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INTRODUCTION

The 737 graphite-epoxy horizontal stabilizer was developed by Boeing as part of the NASA-ACEE
(Aircraft Energy Efficiency) Advanced Composite Structures Program. NASA-ACEE programs
challenged large-transport manufacturers to use graphite material in redesigning existing aircraft
components. The goal of the program was to develop the necessary data and technology to achieve
production commitments to advanced composites. Boeing designed, fabricated, and certified five shipsets
of horizontal stabilizers for the 737-200 airframe. The program was initiated in July 1977 and certification

was achieved in August 1982. Schedule highlights are shown in Figure 1. The work performed on this
program is reported in NASA technical summaries and final reports, (ref. 1 thru 4).

Boeing introduced the stabilizer into commercial operation in 1984, and has maintained surveillance for
seven years of in-service evaluation. Outstanding performance has been demonstrated with no service
incidents attributed to the graphite-epoxy structure. Boeing will continue to monitor and support these
aircraft, adding to the data base of commercial composite experience.
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Figure 1. Program Schedule
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STRUCTURALARRANGEMENT

Designandcontractrequirementsspecifiedthatthegraphite-epoxystructurewouldbe inter-
changeable,bothgeometricallyandfunctionallywith theexistingflying hardware.Thesecriteriadefined
thestructuralinterface,stiffness,aerodynamicshape,planform,andelevatorinterface.Thegeneral
structuralarrangementis shownin Figure2. Trade-offconsiderationsweregivento elementdesigns
within thebox. Detailswereselectedthatcouldbeproducedwith thethencurrentmaterialsystemsand
manufacturingtechnologywhile lookingto futureapplicationssuchasawing design.Theselected
configuration,shownin Figure3, wascomprisedof:

a) I-stiffened, co-cured laminate panels.
b) Shear-tied ribs using honeycomb webs and graphite-epoxy faces.
c) I-section solid laminate spars.

The material system selected was Narmco T300/5208. The predominant material form was fabric with
selected use of tape. The structural details used hand-layup procedures throughout. Conventional
fastening systems were used for assembly.

A requirement of the program was to use existing hardware to the greatest extent possible. Since the
parts that were available for use were predominantly aluminum alloy, a protection system was developed
to prevent corrosion. The protection system was designed to isolate graphite-epoxy surfaces from
aluminum structure, minimizing the cathodic area (graphite) available for electro-chemical reaction. The
system, shown in Figure 4, isolated the graphite-epoxy side of the interface with either co-cured fiberglass
or primer and epoxy paint. The aluminum alloy was anodized or alodine treated, primed and enameled.
Polysulfide sealant was applied to faying surfaces and fasteners at installation.
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Figure 2. Horizontal Stabilizer - General Arrangement - Aluminum Alloy Baseline
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Figure 3. Advanced Composite Stabilizer Inspar Structural Arrangement
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CERTIFICATION

Certification requirements for commercial transport aircraft are defined in Code of Federal Regulations,
FAR Part 25, (ref. 5). An FAA advisory circular, AC 20-107, (ref. 6) set forth a recommended means of
compliance with the regulations.

Boeing's certification approach, presented in detail in reference 7, was based on current and accepted
practices and procedures. "Simply stated, the primary means of commercial aircraft certification is by the
analytical process supported by appropriate test evidence" (ref. 7). Early coordination with the FAA
established a detailed plan to certify the 737 hardware.

ANALYSIS - Analyses were performed during the program that encompassed external static and
dynamic loads, sonic environment, electro-dynamic effects and environment. An extensive finite element
model was developed to perform stress/strain analyses that addressed applied loads and environmental
effects. Strains were calculated for static and residual strength including bird strike damage. Compliance
with the requirements of the regulations was then demonstrated by comparing the maximum calculated
strain to the allowable design value for a particular environmental condition.

TEST PROGRAM - A test program was implemented to provide the necessary supporting data for
compliance with FAR Part 25. A "building block approach", (Figure 5) was developed that utilized:

a) Coupon, element, and panel tests that addressed material properties and point design
characteristics and included the effects of environment.

b) An early stub box test that subjected critical structure to three-dimensional strain and validated
design concepts.

c) A highly strained, bi-directionally loaded panel tested in various environments to demonstrate the
validity of the analysis techniques used to calculate environmental strains.

d) A full scale ground test that verified calculated strain distributions, functional performance,
durability, damage tolerance and ultimate load carrying capability.

e) A flight test that demonstrated equivalency to the aluminum stabilizer from a flutter and a stability
and control standpoint.

References 7 and 8 discuss these elements in further detail.
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IN-SERVICE EXPERIENCE

MAINTENANCE PLANNING PROGRAM - A maintenance planning program was defined to assist
the operator in establishing procedures that would insure continued safety and performance. The Boeing
737 had been in service for over ten years, therefore a primary groundrule for introducing a graphite-
epoxy stabilizer was to provide the same level of safety while recognizing the unique characteristics of
composite structure and creating a minimum impact on the operator.

A basic plan, (ref. 8) adjustable to the individual airline's existing procedure was established and FAA
approval was received. Details of this plan were presented in references 2 and 9. The Maintenance
Planning Schedule recommended by Boeing is shown on Table 1. As part of the certification proceedings
Boeing agreed to support an additional (early) structural inspection that would be performed on the first
two airplanes to reach 7000 hours of service. Non-destructive inspection techniques were developed that
used equipment common to most operator maintenance depots. Repairs were designed and tested to
demonstrate that the structure could be restored to a pre-damaged level of strength and durability in the
event of in-service damage. A repair manual was prepared, and in combination with the maintenance plan
and inspection techniques, provided the concluding data for certification.

Table 1. Maintenance Planning Schedule

Check Inspection
Interval (Flight Hr) a Description

Preflighfftransit -o- • Walk around

A 75 • Visual inspection of exterior surface, from ground level

B 300 • Visual inspection of external surfaces

• External visual inspection

1,200 • Exposed rear spar area

C • Exposed hinge fittings and thermal linkage

• Front and rear spar-to-center section attachment lugs

2,400 • Inboard edge of rear spar web
• Trailing-edge cavities

Structural 14,000 b

• External visual inspection

• NDT inspection upper and lower skin from the rear spar forward to

stringer 3 between the side-of-budy and the rib at stabilizer station 111.1

• Front and rear spar attachment lugs, pins, bushing, and fittings
• Internal trailing-edge structure
• Internal stmcu_e, spars, stiffeners, closure ribs; access by removing

gap covers, access hole covers, removeable leading edge, remove.able

lower trailing-edge panels and removeable tip

a) Boeing recommended for new operators b) Early inspection on the first two units to reach 7000 flight hours

SERVICE BEHAVIOR - The stabilizers were introduced into service in 1984 with Boeing committed

to supporting the inspection and maintenance program. The current in-service status is shown on Table 2.
Continued effort has been expended to ensure that the composite structure provides satisfactory service

and meets design requirements. The objective of minimized corrosion and fatigue damage has been
demonstrated. There have been no service reports of problems related to the composite material.
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Table2. In-ServiceStatusMay 31, 1991
Tail No. Airline Installation Hours Landings

N314DL Delta 3-13-84 19622 19097

N307DL Delta 3-16-84 19216 18690

[_> N670MA Markair 5-11-84 17318 19308

N671MA Markair 6-22-84 19175 19001

N672MA Markair 8-18-84 19568 20966

[_ Status on

6-2-90

INSPECTION RESULTS - The early 7000 hour structural inspections of the composite stabilizers
were performed on Delta Airlines aircraft N314DL and Markair aircraft N670MA as part of a regular "C"
check per Table 1. Inspections were performed per the recommended plan (Table 1 and Figure 6). There
were no structural problems or in service wear reported.The inspections required 24 and 17 hours down-
time respectively, which is consistent with the inspection of metal structure. The Markair aircraft
inspection showed no problems other than a debris strike on the lower surface. Damage was limited to the
protective finish.

Both operators have continued to perform regularly scheduled "C" checks. No structural problems
have been reported.

STABILIZER STABILIZE.
STATION STATION

STABILIZER 83.60 !i7.83
STATION
111.10

STABILIZER FRONT SPAR

S-I1

S-10

Figure 6.

NOT INSPECTION

REQUIRED

Upper and Lower Skin Panel NDT Inspection Requirements

IN-SERVICE DAMAGE

Markair has experienced two incidents that required repair. Damage to the skin panels occurred due to
impact by a foreign object. Both damages were repaired using techniques developed during the test
program. For example, the damage shown in Figure 7 was caused by debris resulting from an engine
failure. Pulse-echo NDT inspection of the surrounding area determined that the damage was limited to the

penetration through the skin and did not affect the stringers attached to the skin. The skin was scarfed and
prepared for repair (Figure 8). The repair used a hot bond/vacuum bag procedure (Figure 9) that required
tools readily available at maintenance depots. The completed patch (Figure 10) constituted terminating
action and returned the structure to unrestricted flying status.
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TEARDOWN 
In June 1990 a shipset of stabilizers became available for a teardown inspection. Markair, N670MA, 

crashed on landing approach to Unalakleet, Alaska. It was a non-revenue flight and there were no 
fatalities. The total time was 17318 hours and 19308 landings. The empennage portion of the airplane 
separated from the fuselage after impact, (Figure 11 and 12), with the left hand stabilizer receiving minimal 
damage. 

Figure 11. Markair N670MA 
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Figure 12. Markair N670MA Empennage 
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Boeing purchased the stabilizers and proceeded with a tear-down inspection. The left hand stabilizer 
was mounted in a fixture as shown in Figures 13-A and 13-B. 

The initial inspection followed the Maintenance Planning Schedule, Table 1, for a structural check. 
Pulse-echo inspection of the critical areas of the upper and lower skin panels detected no damage (Figure 
6). An extensive visual examination of the remainder of the structure revealed no evidence of service 
deterioration. 

being directed to identify: 
The inspection continued by systematically dismantling the box and inspecting each joint, the focus 

1. Any structural damage, delaminations, wear, fretting, etc., or 
2. Any corrosion at the aluminudgraphite interfaces. 

No structural damage or delaminations were found except for those resulting from the crash. The 
majority of the aluminum parts are located at the leading edge, trailing edge, and the inboard closure rib. 
The rib was removed (Figure 14). No corrosion was detected at any of the aluminudgraphite interfaces. 
The interior area of the box (Figure 15) was clean with no apparent moisture accumulation. All joints had 
the original protective system in place with no visual degradation or cracking. Fretting or wear was not 
apparent. 
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Figure 13-A. Stabilizer Mounted for Inspection, Upper Surface 
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The damage inflicted on the left hand stabilizer during the crash/skid was limited to abrasion of the tip 
structure and an impact on the lower surface. The results of lower surface impact are shown in Figure 13-B. 
Close visual examination of the structure verified that damage was limited to the immediate area adjacent to 
the impact. The skin panel laminate did not shatter or exhibit extensive delamination. 

SUMMARY 

The Boeing 737 graphite-epoxy horizontal stabilizer program has achieved its goals. Five shipsets were 
designed, fabricated, certified, and introduced into service.The graphite-epoxy structural box demonstrated a 
weight savings of 22% over the aluminum counterpart. 

After six years of commercial airline service, the 737 graphite-epoxy horizontal stabilizers are 
demonstrating excellent performance. A thorough teardown inspection of one shipset of stabilizers found no 
signs of deterioration due to wear, fatigue or environmental factors. The corrosion protection system 
developed to protect mating aluminum surfaces performed as intended and no corrosion was detected. 
Composite repairs in the field were easily installed and inspections used equipment and techniques familiar to 
the operators. The 737 graphite-epoxy stabilizers continue to demonstrate the advantages of advanced 
composite materials in terms of outstanding performance at reduced weight. 

Figure 13-B. Stabilizer Mounted for Inspection, Lower Surface 
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Figure 14. Inboard Closure Rib 

Figure 15. Interior of Box 
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