facilitate compact and effi-
cient usage of data. A prime example is the oct-tree data structure discussed at length
in Appendix A. Among the other data structures used are the region-unknown lists,
box-neighbor lists, operators, etc.

60

2.7.5 Program Libraries

Wherever possible “black box” (modular) coding has been used to increase flexibility.
An example of “black box” coding is the nonlinear GMRES routine which sees the
entire residual evaluation process as an arbitrary function to be calculated. The
code is built up from a set of libraries containing groups of subroutines which can be
classified together. These consist of libraries for:

e input processor

e solver

output processor

e special purpose mathematical routines
e sparse solver

e Green’s function

e general purpose utility routines

e general purpose mathematical routines
e abutment processor

o fluid dynamics routines

61

Chapter 3
RESULTS

Many results of applying TRANAIR are presented in this chapter. These results
demonstrate the ability of the code to handle general geometry configurations in
subsonic and supersonic free stream, the reliability with which these solutions can be
obtained, and the flexibility of the code in allowing modeling of various flow features
such as leading edge expansions, weak normal shocks, oblique shocks, and regions
with different total temperatures and pressures. The example results are divided into
three groups according to flow type.

The first consists of cases in subsonic free stream governed by the linear Prandtl-
Glauert equation. These cases are presented primarily for the purpose of comparing
results with those of panel methods and analytic solutions where available. Neither
Newton method damping nor grid sequencing is required in these cases. In each
TRANAIR run, a single grid was constructed based on user specifications.

The second group consists of cases in subsonic free stream where it is necessary
to solve the full potential equation because the flow characteristics are nonlinear and
possibly transonic. Results are presented for TRANAIR runs that employed single
grids, grid sequencing, and solution adaptive grids.

The third group consists of cases in supersonic free stream where again the solution
of the full potential equation is necessary. The flow is predominantly hyperbolic in
character. Subsonic regions and transonic flow characteristics are present in some
cases. Solution adaptive grids were employed in all the runs in this group.

The results presented in this chapter have been obtained over a period of two
years. Where possible the results obtained from the most recent versions of the code
are presented. In every case the result can be repeated to the same or improved
accuracy with the most recent version of the code.

In all cases presented in this paper, the solution (primarily represented by static
pressure) is displayed at panel corner points. The static pressure is generally repre-
sented by its non-dimensional counterpart defined as

P~ P
C,= ———— (3.1)
? %Pooqgo

where p is local pressure, poo, Poo, and ¢ are the free stream density, local pressure,
and velocity magnitude.

63
(203 ﬁgﬂ_!NTENWONm BtAve PRECEDING PAGE ELANK MOT FILMED

The results presented here are obtained on the Cray X-MP machine with up to
4MW of central memory and up to 128 MW of SSD storage or the Cray Y-MP.

3.1 RESULTS FOR LINEAR FLOW

In this section, linear flow solutions are discussed. Results for a sphere, the ONERA
M6 wing, and the F16 fighter aircraft configuration are presented.

3.1.1 Sphere

For the sphere in incompressible flow, an analytic solution is available. This is a
nontrivial problem for a Cartesian grid method since the surface intersects the grid in
many different ways. A sphere with radius 0.8 was analyzed at M., = 0 and a = 0.0°.
Four grids were used to test the accuracy of TRANAIR. In Figure 3.1 the paneling
used to describe the sphere surface in the coarse and medium grid cases is shown
(there are 1600 panels describing the geometry of the half sphere using one plane
of symmetry). With the fine and uniform grids, the paneling was doubled in each
direction. Planar cuts through the four grids are shown in Figure 3.2. The uniform
grid had 123,680 elements. It is noted that the outer boundary of the computational
domain in the uniform grid case is very close to the boundary. The coarse, medium,
and fine grids shown have 10356, 35456, and 149,515 elements respectively. Stagnation
regions (those totally inside the sphere) are not included in the element totals. These
cases were run with one plane of symmetry. Only half of each cut is shown since each
cut is symmetric about a second plane of symmetry.

In Figure 3.3 the surface pressure! for the sphere is plotted as a function of z. Also
shown is the corresponding analytic solution. Data at all circumferential stations
are plotted. For the 1600 panel case, there are 20 stations at each z value. The
scatter of surface pressure at'a constant z coordinate is due to the use of Cartesian
grid and provides a good measure of the overall accuracy. The solution accuracy
improves significantly as the grid is refined. The expected quadratic convergence rate
in potential as the grid is refined has been verified earlier [36] in this case.

'In all the subsequent discussion the term surface pressure is used to indicate the pressure
coefficient

64

Paneling Used for Sphere in Linear Flow, 1600 Panels.

Figure 3.1

65

Uniform Grid Coarse Grid

._...

4]
i 1
H

1
1

Medium Grid Fine Grid

Figure 3.2: Cuts Through Four Grids for a Sphere in Linear Flow, M, = 0.

66

-1.2] 2] f ' .
(3 D

-1.0 4 -1.0J

08 08

08 08

0.4] 04}

02 02/

Cp

0.0} 0.0

0.2} 0.2]

04 | 04

0 08

0.8 08

1‘0 T T v T LS 2l ‘~° T T T T L g 2l

09 48 03 00 03 oe 08 08 48 03 00 03 08 08
X M
Uniform Grid Coarse Grid
14 14
1.2] 12]
[])

1.0 10

08 28]
08 06
04} 04
02 02

Cp

0.0 00

02 02

0.4] 04|

06 08

0] 08

10 —r v ~ —8— 10 - . - . \

09 0& 93 00 03 06 09 09 08 03 00 03 06 08
X
Medium Grid Fine Grid
—— Analytic Solution o TRANAIR

Figure 3.3: Solutions on Four Grids for a Sphere in Linear Flow, M., = 0.

67

3.1.2 ONERA M6 Wing

An ONERA M6 wing is analyzed at M., = 0 and angle of attack a = 3.06°. The
boundary is described by 1800 panels (see Figure 3.6). The panels have a very high
aspect ratio, being much longer in the spanwise direction than in the chordwise di-
rection. This paneling is adequate for a solution in linear flow because the solution
also changes more rapidly in the chordwise direction than in the spanwise direction.

TRANAIR was run on a coarse grid having 35,188 elements and a fine grid having
249,305 elements. Vertical cuts through the two grids at the plane of symmetry are
shown in Figure 3.4. Figure 3.5 shows a waterline cut through the coarser grid. The
clustering of fine grid cells at the leading and trailing edges is necessary to resolve
high velocity gradients.

Figure 3.6 compares surface pressure at the 20% span station with a solution
obtained with a panel method. Note that the fine grid TRANAIR solution agrees
well with the panel method solution. The leading edge is enlarged in the third plot.
Figure 3.7 shows two other stations from these same solutions.

68

1 (D A N O S D 0 N 0 O | 1
. IIEREEAEEREaEaN! - |
4] -)|]
H] Hit IBERNEN
Pty 1) T I | 1 B - . - 1
111 P IT T I VT 1
Coarse Grid
111 Tt | |
+ ll::::;{i::::::lll Illll l}:["l Hit
11l TITINTY SLITRLITTINTY
8 GRONERNINERININnENe I Y DREOARISRATENNOIINNNE |:= -
JLLLLIL M TLILIIIET
lll!llllll:::lll lll::}:"l l'
JHIRAERAGERARRARN]

Fine Grid

Figure 3.4: Cuts Through Two Grids for the ONERA M6 Wing in Linear Flow,
M, =0, a =3.06°

69

-

1t
TR
sanys

H
T

T
I
i

HH

==
i
- .
H -
= .
B H
-
HH =
seee H
28
uee .
-
5 3

Y
i

NN
Ve eenes

_HHH

Y

ua::
Sus

Figure 3.5: Waterline Cut Through ONERA M6 Coarse Grid.

70

<1.0 -1.0
-08] 08
06| 08
04 04
P 02 S 02
0.0 0.0
02 02
04, 04
0.8 4 08
o8 T v T \g T 08 T v v v T
0.0 02 04 08 0.8 10 00 02 04 06 08 10

0.00 0.04 0.08 012 0.16
xoc
Leading Edge Closeup Paneling
Panel Method o TRANAIR Fine Grid x TRANAIR Coarse Grid

Figure 3.6: Three Solutions for the ONERA M6 Wing in Linear Flow at 20% span,
My =0, a = 3.06°.

71

60% Span Station

14

0.8
0.8
0.4
0.2

0.0

02
04
08

°». \d ¥ A T Y Y
00 02 04 1] 08 10

80% Span Station

—— Panel Method o TRANAIR Fine Grid x TRANAIR Coarse Grid

Figure 3.7: Three Solutions for the ONERA M6 Wing in Linear Flow at 60% and
80% Span, M., =0, a = 3.06°.

72

3.1.3 F16 Fighter Aircraft

An F16 fighter aircraft configuration shown in Figure 3.8 was analyzed at M, = 0.6
and a = 4.0°. The configuration has 3510 panels. The TRANAIR run had 162,850
elements. Figure 3.9 compares surface pressure on the wing at two stations with those
obtained using a panel method.

Figure 3.8: F16 Aircraft Configuration.

73

A

L
oo

X X
33% Span 75% Span
Panel Method o TRANAIR

Figure 3.9: Surface Pressure at Two Stations on the F16 Wing, M = 0.6, a = 4.0°.

74

3.2 RESULTS FOR NONLINEAR FLOW

To demonstrate the nonlinear capabilities of the method, solutions for a wide variety
of three dimensional configurations are presented. These include complex fighter and
transport configurations as well as the geometries used in Section 3.1 above for linear
flow.

3.2.1 Sphere

A sphere with radius 0.8 is analyzed at M,, = 0.7. At this condition, the flow is
transonic and contains a strong shock. This case was used to test the effectiveness of
the upwinding used in TRANAIR. A fine grid was used to test the accuracy of the
TRANAIR discretization. The grid contained about 170,000 elements and two planes
of symmetry were used to reduce the size of the problem. A cut through this grid is
shown in Figure 3.10.

Figure 3.11 shows the convergence history for this case with grid sequencing and
with viscosity damping described in the previous section. Five continuation steps
were needed to achieve convergence with viscosity damping in this case. Significant
step size damping was required for the first viscous problem. No step size damping
was needed with grid sequencing. There is no significant difference in the aerodynamic
solution obtained via viscosity damping or grid sequencing.

Figure 3.12 shows surface Mach numbers as a function of z. Values at all circum-
ferential stations are plotted. Because of the symmetry of the geometry and lack of
angle of attack the solution should be axially symmetric. The TRANAIR solution is
quite symmetric and also captures the well known re-expansion phenomenon at the
foot of the shock. Post processing described in Section 2.5 was used.

75

T1T1T111

ISR UAARANI
1l
1

Figure 3.10: Cut Through the Grid for a Sphere in Transonic Flow, M, = 0.7.

76 -

RELATIVE RESIDUAL

0.1
0.01
0.001
0.0001

1E-05

1E-06

1E-07 |

1E-08 |

1E-09]

1E-10 |

1E-11 %

1E-1 2 T T Ll T - 1
0 4 8 12 16 20
NEWTON STEPS

—%— Grid Sequencing
—e— Viscosity Damping

Figure 3.11: Convergence Histories for Viscosity Damping Method and Grid Sequenc-
ing Method for Sphere Case, M, = 0.7.

77

MACH

1.9

1.8

1.7

1.6

1.5

L 4

14

13

1.2

*

1.1

1.0

0.8

0.8

0.7

‘ioo
R

0.6

0.5

0.4

0.3

0.2

. >°°

0.1

0.0

Figure 3.12: Surface Mach Numbers for Sphere, M., = 0.7.

78

3.2.2 ONERA M6 Wing
The ONERA M6 wing was analyzed at M., = 0.84 and o = 3.06° using grid sequenc-

ing. This a very popular test case for transonic flow codes and exhibits an oblique
(supersonic to supersonic) shock as well as a normal (supersonic to subsonic) shock.
Moreover, there is a fairly complicated shock pattern on the planform of the wing.
Unless otherwise mentioned all the results in this sections were obtained using post
processing.

The TRANAIR results are compared to those obtained using the FLO28 code of
Jameson [34]. The surface geometry used in the two solutions is identical. FLO28
solves the full potential equation using a surface fitted grid and is particularly well
suited to simple wing geometries such as the ONERA M6 wing. The TRANAIR
solution is obtained using a grid with about 311,000 elements whereas the FLO28
code solution was obtained on a grid with 364,000 cells. Dense grids were used in
both codes to accurately capture the oblique shock. In Figure 3.13 two vertical cuts
through the TRANAIR grid for this case are shown. Figure 3.14 is a waterline cut
through the grid.

Figure 3.15 compares surface pressures at four stations with those obtained with
FLO28. The TRANAIR solution was obtained using flux biasing and post processing.
It is unclear in this case whether the second order dissipation FLO28 solution offers
improved accuracy. In this problem, TRANAIR obtained comparable accuracy at
comparable cost.

The ONERA M6 wing case was also analyzed using the solution adaptive grid
feature. The initial grid had about 15,000 box elements. Intermediate and final target
numbers of elements were specified as Ny = 300,000 and N = 440, 000, respectively.
A level limiting strategy was employed for the intermediate grids. The maximum
level of refinement throughout the flow field was specified to be 4 levels below the
global grid in all but the finest grid. In the finest grid 5 levels of refinement were
permitted. One special region of interest was used to prevent refinement more than
one level below the global grid in the tip region. No scaling of local error predictors
was done.

In the resulting adaptive grid run, 6 grids were created. These contained approxi-
mately 39,000, 86,000, 184, 000, 286,000, 312,000 and 423,000 elements. Figure 3.16
shows 70% span station cuts through the initial grid and final adaptive grid. Cuts
through the final adaptive grid at 0% and 44% span are shown in figure 3.17.

Figure 3.18 displays computed pressure coefficients against percentage wing chord
at 0% and 70% span for the initial grid, the second adaptive grid and the final
adaptive grid. These results are generally quite accurate. One notices, however, that
the oblique shock present on the wing at about 25% chord on the 70% span station
is smeared. The oblique shock is a relatively weak phenomenon in this problem that
can only be detected once a very fine grid is present.

79

sar s
==
3

90% Span

FHH

a=
sz

H
==8
Srsegmaiss

Srerpyes va

Plane of Symmetry (Root)

Figure 3.13: Two Cuts Through Grid for ONERA M6 Wing, M_ = 0.84, « = 3.06°.

80

——

Figure 3.14: Waterline Cut Through Grid for ONERA M6 Wing, M, = 0.84,a =
3.06°.

81

0.8 0.8

1.01 1.01

0.0 02 04 Y] 08 10 00 02 04 06 08
X0C Xoc

Plane of Symmetry (Root) 44% Span

08 08,

0.8

0.4]

0.2

0.0

04

0.6

0.8

10

70% Span 91% Span

—— FLO28 First Order Viscosity — — FLO28 Second Order Viscosity
o TRANAIR

Figure 3.15: Comparison of Surface Pressure at Four Span Stations on ONERA M6
Wing, M., = 0.84,a = 3.06°.

82

I T } T _hiég S101 : } } }
I s .n® =
I s :}}::lll“”l] i
70% Span, Initial Grid 70% Span, Final Adaptive Grid

Figure 3.16: Grid Cuts at 70% Span for the ONERA M6 Wing, M, = .84,a = 3.06°.

p—g—1
+ 1 ; Teee o n-:
’ y T??‘ H T :: " ’«-llll T
.E-_ an HH i t
IENISNISTANERINANE " " I ++
HHHE I | s i
0% Span, Final Adaptive Grid 44% Span, Final Adaptive Grid

Figure 3.17: Grid Cuts at 0% and 44% Span for the ONERA M6 Wing, M, =
84, = 3.06°.

83

14 14

0% Span 70% Span

¢ Imitial Grid Solution — — Second Adaptive Grid Solution
—— Final Adaptive Grid Solution

Figure 3.18: Pressure Coefficients for ONERA M6 Wing, M, = .84, a = 3.06°.

84

0.0 02 04 056 a8 10 00 02 04 0.6 08 10
xoc X0C

45% Span 71% Span

—— TRANAIR o Wind Tunnel Test Data

Figure 3.19: Wing Pressures for the F16, M, = 0.9, = 4.0°.

3.2.3 F16 Fighter Aircraft

The F16 shown in Figure 3.8 was analyzed at M, = 0.9 and a = 4.0°. The TRANAIR
grid had about 189,000 elements. A comparison of computed surface pressure with
wind tunnel data at two wing stations is shown in Figure 3.19. The agreement is good
considering the fact that boundary layer effects are not yet included in TRANAIR.

Another configuration of interest is the F16 with tanks and missiles shown in Figure
1.2. This is a very difficult case for surface fitted grid codes. The finest TRANAIR
grid in this grid sequencing run contained about 216,000 elements. Figure 3.20 shows
three plane cuts through the computational grid. Figure 3.21 compares computed
surface pressure just inboard and just outboard of the tank strut with TRANAIR
results for the F16 without tanks and missiles. The effect of the tank is as expected.

The F16 fighter with tanks and missiles was also analyzed using the solution adap-
tive method. This case involves extremely complex geometry leading to some very
severe flow regions which provides a tough case for solution adaptive refinement. In
the run a starting grid with 8,224 boxes (a global grid 33 x 9 x 13 with a maximum
of 3 levels of panel induced refinement) was used.

It was assumed that the region of primary interest was the wing/tank. Also the
major features of the flow about the fuselage should be captured. Earlier test runs
indicated several regions where developing high flow gradients necessitated restriction
of refinement. In the wake region behind the missile, refinement was restricted to one

85

E

] 1an T
T T 1SRN ASHANRINNNNNNNADI
4 n
- 189S0 IURENESAANUNSIDRENI
AT T I I R s
Tl I IO NSRRIERANNRAR RN 1801
LD 1111 11 11 TLLY
180 AF 4RIBASREEI 181 18881

Waterline Cut Through wing

1 I 4) 4) 4 1
1
1 ;e
1 1
-
H
=
H =
=
=
H
)
Vertical Cut
1 1 L | & i 4 1 1 1 1 1 1 1] ¢
H
- D 4
-
- =
e
gy
=
L 1 1 L
1
} 1 1 1
1 1
1 1 LLL J) {] 4

Cut Through Underwing Tank and Strut

Figure 3.20: Cuts Through the Grid for the F16 With Tanks and Missiles, M, =
0.9, a = 4.0°.

86

e

]
1
h
b
0
|
.

Inboard Side of Strut Outboard Side of Strut

—— F16 Without Tanks and Missiles — — F16 With Tanks and Missiles

Figure 3.21: Computed Wing Pressures for the F16 with Tanks and Missiles, M,, =
0.9,a = 4.0°.

level, also refinement was restricted to four levels on the fuselage and on the tank.
A strong error indicator de-emphasis was necessary in the rear of the fuselage as fine
grid in the cut-out region leads to very high flow gradients (and hence more grid
refinement.)

Three adaptive grids were used, generating grids with 25814, 82492 and 256667
boxes. The final grid has a maximum of six levels of grid refinement, found at the
wing leading edge. Fourth- and fifth-level grid is found in the shock regions, strut and
tail leading edge, missile and the front of the fuselage. Fig. 3.22 shows cuts through
the grid at y = 0 (plane of symmetry) , y = 72 (tank-strut location) and z = 94
(waterline cut through the wing).

Fig. 3.23 shows Cp at y = 72 (inboard side of the strut), and along the crown line
of the front of the fuselage (the grid is shown in fig. 3.22). It is worth noting that
when using adaptive refinement extra care must be taken with geometry definition.
Figure. 3.24 shows the grid cut at y = 48 with an enlargement in the strake area. A
small depression in the surface geometry is picked up by the error estimator and the
grid is refined there to the maximum level.

88

Y
4
[, l‘_-
T HH INBESHB gaidises
1' I ll;l Pt
I IRSuN S
111

4 Ht H _Hi]

[a
ILITTrT val
TITTT o i1t

unan
IJI11} 111
! an 11
1T T ns R T
== ITTIT =
s -
11 st
— - |l -
= HI[1 L -
— l[}:l0.1
LIl 1
1
T
=
TIT ISENEGNRENERRGENS
11 INNENERURESE N
] -
58 L
I H]
1 e H
1 : : -
T : : ;
1 : H

ISBERSARNNEAR 1
T '

(1] 1t

Figure 3.22: Cuts Through the Final Adaptive Grid for the F16 With Tanks and
Missiles, M, = 0.9, a = 4.0°.

89

260 300 340 380 420

Figure 3.23: Computed Wing Pressures for Adaptive Grid Run of the F16 with Tanks
and Missiles, Inboard Side of Strut and Crown Line, Mo, = 0.9, a = 4.0°.

90

as

Figure 3.24: Cuts Through Adaptive Grid for the F16 With Tanks and Missiles near
the Strake, M, = 0.9, a = 4.0°.

91

3.2.4 Boeing 747-200

TRANAIR was used to analyze the flow about a 747-200 transport at M., = 0.8 and
a = 2.7°. For this case, M, = 0.8 is approximately the largest free stream Mach
number at which an inviscid solver can obtain accurate results. The configuration
included wing, body, struts and nacelles. Over 20,000 panels were used to describe
the surface geometry of the symmetric model (see Figure 3.25).

The finest grid used in the grid sequencing run for this case consisted of approx-
imately 219,000 finite elements. Figure 3.26 shows two cuts through the grid. The
cut shown in Figure 3.26A is a yz plane cut and passes through the outboard nacelle
strut and core cowl and through the prescribed wakes behind the inboard strut and
nacelle. The cut shown in Figure 3.26B is an zz plane cut through the outboard
nacelle.

Figure 3.27 compares TRANAIR results with wind tunnel pressure data at four
span stations of the wing. Overall, one sees very good agreement with experiment.
Most of the differences are seen in the upper surface pressures and are attributable
to viscous boundary layer effects not currently modeled in TRANAIR. By comparing
lower surface pressure profiles, one can clearly see the effect of the outboard nacelle
at the 69% span station, which is shown in Figure 3.26B. The very high speed local
flow near the leading edge on the upper surface at this span station is due to the
presence of a strut cap connected to the outboard strut and wing leading edge.

The same case was also analyzed using the adaptive method. In applying the
solution adaptive grid method an initial grid containing about 26,000 elements was
used. The specified intermediate and target numbers of box elements were 125,000
and 250,000, respectively. Three special regions of interest were specified to guide
the adaptive grid method. These included one about the wing tip, one under the
wing enclosing the nacelles, and one above the wing. Four levels of refinement were
permitted for all elements except in the special region of interest above the wing.
There, 4 to 6 levels were permitted from the body to the wing tip in all grids except
the final grid, for which 5 to 7 levels of refinement were permitted. Since wind tunnel
test data for comparison were only available on the wing, the importance of this
region was (further) emphasized by specifying a scaling factor of 8 for the local error
predictors in the special region of interest containing the wing. A scaling factor of 2
was used jn the special region of interest containing the nacelles. Predictors in other
regions were not scaled.

Four grids were created in a run with the solution adaptive grid method. These
contained approximately 58,000, 123,000, 133,000 and 243, 000 elements. Figure 3.28
shows 69% and 96% wing span station cuts through the initial grid and final adaptive
grid. Figure 3.29 compares computed wing pressures with wind tunnel test data at
four wing span stations. The method yielded results that compare favorably with the
wind tunnel experimental data. In this case, the solution was actually computed at
69% span, resulting in an apparent difference from the results in Fig. 3.27 in which
interpolation to 69% was performed.

92

Inboard Nacelle and Strut

Top View of Wing and Body

Figure 3.25: 747-200 Transport Configuration.

93

bt

44

A. Constant z Cut Behind Inboard Nacelle

B. Constant y Cut Through Outboard Nacelle

Figure 3.26: Two Cuts Through TRANAIR Grid for 747-200 Case.

94

1.8, 18
14 14

1.2 12

00 02 04 08 Y 10
xoc

: T T

26% Span 60% Span

10
08
08

p 04
02

00

02

04

os

——

00 02 04 Y o8 10

XoC

2 !c”'i I

69% Span 81% Span

o Wind Tunnel Test Data —— TRANAIR

Figure 3.27: Wing Pressures for 747-200, M, = 0.8, = 2.7°.

95

==
4
33

-
=

a=
-
-
-
s
-
-
. ¢

—F’ -—t l
69% Span, Initial Grid 69% Span, Final Adaptive Grid
i
13880801 l»i--{- + [
96% Span, Initial Grid 96% Span, Final Adaptive Grid

Figure 3.28: Grid Cuts at 69% and 96% Wing Span for 747-200, M., = .80,a = 2.70°.

96

r

0.0 02 04 06 Y 10 00 02 04 0.6 08 10

xoc x0c

26% Span 69% Span
1.8 -1.8,
A4 A4
1.2 12
-1.0] 1.0

08

%
00 02 04 Y 08 10 00 02 04 o8 08 10
¥oC x0c
89% Span 96% Span
— — Second Adaptive Grid Solution —— Final Adaptive Grid Solution

o Wind Tunnel Test Data

Figure 3.29: Wing Pressures for 747-200, M, = .80, = 2.70°.

97

......
-
8
am
e
HH
as
b=+

am
-
-

-4
1
1
L
T

as
e
=
=
=
=

Figure 3.30: Cut Through Grid for an Axisymmetric Powered Nacelle, M, = 0.1.

3.2.5 Axisymmetric Nacelle with Powered Plume

The next case illustrates the capability of the TRANAIR code to model different
total pressure in an axisymmetric nacelle for which static test data is available [71].
The total pressure ratio in the powered stream was 2.807 and that in the primary
streamn was 2.3425. This configuration is shown in Figure 3.30 and had about 5000
panels. The wakes were paneled so that the powered streams maintain equal area
downstream from the exits. Two planes of symmetry were used for this case. Results
are shown for the final grid with about 85983 elements. Five grids were used in this
grid sequencing run with 539, 880, 2828, 16030, and 85983 elements. Figure 3.31
gives the convergence history for this case. The steps on the coarser grids are scaled
by the number of elements in the grid.

The static pressure on the core cowl is compared with experimental data and with
the results of running a Navier-Stokes code PARC2D (71, 72} in Figure 3.32. In this
case PARC2D predicted no total pressure loss in the fan stream. Thus, isentropic
modeling can capture the major features of this flow.

3.2.6 Analysis of an Installed Transport with Power Effects

Finally, the analysis of a transport aircraft with installed powered nacelles is pre-
sented. The plumes behind the nacelle are simulated as regions of different total
pressure and temperature. In Figure 3.33a and 3.33b, the paneling for the config-
uration and a typical section of the grid with about 230,000 boxes are shown. In
Figure 3.33c and 3.33d the pressure computed at an underwing station and inboard
strut station with and without power (flight idle (ram) and cruise conditions) are
compared. The effect of power on the local flow is obvious. This case demonstrates
the capability of the TRANAIR code to handle power effects, a capability usually
associated with an Euler formulation.

98

RELATIVE RESIDUAL

0.1

0.01

0.001

0.0001

1E-05 \L
1E-06][
1E-07

1E-08 _

1E-09

T T T

0 1 2 3
NEWTON STEPS

.

o
(¢ /]
(2]

Figure 3.31: Convergence History for Grid Sequencing Method for Axisymmetric
Powered Nacelle Case, M., = 0.1.

99

STATIC PRESSURE
38 _
36 |
M |

—— TRANAIR ——PARC2D 0 Static Test Data

Figure 3.32: Static Pressure for Axisymmetric Powered Nacelle Compared to Exper-
iment and Navier-Stokes Code Results, M, = 0.1.

100

CP - CPTSY

as
14
]

1
T

-4
-4
|4

a) Surface Paneling b) Section of TRANAIR Grid

x x
c) Underwing Station d) Inboard Strut Station
o Ram Test Data —— TRANAIR
+ Cruise Test Data —— TRANAIR

Figure 3.33: TRANAIR Analysis of a Transport with Wing/Body/Nacelle/Strut and
Power.

101

3.3 RESULTS FOR SUPERSONIC FREE STREAM
FLOW

The supersonic free stream capability has been added to TRANAIR only recently
and has not been exercised as thoroughly as the subsonic free stream capability. The
supersonic free stream capabilities of TRANAIR have been tested on a cone-sphere
configuration (compared with an analytic solution), two delta wing configurations
with supersonic and subsonic leading edges, respectively (compared against a linear
panel code solution and against the SIMP full potential code{73]), and an F16 con-
figuration (comparison with experimental data and with a solution obtained with the
SIMP full potential code). All configurations were analyzed with the solution adap-
tive gridding option of TRANAIR. In addition, to demonstrate the abilities of the
solution adaptive gridding to capture a bow shock, a solution has been obtained on
the reversed cone-sphere configuration — a sphere-cone. Some limited comparisons
have been made with experimental data obtained from some standard textbooks.

3.3.1 Cone-Sphere Configuration.

Figure 3.34 compares the pressure distribution obtained with TRANAIR, with SIMP,
with EMTAC[74], and with the analytic solution for flow over a cone of a 10 degree
half angle. The flow conditions were a free stream Mach number M, = 1.414 and
a=pfp=0°.

The radius of the cone at the spherical cap was 1.76327 units. To avoid contamina-
tion of the surface solution by reflections of shocks from the outer faces of the global
grid, the global grid was extended to twelve units normal to the axis of the cone.
The final computational grid generated by TRANAIR is illustrated in Figure 3.35.
Solution adaptation was performed five times. A minimum of one level of refinement
near the boundary and a maximum of three levels was specified for the candidate
initial grid.

Note that the inviscid solution (obtained by TRANAIR, SIMP and EMTAC) pre-
dicts a continued expansion to vacuum on the downstream end of the cone-sphere.
In a real flow, viscous effects would produce separation before the expansion reached
vacuum. The fictitious gas Mach number was raised to 7.0 for this analysis. Even
at this value, the Mach number of the flow expands beyond Mach 15 before shocking
down to stagnation at the aft portion of the sphere. The fictitious gas Mach number
capability of TRANAIR allows it to obtain a solution to this case. It is interesting
to note that with the fictitious gas model, the TRANAIR solution matches the Euler
code solution obtained by EMTAC, rather than the SIMP solution. Because of the
large velocity gradients in the flow field in the aft portion of the cone-sphere, all of
the solution adapted gridding has been attracted to the downstream spherical cap.
The tip “shock” went undetected by the solution adaptive gridding in the sense that
no refinement was produced in the field to capture the tip discontinuity. However,
the surface pressure distribution agrees with the analytic solution, probably because
the tip shock is a weak phenomenon.

102

3.3.2 Delta Wing Configurations.

Figure 3.36 compares the spanwise pressure distribution for supersonic free stream
flow past a delta wing with subsonic leading edges with a linear panel solution. The
pressure distribution is illustrated at the 90% chord station. The free stream condi-
tions were My, = 1.414 and @ = 8 = 0°. The thickness at full chord on the plane
of symmetry was 2% of chord with a linear variation of thickness from the tip to full
chord and in the direction normal to the plane of symmetry. The leading edge of the
wing is swept to an angle of 60°. Solution adaptive gridding with four cycles of grid
adaptation were performed. Figure 3.37 illustrates representative cuts through the
computational grid.

Figure 3.38 illustrates the pressure distribution on a supersonic leading edge delta
wing. The sweep angle of the subsonic leading edge wing was changed to 30° for this
case. The TRANAIR solution agrees with the linear panel code solution up to the
Mach cone emanating from the tip of the delta wing. The linear solution yields a
constant Cp in the spanwise distribution, while the TRANAIR solution overshoots,
presumably due to nonlinear effects. It is also possible that additional grid density
might remove the overshoot. Because the flow gradients are relatively mild, some
“hands-on” specification of grid may be required for this case. Figure 3.39 illustrates
several cuts through the computational grid for the final (fourth) solution adapted
grid obtained by the calculation.

3.3.3 F16 Configuration.

Figures 3.40 through 3.45 compare surface pressure distributions on the F16 configu-
ration as predicted by TRANAIR and by SIMP. Figures 3.40 through 3.42 illustrate
top, bottom and side views of the pressure distributions at free stream conditions of
M, = 1.414 and a = 4°. Figures 3.43 through 3.45 compare the solutions for free
stream conditions of M,, = 2.0 and a = 2°. In general the correlation in the pressure
distributions is quite close. The TRANAIR pressure predictions tend to be smoother
and less jagged. At M, = 1.414 the SIMP code produced an abnormal feature at
the outboard trailing edge of the wing. This abnormality propagated in an inward
direction toward the tail. When this intersects the configuration at the horizontal
tail, a number of unusual reflections occur, contaminating the SIMP solution. The
origin of this feature is not presently known.

Another significant difference at both M, = 1.414 and M., = 2.0 occurs on the
lower surface in the region where the strake and body join. This is attributed to some
differences in the gridding of the surface for SIMP. It was not possible to obtain an
accurate representation of the diverter channel with SIMP and so the surface geometry
was modified in this region. The result downstream of this modification was a more
sudden change in slope in the region under the strake, resulting in a greater degree of
stagnation in this area of the configuration. This is an artifact of the inability of SIMP
to generate a grid which accurately describes the configuration geometry. TRANAIR
accepts the paneled definition of the F16 geometry and hierarchically refines the grid
where required by solution gradients to more accurately model the flow field.

103

Figure 3.46 compares the pressure distribution predicted by TRANAIR with wind
tunnel measurements on an F16 configuration with tip missiles at M, = 1.2 and
a = 4°. Note that this configuration, (because of the existence of multiply connected
regions in streamwise cuts of the configuration) could not be run in the SIMP code.
Figure 3.47 illustrates some representative cuts of the final computational grid for the
TRANAIR solution. Three cycles of grid adaptation were performed.

104

Cone Half Angle = 10 Degrees

04._
Analytical Conical Flow Solution
0.2 7
= —B==g=8=-ar gy
008 N\ TRANAR
-0.2 |
Cc
P
-04 |
-0.6 EMTAC
SIMP —— |
-0.8
-1.0 . . A
0 4 8 12

Figure 3.34: Cp Distribution on Cone Sphere at Mach 1.414. TRANAIR vs SIMP vs
EMTAC and Analytic Solution.

105

I EBEGRE]

AR ENA]

-
-
g

11

b4

Figure 3.35: Final Computational Grid for Cone-Sphere Configuration.

106

Subsonic Leading Edge Delta Wing
2% Thick, Mach=1.414
Tranair Vs A502

0.06 _

0.05 |

0.04

0.03 |

0.02

0.01 |

., " — it *
0.00 3 Nt Mg "

-0.01 |

-0.02 | Cp at 90% Chord

-0.03 . ’ , . .
00 0.1 02 0.3 04 05

Figure 3.36: Cp Distribution on Subsonic Leading Edge Delta Wing at Mach 1.414.
TRANAIR vs A502 Solution.

107

Xa=0.9 Spanwise Cut

Plane of Symmetry Cut

Figure 3.37: Final Computational Grid for Subsonic Leading Edge Delta Wing Con-
figuration.

108

0.07 _

0.06

0.05 |

0.04

0.03 4

cp

0.02 |

0.01

0.00

Supersonic Leading Edge Deita Wing
Mach=1.414, 2% Thick Deita
Tranair vs A502 vs Linear Theory

90% Chord Station

0.01

0.0

04 08 12 16

Figure 3.38: Cp Distribution on Supersonic Leading Edge Delta Wing at Mach 1.414.
TRANAIR vs A502 Solution.

109

X=0.9 Sparwise Cut

Plane of Symmetry Cut

Figure 3.39: Final Computational Grid for Supersonic Leading Edge Delta Wing
Configuration.

110

TRANAIR SIMP Comparison

0. 650N

0.597%

0.5z M=1.414, a = 4°
- 0. 4525
0.4
a.3375
0.Zrs.
0.2125
G. 1508

TRANAIR

renn

Upper Surface

Figure 3.40: Cp Distribution on Upper Surface of F16, M, = 1.414, TRANAIR vs
SIMP.

111

TRANAIR SIMP Comparison

0.6508
0.587s -
0,575 M=1.414,
0.4825
a.4.0u
0.3375
02758
0.212%
a. 1Stw
a.08rs
0.058

O3S
-a. 1008

4

2%

TRANAIR

-0.6804

Lower Surface

Figure 3.41: Cp Distribution on Lower Surface of F16, M., = 1.414, TRANAIR vs
SIMP.

112

TRANAIR SIMP Comparison

0.65m o
Eum M=1414 a = 4

4.5
0. %25
0. 4808
0.3375
0.2758
0.242%
g. 1508
s 0.007s

-g. 1800

Tranair \

Side View

SIZS
-~0. 4758
-~3.537s
-0. G

Figure 3.42: Cp Distribution on Side View of F16, M, = 1.414, TRANAIR vs SIMP.

113 .

TRANAIR-SIMP Comparison

mk

0.
e 0.35
o

Mach = 2.0, a = 2.0

TRANAIR

Upper Surface

Figure 3.43: Cp Distribution on Upper Surface of F16, My, = 2.0, TRANAIR vs
SIMP.

114

TRANAIR-SIMP Comparison

J.68
a.55
- Mach = 20 @& = 2.0
g.45

Lower Surface

Figure 3.44: Cp Distribution on Lower Surface of F16, M, = 2.0, TRANAIR vs
SIMP.

115

TRANAIR-SIMP Comparison

J.68
0.55 Mach = 2.0 O = 2.0
0.58
g.45
0.498
0.3
ag.38
a.25
0.28
6.15 i .
s 0. et
O .05 RO
g.0n
05
. 18
-8.15
28
25
|
-3.35
-a.4

TRANAIR

Side View

Figure 3.45: Cp Distribution on Side View of F16, M, = 2.0, TRANAIR vs SIMP.

116

Tap Swton 2 (48% Semi-Span)

Tap Staten 3 (30% Semi-Bpan) Tap Smten 4 (% o Spany

Tap Sason 3 (34% Semi-8pan) Tap Buton § (00% Bomi-Span)

Figure 3.46: Cp Distribution on F16 Configuration with Tip Missiles, M, = 1.2 and
a = 4°, Comparison of TRANAIR with Test Data.

117

1@ B T T I T LT
e
1 1
o isE
L]
- FH
1 - H
)| I szt
1 1T 11
11
e
- =
T T
» I T INNEENSESERSNS
11T
TR
11l H
TTTIT | 1
1 +J
us T T
T Tl
- +
1 I 1
- 11
131 =====
1 H I a
T " 1 +-4]
1 i I

Figure 3.47: Representative Cuts Through Computational Grid for F16 Configuration
With Tip Missile.

118

3.3.4 Bow Shocks

To test the ability of the solution adaptivity in TRANAIR to capture bow shocks,
the cone sphere configuration was reversed and the case was re-run under the same
free stream conditions. Figures 2.21 through 2.24 illustrate the computational grids
generated by TRANAIR for this configuration. The bow shock is captured up to the
point that the shock becomes oblique. Five cycles of grid adaptation were used to
obtain the solution in Figure 3.48. The early refinements were primarily attracted to
the subsonic region between the configuration surface and the bow shock. After the
third cycle of solution adaptive refinement, the estimated errors in the subsonic region
had been reduced enough so that the error indicators in the bow shock dominate
the refinement process. After five cycles of solution adaptive gridding, the fringes
of the refinement along the bow shock are the only significant areas indicated for
further refinement. Figure 3.48 compares TRANAIR predictions for the location of
the bow shock over a range of Mach numbers from 1.01 to 2.8 with experimental
data published in some standard fluid flow textbooks [75], [76]. TRANAIR predicts
bow shock locations somewhat downstream of the experimental curves, but there is
some significant scatter in the experimental data as indicated by the three positions
derived from shock position data for 0.25”, 0.5” and 1.0” spheres.

To test whether the solution adaptivity could detect and capture a bow shock in a
realistic configuration, a TRANAIR analysis was performed on the F16 configuration
with underwing fuel tanks present. Five cycles of solution adaptivity were performed.
Figure 3.49 illustrates the grid generated by TRANAIR for a chordwise cut through
the wing and underwing tank. There is clearly a bubble of subsonic flow both in front
of the underwing tank and in front of the strut supporting the tank. The solution
adaptive gridding has clearly detected the bow shock and resolved it up to the sonic
point, where the bow shock weakens and becomes oblique. This behavior is very
similar to that observed for the sphere-cone.

119

Bow Shock Locations

Tranair Vs Experiment
Sphere Cone Configuration
35.
Experiment
(From Liepman and Roshko)
30. M=2.8
2.54 M-2.4\‘
K
M=2.0—
2.0 N S e e bt 1" Dia
- o Experiment . 0y
Q Me1.6 (From Shapiro) ‘ 0.5"Dia
§ RS P -~ +— 0.25" Dia
1.5] - -
1.0 M=1.2
0.5 M=1.1
M=1.05
M=1.01 ‘
K
0.0 . ‘ |
-3 -2 -1 0
X

Figure 3.48: Cp Distribution on Sphere-Cone Configuration, M, = 1.414.

120

Fi6 Tank and Missile - Mach = 1.2

Waterline Cut Through Strut

5‘-,2
@ Sonic
E Dens 'y

&
£

H

ki
&
"

\ _ Subsonic (T
Region

[

Subsonic Regions

Figure 3.49: Computational Grid for F16 Configuration With Tip Missiles and Wing
Tanks, M, = 1.2, a = 4°.

ORIGINAL PAGE iS
121 OF POCR QUALITY

3.3.5 General Observations.

For supersonic free stream flows, particularly in the case of supersonic leading edges,
surface pressure peaks at leading edges tend to be suppressed, compared to subsonic
free stream cases or to subsonic leading edges. In addition the surface pressure dis-
tributions tend to be flatter and and have smoother gradients. On account of this
it is possible to obtain solutions for supersonic free streams using somewhat smaller
computational grids than for subsonic free streams. Many of the results obtained
in this section used fewer than 100,000 boxes in the entire grid. However, in super-
sonic free stream flows, aft-facing portions of the configuration can easily generate
very large gradients and tend to attract a disproportionate degree of refined grid. In
addition, whenever a bow shock is present, the velocity gradients become very large
in the region between the bow shock and the configuration surface. This also tends
to attract grid refinement in preference over the field discontinuity itself, particularly
when the shocks become oblique. It is quite possible to capture bow shocks with
the current solution adaptive gridding in TRANAIR, but a larger number of cycles
of solution adaptivity or some extra guidance by the user is advisable to make sure
that the grid refinement goes into regions of more importance to the application. As
an extreme, but very realistic example: left to its own preferences, TRANAIR would
refine the cutout regions of the F16, particularly the cutouts near the horizontal tail,
in preference to any other portion of the configuration. In the present state of the
code, it is recommended that, for supersonic free stream flows, some initial analyses
be performed on fairly coarse grids (up to 100,000 boxes, and three to four cycles
of solution adaptivity). After these results are obtained, the solution and grid can
be examined (for example, by using the TGRAF program, described in Appendix B
of the User’s manual), and appropriate user directives concerning regions for extra
emphasis and de-emphasis can be defined.

122

Chapter 4
FUTURE DIRECTIONS

The ultimate goal of this work is to offer designers a reliable, general purpose, full con-
figuration flow analysis tool. For this purpose we have preferred to start with a reason-
ably simple nonlinear physical model (the full potential equation) where we are certain
that such an objective can be met. At this time we have implemented an approach
to solving the full potential equation into a computer code called TRANAIR. Results
obtained from this code on a variety of configurations have shown that TRANAIR
is capable of achieving this ultimate goal. In fact TRANAIR is currently being used
successfully by many engineers[49], [50], [82] to analyze complex configurations.

However, TRANAIR is by no means a finished product. First, a variety of im-
provements must be made before TRANAIR can really be thought of as a reliable,
general user tool. Second, should these improvements be made, the next order of
business would be to enlarge the scope of problems addressed by TRANAIR. Cur-
rently TRANAIR allows regions of differing total temperature and pressure, which
is important for simulating propulsion effects. An additional capability which would
be desirable is the capturing of vortex, or wake sheets. In theory this can be done
within the framework of a full potential approach. (However, it can be argued that
a method which allows differing total pressures and temperatures as well as wake
capturing is three-fourths of the way to an Euler method.) Another highly desir-
able capability would be the simulation of boundary layer effects. Such effects are
extremely important in the transonic flow regime. A final capability, which could
greatly aid the design process is an optimization algorithm, allowing the user to spec-
ify certain desirable flow features which TRANAIR would then try to achieve with
geometry adjustments.

In this chapter, we discuss some ideas on future efforts to improve TRANAIR.
In Section 4.1 we discuss efforts required to improve the reliability, accuracy and
efficiency of the current code. In the remaining sections we discuss improvements
in capability. In Section 4.2 we explore some of the issues involved in extending
TRANAIR to solve the full Euler equations, which would automatically yield a wake
capturing capability. An alternate, and preferred approach, still within the framework
of the full potential equation is described in Section 4.3. In Section 4.4 we briefly
discuss the addition of a boundary layer capability to TRANAIR. In Section 4.5 we
discuss implementation of design and optimization capability.

123

4.1 IMPROVEMENTS TO THE METHOD

4.1.1 Reliability and Efficiency Improvements

In the current implementation of the GMRES algorithm the iterative procedure con-
tinues until the preconditioned residuals are reduced by a fixed fraction (assuming
the maximum allowable number of iterations is sufficiently high). Because of the use
of a drop tolerance in the sparse solver the condition number of the preconditioned
linear system solved by GMRES may vary considerably. Such a condition number
should be taken into account when assigning the above fraction. There are various
ways for estimating the condition number. For example, comparing the reduction in
real residuals with the reduction in preconditioned residuals can give a lower bound.

On occasion Newton’s method has trouble converging on coarse grids, but does
quite well on fine grids. This usually happens when the configuration involves small
diameter plumes of differing total pressure and temperature. We suspect that on
coarse grids the plume geometry is not well resolved, leading to a nearly singular
boundary value problem. It would be fairly simple to ensure that the coarsest grid
always resolves small scale geometrical features. Moreover, the coarse grid should be
the minimal grid which does this, as denser grids may fix the shocks in the wrong
locations.

In the case of supersonic free stream flow a local free jet boundary condition
(i.e. zero perturbation potential) is currently imposed on the top, bottom and side
faces of the computational box. Such a condition is certainly better than a solid
wall condition, but both cause wave reflections back into the computational box.
No local boundary condition is entirely accurate, but an outgoing wave condition is
undoubtedly superior to a free jet condition and should be implemented.

Currently the drop tolerance used by the sparse solver is assigned by the user
based on the knowledge that a drop tolerance somewhere between .001 and .0001
has generally worked in the past. However, even in this range fill-in (and hence
SSD usage) can vary considerably. This is not an issue that the user should have to
worry about. The user should only specify the size of the SSD storage available, and
the code should then adaptively determine a drop tolerance which would lead to a
decomposition of roughly this size.

Currently the off diagonal terms in the sparse matrix decomposition are dropped
when their magnitude is smaller than the drop tolerance times the magnitude of
the corresponding column (or row) diagonal. This works reasonably well, but many
improvements which would substantially reduce decomposition costs and storage are
possible. For example, the terms which are dropped could be added to the diagonal
or else the diagonal could be augmented by a fixed factor to improve stability when
poor conditioning is suspected.

Computation of the finite element and upwinding operators comprises from one-
third to one-half of the run cost of the current code. A good share of this cost could be
eliminated if operators associated with T-boxes which do not get refined or derefined
could be saved from one grid to the next.

One of the most time consuming aspects of a TRANAIR analysis is the construc-

124

tion of networks of panels from available configuration lofts. In the future it would
probably be best for TRANAIR to get its surface definition from the lofts directly.
Given a loft for a surface patch TRANAIR could interrogate the loft in an adaptive
manner to build an unstructured surface triangularization whose density is deter-
mined by the estimated local curvature. Because the cost of solution depends very
weakly on surface discretization it would be possible to make the initial discretization
sufficiently dense to accommodate the finest grid. However, the unstructured nature
of the surface discretization would require the user to supply additional information
concerning the nature of output of surface flow quantities.

The sparse solver is used as a preconditioner for unknowns in the reduced set.
Currently the reduced set contains all unknowns except for those located at subsonic
global grid nodes. These unknowns are preconditioned by the much cheaper Poisson
solver. Using standard elliptic multi-grid methods it should be possible to extend the
Poisson solver to handle refined grids. This would allow the elimination of subsonic
refined grid unknowns from the reduced set as long as they were not located at the
boundary. In many instances the size of the reduced set would decrease by as much as
50% leading to a substantial reduction in the costs associated with the sparse solver.

The process of interpolating from a coarse grid to a fine grid has already been
developed to facilitate grid sequencing. Such a process could also be the basis for
implementing a multigrid solution procedure. We recommend a limited implementa-
tion wherein the sparse solver preconditioner calculated on the next to finest grid is
also used on the finest grid. This can be done by collecting residuals onto the coarser
grid, using the sparse solver preconditioner as a smoother on this grid, distributing
the corrections to the fine grid and locally smoothing the fine grid residuals. Since
the fine grid is generally at least twice as large as the next coarsest grid the CPU and
storage savings of such a procedure could be very significant.

4.1.2 Upwinding Improvements

Currently, the “entropy condition” for ensuring compression shocks is achieved through
a first order density or mass flux retardation procedure. This procedure occasionally
causes the reliability problems and affects efficiency and accuracy of the code. The
first problem is that the upwinding is only first order whereas the remainder of the
method is second order. This forces the grid to be finer in supersonic zones than
in subsonic zones, although in supersonic regions the adaptive feature of the code
will limit grid refinement to regions with high flow gradients, somewhat alleviating
the problem. One course of action would be to implement a second order accurate
upwinding algorithm. Historically such algorithms have not been very robust, espe-
cially for complex geometries. A better course of action might be to develop a first
order algorithm with a smaller error coefficient. In fact, flux biasing (or retardation)
seems to be much superior to density retardation in this regard and there appear to
be possibilities of improving it by taking variations of stream tube areas into account.
Unfortunately, flux biasing can be shown to be singular when the flow becomes one
dimensional and the Mach number oscillates about Mach 1. This makes flux biasing
substantially less robust than density biasing in practice and it will first be necessary

125

to modify the biasing formula in a manner which simulates the use of a subsonic
cutoff Mach number in density retardation formulas.

The potential flow assumption produces errors in normal shock strength when the
Mach number ahead of the shock is greater than approximately 1.4. Hafez[77] has
developed a correction to account for entropy production, which apparently allows
more realistic flow simulations at higher Mach numbers. This correction should be
implemented and tested in TRANAIR.

During the Newton iteration process, velocities emanating from boundary surfaces
may appear. If these velocities correspond to supersonic Mach numbers then upwind-
ing cannot be performed properly and the problem temporarily becomes singular.
This leads to a breakdown in the solution procedure. In the case of an engine exit,
where the velocity is supposed to emanate from the exit surface, we upwind densities
next to the exit to a fictitious density which corresponds to free stream Mach num-
ber. This works quite well if the exit Mach number should be subsonic and the free
stream Mach number is also subsonic. The linearized problem is then non-singular
and within several Newton steps the exit Mach number recovers to a subsonic value.
If the exit Mach number is supposed to be supersonic, then the user must specify this
Mach number (although not all values are feasible). We have not yet developed the
input formats to allow the user to do this, but we have demonstrated that by retard-
ing the density to a fictitious density corresponding to this specified Mach number,
the exit velocity eventually settles to the proper value. Therefore the input formats
should be developed.

We have not yet developed a strategy when the surface is a solid surface or a
wake rather than an exit. Density is continuous across wakes so the problem may
be handled by upwinding to densities on the opposite side. In the case of solid walls
where the local flow should be supersonic it would be difficult to employ a fictitious
density, since the true local Mach number is only known upon solution. It might
be better to stop the flow direction anomaly from arising altogether by damping the
Newton method based on velocity direction changes.

4.1.3 Solution Adaptive Grid Improvements

The ultimate goal of solution adaptive grid refinement is to produce an accurate
flow simulation at a low computational cost with minimal user intervention. In its
present form TRANAIR makes significant progress towards this goal. In working
with the solution adaptive process a number of ideas have emerged which will carry
TRANAIR considerably further towards this goal. Because these areas have not
been thoroughly investigated to date, the ideas discussed below have not yet been
implemented in the code. It is expected that after further analysis and careful testing,
their implementation will produce significant improvements in the effectiveness of
solution adaptive gridding (with minimal user intervention).

In the first place, TRANAIR would provide more effective solution adaptive grids
if it did a better job of exploiting the physical aspects of the flow. For example, if
in some region of the flow the local Mach number exceeds the fictitious gas Mach
number, the full potential equation is a poor approximation to the flow. Although

126

the estimated errors in the neighborhood of such regions may be quite high, creating
higher grid resolution in such areas provides little benefit in terms of obtaining a
more meaningful engineering answer to the flow problem. Thus refinement should
be limited to regions where the flow remains physically sensible. In addition, where
real discontinuities in the flow field occur (i.e., at a shock), no matter how much
grid refinement is applied in the vicinity of the shock, jumps in the velocities will
still remain, and the presently implemented error indicators will remain large. Thus
some form of automatic local “shock limiting” is desirable to prevent grid refinement
beyond what makes sense for a given engineering application. At present there is such
a limiter but it is determined from user input. Shocks (particularly normal shocks)
can easily be recognized by the code, and thus it would be fairly straightforward to
automatically introduce limits to grid refinement wherever shocks occur, without any
user specification.

Another easily recognized physical phenomenon related to shocks is whether the
flow in a region is undergoing expansion or compression. With the current imple-
mentation of solution adaptivity, grid refinement tends to be attracted to expansion
regions (like the leading edges of a wing). Ultimately, this is a desirable phenomenon,
but when excessive grid is attracted to an expansion region, it can happen that latent
features of the flow field (for example, oblique shocks) do not attract adequate grid
density. The result can be a smooth pressure distribution which hides the existence of
the phenomenon. (The ONERA M6 wing has proven to be a very good case for ana-
lyzing this difficulty). Thus it appears to be desirable to suppress grid refinements in
expansion regions in the earlier steps of solution adaptive gridding. This encourages
grid refinement in regions where these latent features might occur. Only in the final
stages of solution adaptive gridding should the grid be permitted to cluster in expan-
sion regions. The present code allows for suppression of grid refinement in expansion
regions, but such regions must be identified a priori by a user.

Some exploration has been made of alternative error indicators. The present im-
plementation bases these on discontinuities in velocity magnitudes from cell to cell.
This indicator provides high error estimates when the velocity magnitude jumps, but
such error estimates are relatively small when a jump is due to a turning of the veloc-
ity (as occurs for oblique shocks). It is possible that an error indicator based on the
change in the direction of the velocity would provide earlier emphasis of more latent
flow features, such as oblique shocks.

In the early applications of solution adaptivity, the same type of error estimates
and the same grid refinement strategy have been applied for subsonic, transonic and
supersonic free stream flows. It is quite likely that because of the physical differences
in these problems, different solution adaptive strategies may be beneficial.

Ultimately an overall strategy for solution adaptive refinement will emerge from
these ideas which will consist of a number of error indicators along with an appropriate
weighting as the solution adaptive gridding continues in order to:

e capture the latent features of the flow early, when the computational costs are
low;

e recognize regions where true discontinuities occur and limit refinement to length

127

scales that make good engineering sense;

o provide sufficient grid resolution in expansion and stagnation areas to produce
accurate solutions on the final grid;

¢ automatically recognize regions of non-physical flow features and avoid wasting
grid resolution there;

o automatically (or with very little user intervention) detect regions where there is
little interest in resolving high flow gradients such as wing tips, but at the same
time, allowing the user to study these areas if that is the design goal;

e provide a near optimal strategy for solution adaptive gridding for subsonic, tran-
sonic, and supersonic flows using only knowledge of the free stream Mach num-
ber.

The elements of this final strategy have been identified and some issues have been
explored. Significant improvements can be made in the adaptive gridding, resulting
in more efficient and accurate solutions.

4.1.4 Higher Order Elements

Higher order finite elements are currently being developed for structures applications
[78],[79] with remarkable success. Incompressible Navier-Stokes calculations are also
being attacked with these methods [80],[81]. For smooth problems, these methods
offer exponential order convergence (better than any algebraic order of convergence)
in the number of unknowns. For problems with singularities, they offer substantially
better algebraic rates of convergence. These methods have the same rate of con-
vergence as spectral methods, but are not subject to the same limitations such as
rectangular domains and separable grids.

Thus, there is the potential for large savings in CPU time and storage in TRANAIR
with the proper use of higher order finite elements. In particular, in solving the full
potential equation the important flow quantities are defined in terms of the velocity,
which is only first order accurate in the mesh spacing locally. Since the velocity is
first order, to achieve a factor of two reduction in error currently requires eight times
as many elements. With second order velocity only three times as many elements are
required. Thus, the payoff of higher order methods is great.

Higher order basis functions that have successfully been used include Tchebychev
polynomials, Legendre polynomials, and other higher order polynomials. Continuous
basis functions seem to be much more flexible than ones with more degrees of inter
element continuity. In TRANAIR, one would implement a triquadratic element basis
function for the potential. This would require a trilinear approximation to the den-
sity. The density would be an interpolating polynomial fitting four points in every
element. Integrals would probably best be evaluated with numerical quadrature rules.
A sophisticated adaptive strategy would be needed to determine where to use these
higher order elements and where to use the currently implemented trilinear elements.

128

An unresolved issue is how to do higher order upwinding in supersonic regions. We
can observe however, that a second order upwinding of density could be achieved
without any more element connectivity information than is currently in TRANAIR.

There have recently been significant advances in iterative methods for the mod-
erately sparse linear systems resulting from these discretizations. The solution tech-
nique can use a recent result of Babuska that the lowest order stiffness matrix is an
excellent preconditioner for the higher order finite element problem. Thus, the cur-
rent Jacobian matrix calculation and decomposition could be used as the direct solver
preconditioner. If successful, this would save significant coding and computational
expenses.

Thus, the broad outlines of a higher order method for TRANAIR have been
thought out. Such a method could provide much greater accuracy at reasonable
cost than current methods which are all second order in the potential. This could
enable the accurate calculation of such sensitive measures of performance as inviscid
drag, which current methods can not predict.

4.2 EULER FORMULATION

4.2.1 Properties of Euler Equations

The steady state Euler equations express conservation of mass, momentum and
energy as follows:

Conserved D. E. FLUX
Quantity
mass VW 0 W = p U (4.1)
momentum Vm =0 m = WU T+ pI (4.2)
energy V:'E 0 7 = Hw (4.3)

In the first column we display the quantity conserved across discontinuity surfaces,
i.e. the normal component of flux, in the second, we display the differential equation
for each conservation law, and in the third, we display the relevant flux. To complete
the description we define total enthalpy, H, and entropy, S.

oy yp 1, -
enthalpy definition H = ————+ =¢°, ¢= ‘UI (4.4)
e (v=1)p 2
entropy de finition Lo e("“l)s(i-)'y (4.5)
Peo Poo

Tn order to eliminate the possibility of expansion shocks we need an entropy condition
which we choose to introduce via artificial pressure, i.e. we redefine m as

m=WU T+plc-V_p (4.6)

129

Here 6_ p is a backward derivative and € a vector in the direction of [7 having
magnitude on the order of the grid size. The € is non-zero only in supercritical
regions. For the discussion which follows it suffices to ignore artificial pressure.

To better understand the Euler equations we can recombine Eqns. (4.1)-(4.3) in
the following ways

(energy) — H(mass) = W-VH=0 (4.7)
(¢* — H)mass— U H(momentum) + (energy) = 5 W-VS=0 (4.8)
(momentum)— U (mass) = — We o ~-pV S+ pV H=0 (4.9)

Here o=V ® U is the vorticity vector. Equation (4.9) can be rewritten in a better
way by introducing the concept of swirl, i.e.

wB
G= p2q2 = swarl (410)
Then Eqn. (4.9) becomes
— — — - 1 — —
G=GW A+ WOVS-—WeVH (4.11)
P9 Pq

Using Eqn. (4.1) and the fact that V - @= 0 we obtain an equation for G by taking
the divergence of Eqn. (4.11), i.e.
ot p

— — — —_— 1 — g
W-VG=-V:- |55 WRVS-—WQeVH (4.12)
e P4

Now let us assume we have an initial estimate of v?/', and let U , S and H be the
fundamental unknowns. Equation (4.7) is a convection equation for H and states
that H is constant along streamlines. If H is specified at the head of every streamline
then H may be found at every point in the flow field. In particular if H is the same
constant at the head of every streamline then H will be identically constant in the
flow field and the flow will be isoenergetic. Mechanisms which produce non-constant
H includé propellers and jet engines. The appropriate value of H must be specified
at the head of each streamline leaving these mechanisms. From Eqn. (4.8) we see
that S also satisfies a convection equation. Entropy must also be specified at the
exit of propulsion devices. However, entropy also has field sources in the case that
dissipation is present, e.g., when Eqn. (4.6) is operable. Then Eqn. (4.8) will have a
non-zero right hand side. These “convection” sources should be negligible except at
a shock. Once H and S are known, Eqn. (4.12) becomes a convection equation for G
with a specified right hand side field source. This equation can be integrated to give G
everywhere in the flow field once G has been specified at the head of every streamline.
If S and H are constant in the flow field, then the only source of swirl is via boundary
conditions at the head of streamlines. Again, propulsion devices produce swirl, but
another major source is the Kutta condition at trailing edges. From Eqn. (4.11) we

130

see that in the absence of variations in S and H vorticity can only be produced by
swirl. In fact, free vortex sheets in potential flow are produced entirely by swirl.
Once S, H and G are found everywhere in the flow field, @ may be determined

from Eqn. (4.11). If we decompose U into a scalar and vector potential

U=V ®+VQ® A (4.13)
then A may be determined by taking the curl of both sides, i.e.

—‘2—5 —

V A=w (4.14)
As in potential flow, & may now be determined from the mass conservation Eqn. (4.1)
and the specified boundary condition on {/. Unfortunately, this is not the same ¢ as
in potential flow. Even in portions of the field where & is zero, A will not necessarily

be zero, since Eqn. (4.14) spreads A to the whole flow field.

An approach which casts the Euler equations as a more direct generalization of
potential flow is based on the Bateman variational principle. Here we seek a stationary
value of a payoff, J, defined by

J=—///Vp‘dV . p"=p"(U.H,S) (4.15)

here p* i1s an arbitrary function of (7, H and §S.

Let us define

dp* _ _6p“ _ 0p*
ou * PT 785 PT oH
If we choose p* to be pressure as the usual function of [7, H and S, then Eqn. (4.16)

W= — (4.16)

is consistent with the usual definitions of v_{}, p and p. (One could also choose p* to

be the second-order expansion of p about py , in which case W becomes the usual
linear mass flux vector used in panel methods. Rolled up vortex sheets are possible
with such an approximation, but not shocks.) Taking a variation of J and neglecting
higher order terms we obtain

§J = —///V [v?/ 5 U +p6S — p6H| dV (4.17)

Let us now use a Clebsch decomposition of the velocity vector, i.e.
U=V ®+0Q , Q=pVA-SVn+(H—-H,) V¢ (4.18)
Then

§U=V6® + S VA+puWV oA
— 85 Vn-5Vén
+ §H V(+(H-H) V& (4.19)

131

Hence

Néu — (W -V 7)6S

Si
<]1

- []), 1

+ (W—%Q&Hmas-pamdv
+///V [(W - 680)+ u(W -V 6))
— S(W-Vén)+(H-Ho) W -V &ldV (4.20)

Integrating the second integral by parts,
=[], |
V 0)6S — (o~ W - V ()6H

pP—
V -S W)én+ (V -H W)é¢)dV
W

)6 + (W - ¥ \)ép + (V -1 W)EA

V-W =0 (4.22)
W-YA = 0 (4.23)
V(W) = W-Vu=0 (4.24)
p-W-Vn =0 (4.25)
p—W-V(=0 (4.26)

W-VS =0 (4.27)
V(HW) = 0 (4.28)

The first equation is the mass equation and the last is the energy equation. The
others are then equivalent to the momentum equation as can be seen by substituting
Eqn. (4.18) into Eqn. (4.9).

Given an initial estimate of W Eqn. (4.27) and Eqn. (4.28) can be solved as
convection equations for S and H. Then p and p may be evaluated from Eqn. (4.16).
The convection Eqns. (4.23)-(4.26) can be solved for the adjoints A, u, n and (.

This determines @ via Eqn. (4.18). The potential ® may then be determined from
Eqn. (4.22), i.e

V(pVe) =-V-Q (4.29)

If the flow is known to be isoenergetic, then H can be set equal to H,, and we can
delete Eqn. (4.28) and Eqn. (4.26) from the system. One can proceed similarly for
isentropic flow. By choosing A and u to be zero at upstream infinity we guarantee

that @ exists only where vorticity is present. Hence wherever potential flow exists,

132

® alone defines the flow. Euler flow can be interpreted as potential flow with field
sources Eqn. (4.29) which exist only in regions having vorticity and whose strengths
are determined from convection Eqns. (4.23)-(4.28).

4.2.2 Problems with Euler Equations

Although we have cast the Euler equations as a generalization of the full potential
equation, the introduction of convection equations creates a considerable number of
numerical problems. In this section we discuss the problems we feel must be addressed
and to some extent resolved before a considerable investment is made in a production
full configuration Euler code. (The results shown below are obtained from a special
test code written for the Euler equations)

The first problem concerns false production of a convected quantity. As a rule,
we want to solve the conservation equations (4.1)-(4.3) in conservative form, not
simply to capture discontinuities correctly, but to calculate accurate total forces and
moments for large, complex configurations where truncation errors are hard to control.
However, if we solve the Euler equations in conservative form, convection equations
such as (4.8) will effectively have non-zero field sources on the right hand side due
to truncation errors. This means that entropy may increase or decrease along a
streamline when it should remain constant. The error is not locally confined, since
false entropy which is generated upstream will convect downstream. In many current
codes entropy production is responsible for poor drags and boundary layer matching
as well as premature separation.

Even if Eqn. (4.8) were to be solved directly, numerical diffusion errors would still

create problems. Convection operators such as W - ¥ all have inherent diffusion due
to truncation errors. For grids used for inviscid modeling this numerical diffusion
1s orders of magnitude greater than that produced by viscous terms of the Navier-
Stokes equations, hence nonphysical results are possible. The numerical diffusion is
greatest when crossflow gradients are largest, e.g. at slip surfaces. To illustrate the
problem we consider channel flow over a rectangular bump. A numerical solution
was obtained using a rectangular grid ad hoc test code. In Figure 4.1 we show
the results of convecting a smooth dlstnbutlon of entropy at the entrance using a
fairly good upwind discretization of the W -V operator. The isentropic curves
correspond closely to streamlines. This is true even for the bottom streamline which
passes through regions of stagnation as well as large expansion. In Figure 4.2 we
show results in the case of a discontinuous initial distribution of entropy. Here a
considerable amount of diffusion takes place even on streamlines which lie in a region
of relatively uniform flow. Clearly such diffusion must be eliminated if one wishes to
calculate the effects of wing wakes on downstream components of the configuration.
One can use non-diffusive numerical schemes which require every value of entropy to
be precisely equal to some upstream value in the absence of legitimate dissipation.
In Figure 4.3 we show the results of using such a scheme. Obviously there are no
diffusive errors. However displacement errors are still possible when using such a
scheme although they are rather small for this particular case. The major problem is

133

that a non-diffusive scheme is difficult to implement in a flux conservative formulation,
and it is this problem which will require considerable effort to solve. There are a
variety of possible approaches which introduce additional degrees of freedom so that
the convection and flux conservation equations may be solved simultaneously. The
Clebsch formulation is one such approach, and a displaced location for convected
unknowns is another. These approaches will also solve the false entropy production
problem as well.

A third problem with the Euler equations concerns uniqueness. There are cer-
tain situations where an Euler solution cannot exist without separation and closed
streamlines[83]. Obviously the level of the convected quantities is indeterminate on
closed streamlines. In fact the size of the separation region itself will depend on what
value one’s program happens to assign to the convected quantities. Thus quantities
such as drag and lift will turn out to be somewhat arbitrary. There is not much
one can do about this problem except try to eliminate false entropy production so
that one achieves an unseparated solution when it exists. If such a solution does not
exist then probably one should strive for a solution which minimizes the extent of the
separation region.

A fourth problem with Euler equations concerns vortex separation (or swirl gener-
ation). The Euler equations do not contain enough physics to predict the location of
separation lines or strength of separation except in special cases such as sharp edges.
Thus one must be able to effect separation on the basis of outside knowledge. The first
task is to clean up false entropy and swirl production so that premature separation
does not take place. Secondly one must be able to specify the separation line and type
of separation directly. Pure vortex separation is achieved by specifying a source for
swirl only. (Allowing entropy increases will lead to contaminated vortex separation.)
The strength of the swirl sources must be determined by a Kutta condition.

A final problem concerns vortex instabilities and related non-existence. Current
literature[84] seems to indicate that the Euler equations have a legitimate solution
only in special cases (e.g. potential flow). Vorticity seems to collect in unstable cores
with increasing concentration, and blowup may occur in finite time. The blowup
can be prevented by numerical diffusion. However in attempting to eliminate excess
numerical diffusion for other reasons we may encounter vortex instabilities, and then
the question becomes how much numerical diffusion is correct. This can be determined
only by considering the full Navier-Stokes equations.

4.3 WAKE CAPTURING

We believe that if we can implement a good wake capturing scheme in TRANAIR then
we will be able to handle 85% to 95% of the cases that an Euler solver could handle
with much less risk, development cost, and run cost. This is due to the fact that
most inviscid problems of interest in full configuration analysis really involve regions
of potential flow separated by vortex sheets. These regions may possess different
total pressures and temperatures, but we have already demonstrated the ability of
TRANAIR to account for such effects (see Section 5.2.6). It is true that shocks

134

] H b . M h 4 . O e B R T e R O A A L L {2 AT 2 A R S RN L TN TR ST T L B P I L B E R

- v v —p PP ST PV T VPR TR U VTR P PUR VPR N roe17
196 100 Noee LR R LI AT I A R L e N I L L L A R e L T R L O T R AR A N A AN A LY AR L AN AL A AT AR N AR R LR AL L AN
B3 1S2 130 208 143 g% RNty 3 St ey Ut dT 150 JOA 132 I8N DS $3 1ES 197 186 196 104 1% 1T e 1% G 1% 100 343 8 v gy
Y0 BY0 130 1% 1SS0 INT 1Y 10° QS JaP 180 12 1€ TR P AwC ISC BN IN0 8SC 14T DL DT BRL bWl ANE BISE BT 187 195 182 482 1) e

Tol Bl J4F gl gep g0 BAP ®) 400 hed Jap o had 3% 340 VNP DAL FAT D) Al Aed FAD BAEP LS 196 1PF tue 18 1ED 193 30T 190 190 1Y OF
BPe Bae 120 00 184 (4% 1°6 F00 108 e (O3 4B 1))N 3y AN [as fav Q0 e 1% fPa 300 et 1N 4 HFE B9F AT NVE D o4
Abdadal el dal Al dodedas 120) 123 Al bbb bbb bl 482 17 17 1% 187 1Pe 128 348 e 1 3)
U R L L R N R S P A R R O N A NN AN R P N T e .4
BFS B2e Te p2e I Pe 2a pfe Nde 12 JRa BT B NEY MRS 4Ry 1PY MMe Qe 116 41 W
[FIGRVSEN U U W J U Ve E R TPV e bl 1 21 100 1R b 2V

The Tur Inr 14

(E R N N N N N N A TN N L Y TN TR A N T Y)
183 1+ BalS 10y

18% T80 (€8 jén 1R 1€ 1R D6Y et 0y 16D NPy 10 f LY Hre 1én
162 167 162 182 Tl tud LT HC™ 180 PSS 3% 129 15%% 2% 058 %0 et k)
199 195% 1% 18 1% 1% 1% "1 e 9% 137 ¢ e gt per e gt g%}
196 196 E%A 19%% 192 %Y 18 %6 10t gty JRTESES SSE B2 e BN
IOY %D AN/ 188 172 30 Al ik 1as 107 ey et BT fed jes
ey TT =TV T T8 Jeb 107 180 100 Fe% 18* 107 16] 140 100 118 1% jen §n]

TR Jop 14k do% 187 §0% gen ot 147 Jap0 94 P2 Llc 133 % 1°¢ BN 1t

s

118 tre e 2t
112 83 10 0
11y s

16 160 e
141 168 163 180 100)
DEC In1 Ea2 Y43 IAS 148 0t 49
170 IS8 09Y 1e) 42 1er ey o
PRV BT NS N3O 1Y LEl 10Y #)

AL AL LA LY By
Ver e Y2 18e 19% tea /7
KL ETIN RY A

193 §o) 83 Fad 102 Jey 1069 g2 (WA
109 3ol 0P DI 126 192 130)00
1IF 0V8 LNF pAs T e g Ny

X

b
1
3
1

N o~ AL 1) 184 186 fen .
148 g ta pAY b Yy [[] [4 [4 ‘ . [4 13% 188 147 108 jo? CA
e o [] [[° t P R NTT IS} "
) ' [] L] [° 3 3 19 136 133 1se re .
! 1 4 . . »]] [] 3 o2 138 1t 14
b2 020 AT 101 2 T 3 ¢ o o t t 3 3 ¢ ’
$AP Mhs 10 MY) CREEREERE Y L ® - [L] (] 4 [} ¢ t ’
CLEt N2 11e e [} [] [] 4 ¢ 4 (] [} 4
82 M1 412 11D KDY 14C 1 D) 1ce LY TR 3 t (]] °] ¢ ¢ g
109 10y 10% 1€2 10% 1A AD? 162 1P . e (] [] 4 (] t .
JUTER T v s e 1w o1er [} s [} LI 4 ’
1€3 193 18Y 192 1C? AN 1 1er 18 ‘h * 8 ¢ [4 [] t *
——— a ¢t et 8 e & s
! ? 3 e H . 1 e 1Y 10 % e A e 1Y e)

Figure 4.1: W. v S = 0 (Good Upwind Discretization Scheme) Smooth Inflow
Distribution

135

Ty

1%y
19
2%
2%y

29
2%y
e
2%y
%9

13-

19
191
1%y
19
[R1)
1%y
1%

"
A)
"
(1]
ve
‘e
100
”"

]

?) L] ~

T Y A N R L T T AR T L I 7 B J B 3 4 IR T T 2) Je 31 32 3
Few 290 290 3942 36 PET VR DY 2YV DN 29% 249 249 79y 19% 21 P99 2% 2vY 799 239 290 Q9e
29 2% pen dos Jew WY 394 3% DSF 29 299 29 TNV 27N 294 71V 299 180)08 29 299 299 799
29y 7 9% SHA NS DYV UV 9% NIV 299 2% 29% 7YY 19 100 799 299 2% 300 300 180 300
ey Siv EAL 297 6% 1O 397 219 29N 299 291 2N 291 23Y s00 300 Veu 108 299 299 298 29y
NLRFAL bR L) 2% 1ve vye pge NGB 207 1YY 2¥T 388 W0 Ve T9Y 299 299 2ve 308)86 Y00 389
209 2% Tee 9w Pea pNe 798 27V 299 NG0 300 300 27Y 279 27))68 380 Y00 29V
%Y 218 9% 03 2%e 1G4)4 V00 180 277 297 1IN0 306 100 JY) V4 9% 308)00
304 328 38 7YY 396 160 1aC 2%y 168 380 100 V) 2 9% 16} 189 299 299 7% 7
JOC Jenw W6 pye VLT 140 V8T 134 244 3Wu D0 8% 292 23) o) 169 A6 VeA 1YY 29% 299 Y 303 308 38e730y
see vec van ol 3Ll il hdedubdunsyie " vy TIT ol 2TT At bl ud R iEN1IH 798 235 79% 29
N st SR Tan oot €e 51y :l 2nn 6K Ry Xn 269 213 2% Ias v ez A0 317 A2 1237372 ne sen 102 291 Y
Ty MddC LS VI AN TTa, Y T2 1P VY LT A 117 1IN e 30A 267 28%.980 31301 31 bt JER
208 298 233 200 2c0 203 APV), ALY ’nynt}u 200,27 ;;c. 205 299 275 2037260 319 2967380 7Y
AL LI KL IR RN E LI R L 1 1”'1 y A b it HI)) 13416 29
200 230 *3) 20C 287 Y33 C1) S0M JAA 208 1e¢ Ay 26 (00 03 /u0 200 2on 708 200 208 780 209 199 1 srr$ie 223 231
190 1Y 1wh 19 e 1ed LS pea pQ LU 1¥5 140 260 2R 204 208 TN 197 179 177 194 149 137 380 200 200 117 174
209 742 U3 4TS LY. TRQ TOE 33T 1YY A0 a0t JUL 2Lk o mm ooy o ares ey A 1R LYY 200 208
10 198 yae . Ted F1o 16t pac bns bar 100 1t 117 204 207 7% 199
00 200 0: LT T L T B 199 120 tey 170 20T 299 20
199 b 19 I 2 Pl /-y Vot |08t “ uut‘n)
(EETE L LI BT I LT vl VY L S Ry u 20
s ¢ © & 3 0 8 W Wno |- ”?4}
. F 8 8 8 0 B N »? 13
M T B Tt .n 11 1377162 1y a1 te
= e ¢« ¢ 8 3 e o ¢ W)/n o 1oyl 133 153 T8 1A 1Y)
Te® 124 103 10F 16 K03 3R} *S 188 IS 11T Y 6 ¢ & O & & ¥ VY “1s 7 I g Iy t2e 10 137
T e g3V er 1En 1t Y 8 & T ¢ ¥ & 3 T 9370y 3 b-u- 12 129)39
10T J6F ¥e %® 180 ¥+ P & 0 0 ¢ & ¢ 8 W ? LT F I 3)‘F Aﬂﬁ‘
LATEEEE I LN L. T I L L B B [] [] [] [] (] [] [N £ & 1% - % A 12 VY v
197 181 (87 %Y Ne qeC Y g A 0 A 8 8 0 VY WY " n' EIE T} R ¥ B £)
“e) w2 ¥V 70 (80 WY L] ° (] (] (] e %Y %Y ¥ v 194 98
[LIIRY] §30 ANY fee (oW HCO eF ¥? 0 & B & O & 9 I T 91 97 Yy YA W W)
™" g Jo we 4% we me st A2 0§ @ 6 8 & 0 8 37 97 3T YT 9V 3% ¥ IV 9V ¥y VY My M
? Pooa v o fe 11 12 13 Le IS be G118 kY 28 X4 32 13 36 2% 2n 2F 26 1Y 38 3 2 W)
® LRI S | s LI d

Figure 4.2: W vVS=0 (Good Upwind Discretization Scheme) Discontinuous Inflow

Distribution

136

R S | L
170 oA 3oe

3 399 Jee Y181 109
369 368 NG 104 Y06 300 Jng 08¢ Yaa 3AN
3 e 188 380 Jae 30N

\? 1e 14 1771y 1y 3¢ "1 22 N
i ALL) 18 180 188 104 360 100
304 ‘oo 3de I ALL IS |)]
304 104 Y83 (o)0A j00 Ye9 100 308 388 e
300 304 389 3Ae 100 304 I8¢ IS0 I8 366 380 I
jou Ien joR Jae Jo8 109 188 380 300 306 JEA 369 389)98 380 Iee
388 180 Je0 390 340)08 JOS8 YeO b] 380 ey no Y jge A 303 388 1w
308 100 320 340 198 308 308 30F 104 309)6E 19N 148 A IAS ea 140 Mg Yee jey N0
380 308 300 3OS Yee 304 3B 3NE G0 300 108 388 a0 1A 300 184 3IAE 386 100 1e¢ 380 300
) 260)00 Jee 3OO A8 3es)88 368 Y80 304 384 0N I8¢ 180 100 108 I8¢ leg Ies 1989)8)
300 348 399 Y69 Jee) 300 JEA 180 IR AOE 364 A4)60 Va0 100 388 H4E Me lee 340 I8

180 14§ Y90 1. WS} [] ALLI®L]
e N S sy

200 200 200 200 200 A0 704 700 AR U0 204 189 70D 288 RO 700 109 280 180 206 200

200 2 189 100 ? 780 20% 207 280 A% 288 ING 20A 208 280 2600 268 104 8¢ 208 288)09

100 2¢0 2 OQ 208 208 200 280 298 286 60 INO 204 Jan JOA IAS 248 204 V6 700 284 208 293
209 200 I4€ 219 260 J8¢ 206 188 AN DOA AR 248 80 7G4 AA AR TEA 7640 208 248 202
209 280 290 1088 210)94 7RA 184 208 288 J08 208 208 200
1 190 108 2 ? ¥ 1080

204 798 283 280 298 208 208 72
160 108 209 2¢p 200 100 200 YeA 2
inn 149

00 soe 290 208 208
1 80 798 2ne 208 fllll
4;%[+TT'TII'TTT'TI a8 160 103 108 1
100 100 160 180 106 100 100 108 104
194 160 (%8 (a8 TeN [Ne (8¢ 10¢ tee
L0® 1aR (08 100 160 100 160 100 184
160 106 166 190 108 108 187 160 186 109
108 100 100 160 100 190 (60 180 140 109
180 118 100 100 100 100 180 194 100 108
100 160 100 100 180 104 190 108 100 100
100 160 169 190 109 108 187 100
108 100 1900 o 160 108 168 (00 8
100101301991 00-1UFTTIE- 19T 100100 U00_JA0 L
[T R T T T S B S T BT AR ¢)

280

Len 199 t0J 168 166 180 180
$4-100 180 190 160 J00-1080-103 100
. e 108 188
s 180 109
e 1qe 100

scawompoSsSIoasao
wsseeascescmcs
cescacescaso

~cas®semancess
ssecscsesaanes
4Asescesacsessace

-
-
-

-

-

n

32

Figure 4.3: W. V S = 0 Non-Diffusive Scheme, Every Value of Entropy Equal to
Some Upstream Value. No Interpolation Allowed.

137

generate volume vorticity. This vorticity is generally negligible except for extremely
strong shocks, hence in most cases the Hafez correction [77] can probably produce the
correct shock strength. It is true that TRANAIR cannot model volume swirl effects,
but such effects could be modeled by collecting the swirl into vortex sheets and then
employing the wake capturing feature described below. Hence, it is clear that the
addition of a wake capturing algorithm will make TRANAIR rival many Euler codes
in capability, while offering the advantage of reliability, efficiency and the ability to
analyze extremely complex geometries without a great deal of user effort.

A variety of approaches for capturing wakes, short of solution of the full Euler
equations, are possible. Unfortunately, many of them suffer from the same problem
that was discussed in the previous section, i.e., excessive numerical diffusion arising
from the discretization of convection equations. It is true that the adaptive grid
capability might allow us to ignore the problem by concentrating sufficient grid in
wakes to keep diffusion under control. However, a rough calculation shows that to
convect vortex cores and sheets from the wing to tail with sufficient accuracy to be
able to predict accurate tail loads would require at least triple the grid used to solve
the problem with fixed wakes. The cost would currently be prohibitive. We have
therefore been exploring compromises.

There are many arguments to consider in developing a wake capturing algorithm,
some of which have been mentioned above. We have finally arrived at what we be-
lieve is a reasonable compromise between accuracy and user effort. This algorithm
is based on a novel method developed and communicated to us by S. S. Desai[86]
which combines vortex tracing methods with a non-linear full potential algorithm.
The authors assume separation lines are specified and then emit discrete vortex fila-
ments from these lines. These vortex filaments are aligned with the mean flow which
is determined by combining the velocity induced by these vortices with the velocity
computed on the full potential grid. This method often works quite well, but occa-
sionally has a few problems. First the computation of the velocity induced by the
vortex filaments is expensive, and second, this velocity is highly singular, resulting in
vacuum conditions near each filament.

We are currently analyzing several modifications to this method. First we note
that vortex filaments are equivalent to the edges of constant strength doublet pan-
els. By employing linearly varying doublet panels instead, the 1/r singularities can
be eliminated. Moreover, by interpreting the doublet panels as jumps in potential,
one can take their influence into account through local jump conditions rather than
through influence coefficients. The net effect of these two modifications is equivalent
to a method whereby the positions of the current wake type-18 networks are updated
so that each doublet panel side edge is aligned with the local mean flow direction.
(We have checked that this condition is still applicable when the total pressure and
temperature are different on the upper and lower sides of the doublet panels. Here
one must calculate the mean flow direction using upper and lower mass flux vectors
scaled by appropriate factors based on total pressure and temperature.)

At the moment we are accounting for the effect of wake panels on the local flow
by incorporating them in the local D-region operators. This limits the generality of
wake shape by requiring that wake panels cannot cut themselves or any portion of the

138

vehicle boundary. Moreover, D-region operators must be recomputed every time the
wake position is updated. It would be better to “capture” the discontinuities induced
by the doublet panels by computing their contribution to the field operators on-the-
fly, using methods similar to those used in capturing thin layers in EM TRANAIR[40].
Such a procedure would, for example, allow a wing wake sheet to cut a tail without
having to separate the wake sheet into two pieces.

The main advantage of the technique just described is that wake diffusion is virtu-
ally eliminated. Moreover, one does not have the expense of adding extra unknowns
or derivatives everywhere in the flow field just to account for the possible existence
of a wake. In one sense the method could be called “wake fitting”. However the
analogy to “shock fitting” doesn’t really hold. Only the separation line really needs
to be specified by the user. This is reasonable since separation is basically a viscous
phenomenon. Once the sheet gets started there is no problem associated with ’rec-
ognizing’ a wake as there is in shock fitting. In fact the method is much more closely
related to the Clebsch decomposition. Here the u parameter is precisely the doublet
strength in the wake and the gradient of the A lambda parameter corresponds to the
normal vector of the doublet sheet.

4.4 BOUNDARY LAYER

In the vast majority of flow cases of practical interest the effects of viscosity are
confined to a boundary layer next to the configuration surface. The influence of
a boundary layer on the outer inviscid flow can be of major significance in some
instances. One instance is where boundary layer separation produces a vortex sheet
extending out into the inviscid flow field. Another instance is where shock-boundary
layer interaction effects cause substantial thickening of the boundary layer and a
correspondingly large modification of the effective configuration surface as seen by the
outer inviscid flow. The latter effect is often of great importance in transonic analyses.
In Figure 4.4 we show an analysis performed by Boeing's A488 code[87] on the 747-
200 wing at Mach 0.86 and at 2.70 degrees angle of attack. The code was run with
and without boundary layer coupling and the results were compared to experiment.
The coupled results are in much better agreement with the experimental results, and
the primary effect of the boundary layer appears to be a weakening and upstream
displacement of the normal shock. For some wings the effect is less pronounced, but
one cannot know this without doing the actual boundary layer analysis.

It would be a fairly straightforward task to couple the boundary layer code in
A488 to TRANAIR. However, boundary layer codes often tend to be the weak link
in a flow analysis. Transition models, turbulence models, and shock-boundary layer
interaction models are all very ad-hoc in nature. There is not much that can be
done about this. In addition, coupled transonic/boundary layer codes often have
convergence problems due to the coupling itself. The input to most boundary layer
codes is the inviscid pressure distribution and the attachment line. The boundary
layer code proceeds in a marching fashion to generate boundary layer thickness for
delivery back to the inviscid code, and the inviscid code generates a new solution.

139

747-200

MACH = 0.86 INVISCID
ALPHA = 2.70 DEG COUPLED INVISCID/VISCOUS
TEST DATA

Figure 4.4: Transonic Analysis Demands Viscous Coupling

140

This procedure is repeated until convergence, which is not always achieved. Moreover,
premature separation can halt the boundary layer marching procedure.

Due to the use of a sparse direct solver TRANAIR could be coupled to a boundary
layer code directly. That is, the boundary layer equations could be treated in the same
manner as the pressure equations (see Section B.3). Moreover, because of the direct
nature of the solution, marching is no longer necessary (although the equations would
be arranged in marching order to minimize fill-in). Hence, it would be possible to
allow the introduction of elliptic terms, resulting in, e.g., the thin layer Navier-Stokes
equations.

4.5 DESIGN AND OPTIMIZATION

TRANAIR currently has a rudimentary sequential inverse design capability. It allows
the user to specify pressure coefficient at upper surface corner points of a thick surface
network, or jump in pressure coefficient and thickness slope at corner points of a thin
surface network. In the first case the network surface is to be relofted parallel to
the upper surface mass flux vector. In the second case the surface is to be relofted
parallel to the average mass flux vector. No relofting capability has been attached
to TRANAIR, as such a capability is strongly case dependent and intimately tied to
one's geometry generation system.

The procedure just described is similar to the cycled boundary layer coupling
described in the previous subsection. It can often be effective, but is certainly not
robust and may require intervention by an expert user. We again prefer a more direct
approach based on the use of the sparse solver. In such an approach the parameters
describing variations in geometry would be combined with flow unknowns and the
whole system including pressure specification and impermeability conditions would
be solved as a directly coupled system.

Development of a directly coupled inverse design program would represent a major
step towards a full optimization capability. Here an actual payoff function would
be minimized with respect to a set of controls (geometry perturbation parameters),
subject to inequality constraints on these controls as well as the state equations (full
potential equation).

141

Chapter 5
CONCLUSIONS

A new approach to solving the full potential equation about arbitrary three-dimesional
geometries has been presented. This approach has been implemented in a computer
code called TRANAIR. A wide variety of subsonic, transonic and supersonic results
have been presented. They indicate that TRANAIR has made substantial progress
towards the objective of offering aerospace vehicle designers a reliable, general pur-
pose, full configuration flow analysis tool that is relatively easy to use. In particular,
these results show that it is indeed possible to eliminate the costly and time consum-
ing process of generating a surface fitted grid while maintaining the ability to capture
small scale flow details accurately. Further work to improve TRANAIR and extend
its domain of applicabilty has been discussed.

143
- = BLAWA 10T FILMER
pice Z% INTENTIONALLS BRANE PRECEDING PAGE BLAWA

Chapter 6

Acknowledgements

This work was supported in part by NASA contract NAS2-11851 and the Boeing
Independent Research and Development Funds. We wish to thank Prof. K. D. Lee
of the University of Illinois for his early contributions to this project. In addition,
we acknowledge the contributions of L. B. Wigton of the Boeing Commercial Air-
planes for work described in Appendix C. We acknowledge the contributions of R.
H. Burkhart of the Boeing Computer Services for the work described in Appendix D.
We acknowledge the contributions of B. L. Eversen of the Boeing Computer Services
for the work on many program libraries used in TRANAIR. We also acknowledge the
help we received from Edward Tinoco and Allen Chen and Margaret Curtin also from
Boeing Commercial Airplanes in running some of the test cases.

e/ L/(/ HTTINIONAITY B 145

PRECEDING PALE oLANA iU FILWMED

Appendix A

OCT-TREE DATA
STRUCTURES

A.1 DATA STRUCTURE ORGANIZATION

A compact data structure which contains essentially all the information regarding the
refined grid has been developed. It allows the TRANAIR code to concentrate many
small boxes in areas where greater solution detail is needed and fewer and larger boxes
in areas where less solution detail is desired. While usually refered to as ‘the oct-tree’,
the data structure is actually a forest of oct-trees where each oct-tree root is a box in
a uniform, regularly indexed grid. The data structure allows efficient extraction of a
variety of information, such as the location of nodes and element centroids, box size,
box level, node indices, box adjacency, and identity of boundary boxes.

A.1.1 Base Grid

The global grid (described in Section 2.3.3) specified over the computational domain
is uniformly derefined to obtain the base grid. Each base grid box becomes the root
of an oct-tree. All the descendent boxes of each base grid box physically lie within
that base grid box.

A.1.2 Oct-Trees

Each box in the data structure can be recursively subdivided (refined) into eight
similar boxes. The hierarchy of boxes formed in this process is known as an oct-tree.
The oct-tree data structure represents a parent-child relationship between a box and
the sub-boxes formed by its subdivision and also the sibling relationship between the
sub-boxes.

Some restrictions are placed on the refinement to minimize data structure size and
to simplify the problem. First, boxes are refined by subdivision into exactly eight
equally sized sub-boxes. This greatly reduces the data structure size by eliminating
the need to store box centroids and sizes. It also has the effect of keeping the aspect
ratio of all boxes equal. Box centroids and sizes are derived from the box’s position in

o /i/ ?M:s*if‘:'e’ﬁ{‘-ﬁﬂ‘t% RS

147 FRECEIMRG »' e Jis0is i SLasrD

the oct-tree hierarchy. Second, no two face or edge neighbors in a “legal” refined grid
differ by more than one level, (see Figure A.1), which greatly reduces the solution
computation complexity.

Figure A.1: Grid “Legalization” Example.

The basic oct-tree data structure is based on boxes. However, it has been extended
to accommodate nodal information. A nodeis located at a corner point of one or more
boxes. Nodes are indexed by assigning a box to the node at its lower-left-near corner.
To account for all nodes at refinement interfaces, a pseudo-refinement is performed
(Figure A.2). Pseudo-refinement creates boxes (called pseudo-bozes) that are assigned
to nodes, but are not used as finite elements in the solution process.

Pseudo
Refinement

to Identify \

this Node

Figure A.2: Pseudo-refinement to Represent the Nodes

148

A.1.3 Terminology

e B-Bor (Base Grid Box): Any of the base grid boxes in the uniform. regnlariv

indexed grid derived from the global grid. Base grid boxes are the root< of cacl,
of the oct-trees and have no parents.

e O-bor: Any box in the oct-tree.

o R-Bor (Red Box): Any unrefined box. An R-Box can contain a finite eiement
trial function.

o (G-Bor (Green Box): A pseudo-box created so that all nodes at refinement inter-
faces are associated with a box Some G-boxes can lie outside the cornputation:!
domain to define the nodes on the boundary of the computational domain.

e U-Bor: Any box (or pseudo box) whose lower-left-near corner is associated it
a node.

o T-bor: An R-boz that intersects the boundary.

A.2 DATA STRUCTURE REPRESENTATION

The data structure used in TRANAIR to describe oct-trees is a modification of tha:
described by Samet [57]. The data structure is divided into six areas: the header. th
base grid descriptor, the refinement family, a stack, a boundary box map. and refine-
ment pointers. A global overview of the data structure array is shown in Figure A3

A.2.1 Header

The header area is fixed in size and location. It maintains a variety of information
about the data structure including the locations of its various components and certain
statistical information about the data structure and the grid.

A.2.2 Base Grid Descriptors

The header area is followed by a base grid descriptor area. This area is divided into
two regions, the base grid pointers and the U-boz accumulators for the base grid. The
two regions are laid out as parallel arrays of the size of the base grid. Each element
of the base grid pointer region identifies the location of a refinement family for a
particular base grid box. A zero value here implies that the base grid box is not
refined. The U-box accumulators are the number of U-boxes encountered in the data
structure during a sequential traversal of the data structure.

149

Header

Base Grid Pointers &

T e T ——

Accumulators

Refinement
Families

Stack

T-box Map

Refinement
Pointers

Figure A.3: The Overview of the Oct-tree Data Structure

150

A.2.3 Refinement Families

The base grid descriptor area is followed by a series of refinement families. A refine-
ment family describes a subdivision of a box into eight smaller boxes. A refinement

family is shown in Figure A.4. Each refinement family data block consists of five
integer fields:

Parent
Refinement Number of
Point Refined
omer Children
U-box
Accumulator Octant

Figure A.4: A Refinement Family

e The first field contains the address of the parent. The parent pointer is used to
facilitate upward traversals in the tree.

e The second field contains the location of a data block that describes the children
of this refinement family. A zero value in this field indicates that none of the
eight children are refined.

e The third field describes the number of refined children contained in the block
referenced by the second field.

e The fourth field is the U-box accumulator. It describes the number of U-boxes
encountered in the data structure during a sequential traversal of the data struc-
ture.

e The fifth field is the octant of this refinement family in the refinement of its
parent.

Because the third (number of refined children) and fifth (octant) fields contain

small values, it is reasonable to compress these values into other data fields to conserve
memory. As a result, only three integers are used to store the refinement families.

151

The first integer is equal to the first fleld. The second integer contains the second
and third fields of the data structure. The values for these fields are given by:

FIELD #2 = (INTEGER #2) / 16

FIELD #3 = ABS((INTEGER #2) MOD 16)

The third integer contains the fourth and fifth fields. The values for these fields
are given by:

FIELD #4 = (INTEGER #3) / 16

FIELD #5% ABS((INTEGER #3) MOD 16)

As boxes are refined, refinement families are appended to this list. This area grows
towards the end of the total data structure.

A.2.4 Scratch Stack

The refinement family area is followed by a small scratch stack area that is used to
record traversal paths. The stack area is not used until after all refinements have
been made and the refinement family list has stopped growing.

A.2.5 T-box Map

The stack area is followed by a T-box mapping vector. The mapping describes which
O-boxes have a non-empty intersection with the boundary. The map is constructed
as an ordered (ascending) array of those O-boxes who intersect the boundary. The
creation of this map is the final step in the generation of the oct-tree data structure.

A.2.6 Refinement Pointers

The final area in the data structure contains the refinement pointers. The refinement
pointers describe the addresses of the refinement families for the children of refinement
families. This area is composed of variable size blocks. Each block is composed of a
set of number pairs that describe the address of a refinement family, and the octant
that refinement family lies in. An example refinement block is shown in Figure A.5.
Because the octant value is small, the octant and pointer values are stored together
in one integer. The pointer and octant values are given from a data value as:

POINTER = (Data Value) / 16

CCTANT = ABRS((Data Value) MOD 16)

Additionally. a back pointer is provided to facilitate oct-tree construction. The
back pointer contains the address of the refinement family whose refinements are
being described by this block. This pointer, like the others is stored with an octant
value. Back pointers are assigned and octant value of zero to distinguish them from
sibling refinement pointers. The back pointers are removed to conserve memory after
the oct-tree is constructed. A flag in the header field indicates the presence of the
back pointers.

The refinement pointer area grows from the end of the data structure toward the
refinement families. When insufficient space remains for growth the data structure
size is enlarged within the code so that expansion can occur.

152

Pointer Octant

Pointer Octant
Pointer Octant
Back Pointer 0

Figure A.5: A Refinement Pointer Block

A.3 MAJOR ALGORITHMS

This section describes the major algorithms used to manipulate and interrogate the
oct-tree data structure. The description of the algorithms are sketches and are not
intended to be exhaustive explanations.

A.3.1 Data Structure Modification
Refining a Box

When a given (unrefined) O-box is refined, a refinement family is added to the refine-
ment families area of the data structure. The parent of the new refinement family is

the O-box being refined. The octant of the box being refined is defined by:
OCTANT = ((0O-box - NXYZB - 1)) MOD 8 + 1

where NXYZB is the number of base grid boxes. The refinement pointer block of the
O-box’s parent refinement family is modified so that the OCTANT octant of the pointer
block contains the address of the new refinement family.

Creating the O-box/U-box Mapping

The O-box/U-box mapping is created by storing in each refinement family an accu-
mulation of the number of U-boxes encountered in the boxes defined by families that
precede it in the list.

153

Creating the T-box/O-box Mapping
The T-box/0O-box mapping is implemented as an ordered (ascending) list of O-boxes.

A.3.2 Data Structure Interrogation
Finding Refinement Family

The index of the refinement family defining an O-box is given by:
FAMILY = ((0-BOX - NXYZB - 1) / 8) + 1

where NXYZB is the number of base grid boxes.

Determining Box Number From Refinement Family Index

The O-box number of a refinement family can be found by:
0BOX = NXYZB + 8 * FAMILY + OCTANT

where NXYZB is the number of base grid boxes and OCTANT is the octant of this family
in the refinement of its parent.

Finding Box Centroid and Size

Box centroids and sizes are calculated by ascending the oct-tree hierarchy to the
base grid root. At each level reached in the hierarchy, the box centroid (initially
(0,0,0)) is moved towards the parent box’s centroid by examining the current octant
and number of levels traversed. When the base grid box is reached, the calculated
centroid is translated to its center. The size of the box is equal to

1 / (2 == LVL) =* BGSIZE

where LVL is the number of levels traversed and BGSIZE is a vector describing the
dimensions of the base grid box.

Finding Child Boxes

A given box has either eight or no children. If refinement family for the box exists
then it has eight children. Otherwise, the box is unrefined (has no children). Child
O-box numbers are given by:

OBOX = NXYZB + 8 * FAMILY + OCTANT

where NXYZB is the number of base grid boxes and OCTANT is number lying between
one and eight.

154

Finding Neighboring Boxes

Neighboring boxes are found by traversing up the oct-tree hierarchy until either an
ancestor common to both the box and the neighboring box is found, see Figure A.6.
The common ancestor is found if the last parent in the pedigree is on the comple-
mentary side of the child (i.e. if the south neighbor is desired then the parent should
be on the north side of its child). A downward traversal along a path complementary
to the upward path is performed. If the root is reached and the ancestor is yet to
be found then the neighboring box lies in a different tree in the oct-tree forest. The
neighboring tree is the base grid box lying in the desired direction. For a legal tree,
there can be zero, one, or four neighbors in any face direction and zero, one, or two
neighbors in any edge direction. In Figure A.6 the traverse path for finding the north
neighbor of the box 1 is shown as an illustration.

Figure A.6: Finding Neighboring Boxes.

155

Mapping O-box and U-box Indices

To find the U-box index of an O-box, the refinement family of the O-box must be
found. If the O-box is refined and the refinement is not a pseudo-refinement, then it
is not a U-box, otherwise, the U-box accumulator is recovered from the refinement
family. The U-box accumulator is then decremented by one for each sibling whose
octant is greater than that of the O-box, and who is not refined or who is a pseudo-
refinement.

The O-box index of a given U-box can be determined by performing a binary
search on the (ordered) list of U-box accumulators to find the refinement family whose
U-box accumulator is closest to that of the given U-box. The U-box accumulator
is incremented by one for each child who is either unrefined or who is a pseudo-
refinement until the U-box accumulator is the desired U-box. The O-box is the last
child who caused the U-box accumulator to be incremented.

Mapping O-box and T-box indices

To find the O-box associated with a particular T-box index simply involves retrieval
of the value from the T-box map. A binary search is performed to recover the T-box
index given an O-box.

Finding the U-Box Containing a Point

To find the U-box containing a point in the computational volume, determine the
base grid box containing the point. Traverse the oct-tree rooted at the base grid
box by choosing, at each level, the child box that contains the point. The traversal
terminates when a leaf node of a pseudo-refinement is found.

156

Appendix B
OPERATOR DEFINITION

In this appendix we describe how the various operators (discrete equations) in TRANAIR
are defined and constructed.

B.1 IMPLEMENTATION

In this section we discuss the way in which the Bateman principle is used to create
operators at each grid point. The departure point is Eqn. (2.11) which is repeated
here

5J=/Q—v_l}-6‘7dﬂ (B.1)

We take) as some subregion of the grid box shown in Figure B.1. First we define
perturbation potential ¢ as

d=0 -V 7, Voo = (Uso , Voo » Weo) (B.2)
and then rewrite Eqn. (B.1) as
§J = /n —p (Voo + V) 6V4dQ (B.3)
We define p, as p(g,?) in the following equation
-1 02 T
b= e [1 P ta- L (B.4)

where ¢, is the value of ¢ at the centroid of . We then make the approximation that

§J ~ -po/n(vm +54)- 69¢d (B.5)

This approximation is valid in incompressible flow where p is constant. If the basis
function for ¢ in is linear then V is constant in Q and Eqn. (B.5) is still valid.
However the basis function for ¢ is actually trilinear and strictly speaking V varies
in 0, but because we evaluate p, at the centroid of 2, Eqn. (B.5) and (B.3) are the
same to second order.

157

4
Box Corner Point

3o |

3
Ve
pd

Figure B.1: Grid Box

158

The basis function for ¢ in the grid box of Figure B.1 is defined as

¢ = ¢o + ¢rx + ¢yy + ¢zz + Qszyxy + ¢yzyz + ¢,_1-ZCL' + ¢J:yzxyz (B6)

where the origin for the z,y, z coordinate system is in the center of the box. Note
that this expression has eight unknown coefficients. These coefficients are chosen so

that ¢ exactly fits the eight values ¢y, @2, ¢3, 4, ¢s5, 6, 7, ¢s at the box corners.
To express this fact in compact form we define

y = Z
Ay 0= Az
Note that for the box of Figure B.1, | £ [< 1| 9 |< 1 ,] (|< ;. Werewrite Eqn. (B.6)

as

=G0+ Gl + I+ O+ Senbn + GnenC + G¢eCE + bencénC (B.8)

where ¢¢ = Az¢,, etc... This can be rewritten as

b=b-O (B.9)
where
b= (1,&1,¢,n¢, &, €n, €n¢) (B.10)
and
W= (¢oa¢£a¢m¢(,¢n(’¢(fa¢£m ¢€n() (Bll)
But for some matrix R,
@ =RT (B.12)
where
T = (¢1a ¢2’ ¢3a ¢4a¢5a¢6, ¢77 ¢8) (813)
Thus
¢=5b-RT (B.14)

The matrix R can be calculated by evaluating ¢ of Eqn. (B.9) at each of the eight
corner points to obtain

7=B& (B.15)

Here B is an 8x8 matrix whose rows are b evaluated at each of the eight corner points.
From Eqn. (B.12) R is the inverse of B. One can use a computer to invert B, but
it is more satisfying to combine rows of B in a judicious manner to deduce R. For
example, by adding all the rows of Eqn. (B.15) together, we get ¢1 + ¢2 + é3 + ¢4 +

159

o5 + ¢s + &7 + ¢g = 8 from which we deduce the first row of R. R is the following

madtrix.
1 1 1 L 1 1 117
8 8 8 8 8 8 8 8
1 L _1 1 1 1 _1 1
1 3 1 1 1 1 14
1 _1 1 1 _1 _1 L 1
1 3 1 Y 1 4 i
~i _1 _1 _1 1 L 11
1 4 1 4 4 1 4 3
1 1 _1 _1 _1 _1 11
2 2 2 2 2 2 2 2
1 _1 1 _1 _1 1 1 1
2 2 2 2 2 2 2 2
1 _1 _1 1 L 1 _1 1
2 2 2 2 2 2 2 2
-1 1 1 -1 1 -1 -1 1
Defining

U=¢, 7V=¢y’W=¢z
we have from Eqn. (B.14) that

1 -
= —b - R7
U Ax i3 RT
1 T fad
V = A—ybn . RT
1 s —
W = A—zb(. RT

Here

-

b€=(0,1 ,O,O,O,Ca'),ﬂf)

—-

b'n=(010’1 ’07C’O)E3C£)

EC = (0 ,0,0,1 1 ,€,0 7577)
One can now rewrite Eqn. (B.5) as

6J & —p,[@e - R6T + 7 - RTCR67)

where) !)
- - o g e T ——-W-’
doy /Q[Amwaﬁ-AvabﬁAz AP
and
c=[1-1557+ L5574+ Lis a0
Q[Zx?“ +Z'y—2nn + bede 7

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

One can rewrite Eqn. (B.25) as

Q1
il
3

o= 2= (0,1,0,0,0,(,7,7C)

%2 (0,0,1,0,7,0,,2)

¥ (0,0,0,1,7,,0,&n) (B.27)
where () is the volume of the region 2 and the superscript bar denotes mean value,
e.g.,

:

+

— 1
ng = h-/ﬂncdﬂ (B.28)

Similarly we have

00000 0 0 0)\

01 000 ¢ 7 7nC

00000 0O 0 0

00 000 0O 0 O

C=37 {00000 0 0 0

0 C 000 (% n¢ nC?

07 000 ¢ 72 i

\ 0 7 0 0 0 n¢® ¢

(00 00 0 0 0 O

0000 0 0 0 O

0010 ¢ 0 & (¢

o 0000 0 0 0 ©

T3 oo T o0& o (%

00 00 0 0 0 0

00 Z 0 (E 0 & (&

kooﬁo@o?ﬁ@/

(0000 0 0 0 0)

0000 O 0 O O

0000 O 0 0 O

q 0001 7 & 0 &
+E;0007].F§0-€7 (8.29)

000 & & & 0 €y

0000 O 0 0 O

\0 0 0 & & &y 0 &)

ot
=)
—

In general 2 is a subdomain of the box bounded by polygons consisting of parts of
subpanels and faces of the box. The mean quantities in Eqn. (B.27) and (B.29) can
in general be evaluated only by using complicated recursions best programmed on
the computer; see Section 2.3. However there are some special cases for which hand
calculations are possible. Let us assume that §2 is a small subregion of the box which
is close to a corner, say corner 8. Then clearly the mean values on 2 are almost the
same as the values at corner 8, e.g.,

fopez=l @l mrol

Another case of interest is when () is a rectangular region, e.g., the whole box, the
upper half, the lower tenth, etc. Let us assume that Q is defined by z, < z < z, ,
1 <y<y: , 2z <2z< 2. Then the term ¢&-1pM-1¢N-1 i5 given by

— é‘l—lnM—lcN—l

1 1 M—1,N—
— ﬁ/ngL 177M 1eN-140)

— 1 L-1_M-1,-N-1
V2 _ 1 z2 _
= 22 d / €L 1 fyz d nM ldyfz2 - /z CN ldz
zy 1

1 2

L-1 M-1 N-1

= VT dE ——— i dn——- TN d

fgf de /e s ,;;’ dn /n L I -/c K
1 €2L—€1L 772M—771M CzN—CxN

= ' . : B.31
L-M-N §{L-6& M= G2 — G ()
Case 1:
Now assume that § is the whole box, i.e.,
1 1 1 1 1
f— y L= —5 M= 5,711——5,(2—5,(1——5 (B.32)

Clearly if L, M or N is even, the mean value on the left of Eqn. (B.31) vanishes. The
only non-zero mean values in Eqn. (B.27) and (B.29) are then

- - = 1
T=7l = - -
E=n"= v
1
Tp? — 202 — (2f2 = .
&n? = n?(? = (3¢ m (B.33)
Case 2:
Next assume that 2 is only the upper half of the box. Thené; =1, & =-1, ;=1
yTh = —% y G2 = % , (1 =0,If L is even or M is even the corresponding mean value

162

vanishes. However the same thing is not true for N. The non-zero mean values are
now

- 1
‘=1
T - L
F=7=7 =
— — 1
(2 =(n* = m
1
777 — (2p2 = FIp? = —
(282 =2 = ¢ T (B.34)
Let us go back to Case 1 above and assume Az = Ay = Az = 1. Substituting
Eqn. (B.33) into (B.27) and (B.29) we get
Ao = (OyUoo’Vooa WOO,O,O,O,O) (B35)
and
/0000000 0)
01 000O0O0TO O
001000O0O0T© 0
000100O0O0OTU
C=oooogooo (B.36)
00000 00O
000000 O
(0000000 &
Hence,
8J = po|ANIL + AJ + Ads+ AJdy+ AJs + Ads + AJ7 + AJs) (B.37)
where
_ Uoo Voo Woo ¢ ¢4 ¢6 ¢7 ¢8
Ah=btF+ T+ -3 T e
_ Uoo Voo Woo ¢ ¢3 ¢5 ¢7 ¢8
A =bt(——F+ T - FAG IRt R
_ Uoo Voo Woo ¢’2 ¢3 ¢5 ¢6 ¢8
As=8¢s(+—F-TH+ T T 3ttt
_ U Voo We &1 ¢4 o5 06 &7
i e T S TR I TR PRV

163

Uoo Voo Woo ¢2 ¢4 ¢5 ¢8

el T+ﬁ+12+12 3T

o Voo Wy ¢ b3 ¢4 ¢ o7

Ale=d¢e(——m+ -+ttt - 3+5
V

Uoo o0 Woo QSI ¢2 ¢4 ¢6 ¢7

AJ7:5¢’(+T_T_T+E+E+1_‘>+E" 3)
_ Uoo Voo Woo (;bl ¢3 ,éB
M= ss(—p - G B B O

The quantities inside the parentheses are the contribution of the box to the oper-
ators at each of the eight corner points respectively. For a uniform grid, each corner
point of the grid gets contributions to its operator from each of the eight surround-
ing boxes. Consider the center grid point in Figure B.2. For the box in the upper
right corner this point is local corner point number 1 and gets the contribution in
Eqn. (B.37) from the coefficient of §¢,. However for the box in the lower left corner
this point is local corner point number 8 and gets the contribution from the coefficient
of 6¢s. Note that if p, is different in each of the eight boxes then we must add the
terms in parentheses weighted by each p,. However let us assume M., = 0 in which
case p, = 1. Then when we add up all eight box contributions to the center grid
point we get the coefficients shown in Figure B.2.

Note that the terms in U, V., W all cancel out. This is due to the fact that
V.-V, = 0. The operator coefficients in Figure B.2 are known as the Bateman
Laplacian, which is a second-order accurate approximation to V2¢. This is not the
same as the more diagonally dominant finite difference Laplacian (which we call a
“lumped” Laplacian) shown in Figure B.3. The 7-point Laplacian can be obtained
from a finite element point of view in a variety of ways. One way is to add higher
order terms to the trilinear basis function; see Section 2.3. Another way is to add
higher order terms to the Bateman principle itself. In the latter method one adds to
6J the term

1 Azr? Ay?
6 m—p, [1 SV + W)+ SE W 40
A
+ = = (U2 + V%))
AyzAz 2 Az2Az?
+ 36 g et Ve
2A
+ A—xQ—yW,yz}]dQ (B.38)

These “lumping” terms are negligible to second-order so that they do not affect
the accuracy of the resultant operator.

164

(o]

-~

1
8

—~l©

o
—

-l

Figure B.2: Bateman Laplace Coefficients

165

f
0!
A

——————

e
0

Figure B.3: Standard 7-Point Laplacian
166

We leave it to the reader to show that the lumped formula analogous to Eqn. (B.37)
1s

8J = po[Ady + Ay + Ads + AJy + AJs + AJs + Adz + AJg] (B.39)

where

1 1 1 3 1 1 1

AJ =6¢1(+ZU00+4V°°+ 4Ww—z¢1+4¢2+ 7%t 4¢5)
1 1 1 1 3 1 1

AJ; = 6¢2(_ZU00 + 4Voo + - 3 Weo — Z¢1 - Z¢2 + Z¢4 + Z¢6)
ATy = 6o+ U0 = v+ L 4 Lo = 301 Lg, 4]

3= 3(+4oo 1 1 +41—43+44+4¢7)
1 1 1 1 1 3 1

AJ4=6¢4(—-ZU°° 4V°o+4W + 4¢2+4¢3— Z¢4+4¢8)
1 l 1 1 3 1 1

AJs = 5¢5(+4U + - 4 4VV + 4¢1 - Z¢s + 4¢6+ 4¢7)
1 1 1 1 1 3 1

AJ6=5¢6(—ZUOO+ 4V 1 W + 4¢2+ 4¢5— Z¢6+ 4¢8)
1 1 l 1 1 3 1

AJ; = 5¢7(+4U 4 1 We + Z¢3 + Z¢5 - Z¢7 + Z¢8)
1 1 l 1 1 1 3

AJg = (5¢3(—4—U - -Voo 4 oo + _¢4 + "¢6 + Z¢7 + —¢8)

Note that one can derive the coefficients in Figure B.3 by adding the appropriate
contributions from each of the eight surrounding boxes using Eqn. (B.39).

167

B.2 TEST CASE

Now let us consider a test case, i.e., flow past a one panel thin wing at an angle-
of-attack. For simplicity a uniformly refined grid is chosen. The geometry is shown
in Figure B.4. The grid has the dimensions NX = 7, NY = 4, NZ = 4, and the
y = 0 plane is considered to be a plane of symmetry. The grid points are numbered
in increasing z, then y, then z order. The wing has a chord of 2.5 and a span of
3. A wake panel is attached to the trailing edge. The wing plane is z = 0. In the
bottom part of Figure B.4 we show the wing planform embedded in the grid, but
actually there are no grid points at z = 0, and the points shown should be considered
as projections.

Any grid box containing any part of the boundary surface is called a T-box. There
are 10 T-boxes in the example. Any connected portion of a T-box is called a D-
region. There are 14 D-regions in this example. The D-region numbers are shown
in Figure B.4. The ordering of the D-regions is somewhat arbitrary and depends
on which T-box is processed first and also on the panel normal direction. (In this
case the wing upper normal is in the +2z direction and the wake upper normal is
in the —z direction.) Some T-boxes have one D-region and others have two. For
example the inboard T-box at the wing leading edge has only one D-region (D-region
1) because the wing does not fully cut the T-box in half. Consider D-region 4 as
shown in detail in Figure B.5. This D-region has a trilinear basis function defined by
Eqn. (B.14). However, the values of ¢ at the corner points below the wing cannot
be used in Eqn. (B.13) because the wing introduces a discontinuity in ¢. Instead the
values of ¢ below the wing are replaced by extrapolated values from above the wing.
These values are denoted by ¥». We introduce an extrapolated ¢ any time a ¢ is cut
off from a neighboring ¢ in all four T-boxes adjoining the line segment connecting
the two grid points. Note that we do not introduce a ¥ simply because the two grid
points are separated in some T-box. In the thin wing problem of Figure B.4, eight
Y’s are introduced as shown. All lie on the plane of symmetry. The original problem
contained unknowns ¢, through ¢, ordered in grid order. The ¥’s are considered
as additional unknown ¢’s, i.e., ¥y = ¢113 and ¥ = @114, etc. The corner unknowns
for D-region 4 are shown in Figure B.5. Now we proceed to derive operators for ¢gg
and ;. First we consider the contribution to these operators from D-region 4, i.e., a
formula analogous to Eqn. (B.37). (Remember ¢, ¢, ...¢s are the local box values of
¢ here and should not be confused with the global numbering for the problem.)

168

!
l
l
!
&~
|
|
1
1

[
1
1
|
&
1
!
1
1

o)
Z 6.0

{ Pas, V4
z

|
|
|
|

!
i
]
I |

e

2 ¥
B
K

| P34, V3

1, e

]
1
!
1
.
!
!
1
!
e T Tk SIIp——" |
5

| $33, Y2

1

¥

4

1
1
!
b b e - -k
¢

y =0 PLANE

| a2,

|
|
|
|
e > _
|
|
|
.
F U U S,
L a1
¢3

1
L)
2

| $30
0.0

| P29
1
Ir =

|
]
|
e T F S U SR
T

L

z
2z

“ N T P
I _u i ﬂ !
I I I I
ﬁllllLllrlJllllL_
| I
| e B [
| _-A_ |
i I I
hIIIILII W» E '
I i ! I
_ ! [
| 1=] |
' I ' f
A B I
i I I I
' _lm_ ﬂ 1
I V=]l £ I
I I I I
FIIIILIIIWILIIIIIL
I I I I
=
" B —
I I 1 I
e e e e d - -2 d
1 I] 1
i I I I
! I | 1
| I I i
QP PRI R U (I P §
[ap] o
I i
& P~

r=06.0

z =0 PLANE

: D-region # 1

Figure B.4: One Panel Wing

169

One can use Eqn. (B.34) in Eqn. (B.29) and Eqn. (B.27) to obtain

6J = po{(SJ] + 5J2 + 6.]3 + 6-./4 + 6.]5 + 6J6 + 5.]7 + 6']8]

where
5J5=6¢5(+%°+‘1%°—%—+§—;+§—:+§—;—ﬂ—5+f—§+%+f—§)

(Note that 2, the volume of the D-region is 1 in this case.)

Now 9, is affected by D-regions 2 and 4. Because of the plane of symmetry one
should also add in the contributions of the reflection of D-regions 2 and 4 across
the y = 0 plane. For this purpose we simply reflect Figure B.5, i.e., in this case,
interchange 1, and ¢39, ¥, and @40, P60 and g7, and ¢, and ¢gs. Thus for the
contribution of the unreflected D-region 4 to 1,, we choose the contribution due to
64, in Eqn. (B.40). However, for the contribution of the reflected D-region we choose
the contribution due to §¢3. Summing up all contributions, we get the operator shown
in Figure B.6. For comparison the operators generated in the code are also tabulated.
This printout shows the coefficients of the 3; operator (INDOP=1) located at grid
point 32 (LOCOP=32) due to contributions from 2 physical boxes (NPRINT=2).
The freestream coefficients are the coefficients of U, V., and W, respectively. The
remaining coefficients correspond to the unknowns indexed on the left, respectively.
(The comparison between these formulas and those of the code are not exact, as the
code shifts the wing in the grid by a slight amount in order to avoid panel surfaces
landing right on grid lines. This shift also makes the v, operator formula depend
minutely on some other unknowns due to the fact that a small amount of the wake
is shifted into D-regions 4 and 5. These minute quantities can be ignored).

The 3, operator has an interesting interpretation. Writing out the operator equa-

tions from Figure B.6 we have

1 1 1 1
—§Z¢31 - §¢1 - ﬂ% - '1'50539 +

170

1

75950

(B.40)

¢68

P40

¢114

—_——— e e

60

L e

~
P113

171

Figure B.5: D-region 4

1 1 1 1 1
+ﬁ¢61 + ﬁ¢66 + g¢67 + ﬁfﬁes + §Woo =

This equation can be rewritten in a more suggestive way as

ArzAyAz 1
— (D + W)= & (D + Dy

+§(D1:2¢60 +Dy¢e0)+ #5 AzAyD.’D,*¢e] =0
where
Diw = forhh
D’y = i Z‘ilg-{— il
D2 = P39 —21/;12 + P39
etc...

172

(B.41)

(B.42)

Perturbation Coefficients

| 1
[} [}
[} |
i]
| [}
1 |
i i
1 |
[} }
1 1
| [}
] |
| 1
y +
1 I .1 .1
// E Pe6 * 17 // ! Pe7: § Pes : 13
e : s |
1 f) l 1
¢59 12 : ¢60 : 0.0 : ¢61 12
i 1
Wing Plane ! '
] |
. | |
B e Rty S t
// $ag : 0.0 7 39 TF $40: 0.0
e e
-1 -1 L1
®31° 35 Y13 Y2 ¢ 35
Free Stream Coefficients
U 0.0 Vo 0.0 Wy 0.5
¢, Coefficients
31 -0.41667E-01 32 -0.23582E-20 33 -0.22179E-15
38 0.53951E-06 39 -0.83334E-01 40 0.53954E-06
59 0.83335E-01 60 -0.84974E-06 61 0.83335E-01
66 0.83336E-01 67 0.16667E-00 68 0.83335E-01
113 -0.33334E-01 114 -0.41667E-01 117 -0.45336E-15
118 -0.42667E-10 121 0.49778E-10 122 0.14222E-10

Figure B.6: Operator Coefficients for ¥ = é113

173

This is the way the equation would have looked had Az Ay , Az been arbitrary.
Note that in the limit as Az — 0 the equation tends to D,* ¢, + W, = 0, which
implies that the z velocity on the wing is zero, i.e., the wing is an impermeable surface.
Thus the ¢, equation effectively imposes the appropriate boundary condition. To get
the operator for ¢¢o we note that it has contributions from D-regions 2 and 4 as well as
the free space boxes 59 and 60 (all boxes are numbered according to the index of the
lower left corner point.) For free space boxes (i.e., boxes not containing a boundary)
we always use the lumped formula (B.39) so that away from the boundary we get
the 7-point Laplacian, consistent with the discrete Green’s function. For D-regions 2
and 4 we choose the appropriate contribution in Eqn. (B.40) and for boxes 59 and 60
we choose the appropriate contribution from Eqn. (B.39). We must also include the
contributions from the reflections of all four boxes, as they lie on a symmetry plane.
The operator coefficients for ¢¢, are displayed in Figure B.7 and compare with those
from TRANAIR shown also in the same figure.

For operators getting contributions from D-regions 6, 7, 8, 9, 13 and 14 the com-
putation gets more complicated because the boundaries involve a wake. Specifically
we have to add a surface integral to Eqn. (B.5) as in Eqn. (2.17) which is rewritten
in the form

J=J+ /2 ol W)(A® — u) d5 (B.43)

Taking a variation of the surface integral Eqn. (2.17) with respect to ¢ and assuming
incompressible flow we get

3>

67=po [1 (861 60u)(Vin-)
+ %(5% A+ 6V R) (i + b1 — du)
+ %(VU A+ V- 7)(861 — Sy)]dE (B.44)

Here 7 is the upper normal on the wake. (In this case i points in the —z direction.)
VU is V¢ evaluated using the basis function on the upper side of the wake and VL
is V¢ evaluated using the basis function on the lower side of the wake. Note that
upper and lower mean the same thing as in PAN AIR. In this particular case they
do not physically correspond to upper and lower surfaces. The surface integral in
Eqn. (B.44) further requires the definition of how ¢ varies in the wake. We assume
p varies linearly from corner point to corner point. We leave it to the reader to
determine the contributions to the operators due to Eqn. (B.44).

Note that the 15 operator involves unknowns on the other side of the wake. This
is clear physically since the wake is a jump discontinuity surface rather than a solid
surface. It is also clear mathematically from Eqn. (B.44) where terms involving
products of upper and lower basis functions are present. The operators shown in
Figures B.6 and B.6 involve the unknowns B1 = ¢121 and p; = g9, the values of
doublet strength at the leading edge corner points of the wake network. u, and
p2 have their own operators, namely #1 should be the difference between the basis

174

Perturbation Coeflicients

:¢94 : 0.0 :¢95 :0.0 ¢96 : 0.0
i l
T l
¢s7: 0.0 E ¢ss: 1.0 i ¢80 : 0.0
I |
I |
I {
P! o
e L1 iy .13 L1
// 'tﬁes-g // I¢e7-1— ¢68-g
e ! e l
| 1
bs0: 3 E $e0 : —4.0 E de1 ¢ B
[} |
Wing Plane ' '
[} }
i 1 1
______________ e
7 b S B39 be0: 5
Ve 7
¢31:11_2 P1:0.0 1/’25%
Lower Boxes Un-lumped. Upper Boxes Lumped.
Free Stream Coefficients
U, 0.0 V. 0.0 W, 0.5
¢,9 Coefficients
31 0.83335E-01 32 -0.45366E-13 33 0.42667E-10
38 0..83335E-01 39 0.16667E-00 40 0.83335E-01
59 0.54167E-00 60 -0.40000E+01 61 0.54167E-01
66 0.16667E-00 67 0.10833E+01 68 0.16667E-00
87 0.00000E-00 88 0.10000E+01 89 0.00000E-00
94 0.00000E-00 95 0.00000E+00 96 0.00000E-00
113 -0.84974E-06 114 0.83335E-01 117 0.23581E-20
118 0.22178E-15 121 ~-0.49778E-10 122 -0.14222E-10

Figure B.7: Operator Coeflicients for ¢eo

175

function of D- region 6 and that of D-region 7 evaluated at the inboard wake leading
edge corner point. Similarly, u; is the difference between the basis function of D-
region 13 and that of D-region 13 at the outboard wake leading edge corner point.
(Since there is no difference, p; = 0 as it should be.)

The operator coefficients are displayed visually in Figures B.8 and B.9, and they
have an interesting interpretation.

In the same way as in Eqn. (B.42) the 3 and i, operators can be rewritten
suggestively in the form

AzAyAz 1 1
zy [Az2(¢62 - ¢7 + /‘tl) + §Dy+ﬂl
1 7 1
+ ﬁDr;’d’S + ﬁsztﬁsz - g—D:2¢7
1 1 1
+ %Dyzd’z + ﬁDyz’J’s + %Dyz'w‘t
1 1 1
+ §Dy2¢61 + §Dy2¢62 + §Dy2¢63
1 1 1
- EDyz“an - IgDy2¢7 - ']EDy2¢8] = 0 (B45)
AzAyAz 1 1
2 [Azg(¢34 — Y3 —) — §Dy+ll1
1 7 1
+ EDx2¢7 + ED:2¢34 - §Dx2¢4
1 1 1
+ %Dy%bfi + %Dy2¢7 + %Dyzlbs
1 1 1
+ §Dy2¢33 + §Dy2¢34 + §Dy2¢35
1 1 1
- 1—8-Dy2’l/)2 - EDyzl,b:; - 1—8-Dy2‘¢‘4] = 0 (B46)

Adding Eqn. (B.45) to (B.46) and ignoring higher order terms we get

AzAyAz L[Pe2 — Y3 Y7 — a4
2 Az' Az Az
In the limit as Az — 0, this equation states that the - velocity evaluated from the
upper and lower basis functions is the same, i.e., the normal velocity is continuous
across a wake.
Subtracting Eqn. (B.45) from Eqn. (B.46) and ignoring higher order terms we get

AzAyAz 2 s+ 7 der + ¥ _
2 Ral 2 g —wml=0 (B.48)

This equation states that the difference in potential between the two basis functions
evaluated at the wake plane is equal to the wake doublet strength. We see then that
the ¢ equations give us the proper jump conditions across the wake.

]=0 (B.47)

176

Perturbation Coefficients

|
1
[]
]
]
|
i
]
i
]
1
|
1
|
A ATy :
e : 68 + 14 e : 69 - 14 ¢70 .
e ! yd 1
o ! o i
b1 13 E $62: 0.0 ! $63: 13
6 f% ! V7 i% ! Pg f%
Wing Plane i !
] |
I B T bun
yd yd
e e
¢33 : 0.0 $34: 0.0 $as : 0.0
Pyt %5 VY3 i} 4" %%
Free Stream Coefficients
Doublet Coefficients
H1 f% H2 %
¢, Coefficients
33 -0.28878E-06 34 -0.11551E-05 35 -0.28878E-06
40 0.27779E-01 41 0.27779E-01 42 0.27779E-01
61 0.83334E-01 62 -0.20052E-05 63 0.83334E+01
68 0.55556E-01 69 0.55556E-01 70 0.55556E-01
114 0.13890E-01 115 -0.11111E-01 116 0.13890E+01
118 -0.55556E-01 119 =-0.22222E+00 120 -0.55656E-01
121 0.38889E+00 122 0.11111E+00

Figure B.8: Operator Coefficients for ¥3 = é135

177

=l

Perturbation Coefficients

T .
]]
1 [}
} [}
t 1
t [}
1] ¥
| |
| I
| |
| |
[} I
! {
i |
| |
AT Ay bro
yd 1 e |
- l - |
1 1
%6 : 0.0 E ¢e2: 0.0 E de3: 0.0
e : 7 : e o ! Vst 7
Wing Plane ! !
| 1}
- 1 t
/‘a;;??i °°°° PPl EE R baz
e e
e e
¢33111—2 “$34: 0.0 ¢35111—2
Py I—; Y3 —Tz 4 ;—1
Free Stream Coefficients
U 0.0 Vo 0.0 W, 0.0
Doublet strength coefficients
1 I_?L H2 _9—1
¢,% Coefficients
33 0.83333E-01 34 0.26182E-05 35 0.83333E-01
40 0.55554E-01 41 0.55554E-01 42 0.55555E-01
61 0.28916E-06 62 0.11566E-05 €3 0.28916E-06
68 0.27777E-01 69 0.27777E-01 70 0.27777E-01
114 -0.55555E-01 115 -0.22222E-00 116 -~-0.55555E-01
118 0.13888E-01 119 -0.11111E-00 120 0.13888E-01
121 -0.38889E-00 122 -0.11111E-00

Figure B.9: Operator Coefficients for ¥y = ¢q19

178

®l~

As a final comment to this section we note that the lumping terms of Eqn. (B.38)
can also be used in boxes which have D-regions to obtain a more diagonally dominant
operator. However, for consistency all surface integrals in the D-region must also be
lumped. As an example a surface term of the form

6J ~

must be augmented by the term

6 exra = =0 [|
+

—po/E(r‘z V)86ds (B.49)

n, %(AyzUy&by + A22U,86,)
1

Ng %(AyzAzzUyJ‘?Sw)

ny S(AV.66, 4+ ALV.84.)

ny ;—G(Az%x?vnwn)

ne S(ATW.86, + AyW,56,)
n, 31—6(A1:2Ay2W,y5¢,y) 1dE (B.50)

179

B.3 PRESSURE BOUNDARY CONDITION

In this section we discuss implementation of the pressure boundary condition Eqn. (2.7).
This boundary condition is generally imposed on wake sheets, which are wetted by
the flow on both sides. Potential is allowed to jump across these sheets, and the
value of this jump constitutes the degree of freedom which allows the imposition of
Eqn. (2.7). Because TRANAIR has its roots in the panel method [8], we call the
jump in potential across a wake ‘doublet strength’, and denote its value by p.

In order to discretize Eqn. (2.7) we define doublet strength at various point lo-
cations on the wake sheets and then impose Eqn. (2.7) at a like number of discrete
(but different locations). In Fig. B.10 we display a schematic of those wake surface
discretizations which are operable in TRANAIR. These discretizations are comprised
of networks of mesh points which are interpolated by the wake surfaces. The portion
of the surfaces interpolating four adjacent mesh points is called a panel. In Fig. B.10
the lines correspond to panel edges and their intersections to mesh points. The mesh
points are identified by a rectangular array of indices, (I=1,M) and (J=1,N), where I
is the row index and J the column index. The upper surface of the network is defined
to be that side whose normal corresponds (in a schematic sense) to the direction
]\7® M. 1t is useful to number the four network edges as shown in Fig. B.10. Discrete
doublet parameters are located at positions denoted by the solid dot. The doublet
strength on each panel is then obtained by bilinear interpolation. Pressure boundary
conditions are imposed at the locations marked by x’s. Edge 1 (the leading edge)
1s considered a special edge for each type of network. It is assumed that the mean
(average of upper and lower) tangential velocity enters the network along this edge.
Since the pressure jump condition will involve only derivatives of doublet strength,
constants of integration must be directly or indirectly specified along the leading edge
to fix the level of doublet strength along each streamline. Boundary conditions along
the leading edge are called Kutta conditions and their discrete locations are denoted
by the open dot.

Wake networks may abut other wake networks. In general, doublet strength must
be continuous, so it is essential to ensure that the doublet parameters along the edge
of one network match those along the edge of an adjoining network. Hence boundary
conditions along edges of some networks may be replaced by explicit doublet matching
conditions.

The network type designations (6,18 and 20) arise from historical considerations
involving the panel method (8]. Network type 6 is a full wake network, where the only
assumption required for its employment is that the mean flow enters the network at
the leading edge. Network type 18 is a special case of network type 6 where the doublet
strength at any corner point is assumed equal to that of the first point in the respective
column. This means that the derivative of doublet strength along panel column edges
is zero. In certain instances this implies that Eqn. (2.7) is satisfied automatically at
locations similar to the x’s for network type 6, which results in substantial savings.
Generally one can employ type 18 networks in place of type 6 networks when the
mean flow is roughly in the direction of panel column edges and the difference in
total pressure and total temperature across the wake is not too great. Network type

180

Edge 1

- P 9
K K K X
M
K X X X Ol Doublet Matching
gdge 4Edge o Kutta Condition
X p 3 X X X Pressure Boundary Condition
. Doublet Locations
X 3 X e
Edge 3
Type 6
Edge 1 Edge 1
@ T ﬁ 9 1 fl
M M
Edge Edge Edge Edge
5 g i g 5 g) g
Edge 3 Edge 3
Type 18 Type 20

Figure B.10: Wake Networks

181

20 is a special case of network type 18 where the doublet strengths along the leading
edge are all identical to that at the head of the first column. Hence it is a constant
strength doublet network and contains no vorticity (or jump in tangential velocity)
at all. Network type 20 is generally used as a circulation carry-over wake rather than
to account for vortex separation. This is opposed to network types 6 and 18, where
the Kutta condition at the leading edges is intended to force vortex separation along
the line where these edges adjoin a solid body (Note in this connection that the the
sheet vorticity vector C is equal to n ® Vy)

The imposition of Eqn. (2.7) at the points denoted by x in Fig. B.10 is rela-
tively straightforward, but requires some care. For example, upper surface velocity
V. and lower surface velocity Vi may be evaluated by differentiating the potential
basis functions on respective sides of the wakes. Then upper surface pressure p, and
lower surface pressure p; may be calculated from Eqn. (2.14), and substituted into
Eqn. (2.7). Formally Eqn. (2.7) does not involve x4 , and 4 is determined through its
appearance in the finite element operators (e.g. see Eqn. (B.45)). This leads to con-
ditioning problems since the number of doublet unknowns is unrelated to the number
of finite element equations. It is preferable to get u involved directly in Eqn. (2.7)
through its definition as the jump in potential. For this purpose we redefine the upper
and lower surface velocity vectors by the formulas:

-, 1 — — 1 el ‘;‘{ ° 6“_ -‘u_ -‘l

AT D i\t U] A (B.51)
2 2 n-n

., o 1e [P |Vu—(V.-V

7 o= Yvevy-Lteu- [”M()) (B.52)
2 2 n -n

Here, V, and Vj are the upper and lower surface velocity vectors calculated by dif-
ferentiating the respective potential basis functions, but the (mathematically) equiv-
alent velocity vectors ‘7,: and V,' are used to compute p, and p;. The quantity 7 is
the surface co-normal vector defined by

—— 2 4
& (.(1 My)ng,ny,n,) hneal: flow (B.53)
n non-linear flow
Note that
(=n@(V,-V)=2® Vy, (B.54)

i.e. the vorticity calculated from the velocities used in the pressure calculations is
a function of p only rather than dependent on the potential basis functions. In the
case where there are no total pressure or temperature differences across the wake,
Eqn. (2.7) implies

= lVYl and p, = p. (B.55)

Hence,

182

aW - AV' =0, (B.36)
where aW = %(Wu + W), AV’ = 17,: - V‘,', and W, = p,V,, W, = Vi

Assuming the wake is a stream surface relative to the mean mass flux, i.e.

AoaW =0 (B.57)

we obtain the classical condition for determining wake doublet strength, i.e.,

aW - Vyu=0 (B.58)

Notice that if the panel column edges are aligned along aW, then i is constant along
these edges and a type 18 network may be employed as mentioned above.

In the case where there are total pressure and temperature differences across the
wake, then Eqn. (B.58) should be replaced by

aW* - Vur =0 (B.59)

Here W* is defined by Eqn. (2.22). Although Eqn. (B.59) is no longer exact, it is
often a reasonably good approximation.
At Kutta condition locations we impose the following boundary condition:

p— (b —) +et [V —V(g,—)] =0 (B.60)

Here £ is a unit tangent vector lying along the local panel column edge, and ¢ is
a small parameter which is chosen to be approximately equal to the local field mesh
size in the ¢ direction. This equation guarantees that 4 is the jump in basis function
potential in the case where wake panels are denser than the field grid. The derivative
term is added in the case where the previous condition is redundant with respect
to the finite element operators. Then Eqn. (B.60) implies that the jump in basis
function velocity is well defined and finite.

We conclude by noting that all the analysis contained in this section is applicable
to the imposition of pressure boundary conditions on surfaces which are wetted by
the fluid on one side only. Such a boundary condition is often used in the design
mode, where pressure is specified and the surface is to be updated to be a stream
surface in the resultant flow. To modify the analysis it is only necessary to replace
the velocity V|’ by the velocity which would yield the desired upper surface pressure.

183

Appendix C
GMRES

In this appendix the algorithmic details of GMRES are described. GMRES algorithm
is used as the iterative driver to to drive the residual to zero. Attention is given to
the concept of preconditioning and the role it plays in assuring rapid convergence.
The advantages GMRES enjoys over related methods such as conjugate gradients are
explored.

C.1 GMRES ALGORITHM

GMRES [53] is a method for solving nonsymmetric linear systems of algebraic equa-
tions. A modified version of GMRES which applies to nonlinear systems of equations
is described.

Consider a differentiable system

A(u) =0 (C.1)

of N nonlinear equations in N unknowns. The differential A(u;p) of A at u in the
direction p is defined by

A(u; p) = lim Alut ep) = Aw)

e—0 £

(C.2)

For computational purposes, ¢ is taken to be some small number and ensure that
the variables u and the component values of A(u) are reasonably scaled to permit an
accurate evaluation of A(y; p).

Given u", an approximate solution to Eqn. (C.1), one cycle of GMRES advances
the solution by first choosing k orthonormal search directions py, pa...px as follows:

P = —AW") (C3)
Normalize py
p=D (C.4)
i
185

con JET gt RGN S
PRECEDING PG SOAMK RUT FILMED

Forj =1,2,...k — 1 take

Pi+1 = A(u"; p;) Zb,,p. (C.5)
where
bji = (A(u"; p;), pi)
so that
(pj+1,2:) =0 for i=1,2,...

Normalize p;;,

Pji+1
Py = T (C6)
T T |l
Now update u™ using
k
u = ut+) a;p; (C.7)

J=t
The overall goal is to minimize A(u"™*!). To this end the coefficients a; are chosen to
solve the linearized version of the least squares problem

k
(u) + ZaJ uhip) I = | AW+ X ap)) 1P

= [A@™) |’ (C.8)

Aided by the orthogonality of the search directions p;, a modified version of the QR
algorithm described in [53] is used to solve this least squares problem.

One cycle of the GMRES algorithm is an approximation to one cycle of Newton’s
iteration. Indeed with Newton’s method one uses the linear approximation

A(u™! + p) ~ A(u™) + A(u™; p) (C.9)

to estimate a value of p which will enable A(u™ 4+ p) = 0. Eqn. (C.9) suggests that
the following linear equation be solved for p:

A(u™) + A(u™;p) =0 (C.10)

The naive way to do this is to compute the entries of the N x N matrix associated with
A and directly solve the system of linear equations. This is enormously expensive if N
is at all large (as it is for all problems of practical interest). GMRES approximately
solves Eqn. (C.10) by finding the best possible solution over the k dimensional linear
subspace spanned by the search directions < p;, ps,...px >. Of course if k = N, then
GMRES would find the best possible solution to Eqn. (C.10) over the whole space
and would therefore compute the exact solution. Unfortunately this is every bit as
expensive as solving Eqn. (C.10) directly. The key to efficiency is to arrange for
GMRES to find a good solution to Eqn. (C.10) using only a small number of search
directions k. Preconditioning plays a vital role in achieving this goal.

186

N

C.2 PRECONDITIONING

The available mathematical theorems [53],[88], as well as much numerical experience,
indicate that the rate at which GMRES converges, measured by the value of k required
to achieve a given level of accuracy, depends on the distribution of eigenvalues. The
more the eigenvalues are clustered together, the faster GMRES will converge. The
process of replacing a given problem with another equivalent problem (i.e., one with
the same solution) enjoying a more favorable distribution of eigenvalues is called
preconditioning.

Based on the observation that the identity operator has the most favorable dis-
tribution of eigenvalues (all the eigenvalues are clustered at 1), most methods for
preconditioning invoke an approximate inverse to the operator in the equation one is
solving. For example, if L is a linear operator and N~! is an approximate inverse to
L then the problem

L(z)—b=0 (C.11)

is equivalent to

N-Y(L(z) - b) =0. (C.12)

In this case N is called a preconditioner for L. These equations have the same
solution, but GMRES will more readily solve Eqn. (C.12) than Eqn. (C.11) because
the eigenvalues of N~ L are more tightly clustered than those of L.

A formulation which allows GMRES to take advantage of preconditioners already
built into existing codes will now be described.
Given a problem of the form

A(w) =0 (C.13)

most computer codes have a method M which takes a good approximation to the
solution of Eqn. (C.13) and creates a better approximation. Typical methods M
might, for example, involve SLOR, ADI, a time marching scheme or even multigrid.
Whatever the method, M already invokes an approximate inverse to the operator in
Eqn. (C.13). The standard procedure for updating u is

"t = M(u™) (C.14)

Convergence is achieved when u™*! = u". Thus solving Eqn. (C.13) is equivalent to
solving
u—M(u)=0 (C.15)

Applying GMRES to the preconditioned Eqn. (C.15) is more effective than applying
GMRES to Eqn. (C.13) directly. Applying GMRES to Eqn. (C.15) is often consid-
erably more effective than employing the standard iteration procedure Eqn. (C.14)
[54].

187

C.3 GMRES AND SIMILAR METHODS

As shown above, one cycle of GMRES finds the best possible solution to the following
linear equation for p:

A(u™) + A(u™;p) =0 (C.16)

over a k dimensional subspace < p;, ps,...pr >. In GMRES the search directions
are chosen to be orthonormal. An alternative method ORTHODIR, chooses the search
directions to be AAT orthogonal, i.e.,

(AW p), A(u™5p;)) =0, i (C.17)
ORTHODIR computes the k search directions as:
P = —A(u")
for j =1,2,..k — 1 take
v; = A(u"; p))

i
Pis1 =+ 3_biip;

=1

where

v;), A(u™; pi))
((,ps) (u™; 1))

The coeflicients bj; are computed to enforce Eqn. (C.17). Asin GMRES, ORTHODIR

updates u using the formula

A
A

k
ut=ut+3 a;p;

i=1

where the a; are chosen to solve the linearized least squares problem

k
I A(u® +Ea; wp) P = LA™ + D aip) |

i=1

= || A" |I? (C.18)
Now because of Eqn. (C.17) this least squares problem can be explicitly solved:
(A(u"), A(w™; p;))
(A(u"; ps), A(u™; ;)

It can be easily shown that the search directions generated by ORTHODIR span
the same k dimensional subspace as those generated by GMRES. Therefore GMRES

a; = —

188

C-3.

and ORTHODIR are mathematically equivalent. Since ORTHODIR solves the least
squares problem more conveniently, ORTHODIR would appear to be preferable to
GMRES. However, ORTHODIR requires that both the search directions p; and the
vectors A(u™; p;) be stored. Also ORTHODIR uses 2k evaluations of A. GMRES on
the other hand requires only k + 1 evaluations of A and that only the p; be stored.
(The solution to the least squares problem Eqn. (C.8) presented in reference [53]
makes use of Eqn. (C.5) which expresses A(u";p;) as a linear combination of the
search directions p;, eliminating the need to explicitly store the vectors A(u™; p;)).
Thus GMRES requires only about half the storage and half the number of function
evaluations as ORTHODIR. Moreover, evidence is given in reference (53] that GMRES
is less subject to numerical problems. Of all the methods for solving a nonsymmetric
linear system of equations based on the idea of finding the best possible solution over a
k dimensional subspace (ORTHOMIN, ORTHORES and ORTHODIR are compared
in reference [53]), GMRES appears to be the best in terms of storage, operation count
and numerical stability.

For problems involving symmetric positive definite matrices, algorithms more effi-
cient than GMRES exist. Consider the linear system

Sz=b (C.19)
where S is a symmetric positive definite matrix. The CR (Conjugate Residual)
method employs the following relations (88):

Choose: zo
Set: To = b— S.’L‘o

and pg = 1o

Now recursively use

a; = (7‘.', ST.')/(SPn SP:’)

Tiyr = Titaipi
Tiv1 = Ti— a;Sp;
b = (riz1, STit1)
' (7',', ST‘.‘)

Pit1 = Tir1 +Dipi
It then follows [88] that

(Spiy Spi) =0 for i#]
and that z; minimizes
| Sz b

over the k dimensional affine space To+ < po, P1,---Pk-1 >+

189

Thus CR operates very much in the same spirit as GMRES (in fact for symmet-
ric positive definite linear systems they are mathematically equivalent), but explicit
orthogonalizations such as Eqn. (C.5) and the need for solving the least squares prob-
lem (C.8) are avoided. Moreover storage is required for only the 5 vectors z,r, Sr, p,
and Sp. This compares very favorably with the k + 4 stored vectors required GMRES
(typically 20 vectors).

Another algorithm for solving Eqn. (C.19) is Conjugate Gradients (CG). It uses
the relations [88]:

Choose z4. Set

ro=b— S, (C.20)
and
Po=To (C.21)
Now recursively use
a; = (T',', ri)
(pi, Spi)
ZTiy1 = ZTi+aip;
Tigr = T — a;Sp;
b = (Fis1, Tig1)
‘ (riy7i)

Pisn = Ty —bip;
It then follows that [88]
(P Sp;) =0 for i#]

so that the search directions are (by definition) S orthogonal (conjugate) to each
other. Also if y is the exact solution to Eqn. (C.19) then z, minimizes [88]:

ly—=|

over the k dimensional affine space zo+ < po, p1, ...px—1 >.

Again CG enjoys enormous advantages over GMRES in terms of storage and opera-
tion count when applied to symmetric positive definite linear systems. Unfortunately
many of the advantages of CR and CG disappear when applied to nonsymmetric
problems. Let G be a general (invertible) nonsymmetric matrix. Then

Gz =b (C.22)

can be solved with CG or CR if one considers
GGz =G"*b (C.23)

This involves the added expense and inconvenience of computing the adjoint op-
erator G*. The adjoints of any preconditioners must also be computed. This could

190

be nearly impossible if multigrid is used as a preconditioner. The elegant formula-
tion shown in Eqn. (C.15) which allows GMRES to be immediately retro-fitted to
existing codes is lost. Also the eigenvalues associated with Eqn. (C.23) are more
spread out than those of Eqn. (C.22). Indeed the eigenvalues of G*G are the squares
of those of G. This means that more iterations are required to solve Eqn. (C.23)
than to solve Eqn. (C.22). In fact conjugate gradient applied to Eqn. (C.23) with a
basic underlying iterative method as preconditioner is often no faster than the basic
underlying method, making acceleration of Eqn. (C.23) with any Krylov subspace
method a hopeless cause. In view of the difficulties associated with applying CG or
CR to Eqn. (C.23) one must ask how much does it really cost to apply GMRES to
Eqn. (C.22) directly. In a typical application, the cost of GMRES turns out not to
be too burdensome. The operations required by GMRES are fully vectorizable over
vectors of length equal to the number of unknowns in the problem and are therefore
capable of efficient implementation. For these reasons it is believed that in most cases

applying GMRES to Eqn. (C.22) is preferable to using CG or CR on Eqn. (C.23).

191

Appendix D
POISSON SOLVER

D.1 SUMMARY OF THE POISSON SOLVER

The Poisson solver, denoted by T~!, computes the perturbation potential ¢ from a
given source function @ in a manner that automatically imposes the proper boundary
condition at infinity. The computation of T~!(Q) is based on the discrete convolution,
GxQ, of the sources Q with the discrete free space Green’s function G. Toget T¢ = Q,
the function G must satisfy

1 at (0,0,0)
(TG)(i, 4, k) = 8(3, 5, k) = { . (D.1)
0 everywhere else
In addition G must satisfy a discrete far field boundary condition. It is sufficient to
require that G be asymptotic to the continuous free space Green’s function —1/(4rr)
as r — oo . In fact G may be approximated to arbitrary accuracy as r — oo by an
asymptotic expansion of the form

) AzAyAz (1
G(z,,,k)~—-“—1’—z-(;+”3+'r’—§+---). (D.2)

AT =
Here 7, = nn(u,v,w, Az, Ay, Az) where

Az k
(u,v,w) = (z :1:’]Ay, AZ) and r = |(:Az, jAy, kAz)]. (D.3)

r T r

A general recursion formula (D.42) for the asymptotic coefficients 7, was derived
after considerable effort. James’ attempt [89] to derive the n; formula was consistent
with the Poisson operator but not with the “recursion” relations (D.11) that G must
satisfy. The MIT computer algebra program MACSYMA was helpful in evaluating
ns and the corresponding downstream Green’s function calculations.

The Poisson solver permits symmetry about the y and z planes 7 = 0and k =0
and automatically includes downstream sources. These are the sources on the down-
stream (m;) plane of the computational box R. They are interpreted as extending to
infinity in the z direction, so that wakes are automatically extended outside of R. A

193

St
X RTUHTIONEY XN . .
mﬁj@*'z“ TOREL PRECEDING PAGE BLANK ROT FILMED

corresponding downstream Green's function Gy, see (D.4) below, is computed along
with the regular Green’s function G;. A correct solution requires that the downstream
sources sum to zero; otherwise the solution is theoretically infinite everywhere, though
in practice small deviations from the zero sum are tolerable.

The James algorithm, see section D.1.2 below, is used for the convolution. For
an N3 box, the real operation count of the TRANAIR implementation is (116 +
10log, N)N? + O(log, N)N?. In practical cases the O(log, N)N?® asymptotic term
is dominated by the large O(N?®) term, and the O(log, N)N? term is significant in
small cases. As the result of a considerable programming effort, the code is typically 2
times faster than a comparable implementation of the standard convolution algorithm,
whose operation count is (72 + 35log, N)N3. The Poisson solver achieved a rate of
480,000 grid points per second, or about 85 MFLOPS, on one processor of a Cray X-
MP for a grid with dimensions (m,, m,, m,) = (160, 150, 27).

The memory requirement of the Poisson solver (including Green’s function) is
N3+ 51 N2 which is N3 asymptotically but closer to 2N3 in practice. This is due
to the many scratch planes required for good vectorization of the dominant phase 2
of the algorithm. An earlier code, which was closer to James’ technique, used much
less memory in phase 2 but was much slower and more complicated. The standard
algorithm uses 2N°® + 23 N? words, which is asymptotically twice as much but is less
than 1/3 more in typical cases.

Radix 2,3,5 FFT’s (Fast Fourier Transforms) are used to achieve more flexibility
in choosing (m.,m,,m,) than the traditional radix 2 FFT, permitting a smaller
computational box.

D.1.1 Summary of the Green’s Function Algorithm

Buneman [90] found an analytical method for generating the 2D discrete Green’s
function in the case Az = Ay. For the 3D case a new, semi-analytical method has
been developed for arbitrary Az, Ay, Az. This method may be adapted to 2D and
to higher dimensions as well.

The basic idea is to first compute Green’s function data on the boundary of the
box R and then solve for G in the interior by FFT techniques for a Poisson boundary
value problem (see section D.3.1). Neumann boundary value data are used because
a Neumann boundary value problem is solved by cosine transforms. For data that
is symmetric about the origin on each axis, as it is for G, cosine transforms give the
DFT of the solution. It is actually the DFT of G, denoted by G, that is needed for
the convolution. Thus by solving a Neumann boundary value problem, G itself need
never be computed, only G.

Symmetry determines the Neumann boundary data to be zero at the three bound-
ary planes of R through the origin: i = 0, j = 0, and k = 0. The hard part is, of
course, the boundary data for the three exterior planes i = m,, j = my, k = m,.
The boundary data for the first of these planes, for example, must be computed as
(G(mz + 1,4, k) = G(mz — 1,5,k))/(2Az), cosine transformed in j and k. If m, is
large, this may be computed accurately by the asymptotic expansion (D.2). For this
reason the problem is first reformulated, if necessary, for a large box, whose dimen-

194

sions depend on the available scratch memory and on an attempt to equalize the
radial dimensions m Az, m,Ay, and m,Az. Then this large box Neumann problem
is partially solved to get the desired boundary data for the given box R.

The total CPU time for computing the Green’s function data is less than .2 seconds
using 100,000 words of scratch memory, corresponding to an operation count of 18
times the volume of the large box. This time is trivial since this data is computed
only once and stored, to be read back at each subsequent call to the convolution
algorithm. The data is accurate to about 9 or 10 significant digits, degrading only at
high ratios of the deltas. The convolution algorithm preserves this accuracy.

The downstream Green’s function G4 is defined by

(2,7, k Z G(l—1,75,k (D.4)
{=m;
Formula (D.4) is derived from the requirement that if Q(4, j, k) = 0 for ¢ < m, and
Q(z,J, k) = 7(j, k) for ¢ > m,, then

(G * Q)(za]’ k) = (Gd(i’ "y) * T)(jv k)

The portion of each sum (D.4) outside the large box is computed by the Euler-
Maclaurin formula for an infinite sum, with G evaluated by the expansion (D.2).
Each such sum actually has an infinite part (see section D.2.4). But this part may
be subtracted off because it is asymptotically equal for all (j, k) and will disappear
upon convolution with the downstream sources, provided that they sum to zero.

The result of solving the Neumann problem for G is a simple algebraic formula in
terms of three planes. These are the cosine transforms of the three exterior planes of
boundary data (see section D.2.3). For Gy, four planes are required since there is no
symmetry in the z direction. Evaluation of these formulas typically adds about 5%
to the CPU time of a convolution if there is no symmetry but saves two grid boxes
of memory. If there is both y and z symmetry, the cost may rise to 25% of the CPU
time but save eight grid boxes of memory.

D.1.2 Summary of the Convolution Algorithm
The procedure developed by R. A. James [89] is based on the decomposition of the

perturbation potential ¢ into an “interior solution” § and an “exterior solution” ¥,
mediated by a “shielding charge” function o. That is, write the Green’s function
solution ¢ = G * Q to the Poisson equation T¢ = @ in the form

=0+
where 8 and 1 are defined by

T = @ inside the box R with
§ = 0 on the boundary R and outside R, and
= Gx*o for
o = Q-T8
0 only on OR.

195

Intuitively, the interior solution § would result if the sources in R were shielded from
everything outside by a wall at R, for example. Subtracting o from the given sources
@ on OR gives induced sources, or charges, T6 on OR. By definition these charges
have the same effect as a wall, hence the name shielding charge function. The exterior
solution is so called because it incorporates the “exterior”, or free-space, boundary
condition.

A mathematical proof for the correctness of this decomposition is given by the
following algebraic argument. Let 8 and Q be functions defined on the 3D grid that are
zero outside R and define 0 = Q — T8 and) = G * 0. Then the discrete convolutions
G+ Q and G o are finite sums, and it is easy to verify that G (T6) = T(G *6).
Hence

p=G+xQ=G*(TO)+G+o=T(G*0)+v¢=0+. (D.5)

This algorithm involves three phases. For phase 1, solve T = Q inside R given
§ = 0 on IR and calculate ¢ = Q — T, which is nonzero only on dR. For phase 2,
compute 3 = G * 0 on JR by the standard convolution algorithm (described below).
For phase 3, complete the computation of ¢ by solving another Dirchlet Poisson
problem: T3 = 0 inside R given 3 on OR.

The efficiency of this algorithm comes in part from the fact that phase 2, G * o,
is much less work than G * Q if done intelligently. Likewise, in phase 3 it is possible
to take advantage of the zero interior sources. There is also a way to do the last
part of the Dirichlet Poisson algorithm only once, instead of twice. Finally, the
Dirichlet procedure is very efficient since it uses FFT sine transforms and a special
tridiagonal solver (section D.3.1). Where there is a plane of symmetry, a mixed
Dirichlet-Neumann problem results. This requires the use of “shifted sine or cosine”
FFT transform algorithms to replace the sine transform (section D.3.2).

The standard FFT convolution procedure for G * Q would be to apply FFT’s in
the z,y, and z directions to G and @, multiply these complex results pointwise, then
inverse transform. For this to be correct, both G and Q must be doubled in size along
each axis, and this extension must be zero filled, with FFT’s for these doubled lengths.
The reason for this is that the FFT actually implements a “circular convolution” [91]).
The zeros guarantee that this convolution equals the standard linear convolution.

The standard algorithm is adapted to phase 2 of the James algorithm in the fol-
lowing way. Since o is restricted to IR, only the 6 boundary planes of R need be
transformed directly. Then & is constructed from these 6 planes, an zy plane (com-
plex and quadrupled in size) at a time, along with the corresponding plane of G. The
values in these two planes are multiplied, and summations specified by the inverse
transform formula are performed to get 6 output boundary planes. At the end, the
inverses of the initial transformations are applied to these 6 planes. See section D.3.3
for explicit formulas for handling the 6 planes.

196

D.2 THEORY OF GREEN’S FUNCTION AL-
GORITHM

D.2.1 The Green’s Function Definition

The Green’s function G must satisfy the discrete Poisson equation

D*G(i, j, k) = (1,5, k) (D.6)
where
D*G(i,j,k) = Gi+1,j,k) — QGg;J;k) +G(i—1,j,k)
G(i,j +1,k) = 2G(s,5, k) + G(1,5 — 1,k)
_+.
Ay?
+ X
Az?

In addition we assume that G satisfies a free space boundary condition of the form

G(i, j k) = K (717 + f(z, 3, z)) (D.7)

where K is a constant to be determined, (z,y,2) = (1Az, jAy, kAz), r = |(z,y, 2)|,
and f has continuous partial derivatives with asymptotic condition r?V f ~ 0 when
r ~ oo. Here “z ~ 0” means that z is infinitesimal (in the sense of nonstandard
analysis[92]), “z ~ 0o” that 27! ~ 0, and “z ~ y” that z —y ~ 0.

Mathematically it is not clear that a solution to (D.6) and (D.7) even exists, or if
one exists, that it is unique. Therefore it is better to define G in a way that makes
existence obvious, and then derive (D.6), (D.7), and show uniqueness. The form of
the free space condition (D.7) permits a straightforward uniqueness proof (later in
this section).

First define the discrete Green’s function as the coefficients of a certain 3D Fourier
series:

4l (tx k
(3:k) = 55 /_w/_/ expi(:Jﬁﬁ;; DD 40 d de (D.8)
where 4 4 4
h(a, B,7) = A2 sin’*(a/2) — K;'Sln %(B/2) - Esm 2(v/2). (D.9)

The function h~! is singular at the origin, but this singularity is integrable by changing
to spherical coordinates 8, ¢, p, since the Jacobian is O(p?) and h(a, 8,7) = O(p?) for
p ~ 0% . Therefore, according to Zygmund([93], the 3D Fourier series with coefficients
G converges to h~! in the L' norm, and also almost everywhere in, for example, the
following form of “Abel convergence”

h™'(a,8,7) = lim 3" G, j, k) eliati+EnT Pl (D.10)
1,7,k

197

That the definition (D.8) satisfies the Poisson equation (D.6) is easily verified by
calculations such as the following.

exp(j + 1)B8i — 2expjBi+ exp(j — 1)8i
= (exp Bi + exp(—Bi) — 2) exp j i
= 2(cos(8) —1)expjBi
= —4sin*(3/2) exp jBi.

Other important properties of (D.8) are the recursion relations:

G(Z+ I’Jak) — G(Z — 17.7’ k) _ G(Za]+ 17k) — G(Z7J - 17k)

1Azx? 14y?

(D.11)
G, 5,k +1)—G(3,5,k = 1)
kAz?
These are verified by using integration by parts to reduce each of the three differences

to a common value. For example, the first difference in (D.11) may be integrated by
parts in a to give

871’3 ./-T [w . lnh a ﬁ,) :a+]ﬁ+k"/)1dadﬂd7

since exp(i + 1)ai — exp(i — 1)ai = 2isin(a)expiai = —Az?ih, exp iai from (D.9).
These relations are first order finite difference analogs of the differential relations

JORHORHOR

If the definition (D.8) is interpreted as an iterated integral, one of the three in-
tegrals may be done analytically. For example, suppose that k£ > 0 and do the ~
integral by writing it as a contour integral along the infinite rectangle in the upper
half complex plane from —x + coi to —7 to +7 to +7 + ooi and back. Except for
a = B =0, there will be exactly one pole inside the contour. This is at the point i
which satisfies h(a, 8, 40i) = 0. Its residue is given by

1 _ AZY
hy(a, B,701) 2sinh(+o)
where (D.9) shows that 4 = v(a, 8) is defined by

12 0 Az, Az,
sinh®(yo(e, B)/2) = <57 Sin (af2) + A—yzsm (8/2). (D.12)
Therefore the triple integra.l in (D.8) may be reduced to the double integral
L exp{(ia + jB)i — kv(a, B)}
k) = / / dad
G(3,,k) 87r2 - sinh(7yo(a, B)) o df
(D.13)
_AzAyAz gr/az r/av exp{((ux + v¥)i — w()r}
= dyd
T 8m? /w/Az /_r/ay sinh(v)/Az Yy

198

where (u,v,w) = (¢/r, y/7, 2/7), ¥ = (e, B), and (x,¥,() = (o/ Az, B/ Ay, v/Az)
are normalized coordinates. Numerical integration of (D.13) is possible, but expensive
for large 1, j, or k.

That the free space condition (D.7) is satisfied by definition (D.8) follows from
the development of the asymptotic expansion of (D.13) later in section D.2.2. It is
already obvious from (D.8) that G is infinitely differentiable as a function of z,y, 2
so that the function f in (D.7) has the required smoothness.

Now let us present the uniqueness proof for condition (D.7). The proof is based on
the discrete divergence theorem. Let g = (g1, g2, 93) be a function defined on a grid
box R = [b,, ez] x [by, ey] X [b:,€.]. Also let Dy = (Dyy, Dyo, Dy3) denote the forward
difference operators in z,y, z; e.g., (Dp1)g1(3,5,k) = (g1(2 + 1,5, k) — g1 (2, 7, k))/ Az .
Then just do all possible cancellations to get

S (Dy-g)(i, 5, k) AzAyAz =

i,J.k€ RO
Z (gl(ervjv k) - gl(bx + laja k)) AyAZ
ik€RS,
+ 2 (galisey, k) = gali, by + 1,k)) AzAz
TkERY,
+ Z (93(i7j’ez) - gS(i,ja bz + 1)) AIAy
1.JERY,

where R® = [b, + 1,e, — 1] x [b, + 1,e, — 1] x [b, + 1,e; — 1], etc. This statement
may be abbreviated by letting AS represent the boundary deltas, AR = ArAyAz,
and n = the outward unit boundary normal vector, to get

ZDf~gAR=Zg-nAS. (D.14)
RO OR°

Now let (es,ey,e.) = —(bz,b,,b,) = (n,n,n) and apply (D.14) to the backward
difference operators DyG = (Dy;, Dy, Ds3)G, defined by (DyG)(3, j, k) = (G(2, j, k) —
G(i —1,j,k))/Az, etc. By (D.6) and (D.14) the result is

AR= ZD?GAR ZD,,G nAS
3R°

Z Dbl TI,]1k)AyAZ

(DbzG)(Z n, k) AzAz

3
|
—

le'.‘ 'TI'MI

..
1}
,_)
Eend
1]
,.. (=]

+ ZZ DyG)(2,j,n) AzAy]| .

where 3 denote a summation with a factor of % on the summand for the xxxx xxxx of

199

integration. Next apply Taylor’s theorem with remainder to (D.7) to get, for example,

(DnG)(n, i k) = K (-;‘—2 + Vf)

where the right side is evaluated at some point between (n — 1,7,k) and (n,j, k).
When summed over the boundary the V f term drops out for n ~ oo, since r = O(n)
and r?V f ~ 0 by assumption. That is, the constant K is determined independently
of f by summing the O(1/r?) terms over the boundary.

Next we show that f in (D.7) is uniquely determined by another application of
the discrete divergence theorem. Suppose that f and f’ are two different functions
satisfying (D.7) and let g = f — f'. If D;g = 0 everywhere, then ¢ must be constant,
and by the r*Vf ~ 0 condition this constant must be zero. Therefore we may
assume, for example, that (Dy,¢)(:*, 7%, k") # 0 and define A(7,j,k) = 0 if : < 7* and
h(i,j,k) = Az if i > > + 1. Now apply (D.14) to (Dwg)h to get

Z Df Dbg h]AR Z h Dbg ‘nAs~0
IR0
since r?Dyg ~ 0. On the other hand, simple algebra gives the following product rule
for discrete differentiation
Y D;-[(Dsg)h)AR = S (D?¢)h AR+ Z(D,g) - (Dsh) AR
RO RO
= 0 4 (Dpg)i i k) AR £0.

This contradiction proves that ¢ = 0, hence the uniqueness of f.

There is a condition equivalent to the traditional free space condition (D.7) that
is more natural from a mathematical point of view. Simply assume that the Fourier
series (D.10) converges in the L' norm. Then we demonstrate that the full series con-
verges in L! to h~!, hence that (D.8) holds by Fourier series inversion. For notational
convenience, the argument is illustrated in the y dimension, though at least three
dimensions are required for correctness. First scale the Poisson equation by rlileis!
and sum over j, using (D.6),(D.10), G symmetry, and trig identities to get

1 = Z (D2])rlJleJﬁl

j==—00

= 2(G(1)-G(0)) + 2§(G(j —1) = 2G(j) + G(j + 1)) cos jB

=1

= 2|G(1) - g(r.B) + 3 G()r* cos(+ 1)B+ 3 G(j)r" cos(j — 1)8

7=0 1=2

= ((r + 71 cos B — 2) g(r,B8) + (r7! = r)(sin B)g(r, B) + (r — r~1)(cos B)G(0)

where g(r,8) = ¥, G(j)r'ﬂej'@i and §(r,B) = 2):?°=1G(j)r-" sin j3. By assumption
both g(r,y) and §(r,y) converge in L' to limits g(3) and g(B) as r — 17, so ¢
satisfles 1 = 2(cos(8) — 1)g(B) = —45sin?®(8/2)g(3) almost everywhere.

It can also be demonstrated directly from corresponding Fourier integral results
that all terms of the asymptotic expansion (D.2) have Fourier series, in the sense of
(D.10), that are L' summable.

200

D.2.2 The Asymptotic Expansion

There are two ways of deriving the asymptotic expansion. One way is to apply
the appropriate integration techniques directly to the double integral (D.13) above.
Another way is to assume the form of the expansion, plug this into the Poisson
equation (D.6) and the recursion relations (D.11), and use Taylor series.

The first approach demonstrates the existence of an asymptotic expansion of the
Fourier series definition (D.8). In particular, it establishes the free space condition
(D.7) and the value of the scale factor. Then by the uniqueness argument in sec-
tion D.2.1 above, the second approach is justified. The latter method is algebraically
easier.

First Approach

In the first approach, the x, % coordinates of the double integral (D.13) are trans-
formed to polar coordinates #,p. Asymptotic evaluation of (D.13) reduces to the

computation of
2 e~ (wC(p.8)~a(8)pi)r pdpdf D15
(2,9, / / sinh(~y)/Az P (D.15)

where r ~ oo, p* > 0 with p* £ 0, and q(0) = u cos(#) + v sin(§). That is,
r (G(i,5,k) + (AzAyAz/87?)I(z,y, z)) ~ O for all finite n > 0. Note that w > 0
was assumed in (D.13).

To evaluate the inner integral, change the radial coordinate p to the complex
coordinate

v = v(p,0) =w(—qpi
(D.16)

dv = (w(, — gi)dp.
To get (,, differentiate (D.12) and use the notation s, = sinh(y)/Az, ¢, = cosh(v),

s; = sin(a)/Az, ¢, = cos(a), s, = sin(B)/Ay, ¢, = cos(B), cs = cos(9),
sg = sin(), t(p,0) = szcp + 3,36, and D(p,0) = wt — s.qi. Then

ton=% =L
CP=;1 p(”)_Da C(V)_D (D17)
Thus from (D.15)
1=/02” /0 e folv)dvdd for folv) = . (D.18)

Now the asymptotic expansion is obtained by applying integration by parts re-
peatedly to the inner integral of (D.18):

I= fj (/:"fg"'”(m) do) ;1- + R (D.19)

n=1

201

with remainder

2T rv® 1
_ ~ur o(N)
Ry = (/0 /(; e " fo (V) dudﬁ) N

and f("(0%) = lim,—o+ f™(v(p)). It is not immediately clear that any terms of the
expansion (D.19) are finite since it has not yet been shown that the limits fo(")(O*‘)
exist and are integrable in §. In fact we will demonstrate that f(")() is uniformly
bounded on [0,27] x [0,+"] by showing how to compute the limits. Thus R, =
O(1/rV+).
Let us begin by calculating the first asymptotic term to get the constant K in
(D.7). Note that for p ~ 0*

(F)™ = we = Zgi ~ (@ + 1) - Sqi ~ wgi (D.20)
PP p
from (D.18), (D.17), and (D.12). Next note that ¢(8) = (u® + v*)"2cos(f — 6,) =
(1 — w?)' /2 cos(8 — 8,) for 6, = tan~'(v/u). Therefore

7 h(0%)d0 = /02”%d0
[w4+ cos(0)(1 — w2
o w4 (1- wz)cosz(a) df

o

4w] cos'~’(9) + w2 sin®(9)

/ sec?
= dw 1+ w"’ tan (0)

o dr
- D.21
4/0 = (D.21)

so from (D.13)

4
Next consider the first derivative term. Use the notation W = w — qi, so that
D/p~W for p~ 0% by (D.20). Then

pl pDI pl - fDl
1= P _ = D.22
f'=5- 7 5 (D.22)
and by (D.17)
pl ~ W—l
t = (c,cg +cys§) pi~p ~ Wt

¢~ (c5+53)/(D/p) ~ W™
so
D'=wt —c,('qi ~ (w—gqi)/W =1
(D.23)
o = fD' ~ Wl—Wlao

202

Therefore a version of L'Hospital’s rule may be applied to evaluate (D.22):

pll - fD/l — fIDl
DI

TS or '~ 3 (" = /D). (D.24)
This version may be stated in the following way. If h(z)g(z) = f(z) for ¢ and f
continuous on [0, z*] with g(0) = f(0) =0, and f and g continuously differentiable on
(0,z%) with f'(z) = fi(z) + fo(z)h(z) and such that the limits ¢’(0%), f1(0%), f,(0%)
exist and ¢’(0%) — f2(0%) # 0, then ~(0%) exists and equals f,(0%)/(g’(0%) — £2(0%)).
The usual proof by the mean value theorem applies.

Now by (D.23)

D" = wt" - s7qi
£ = (oA M) (4 4 (e) o~
st o= =5, Az 4" ~ (. (D.25)

Using (D.17), (D.23), and (D.25) and applying L'Hospital’s rule again leads to simul-
taneous equations for p” and (":

pll ~ (Slzl _ plDlI - pIIDI) /DI
~ CH _ W—l (wpll _ C”qi) — p”

CH ~ (t” - CIDII — C”D,) /DI
~ p// _ W—l (wpn . Cuql-) _ C"
Since these equations are homogeneous, they may be solved to get p” ~ (" ~ 0.
Hence f;(0*) = 0 by (D.24) and (D.25). To solve for f{™(0+) when n > 2, simply
generalize the method used for the first derivative term. Assume by induction that

the limits exist at v = 0 for f1), pl*1) and ¢(+') when j = 0,...,n — 1. Then the
tU+1) and DU+Y) limits also exist, as in (D.25). To derive the formula for p(™), note

that .
o™ = (fD)M = E (n)f(j)D(ﬂ—J')

1=0 J

so the f(™ D limit exists and

f™p = N _F —pfr-0p’
for (D.27)

n—-2
F, = Y (n) O pln=i),

1=0 J

Also assume by induction that the f(™) D limit is zero, already verified by (D.22) and
(D.23) for n = 1. Then by L’Hospital’s rule

™D~ p(n+1) ~F - nf("‘l)D" — nf(")D'

203

50
P — Fopy — (n+ 1) fD" ~ 0,

verifying the f(") D induction hypothesis and the formula
8

1
n+1

f@ ~ (b = Fora) (D.28)
provided that the existence of the p("*!) and ¢(**1 limits has been demonstrated.

To calculate p(**) and (™Y just mimic the argument used in (D.27) - (D.28),
except that you end up with a pair of simultaneous equations as in (D.26). First
expand s{™ = (p'D)(" and #™ = (¢'D)™ and assume by induction that the p*+1) D
and ("1 D limits are zero. Then generalize the version of L’Hospital’s rule cited
above to the case of two simultaneous limits to get

s(zn+l) - pID(n+l) _ Pn+l _ (n + l)p(n+l) ~ 0

(D.29)
trt) — DD — Q yy = (n+ 1)~ 0
where
n—1 n—1
P =) (n j—l)p(j+l)D(ﬂ+1—j) Qe =3 (n -;—1)C(j+l)D(n+l—j).
i=1 ji=1

Evaluating D("+) ~ wttn41) — gntl g = gt G 0 4 (4D and ¢ & Toyy +
p("*1) separates out all the remaining p(**?) and ¢(**!) terms. Now solve (D.29) by
collecting these terms:

w n qi n w qi
—<n+1+W)p(+1)+(1+W>C(o~ Pn+l+W n+1—(1+W)Sn+1

w i w]
(1 - W) p(n+l) - (n +1— qW) C(n+1) ~ Q1 — (1 - W.) Tns1 — .;%Snﬂ

or

P~ (4 D)w (Sasr — Tag1) — wQns1 — ((n+)W — gi) Pays] /DD
(D.30)
¢+~ [(n+1)qi (Sagr = Tagr) + iPas1 — (n+)W + w) Quyt] /DD

for DD = (n+1)(n+ 2)W.

But W(#) is uniformly bounded away from zero by the assumption that w > 0.
Therefore the use of the simultaneous limit version of L’Hospital’s rule is valid for all
6 and all the induction hypotheses are verified. Also the denominator of f}"’(0+) is
a power of W, so f}"’(u) must be uniformly bounded on [0,2x] x [0, »*]. This fully
establishes the both the finiteness and computability of the terms of the expansion
(D.19) and the O(1/rV*!) property of its remainder. A simple consequence is the
free space condition (D.7). However the method used in the next section provides a
simpler way to derive convenient formulas for the higher order terms.

204

Second Approach

In the second approach it is assumed that the expansion has the form

- AzAyAz (m | M2 | M3)
By~ —— =+ =+ =+ .
G(t,5,k) . (r +3+5t (D.31)
where 7. = 7a(u,Az,Ay,Az), u = (u,v,w) = (z/r,y/r,z/7), and (z,y,2) =
(iAz,jAy, kAz). G is assumed to be a smooth function of z,y,z and each 7. a
smooth function of u,v,w.

The expansion (D.31) is substituted into the Poisson equation (D.6) and recursion
relations (D.11). But first all terms, except the G(i,7,k) terms, are expanded in
Taylor series about (z,y,z). For example,

: : . & . ATt
G(l+1,],k) = G(z71ak)+ZDIG(l’]ak)-_n|_ (D32)

n=1

where (D,,D,,D,) = V is the gradient operator. For each equation all terms that
have the same power of 1/r are collected and set to zero. For this purpose, it is easily
demonstrated by induction that D2(ne/r’) = o(1/r™*4).

Certain auxiliary equations are also necessary. This includes the spherical equation

WP+l +uwi=1 (D.33)

and orthogonality relations of the form F, = VF -u = 0 for F(z,y,2) = F(ur,vr,wr)
a function whose value is independent of the scale factor r for r # 0. In mathematical
terminology, F is a function on the real projective plane. For example,

(nn)r =V u= 0. (D34)

The 1/r™*! equations, m > 1, that come from the recursion relations are

vD, (h) + vgm—1 = uD, (I’ﬂ) + uq—m—3
rm rm

rm Tm
(D.33)
wD, (_’72) + wi = uD, (Qﬂ> + pImd
where qm = (lea dm2; QmS) is defined by
km Sm¢ m-—1
qm=71" E m for k., = integerpartof [-——2-—-] , (D.36)
s = D20+ 1) (12=2) | D'(j) = (Az'D, Ay’ D; Az D) (D.37)
mi rm_u ’ J PIRAY Yy z) " .

Equations (D.34) - (D.35) evaluate to a 3 by 3 system of equations in Vm, which is
solved to get
Vim = uu'qm — gm. (D.38)

205

Thus Vi, = 0, so #; is constant. According to section D.2.2 this constant value is 1.
The 1/r™+? equation that comes from the Poisson equation is

1 2 (Mm Em v'sml _
5V (Tm) +[§m = 0. (D.39)

Using (D.33) and (D.34) to simplify (D.39) yields

= al v? +2r"‘:§ MALLY (D.40)
TS Dm | Y ~@r+or)" '

Now (D.38), (D.36), and (D.39) yield

k
U V-(uu‘s [)—V'S ¢
Vim = (Vi - m m m
" r (Vim - u) + 073 e+ 1)
km . tv .
v (2¢ +1)!
k
me1x =TV Sme+ (m—1)u-s,,
= —r , D.41
g (2¢ +1)! ()
using the orthogonality relation V(r™*ls,.,)-u = 0 to get Vs, ,u = —(m+)8 /r .

Thus substituting (D.41) into (D.40) gives the following recursion formula for the
asymptotic coefficients when m > 2.

o= . rml fr
"m =j; (26 +1)tm (” (£+1)(m~ 1)V) " Sme (D.42)

It is immediate from (D.42) that 5, = 0 . Also Sm¢ involves only lower even
asymptotic coefficients 5, if m is even, so (D.42) gives a proof by induction that
Mm = 0 for all even m. In addition, it is shown below that T2k+1 may always be
expressed as a polynomial in factors of the form U%(25), as in (D.43) and (D.44):

= %Uz(o) - 4§U2(2) + §U2(4) (D.43)
3 65 105 189
o= U0 - UM + - UYe) - U6

where U'(j) = Az'w’ + Ay'v’ + Az'w’. These formulas for n3 and 75 are good for
computation as well as compactness of expression.

First, it is clear by induction from (D.42) that mye4, is always a homogeneous
polynomial in Az, Ay, Az of degree 2k, that the coefficients of this polynomial are

206

themselves polynomials in u, v, w, and that all powers of u, v, w, Az, Ay, Az are even.
The way to get the special polynomial form used in (D.43) and (D.44) is as follows.
The basic idea is to first compute the z partial derivatives of u’/r* in the form
: ; k — k+2n
Dx (—) = DJ_. <E) = :L;oaj',‘(n)m (D45)

rt

with afy.-(n) = 0if j—k+2n < 0. The same coefficients are valid for the corresponding
expansions of the y partials of v7/r* and the z partials of w’ /r'. Next extend (D.45)

to
[a

D (211_)) = Y |t
() — o) 2Ein 4 o) tln]|

Axmx]—k+2n . (Aymyj + Azmzj) I-k+2n
piti+en + ag,45(n) riti+2n

k
rt 12)

k
nX::O itk ritk

This formula may be extended further to compute the coefficient 75541 by the following
method.

7,,2k+3v . D2l(2£+ 1) |:U2k_2l(j)j| —

r2k+1—2£
3 [(a, (n) = 655, (1)) UG + ma) + 0k, (U (ma)U»(5)] (D.46)
n=0

where m¢ =20+ 2, mpa=2n—20—2, and my =2k +1 — 2¢ + j. Exactly the same
formula is used to compute r¥*+2u - D¥(2¢ + 1) [U”"”(j)/r““'"], except that my

is changed to 2¢ + 1 and m, to 2n — 2¢. Thus the 75 formula (D.44) is obtained from
the 73 formula (D.43) by using (D.46) to evaluate the recursion formula (D.42).

To get 77 one must in addition evaluate the same operators on terms of the form
Ui (jy)U(j,)/r¥+1-2 where 1y + i; = 2k — 2£. The result is

My

3 (0% sy (1) = G0 (1) = QT (R) + 65, (1) U (G + T2 +)
n=0
+ (aPt,(n) = a4, (7)) U (i1 + ma)U™(j2)
+ (a4 (n) = aZt, (1) U (2 + ma)U" (1)
+ale (U (m)UB (G)U(5) (D.47)

with my, m,, and m, exactly as before.
Formula (2.41) generalizes to U*(j) products of arbitrary length by using the input-
output formula of combinatorial set theory.

D.2.3 The Three Plane Representation

As described in section D.1.1, the Green’s function G is computed from its asymptotic
values by solving a Neumann boundary value problem with a delta source function.

207

The theory of FFT solutions to Neumann problems is given in section D.3.1. Here
that theory is applied to get a simple formula, (D.51) below, for the DFT, or discrete
Fourier transform, G, defined by (D.90), in terms of the boundary data.

The theory begins by transforming the boundary data into equivalent boundary
sources, as in section D.3.1. Thus the sources p are all zero except for p(0, 0,0) =1,
p(mz, j, k) = 9:(4, k), p(1, My, k) = gy(ivk)v and p(z, j,m,) = 9:(¢,7), where

G(mz+1,5,k) = G(mz — 1, 5,k)
Az?

gl'(j$ k) = -

and g, and g, are defined similarly.

Next, these sources are cosine transformed in z, y, and z. To get the DFT G,
this triple cosine transform is scaled by a factor of 8. To illustrate, the scaled triple
transform of g is (—1)*G.(8,v) where

G(8,7) =4 * 3 cos (éjl) cos (Z:w) 9=(4, k) (D.49)

j=0k=0 my z

(D.48)

and the ’ denotes a scale factor of 1/2 on the initial and final summands.
Finally, the triple cosine transform is divided by the sum of the three eigenvectors,
as in section D.3.1. Here

4 ar
e{a) = A sin? <2mx) (D.50)

and e, and e, are defined similarly. Thus

1+ SOGI(ﬂ) 7) + SﬁGy(aa 7) + 37Gz(a, B)
ez(a) + ey(B) + e.(7)

for (@, 8,7) # (0,0,0), s, =(-1)7, etc.

G(0,0,0) requires a special computation since the denominator of (D.51) is zero.
But first note that the numerator must also be zero, which is the consistency condition:

G=(0,0) + G,(0,0) + G,(0,0) = —1. (D.52)

Gla, B,7) =

(D.51)

Formula (D.52) is an excellent check of numerical accuracy. The code automatically
scales the left side of (D.52) by a factor, labeled RSC, which forces (D.52) to be
satisfied to machine accuracy. Then the deviation of RSC from 1 is used as a measure
of the number of significant digits in the Green’s function.

To compute G(0,0,0), first compute G(mz, my, m,) to maximum accuracy by the
asymptotic expansion (D.1). Then represent G(m;, m,, m,) by the inverse DFT for-
mula

’ ’

m. m om
1 Mz ¥y 3
G(mgz,my,m,) = Z 2 z cos ar cos Bm cos g G(a,ﬂ, ¥)
Mmemym, a=008=0+4=0
my My m;

= —— 3% (-1 (o, B,) (D.53)

mrmvmz a=0(3=0+vy=0

208

Solving (D.53) for G(0,0,0) gives

G(OaO’O) =8 (mxmymz G(mzy My, mz) - Z (_1)a+ﬁ+’y G(aa ﬁa 7)) (D54)

a,B,y

where the sum extends over all (a, 3,7), except (0,0,0), as in (D.53).

D.2.4 The Downstream Green’s Function

The downstream Green’s function has been defined by the summation (D.4), but the
actual value of this summation is always infinite, as is shown below. However it is
also shown below that definition (D.4) is mathematically valid in the following sense.
Interpret G4 as a linear operator on the set Dg of all downstream source functions
that sum to zero:

Ga(t,-,)*x17 = i G(l—1,-,)*T (D.55)
I=mg
for
reDg = {f:fjif(i,j):g}. (D.56)
j=0k=0

If G is already known on the computational box, then only the summations outside
the box need be investigated in order to compute G4. Outside the box the asymptotic
expansion (D.2) may be used to compute G. The Euler-Maclaurin formula permits
the infinite sum of each asymptotic term to be computed by the corresponding infinite
integral plus correction terms derived from the derivatives of the summand function
at the lower boundary (downstream edge of the box). That is, write

Gd(iajv k) = Gd(—]-’]’k)_*- z: G(f,], k)’ (D57)

l=m.—1

and compute

Gd(—lvjak) = ZG(mz‘ + ¢, 7, k)

=1
1 fo 1 Az
- — ; - k) — == k
. / " G(a, 5, k)dz = 50(z0,j,k) = Ty D:Glz0,5: k)
(D.58)
Az, & By \ gt i ,
== _ N 22 A 21 2 k
+ S=D2G(zo,i,k) Z:s T CRR

where o = m.Az and By, is a Bernoulli number.
Applying (D.58) to the expansion (D.2) shows that the infinite part comes from

the integral
N dz
/ —_— In N+\/N2+y7+22]—1n(:co+r)

° I(Iay’z)l
In(2N) = In(zo+ 7) + 0(1/N?) (D.59)

209

for N ~ oo and r = |(zo,y,2)|. The infinite term In(zo + N) is constant for all
J,k, and a constant vanishes upon convolution with a function in Dg. Therefore the
operator formula (D.55) is well defined.

The simplest way to make G4 well defined as a function in the context of the
Euler-Maclaurin expansion is to delete the infinite term from the integration (D.59).
However, this is not quite enough because the goal is to compute Gy in the same way
as G is computed: First compute G4 values at the boundary of the computational
box, then solve a Neumann boundary value problem. For this purpose Gd(O 0,0)
requires a separate computation, just as G'(O 0,0) did in section D.2.3. But in this
case G4 is actually only defined up to an arbitrary constant, according to (D.55) and
(D.56). That is, the value of G4(0,0,0) may be chosen arbltranly The simplest choice
is G4(0,0,0) = 0, and this definition also has the advantage that it tends to minimize
the effects of any numerical deviation from the downstream condition (D.56).

Another aspect of the Neumann boundary value approach to Gy is that four bound-
ary planes of data, instead of three, are required due to the lack of symmetry along
the z axis. The equivalent sources on the i = 0 and ¢ = m, planes are

Gd(_lujak) Gd(+1]’k)

gdo(jv k) = - Az? 5(]7k)
G(m; — 1,7, k) + G(mg, 7, k)
= k D.60
A +8(3,k) (D.60)
) Galmz+1,5,k) — Gy(mz — 1,3,k
gdx(]a k) = - d(])A.”L‘z d(])
_ _G(0,5,k)+G(1,j,k)
= = Ag2 : (D.61)
From (D.57) the boundary plane at j = m, is
. Ga(i,my + 1,k) — Gy(i,m, — 1,k
9ay(t, k) = - alt, m,)Ay2 a(7, my)
—_ _Gd(_17my+1’k)—Gd('—l7my_lak)
= Y%
+ 2 0Lk (D.62)
I=msz—1

and similarly for g4.(¢, 7). A scaled triple cosine transform is applied to each of planes
(D.60) - (D.62), just as in section D.2.3, to get the four planes Gy, Gys, Gy, G-
The result is

GdO(ﬂy) + sade(,Ba 7) + sﬁGdy(av 7) + S‘YGdz(a? /B)
ez(a) + e,(8) + e(7)

for (o, 8,%) # (0,0,0) , 64(0,0,0) =0, 8, =(-1)*, etc.
If G has been computed to an error of O(1/r") by the expansion (D.2), then the
infinite summation (D.4) gives a G4 error of O(1/r%) in the following way. The 1/r

Ga(a, B,v) = (D.63)

210

term in the expansion of G contributes

1 Azu Az3(9u — 15u°
P(1/r) = —ln(zo 4+ 1) = 5= + =55 (9u - 15u7) (D.64)

2r 12r2 720r4

where u = zo/r . According to (D.43) the n3/r® contribution requires three Euler-
Maclaurin calculations:

) 1) x?i u2i Azx) .
2 3y _ . c2i-1 .y 2141 =
P(u/r%) = — / St~ 53~ Ty (2iu (3+20)u¥*t) (D.63)
for i = 0,1,2. By (D.44) the 55/ contribution requires five calculations:
. 1 oo p2i u?
21 4,5y _
POR/) = 57 [, s = 5 (D-66)

for:=0,1,2,3,4
Using integration by parts, each of the integrals in (D.65) may be reduced to

/°° e _ 1 1 (D.67)

0 P l+u 2’
and each of the integrals in (D.66) may be reduced to

© dr u+2 1
Judal i D.6
/;o r5 3(u41)2rd (D.68)

Thus for (zo,y,2) = (m.Az, jAY, kAZ), Vi(j) = Ay'v’ + Az'w!, and U'(0) =
Az’ + Ay + Az, compute

_AzlylAz (P(1/r)+ (500 - V) + SVi) Pasr)

i
- %Aﬂp(uz/ﬁ) + gm?P(u‘*/ﬁ) + (—S—U“(O) _ 8By 4 %?

16 16

189 3 15 35

_ Xy (_ 20y _ 2912 99 1,2) 2

—V4(6) + (V70 - 55 V@) + 5V UHO)

1

(2y2(2) - L2va) vie) + TV OVI®)) PO/

85,2 15,0 }an_ﬁz)zzs

+ (16Aa: 32U (0) + T V4(2) 5 V3(4)) Az®P(u®/r7)
35, . 525 , 315 1155

+ (U0+ 3382~ 3 64
693 . ., 6, s 1155 . 5]

_ 63 1155 , D.69

32AxP(u/r)+ 12SAavP(u/r) (D.69)

Ga(—1,5,k) =

Vi(4)

V2(2) + v2(4)) Az P(ut/r%)

D.3 THEORY OF THE CONVOLUTION AL-
GORITHM

D.3.1 FFT Dirichlet and Neumann Poisson Solvers

FFT Poisson solver methods are described for a rectangular domain (box) in a Carte-
sian grid of arbitrary dimension. At each face the boundary conditions may be chosen

211

independently to be Dirichlet or Neumann. Neumann boundary conditions are of the
central difference kind, centered on a face.

Additional boundary options include periodic boundary conditions and also Dirich-
let or Neumann boundary conditions of the simple forward or backward difference
kind, centered on a half grid line just inside a face.

The methods employ FFT sine and cosine transforms and shifted sine and cosine
transforms. Optionally, tridiagonal solvers, which are faster, may replace the “last”
transform.

These transforms are derived as eigenvectors of the matrices that describe the
problems. For example, a 1D Poisson problem D%¢ = p may be written as a matrix
equation Ax = b and solved by computing x = E(A~}(E~'b)), where E is the eigen-
vector matrix and A is the diagonal eigenvalue matrix. In general such a procedure
is extremely inefficient, but the availability of analytical formulas for A and E and of
FFT techniques for the matrix-vector multiplies makes the method very attractive.
Swarztrauber(94] also presents much of the following material.

Derivation of the Matrix Equations

In a 1D Dirichlet problem D?¢ = p the endpoint values $(0) and #(m) are specified.
Thus the problem may be rewritten as the matrix equation

Ax=Db (D.70)
where A and b are given by
-2z, + 7, = Az?p(1) — 4(0)
Tjo1—2T;+ 75 = AL’p(j) (D.71)

Tm-2 — 2Tm_y = Az’p(m —1) — é(m).
Next let D?¢ = p represent a central difference Neumann problem with endpoint

specifications dy = (¢(—1) — ¢(1))/2Az and d. = (¢(m + 1) — ¢(m — 1))/2Az. Then

the matrix equation is given by

—2z0 + 21, = Az?p(0) — 2Axd,
Ti-1—2z;+ Ti = Ar’p(j) (D.72)

2Tpn_1 —2z,, = Az?p(m) —2Azd,.
A Dirichlet condition on the left with a Neumann condition on the right gives

-2z + 1 = Az’p(1) — 4(0)
T =22, kT = Ad?pl) (D.73)
2Zm_y — 2z, = Az?p(m) —2Axzd,.

212

" A Dirichlet condition on the right with a Neumann on the left gives
—2z4 + 214 = Az?p(0) — 2Azd,
zjo1 =22+ 250 = Artp()) (D.74)
Tmeg — 2Tm-1 = Az?p(m — 1) — ¢(m).
For the periodic boundary condition ¢(m + j) = ¢(;), the result is
—2r0+ 1 +zm1 = Az%p(0)
Tjo1 — 225+ Tin = Az?p(f) (D.75)
To + Tz — 2Ty = Az?p(m —1).

For Dirichlet half grid line boundary conditions, a, = (¢(0) + ¢(1))/2 and a, =
(¢(m — 1)+ ¢(m))/2 are specified. This gives

-3z, + 1, = Az?p(1) — 2a,
Tio1—2z;+ x4 = Az%p()) (D.76)

Tmez — 3Zmoy = Az’p(m —1) — 2a,.

For Neumann half grid line boundary conditions, dy = (¢(0) — ¢(1))/Az and
d. = (¢(m) — ¢(m — 1))/ Az are specified. This gives

-z + 23 = Az?p(0) — Azd,
Tjis1 =22+ 201 = Az%p(j) (D.77)

Tm-2 — Tmo1 = Az’p(m —1) — Axd,.

Of course, mixed half grid line Dirichlet-Neumann problems are also possible by
starting out as in (D.76) and ending as in (D.77), or vice versa.

If the Poisson problem is a 2D problem, let A; be the 1D matrix for the z direction
and A, be the 1D matrix for the y direction. Let I, and I, be the corresponding
identity matrices, and let ® denote the tensor product. Then the matrix equation

becomes 4 ! ! A
1‘® v z® v ~
=b. D.78
< A7 + Ay)x b (D.78)

(The tensor product of two matrices Anx,» and B,y, is a linear operator on matrices
of order m x p that gives n x 0 matrices. It may be defined by

t
(A® B)x = Z Agiyie for yie = (Z Btjfcf‘j)
1 J

213

or, equivalently,

t
(A ® B)X = (Z ngz,ij) for T = z Ak,'.’l,','j.
J i

That is, first operate on the rows by B, then on the columns of the result by A, or
reverse the order to operate first on the columns by A, then on the rows by B.) If, for
example, A; is Neumann on the left and Dirichlet on the right with A, full Dirichlet,
the b in (D.78) is given by the computer operations

bij = p(i,j) for 0 <i<m,, 0<j<m,
boj = boj — 2(22]) for 0<j<m,

b1 = bm,_1,;— ﬂrAn_;;__yl for 0 < j<m, (D.79)
by = by — d)(Al;g) for 0<i<m,

bimy-1 = bim,-1— MZ—;:")- for 0 <i<m,.

Both (D.78) and (D.79) generalize directly to higher dimensions, with the 3D equation
being

AL, @1, I.®A,QL L®LQA,
= b. D.
(Az? t Ay? + Az? x=b (D.80)
Eigenvectors and Eigenvalues
The eigenvector-eigenvalue solution to equation (D.70) is simply
x=A"'b=(EAE ") 'b= E(A"Y(E"'b)) (D.81)

where E' = (e;;) is the eigenvector matrix of A and A = (\;) is the diagonal eigenvalue
matrix. This generalizes directly to the multi-dimensional tensor product formulation
as follows. Applying the tensor product properties

(A®@B)[(C+C)®(D+D')] = (AC + AC')® (BD + BD')
[(A+A)®(B+B))(C®D) = (AC+ AC)® (BD + B'D)

to (D.78), for example, gives

A:®L, LOAN /o1 o o
x=(E,®E,) (= y Ay u) (E;' 9 E)b. (D.82)
The corresponding 3D solution is
x=(E:®@E,QFE,)y (D.83)

214

where

(A9 LeL LeA®L LOLOANT .,
y_(Azr? + Ay? + Az? b

and

b = (E;'® E;' ® E]')b.
Another way to write (D.83) is

Ar(e) A(B) | A()
(Az:"’ * Ay? * Az?

) x*¥(a, B,7) = b™(a, B, 7). (D.84)

The three plane representation formula (D.37) for the Green’s function is derived
from (D.84).

Now the task is to find the eigenvalues and eigenvectors for the matrices (D.71) -
(D.77). These are given in table D.1.

There are certain useful relations between some of the eigenvector matrices of
table D.1. Let S be the operator that reverses the order of the rows when multiplied
on the left, and let T negate the even numbered columns when multiplied on the
right. Then

EDhDh(m) = EtDN(m_’l)

Enyny(m) = Elp(m—1)
Ep(m) = Ewn(m/2)+ Epp(m/2)i
Epy = SEnxpT (D.85)

Ep,p, = TEnnN,S
ED}.N}. = SEN,‘D" T.

Table D.1 may be verified by substituting into the appropriate matrix equation,
(D.71) - (D.77), and using trigonometric identities. For example, in the half grid line
Neumann case (D.77) let n =m — 1 and 8 = kr/2n. Then

(Aek); = —cosf + cos3b
—cos # + cos 8 cos 20 — sinfsin 20
cos[—1 + (1 — 2sin®§) — 2sin* 4]
~45in® 6 cos §
(Aey), = cos(2j —3)0 —2cos(2j — 1) + cos(25 +1)8
= (cos26 — 2+ cos26)cos(25 —1)8
—4sin?(8) cos(25 — 1)6
(Aeg), = cos(2n —3)0 —cos(2n —1)8
= (=1)*(cos 38 — cos 6)
—4sin? 0 cos(2n — 1)0

There is one case in which the solution formula (D.83) fails. Namely, a zero sum-of-
eigenvalues cannot be inverted. According to table D.1 this occurs fora=8=v=0

215

Problem* Eigenvectors E

DD sin (J%)
NN cos (1£2)
DN sin (%ﬁ)
ND cos (J_(’E_;_}'E)
P ew{EE)
DDy sin ((J_;iz_)lk_«)
NNy cos (g;é_){z)
DyN,, sm(ﬁj%gjz)
Ny Dy cos (U_-in)T(—"_l‘_irﬂ)

D = standard Dirichlet

Indices
1<j<m—1
1<k<m-1

Eigenvalues A

—4sin® (2’“—:;) {

m
m

IAIA

1<k<m
(k1) <j)sm-—1
2 —_— |
—4sin (—2%—-)
1<k<m
0<7j<m-1
—4sm2<%)

N = central difference Neumann

D), = half grid line Dirichlet N, = half grid line Neumann

P = periodic

Table D.1: Eigenvectors and Eigenvalues

216

when every face has a central difference Neumann boundary condition. In this case the
solution x is determined only up to an additive constant, and an additional equation
is needed to determine this constant. In addition (D.84) shows that the conststency
condition

b=¥*(0,0,0) = 0 (D.86)

must hold. Again, the three plane Green’s function formula (D.37) is an instance.

The Transforms

To implement FFT algorithms for the eigenvector matrices of table D.1, several mod-
ifications are useful. First note that if F' is any diagonal matrix, then A = FAE™' =
(EF)A(EF)™!. That is, the eigenvectors may be scaled anyway you please. For ex-
ample, if Fix = 1 except F|; = Frum = %, then the cosine transform E of table D.1
may be replaced by the standard cosine transform EF.

But note that in (D.81) - (D.83) it is the inverse of an eigenvector matrix that is
first applied to the data vector b. Therefore the scale factors F' are chosen so that
(EF)™! is a standard forward transform. These transforms and their inverses are
listed in table D.2.

The Tpny and Typ transforms, or their inverses Tp, p, and Tw, n,, are referred to
as the shifted sine and shifted cosine transforms, respectively. The Tp, n, and Tn,p,
transforms are the dual shifted sine and dual shifted cosine transforms.

A straightforward way to derive the eigenvector matrix inverses of table D.2 is to
compute S = (s) for s = |ex|? and e, = the kth eigenvector. Then E~! = S~1E".
Another way is to reduce the problem to standard DFT inversion by using symmetric
or antisymmetric data. For example, to invert Ty, n, set bynp1—; = b; for j = 1..n
since cos(k(2n + 1 — j — })7i/n) = cos(k(j — 3)wi/n). Also make the data periodic
of period 2n so that s = by,. Then

b = (Tumb) (k) = cos (kG -) T)8,

n
122! . lom
- g ee{i- P}

1 . 2n-1 '7”' -
§exp{—km/2n} > exp{k]?} b;. (D.87)

=0

Now invert the DFT and use b, = Bgn_k and b, = 0 to get

1 2n-1 ' i) .
b, = 5= exp{-—]k—}2exp{k7r1/f.)n}b;c
N k-0 n
13! 1, 7Y ;
_ 1 —'——k—}b
n 2o exp{ (J 2) nf "
2 “0 -l 1 T\ 3 2 , * .
= = [5 + kglcos ((] - E)k;) bk] == (TNDb) (7)-

Forward Transform*

(Tppb) (k) = T3 sin (42) b,

(Twuyb) (k) = £ cos (L

(Tou,b) (k) = £t sin (A=8UD7)

(Tn.p,b) (k) = 75

Key

Inverse Transform

T_ID = %TNhNh(m + 1)

Tp' = LTp
TB:DH = mL—lTDN(m - 1)
TRann = ez Inp(m = 1)

-1 —_ 2
TDhNh ~ m-1 TDhNh

-1 -2
TNh Dy — ma TNhDh

D = standard Dirichlet N = central difference Neumann
Dy = half grid line Dirichlet N, = half grid line Neumann

P = periodic

Table D.2: Transforms and Their Inverses

218

Tridiagonal Solvers

Instead of doing three transforms in (D.83), forwards then backwards, it is computa-
tionally more efficient to do two forward transformations, a tridiagonal solver, then
two inverse transformations. For example, if the eigenvector decomposition is used
only in the z and z directions, then the following equation is obtained instead.

x=(E,I,®E,)y (D.88)
where .
(AR L®L LLeARL LRLQA\ T
y = (Az? + Ay? + Az? b
and

b= = (E;'®1,® E;')b.

Formula (D.88) is equivalent to solving the following tridiagonal equation for every a
and ~.

[Ay n (Ag(;) ¥ *;f;)) 1,,] x**(a,,7) = b*(a, - 7) (D89)
The n-dimensional generalization of (D.88) and (D.89) is obtained by specifying an
order for the n transforms in the generalization of (D.83), then simply omitting the
last one.

A general purpose tridiagonal solver could be used, but the (almost) equal and
constant sub and super diagonals and the (almost) constant main diagonal permit
a more efficient implementation. The code uses a modification of the LINPACK
symmetric matrix algorithm, with vectorization in the z direction, unrolled loops in
y, and an outer loop in z. This way the FFT in z vectorizes over yz planes and the
FFT in z vectorizes over zy planes for the ordering in an zyz FORTRAN array.

The idea behind the algorithm is to do Gaussian elimination from the top and bot-
tom simultaneously until the process meets in the middle. Then do back substitutions
from the middle back to the top and bottom simultaneously. If the number of rows
is even, there is a middle 2 by 2 block, which is solved directly. For an odd number
of rows, both off diagonal values of the center row are eliminated simultaneously to
get the middle value.

To minimize the number of operations, especially the number of divisions, the
following technique is used for a problem with constant diagonal and off diagonal.
Define a = main diagonal value, ¢ = off diagonal value, a; = jth row diagonal value
after the j — 1st Gaussian step, b; = jth row right hand side , d; = ¢/a;, do = a/c,
and ¢; = 1/c. Only the values do, ¢, b;, and d; are actually computed and stored.
Then in the forward substitution

c?

ag=a and aj4y =a— —
aj;
so
.c 1

J —_
_ 2 —d.’
aa; —c do — d;

a

dj+1 =

219

biv1 = b1 —djby,
bn_j = bn-j"djbn+1—j~

In the back substitution

bj = (bj —cbjt1)/a; = dj(c1b; — bjyy)
bn—j = dj(clbn—j —_ bn—l—j)-

In the case of a mixed Dirichlet-Neumann problem the diagonal values a;, hence
d;, are different for the top and bottom eliminations. Also the first step of the forward
substitution and the last step of the backward substitution must be specially coded.

D.3.2 Transform Algorithms

Several common transform algorithms are used in the code and also several unusual
or specialized algorithms. All the algorithms consist of reductions to the standard
complex FFT. In most cases there is an intermediate reduction to real FFT’s. The
simplest and most efficient method of coding real FFT’s was to do a complex FFT on
a pair of real sequences, although a single-sequence real transform code would have
been simpler to use. Therefore most of the algorithms are actually applied to a pair
of sequences. All the algorithms are implemented for a matrix-type data structure so
that the transforms are performed in one direction with vectorization, or processing
in parallel, in the other direction.

First, let’s review the standard real, sine, and cosine algorithms. A basic reference
is [95]. Let by, ...,b,_; and cg, ..., ¢,—1 be a pair of real sequences and set a = b + ic.
Let the DFT (Discrete Fourier Transform) be defined by

a(k) = DFT(a)(k) = zexP{kj?} a;. (D.90)

Then the paired real algorithm is

b(k) = % [Re(a(k)) + Re(a(n — k)] + é [Im(a(k)) — Im(a(n — k))]
(D.91)
%[Im(&(k)) +1m(a(n ~ £))] + 5 [~Re(a(k)) + Re(a(n — £))]

&(k)

for k =1,...,n/2, with b(o) = Re(a(0)), and &(0) = Im(&(0)). Implicitly b(n — k) =
b(k) and &(n — k) = &(k).

The sine transform algorithm is taken from Temperton [96). The idea is to form
a certain real sequence, apply a real transform, then extract the sine transform from
the resulting data. The real sequence is

. (.7 1
d; = sin (J ;) (b + bn-j) + 5 (b = ba-y)

220

for 1 <j <n-1withdo=0. Let b= Tppb. Then

A

b(1) = %Re(d(O))
B(2k +1) — b(2k — 1) = Re(d(k)) (D.92)

b(2k) = Im(d(k))

for k =1,....,n/2.
The cosine transform is a close variation on (D.92). Let

. (.7 1
¢; = sin (] ;) (b; — bnj) + 3 (b; + ba-j)

for0 <j<n-1.Let b = Tynb. Then

b(1) = é(bo—bn)-chos(jw/n)bj (D.93)

b(2k +1) — b2k —1) = Im(&(k))
b(2k) = Re(é(k))

fork=1,..,n/2.

The three transform algorithms (D.91) - (D.93) may be combined to transform a
single, real, zero-extended sequence. This is a sequence x = bo, ..., bn, 0, ..., 0 of length
2n, which arises naturally in FFT convolutions. First double by and b, so that

#(k) = (Twab) (k) + i (Topb) (k).

Next compute the real sequences d; and c; as in (D.92) and (D.93). Now pair up ¢;
and d; to compute ¢ and d by (D.91). Then the sine and cosine transforms, hence z,
are given by (D.92) and (D.93).

Note that a shifted cosine algorithm could be implemented by the symmetric data
argument (D.87). Similar algorithms exist for the sine, cosine, and shifted sine.
However in all these cases the DFT is of length 2n, twice as long as it need be. A
suitable shifted cosine algorithm is actually somewhat easier to derive than the sine
and cosime algorithms cited above. To compute b = Twn,n,b first define ¢; = by
Then note that ca_; = bant1-(2j41) = d2j+1 and that by = b, = byn by the inverse Tnp
formula in table D.2. That is, ¢ may be computed as

Co = bl
¢; = by forj=1,...,n/2 (D.94)
Cn-j = bayjprforj= 1,...(n—-1)/2.

Now write

where

20 =b(0) and z = exp {@} (E(k) — ib(n - k)) (D.95)

2n
for k = 1,..,n — 1. Thus to compute b, first apply a real transform to c to get
z. Then scale z by exp{—kri/2n} for 1 < k < n/2 and take the real part to get
b(k) and the imaginary part to get —b(n — k). To compute Tnp simply reverse this
procedure: Compute z by (D.95) for k = 1, ..., n/2 and apply the inverse of the real
transform (D.91) to get c, hence b by (D.94). An alternative algorithm is given by
Swarztrauber[94].

The shifted sine algorithm is completely analogous to the shifted cosine algorithm.
The difference is only that in (D.95), 5(0) is replaced by (=1)¥~'b(n) and b(k)— ib(n—
k) is replaced by (—b(k) — ib(n — k))/i = —b(n—k)+ ib(k) . Equivalently, the relation
in (D.85) could be used to compute the shifted sine transform from the shifted cosine
transform, or vice versa.

Efficient dual shifted sine and cosine algorithms may be derived by natural modifi-
cations of the shifted sine and cosine algorithms. For the dual shifted cosine transform
TN,D,, again define ¢ as in (D.94) and modify (D.93) to get

¢ = %:;lcos ((2]' - %)M) B(k)

n
jmiy 1 ol ori
= exp{—} — exp{—]k—} 2z
nln kX:‘; n
where 1 ri
2 = exp {(k - ;)gni} (3(k) = ib(n +1 = k)) (D.96)

for 1 < k < n with zg = z,. The problem now is that a transform must be applied
to the complex sequence exp{—jmi/n}c; to solve for z. That is, the paired real
transform (D.91) can no longer be used, resulting in twice as much work as necessary.
The solution is to apply the complex FFT directly to a pair of problems in analogy
with algorithm (D.91). Thus set

¢; = exp { _iﬂ} (c} + icf)

where ¢! and ¢? are defined by (D.94) from 6! and b2. Then transform ¢ to get z! + iz?
so that

El(k) = (Re(yx) — Im(ynt1-k))

N =

222

(D.97)

b?(k) — §(Im(Jk) +Re(./n+1 k))
for

= (B +bB(n+1- k)) +i (—Bl(n +1— k) +b(k)).

Just as with the shifted sine transform, there is a dual shifted sine transform
analogous to the dual shifted cosine transform. The resulting formulas that replace
(D.97) are

m(yx) — Re(yn+1-k)) (D.98)

B —

B(k) = —

(
” - (Re(yi) + (3o —)

for
o= — (B (n+1—k)+ (k) +i (B(k) - B (n+1- k).

Again, the relation in (D.85) may be used instead.

One more transform is useful for FFT convolutions with symmetric data. Let x =
b, ooy br1s By bty -ov, b, 0, ..., 0 be a symmetric, zero-extended sequence of length 4n.
An efficient algorithm is derived for the DFT as follows.

z(k) = exp{kn%ﬂ} b, + Z [exp{k]—} + exp{k(Qn —])247;1}] b;

kxif2 SN2 _1\k _ ZT_I. _

e bn+Z[exp{k]2n}+(1) exp{ k]2n}] b;
23725 cos(k'jm/n)b; + (— 1)¥'b, for k =2k
21721 sin((k' = 1/2)jm/n)b; + (—1)¥-tib, for k=2k -1

Thus if b is doubled, the even and odd k values are given by cosine and shifted sine
transforms respectively:

2(2k) = 2(Tnnb) (k)
#(2k—1) = 2i(Tpwnb) (k). (D.99)

Real arithmetical operation counts, as coded, for the transform algorithms de-
scribed above are given in table D.3.

223

Length N Transforms Real Operation Count

Complex FFT (5logy, N)N
Paired Real (54 5log, N)N
Paired Sine (13 + 5log, N)N
Paired Cosine (14 + 5log, N)N
Single real with (14 +5log, N)N

zero-extended datat

Paired real with (30 + 10log, N)N
symmetric, zero-
extended dataf

Paired shifted sine (12 4+ 5log, N)N
or cosine
Paired dual shifted (18 + 5log, N)N

sine or cosine

tData is bg, ..., bn,0,...,0 (length 2V).
{Data is bo, ..., bn-1, bN, bN -1, ..., b0, 0, ..., O (length 4n).

Table D.3: Transform Operation Counts

224

D.3.3 Implementation of the James Algorithm

The basic theory of the algorithm described in section D.1.2 is straightforward, but
several complications arise during the implementation. These come from the handling
of the 6 planes that constitute the boundary of the computational box R, especially
in phase 2 (boundary convolution). In addition, the presence of one or more planes
of symmetry entails major modifications.

The present implementation differs considerably from the description of James[89],
whose method uses complex manipulations of sine and cosine transforms to conserve
memory during the boundary convolution. We the process by combining these trans-
forms into standard real and complex transforms. Several extra scratch planes are
used to achieve major gains in vectorization, as well as simplification.

At the highest level the algorithm is divided into three separate, but parallel,
paths for (1) no planes of symmetry (2) only a Y plane of symmetry (3) both Y and
7 planes of symmetry. If there is only a Z plane of symmetry, the Y and Z data are
interchanged before and after doing the Y only algorithm. Within paths (2) and (3)
there is a choice as to whether a plane of symmetry is located on the left (origin) or
right. For example, if the computational box is represented by

R = [0, m.] x [0,m,] x [0, m,]

with coordinates 7, j, k, then a Y plane of symmetry may be specified either by j =0
or j = m,. The algorithm assumes the j = m, case, and simply reverse the Y data
before and after if it is the j = 0 case. The algorithm could be formulated the other
way around just as easily.

Phase 1

The basic method used to solve the Dirichlet problem (D.71) for the interior solution
0 is to use X and Z sine transforms and a tridiagonal solver, as in formula (D.88).
However, instead of completing the interior solution in phase 1, the inverse X and Z
sine transforms are delayed to phase 3, where they are combined with the inverse X
and Z transforms for 1. This is possible because phase 2 requires only the boundary
charge function o, which in turn needs only 6 values next to the edge of the box. For
example, the computation of o on the t =0 plane, denoted by .0, reduces to

aylo(js k) = Q(]’ k) - (DQG)(O’L k)
= QU.k) - 61,1, k)/A? (D.100)
since @ is zero outside R and on JR.

Using a, 3,7 to indicate sine transformed coordinates, 8(1, 7, k) can be computed
explicitly by

9 me—1
0(1,j.7) = o 3 sin (a;n’-’-) 6(ct, ,7) (D.101)
Then an inverse sine transform in Z is applied to get 6(1, j, k). Similarly
9 me—1
bme = 1.3:7) = o 32 (=17 sin (o)) (D.102)

225

Actually it is better to replace (D.101) and (D.102) by

(1) = =3 sin (222 6(2a,5,7)
T a=1
' 2 S sin (20— 1)) (20 - 1,
o) = o Lsin (=) 020 - 1,5,)

(D.103)
0(1,7,7) = o(j,7)+e(5,7)
G(mx—l,j»‘/) = O(j’7)—e(jv7)

for n, = (m; — 1)/2 and n, = m./2. Of course the sine factors in (D.40) are pre-
computed.

If there is a Z plane of symmetry, the major difference is that Z sine transforms are
replace by shifted sine transforms, according to table D.2, since the symmetry plane
(= zero Neumann boundary condition) is assumed to be on the right. This also means
that the sine term in (D.101) is replaced by the shifted sine term sin((a — 3)x/m,)
when computing 8(a, ,1).

If there is a Y plane of symmetry, the major difference is in the tridiagonal solver.
By (D.73) there is a 2 in the subdiagonal of the bottom row, so the algorithm described
in section D.3.1 is modified accordingly.

Phase 2

The basic idea of the boundary convolution is to zero extend the box R, doubling its
size in each dimension, in order to compute ¥ on R by

Yp=G*o+Gyx1=(G5+Gyt). (D.104)

According to (D.41) the downstream source convolution Gq * 7 is to be interpreted
in the following way. Let F, = forward DFT in X, etc. Then

(Gd * T) (ivj’ k) = (Gd(ia ‘y)) * T(j’ k)
= FUF7((F'GA)(F Fur))

= F'FUF7 (Gu(FyFor)). (D.105)

This means that FFT’s are first applied to the 6 boundary planes of o. Then, in a
loop over the Z index, an XY plane of & is assembled from the 6 transformed planes.
At the same time an XY plane of G is assembled from its 3 plane representation (D.37)
and a plane of Gy from its 4 plane representation (D.49). Then the multiplications
and additions in (D.104) are done to get ¥. Still inside the Z loop, some of the
inverse DFT’s are performed explicitly to get 6 boundary planes. After the Z loop,
the remaining inverse DFT’s are applied to these boundary planes to get ¥|sr.

Let’s look at the transformation of the YZ boundary planes, Oyz0 and 0,1, in more
detail. Since these are real, we may start with a real transform in Z. Next apply a
complex transformin Y. The transform in X reduces to a butterfly operation (addition

226

and subtraction), with the sum of the two planes giving the even frequencies and the
difference the odd frequencies:

5y2(B,7, Pa) = Gye0(3,7) + (=1)%6yn(8,7) (D.106)

for po = @ mod 2.

If there is a Y plane of symmetry, the Y transform becomes a transform of symmet-
ric, zero-extended data with frequencies from 0 to 2m,. By (D.99) the odd frequencies
may be represented as nominally real values, like the even frequencies, but with an
implicit scaling by i. If this is applied to the single XZ boundary plane, the result is
just scaling by 2 for even frequencies and zero for odd frequencies:

{ 26..(a,y) for B even

0 for 8 odd.

The same methods apply to the transforms and inverse transforms of the other bound-
ary planes.
By (D.106) an XY plane of & may be assembled by the following formula:

(D.107)

&Iz(a’ 7) =

&(a’ ﬂa 7) = &yz(ﬁy e pa) + &rz(av 7,Pﬁ) + &x'y(a, ﬂ, P»y). (D108)
One way to do this is by adding the XY and XZ planes while vectorizing in X:
t(a,B) = 6z.(a, ¥, pg) + Gzy(a, B, py)- (D.109)

Then complete (D.107) and at the same time use (D.104) and (D.105) to do the
Green’s function multiplications, taking advantage of operation chaining while vec-
torizing in Y:

B(a, B8,7) = (6,:(8, 7 Pa) + (e, 8)) G(a, B,7) + #(8,7)Ga(@, 8,7) (D.110)

If there is a Y plane of symmetry, (D.107) shows that (D.109) is just a copy for
odd 8 and addition of the single XZ plane for even 3. If there is also a Z plane of
symmetry, (D.109) is only addition for 3 and 7 both even, and is zero if both are odd.
Furthermore, in (D.110) &,, and 7 are nominally real, with only implicit scaling by i
for odd 3 and . Thus the nominally imaginary part of (D.110) reduces to

Im(4(e, 8,7)) := Im(t(, 8))G(a, 8,7)- (D.111)

According to the Z inverse DFT formula, the boundary XY planes may be computed
from 1 by butterflying the sums of the even and odd Z index values:

1 m:—1 .
e(a,B) = s ;)1/’(0,5,27)
o(a,) = o,ln mf ¥(e, 8,27+ 1)
2m, 1%
(D.112)
d;::yO(a»ﬂ) = e(a,ﬁ)+o(a,ﬂ)
Yo, B) = e(a,8) —o(a,)
(D.113)

227

The sums in (D.112) are accumulated in the Z loop with the butterflies and scaling
done later as an inverse operation to the butterflies (D.106).
A way to gain efficiency is to let the Z loop run only from 1 to m, — 1 and set

e B,2m, —) = $(2m. — a,2m, ~ B,7), (D.114)
which follows directly from the DFT formula. In the case of Y symmetry (D.114)
may be replaced by

¥(a, 8,2m, —5) = (=1)%$(2m, — a, 8, 7) (D.115)

according to formula (D.99). In case of Z symmetry, the loop runs from 0 through
2m, and (D.114) may be replaced by

Py ~

¥(@,8,2m. —) = (=1)"¥(a, 8,7). (D.116)

That is, the odd frequencies sum to zero and the even ones are doubled except at the
endpoints 0 and 2m,.

The boundary XZ and XY planes are computed by the same principle of summing
even and odd index values, but with complete computation of an X or Y line done all
at once each time through the Z loop. For example, if there is a Y plane of symmetry,
the even and odd 4 sums of ¥ reduce to just doubling the even values, except for
endpoints, by the Y symmetry analog of (D.116).

Phase 3

The method used in phase 1 is applied again in phase 3, but specialized to zero
interior sources. This means that, for example, the two YZ boundary planes 1,0
and .1 are converted to equivalent sources at positions £ = 1 and ¢ = m, — 1
respectively by scaling by —1/Az?, according to (D.71). Now sine transform in Z to
get v coordinates. Next, the sine transform in X to get a coordinates reduces to the
following.

ur(e03,71,20) = 5o 5in (0) (ol 1) + (-Da(Gon)) (D.1IT)

Az?
for po = a mod 2. The butterfly operations in (D.117) are done before the Z loop,
and the precomputed sine factors are multiplied inside the loop. There is a formula
analogous to (D.117) for the transformed XY boundary planes ¥, («a, j,v,p,). The
XZ boundary planes require full X and Z sine transforms plus scaling by —1/Ay?.
Denote them by %:.(a, ¥,0) and ¥..(a,¥,1) . Then inside the Z loop the transforms
of the 6 boundary planes are summed to get an XY plane t as follows.

t(a’j) = ¢’yz(aaj,7,Pa) + ¢ry(aaj» 77p1) +
(D.118)

6(7 = Dvbea(@,%,0) + 6(5 — my —)pza(a, 7, 1).

228

In the case of Y symmetry, there is only one XZ plane. In the case of Z symmetry
there is only one XY plane, and shifted sine transforms are used. The tridiagonal
solver is applied to the plane ¢, and the result is added to the corresponding plane of
#{(a,7,7), saved from phase 1.

After the Z loop, the inverse X and Z transforms are applied to get ¢ in the interior
of the box, and the original 6 boundary planes are copied onto its boundary.

229

Appendix E
SPARSE SOLVER

In this appendix, the general purpose sparse solver that is used to factor the sparse
matrix is discussed. The sparse matrix is used as a left preconditioner in the solu-
tion of the discrete equations, see Section 2.4. The sparse solver was designed for
general usage to solve much larger problems than are feasible with existing sparse
matrix software. The solver has a general input capability allowing contributions
to matrix elements to be entered in any order. These contributions are sorted and
combined to produce the final matrix. This feature is particularly convenient with
finite elements, where element stiffness matrices can be generated in any order. The
solver is out-of-core so that quite large problems can be solved on current comput-
ers. Gaussian elimination is performed by block rows, additional blocks being created
as fill is generated. The sparse solver takes full advantage of the hardware features
on Cray computers including gather/scatter, vector compress, and large out-of-core
memory afforded by the SSD on the Cray X-MP or Cray Y-MP. Considerable atten-
tion has been devoted to making all phases of setting up and solving matrix problems
convenient and efficient. A description of these phases including ordering the ma-
trix elements to minimize the fill-in, matrix assembly, matrix decomposition, and the
forward and backward substitution is presented.

E.1 NESTED DISSECTION ORDERING

For large-sparse problems, a matrix decomposition preconditioner is practical only if
the decomposition is also sparse. This is true not only because of storage limitations,
but also because of the CPU time required for forward and back substitution. One
key to maintaining sparsity is a good permutation ordering for the rows and columns
of the matrix. For sparse matrices resulting from standard discretizations of elliptic
partial differential equations on uniform rectangular grids nested dissection has been
shown to be asymptotically optimal [97].

In TRANAIR a physically based version of nested dissection suitable for grids
with local refinements has been implemented. One advantage of this method is that
it does not require an examination of the graph of the matrix. The algorithm acts
recursively on subsets of nodes (grid points). In TRANAIR, the discretization used

231

20 xr _—
sack A20_ ITEATONLS e PRECEDING PAGE BUANX 07 FILMED

Dissector 2

Dissector 3

Dissector 1

Figure E.1: Block Structure of a Sparse Matrix Ordered with Nested Dissection.

near boundary surfaces can locate several solution unknowns at a same grid node
location. The first such subset is the set of all nodes in the reduced set. For a
set of nodes A the algorithm finds a set of nodes AN called a dissector. Writing
N = Ny U N UN,, where A, consists of nodes on one side of A; and A, those on
the other. The dissector has the property that an unknown at any node on one side
has a stencil that does not include unknowns located at nodes on the other side.
The permutation is produced by ordering the nodes in the dissector last. Figure E.1
shows the block structure of this matrix. The blocks of zeros remain intact, preserving
sparsity during the decomposition. For a structured grid a plane of points forms a
suitable dissector for a standard 27 point stencil.

In TRANAIR, dissectors are generated by first taking a cutting plane perpendic-
ular to a coordinate axis and finding the set B of all boxes intersecting this plane by
interrogating the oct-tree data structure (see Appendix A). Taking the case when
the cutting plane is perpendicular to the z axis, the dissector of all nodes on the
left hand (negative z) face of boxes in B that are also in A. This will provide a
dissector except near pseudo-nodes where the stencil is altered (see Section 2.3.5).
When a pseudo-node is in the dissector its parent nodes must also be included in
the dissector. Figure E.2 shows examples (in two dimensions) of cutting planes and

232

: O] N © 7 I s
| |
% ol oo : o—o—o0—o—
l |
Ol —— >] OI b
7 o 1 n hH o 4 B
FAY 7] < h - A4 J I A %4
I q 94 I q) 74 \>
x <>l A 74 < < o l b S D>
| |
| A |
X O < 2 x o) — b
— — Cutting Plane O Node in Dissector Ny
X Node in N ¢ Node in N,

Figure E.2: Examples of Cutting Planes and Nodes in Resulting Dissector.

corresponding sets of nodes in the dissectors.

There are two guiding principles that aid in producing an effective nested dissection
ordering. The first is that the components A; and A resulting from the dissection
be of approximately equal size. The second is that the dissectors contain as few
unknowns as possible. (The size of the dissectors can vary due to local refinement
and the location of boundaries.) These principles can conflict and some compromise
is necessary. The cutting plane is selected to have z coordinate equal to that of the
node in M with median = coordinate. Dissectors perpendicular to each of the three
coordinate axes are tested and the one yielding the smallest dissector is chosen. The
process is repeated recursively on the newly formed components resulting from each
dissection until all remaining components contain fewer than 50 nodes.

The above algorithm is modified when regions of supersonic flow are present in
the full potential case because upwinding of the density enlarges the stencil (see
Section 2.3.7). If the cutting plane intersects a box which contains supersonic flow or
is adjacent to such a box then all the nodes of the box are included in the dissector.

E.2 MATRIX ASSEMBLY

Contributions to the global stiffness matrix are generated on an element by element
basis, i.e., element stiffness matrices are input one by one. This order is unrelated to

233

the ordering of the unknowns used for the decomposition. Thus, the contributions
must be sorted and coalesced to produce the final global stiffness matrix. This process
consists of four steps and is illustrated in the case of two blocks and a 3 by 3 matrix
in Figure E.3.

Each contribution is described by a numerical value (denoted by a letter) and by
row and column indices. The four steps are as follows:

e 1. All contributions are collected in equal sized blocks and stored out of core.

® 2. Each block is returned to main memory and sorted by row index, resulting
in an ordered sequence of row groups within each block. A row group is a group
of contributions all having the same row index. A simple bucket sort algorithm
(98] seems to be the most efficient for this purpose.

® 3. These sorted blocks are then merged into ordered chains of blocks. An
ordered chain is a chain of blocks such that all contributions in a given block
have row indices less than or equal to those in all subsequent contributions in
that block and the remaining blocks of the chain. Merging two chains consists
in interleaving their row groups so that the resulting chain is also sorted by row
index. At a given stage, the two shortest chains are always merged. Ultimately,
the result is a single chain of blocks. Because the contributions are not sorted by
column index at this stage, all movement of elements can be done by row group.
This allows vectorization of the merge algorithm.

e 4. All contributions to the same matrix element are then coalesced, i.e., within
each row group, contributions with common column indices are added to form a
single contribution. Coalescing can be done without first sorting each row group
by column index.

Note that most elements of the global stiffness matrix have contributions from
8 element stiffness matrices in subsonic regions and as many as 64 in supersonic
regions. Thus, the number of contributions may be up to 125 times greater than the
number of elements in the assembled global stiffness matrix. In order to minimize
storage requirements, the above four step process is performed repeatedly. (It can
be performed at any point in the generation of contributions to the stiffness matrix.)
When this is done, chains which have already been formed are not merged until new
chains of equal size exist. Row groups are sorted by column index using a bucket sort
only after completion of contribution input and coalescing.

E.3 MATRIX DECOMPOSITION

During the decomposition phase, the matrix is stored in a row format. For the
purposes of transferring information between main memory and the SSD, the matrix
is partitioned into row blocks. For each element of the matrix, two storage locations
are used, one to store the element and the other to store its column index. Optionally,
the matrix element and the column index can be packed into one word of storage. In

234

Contributions input in two blocks

a |[b [c Jd Je [t h |1 Jl k |1 m
12113111 (131121 11,1 §.2 . 213 N

Sort each block into row groups

a b c f d e] 1 n m |1 k
* o3l T1l1a1531153182]12122123123]132133

Merge two blocks into a chain of blocks

a |[b [c I |1 I |h m [d |e § 1 k
1211311111, J1.2 22123412313113313213213,3

Coalesce all contributions to the same matriz element

c+ila+)[b |I [h+n d +1]k+e
1112113122123 3.1 §.2 3.3

Figure E.3: Sorting and Merging Procedure.

this mode, the 64-bit storage location devotes 43 bits to the matrix element and 21
bits to its column index. Word packing reduces the SSD storage required to hold the
matrix decomposition. Moreover, the CPU time required to perform the packing and
unpacking is compensated for by the reduced time spent referencing memory. As a
result, the word packed version of the sparse solver actually runs slightly faster than
the unpacked version.

Decomposition of the matrix is accomplished by Gaussian elimination. (For sparse
matrix problems arising in TRANAIR no pivoting has yet been found necessary for
numerical stability.) Each element in the lower triangle is eliminated in turn through
a sparse SAXPY (SPAXPY) operation with the appropriate row. The multiplier
becomes the corresponding element of the L matrix, and the appropriate U matrix
row is modified by the SPAXPY operation. Each row block is decomposed, and
when finished, used to eliminate corresponding lower triangular elements from all
subsequent row blocks. As fill-in occurs the row blocks must be repartitioned and
new row blocks added. An input/output package has been developed that does this
automatically so that formally the code need only fetch or store any given row. When
all lower triangular elements of a given row have been eliminated, small elements in
the upper triangular part of the row can be dropped if they are small relative to
the current row or column diagonal for that element. The criterion chosen depends
on whether the problem is deemed well scaled row-wise or column-wise. The lower
triangular elements are dropped in a similar fashion as they are eliminated, obviating
the need for a SPAXPY operation.

Unlike many sparse matrix solvers, there is no reliance on a symbolic factorization
to facilitate the matrix decomposition. Instead, an explicit search is carried out to
find the nonzero elements created during the matrix decomposition. This strategy
allows the easy implementation of drop tolerances as required for the large problems

235

discussed in the following sections.

As pointed out in the sparse matrix literature (for example, [99]), searching for
nonzero elements would be prohibitively expensive on a normal scalar machine. For-
tunately, the hardware vector mask and vector compress feature on the Cray X-MP
allows us to perform the searches efficiently. For the largest problems solved to date
involving extensive use of drop tolerances (those problems incurring the maximum
penalty for nonzero searching), about 40 percent of the total decomposition cost is
taken by the searches for the next nonzero element below the diagonal to be elimi-
nated. Another 40 percent of the cost of the decomposition is taken by the SPAXPY
operations which would be required whether or not a symbolic factorization was avail-
able. The final 20 percent is taken by searching for the nonzero elements in the upper
part of the matrix created by the SPAXPY operations. (The number of searches of
this type depends on the size of blocks that can be held in core relative to the size
of the LU decomposition. This 20 percent can be thought of as penalty for being
out-of-core.) Thus in the worse case, for the moderately sparse matrices encountered
in applications, the searches for nonzero elements increase the cost by about a factor
of two. This cost is more than offset by the ability to introduce a drop tolerance.

E.4 FORWARD/BACKWARD SUBSTITUTION

The final phase is the forward/backward substitution. For problems requiring solu-
tions for many right-hand sides, the substitution phase can be more expensive than
the decomposition phase. Therefore, it is important to minimize the cost of the
forward/backward substitution phase. For the short vector lengths characteristic of
sparse matrix operations, a sparse vector dot product typically takes twice as long as
a SPAXPY on the Cray X-MP. To take advantage of the relative speed of SPAXPY
operations during the solution phase, instead of solving Az = b, the equivalent system
z'At = b is solved. Specification of the transposed problem is easily accomplished by
transposing the row and column indices as they are collected.

E.5 PERFORMANCE

Typically, the matrices have between 30,000 and 300,000 rows with 20-30 nonzeros
per row in subsonic flow. In regions of supersonic flow, there are 100-120 nonzeros
per row. This increase is due to the larger operator stencil necessary to include the
upwinding needed to rule out expansion shocks [22]. Without the use of a drop toler-
ance, significant fill-in occurs during the decomposition yielding a decomposed matrix
with 10-30 times the number of nonzero entries in the original matrix. For many large
problems, the memory required by a full decomposition would be too large for the
SSD. Because the matrix is used as a preconditioner to solve the problem iteratively,
it is not essential that the decomposition be exact. During the decomposition ele-
ments are dropped when they are less than a specified fraction (the drop tolerance)
of the current diagonal element . With a suitable choice of drop tolerance, CPU time

236

and memory use for the decomposition are reduced by up to an order of magnitude
with only a slight degradation in convergence rate.

Table E.1: Performance Characteristics for the Sparse Solver with No Drop Toler-
ance. Ten to Twenty Nonlinear Newton Steps are Required for each Solution. Each
Linearized Solution Requires about 10 GMRES Iterations.

Matrix ~ Decomp CPU sec Decomp
equations CPU sec per iteration (MW)

10,018 20 1 3
30,267 280 3 11
36,627 230 4 16
50,655 620 3 29
63,069 420 6 26

Table E.2: Performance Characteristics for the Sparse Solver with Drop Tolerance.
Each Linearized Solution Requires About 20-40 GMRES Iterations.

Total Matrix Drop Decomp CPU second Decomp
equations equations tolerance CPU sec per iteration (MW)

18376 11,514 0.0010 7 0.2 15
24304 15051 0.0010 11 0.4 2.2
37,702 18,731 0.0010 13 0.4 2.4
61,863 44,537 0.0010 41 0.9 6.7
124878 81,216 0.0005 91 1.3 12.6
936,970 167,500 0.0010 246 2.8 26.4
947,703 156,659 0.0008 241 3.3 28.6
268,301 192,238 0.0010 311 3.1 30.8
284,052 181,802 0.0008 297 4.1 30.6
288,333 207,827 0.0010 405 3.5 40.0
373,813 241,474 0.0010 631 5.8 54.0
480,907 330,857 0.0008 832 6.8 64.6

Tables E.1 and E.2 give the computer times for decomposition of the reduced
set matrix for several representative cases run TRANAIR with and without a drop
tolerance as well as the computer time required for each GMRES iteration. The
storage required for the decomposition (using no word packing) is also shown and is
equal to twice the number of nonzero entries in the decomposition.

Table E.2 gives both the number of equations in the reduced set (the size of the
problem given to the sparse solver) and the total number of degrees of freedom.
The size of the sparse matrix varies from about 10,000 unknowns to around 330,000
unknowns. Note that with the use of a drop tolerance, the decomposition costs are

237

Drop Tolerance Study
Coarse Grid ONERA M6 Wing Test Case
Total Solver CPU Time vs. Drop Tolerance

600]
'

500 | [

a0 _)

CPU Time (Seconds)
]
]
]
)
+
'

1E-15 1E-12 1E-08 1E-06 0.001 1
Drop Tolerance

Figure E.4: Cost versus drop tolerance for the ONERA M6 TRANAIR solution.

reduced by nearly an order of magnitude. The costs per iteration are also reduced by
about a factor of two. For each linear problem 10-20 iterations required to converge
the solution when no drop tolerance is used. By using a drop tolerance in the range
0.001-0.0001 these numbers are increased to 20-40 iterations. However, since the
cost per iteration has been reduced by a factor of two, this helps to compensate for
the increase in number of iterations. For drop tolerance in this range the size of the
decomposition is between two to five times the size of the original matrix.

Memory limitations make it impossible to test the effect of a full range of drop
tolerances for a large problem. However, for a small problem with 28,050 finite
elements serves to illustrate the effect of drop tolerance on the decomposition and
overall solution costs. Figure E.4 illustrates total solution costs as a function of drop
tolerance for a fluid dynamics problem (an ONERA M6 wing in transonic flow).

Figure E.5 illustrates the SSD resource requirements. It is clear that there is a
minimum in the total cost for drop tolerances in the range of 10~4. When higher drop
tolerances are used, the decomposition costs continue to decrease, but the iterative
costs begin to increase due to the larger number of iterations required to reach a
given level of convergence. For this configuration, a drop tolerance in the range of
10~ produces a slight increase in CPU time over the optimal value, but (Fig. E.5)
significantly reduces the amount of SSD storage required (by more than a factor of
two). CPU time must be balanced against the SSD storage requirements. Thus
some experimentation may be required to determine an appropriate value of drop
tolerance. For larger problems, the amount of SSD storage may become the critical
limiting factor. The reduction in SSD storage for larger problems can be as high as
a factor of 20 with an appropriate choice of drop tolerance.

238

~N Supersonic Flow

Decomposition Size (MW)

1E-14 1E-11 1E-08 1E-05 0.01 10
Drop Tolerance

Figure E.5: SSD storage versus drop tolerance for the ONERA M6 TRANAIR solu-

tion.

239

References

(1]

2]

(3]

[4]

[7]

8]

[9]

[10]

[11]

(12]

[13]

Goldhammer, M. I.; and Rubbert, P. E.: CFD in Design—An Airframe Perspective.
AIAA Paper 83-0092, Jan. 1989.

Tinoco, E. N.; and Rubbert, P. E.: Impact of Computational Aerodynamics on Aircraft
Design. AIAA Paper 83-2060, Aug. 1983.

Miranda, L. R.: Transonics and Fighter Aircraft: Challenges and Opportunities for CFD.
NASA CP-3020, vol. 1, part 1, 1989, pp. 153-173.

Hess, J. L.; and Smith, A. M. O.: Calculation of Nonlifting Potential Flow about Art-
ibrary Three Dimensional Bodies. ES40622, Douglas Aircraft Co., Long Beach, Calif.,
1962.

Rubbert, P. E.; and Saaris, G. R.: Review and Evaluation of a Three Dimensional Lifting
Potential Flow Computational Method for Arbitrary Configurations. AIAA Paper 72-
188, Jan. 1972,

Roberts, A.; and Rundle, K.: Computation of First Order Compressible Flow about
Wing-Body Configurations. (Available to U.S. Government agencies only.) S/T-MEMO-
14173, British Aircraft Co., 1973.

Morino, L.; and Kuo, C.-C.: Subsonic Potential Aerodynamics for Complex Configura-
tions: General Theory. AIAA Journal, vol. 12, no. 2, 1974, pp. 191-197.

Johnson, F. T.; and Rubbert, P. E.: Advanced Panel-Type Influence Coefficient Methods
Applied to Subsonic Flows. AIAA Paper 75-50, Jan. 1975.

Bristow, D. R.; and Grose, G. G.: Modification of the Douglas Neumann Program to
Improve the Efficiency of Predicting Component Interference and High Lift Character-
istics. NASA CR-3020, 1978.

Johnson, F. T.: A General Panel Method for the Analysis and Design of Arbitrary
Configurations in Incompressible Flows: Boundary Layer Problem. NASA CR-3079,
1980.

Ehlers, F. E.; Epton, M. A.; Johnson, R. T.; Magnus, A. E.; and Rubbrt, P. E.: A Higher
Order Panel Method for Linearized Supersonic Flow. NASA CR-3062, 1979.

Carmichael, R. L.; and Erickson, L. L.: PANAIR: A Higher Order Panel Method for Pre-
dicting Subsonic or Supersonic Linear Potential Flows about Arbitrary Configurations.
ATAA Paper 81-1255, June 1981.

Dusto, A. R.; and Epton, M. A.: An Advanced Panel Method for Analysis of Arbitrary
Configurations in Unsteady Subsonic Flow. NASA CR-152323, 1980.

241

NTEHTICHALLS BTOW
m‘ﬁ@*‘ ‘ PRECEDING PAGE BLANY #OT FILMED

[14]

[15]

[16]

[17]

[18]

[19]

[22]

[23]

[24]

[25]

[26]

Rowe, W. S.; Winther, B. A.; and Redman, M. C.: Prediction of Unsteady Aerodynamic
Loadings Caused by Trailing Edge Control Surface Motions in Subsonic Compressible
Flow-Analysis and Results. NASA CR-2003, 1972.

Tinoco, E. N.; Ball, C. N,; and Rice, F. A. II: PAN AIR Analysis of a Transport High
Lift Configuration. AIAA Paper 86-1811, June 1986.

Dusto, A. R.: Aerodynamic Analysis of a Fighter Aircraft with a Higher Order Panel-
ing Method. Technical Report AFWAL-TR-80-3115, Wright-Patterson Air Force Base,
Ohio, 1980.

Murman, E. M.,; and Cole, J. D.: Calculation of Plane Steady Transonic Flows. AIAA
Journal, vol. 9, no. 1, 1971, pp. 114-121.

Bailey, F. R.; and Ballhaus, W. F.: Relaxation Methods for Transonic Flow about Wing-
Cylinder Combinations and Lifting Swept Wings. Proc. Third International Congress
on Numerical Methods in Fluid Dynamics, Volume 2, Springer-Verlag, 1972, pp. 2-9.

Jameson, A.: Iterative Solution of Transonic Flows Over Airfoils and Wings, Including
Flows at Mach 1. Communications on Pure and Applied Mathematics, vol. 27, no. 3,
1974, pp. 283-309.

Caughey, D. A.; and Jameson, A.: Numerical Calculation of Transonic Potential Flow
About Wing-Fuselage Combinations. AIAA Paper 77-677, June 1977.

Ballhaus, W. F.; Jameson, A.; and Albert, J.: Implicit Approximate-Factorization
Schemes for the Efficient Solution of Steady, Transonic Flow Problems. AIAA
Paper 77-634, June 1977, pp. 27-34.

Hafez, M. M.; Murman, E. M.; and South, J. C.: Artificial Compressibility Methods for
Numerical Solutions of Transonic Full Potential Equation. AIAA Paper 78-1148, July
1978.

Bristeau, M. O.; Glowinski, R.; Periaux, J.; Perrier, P.; Pironneau, O.; and Poirier,
G.: Application of Optimal Control and Finite Element Methods to the Calculation
of Transonic Flows and Incompressible Viscous Flows. Numerical Methods in Applied
Fluid Dynamics, B. Hunt, ed., Academic Press, London, 1980, pp. 203-312.

Holst, T. L.: A Fast, Conservative Algorithm for Solving the Transonic Full-Potential
Equation. AIAA Paper 79-1456, July 1979.

Holst, T. L.; and Ballhaus, W. F.: Fast, Conservative Schemes for the Full Potential
Equation Applied to Transonic Flows. AIAA Journal, vol. 17, 1979, pp. 145-152.

Boppe, C. W.; and Stern, M. A.: Simulated Transonic Flows for Aircraft with Nacelles,
Pylons and Winglets. AIAA Paper 80-0130, Jan. 1980.

242

[27] Yu, N. J.: Grid Generation and Transonic Flow Calculations for Three Dimensional
Configurations. AIAA Paper 80-1391, July 1980.

[28] Lee, K. D.: 3-D Transonic Flow Computations Using Grid Systems with Block Structure.
AIAA Paper 81-0998, June 1981.

[29] Jameson, A., Schmidt, W., and Turkel, E.: Numerical Solutions of the Euler Equa-
tions by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. ATAA
Paper 81-1259, June 1981.

[30] Chakravarthy, S. R.; and Osher, S.: A New Class of High Accuracy TVD Schemes for
Hyperbolic Conservation Laws. AIAA Paper 85-0363, Jan. 1985.

[31] Pulliam, T. H.: Euler and Thin Layer Navier-Stokes Codes: ARC2D, ARC3D. Compu-
tational Fluid Dynamics, K. C. Reddy and J. S. Steinhoff, eds., University of Tennessee
Space Institute, Publication No. E02-4005-023-84, Tullahoma, TN, 1984, pp. 15.1-15.85.

[32] MacCormack, R. W.: Current Status of Numerical Solutions of the Navier-Stokes Equa-
tions. AIAA Paper 85-0032, Jan. 1985.

[33] Thomas, J. L.; and Walters, R. W.: Upwind Relaxation Algorithms for the Navier-Stokes
Equations. AIAA Paper 85-1501, July 1985.

[34] Jameson, A.: Transonic Flow Calculations. Department of Mechanical and Aecrospace
Engineering, Report No. 1651, Princeton University, 1983.

[35] Martinelli, L.; Jameson, A.; and Grasso, F.: A Multigrid Method for the Navier-Stokes
Equations. AIAA Paper 86-0208, Jan. 1986.

[36] Rubbert, P. E.; Bussoletti, J. E.; Johnson, F. T.; Sidewell, K. W.; Rowe, W. S.; Samant,
S. S.; SenGupta, G.; Weatherill, W. H.; Burkhart, R. H.; Everson, B. L.; Young, D. P;
and Woo, A. C.: A New Approach to the Solution of Boundary Value Problems Involving
Complex Configurations. Computational Mechanics-Advances and Trends, Ahmed K.
Noor, ed., the American Society of Mechanical Engineers, New York, 1986, pp. 49-84.

[37) Samant, S. S.; Bussoletti, J. E.; Johnson, F. T.; Burkhart, R. H.; Everson, B. L.; Melvin,
R. G.; Young, D. P.; Erickson, L. L.; Madson, M. D.; and Woo, A. C.: TRANAIR: A
Computer Code for Transonic Analyses of Arbitrary Configurations. AIAA Paper 87-
0034, Jan. 1987.

[38] Everson, B. L.; Bussoletti, J. E.; Johnson, F. T.; Samant, S. S.; Erickson, L. L.; and
Madson, M. D.: TRANAIR and its NAS Implementation. Paper prescnted at the

NASA Conference on “Supercomputing in Aerospace,” NASA Ames Rescarch Center,
March 10-12, 1987.

[39) TRANAIR Computer Code (Theory Document). NASA Contract Report NAS2-11851,
Boeing Military Airplane Company, 1987.

243

[40]

[41]

[42]

[43]

4]

[45]

[46]

[47]

(48]

[49]

EM-TRANAIR: A Computer Program for the Solution of Maxwell’s Equations in Three
Dimensions: Volume 1, Theory Manual. AFWAL-TR-87-3082, volume 1, 1987. (Limited
to U.S. Government agencies and contractors.)

Samant, S. S.; Bussoletti, J. E.; Johnson, F. T.; Melvin, R. G.; and Young, D. P.: Tran-
sonic Analysis of Arbitrary Configurations using Locally Refined Grids. Proceedings
of the 11th International Conference on Numerical Method in Fluid Dynamics, 1988,
pp. 518-522.

Young, D. P.; Melvin, R. G.; Bieterman, M. B.; Johnson, F. T.; Samant, S. S.;
and Bussoletti, J. E.: A Locally Refined Rectangular Grid Finite Element Method.
Report SCA-TR-108-R1, Boeing Computer Services, Seattle, Washington, 1989.

Young, D. P.; Melvin, R. G.; Johnson, F. T.; Bussoletti, J. E.; Wigton, L. B.; and
Samant, S. S.: Application of Sparse Matrix Solvers as Effective Preconditioners. SIAM
J. Sci. Stat. Comput., vol. 10, no. 6, 1989, pp. 1186-1199.

Bussoletti, J. E.; Johnson, F. T.; Young, D. P.; Melvin, R. G.; Burkhart, R. H,;
Bieterman, M. B.; Samant, S. S.; and SenGupta, G.: TRANAIR Technology: Solutions
for Large PDE Problems. Solution of Superlarge Problems in Computational Mechanics,
J. H. Kane and A. D. Carlson, eds., Plenum Press, New York, 1989, pp. 95-124.

Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P;
Bussoletti, J. E.; and Madson, M. D.: Application of the TRANAIR Rectangular Grid
Approach to the Aerodynamic Analysis of Complex Configurations. AGARD-CP-464,
1989, pp. 21.1-21.12.

Melvin, R. G.; Bieterman, M. B.; Young, D. P.; Johnson, F. T.; Samant, S. S.; and
Bussoletti, J. E.: Local Grid Refinement for Transonic Flow Problems. Proceedings of
the Sixth International Conference on Numerical Methods in Laminar and Turbulent
Flow, Volume 6, Part 1, C. Taylor, P. Gresho, R. L. Sani, and J. Hauser, eds., Pineridge
Press, 1989, pp. 939-950.

Bieterman, M. B.; Bussoletti, J. E.; Hilmes, C. L.; Johnson, F. T.; Melvin, R. G,
Samant, S. S.; and Young, D. P.: Solution Adaptive Local Rectangular Grid Refinement
for Transonic Aerodynamic Flow Problems. Report ECA-TR-126, Boeing Computer
Services, Seattle, Washington, 1989. Proc. 1989 GAMM Conference on Numerical Meth-
ods in Fluid Mechanics, Delft, The Netherlands, September 1989 in Notes on Numerical
Fluid Mechanics, Volume 29, Vieweg Verlag, 1990.

Young, D. P.; Melvin, R. G.; Bieterman, M. B.; Johnson, F. T.; and Samant, S. S.: Global
Convergence of Inexact Newton Methods for Transonic Flow. Report ECA-TR-124-R1,
Boeing Computer Services, Seattle, Washington, 1989.

Chen, A. W.; Curtin, M. M.; Carlson, R. B.; and Tinoco, E. N.: TRANAIR Applications
to Engine/Airframe Integration. ATAA Paper 89-2165, July 1989.

244

[50] Goodsell, A. M.; Madson, M. D.; and Melton, J. E.: TranAir and Euler Computations
of a Generic Fighter Including Comparisons with Experimental Data. AIAA Paper 89-
0263, Jan. 1989.

[51] Tseng, W.; Feinberg, E.; and Cenko, A.: TRANAIR Applications to Fighter Configura-
tions. AIAA Paper 893-2220, July 1989.

[52] Bateman, H.: Irrotational Motion of a Compressible Inviscid Fluid. Proc. National
Academy of Sciences, Volume 16, 1930, p. 816.

[63] Saad, Y.; and Schultz, M. H.: GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput., vol. 7, no. 3, 1986,
pp- 856-869.

[54] Wigton, L. B,; Yu, N. J.,; and Young, D. P.. GMRES Acceleration of Computational
Fluid Dynamics Codes. AIAA Paper 85-1494, July 1985.

[65] TRANAIR User’s Manual, NASA Contract NAS2-12513, The Boeing Company, Oct.
1989.

[66] Weiser, A.: Local-Mesh, Local-Order, Adaptive Finite Element Methods with A Pos-
teriori Error Estimators for Elliptical Partial Differential Equations. Yale University
Department of Computer Science Technical Report 213, 1981.

[57] Samet, H.: The Quadtree and Related Hierarchical Data-Structures. Computing Sur-
veys, vol. 16, no. 2, 1984, pp. 187-260.

[58] Strang, G.; and Fix, G. J.: An Analysis of the Finite Element Method. Prentice Hall,
Englewood Cliffs, N.J., 1973.

[59] Dembo, R. S.; Eisenstat, S. C.; and Steihaug, T.: Inexact Newton Methods. SIAM J.
Num. Anal., vol. 19, no. 2, 1982, pp. 400-408.

[60] Bank, R. E.; and Rose, D. J.: Global Approximate Newton Methods. Numerische Math-
ematik, vol. 37, no. 2, 1981, pp. 279-295.

[61] Babuska, I.; and Miller, A.: A-posteriori Error Estimates and Adaptive Techniques for
the Finite Element Method. Tech. Note BN-968, Institute for Physical Science and
Technology, University of Maryland, June 1981.

[62] Babuska, 1.; Zienkiewicz, O. C.; Gago, J.; and de A. Oliveira, E. R., eds.: Accuracy
Estimates and Adaptive Refinements in Finite Element Computations, John Wiley &
Sons, New York, 1986.

[63] Bank, R. E.: Analysis of a Local A posteriori Error Estimate for Elliptic Equations.
Accuracy Estimates and Adaptive Refinements in Finite Element Computations, John
Wiley & Sons, New York, p. 119.

245

[64] Bank, R. E.: The Efficient Implementation of Local Mesh Refinement Algorithms. Adap-
tive Computational Methods for Partial Differential Equations, I. Babuska, J. Chandra,
and J. E. Flaherty, eds., SIAM Publications, 1983, pp. 74-81.

[65] Berger, M. J.; and Jameson, A.: Automatic Adaptive Grid Refinement for the Euler
Equations. AIAA Journal, vol. 23, no. 4, 1985, pp. 561-568.

[66] Dannenhoffer, J. F., III; and Baron, J. R.: Grid Adaptation for the 2-D Euler Equations.
AJAA Paper 85-0484, Jan. 1985.

[67] Lohner, R.; Morgan, K.; and Zienkiewicz, O. C.: Adaptive Grid Refinement for the
Compressible Euler Equations. Accuracy Estimates and Adaptive Refinements in Finite
Element Computations, John Wiley & Sons, New York, p. 281.

[68] Oden, J. T.; Strouboulis, T.; and Devloo, P.: Adaptive Finite Element Methods for
High-Speed Compressible Flows. Inter. J. Numer. Meth. in Fluids, vol. 7, no. 11, 1987,
pp- 1211-1228.

[69] Zienkiewicz, O. C.; Xi-Kui, L.; and Nakazawa, S.: Iterative Solution of Mixed Problems
and the Stress Recovery Procedures. Communications in Applied Numerical Methods,
vol. 1, no. 1, 1985, pp. 3-9.

[70] Bramble, J. H.; and Schatz, A. H.: Higher Order Local Accuracy by Averaging in the
Finite Element Method. Mathematics of Computation, vol. 31, no. 137, 1977, pp. 94-111.

[71] Clark, C. C.; and Foutch, D. W.: PARC Analysis of an Axisymmetric Turbofan Nozzle.
Boeing Commercial Airplanes Technical Report PROP-BN31U-C89-020, 1989.

[72] Cooper, G. K.: The PARC Code: Theory and Usage. Arnold Engineering Development
Center Technical Report AEDC-TR-87-24, 1987. (Distribution limited to Department
of Defense.)

(73] Shankar, V.; Szema, K.; and Bonner, E.: Full Potential Method for Analysis/Design of
Complex Aerospace Configurations. NASA CR-3982, 1986.

[74] Shankar, V.; Szema, K.; and Chakravarthy, S.: Supersonic Flow Computations Over
Aerospace Configurations Using an Euler Marching Solver. NASA CR-4085, 1987.

[75] Shapiro, A. H.: The Dynamics and Thermodynamics of Compressible Fluid Flow,
Ronald Press Company, 1953.

[76] Liepmann, H. W.; and Roshko, A.: Elements of Gasdynamics, John Wiley & Sons, 1957.

[77] Hafez, M.: Progress in Finite Element Techniques for Transonic Flows. AIAA Paper 83-
1919, July 1983.

246

[78] Babuska, I.; and Dorr, M. R.: Error Estimates for the Combined h and p Versions of
the Finite Element Method. Numerische Mathematik, vol. 37, no. 2, 1981, pp. 257-277.

[79] Babuska, I.; and Rheinboldt, W. C.: Adaptive Finite Element Processes in Structural
Mechanics. Elliptic Problem Solvers II, G. Birkhoff and A. Schoenstadt, eds., Academic
Press, 1984, pp. 345-377.

[80] Patera, A. T.: A Spectral Element Method for Fluid Dynamics: Laminar Flow in a
Channel Expansion. J. Computational Physics, vol. 54, no. 3, 1984, pp. 468-488.

[81] Fischer, P. F.; Ronquist, E. R.; and Patera, A. T.: Parallel Supercomputing-Methods,
Algorithms and Applications. John Wiley & Sons, 1988.

[82] Saaris, G. R.; Gilkey, R. D.; Smit, K. L; and Tinoco, E. N.: Transonic Analysis of
Complex Configurations Using TRANAIR Program. SAE Paper 892289, 1989.

[83] Fraenkel, L. E.: On Corner Eddies in Plane Inviscid Shear Flow. J. Fluid Mech., vol. 11,
no. 3, 1961, pp. 400-406.

[84] Chorin, A. J.: Estimates of Intermittency, Spectra, and Blow-up in Developed Tur-
bulence. Communications on Pure and Applied Mathematics, vol. 34, Nov. 1981,
pp. 853-866.

[85] Johnson, F. T.; Bussoletti, J. E.; Woo, A. C.; and Young, D. P.: A Transonic Rectangular
Grid Embedded Panel Method. Advances in Computational Transonics, Pineridge Press
Ltd., Swansea, Wales, 1984.

[86] George, K. P.; Ravichandran, K. S.; Rangarajan, R.; and Desai, S. S.: Vortex Simulation
in Full Potential Solver on a Cartesian Grid. Aeronautical Development Agency and
National Aeronautical Laboratory, Bangalore, India, 1988. (To be published.)

[87) McLean, J. D.; and Matoi, T. K.: Shock/Boundary-Layer Interaction Model for Three-
Dimensional Transonic Flow Calculations. Turbulent Shear Layer/Shock-Wave Interac-
tions, 1986, pp. 311-321.

[88] Chandra, R.: Conjugate Gradient Methods for Partial Differential Equations. Yale Uni-
versity Research Report 129, 1978.

[89] James, R. A.: The Solution of Poisson’s Equation for Isolated Source Distributions. J.
Computational Physics, vol. 25, no. 2, 1977, pp. 71-93.

[90] Buneman, O.: Analytic Inversion of the Five-Point Poisson Operator. J. Comput. Phys.,
vol. 8, no. 3, 1971, pp. 500-505.

[91] Rabiner, L. R.; and Gold, B.: Theory and Application of Digital Signal Processing.
Prentice-Hall, 1975.

247

(92] Hurd, A. E.: and Loeb, P. A, eds.: Introduction to Nonstandard Analysis, Pure and
Applied Mathematics Series, Vol. 181. Academic Press, 1985.

[93] Zygmund, A.: Trigonometric Series, Vol. II. Cambridge University Press, 1968.

[94] Swarztrauber, P. N.: The Methods of Cyclic Reduction, Fourier Analysis, and the FACR
Algorithm for the Discrete Solution of Poisson’s Equation on a Rectangle. SIAM Review,
vol. 19, no. 3, 1977, pp. 490-501.

[95] Cooley, J. W.; Lewis, P. A. W.; and Welch, P. D.: The Fast Fourier Transform Algo-
rithm: Programming Considerations in the Calculation of Sine, Cosine, and Laplace
Transforms. J. Sound and Vibration, vol. 12, no. 3, 1970, pp. 315-337.

[96] Temperton, C.: Direct Methods for the Solution of the Discrete Poisson Equation: Some
Comparisons. J. Comp. Physics, vol. 31, no. 1, 1979, pp. 1-20.

[97] George, A.; and Liu, J. W. H.: Computer Solution of Large Sparse Positive Definite
Systems. Prentice Hall, Englewood Cliffs, N.J ., 1981.

(98] Knuth, D. E.: The Art of Computer Programming, Volume 3, Sorting and Searching,
Addison-Wesley, 1973.

[99] Pissanetzky, S.: Sparse Matrix Technology, Academic Press, 1981.

248

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this ion of

ded. and pleti

ion i esti d to average 1 hour per response, Including the time for revi
i of information, Send comments regarding this burden estimate or any other aspect of this

gathering and ing the data

ing the

g & |
collection of information, inciuding suggestions for reducing this burden, to Washington Headquarters Services, Directorate tor information Operations and Reports, 1215 Jetterson

ewing instructions, searching existing data sources,

Davls Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwark Reduction Project (0704-0188), Washington, DC 20503.

1.

3. REPORT TYPE AND DATES COVERED
Contractor Report

2. REPORT DATE
December 1992

AGENCY USE ONLY (Leave blank)

. TITLE AND SUBTITLE

8. FUNDING NUMBERS
TranAir: A Full-Potential, Solution-Adaptive, Rectangular Grid Code for
Predicting Subsonic, Transonic, and Supersonic Flows About Arbitrary

Configurations—Theory Document C NAS2-12513

WU 505-61-21

. AUTHOR(S)

F. T. Johnson, S. S. Samant, M. B. Bieterman, R. G. Melvin,
D. P. Young, J. E. Bussoletti, and C. L. Hilmes

. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
REPORT NUMBER

Boeing Military Airplane Company
P. O. Box 3707, M/S 7K-06
Seattle, WA 98124-2207

A-90093

. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
National Aeronautics and Space Administration
Ames Research Center

Moffett Field, CA 94035-1000 NASA CR-4348

11.

SUPPLEMENTARY NOTES

Point of Contact: M. Madson, Ames Research Center, MS 227-2, Moffett Field, CA 94035-1000
(415) 604-3621

12a. DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Subject Category — 02

13. ABSTRACT (MaxImum 200 words)

Anew computer program, called TranAir, for analyzing complex configurations in transonic flow (with
subsonic or supersonic freestream) has been developed. This program provides accurate and efficient
simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a
typical panel method program.

The numerical method implemented in TranAir is described in this report. The method solves the full
potential equation subject to a set of general boundary conditions and can handle regions with differing total
pressure and temperature. The boundary value problem is discretized using the finite element method on a
locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on
the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear
discrete system arising from the finite element method is solved using a preconditioned Krylov subspace
method embedded in an inexact Newton method. The solution is obtained on a sequence of successively
refined grids which are either constructed adaptively based on estimated solution errors or are predetermined
based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are
presented. (See User’s Manual, NASA CR-4349.)

14. SUBJECT TERMS

15, NUMBER OF PAGES

. . . 2
Transonic aerodynamics, Rectangular grids, Complex geometry b4

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

SECURITY CLASSIFICATION

OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI S1d. 239-18
208-102

NASA-Langley. 1992

S O

FPowRs) o DR

M it

Lo

