
NASA-CR-198?28 -..---.--__.__.
,° ,,

.| - _CTROMAGNETIC_ICATION LABORATORY _
1 __L"IENTINC REPORTiNO,_I ,: _ _: ,:-_-r

I:. " -- :-- /" ! ?, /

.Jt_1995 _: : , " - "

" 7 ...... ;-

?

EFIVICIE_ llaO.!_LING OF INTERCONNECTS AND

- _APA_IVE DISCONTINUITIES

INitiIGH-I_PEED DIGITAL CIRCUITS

- i- : .K;$. Oh and Jose Schutt-Aine
_Uni_ of Illinois, Urbana-Champaign

i

!

90738)

F

(NASA-CR-I :rr [_11.'_1

MODFLING G INTERC_N%FCT$ ANC

CAPACITIVF DISCONTINOITIES IN

HIGH-SP_ED DIGITAL CIRCUITS Thesis

(Illinois univ.) 139 p

_;3-at133

,'405-26') 70

Uncl as

0051808

:7

!-

_Z

U,



Z

g

_Z

TL_

=__

E_

_7

@

..... 7_--&L .....

77- --_

%------

.... __ __7 -

__7 -.- • - --.--_7 = - --"_ _

-- .. _.
......... n

. . - __



UILU-ENG-95-2544

Electromagnetic Communication Laboratory Report No, 95-1

EFFICIENT MODELING OF INTERCONNECTS AND CAPACITIVE

DISCONTINUITIES IN HIGH-SPEED DIGITAL CIRCUITS

K. S. Oh and J. Schutt-Aine

University of Illinois
Urbana, Illinois

Scientific Report

June 1995

Supported by

NASA-Ames Research Center

Moffett Field, CA 94035-1000

Grant No. NASA NAG2-823

Electromagnetic Communication Laboratory
Department of Electrical and Computer Engineering

Engineering Experiment Station
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801





111

PRECEDR_-PA_I_ BLg_ r_" F_"D

ABSTRACT

With the recent advances in high-speed digital circuits, modeling of interconnects

and associated discontinuities has gained a considerable interest over the last decade

although the theoretical bases for analyzing these structures were well-established as

early as the1960s. Ongoing research at the present time is focused on devising methods

which can be applied to more general geometries than the ones considered in earlier days

and, at the same time, improving the computational efficiency and accuracy of these

methods.

In this thesis, numerically efficient methods to compute the transmission line

parameters of a multiconductor system and the equivalent capacitances of various strip

discontinuities are presented based on the quasi-static approximation. The presented

techniques are applicable to conductors embedded in an arbitrary number of dielectric

layers with two possible locations of ground planes at the top and bottom of the dielectric

layers. The cross-sections of conductors can be arbitrary as long as they can be described

with polygons.

An integral equation approach in conjunction with the collocation method is used

in the presented methods. A closed-form Green's function is derived based on weighted

real images thus avoiding nested infinite summations in the exact Green's function;

therefore, this closed-form Green's function is numerically more efficient than the exact

Green's function. All elements associated with the moment matrix are computed using

the closed-form formulas. Various numerical examples are considered to verify the

presented methods, and a comparison of the computed results with other published results

showed good agreement.
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CHAPTER 1

INTRODUCTION

1.1 Background

In recent years, the numerical modeling and simulation of interconnections and their

discontinuities in digital integrated circuits have gained significant interest due to the

modem development of VLSI technology. As the complexity, density, and speed of the

integrated circuits continue to increase, signal delay and rise times axe increasingly limited

by interconnections rather than device speeds, and accurate estimations of the signal delay

and distortion due to interconnections become crucial at virtually every level of circuit

integration.

To accurately characterize signal delay distortion and crosstalk noise due to

interconnection lines, interconnects must be modeled as multiconductor transmission lines

instead of conventional lumped circuit elements, and associated discontinuities, such as

crossovers, bends, junctions, and vias, must also be accurately modeled. Although a

substantial amount of work has been performed over the last three decades to characterize

interconnections and their discontinuities in the electromagnetic community [1 ]-[3], most of

these theoretical studies resulted in methods which involve high computational cost and,

hence, are not suitable for the real-time design of CAD tools.

To overcome this difficulty associated with the theoretical analysis, a model-based

interconnect capacitance extraction tool is studied in the circuit community [4]-[6]. In the

model-based approach, analytical or table-look-up models are fitted to the data generated by

numerical simulation of EM-based techniques or experimental measurements. Although

this approach may reduce the time to compute parameters associated with interconnects, it

requires an impractical number of models, which limits its practical usage. Fortunately,

even when the layout of a circuit is very complex, the number of distinct interconnections

and their discontinuities is often very limited; furthermore, an accurate characterization of

interconnects is required only for the critical components (path) in the circuit. Thus, if a

method based on the electromagnetic analysis is sufficiently fast, it may be incorporated

into a layout CAD tool.

This thesis focuses on the discussion of computationalty efficient methods for

interconnection modeling. In particular, this thesis presents methods based on the quasi-
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staticapproximationto computethetransmissionparametersof a multiconductor inter-

connection line and the equivalent capacitances of interconnection discontinuities embedded

in a multilayemd dielectric medium.

1.2 The Quasi-Static Approximation

A multiconductor transmission line in a multilayered dielectric medium does not

support TEM modes due to the inhomogeneity of a dielectric medium [7], and full-wave

analysis must be considered to accurately characterize hybrid modes in the transmission

line. However, when the transverse components of the electric and magnetic fields are

predominant over the longitudinal components, the fundamental hybrid mode becomes a

quasi-TEM mode, in which TEM properties dominate the hybrid modes, and lines which

support a quasi-TEM mode are called quasi-TEM lines (similarly, lines supporting a TEM

mode are called TEM lines.) The valid range of a quasi-TEM mode is often determined

using the dimensional analysis on the Maxwell equations [8], [9]. For most quasi-TEM

lines, a quasi-TEM mode is valid up to several gigahertz; particularly, it is valid up to the

cutoff frequency of the next higher (hybrid) mode.

Since the electric field distribution of a TEM mode is identical to that of the static

case [ch. 3, 10] and static analysis is simpler and computationally less intensive than full-

wave analysis, quasi-TEM lines are often analyzed using a static analysis, which is then

called the quasi-static approximation. All methods presented in this thesis are based on this

quasi-static approximation. It should be noted that although not all transmission lines are

quasi-TEM lines, interconnections encountered in digital integrated circuits belong to quasi-

TEM lines

1.3 Electrostatic Solution Techniques

Under the quasi-static approximation, the analysis of interconnects and

discontinuities is performed by solving electrostatic and magnetostatic problems. As will

be discussed in Chapter 3, for two-dimensional problems, for example, solving for the

transmission parameters of interconnects, there exists an analogy between electrostatic and

magnetostatic problems; therefore, the solutions of two-dimensional magnetostatic

problems can be obtained by solving the equivalent electrostatic problems. Furthermore,

since this thesis focuses on the modeling of only the capacitive nature of discontinuities for

three-dimensional problems, electrostatic solution techniques are sufficient for analyzing

the problems considered in this thesis.



Electrostaticproblemsaregovernedby Laplace'sequationor Poisson's equation

with appropriate boundary conditions. Various methods have been employed to obtain the

solution in two-dimensional space [11]-[19]. Two commonly used techniques for both

2-D and 3-D are integral equation methods [20], [21] and the domain methods, such as the

finite difference method (FD) [22] and finite element method (FEM) [23], [24].

In the domain methods, the unknown potential distribution is solved to compute the

charge distribution over an entire domain by either directly approximating the differential

equation with the finite difference equation (FD) or using the equivalent variational

expression in conjunction with the method of subareas (FEM). The major disadvantage of

the domain methods is that the unknown potential distribution to be sought is over the

entire geometry considered, including the dielectric region; hence, it may be

computationally inefficient for the open geometry case even with the use of absorbing

boundary conditions to truncate the open geometry. The computational inefficiency of the

finite difference method is improved by employing the method of line (MoL) [25], [26]. In

MoL, all but one of the independent variables of Laplace's equation are discretized to obtain

a system of ordinary linear differential equations. These ordinary differential equations are

then decoupled using the orthogonal transformation matrix and solved analytically.

Although MoL is computationally very efficient for two-dimensional problems, it is still

burdensome for three-dimensional problems. Moreover, this method is only applicable to

infinitely thin conductors.

On the other hand, the conventional integral equation approach first obtains the

Green's function for a layered medium using the image theory, which consists of rather

slowly converging infinite series. Then, an integral equation is formulated using this

Green's function as its kernel and is solved by employing the method of moments (MoM)

to determine the unknown charge density on the conductor surfaces. Since unknowns in

this approach only lie on the surface of conductors, methods based on an integral equation,

in general, are more efficient than the domain methods. As noted in [12], for N layers, the

expression for the Green's function would consist of a nested N-1 infinite series; hence,

the evaluation of this Green's function is somewhat computationally burdensome.

Alternatively, the free-space Green's function is used in [12] and [13] to avoid infinite

series, but additional unknown charges on the dielectric interface and ground planes on top

of the unknown charges on the conductor surface must be included, resulting in a larger

moment matrix. Yet another approach to avoid an infinite summation is to solve the
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integralequationin thespectraldomain(SDA) [27], wherethe Green's function is in a

closed form; however, this approachcan not be applied to conductorswith finite
thicknesses,suchasMoL.

In this thesis, the spatial closed-formGreen's function is used to avoid the

evaluationof aninfinite serieswithout anyadditionalunknownsusedin themethodbased

on thefree-spaceGreen's function. A closed-formGreen's function for a multilayered
dielectricmediumwas fast introducedin [28]. This Green's function utilizes a finite

number of weighted complex images instead of an infinite number of real images required

for the exact Green's function. A closed-form Green's function based on a finite number

of weighted real images is In'st proposed in this thesis to avoid the use of expensive

complex operations.

1.4 Structure of the Thesis

As mentioned in the previous section, the technique to solve an electrostatic

problem (Laplace's equation) plays an important role in the quasi-TEM analysis, and

methods based on an integral equation are used throughout this thesis to solve various

electrostatic problems related to interconnections and discontinuities. All the integral

equations encountered in this thesis are solved using the method of moments (MoM) [29],

[30] with pulse basis functions and point matching (delta testing), and the moment matrices

associated with the integral equations are constructed using an analytical formula for most

cases, avoiding numerical integration or infinite summations.

The core of an integral equation approach is the determination of the Green's

function. The exact Green's function for a multilayered medium is often obtained by using

the image theory, and it consists of an infinite number of images. Chapter 2 discusses an

efficient expression of this Green's function based on numerical approximation. This new

expression of the approximate Green's function uses only a finite number of images;

hence, it is in a closed form. To obtain this closed-form expression, the spectral-domain

Green's function is first derived in this chapter; then, the spectral-domain Green's function

is approximated with real-valued exponential functions using the method based on the

relaxation of curve fitting. The closed-form Green's functions for a point, line, and semi-

infinite line charges are then obtained by analytically converting the approximate spectral-

domain Green's function to the space domain.



Chapter3 discussesthe computationof the four parametersof a multiconductor

transmissionline, viz., thecapacitancematrixC, the inductancematrix L, the resistance

matrixR, andtheconductancematrix G. ThecapacitancematrixC is computed from the

free charge distribution on the surface of conductors, which is determined from the

electrostatic analysis. To compute the inductance matrix L, an analogy between

electrostatic and magnetostatic problems for uniform transmission line configurations is

used. Hence, the conduction surface current distribution is computed by solving the

equivalent electrostatic problem and then used to compute L.

The resistance matrix R is also computed from the current distribution used in the

computation of the inductance matrix by performing the perturbation analysis on this

current distribution. Conventionally, the resistance matrix is defined in terms of power

loss on conductors. The resulting matrix is nondiagonal in nature and is strongly

dependent on the current excitations used in the computation. Thus, if the resistance matrix

is obtained before the actual current distribution on the conductor has been determined, the

result would not be too meaningful. In this chapter, the diagonal resistance matrix is

defined in a manner such that it is relatively insensitive to the choice of current excitations

compared to the nondiagonal resistance matrix, which is often computed using the

perturbation on attenuation constants [31 ]. In addition to losses on the conductor traces,

those due to imperfectly conducting ground planes are also incorporated into the resistance

matrix.

The remaining transmission parameter, the conductance matrix G, models dielectric

losses and can be computed from the shunt current density. Since this current density is

related to the normal component of the electric field at the surface of a conductor, which, in

turn, is related to the surface charge density, the shunt current density can be obtained from

the surface charge density of the lossless system when losses due to the imperfect dielectric

media are small.

Chapter 4 is devoted to modeling of various strip discontinuities. In particular, a

method to compute the equivalent (excess) capacitance of junction discontinuities, such as

open ends, step junctions, bends, and T-junctions, are presented. Unlike other

approaches, only one integral equation is employed to handle the above discontinuities

instead of formulating a different integral equation for each discontinuity type. The integral

equation is formulated in terms of the excess charge distribution to avoid the numerical
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instabilitiesassociatedwith the total chargeformulation, wherethe integral equationis

formulatedin termsof thetotalchargedistribution[21].

Chapters 5 and 6 discuss the modeling of yet other discontinuity types, vias and

crossovers, respectively. These discontinuities differ from the ones discussed in Chapter 4

since conductor traces in these discontinuities could be located in the different dielectric

layers. Furthermore, for a crossover case, traces are no longer electrically connected;

hence, the equivalent capacitance of a crossover contains a mutual term in addition to two

self-terms, and the coupled integral equations have to be solved instead of a single integral

equation. Again, all integral equations are formulated in terms of the excess charge

distributions. The utilization of the Fast Multipole Method (FMM) [32]-[36] in accelerating

the MoM-based computation of the excess capacitance of a crossover is also considered in

Chapter 6.

Finally, the conclusions and some future work evolving from this thesis are

presented in Chapter 7.
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CHAPTER 2

DERIVATION OF THE CLOSED-FORM GREEN'S FUNCTION FOR A
MULTILAYERED DIELECTRIC MEDIUM

2.1 Introduction

Among the various electrostatic solution techniques mentioned in Section 1.3, an

integral equation approach requires the most analytical effort, mainly due to the

determination of the expression of the Green's function for a rnultilayered dielectric

medium. Fortunately, the spectral-domain expression of the Green's function has already

been found by several authors: the expression for full-wave analysis can be found in texts

[ 1], [2], whereas the expression for a electrostatic problem can be found in several journal

papers [3]-[6].

The conventional approach to obtain the expression of the Green's function is the

use of the Fourier transformation, in which the equation governing the physics of

problems, the Helmholtz wave equation for full-wave analysis and the Laplace equation for

electrostatic analysis, is converted to the spectral domain by transforming all but one of

space variables. Then, the resulting equation, which is an ordinary differential equation in

terms of the remaining one space variable, is analytically solved to obtain the expression of

the Green's function in the spectral domain. The major bottleneck of this approach is that

the direct analytical inversion of this spectral-domain Green's function to the space domain

is often impossible.

A simple but brute force approach for this inversion is the use of numerical

integration [6], [7]. Although this approach is commonly used in full-wave analysis

because of the complexity of the expression of the spectral-domain Green's function [7], it

is seldom used in static analysis since this approach is computationally intensive and does

not allow an analytical expression for the Green's function in the space domain) Yet

another simple approach is to expand the spectral-domain expression using the geometric

series. Then, an analytical expression in the space domain is found by applying the inverse

Fourier transformation formulas to the resulting series: the Sommerfeld identity (for 2-D

_The comparison of the CPU time used in this approach and other alternative approaches is given
in Section 3.2.2.
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problems) and the Weyl identity (for 3-D problems) for full-wave analysis [Chapter 2, 2]

and the equivalent identities ((2.16a) and (2.16b)) for static analysis. The resulting

expression in the space domain can be shown to be identical to one obtained by applying

the image theory directly in the space domain [8]. The major disadvantage of this approach

or equivalently the approach based on the image theory is that the resulting expression

involves the summation of a nested infinite series; for N layers, the expression would

consist of a nested N- 1 infinite series as mentioned in Chapter 1.

In this chapter, the closed-form expression of the Green s function in the space

domain, which does not involve any numerical integration or nested infinite summations, is

presented. The expression of the spectral-domain Green s function is first derived in the

following section. This expression is different than the ones given in [3]-[6], and, as will

be shown in Section 2.3, this form of the expression is more convenient for the purpose of

obtaining the closed-form Green s function. Then, the spectral-domain Green s function is

approximated with real-valued exponential functions, and the resulting approximate

Green s function is analytically inverted to the space domain to obtain the closed-form

Green s function.

2.2 Derivation of the Spectral-Domain Green s function

The cross-sectional view of the general geometry of a multilayered medium is

shown in Fig. 2.1. An arbitrary number N d of nonmagnetic lossless dielectric layers are

backed by two optional ground planes with possible top or bottom locations. All dielectric

layers and ground planes are assumed to be infinite and uniform in the xz plane.

Consider a unit point charge located at the mth layer at (x o, Yo, Zo) (Fig. 2.2). The

three-dimensional Green s function G 3D is the potential due to this point charge and

satisfies the following Poisson s equation:

V2G 3D (x, y, zlx o, Yo, Zo ) = _ _(x - x o )(5(y - Yo )t_(z - Zo )
e(y)

(2.1)

To assure the unique solution to the above equation, G 3D has to satisfy the appropriate

conditions at the boundary: G 3D is constant at the surface of the ground planes, and G 3D

and the normal components of the displacement field must be continuous across the

dielectric interfaces. Noting that the dielectric medium is uniform in two directions, we can
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OptionalTop GroundPlane

i

ENd,lJo Nd -

Y=dNd

y-dNd- 1

Optional Bottom Ground Plane

Y=d2
Y

Y=dl _x
y=0

Figure 2.1. The cross-sectional view of a multilayered dielectric medium.

I I

y=dn

y=dn-1

y=dn-2

y=dm y

Y=dm-1 [z__--_y=dm-2 I

I I

Figure 2.2. The geometric configuration used to determine the spectral-domain expression
of the Green's function.
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representtheGreen'sfunctionandthepointchargein thespectraldomainin termsof their

transformsin thex- and z-directions. The space-domain and the spectral-domain Green's

functions are then related by

-+.oo-I-_

1 fllXo, Yo, Zo) (2.2a)G3D(x, y,Z[Xo, Yo, Zo) = _ f Y'

-,..00_

G3D(ot'Y'fllXo'Yo'Zo)= _ fdxdzeJ°t(x-x°)+Jfl(z-z°)G3D(x,Y, Zlxo, Yo, Zo)

---.00--00

(2.2b)

where (_3D(ct, y, flx o, Yo, Zo) is the 3-D spectral-domain Green's function and t_ and fl are

the transform variables associated with the x- and z-directions, respectively. Then, the

corresponding equation for (2.1) in the spectral domain is written as

( 02_ - °r2-fl21cr3D(ot'y'/3lx°'Y°'Z°)= 1-'-_-_(Y-Y°)e(y) (2.3)

The general solution of the above equation is given by

_3D(y, yro ) _ Ae-?Y + BEN', y = 4o_ 2 + t32 (2.4)
2emY

where the first subscript m denotes the layer where the source is located, whereas the

second subscript n will be used to denote the layer where the Green's function is evaluated.

A and B are unknown expressions to be determined. Note that e m appears in (2.4) unlike

(2.3), where e n appears.

An identical expression can be obtained for the 2-D spectral-domain Green's

function t_ED(? ', ylPo)bY Fourier transforming GED(x, )_xo, Yo) in the x-direction with the

transform variable y assuming the layers are uniform in the x-direction. Furthermore, since

the unknown coefficients A and B are to be determined using the boundary conditions only

in the y-direction, it is easily seen that the expressions for _2D and (_3D must be identical

under these Fourier transformations. Thus, in what follows, the superscripts for the

spectral-domain Green's functions are omitted.
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Applying the boundaryconditionsat the dielectricinterfacesand groundplanes,
(2.4)canbewrittenas

A ÷

t_(y,Y[ro)=_(e-_Y+ff'n,n+le-)'(2dn-Y) ) Y > Yo (2.5a)

O(y, ylro)= Am'n (e +_y + _ e+}'(2dn-l-y)]
2era, Y n,n-1 ]

Y< Yo (2.5b)

where

n-I

+ + I-I ;Am, n = Am, m ,j+l

jmm

m

Am'n = Am'm H SSj-1

j=n+l

S;j+I = Tj,j +1

1 + Fj,j+IPj+I,j+2 e2y(dj-dj+l)

(2.6)

(2.7a)

S-f,j_ 1 = Tj,j -1
r _ 2F(dj_ 1-d j) (2.7b)

1 + _j,j_l,j_l,j_2 e

Fj,j+I = f J'J+l + FJ+l'j+2e2y(dj-aj+l)

1+ Fj,j+IFj+I,j+2 e2y(dj-dj+l) (2.8b)

£'j,j-1 = FJ'J-I + ['J-l'j-2e2y(dj-2-dj-l)

1 + Fj,j_IFj_I,j_2 e2Y(dj-2-dj-l) (2.8b)

_i - c,j 2e i
Fi, j = _ T/,j = _ (2.9)

e i + Ej e i + £j

Here, F/,j and T/,j are the reflection and transmission coefficients. Fj, j+ 1 takes the value

of 0 or -1 if the jth layer is a half space, or the (j+ 1)th layer is a ground plane, respectively.

Fn, n+l is the generalized reflection coefficient, which is the ratio of the amplitudes of the

potentials at y =dn due to the image charges located above and below y -dn. A+m,m and

Am, m are unknown expressions to be detemtined. The superscripts + and - are used to

denote the cases for y > Yo and y < Yo, respectively.
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Usingthefacts,at y = Yo, that (2.5a) and (2.5b) must be equal and that the normal

component of the displacement field must be discontinuous by the magnitude of the charge,
+

we can obtain expressions for Am, m and Am, m as follows:

'-Y°'] (2.10a)

Am, m = Mm[e -yy° + T'm,m+l e-y(2dm-y°) ] (2.10b)

where

M m [1 /_, /_, e 2r(a''-_-a'n)]-I= -- re,m-1 m,m+l ]
(2.11)

The complete expression of the spectral-domain Green s function has now been
+

derived. In (2.5a), Am, n can be physically interpreted as image charges (and the actual

charge when m is equal to n) located below the observation point y, whereas the product of

Am,n+ and Fn, n+l can be interpreted as image charges located above the observation point.

A similar interpretation can be given to (2.5b).

It is interesting to note that all of the above equations have the following form:

f_ (),) = Cl (2.12)
1 - C2fk_ l ()')e _3

where Cl, c2, and c3 are some constants which satisfy 0 < c2fk_l(_')e yc3 < 1, and the

expression of fk-I (2') is in the same form as fk (Y) for k > 1 and is a constant function for

k = 1. The value of k depends on the number of dielectric layers; for instance, for N

dielectric layers k takes values from 1 to N. Since 0 < c2fk_l(Y)e yc3 < 1 for all k, the

geometric series can be used to expand fk(Y), and the resulting series is a nested N-1

infinite series. The entire expression of the spectral-domain Green s function can then be

written in terms of this series, and each term of the series can be conveniently inverted to

the space domain using the integration formulas (2.16a) and (2.16b) to be given in the

following section. It can further be shown that the resulting expression of the Green s

function in the space domain is identical to the one obtained by using the image theory.

Hence, the exact expression of the Green s function in the space domain generally consists

of a nested infinite series.
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In the following section, the closed-form spatial Green s function, which avoids

this nested infinite series, is derived based on the expression of the spectral-domain

Green s function obtained in this section.

2.3 Derivation of the Space-Domain Green s function

In this section, the closed-form expression of the Green s function in the space

domain is obtained by applying the exponential approximation to the spectral-domain

Green s function. To obtain the closed-form expression of the Green s function in the

space domain, the spectral-domain expression of the Green s function derived in the

previous section is first rearranged by factoring out all y and Yo dependencies as follows:

_(T, Yro)_ 1 (K{(_y,m,n)ey(y+yo-2dn) + K_(),,m,n)ey(y_yo+2(dm_l_dn))
2£m_Y

+K_(y,m,n) er(-y+y°) + K_(y,m,n) ey(-y-y°+2dm-l)) Y > Yo (2.13a)

d(r, Ylro) = I____(K_ (y, m, n)e r(y+y°-2dm) + Kf (y, m, n)e r(y-y°)
2troy

+K3(Y, m, n)e y(-y+y°+2(dn-I-dm )) + Kin, n,4 ey(-y-y°+2dn-l)) Y < Yo (2.13a)

where

n-1

j=m

n-1

K._ (_', re, n)= MmFn, n+lFm, m_ 1H Sj'j+I

j=m

n-1

K_(y,m,n):MmHS_j+I

j=m

n-1

K'_ (y,m, n)= MmFm, m_ 1H sf j+l

j=m

(2.14a)



17

tn

KlQ/'m'n)= mmff'm,m+l

j=n+l

rn

K2(Y,m,n)= Mm HsSj_l
j=n+l

m

K3 (y, re, n)= Mmf'm,m+lT'n,n_l H SSj-I

j=n+l

m

K4('Y,m,n)= MmFn, n-I HsL,_I
j=n+l

(2.14b)

The determination of the closed-form spatial Green's function can now be preceded by

approximating the above four coefficient functions K_(y,m,n) using exponential

functions. It is important to mention that although K+(7, m, n) is dependent on m and n, it

is not a function of the source and observation locations, y and Yo; hence, the

approximation can be performed without any prior knowledge of the geometry of the

conductors.

One physically intuitive approach to approximate the potential due to a charge in the

layered medium may be the use of a finite number of weighted image charges in the

homogenous medium, which is equivalent to approximating the coefficient functions

K+(y, m, n) with exponential functions. These weighted images can be either complex or

real depending on whether complex-valued or real-valued exponential functions are used in

the approximation. The equivalence between the weighted image charges in the space

domain and exponential functions in the spectral domain will be shown later in (2.18a) and

(2.18b).

In electromagnetic analyses, the complex-valued exponential functions are often

used for pole-zero modeling of signals, such as an electromagnetic-scatterer response. The

least-square formulation of this exponential approximation results in nonlinear equations

and can only be solved by iterative methods, such as gradient descent procedures or the

Newton method. Due to the computational inefficiency of these algorithms, some other

suboptimal noniterative techniques are proposed: the least-squares Prony method and the

generalized pencil-of-function (GPOF) method [9], [10]. These suboptimal methods are
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used to obtain the closed-form Green s function for full-wave analysis [11]-[13] 2 and

further applied to obtain the closed-form Green s function for electrostatic analysis [8].

Although these algorithms are noniterative, their computation involves matrix inversions

and a polynomial factoring or a solution of the generalized eigenvalue problem, which still

can be considered as computationally inefficient.

Fortunately, the four coefficient functions K_(7,m,n) in (2.13a) and (2.13b) are

nonoscillatory and smooth functions of ),; hence, each coefficient function can be

sufficiently approximated with real-valued exponential functions instead of complex-valued

exponential functions, avoiding computafionally expensive complex operations. The real-

valued exponential approximation method described in [14] is employed in this thesis. The

method is based on the relaxation of curve fitting, and the details of the procedure are given

in Appendix A. Although this method is simple and iterative in nature, it converges to

reasonable accuracy in a few iterations and requires much less computation time as

compared to those for the previously mentioned methods.

It can be seen that a pole exists at 7 = 0 for a medium with both top and bottom

ground planes, and K_(7, m, n) can no longer be accurately approximated with exponential

functions. Thus, a special treatment is required for this case to extract the pole from

K_(),, m, n). In the following subsection, the closed-form Green s function is obtained for

cases with no ground planes or only the bottom ground plane, and the subsequent

subsection discusses the derivation of the Green s function for a case with both top and

bottom ground planes.

2.3.1 Closed-form Green s functions for geometries without any ground
planes or with only the bottom ground plane

When the dielectric layers are not backed by both top and bottom ground planes, the

four coefficient functions K_()',m,n) do not have any poles; furthermore, they are

nonoscillatory and smooth functions of _,. Hence, they can be approximated using the

exponential approximation method discussed in Appendix A as follows:

2Strictly speaking, the closed-form Green s function does not exist for a full-wave case since y and
Yo dependencies cannot be removed from the coefficient functions before the approximation.
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-l-
Nm,n,i +j

Ki:t:(m'n'Y)= Z l"m,n, ie"-'+'Jam'hi)"'

j=l

(2.15)

+
where Nm, n, i denotes the number of exponential functions used in the approximation of

K_(y, m, n), which typically ranges from 5 to 10. In general, Kit(y, m, n) have asymptotic

values, and an analytical extraction of these values should be performed to increase the

accuracy of the approximation or to reduce the computation time. These asymptotic values

can be easily obtained either analytically or numerically. Furthermore, some of these

coefficient functions are often zero or one, and these properties can also be explored for

further computer time savings.

Once the exponential approximation is performed in the spectral domain, the closed-

form Green s functions for 2-D and 3-D can be obtained in the space domain by using the

following inverse Fourier transformation formulas:

- In(p) =-ln(_x2 + y 2 )

e-I 'l
1 I d_-J)'x (2.16a)

+_a .t-oo

r =_x 2+y2+z2 =_ y
(2.16b)

where y=_/a2+fl2t _ in (2.16b). The above identities can be easily derived by

considering the potentials due to the unit point and line charges in a homogeneous medium

without any ground planes, and the corresponding identities for a full-wave case are

Sommerfeld s and Weyl s identities, respectively. Applying the above formulas to (2.13a)

and (2.13b), the closed-form 2-D and 3-D Green s functions are written as

4

G2D(plpo) = 1 Zfi2D,+(ppo ) (2.17a)
21tEm i=1

4

G3D(rlro)= 1 Zfi3D,+(rro )
4gEm i=1

(2.17b)

For i= 1 and y >_Yo, the expressions of fi2D'+(rlro) and fi3D'+(rlro) are given by
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+
Nm,n,I

42 "+(4po)=
j=l

C+m',Jn,1ln(_(X-Xo) 2 (y+ yo-2dn _+'J• . + +urn, n,1 )2) (2.18a)

+
g_n, n,1

-
j=l

Cm+,J
,n,1

_(X-Xo) 2 +(Y+ Yo -2dn a. ,,+,J _2 +(Z_Zo)2_m, n, 1 J

(2.18b)

Similar expressions can be obtained for fi2D'+(dro) and fi3D'+(rlro) for other values of i.

The derivations of the closed-form Green s functions for a point charge and a line

charge are now completed for geometries without both top and bottom ground planes.

Considering the forms of (2.18a) and (2.18b) it is clear that the exponential functions used

to approximate the Green s function in the spectral domain correspond to the weighted

images in the space domain.

In the computation of the equivalent capacitances of interconnection discontinuities,

the Green s function for a uniform semi-infinite line charge, Gsemi(rro,_), is required to

formulate the integral equation in terms of the excess charge distribution. The closed-form

Green s function for a semi-infinite line charge is derived in the rest of this subsection.

To derive Gsemi(_ro,_), the auxiliary Green s function for a line charge with

polarity reversal is employed [15]. Consider a uniform line charge, which starts from

z=_ and is infinitely extended in the positive z-direction (see Fig. 2.3); then

G semi (r ro, 4) can be expressed as

Gsemi(rlro,¢)= l[G2D(plpo)+ GP(rlro, ) ] (2.19)

where GP(rlro,_) is the Green s function for a line charge with an abrupt polarity reversed

from minus to plus at z = 4. Since the closed-form expression of G2D(plpo) can be

obtained using the previous technique, the closed-form expression of Gsemi(rlro,_) can be

determined once the closed-form expression is derived for GP(rlro, ). The expression for

GP(dro,_) is rather easily obtained by integrating the potential due to a point charge:
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(a) (b)

Figure 2.3. The decomposition of (a) the uniform semi-infinite line charge to (b) an infinite
uniform line charge and an infinite line charge with the polarity reversal at

Z-'_.

GP(rlro,_)=_IG3O(dro)+ G3O(rlro)= 1 fip,+(rro,_)
41re m

.__ _ i=l

(2.20)

The integration can be performed using the following formula [(3.3.40), 16]"

I (2.21)

Again, for i = 1 and y > Yo, fiP'+(rlro,_) is given by

flP'+ (r ro,_) =

+

Nm,n,l
(_J(X-Xo) 2 +(Y+ Yo -2dn -"+'J _2 ]-- ,.ra,n,1 j + (Z -- _)2 + (Z -- _)

t'+'j • In

"m,n,l _j=l (x Xo) 2 +(Y+ Yo 2d n a_,,+,J _2--"m,n,l' +(z _)2 _(Z _) )
(2.22)

2.3.2 Closed-form Green s functions for geometries with both top and
bottom ground planes

As mentioned earlier, when both top and bottom ground planes are present, all of

the four coefficient functions K'_(7, m, n) are still nonoscillatory but contain a pole at 7 = 0.

Since exponential functions are bounded, they cannot be used to approximate unbounded

functions; therefore, this singularity must be extracted prior to the exponential approxima-

tion to preserve good approximation results. In [ 11 ], the complex exponential approxima-

tion has been performed without considering this singularity and used to obtain the closed-

form Green s function. As a consequence, the resulting capacitance values from this
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Greens functionwereshownto containlargeerrors. Theextractionof this pole canbe

accomplishedby rewriting G()', ylro) in the following manner:

G(r, Yro) = Rm,,,Gh(r, Y to) + G' (r, ylro) (2.23)

where (Th()',y[ro) is the spectral-domain Green s function for a homogeneous medium

with the same ground planes, i.e., all dielectric layers are replaced by the source layer.

Again, Gh(_y,_r o) contains apole at ),= O. Rm, n is a constant which is determined such

that tT' (),,_ro) is a well-behaved function without any poles. Rm, n can be obtained either

numerically or analytically by taking limits of G(_y, y[ro) and Gh (_y,Y[ro) as _' --> O.

Now the technique used in the previous section can be applied to obtain the closed-

form expression for (7' ()',yro) in the space domain, and the expressions of G(7,ylro) are

obtained once the space-domain expressions of Gh(_,Yro) are determined. Since the

medium is homogeneous for Gh(_,,Y[ro), the expressions can be easily obtained using the

image theory and are given by

" (4 )
G2D,h(ppo) = 1 _ In (x-x°) +(Y-Y°-2kh)2 (2.24a)

2_k=_. _ _4(X-Xo) 2 +(y+ yo-2kh) 2 J

G3O'h(rr°) = _ _ (x-- Xo) 2

1

+ (Y - Yo - 2kh) 2 + (z - Zo) 2

1

_/(X- Xo) 2 + (Y + Yo -2kh) 2 + (Z- Zo) 2

(2.24b)

GP.h(dro,_)=__ £ lnl_/(X-Xo)2+(Y-Yo-2kh)2+(z-_) 2 +(z-4)
k=--** _(X-Xo )2 +(y-yo -2kh)2 +(z-_)2-(z-4)

_(x - x o)2 + (y + Yo - 2kh) 2 + (z - 4) 2 - (z - 4) /

_(X-Xo) 2 +(y+ yo-2kh) 2 +(z-4) 2 +(z-_) J (2.24c)

Unfortunately, all expressions are written in terms of infinite series. G2D'h(ppo) can be

alternatively expressed using a closed-form formula [17], but this closed-form expression

requires numerical integration when the moment matrix is computed, unlike (2.24a), which
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canbe integratedanalytically(seeSection2.4). The detaileddiscussionof alternative

expressionsfor G2D'h(plpo) is given in Appendix B. For the remaining Green s

functions, G3D'h(rro) and GP'h(dro,_), such a closed-form formula does not exist at least

without special functions and an infinite-series expression cannot be avoided when both top

and bottom ground planes are present. However, the expressions for G2D(ppo),

GaD(rlro), and GP(rro,_) given in this subsection are still numerically more efficient than

the ones obtained from the conventional image method since a nested infinite series (N-1

nested infinite series for N layers) of the conventional method is reduced to a simple inf'mite

series without any nesting as shown in the above equations. For this reason we shall still

refer to the Green s functions expressed by (2.23), (2.24a), (2.24b) and (2.24c) as closed-

form Green s functions.

2.4 Closed-form Integration Formulas for the Elements of Moment
Matrices

When integral equations are solved using the method of moments (MoM), the

elements of the moment matrix are computed by integrating the Green s function over basis

and testing functions; the closed-form formula for this integration is discussed in this

section. The general forms of the integrations required to construct the moment matrix are

f f T(p)G2D(p Ps)B(Ps)dPsdP

ItIs

(2.25a)

f fT(r)G3D(rrs)B(rs)drsdr

l-2t_s

(2.25b)

where T and B are testing and basis functions, ls is the source line segment, and lt is the

testing line segment where the potential is evaluated for 2-D problems. Similarly, 1-2s and

12 t are the source and testing patches for 3-D problems. The method of collocation uses

the delta testing function (point matching) to reduce the above double integrations to a

single integration; it is used in this thesis whenever the moment method is employed. The

testing point is usually chosen at the center of a segment or a patch.

For basis functions used to expand the surface charge density, pulse-type

functions, which are commonly used in the method of collocation, are used in this thesis.

Then, (2.25a) and (2.25b) simplify to
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(2.26a)

(2.26b)

where Pc and rc are the centers of the testing segment and patch.
semi

associated with G (rclrs,_) can be written as

_ G semi ( rc[rs, _)dPs

Is

Similarly, the integral

(2.26c)

Equation (2.26a) appears in the computation of the moment matrix for 2-D problems or the

right-hand side vector (excitation vector) computation for the equivalent capacitance of a

crossover. Equation (2.26b) only appears in the computation of the moment matrix for 3-D

problems, whereas (2.26c) only appears in the computation of the right-hand side vector

for the equivalent capacitances for various junction discontinuities.

After substituting (2.17a) and (2.18a) into (2.26a), the line integrals associated with

each term in the summation can be put into the following form with manipulations in y, Yo,

and the terms due to the exponential approximation:

f ln(4(x-x' )2 + (y- y )2 )dF = _ln(lp-p'l)d/' = _ln(P)d/'

c c c

(2.27a)

Similarly, for 3-D problems we have

(x - x' )2 + (y _ y, )2 + (Z - Z' )2
:ff :ff =It-el

s s

(2.27b)

The evaluations of (2.19a) and (2.19b) over an arbitrary polygonal patch and a line

segment are well-known and the closed-form formulas are given in [ 18]. On the other

hand, (2.26c) can also be integrated analytically using the following integration formula

[19]:
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2br,=i 2a'/L Clbl4a + b2+ 112

-tan-l( al2 ]]+2aln(12+_a2+b2+12 2 ]

t.ibi4a_+_,_+/_JJ- )C/,+

,.¢_/a_+_+,_+a]_,.(_/a_+_+,,_+a
+12t_ia_+_,_+l__aj/, t.4._+_,_+/,__a

(2.27c)

Finally, using the above integration formulas all elements of the moment matrices

and the right-hand side vectors encountered in this thesis can be performed analytically.

2.5 The Comparison of the Exact and Approximate Green s Functions

In this section, the comparison of the closed-form Green s function, which is

approximate, and the exact Green s function is presented. As a first example, the medium

shown in Fig. 2.4 is considered. The maximum number of 11 exponential functions are

I Free space
I

5_ i Superstrate

I

Ground Plane

m

1 mm

m

0.6mm

m

Figure 2.4. The first geometry used to test the closed-form Green s function.
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used in the approximation. The observation and source points, y and Yo, were taken to be

0.6 mm and 1.6 mm, respectively. Figure 2.5(a) shows the comparison of the

approximate and the exact Green s functions, and Fig. 2.5(b) shows the relative errors; the

maximum relative error was less than 0.023 %. It is important to observe that although the

exponential approximation might fail for the large argument case due to its fast decaying

nature, by extracting the asymptotic values and the y and Yo related exponential factors

from the coefficient functions, the limiting behavior of the overall approximated Green's

function would still remain accurate for the large values of 7-

As a second example, the two-layer medium case shown in Fig. 2.6 is considered.

A maximum number of exponential functions used in the approximation was five. y and Yo

were again taken to be 0.6 mm and 1.6 mm. The comparison is shown in Figs. 2.7(a) and

2.7(b), and an excellent agreement was found. The approximate closed-form Green s

function is also compared with the exact Green s function in the space domain. The exact

2-D Green s function is obtained using the image method and is given by

G2D(D Do) = (1 +/")Z ln/(x - x°)2 + (y- Yo- (2k -1)h)2 )
4/re° k=l _,(x _o)2 +"_y-_ yo (2k- 3)h) 2)

y > h (2.28a)

i.k_lln ((__x-xo) 2 + (y+ (2k-1)h) 2L X-Xo 
4/l;t_° k=l

y < h (2.28b)

where

F = e° - el (2.28c)
eo+e_

In the above expressions, it is assumed that the line source is located at the dielectric

interface.

The comparison results are shown in Figs. 2.8(a) and 2.8(b), and the results were

in good agreement. This example justifies the validity of the approximation of the Green s

function in the spectral domain. It is observed from numerous approximations that the

smaller number of dielectric layers required fewer exponential functions to approximate, as

expected. In fact, for one layer with a ground plane, the closed-form Green s function

becomes exact since there is only one image charge.



27

3.5 101 2

3 l012

2.51012

>
'_" 12
•-- 2 10

_ 2
1.5 101

o

1 101 2

5 101 !

0

Comparison of the Green's functions

in the Spectral Domain

-__ ................_........................:.................................................._........................_.....................

-....._ii ......................i........................i[---_._, exact _..................

i 11- _ approx.[
......................_...................... i........................_....................

0 0.5 1 1.5 2 2.5

(a)

2.5 10- 4

The Relative Error in the Approximation

210 -4

1 10 -4

5 10 -5

0 10 °

0 0.5 1 1.5 2 2.5 3

(b)
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For the final example,the stripline caseshown in Fig. 2.9 is considered. In

general,a slightly largernumberof exponentialfunctionswas requiredfor a strip case,

whereboththetop andbottomgroundplaneswerepresent,anda maximumnumberof 13

exponentialfunctionswereusedin this approximation.Both y and Yo were taken to be

0.1 mm. To compare the approximation results, G' (y, ylro)in (2.23) is considered instead

of  O',ylro). The comparison results are shown in Figs. 2.10(a) and 2.10(b), and a good

agreement was found.

For most numerical examples given in this thesis, the exponential approximation

took less than a second of the CPU time in Sparc 10 and Alpha workstations; thus, the

CPU time used in the approximation was negligible compared to the one for the

construction or the inversion of the moment matrix.

Finally, it should be mentioned that since the method of moments is an approximate

way of solving an integral equation, only a moderate accuracy is required for the Green s

function. In general, five exponential functions for cases with the presence of either one of

the top and bottom ground planes and seven exponential functions for cases with the

presence of both the top and bottom ground planes were enough to solve most capacitance

problems.

I Ground Plane

I
e-° I Free space

I

Ii Superstrate

Ground Plane

0.3 mm

0.1mm

0.2 mm

Figure 2.9. The second geometry used to test the closed-form Green s function.
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2.6 Physical Interpretation of the Closed-Form Green s Functions

As shown in the previous section, the closed-form Green s function well

approximated the exact Green s function, which requires an infinite number of images,

using only a finite number of weighted images. In this section, the underlying physics of

this closed-form Green s function is discussed to understand the difference between the

images due to the image principle and the exponential approximation.

Let us first assume that we are only interested in the circular region around a point

source as depicted in Fig. 2.1 l(a). Then, the infinite number of images in the exact

Green s function may be truncated to a f'mite number of images to evaluate the potential due

to this point source inside of the region of interest up to a certain desired accuracy as shown

in Fig. 2.1 l(b). This finite number of images is spaced and weighted such that its

extension to the infinite number of images satisfies the boundary condition at the dielectric

interface over infinite distances. The boundary condition on the portion of the dielectric

interface that lies inside the region of interest may still be satisfied by employing a new set

of images, which are nonuniformly spaced and weighted. Because of the nonuniform

spacing and weighting, the smaller number of images than the one for Fig. 2.1 l(b) may be

required to satisfy the boundary condition as illustrated in Fig. 2.1 l(c). Thus, the finite

weighted images in the closed-form Green s function may be used to evaluate the potential

distribution inside this region of interest.

Since the closed-form Green s function utilizes only a finite number of images,

these images are located over a finite region; thus, these images cannot satisfy the boundary

condition at large distances and may not be used to evaluate the potential at such large

distances. The similar situation applies to the truncated version of an infinite number of

images. However, the valid range of the weighted images resulting from the spectral-

domain exponential approximation turns out to be large enough for most practical

problems. For instance, the mutual capacitance between the two conductors computed

using the closed-form Green s function is accurate until the separation distance between the

two conductors becomes large enough that the mutual capacitance becomes negligible as

compared to the self-capacitances.
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Figure 2.11. (a) A point source in inhomogenous media and its equivalent systems using
(b) the image theory and (c) weighted images.
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2.7 Summary

Numerically efficient forms of the Green's functions for a point charge, a line

charge, and a semi-inf'mite line charge embedded in a multilayered dielectric media with two

optional ground planes were presented in this chapter. The presented Green's functions are

approximate and utilize a finite number of weighted images instead of an infinite number of

images used in the conventional exact Green's function. The analytical integration

formulas to integrate these Green's functions to evaluate the elements of the moment

matrices and the excitation vectors were also presented.

2.8 References

[1] T. Itoh, Ed., Numerical Techniques for Microwave and Millimeter-Wave

Passive Structures. New York, NY: WHey, 1989.

[2] W.C. Chew, Waves and Fields in Inhomogeneous Media. New York, NY: Van
Nostrand Reinhold, 1990.

[3] R. Cranpagne, M. Ahmadpanah, and J.-L. Guiraud, "A simple method for
determining the Green's function for a large class of MIC lines having multilayered

dielectric structures," IEEE Trans. Microwave Theory Tech., vol. 26, pp. 82-87,
February 1978.

[4] N. Farrar and A. T. Adams, "Multilayered microstrip transmission lines," IEEE

Trans. Microwave Theory Tech., vol. 22, pp. 889-891, October 1974.

[5] R. Marques, M. Homo, and R. Medina, "A new recurrence method for determining
the Green's function of planar structures with arbitrary anisotropic layers," IEEE

Trans. Microwave Theory Tech., vol. 33, pp. 424-428, May 1985.

[61 W. Delbare and D. D. Zutter, "Space-domain Green's function approach to the
capacitance calculation of multiconductor lines in multilayered dielectrics with

improved surface charge modeling," IEEE Trans. Microwave Theory Tech., vol.
37, pp. 1562-1568, October 1989.

[7] K. A. Michalski and D. Zheng, "Electromagnetic scattering and radiation by surfaces
of arbitrary shape in layered media, part II: implementation and results for contiguous

half-spaces," IEEE Trans. Antennas Propagat. vol. 38, pp. 345-352, March 1990.

[8] Y. L. Chow, J. J. Yang, and G. E. Howard, "Complex images for electrostatic field

computation in multilayered media," IEEE Trans. Microwave Theory Tech., vol.
40, pp. 1120-1125, July 1991.

[9] S. L. Marple, Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice-Hall,
1987.



36

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Y. Hua and T. K. Sarkar, "Generalized pencil-of-function method for extracting

poles of an EM system from its transient response," IEEE Trans. Antennas

Propagat., vol. 37, pp. 229-234, February 1989.

Y. L. Chow, J. J. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial

Green's functions," IEEE Trans. Microwave Theory Tech. vol. 39, pp. 588-592,
March 1991.

M. I. Aksun and R. Mittra, "Derivation of closed-form Green's functions for a

general microstrip geometry," IEEE Trans. Microwave Theory Tech. vol. 40, pp.
2055-2062, November 1992.

I. Park, R. Mittra, and M. I. Aksun, "Numerically efficient analysis of planar

microstrip configurations using closed-form Green's functions," IEEE Trans.

Microwave Theory Tech. vol. 43, pp. 394-400, February 1995.

D. B. Kuznetsov, "Transmission line modeling and transient simulation," M.S.
thesis, University of Illinois at Urbana-Champaign, 1992.

P. Silvester and P. B. Benedek, "Equivalent capacitances of microstrip open

circuits," IEEE Trans. Microwave Theory Tech., vol. 20, pp. 511-516, Aug. 1972.

M. Abramowitz and I. A. Stegun, Ed., Handbook of Mathematical Functions.
New York, NY: Dover, 1972.

D. W. Kammer, "Calculation of characteristic admittances and coupling coefficients

for strip transmission lines," IEEE Trans. Microwave Theory Tech., vol. 16, pp.
925-937, Nov. 1968.

D. R. Wilton et al., "Potential integrals for uniform and linear source distributions on

polygon and polyhedral domains," 1EEE Trans. Antennas Propagat., vol. 32, pp.
276-281, March 1984.

[19] Stephen Wolfram, Mathematica. Redwood, CA: Addison-Wesley, 1991.



37

CHAPTER 3

COMPUTATION OF THE TRANSMISSION PARAMETERS OF A
MULTICONDUCTOR SYSTEM

3.1 Introduction

As the word "transmission" implies, electromagnetic fields associated with a

transmission line are dynamic in nature. However, for TEM lines, the transverse

distribution of the fields at any instant of time is identical to that for the static solution. As a

consequence, the four parameters for multiconductor TEM transmission lines, viz., the

resistance matrix R, the inductance matrix L, the conductance matrix G, and the

capacitance matrix C, may be derived from a static analysis with good accuracy. Similarly,

under the quasi-TEM approximation, the spatial distribution of the fields in a multilayered

dielectric medium is essentially identical to that predicted by the static analysis; hence, the

R, L, G, and C matrices obtained from the static analysis still represent good

approximations to the quasi-TEM transmission line parameters.

It is well-known that by making an analogy between electrostatic and magnetostatic

problems for uniform transmission line configurations, both the charge and current

distributions can be obtained from the electrostatic analysis [ 1], and the capacitance matrix

C and the inductance matrix L follow from these distributions. Among various methods to

determine the charge distribution on a multiconductor system [1]-[9], the most common

method is the integral equation approach. A brief comparison of various methods used for

electrostatic problems was presented in Section 1.3. In this chapter, an integral equation is

formulated in terms of the closed-form Green's function derived in the previous chapter;

thus, the charge distribution is determined in an efficient manner such that no nested infinite

summations nor numerical integrations are performed. To determine the current

distribution, the equivalent electrostatic problem is solved using the same technique

employed in the computation of the charge distribution.

Losses due to imperfect dielectrics by themselves do not alter the quasi-TEM nature

of multiconductor transmission lines; hence, the conductance matrix G can still be

computed from the solution of the electrostatic problem by introducing a complex dielectric

constant to account for the finite loss tangent [10], [11]. This procedure, however, is

computationally inefficient (compared to the proposed method in this chapter) as it involves

complex operations. An alternate approach, which is based on the conductance analogy of
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capacitances,is oftenappliedto singlelines(twoconductors)embeddedin a homogeneous

medium. In this chapter,the aboveconceptis generalizedto computethe conductance

matrixG of n-lines embedded in a multilayered dielectric medium.

Unlike the case for the computation of the conductance matrix, where the

electrostatic problem could have been formulated with a complex permittivity, a formulation

for the resistance matrix R in the quasi-static regime is not so evident since the quasi-TEM

approximation inevitably neglects the longitudinal components of fields, which must be

present due to the conductor loss. The incremental induction method [12] is commonly

used to compute the resistance for single line cases; however, it cannot be applied to

general multiconductor cases. Yet another commonly used method is one based on the

perturbational analysis on attenuation constants [10]. This approach first computes the

attenuation constant by taking the ratio of the perturbed modal power loss and the total

modal power of a lossless system; then, the resistance matrix is obtained by solving a set of

N 2 linear equations for N modes, and the resulting resistance matrix is shown to be

nondiagonal. Although this approach is variational (second-order accurate) in terms of

attenuation constants, it is no longer variational for the resistance matrix.

As indicated in [11] and Section 3.5 in this chapter, the resistance matrix of coupled

transmission lines is a nondiagonal matrix and is strongly dependent upon the choice of the

current excitations used in the computation; the value of the resistance matrix varies

significantly as different current excitations are used. This undesirable phenomenon is

more prominent for the off-diagonal elements of the resistance matrix, and prevents the

computation of R without the knowledge of the actual current distribution, which is known

only in the simulation time. Consequently, the nondiagonal matrix form of the R matrix

may be of no practical use. In this chapter, the diagonal matrix form of the resistance

matrix, which is computed from the total power loss, is proposed. The resulting matrix is

shown to be relatively insensitive to the choice of current excitations; hence, the proposed

diagonal matrix is more suitable for the computation of the resistance matrix. Furthermore,

the procedure to compute this matrix does not involve eigenvalue analysis unlike the

perturbational approach mentioned previously.

In the following four sections, the details of the previously proposed methods to

compute C, L, G, and R matrices of a multiconductor system is presented. Figure 3.1
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Figure 3.1. The cross-sectional view of a possible configuration of multiconductors in a
multilayered dielectric medium.

demonstrates the general geometry of a multiconductor system embedded in a multilayered

dielectric medium. The dielectric layers are the same as the ones considered in the previous

chapter. An arbitrary number N c of conductors are placed throughout the layers, and the

cross sections and planar geometries of the conductors can be arbitrary as long as their

boundaries can be described with a piecewise linear function.

3.2 Computation of the Capacitance Matrix

3.2.1 Theory

An impressed potential on conductors results in free charge accumulation on the

surfaces of conductors, and the electrostatic potential _(r) at any point except inside the

conductors is then related to this surface charge density q(p) per unit length via the

following integral equation:

-- f G2D (ptP' )q(P' )dr' = (G2D,q) (3.1)_(r)

where 1"2 denotes the contours of all conductors except for ground planes. G2D(p[p ' ) is

the 2-D closed-form Green's function for a multilayered medium discussed in the previous
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chapter,andit accountsfor polarizationchargeson thedielectricandconductorinterfaces

andfreechargesonthesurfacesof groundplanes. The integrationis symbolicallywritten

as (.,.) to simplify the notation. To solve the aboveintegralequationnumerically,the

methodof collocationis used. First, theconductorsareapproximatedwith polygonsand

the unknownchargedensityis expandedwith the pulsebasisfunctions;then, the point
matchingtechniqueisappliedtothecentersof eachbasisfunctions. Theintegralequation
(3.1)cannow beput into thefollowing matrix form:

• ['J["VNc. qNc MNe,I MNc,N c JkqNc

(3.2a)

where

v,] (3.2b)

[ lTqi = q_, "", qiNi (3.2C)

[Mi,Jlp,q = IG2D(pi'Plp)dp

d

(3.2d)

where the superscript T denotes the transpose, V/and qi are vectors of size Ni, and Mi, j

is an N i by Nj matrix, where N i is the number of basis functions used to discretize the ith

conductor. V/is the voltage of the ith conductor with respect to the ground planes, q) is

the unknown coefficient associated with the jth basis function of the ith conductor, F_ is

the qth line segment of the jth conductor, and pZc'P is the center point of the pth basis

function of the ith conductor. The expression of G2O(plp ') is given in Section 2.3, and

the closed-form formula for the integration in (3.2d) is discussed in Section 2.4. Now,

given the excitation voltages, the corresponding charge distribution can be determined by

solving the linear system of Equations (3.2).

The capacitance matrix C is defined to relate the total free charges on the conductors

to the voltages in the following manner:

CV=Q (3.3a)
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wheretheith elements of I_ and Q are the voltage and the total charge of the ith conductor,

and the ith element of Q, Q/, is given by

Ni

Qi=El)q)

j=l

(3.3b)

i
lj and qj are the length and the charge density coefficient of the jth segment of theHere,

ith conductor.

The capacitance matrix can now be determined by solving the charge distributions

for N independent voltage excitation vectors and can be put into the following matrix form:

C = QV -1 (3.4)

where the ith columns of V and Q are the ith voltage excitation vector and charge vector.

To avoid the matrix inversion, the identity matrix is chosen for the V matrix in this chapter.

With this choice of V matrix, C is simply equal to Q, and the following physical properties

of the capacitance matrix can be deduced:

Since Q is symmetric due to reciprocity, C is also symmetric:

c;j = cj,i (3.5a)

Since the diagonal elements of Q are the charges on the excited

conductors and the off-diagonal elements of Q are the induced charges

on the rested conductors, the diagonal elements of Q are positive and all

of the off-diagonal elements are negative:

Ci, i >0 and Ci, j <0 for j * i (3.5b)

Furthermore, the magnitude of the sum of the induced charges must be

smaller than the charges on the excited conductor; hence, C is a positive

defirtite matrix:

(3.5c)
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Thecapacitancematrix definedby (3.3) is calledtheMaxwelliancapacitance,and

thephysicalself-and mutual capacitances are related to this Maxwellian capacitance matrix

by

Ci,j = -cimj (3.6a)

E C.m.Ci,i = cS + , l,j

j#i

(3.6b)

So far, we have implicitly assumed that there is at least one ground plane, which is

the reference conductor. If there are no ground planes, any one of the conductors can be

chosen as a reference conductor, and the terms corresponding to this reference conductor

should be removed in (3.3a) and (3.4). Unfortunately, when there are no ground planes,

the physical condition in which the total charges in the system must add to zero for 2-D

problems is not necessarily satisfied by the integral equation (3.1), which was naturally

enforced by the Green's function when there is at least one ground plane. Thus, this

condition must be incorporated into (3.1) to obtain the correct charge distribution. To

enforce this condition, another row is added to (3.2) as follows:

[i1Ii.11i1[i l. (3.7)

where Vref is the potential value at the reference conductor, which is yet to be determined.

It is interesting to note why the above physical condition has to be satisfied in

addition to the boundary condition embedded in (3.2) in spite of the facts that all necessary

boundary conditions appeared to be embedded in (3.2) and that the solution of the Laplace

equation is unique once the boundary conditions are satisfied. The answer to this question

is that since the magnitudes of the fields have to be finite everywhere except at the source

region, they have to be finite at infinity also, and this boundary condition at infinity turns

out to be missing in the integral equation (3.1) for cases in which no ground plane is

presented. This boundary condition at infinity can be enforced by setting the total charge in

the system to zero. It should be noted that when there is one ground plane, this boundary
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is embeddedin the Green's function, and when dielectric layers are bounded by two

ground planes, this boundary condition no longer has to be satisfied.

3.2.2 Numerical examples

In this section, various numerical examples are given to verify the method

discussed in the previous section. As a first example, a single microstrip line shown in

Fig. 3.2 is considered. The line thickness was taken to be infinitely thin. The capacitance

value is computed with various numbers of basis functions, and the result is compared with

those for the iterative spectral-domain technique [13], [14] in Fig. 3.3. This spectral

domain method solves the integral equation iteratively in conjunction with the minimization

in the boundary condition error. The maximum number of exponential functions used in

the approximation of each coefficient function was seven. The charge density on the

microstrip is plotted in Fig. 3.4.

A more complex geometry, a three-conductor system in a layered medium, shown

in Fig. 3.5, is considered. The number of basis functions used was fifty for each

conductor. Again, the maximum number of exponential functions used in the

approximation was seven. A comparison with the results obtained from [4] is shown in

Table 3.1. In [4], the spectral-domain Green's function is numerically integrated to obtain

the space-domain Green's function using a Gaussian quadrature formula in conjunction

with an analytical asymptotic extraction. The potential distribution in the system with the

excitation at the center conductor is plotted in Fig. 3.6. The white spaces in Fig 3.6

represent the conductors.

A ten-conductor transmission-line system above a thick dielectric substrate, shown in Fig.

3.7, is also considered. The total number of 300 basis functions was used to represent the

unknown charges, and nine exponential functions were used to approximate each

coefficient function of the Green's function. Table 3.2 shows the computed results. The

same structure is considered in [3] using the free-space Green's function with the basis

functions, which incorporate the edge singularities of the charge near the comers of the

conductors. In [3], data are obtained using 160 and 190 basis functions for conductors and

dielectric interfaces, respectively. The methods used in [1 ] and [4] are also employed to

compute the capacitance matrix of the same structure in [3]. According to [3], the methods

used in [1] and [4] resulted in nonphysical values, for instance, negative self-capacitance
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Figure 3.2. A single microstrip line.
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Table 3.1. Comparison of the capacitance matrix for the three-conductor structure shown
in Fig. 3.5 with [4].

Computation Delbare and Zutter [4]

141.41 -21.492 -0.8952] I142.09 -21.765

-21.492 92.951 -17.8591 (pF/m). /-21.733 93.529

--0.8952 -17.859 87.494 J [.--0.8900 -18.097

-0.8920]

-18.o98| (pF/m)
87.962 ]

Potential Distribution

0 0.5 1 1.5
x (ram)

Figure 3.6. The potential distribution of the system shown in Fig. 3.5 with the excitation at
the center conductor.
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Figure 3.7.

Ground Plane

Ten conductors in a layered medium. Dimensions of conductors are identical,
and all units are in micrometers.

Table 3.2. Capacitance matrix (pF/m) for the ten-conductor system shown in Fig. 3.7.

307.13 -41.2 -11.34 -6.28 -5.351 -218.8 -4.966 -1.385 -0.814 -0.729

-41.20 319.6 -28.04 -7.79 -4.987 -5.025-216.95 -3.54 -0.985 -0.666

-11.34 -28.04 310.5 -24.29 -8.587 -1.366 -3.503 -218.4 -3.18 -1.148

-6.279 -7.79 -24.29 303.5 -24.73 -0.798 -0.946 -3.164 -219.4 -3.345

-5.351 -4.988 -8.588 -24.73 290.5 -0.708 -0.627 -1.12 -3.325 -221.3

-218.8 -5.01 -1.363 -0.796 -0.709 231.7 -2.074 -0.393 -0.182 -0.134

-4.954-216.97 -3.494 -0.944 -0.628 -2.074 232.0 -1.19 -0.255 -0.135

-1.382 -3.532 -218.4 -3.157 -1.12 -0.393 -1.19 231.8 -0.8752 -0.242

-0.813 -0.982 -3.174 -219.5 -3.32 -0.182 -0.255 -0.875 231.6 -0.763

-0.729 -0.665 -1.145 -3.34 -221.4 -0.134 -0.135 -0.242 -0.763 231.3
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values. The capacitance values given in Table 3.2 are stable and agree well with the ones

given in [3]. The method used in [4] required the CPU times of 89611.19 s on an IBM

RS-6000 station with 300 basis functions, whereas the method in [3] took 458.67 s. On

the same machine, the presented method took only 85.7 s of CPU time.

For the f'mal 2-D example, a multilayered stripline case, shown in Fig. 3.8, is also

analyzed. Fifty basis functions are used to discretize each conductor. The computed

capacitances were Cll - C22 - 217.07 pF/m and C12 -- C21 = -107.76 pF/m. Data

obtained from the Ansoft Maxwell software are C11 = C22 = 217.65 pF/m and C12 - C21 =

- 108.24 pF/m.

3.3 Computation of the Inductance Matrix

Inductances are obtained by solving magnetostatic problems, which, in general, are

governed by a vector equation unlike electrostatic problems, which are governed by a scalar

equation. As a consequence, the computations of inductances are often computationaUy

more intensive than the computations of capacitances. However, for 2-D problems (the

uniform transmission-line configurations) the magnetostatic problems can also be written

by a scalar equation using only the z-component of the magnetic vector potential A. For

Top Ground Plane

Bottom Ground Plane

Figure 3.8. Two conductors in a layered medium with two ground planes. Dimensions of
conductors are identical.
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these configurations, an isomorphism exists between the magnetostatic and electrostatic

problems [ 1], [15], and the solutions of the magnetostatic problems are often obtained from

solving the equivalent electrostatic problems. Therefore, the technique used to solve the

capacitance in the previous section can still be applied to the inductance calculation.

In the following subsection, this isomorphism between magnetostatic and

electrostatic problems is first discussed, and then the expression relates the inductance

matrix to the capacitance matrix of the equivalent electrostatic problem is derived.

3.3.1 Isomorphism between electrostatic and magnetostatic problems

To simplify the analysis, we will assume that there are two isotropic layers. Then,

at the source-free region, electrostatic problems for a multiconductor system embedded in a

multilayered medium are governed by the foUowing Laplace equation:

°32Vi °32V/ : V2Vi :0 i = 1,2 (3.8)

where V/is the potential distribution in the ith layer, and the associated boundary condition

at the dielectric interface is

E_=E_ Din = D_ (3.9)

Here, the superscripts t and n denote the transverse and normal components of the vectors.

Rewriting the above equations in terms of Vi ,

($ xh).VtV 1 = (_xh)-VtV 2 h'(erlVtVl)=h'(er2VtV2) (3.10)

The associated boundary condition of (3.8) at the conductor interface is

E[ =0 on =-qs (3.11)

where qs is the surface charge density, and again, rewriting (3.11) in terms of V/,

(_ xh).VtV/= 0 h.(eriVtVi)= qs
eo

(3.12)

Now for magnetostatic problems, we have the following equation at the source-free

region:
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Vt xBi=0 i=1,2 (3.13)

where Bi is the magnetic flux density in the ith layer. Using the facts, Bi = V x ,4i and

only the z-component of the magnetic vector potential _. is nonzero under the quasi-static

approximation, the above equation can be written as

vt x (_x VtAz_)= _(Vt. VtAz_)= 0 _ Vt2az_= 0 (3.14)

The associated boundary condition of (3.13) at the dielectric interface is

and the above equations in terms of Azi are

/2rl /2r2

BIn =B_ (3.15)

h.(z×Vtmzl)--_l.(_×Vtmz2 ) (3.16)

Applying vector identities to the above equations, we have

h.(1--_-VtAzl)=h.(1---_-VtAz2 ) (t' x _). VtAzl --- (t" x h). VtAz2
_rl ./_r2

(3.17)

The associated boundary condition of (3.13) at the conductor interface is

=j: (3.18)

where Jz is the longitudinal surface current density, and again, rewriting

conditions in terms of Azi,

the above

_1. (1-J--VtAzi) = -12oJ z (_ X h)" VtAzi = 0 (3.19)
ga

Now comparing (3.8), (3.10), and (3.12) with (3.14), (3.17), and (3.19), it is

clear that ff we replace l//,tr/and goJz with er/and qsleo in (3.17) and (3.19), Azi is

equal to V/. Therefore, Azi can be computed by solving the equivalent electrostatic

problem with replacing t_r/by l//Zr/, and the current distribution Jz(P) can be obtained

using the following formula:

Jz(P) =C2qs(P) (3.20)
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wherec is the speed of light, and qs(P) is the surface charge density of the equivalent

electrostatic problem.

The inductance matrix L is defined to relate the magnetic flux differences between

the signal conductors and the reference conductor to the currents on the signal conductors

in the following manner:

LI=O (3.21)

where the ith elements of _ and ] are the magnetic flux difference between the ith signal

conductor and the reference conductor and the current on the ith conductor. The inductance

matrix can now be determined by solving the current distributions for N independent _i

and can be put into the following matrix form:

L = VI -I (3.22)

where the ith columns of V and I are the ith magnetic flux excitation vector and current

vector. Solving the equivalent electrostatic problem with V = _, and using the fact that

I = c lQeq, we have

1 -1
L = ---_ Ceq (3.23)

cA

where Qeq and Ceq are Q and C matrices in (3.4) for the equivalent electrostatic problem.

For nonmagnetic media, the above equation becomes

1

L= _-Cg I (3.24)

where C O is the capacitance matrix for a free-space case in which all dielectric layers are

replaced with free space.

Since the inductance matrix is related to the inverse of the capacitance matrix, the

following properties can be deduced from (3.5a), (3.5b), and (3.5c):

l.,i,j = Lj, i (3.25a)

L/,j > 0 (3.25b)



52

(3.25c)

Hence, L is also a positive definite symmetric matrix. This MaxweUian inductance matrix

defmed by (3.21) is related to the physical self- and mutual inductances by

Li,j = L_,mj (3.26a)

3.3.2 Numerical examples

L/,i = Ls (3.26b)

Since the inductance matrix can be obtained using the electrostatic solution

technique discussed in Section 3.2 and this technique has been shown to be very accurate

and efficient, the resulting inductance matrix from this technique is also expected to be

accurate and efficient. Hence, only a few examples are presented for the inductance

calculations in this section, and more examples will be givenas the remaining two

parameters, the conductance and resistance matrices, are discussed.

The three-conductor system shown in Fig. 3.9 is considered as a fLrSt example.

The resulting capacitance and inductance matrices ate compared with othe_ in Table 3.3.

The maximum number of exponential functions used in the approximation was seven, and

16 basis functions are used to discretize each rectangular conductor, whereas 24 basis

functions are used for the circular conductor. For a second example, the three-conductor

system shown in Fig. 3.5 in Section 3.2 is again considered, and a comparison with the

result obtained from [4] is given in Table 3.4. An excellent agreement was found for both

cases.

3.4 Computation of the Conductance Matrix

3.4.1 Theory

As mentioned in the beginning of this chapter, the inclusion of dielectric losses does

not violate the quasi-static condition of a multiconductor system, and the conductance

matrix G, which models losses due to the finite loss tangent of an imperfect dielectric, can

be computed from the solution of the Laplace equation by means of a complex dielectric

constant [10]. Since the dielectric constant is complex for this approach, the closed-form
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y=0.9mm

y=0.5 mm

Ground Plane x

Figure 3.9. Three conductors in a layered medium. The dimensions used in coordinates
are in millimeters.

Table 3.3. Comparison of the inductance matrix for the three-conductor structure shown
in Fig. 3.9.

Computation

Wei et al. [ 1]

Delbare and Zutter [4]

C (pF/m) L (nil/m)

116.9 -13.33 --62.79"-13.33 33.71 74.96

--62.79 74.96 362.3

124.4 -13.00 -68.25"

-13.00 33.40 -7.196

--68.25 -7.196 352.3

125.9 -13.12 -...69.55]-13.12 34.10 -7.182[

•.-69.55 -7.182 357.6 J

489.0 196.1 114.71

196.1 612.8 74.96 /

114.7 74.96 219.1J

496.5 199.6 118.3]

199.6 616.3 77.28 /

118.3 77.28 233.1J

"491.9 198.9 117.5

]198.9 612.83 76.781

117.5 76.781 229.94



54

Table 3.4. Comparison of the inductance matrix for the three-conductor structure shown
in Fig. 3.5 in Section 3.2 with [4].

Computation

277.90 87.569 36.629]

87.569 328.87 115.52 /

36.629 115.52 338.16J

(nil/m)

Delbare and Zutter [4]

"277.73 87.758 36.770]

87.758 328.60 115.77[

36.770 115.77 337.98.]

(nil/m)

Green's function discussed in Chapter 2, which was obtained using the real exponential

approximation, can no longer be applied. In principle, a new closed-form expression for

the Green's function which accounts for the complex dielectric constant can be derived;

however, this approach will be computationally intensive as it involves complex

operations, and a simple perturbation approach is employed in this section.

The conductance matrix G for a multiconductor system embedded in a multilayered

lossy dielectric medium is defined by

G q = "lis i= 1,2,...,N (3.27)

where V/'s are N independent line voltage vectors, iiS's are the corresponding shunt

current vectors per unit length that arise due to dielectric losses, and N is the number of

modes (N signal conductors or N lines). Equation (3.27) in the matrix form is

G = ISv -1 (3.28)

where the ith columns of matrices V and I s are V/and _s, respectively. The fith element

of the matrix I, which is the shunt current on the jth line due to the voltage excitation of V//,

can be obtained from the normal component of the electric field at the surface of the

corresponding conductor of the jth line:

(3.29)
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Here, jS(p) and/_i(p) axe the shunt surface current density and the electric field

corresponding to the V/ excitation vector, a(p) are the conductivities of the dielectric

media, h is the surface normal vector, and cj is the surface contour of the conductor.

Using the fact that the normal component of the displacement field at the surface of a

conductor is related to the charge density, (3.29) can be rewritten as

1_,i = _qi (p, )tY(p' )/ e(p' )dp'
,'cj

(3.30)

It can be shown that the potential distribution near the surface of the conductor does

not change substantially when a slight loss is introduced in the dielectrics_; consequently,

neither the electric field nor the charge density is much different for the lossy and lossless

cases on the conductor. Thus, the charge density from a lossless system, which can be

determined using the method given in Section 3.2, can still be used as the charge density

qi(p) of a lossy system. Finally, once the charge densities have been obtained for N

independent voltage excitations from the lossless system, the conductance matrix G can be

derived from (3.28) and (3.30).

Since the I matrix in (3.28) is directly related to the Q matrix in (3.8), the properties

of the conductance matrix are the same as that for the capacitance matrix:

Gi, j = G j, i

Gi, i >0 and Gi, j <0 for j ;e i

(3.31a)

(3.31b)

(3.31c)

and the relationship between the conductance matrix and the physical self- and mutual

conductances is similar to that for the capacitance case, and is given by

Gi, j -G .m.= ,,j (3.32a)

'This can be seen from the fact that neither the lines of force nor the equipotential lines near the
surface of the conductor are affected by the introduction of the dielectric losses.
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3.4.2 Numerical examples

Gi, i = G s + ___ G ,m._,J

j_i

(3.32b)

A cylindrical conductor above a perfectly conducting ground plane shown in Fig.

3.10 is considered for a first example. Analytical formulas for the transmission line

parameters of this system can be obtained from the two-wire line case [1], [17] and given

by

L = U,_cosh_l(2H/d ) (3.33a)
2x

2_
C = (3.33b)

cosh -1 (2H / d)

R = 2RsH/d (3.33c)

lrd3/(2HI d) 2 - 1

2zta

G = cosh_l (2H/d) (3.33d)

where H is the distance from the center of the cylinder to the ground plane, d is the

diameter of the cylinder, R s is the surface resistivity of the conductor, and o" is the

conductivity of the dielectric medium. The computed results are compared in Table 3.5

with the analytical solutions and numerical results from [ 1]. Forty basis functions were

used to solve the electrostatic problem. The comparison shows excellent agreement.

For the next example, the four-conductor system shown in Fig. 3.11 is considered,

and the results are compared in Table 3.6. The loss tangents of the bottom, middle, and

top dielectric layers are 6.4 x 10 -4, 8.6 x 10 -4, and 2.4 x 10 "4, respectively.



57

lmnl

@
er= 4.0

a = 2.67x10 -5

T
r/////////////////////////////.,
y,// Perfectly Conducung Ground Plane//.

Figure 3.10. A cylindrical conductor above a PEC ground plane.

Table 3.5. Comparison of the computed data with the analytical solutions for the
cylindrical case shown in Fig. 3.10.

Analytical Solutions Computed Data Wei et al. [1]

C (pF/m) 89.80 89.75 89.44

G (gS/m) 67.71 67.66 67.44
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Y

y-lmm

y- 0.7mm

y=O.2mm

X

/

Figure 3.11. Four-conductor transmission lines embedded in a layered medium.
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Table 3.6. Comparison of the computed results with data obtained from [1] for the four-
conductor system shown in Fig. 3.11.

i j [C]ij (pF/m)

Presented [ 1]

[L]ij (nil/m)

Presented [ 1]
I

264.9 271.4

[G]ij (nS/m)

Presented [1]

1 1 316.9 308.8 477.8 642.0

1 2 -38.38 -36.06 43.71 44.88 -133.3 -170.1

1 3 -2.532 -2.848 13.18 12.95 -7.000 -13.27

1 4 -26.79 -24.59 34.70 34.42 -64.17 -60.70

2 2 360.3 333.1 248.3 259.4 1642 1481

2 3 -34.37 -30.45 35.52 34.47 -154.8 -149.8

2 4 -16.91 -16.41 36.83 37.42 -73.04 -96.88

3 3 372.1 380.6 251.7 257.0 1496 1608

3 4 -33.28 -31.78 51.77 52.48 -148.6 -177.7

4 4 242.1 232.8 320.8 332.6 694.0 638.3



60

3.5 Computation of the Resistance Matrix

3.5.1 Theory

At the frequencies near de, the current is uniformly distributed throughout the cross

sections of conductors, and the resistance matrix, which is diagonal, is obtained by taking

the inverse of the product of the conductivity and the cross-sectional area of each

conductor. In this section, we will focus on the computation of the resistance matrix in the

high-frequency region where the skin effect is prominent, and the transverse current

distribution is approximately the same as that for a perfect conductor case.
_t

At this high-frequency region, the transverse current distribution on lossy

conductors is no longer uniform due to the edge and the proximity effects [16], [17], and

the longitudinal voltage drop due to the surface resistivities of the conductors becomes a

function of position in the transverse plane. This nonuniform voltage drop cannot be

characterized by the resistance matrix; hence, the effect of the finite conductivities of

conductors is rather complicated in the high-frequency region in contrast to the effect of the

finite loss tangents of the dielectric media, which was readily modeled with the conductance

matrix G based on the shunt current. However, if one is only interes',ed in modeling the

power loss on conductors, the resistance matrix R can still be used to characterize the

conductor power loss per unit length, and is computed either from the conductor power

loss or from attenuation constants, which, in turn, are obtained from the power loss on

conductors [10], [11]. Modeling the power loss with the resistance matrix results in the

effective longitudinal voltage drop, which gives the correct power loss per unit length and

is uniform over the transverse plane

Unfortunately, the power loss on the conductor is not only dependent on the

magnitude of the current but is also a function of the current distribution on the surface of

the conductor; therefore, the resistance matrix is also affected by the current distributions

employed to compute it. Furthermore, although the current distribution for a single

transmission line is not affected by excitations except for scaling of the magnitude, it

becomes strongly dependent on the types of excitations for coupled transmission lines [ 11 ].

Hence, it follows that the resistance matrix, in general, is dependent on excitations for

multiconductor systems. Because of this undesirable dependency, the resistance matrix

may not be computed unless the current distribution has been determined. In this section,

the nondiagonal resistance matrix is first considered to illustrate this dependency; then, the
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diagonalresistancematrix, which is relativelyinsensitiveto the choiceof excitations,is

proposed.

To simplify theanalysis,let us assumethatthereis only one groundplaneat the

bottomof thedielectriclayersandthatthegroundplaneis perfectlyconducting. Then, let

us define the resistancematrix R1 suchthat it gives thecorrectpower losseson each
conductorasfollows:

where

by

RI _/c= Qieff i= 1,2,..-,N (3.34)

i/c' s are N independent conduction current vectors, the jth element of Ii c is given

[-[ic ]j = _ jc (p, )do' (3.35)
dl cj

and Vielf' s are the line voltage vectors, which represent the effective voltage drops, and are

computed from the power loss due to the conduction current vectors itC's. The jth

element of _/e_ is

_ 1 _c Rs'jlJc (p')]2dp' (3.36)[ _.eff ] j = Pi,....__j_ _ J

where Pi,j is a power loss on the jth conductor, and Rs, j is the surface resistivity [17] of

the jth conductor given by

(3.37)

Here, t5 is the skin depth. The above equation is valid when the thickness of a conductor is

at least two skin depths thick, and it is assumed in this section that (3.37) is valid for the

frequency of interest.

Now the resistance matrix can be readily obtained once the conduction surface

current densities jc(p), which result in N independent conduction current vectors, are

determined. In the high-frequency region where the skin effect is prominent, the surface

current density jc(p) on good conductors is close to that for perfect conductors.

Moreover, as discussed in Section 3.3, the surface current density on perfect conductors
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canbe obtainedby solving the equivalentelectrostaticproblem,which is constructedby

replacingall dielectricmediawith flee space. Hence, jC(p) can be computed using

(3.20). This approximation of jC(p) with the current density for a perfect conductor case

is also valid for cases where losses are not relatively large but they are mostly due to the

small cross sections of conductors instead of the small values of finite conductivities [ 18].

Equation (3.34) is applied to compute the resistance matrix for the coupled

microstrip lines shown in Fig. 3.12. The conductivity of both microstrip lines is

57.6 MS/m, and the ground plane is assumed to be perfectly conducting. The method

described in Section 3.2 is used to solve the equivalent electrostatic problem, and forty

pulse basis functions per each line are used to represent the charge distribution. The

computed values of R 1 at a frequency of 1 MHz with various excitations are shown in

Table 3.7. The fast column shows the excitation voltage used in the equivalent electrostatic

problem, and the second column shows the resulting excitation currents. The third to sixth

columns correspond to the computed values of R 1 based on (3.34). All elements of R 1

varied as the excitation vectors are changed except for the case in which the two excitation

vectors are simply scaled (see first and second rows); the variation is especially prominent

for the off-diagonal elements of R 1, which changed from negative to positive when

different excitations were used.

As observed from Table 3.7, the diagonal elements of the resistance matrix are

somewhat less sensitive to the choice of current excitations than the off-diagonal elements.

Hence, it may be natural to define the resistance matrix as a diagonal matrix, as it is for a dc

case, such that the resistance matrix becomes less dependent on the choice of excitations.

To obtain the diagonal resistance matrix, let us define the resistance matrix by matching the

total power loss on the multiconductor system rather than by matching the power losses on

each conductor:

-/iCR:z I/c = P/ i= 1,2,...,N (3.38)

where R 2 is assumed to be a diagonal matrix, (iic) r is the transpose of li c, and Piis the

total power loss on the system due to the current vector _/c, obtained by
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Figure3.12. Coupledmicrostriplines.

Table 3.7. TheresistancematrixR of the coupledmicrostriplines shown in Fig. 3.12
with variousexcitations.

Excitation R (nondiagonal)(_Q,/m) R (diagonal)

(_'-_/m)

Voltage

(1, 0)

(0, 1)

(5, o)

(0, 2)

(1, 1)

(1, -1)

(1, 1)

(1, 2)

(1, O)

(1, 2)

Current

(2.00e9, -7.2 le8)

(-7.2 le8, 2.00e9)

(9.99e9, -3.60e9)

(-1.44e9, 4.00e9)

(1.28e9, 1.28e9)

(2.72e9, -2.72e9) !

(1.28e9, 1.28e9)

(5.56e8, 3.27e9)

(2.00e9, -7.2 le8)

(5.56e8, 3.27e9)

R11 R12 R21 R22

23.65 -5.439 -5.439 23.65

23.65 -5.439 -5.439 23.65

26.38 -1.176 -1.176 26.38

17.00 8.200 0.416 24.78

27.91 6.347 -4.717 25.66

RI 1 R22

27.13 27.13

27.13 27.13

24.37 26.03

27.28 25.95
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N

(3.39)

where N is the number of signal conductors in the system. Now, noting that R 2 is a

diagonal matrix, (3.38) can be put into the following matrix form:

Z/_ =/3 (3.40)

Here, the ith element of the vector /3 is Pi, and /_ is a vector which consists of the

diagonal elements of R 2. The ijth element of Z is a square of l_,j, where l_,j is the jth

component of _/c. The diagonal resistance matrix can be obtained by solving the above

system of linear equations. Note that N independent conduction current vectors of -iic no

longer guarantee the matrix Z to be nonsingular. One simple way to obtain N current

vectors, which result in a nonsingular Z matrix, is to excite the voltage only at one

conductor at a time in the equivalent electrostatic problem as shown in the fast row in Table

3.7. This choice of excitation vectors is shown to result in a more stable resistance matrix

as shown in the next numerical example.

To examine the variation of the diagonal resistance matrix for the different choices

of excitation vectors, the previous microstrip lines are considered again, and the computed

results are shown in Table 3.7. As discussed in the previous paragraph, when the voltage

excitations of (1, 1) and (1, -1) are used, Z becomes a singular matrix; the diagonal

resistance matrix could not be determined for this case. As the resistance matrix is defined

to be a diagonal matrix, the nondiagonal elements, which are strongly affected by the

choice of excitation vectors, no longer cause any problem in the diagonal resistance matrix.

Furthermore, as shown in Table 3.7, the diagonal elements of the diagonal resistance

matrix are also less dependent on the choice of excitation vectors than the diagonal elements

of the nondiagonal resistance matrix. The best choice of excitation vectors appears to be

the first two rows in Table 3.7 since the two elements of the resistance matrix are identical

as expected from the symmetry of the system.

In practice, the excitations of the resistance matrix based on (3.34) should be

chosen so that the resulting resistance matrix is a symmetric matrix to preserve the

reciprocity principle. Being a diagonal matrix, reciprocity is naturally satisfied for the

resistance matrix based on (3.38). In general, the Maxwellian resistance matrix calculated
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from (3.34),(3.38),or theperturbationalanalysison attenuationconstantsis relatedto the
physicalself-andmutualresistancesby

Ri,j = R_,j (3.41a)

3.5.2.

gi, i "- R s

Losses due to imperfectly conducting ground planes

(3.41b)

To account for losses due to imperfectly conducting ground planes, the surface

current distribution on the ground planes must be determined for the given current

excitation on the signal lines. In general, an integral equation has to be formulated to

compute the surface current density on the ground planes, and a detailed discussion of the

determination of the current densities on ground planes is presented in this section.

Let us first assume that a multilayered dielectric medium is backed by two ground

planes below and above the layers, as shown in Fig. 3.13. Let J(x,y), jg, l(x), and jg,2(x)

be the current densities on the surfaces of the signal lines, the bottom ground plane, and the

top ground plane, respectively. Then, assume that the surface current density on the signal

lines J(x,y) is given by

N t

J(x, y)= _ JkPk(X, y)
k=l

(3.42)

where Pk(x,y) is an appropriate pulse basis function used to expand the current density on

the surface of signal conductors, and Nt is the total number of basis functions used to

discretize the contours of the conductors. Then, the tangential magnetic field Ht(x) at the

bottom ground plane due to J(x,y) and Jg,2(x) at the bottom ground plane can be written as

(see Fig. 3.13)

1 _¢' Jklkyk 1 r +** Jg'2(x')h
= _ t- ..... dr'

H,(x) 2 2zrJ_. (x _ x, )2+-x_) +Yk h 2
(3.43)

Since the tangential magnetic field due to all the image currents of J(x,y) and jg,2(x)

must also be equal to Ht(x) at the bottom ground plane, the total tangential magnetic field at

the bottom ground plane must be twice that of lit(x). Since the negative value of this total



66

\
_ (xk, Yk)

Jk jg'l (x)

jg'2 (x)

y=h

Y

Figure 3.13. The kth segment of conductor contours between the two ground planes.

tangential magnetic field is equal to the actual surface current density Jgl(x), the following

integral equation can be formulated:

jg, l(x)+l f+°° ' 1 _N' JklkY k

__a-'_(X-X')'_+?/2 = (x Xk)2+
(3.44)

A similar argument holds for the tangential magnetic field at the top ground plane, and the

resulting integral equation is

jg,2, - 1 _+" jg'l(x')h

tx) + -_J._._ (x - x' )2 + h 2

1 Nt Jklk(h-Yk)

k=l

(3.45)

Now, truncating the ground planes to finite lengths and expanding Jg, l(x) and jg,2(x)

using the pulse basis functions, 2 (3.44) and (3.45) can be put into the following form:

[L (3.46)

2This truncation is possible since the actual current is confined near the conductor regions. To
achieve good computational efficiency, nonuniform pulse basis functions should be used in the expansion
of the current.
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where Mij is an Ng i by Ng] matrix, jg,i and Vi are Ngi dimensional vectors, Ng i is the

number of basis functions used to expand jg, i(x), and I denotes the identity matrix. The

expressions for the elements of the matrices and vectors are given by

[M12li,j = 1 l: '2h [M21li,j = 1 ly 'lh
7r (x/g,1 - xy'2) 2 +h 2 _z (x g'2 - xy'l) 2 +h 2 (3.47)

N t Nt

I Z :g JklkYk I k_ I .g Jklk(h-Yk)
[Vl],

---k=l 'x''l k 7r = (x, '2 k -Yk
, _xS)2+y 2 [V2]i =--- _xS)2+(h )2

(3.48)

I g'm which is the jth element of jg,m, and Xm
where 1: 'm is the length associated with _j ,

and Ym represent the center point of the mth basis function. The superscripts g,1, g,2, and s

are attached to x to denote x's on the bottom and top ground planes and the signal

conductors, respectively. Now performing a simple substitution, a computationally more

efficient form of (3.46) can be obtained:

[I - M21M12]J g'2 = V2 - M21V1 (3.49)

jg,1 = V1 _ M12jg,2 (3.50)

Now, the current distribution on the ground planes can be obtained by first solving the

system of linear equations given by (3.49) for jg,2 and using (3.50) for jg,1.

When there is no top ground plane, (3.46) is simplified to

jg,1 = V1 (3.51)

Note that no solution of a system of linear equations is necessary for this case.

Once the current density on the ground planes has been determined, (3.39) can be

modified to include ground losses as follows:

N Ng

Rs, j JfJ (p')]2dp' (3.52)

where Ng is the number of ground planes, which is either one or two.
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3.5.3 Remarks on the various methods used in the computation of the
resistance matrix

In this section, several remarks on the various methods used to compute the

resistance matrix are given. Since power losses are nonlinearly dependent on the current

distribution for a multiline case, the resistance matrix becomes dependent on the

excitations. Thus, if power losses are modeled with the resistance matrix, the resistance

matrix cannot be independent of the excitations used in the computation. For a single-line

case, the resistance matrices based on (3.34), (3.38) and attenuation constants are all

identical, and they model the exact power loss per unit length regardless of excitations. For

a multiline case, the nondiagonal resistance matrix defined by (3.34) is only valid for the

case in which the actual current distribution belongs to one of the current excitations used in

the computation. Similarly, the conventional approach based on the perturbation on

attenuation constants [10] uses the modal power losses; therefore, the resulting resistance

matrix is only valid for the modal current. However, the currents on the conductors are

arbitrary so any current distribution is as important as the modal current distribution.

Hence, the nondiagonal matrices based on (3.34) and the conventional approach are

inappropriate for the computation of the resistance matrix for a multiconductor case. The

diagonal resistance matrix based on (3.38) is shown to be least affected by the choice of

current excitations and, hence, is most suitable for the computation of the resistance matrix.

Now let us discuss the accuracy of the various definitions of the resistance matrix.

First, the nondiagonal resistance matrix based on (3.34), which, in fact, is included in the

chapter only to demonstrate the nonlinear effect, is symmetric for the modal current

excitations (the third row in Table 3.7) and more accurate than the one from [10] since it

matches the power losses on each conductor instead of matching the total power loss.

Thus, (3.34) with the modal excitations can be used to define the unique resistance matrix,

and this definition of the resistance matrix is already more accurate than the conventional

approach [10]. The diagonal resistance matrix based on (3.38) also models the total power

losses for chosen current excitations; therefore, it is as accurate as the one from the

conventional approach. Conclusively, if the excitation is fixed as the conventional

approach, the resistance matrices based on (3.34) and (3.38) are as accurate as the one

from the conventional approach and unique. Although the resistance matrix based on

(3.38) is less accurate in terms of modeling of power losses than the one based on (3.34)

for a f'Lxed excitation, it is more accurate for an arbitrary current distribution because it

varies less for different excitations. Similarly, the resistance matrix obtained from the
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conventionalapproachis alsonondiagonaland,hence,is lessaccuratethan the diagonal

resistancematrix for anarbitrarycurrentdistribution.

3.5.4. Numerical examples

In this section, the diagonal resistance matrix for various geometries are computed.

Most examples are extracted from [10] for comparison purposes. The thicknesses of the

ground planes are assumed to be infinite for all examples. The method described in Section

3.2 is used to solve all electrostatic problems. As a first example, the resistance value of

the cylindrical conductor above a PEC ground plane shown in Fig. 3.10 on p. 55 is

computed. The computed value was 0.8459 D./m at a frequency of 100 MHz, whereas the

closed-form formula (3.33c) was 0.8426 D,/m. Forty pulse basis functions were used to

solve the electrostatic problem in our approach. As the next example, a single microstrip

line is considered. The same geometry used in Section 3.5.1 (see Fig. 3.12) is analyzed

with only one line. At a frequency of 1 MHz, the computed resistance value was

2.493 x 10 -5 D./m without any ground loss and 2.688 x 10-5 D./m with ground loss. The

ground plane is assumed to be of the same material as the microstrip line, both materials

having t_ = 5.76 x 107 S/m. The resistance value from [10] with ground loss was

2.400 x 10 -5 D./m after applying the proper scaling factor. The current distribution on the

ground plane is shown in Fig. 3.14. The resistance values were also computed for a wide

range of frequencies, and the results are plotted in Fig. 3.15.

For the final example, the four-conductor system shown in Fig. 3.11 on p. 56 is

considered, and the results are compared in Table 3.8. The current densities on the top and

bottom ground planes with the excitation on the first conductor are shown in Figs. 3.16(a)

and (b). The resistance matrix shown in Table 3.8 is actually incorrect since (3.37) for the

surface resistivity Rs is no longer valid because the thicknesses of the first and third

conductors are smaller than the skin depth t_. To obtain an approximate solution, we have

defined the effective depth deft to be either t_ or the half thickness of the conductor,

whichever is smaller, and the surface resistivity Rs is redefined as

1
Rs(P ) = (3.53)

Crdeff (P )
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Figure 3.15. The resistance vs. frequency for a single microstrip line with ground losses.
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Table 3.8. The resistance matrix for the four-conductor system shown in Fig. 3.11.

i j [R]ij (Ix.Q/m)

Presented [10]

1 1 1094 737.5

1 2 0 85.18

1 3 0 44.03

1 4 0 60.33

2 2 763.0 680.1

2 3 0 87.58

2 4 0 140.1

3 3 1015 671.1

3 4 0 160.4

4 4 508.7 690.1
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Figure 3.16. The current densities on (a) the top and (b) the bottom ground planes for four-
conductor system with the excitation on the first conductor.
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The half thickness of the conductor is used since the surface current exists on both sides of

the conductor. Note that the effective thickness deft is a function of p since the thickness

of a conductor, in general, changes as 19 varies. The resistance matrix R for the previous

case is computed again using the above formula, and the following result shows that the

resistance value is substantially increased:

R (_2/m)=

4688 0 0 0

0 836.9 0 0

0 0 2539 0

0 0 0 598.4

3.6. Summary

Accurate and efficient ways to compute the transmission line parameters of a

multiconductor system embedded in a multilayered dielectric medium were presented in this

chapter. The capacitance matrix was computed based on the closed-form Green's function

discussed in the previous chapter; thus, no numerical integrations or nested infinite

summations are involved in the computation. The inductance matrix is calculated by

solving the equivalent capacitance problem. The solutions (charge distributions) obtained

from the computations of the capacitance matrix and the inductance matrix were directly

used to compute the resistance and conductance matrices, rather than by using the usual

perturbation analysis on the medal power. Hence, no additional electrostatic problem was

solved for the computations of the resistance and conductance matrices. The diagonal

resistance matrix was proposed in this chapter; this diagonal matrix has been shown to be

relatively insensitive to the choice of the current excitations as opposed to the sensitivity of

the traditional nondiagonal resistance matrix. Hence, it is more suitable for the computation

of the resistance matrix. In addition to losses on signal conductors, those due to

imperfectly conducting ground planes were also incorporated into the resistance matrix.
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CHAPTER 4

COMPUTATION OF THE EQUIVALENT CAPACITANCES OF VARIOUS

STRIP DISCONTINUITIES: AN OPEN END, A BEND,
AND VARIOUS JUNCTIONS

4.1 Introduction

Quasi-static analysis is often performed to characterize strip discontinuities, such as

an open end, a bend, a T junction, and a cross junction, when the dimensions of the

discontinuities are much smaller than the wavelength. A brief introduction of the quasi-

static approximation was presented in Section 1.2. Under this quasi-static analysis, the

dominant effect of strip discontinuities is fringing fields due to the physical irregularities of

discontinuity geometries, and the modeling of these fringing fields in terms of an equivalent

(excess) capacitance is discussed in this chapter.

Numerous papers have been published to compute the excess capacitances of

various microstrip discontinuities, and a summary of popular methods can be found in [ 1],

[2]. The usual approach involves finding the charge distributions in the presence of a

discontinuity and in the absence of a discontinuity. Total charges are then obtained from

these charge distributions, and the excess capacitance is computed by subtracting these total

charges. This approach is referred to as the total charge formulation in this thesis, and it is

widely known to be inaccurate due to the numerical error associated with the subtraction of

the total charges due to reasons explained in [1]-[3]. Since the discontinuity effects are

rather localized, the total excess charge distribution of the discontinuity system is often

much smaller than the total charge. Hence, the total charges of the system with and without

the discontinuity are nearly equal, and the errors associated with these two total charges are

relatively very large compared to the total excess charge, which results in the equivalent

capacitance. Moreover, the total charge formulation is also computationally expensive for

the following two reasons. First, two problems must be solved for one with a

discontinuity and one without a discontinuity. Second, discontinuities are associated with

semi-infinite lines, and after truncating these lines to finite lengths, the unknowns

associated with the total charge distribution must be placed over the whole surface of the

truncated lines although the excess charge is localized around the discontinuities.

The formulation of an integral equation in terms of the excess charge distribution,

first proposed by Silvester and Benedek [3], has been applied to analyze various microstrip
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discontinuities[3]-[6]. This approachovercomesthe previously discussednumerical

problemsassociatedwith thetotalchargeformulationsincetheexcesschargedistributionis
directly modeledas anunknown in an integral equation;in other words, the accuracy

resultingfrom solvinganintegralequationispreservedfor thefinal answer.Thisapproach

isreferredastheexcesschargeformulationthroughoutthis thesis. TheGreen's function

for a layeredmediumis employedin thisapproach.ForN dielectric layers, the expression

for this Green's function would consist of an N-1 nested infinite series [7]; hence, in

practice, this form of the Green's function may not be applied to a multilayered medium I .

Recently, Sarkar et al. [8] solved the discontinuity problems for a multilayered medium

using the free-space Green's function, but additional unknown charges (over unknown

charges on the surface of a conductor) had to be placed on the dielectric interfaces and the

top ground plane to model the polarization charge and the free charge. Although the

inclusion of these additional unknowns may be tolerable for 2-D problems, it is

computationally too burdensome for 3-D problems.

In this chapter, the closed-form Green's function discussed in Chapter 2 is

employed to formulate an integral equation in terms of the excess charge distribution; thus,

the presented method requires neither additional unknowns to model dielectric interfaces

and the top ground plane nor evaluations of any infinite series except for cases where the

top ground plane is present. When the top ground plane is present, using the closed-form

Green's function is still numerically advantageous since the nested infinite series in the

expression of the usual Green's function become a simple infinite series without nesting.

Although it is possible to avoid infinite series even for cases where the top ground plane is

present by modeling it as an additional conductor, z it substantially increases the number of

unknowns; hence, it is not considered in this chapter.

In Section 4.2, the general description of discontinuity structures is discussed, and

the general representation of strip discontinuities, from which most of common

discontinuity types can be derived, is presented. In Section 4.3, the closed-form Green's

function is employed to formulate an integral equation to determine the excess charge

distribution of the generalized discontinuity structure given in Section 4.2; thus, only one

'See also Section 2.2 for more detailed discussion of this Green s function.

2This approach is used in Chapter 6 for the computation of the equivalent capacitance of a strip
crossover.
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integral equation is formulated for various types of discontinuities, unlike other approaches

given in [3]-[6], in which a different integral equation has been formulated for each

discontinuity type. Then, the method of moments is employed to solve the integral

equation. The equivalent capacitances of an open end, a step junction, a bend, and a T

junction are considered as numerical examples, and the computed capacitances are

compared with other published results in Section 4.4.

4.2 General Statement of the Problem

The planar view of the general geometry of a discontinuity considered in this

chapter is shown in Fig. 4.1. A discontinuity, in general, consists of an arbitrary number

N t of traces, which are all connected either with or without a junction region. This general

geometry represents most of the common strip discontinuities, e.g., an open end, a

nonorthogonal bend, and various junctions. Although the present approach can handle

conductors with finite thicknesses, the conductor thicknesses are assumed to be infinitely

thin in this chapter.

The discontinuity structure is embedded in a layered dielectric medium, which is

shown in Fig. 4.2. An arbitrary number of dielectric layers are located on top of a ground

plane, and the layered dielectric medium is terminated by an optional ground plane on the

other side. Unlike the dielectric medium considered in Chapter 2 (see Fig. 2.1), it is

assumed that the bottom ground plane always exsists.

Some common strip discontinuities which can be represented with the general

discontinuity geometry shown in Fig. 4.1 are depicted in Fig. 4.3 with their equivalent

circuit representations. These representations include transmission lines; hence, they

assume that there is at least one ground plane. In general, the equivalent inductances

should be added in these equivalent circuit representations, and they can be computed using

the method described in [7].

4.3 Formulation of an Integral Equation

The integral equation relating the electrostatic potential #(r) and the charge density

q(r) on the surface of a conductor for 3-D problems is given by
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Figure 4.1. General geometry of a strip discontinuity.
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Figure 4.2. Cross-sectional view of a multilayered dielectric medium.
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Figure 4.3. Discontinuities and their equivalent circuit representations.
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Figure 4.3. Continued.

_(r) = I G3D (_r' )q(r' )dr'= (G3D,q) (4.1)

12

where the O's are the surfaces of conductors: traces and a junction region. G3D(r]r ' ) is

the 3-D closed-form Green's function for a layered medium, which accounts for the

polarization charges and free charge on ground planes. To simplify the notation the

integration is symbolically written as (.,.}. Now let us rewrite the charge density q(r) in

the following manner:

qj (r), if r is on the junction region (4.2)
q(r) = (q_(r), if • is on the ith trace

and, for each trace, let us decompose the charge densities q_(r) into the uniform charge

density q_nif'i(r) and the excess charge density q_.XCeSS'i(r)"

q_(r) = q_niy,i (r) + q_XCeSS,i(r) (4.3)

Here, the uniform charge density q_.niy'i(r) is obtained by solving a 2-D problem, in which

it is assumed that only the ith trace is present in the medium and that the ith trace is

infinitely long in both directions. A detailed discussion for solving 2-D problems was

given in Section 3.2.1. The uniform charge density q_.ng'i(r) exists only on the ith trace,
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which is a semi-infinite line; hence, Gsemi(_ro,_) should be used to compute the potential

due to q_nif'i(r).

Using (4.2), the integral equation (4.1) can be written as follows:

N t

_P(r)=(G3D, q)=(G3D,qj)+Z(G3D,q_ ) (4.4)

i=l

Now using (4.3),the above equationisrewrittenas

N, N t

_,.,x"/_._m,..,..,:,,\(G_,_,q.)+x',/G_D._c...,,_,-,- _,\" ,_r /= L_ ,qr ]
i=l i=l

(4.5)

A complete list of expressions of the closed-form Green s functions for a point charge, a

line charge, and a semi-infinite line charge with or without a top ground plane is given in

Section 2.3. It should be noted that all quantifies in the left-hand side of (4.5) are known

assuming 2-D problems have been solved a priori.

Now applying the method of collocation with the excitation voltage Co, the above

integral equation yields the following system of linear equations:

"_o'_..

¢O.

Vl

.VNt+I

q_nlf,1].

MI,1 M1,Nt+I

MNt+I,I MNt+I,Nt+I

qJ

q_,Xcess, Nt

(4.6)

where

Sq

[vl]p,q=
Cq

6_'_(,-ple,_)ar

(4.7a)

(4.7b)
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excess,l excessj excess,t ]
q_XCeSs,l . . . T

= [qT,1 'qT,2 ..... qT,N3D.i j
(4.7c)

, T
qJ =[qJ,l,qJ,2 "',qJ,N_ ] (4.7d)

q_nlf, l [ unif,i unif,i unif, i ]r
= [qT,1 ,qr,2 ..... qT,N2O.,]

(4.7e)

Here, Sq and Cq denote the source patch and line segment for 3-D and 2-D problems, and

rp is the observation (testing) point, which is the center of a patch or a line segment. N319,i

and Nj are the total numbers of patches to represent q_XCess'i(r) and qj(r), respectively,

whereas N2D i is the total number of line segments to represent q_nif 'i (r). It is assumed

that _o is also used as the excitation voltage in 2-D problems. The closed-form integration

formulas for (4.7a) and (4.7b) were discussed in Section 2.4. Now given the excitation

voltage _o, the excess charge distribution can be determined by solving the above linear

system of equations.

Now once (4.6) is solved, the excess (equivalent) capacitance C e can be obtained

by

C e = Qj + Q_xcess,i (4.8)

where

Nj

Qj = __,qJ,k "Areaj,k
k=l

(4.9a)

Nj

Q_xcess,i = ___ qT,kexcess'i " Area_,k

k=l

(4.9b)

Here, Areaj, k and Area_, k are the areas of the kth patches used to represent qj (r) and

q_XCess,i ( r ) , respectively.

Throughout the formulation, we have assumed that the junction region exists

between traces. The formulation for cases without the junction region, such as an open end
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and step junctions, can be easily obtained by following the above procedure; in fact, (4.6)

can be used by removing terms corresponding to qj(r).

4.4 Numerical Examples

A computer program is written based on the method discussed in the previous

sections. The program assumes that the shape of the junction region (see Fig. 4.1), ff it

exists, is polygonal, and it can handle an arbitrary number of dielectric layers as well as

traces. Each trace is represented by the center point of the ending side and the angle from

the x-axis to the center line of a trace (see Fig. 4.4). Nonuniform meshing is utilized to

reduce the number of unknowns.

Excess capacitances for four common strip discontinuities, an open end, a step

junction, a bend, and a T junction, shown in Fig. 4.3, axe computed using the program.

The following parameters are used: 1) an open end: w=0.5 mm; 2) a step junction:

w! =0.1 mm and w 2 =0.2 mm; 3) a right-angle bend: w! = w2 =0.15 ram; and 4) a T

junction: w I = w 2 = w 3 = 0.15 ram. Three different types of media are considered for each

discontinuity with the following parameters (see Fig. 4.5): 1) an open end: e I = 4.2,

_2 = 2.5, Yl = 1.0 mm, Y2 = 1.5 ram, and Y3 = 2.0 ram; 2) a step junction: t 1 = 6.0,

/
Ot

:Xc,Yc,Zc)

W

X

Figure 4.4. Representation used to describe traces.
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e 2 = 4.2, Yl = 0.1 ram, Y2 = 0.2 ram, and Y3 = 0.3 mm; 3) a bend: t_1 = 2.5, e 2 = 4.2,

yl=0.15mm, Y2=0.3mm, and y3=0.5mm; 4) a T junction: t_1=2.5, 62=4.2,

Yl =0.15ram, y2=0.3mm, and y3=0.5mm. All discontinuities are assumed to be

embedded at y = Yl- To place 3-D unknowns for the excess charge distribution, the length

of each trace is mmcated at l = 8w. The total numbers of unknowns per each trace were 50

for a 2-D problem and 160 for a 3-D problem, whereas 100 unknowns were used for the

junction region. The maximum number of exponential functions used to approximate each

coefficient function K_(y,m,n) was 5.

The computed results are shown in Table 4.1 with the comparison data for the

microstrip case (Fig. 4.5(a)). A good agreement was found overall as shown in the table.

It is interesting to note that for some cases the value of an excess capacitance turns out to be

negative. Although a physical capacitance must be positive, an excess (equivalent)

capacitance is hypothetical and can be negative. The excess charge distribution is plotted

for the microstrip case in Figs. 4.6, 4.7, 4.8, and 4.9. The excess capacitance of an open

end is also computed as a function of a trace width and compared in Fig. 4.10 with the

closed-form formula from [2].

Since the number of unknowns can be quite large for 3-D problems, (4.6) is solved

using the iterative methods, such as the Generalized Conjugate Residue (GCR) routine or

the Generalized Minimum Residual (GMRES) routine instead of the LU factorization. The

comparison of the CPU time used in the above computation for the microstrip case is given

in Table 4.2. The CPU time is measured using an Alpha workstation, and the iteration is

performed until the maximum relative error is smaller than 0.7%. The gain in the computer

time was quite noticeable for the iterative approaches as the number of unknowns

increases. Since (4.6) is diagonally dominant, both iterative approaches converged quickly

as shown in Table 4.2. In general, the GCR routine performed better than the other

appoaches; furthermore, it requires less computer memory than for the GMRES routine.

4.5 Summary

An efficient method to compute excess capacitances of strip discontinuities

embedded in a multilayered dielectric medium was discussed in this chapter using the

excess charge formulation in conjunction with the closed-form Green s functions; thus, the
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Figure 4.5. Three media considered for numerical examples.
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Open End

Step Junction

Bend

T Junction

Table 4.1. The numerical results (units are in femtofarads).

Medium 1 Medium 2

Computation Others Computation

17.33 17.0 [1] 23.52

Medium 3

Computation

19.62

1.120

6.210

1.385

1.05 [1], 0.74 [8]

6.75 [1], 5.8 [8]

1.9 [8]

1.352

7.006

-4.917

0.609

9.184

-0.818

x 10 _2

!,

-!
0.5

4 -0.5 w (ram)
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Figure 4.6. The excess charge distribution for the open end case.
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Figure 4.7. The excess charge distribution on (a) the wider trace and Co) the narrow trace
for the step junction case.
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Open End

Step Junction

Bend

T Junction

Table 4.2. The CPU time used in the computations.

GCR

Time (sec)

12.42

73.40

88.39

116.73

Iterations

17

17

10

9

GMRES

Time (sec)

12.54

73.49

8.67

167.54

Iterations

19

20

15

16

LU

Time (see)

12.71

76.37

95.81

187.16

presented method is accurate and numerically efficient. Unlike other approaches, only one

integral equation was employed in this chapter to handle various strip discontinuities

instead of formulating a different integral equation for each discontinuity type. The

numerical results for the microstrip case agreed well with other published results.
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CHAPTER 5

COMPUTATION OF THE EQUIVALENT CAPACITANCE OF A VIA IN A
MULTILAYERED BOARD

5.1 Introduction

Although a via is one of the most common discontinuities encountered in high-

speed integrated circuits, it has not received as much attention as some of the other

discontinuities, e.g., open-end terminations, bends, and junctions. This is due mainly to

the nonplanar and complex 3-D geometry of the via, which has often been simplified in the

works published previously [1]-[3]. For instance, a via penetrating through a single

reference (ground) plane with two wire traces has been considered in [ 1], and without any

traces in [2], while a via above a reference plane with two wire traces but without a

through-hole reference plane between these traces has been investigated in [3]. A novel

equivalent network model, which accounts for the frequency dependence, has been

proposed in [4] and has also been applied to the problem of coupling between two adjacent

vias in [5]. In [1] and [3], an integral equation has been formulated in terms of the excess

charge distribution to compute the equivalent (excess) capacitance. In this chapter, this

excess charge formulation is further generalized for vias with more complex geometries

than has been analyzed hitherto and is applied in conjunction with the closed-form Green's

function to analyze vias embedded in multilayered dielectric media.

The general description of a via structure is discussed in Section 5.2. An integral

equation is formulated using the closed-form Green's functions in Section 5.3 to determine

the excess charge distribution of a via, and the method of moments (MoM) is subsequently

employed to determine the unknown charge distribution. A detailed discussion of the

closed-form Green's functions and the corresponding expressions can be found in Chapter

2. Unlike the strip discontinuities considered in the previous chapter, the conductor traces

associated with a via can be located at different vertical locations and a via often goes

through several ground planes; hence, the formulation of an integral equation is slightly

more complicated than the one given in the previous chapter. Although two different

integral equations are used for a via with and without a through-hole ground plane in the

other published methods [1], [3], only one integral equation is formulated to handle both

cases in this chapter. In Section 5.4, several numerical examples are presented to verify the

proposed method.
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5.2 General Statement of the Problem

To illustrate the geometries of vias considered in this chapter, a via comprised of

three traces and one reference ground plane is shown in Fig. 5.1. In general, a via can

pass through Ng reference (ground) planes and N t traces, and Np pads can be attached to

the via where Ng, N t, and Np are all arbitrary. The vias are embedded in a multilayered

medium consisting of N d (arbitrary) dielectric layers, which can be backed by two optional

reference planes as shown in Fig. 5.2. To distinguish between these optional reference

planes and those associated with the via, we will reserve the term "reference plane" to

designate an optional top or bottom reference plane, and use the term "reference conductor"

to denote other reference planes. It is evident that the reference conductors must have

perforations to avoid any contact with the vias; however, the two optional reference planes

are assumed to be solid. To simplify the numerical computation, we assume that all of the

conductors are infinitely thin except a via hole, which is assumed to be ftlled with a

conducting material, and that the shapes of all the pads and perforations in the reference

conductors are circular.

Two quasi-static equivalent circuit representations of the via shown in Fig. 5.1 are

given in Figs. 5.3(a) and 5.3(b). These representations assume that there is at least one

reference conductor or one reference plane. The two circuits are equivalent in the sense that

one can be obtained from the other; however, the equivalent circuit shown in Fig. 5.3(b) is

preferable because equivalent inductances, in general, are computed from terminal (trace) to

terminal (trace), and these inductances directly correspond to the ones shown in Fig.

5.3(b) _. This chapter will only address the problem of computing the total equivalent

capacitance Ce. The method to compute the equivalent inductance of a via can be found in

[6].

5.3 Formulation of an Integral Equation

An impressed potential on the conductors results in free charge accumulation on the

surfaces of conductors, and the electrostatic potential _(r) at any point except inside the

conductors is then related to this surface charge density q(r) via the following integral

equation:

tNote that for two-terminal (two-trace) case this is irrelevant since Lel and Le2 are equal to Le1212.
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_p(r)= _ G3D (df )q(f)df f (G3D,ql

£2

(5.1)

where £2 denotes the surfaces of all conductors, including the via and reference

conductors. G3D(r]f) is the 3-D closed-form Green's function for a multilayered

medium, and it accounts for polarization charges on dielectric interfaces and free charges on

the surfaces of reference planes. The integration is symbolically written as (.,.) to simplify

the notation. Next, we represent the charge density q(r) as follows:

Np N t Ng

i=1 i=1 i=1

whereq_(_)is the chargedensityon the surfaceof aviahole,ande_(_), e:(r), and q_(_)
arc the charge densities on the ith pad, trace, and reference conductor, respectively.

Equation (5.1)can be rewrittenas

Np Nt N 8

3D i 3D i
_(r)--(G3D,qv)+Z<G3D,qip>+Z(G ,qt)+Z<G ,qg> (5.3)

i=1 i=1 i=1

Next, the charge density q_(r) is decomposed into the uniform charge density

q_nif,i(r) and the excess charge density q[XCeSS'i(r)"

q_ (r ) = q_nif ,i (r ) + q[XCeSS,i ( r ) (5.4)

Here, q_nif'i(r) is the uniform charge density on the ith trace under the assumptions that it

is infinite in both directions, no other traces are present, and the reference conductors have

no perforations; this charge density is computed by solving an appropriate 2-D problem.

Since the reference conductors become uniform planes without any perforations for this

2-D problem, the potential distribution on the region above the reference conductor is not

affected by the region below it and vice versa. To solve for q_nif ,i (r), it is then expedient

to introduce a new medium surrounding the ith trace. As a consequence, the medium

employed in the 2-D problem is generally different from that of the 3-D via problem, and

could, in fact, be different for each trace. Once the appropriate medium has been chosen,

q_nif'i(r) can be obtained by using the method described in Section 3.2. The resulting
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q_nif'i(r) yields the capacitance per unit length for the ith transmission line in the

equivalent circuit representation shown in Fig. 5.3.

In the process of determining q_nif'i(r), the 2-D closed-form Green's function

G2D'i(l_po) is used to formulate an integral equation for a 2-D problem in Section 2.2.

However, in the integral equation (5.3) for computing the equivalent capacitance problem,

the uniform charge density q_nif'i(r) resides on the ith trace, which is only a semi-infinite

line. It is therefore necessary to employ Gsemi'i(t_ro,_) to compute the potential due to

q_nif'i(r). Using (5.4), (5.3) can be rewritten as

N t

qb(r)-___(Gsemi'i,q_nif'i)=

i=l

(G3D,qv)+Z(G3D,q_)+

i=1

N t Ng
Z /.-,3D excess,i\ . _ /.-,3D i \

_tl ,qt ]÷ __.._tJ ,qg]
i=1 i=1

(5.5)

Next, if we set the via potential to be 0o with respect to the reference conductors and

planes, ¢(r) becomes ¢o on the surfaces of the via hole, pads, and traces, and is equal to 0

on the surfaces of reference conductors. Hence, once qtnif'i(r) has been determined, all

of the quantities associated with the left-hand side of the above equation can be considered

to be known at the surface of the conductors.

The integral equation (5.5) can now be solved by using the method of moments. In

this method, the surfaces of the conductors, with the exclusion of the reference planes, are

first discretized with polygonal patches. Next, the unknown charge distributions, qv(r),

qJp(r), q_XCeSS'i(r), and qZg(r), are expanded with pulse-type basis functions over these

patches. For instance, we wrote qv(r) as

/vv

qv(r) = Zqv,jPj(r) (5.6)

j=l

where /_(r) is 1 if r is in the jth patch used to discretize the via hole and, 0, otherwise.

Evaluating (5.5) at the centers of all the patches results in a system of linear equations,

which yields the unknown charge distribution similar to (4.6) in Chapter 4. The various

integrations appearing in (5.5) can be evaluated analytically for pulse-type basis functions

using closed-form formulas given in Sections 2.3 and 2.4.
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Once the unknown charge distributions have been determined, the equivalent

(excess) capacitance Ce can be obtained by using the following expression which involves

the integrals of these charge distributions:

Ce¢_o = fqv(r' )dr'+ _ fq_(f )dr'+ _ f q_XCeSS,i(r, )dr

ill ap. iffila,.,

(5.7)

where .f2v is the surface of a via hole, and g'2p,i and £2p, i are the surfaces of the ith pad

and trace, respectively.

5.4 Numerical Examples

First, two numerical examples are considered to illustrate the application of the

method presented above to the computation of the equivalent capacitances of two via

structures, one with a reference plane and the other with a reference conductor. The

detailed geometries of the two via structures are shown in Figs. 5.4 and 5.5. The

computed excess capacitances for Fig. 5.4 with 1) e l = e2 = eo and 2) £I -- 4£0 and e2 = £o;

for Fig. 5.5 with 3) e.1 = e2 = 4e o and 4) e1 = 4.5e o and e2 = 5.4e o are listed in Table 5.1

along with data obtained from [1] and [3]. In [1] and [3], the strips were replaced by the

equivalent wires of radii which are one-fourth of the widths of the strips. In our

computation, the lengths of all traces have been truncated to 2.5h, whereas the width of the

reference conductor has been truncated to 1.51, with h and I being the height of a via hole

and the length of the traces. The truncation of traces and reference conductors is valid since

the excess charge distribution decays rapidly as we move away from the center of a via. A

total of 263 and 687 unknowns were used for the vias shown in Figs. 5.4 and 5.5,

respectively. As shown in Table 5.1, the data for the via shown in Fig. 5.4 agree well with

the published results. However, the data for the via shown in Fig. 5.5 are considerably

different from the results reported elsewhere. Unfortunately, no experimental result for

this structure is available to establish the relative accuracy of these results associated with

Fig. 5.5.
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Figure 5.5. A two-trace via with a reference conductor. All dimensions are in millimeters.
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Table5.1. Equivalentcapacitancesfor vias shownin Figs. 5.4 and 5.5. Units are in
picofarads.

ComputedResult

Others

Fig. 5.4

e.l=e2=e, o el=4e o, e2=e o

0.3841 1.233

0.3701 [3] 1.28 [3]

el=e2---4e o

Fig. 5.5

el=4.5e o, t_2=5.4e o

9.952 12.31

6.35 [1] 7.85 [1]

The equivalent capacitance of the via shown in Fig. 5.6 is obtained from the

experiment based on Hewlett Packard Application Note #67 using a 500 ps rise-time input

signal; the resulting capacitance value was 0.504 pF. To apply the presented method to this

via, only that portion between the ground planes is modeled in the computation, and it is

assumed the two ground planes are uniform. The total of 382 unknowns is used in the

computation and the computed excess capacitance value was 0.395 pF.

The comparisons of the CPU time at the Alpha workstation for various matrix

solution techniques are given in Table 5.2. Again, the GCR routine performed best for all

examples as in the previous chapter.

5.5 Summary

A method to compute the equivalent capacitance of a via, which is based on an

integral equation formulated in terms of the excess charge formulation, has been presented

in this chapter. The method is applicable to via geometries with or without through-hole

reference conductors. The closed-form Green's function was employed to circumvent the

time-consuming evaluation of a nested infinite series, required in the evaluation in [3].

Additional computational savings can be achieved via the use of the Fast Multipole

Method (FMM) [7], an algorithm to speed up the computation time in 3-D capacitance

calculations, in conjunction with the closed-form Green's function for a multilayered
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Figure 5.6. A two-trace via used to obtain the experimental data. Units are in millimeters.

Fig. 5.4

Fig. 5.5

Fig. 5.6

Table 5.2. The CPU time used in the computations.

GCR

Time (sec)

13.18

81.22

167.46

Iterations

28

35

12

GMRES

Time (see)

14.14

120.08

167.52

Iterations

52

5O

17

LU

Time (see)

17.12

161.93

171.76
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medium. In thefollowing chapter,suchan implementationof the multipole method with

the closed-form Green's function is demonstrated for the computation of the equivalent

capacitance of a strip crossover.
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CHAPTER 6

COMPUTATION OF THE EQUIVALENT CAPACITANCE OF A STRIP
CROSSOVER IN A MULTILAYERED MEDIUM

6.1 Introduction

In Chapters 4 and 5, the equivalent capacitances of various junction discontinuities

and a via have been considered based on the quasi-static approximation. In this chapter,

the equivalent capacitance of yet another common discontinuity, a strip crossover, is

considered. Like the methods presented in the two previous chapters, the method

discussed in this chapter is also based on the quasi-static approximation and utilizes a

closed-form Green's function.

To compute the equivalent capacitance for orthogonally crossing strips without a

top ground plane, an iterative spectral-domain approach is used in [1], a spatial Green's

function with the infinite series expansion is used in [2], and a spatial Green's function

based on the complex images is used in [3]. A crossover embedded in lossy multilayered

media is also considered in [4]. The full-wave analysis of a strip crossover appears in [5]-

[7]. In this chapter, the closed-form Green's function is applied to a crossover of an

arbitrary crossing angle and an additional top ground plane.

The Fast Multipole Method (FMM) [8]-[12] is a class of algorithms used for the

rapid evaluation of potentials in large systems The techniques in [8]-[ 11 ] have been applied

to compute the capacitance of conducting structures in a homogeneous medium [10] and in

the presence of finite-sized dielectrics [14]. Anderson's fast-multipole method [ 12], which

is equivalent in complexity and accuracy to the methods described in [8]-[11], has been

applied in conjunction with the closed-form Green's function for computing the capacitance

matrices of conducting structures that reside in a layered dielectric medium [15]. In this

chapter, the possible usage of the FMM to accelerate the MoM computation of the

equivalent capacitance calculation is demonstrated. Numerical experiments show that a

substantial amount of computer time is saved without a loss of accuracy.
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6.2 General Statement of the Problem

Consider two strips crossing at an angle 0t as shown in Fig. 6. l(a). The bottom

and top strips are denoted by Conductors 1 and 2, respectively. Although this chapter will

focus on strips, the proposed method is applicable to conductors of arbitrary cross section.

The strips are embedded in a multilayered dielectric medium depicted in Fig. 6.1 (b). An

arbitrary number Nd of dielectric layers are located on top of a ground plane, and the

multilayered dielectric medium is terminated by an optional ground plane on the other side.

The dielectric medium is assumed to be uniform and of infinite extent along the x- and y-

directions.

When compared to bends or junctions, the discontinuity effect associated with a

strip crossover is less localized due to the absence of the nonuniformity of conductor

geometries. As a consequence, an equivalem circuit with distributed parameters may be

needed to accurately model the crossover. Although the required parameters can be

obtained by using the proposed method, a circuit with distributed parameters is not

convenient to simulate in practice. Only the simple lumped equivalent circuit shown in Fig.

6.2 will be used in this chapter. Unlike the discontinuities considered in the previous

chapters, a crossover consists of two electrically isolated conductors; hence, the equivalent

circuit representation of a crossover consists of three capacitances, and a coupled integral

equation has to be solved to determine these capacitances. In general, an equivalent

inductance should be incorporated into the equivalent circuit to model current coupling for

nonorthogonal crossovers; however, this chapter only concentrates on the computation of

an equivalent capacitance.

The remainder of this chapter is organized as follows. In Section 6.3, a coupled

integral equation in terms of excess charge densities is formulated using a closed-form

static Green's function described in Chapter 2. Then, the Fast Multipole Method is

introduced in Section 6.4, and it is demonstrated how it can be used to accelerate the MoM

solution of the integral equation. Finally, various numerical examples are presented in

Section 6.5.
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Figure 6.1. Geometries of (a) a strip crossover and (b) a multilayered dielectric medium.
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6.3 Formulation of an Integral Equation

Let us fh'st assume that the strip crossover depicted in Fig. 6.1 (a) is embedded in a

multilayered dielectric medium with both top and bottom ground planes. An impressed

electrostatic potential on conductors results in charge accumulation on the surfaces of

conductors. The electrostatic potential 7_(r) at any point is related to this accumulated

surface charge density q(r) through the following integral equation:

_(r)=_ G3D(r,r')q(rJ)dr _ =(G3D,q) (6.1)

where G 3D is the 3-D Green's function for the multilayered medium, and £2 denotes the

surface of the conductors. The integration is again symbolically written as (.,.) to simplify

the notation.

As noted in Chapter 2, the spectral-domain Green's function for a layered medium

with both top and bottom ground planes cannot be approximated with a finite number of

exponential functions owing to the existence of a pole; therefore, both 2-D and 3-D Green's

functions in the space domain cannot be represented by a finite number of weighted

images. Although the exact closed-form expression (without weighted images) can still be

found for the 2-D space-domain Green's function (see Appendix B), such a closed-form

expression cannot be found for the 3-D space-domain Green's function; the expression of
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the 3-D Green's function consists of slowly converging infinite series due to the infinite

number of image charges. To avoid the use of this 3-D Green's function, the top ground

plane is truncated and modeled as an additional conductor; hence, G 3D used in this chapter

refers to the 3-D Green's function for a multilayered dielectric medium with only the

bottom ground plane. This approach results in a large number of unknowns due to

modeling the top ground plane. It may therefore be computationally inefficient to use this

approach as compared to using the Green's function with an infinite series expansion.

However, when a multipole-accelerated algorithm is applied, it is expected that the

proposed approach will result in better computational efficiency in terms of memory usage

and CPU time than that due to the use of the Green's function with an infinite series

expansion. This is primary because of the small number of images required in the closed-

form Green's function.

Now let us represent the surface charge density q(r) as follows:

q(r) = qcl (r) + qc2 (r) + qTplane(r) (6.2)

where qcl(r), qc2(r), and qTplane(r) are the surface charge densities on Conductor 1,

Conductor 2, and the top ground plane, respectively. The Green's function G 3D account

for the charge density on the bottom ground plane and the polarization charge densities on

the dielectric interfaces. By exciting Conductor 1 to a voltage _o with respect to Conductor

2 and ground planes, (6.1) becomes

(Po= G3D,q_I + G ,qc2 + G ,qTplane for ron Conductor 1 (6.3a)

3D 1 3D 1
O=(G3D,qll)+(G ,qc2)+( G ,qTplane)

for r on Conductor 2 and top plane (6.3b)

1
The superscript 1 in qcll, ql 2 , qTplane denotes the charge densities due to the excitation of

_o on Conductor 1 with respect to Conductor 2 and the ground planes. Now let

qll(r) 1,unif , , 1,excess, ,= qcl t r) + qcl t r) (6.4a)

q_2(r) l,excess, , (6.4b)= qc2 _r)
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1,unif / \
where qcl _r) is the uniform charge density obtained by solving the 2-D problem for

isolated Conductor 1, i.e., without Conductor 2 but with the top ground plane. This

problem is solved using the 2-D Green's function G 2D with the excitation voltage set to _o.

A detailed discussion of this procedure is given in Section 3.2. Equation (6.3) can then be

written as

/ .-,3D 1,excess\ / .-,3D 1,excess\
qbo=(G2D'q_'lunif)+(G3D'q_'lexcess)+_u 'qc2 ]+_u 'qTplane ] (6.5a)

/.-,2D 1,unif\. I.-,3D 1,excess\. /.-,3D 1,excess\. I.-.3D _l,excess\

0=_ 'qcl I÷_ t'r 'qcl I÷_ t'r 'qc2 1+_o ,ttTplan e ] (6.5b)

Here, G 2D is the 2-D Green's function for a layered medium with both top and bottom

ground planes, and G 3D is the 3-D Green's function for a layered medium with only a
1 l,excess

bottom ground plane. 1 In (6.3) and (6.5), qTplane and. qTplane represent two different

charge distributions on the top ground plane: lqTplane is the induced total charge distribution

due to the total charge distributions on the strips, whereas l,excessqTplane is the induced charge

distribution due only to the excess charge distributions on the strips. The induced charge

distribution on the top ground plane from the uniform charge distribution on the strips is

embedded in G 2D in (6.5). Since both the excess charge distributions on the strips and the

induced partial charge distribution on the top ground plane from these excess charge

distributions are all localized around the cross-over region, the strips and a top ground
_l,excess

plane can be safely truncated when modeling the excess charge density qTplane •

Noting that (G2D,q_'lunif) is equal to _o on Conductors 1 and 0 on the top ground

plane, (6.5) becomes

/,-,3D l,excess\. /.-,3D 1,excess\. /.-,3D 1,excess\
O=_t.r 'qcl ]*_tlr 'qc2 ]+_0 'qTplane ]

for r on Conductor 1 and top plane (6.6a)

[1,u \ ] Le \ /,,-,3D 1,excess \ / ...3D 1,excess\
-\G2D'qclnif /=\G3D'qciXCeSS]+_ tr 'qc2 ]+_U 'qTptane ]

for r on Conductor 2 (6.6b)

_When the top ground plane is not present, both G 2D and G 3D are the Green's functions for the

same medium, and the exponential approximation can be performed only once in the spectral domain to
obain expressions for both G 2D and _3D.
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Following a similar procedure, but exciting Conductor 2 to a potential #o with

respect to the other conductors instead of Conductor 1, leads to

-\/G2D,q 2'unif\c2/= <G3D,q2iexcess I +_t_/'-'3D'qc22'excess\/+_t'r/"3D 'qTplane2'excess\]

for r on Conductor 1

/.-,3D 2,excess\ +(G3D, 2,excess\ /.-.3D 2,excess\0=_(.r 'qcl / . qc2 ]+_(_r ,qTplane ]

for r on Conductor 2 and top plane

2,excess 2,excess 2,excess
The superscript 2 in qcl , qc2 , qTplane denotes the

result of the excitation of Conductor 2.

(6.7a)

(6.7b)

excess charge densities as a

where

'
Sq

• T
_i,excess [ i,excess i,excess ,,excess']

qj =Lqy,l 'qj,2 ..... qj,Nj J

qi,excess F i,excess i,excess i,excess -]T
Tplane = LqTplane, 1'qTplane,2 ..... q Tplane, NTplaneJ

i,unif _ 2D, 2D, , 2D2D'] T
qi =Lqi,1 qi,2 "" qi,Ni 3

(6.9a)

(6.9b)

(6.9c)

(6.9d)

(6.9e)

[V_ ] .. "_F l,excess q2,excessl

0 v21q[ 1,unif [M,, M12 M13//ql
0 _ql 0 = q2

2 0 JL 0 q2,unif /M21 M22 M231/q ,excess _2,excess/,,,, // 1,excess _2,excess/ (6.8)

l_M31 M32 M33_lLqTplane qTplane _]

The method of collocation, which is based on the pulse-type basis functions and the

delta testing function, is used to solve the above coupled integral equations, (6.6) and

(6.7), and the resulting linear system of equations is
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Here, Sq and Cq denote the source patch and line segment for 3-D and 2-D problems,

respectively. Nj is the total number of patches used to represent qjZ'excess'(r)," and N? D is
i,unif ._

the total number of line segments used to represent qci (,/. NTplane is the total number
t, excess z

of patches to represent qTplane [r) • It should be emphasized that all quantities appearing in

the left-hand side of (6.8) are known assuming that qal''_ is precomputed by solving the

2-D problem for isolated Conductor i.

The equation corresponding to (6.8) for a case without the top ground plane can be

simply expressed as

V12 0 J[ 0 q2,unifJ = bi21 M,,,, [].l,excess .2,excess /-'-_,_ JL-12 ,,12 J

(6.10)

Once (6.8) or (6.9) is solved, the equivalent capacitance can be obtained by

Fc_,excess c2,excessq m_l,excess o?,excess]

1 1__141 Q2,excessJh Cl,excess C_2'excess-l'excessJLQ_
(6.11a)

= t.,1,excess _ ,.,2Ll,excess2C m
--v,.,. 2 -- -- (6.1 lb)

cS = c],excess _ C m (6.1 lc)

where

aji,excess E_i,excess= ,qj,k "Areaj,k

k=l

(6.1 1d)

and Areaj, k is the area of the kth patch in conductor j. In the above formulas, it is assumed

that (6.8) or (6.10) is solved with _o set to 1.

It should be noted that the difference between the integral equations for the general

3-D capacitance computation and the equivalent excess capacitance lies only in the left side

of (6.8) or (6.10), i.e., in the excitation vectors. This fact allows the Fast Multipole

• • . 1, excea$ 2,ttce&l ,

2The later equality is due to the rectprocity, however, C_' and CI , m general, are slightly
different due to the numerical side effect, and the average scheme should be used to compute C'.
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Method (FMM) in [15] to be employed in solving (6.8) and (6.10),

following section.

6.4 The Fast Multipole Method (FMM)

as shown in the

The solution of (6.8) can be obtained through solutions of the equation having the

form

V = MI (6.12a)

where

V_

0
Vlz qll'**_

0
(6.12b)

and

I=lq+."-I
[.q_'_..'+".J (6.12c)

or

Vzi q_,.,.,r"
V= 0

0
(6.12d)

and

[q_,-"]

I=lq:'"-' I
Lq_,-J (6.12e)

and
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Mn MI2 M13 1

M31 M22M32
(6.12f)

In a similar manner, the solution of (6.10) can also be obtained.

Equations (6.8) and (6.10) can be solved either directly by LU decomposition, or

by iterative techniques such as the Generalized Conjugate Gradient (GCR) or the

Generalized Minimum Residual (GMRES). If the MoM matrix, represented by M in

(6.12a), has dimensions NxN, then a direct method, for example LU decomposition,

would require O(N 3) operations. If an iterative technique is used to solve the MoM

system, the cost would be O(pN2), where p is the number of iterations since a matrix-

vector product is required in each iteration. This product has the form MIq where Iq is a

vector of trial charge coefficients in the qth iteration. The F'MM can be invoked to compute

this product in an extremely efficient manner, requiring only O(M)operations per iteration,

as demonstrated in [12]. This results in an overall complexity for the F'MM-based iterative

technique of O(pM), where p is the number of iterations [ 13], [14].

The approach followed here, and explained in detail in [15], is to use Anderson's

FMM technique, which is based on the use of Poisson's formula to represent the solution

of Laplace's equation. The images resulting from the use of the closed-form approximation

to the 3-D Green's function C_r3D has to be accounted for in the FMM. To facilitate the

required computation, the entire multiconductor structure and all image patches are enclosed

in a large cubical volume (called the parent cube), which is recursively partitioned into eight

smaller cubes (termed the child cubes). At the nth level, the problem space has been

hierarchically partitioned into 2 3n cubes. For each cube at every level, an "outer sphere"

approximation is constructed [12], [15]. This approximation permits the computation of

the potential at any point outside the sphere, given the potential on its surface due to all

enclosed sources. These approximations are constructed in a hierarchical manner to

efficiently aggregate source points. Observation points are aggregated in a manner similar

to that employed to aggregate source points, by using "inner sphere" approximations that

facilitate the computation of the potential at any point inside a sphere, given the potential on

its surface from all sources outside it. The surfaces of the conductors are divided into

genuine patches, while the images produced by the Green's function lead to the presence of

image patches. The observation points correspond only to the centers of the genuine
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patches,whereasboth genuineand imagepatchescomprisethe sources:the potential

boundaryconditionsareenforcedonlyon theconductorsurfaces.Theoverall FMM-based

technique for evaluating the matrix-vector product requires an initial potential evaluation

due to every source, construction of outer and inner sphere approximations, and a final

potential at evaluation at every observation point. Note that given a charge distribution, the

FMM obtains the potential values without ever generating the matrix M.

At present, our FMM implementation works for the case of a single dielectric layer

backed by a ground plane, with free space on top. Finite ground planes can be modeled.

The extension to an arbitrary number of layers is relatively straightforward and is currently

under implementation.

6.5 Numerical Examples

In this section, the usefulness of the above algorithms in the evaluation of the

excess capacitance for various representative geometries is demonstrated. It is assumed

that all strips considered in this section have negligible thicknesses. Since the excess

charges are localized around the discontinuity, the lengths of all strips are truncated to the

finite length of l using the following formula:

l= 20 (h 2 -hi) 90° (6.13)
o_

where hi and h2 are the heights of Conductors 1 and 2 from the bottom ground plane, and

a is the crossing angle in degrees. The length of a top ground plane lg, if it exists, is taken

to be 2l. Nonuniform meshing is utilized to descretize both conductors and the top ground

plane. Unless otherwise specified, the total numbers of basis functions for 2-D and 3-D

problems are 16 and 160 for each strip, respectively, and 625 basis functions are used to

model the top ground plane. A maximum of five exponential functions were used to

approximate each coefficient function of the Green's function, and the Generalized

Conjugate Gradient (GCR) is used to solve the linear system of equations. The CPU time

is measured on the Alpha workstation.

As a first example, consider the strip geometry depicted in Fig. 6.3. The width of both

strips is 0.16 mm. The equivalent capacitance is computed over a wide range of crossing

angles, and the results are shown in Fig. 6.4. The excess charge distribution is plotted in
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Conductor 2 Free Space

Bottom Ground Plane

h2= 6 mm

1=4

Figure 6.3. Example 1: a microstrip crossover.
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Figure 6.4. Variation of the equivalent capacitance as a function of the crossing angle o_.
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Fig. 6.5. Table 6.1 shows the comparison data for the orthogonal crossing case. The

difference between data in the first and second columns is due to the difference in meshing

size and the order of approximation used to obtain the closed-form Green's function. A

total of 11.36 sec of CPU time is used to compute the orthogonal case.

Next, consider the crossover structure with a top ground plane shown in Fig. 6.6.

The width of the strips is again 1 mm. Figure 6.7 shows the variation of the values of the

equivalent capacitance over the height of a top ground plane h 3. The comparison of the

result for h3 = 50 with that for the case without a top ground plane is shown in Table 6.2.

A total of 55.11 sec of CPU time is used for the case with a top ground plane.

Equation (6.1) is also solved directly for the total charge distribution 3 instead of

formulating the integral equation in terms of the excess charge distribution, which is the

conventional way to find 3-D capacitance matrices. Then, the following formula is used to

compute the excess (equivalent) capacitance matrix:

[ c_,excess c?,excess l _t_l,total _ l , a_,uniform a?,total
* glZ,uniform (6.14)

| cl,excess c2,excess j = [ _1 al,total a 2't°tal - I 42L 2

where 0 i't°tal is the sum of the total charge distribution on Conductor j with the excitation
_j

on Conductor i, and Q],uniyarm is the sum of the uniform charge distribution on Conductor

i. As mentioned in Section 4.1, the major drawback of this approach is that since the

excess charge due to the crossover is much smaller than the total charge, the final accuracy

in terms of the excess charge is much worse than the accuracy obtained for solving the total

charge. Table 6.2 demonstrates this fact.'

For the final example, the crossover shown in Fig. 6.3 with hl = 2.5 ram, h2 = 5

mm, Wl = w2 = 1 mm and er = 5 is considered to demonstrate the application of the Fast

Multipole Method (FMM) described in [9], [12]. The FMM is used with the Generalized

Minimum Residual (GMRES) routine, as in [12]. The comparison, in terms of the CPU

time, with the LU factorization, the Generalized Conjugate Residue (GCR) routine, and the

r'l'he term total charge denotes the sum of uniform and excess charges.
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Figure 6.5. Plots of the excessive charge distributions for (a) qf_C, (b) q2eXl, (c) qf_, and

(d) exq22 for Example 1 for the orthogonal crossing case.
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Figure 6.5. Continued.
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Table 6.1. Comparison data for the orthogonal case of Example 1.

C m

cf

Computation Data from [2] 4 Data from [3]

64.81 fF 65.12 fF 65.16 fF

-51.30 fF -51.42 fF -51.58 fF

-55.10fF -55.08fF -54.92fF

Top Ground Plane

Bottom Ground Plane

h2= 4 mm

h3

Figure 6.6. Example 2: a strip crossover with a top ground plane (orthogonal crossing
case).

_'he entries in Table 2 in [2] contained errors, and the corrected data were obtained from the
authours and given in Table 6.1.
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Figure 6.7. Variation of the equivalent capacitance as a function of the height of a top
ground plane.

Table 6.2. Comparison data for the orthogonal case of Example 1.

C m

c_

c_

Without Top Ground

The Excess Charge

Formulation

The Total Charge

Formulation

With Top Ground (h 3 = 50)

The Excess Charge

Formulation

332.75fF

-291.23 fF

-298.24fF

309.87 fF

-139.40fF

37.11fF

329.46fF

-286.20fF

-296.65fF



122

10 3

_, 100

10

0.1

Computation Time Comparison

.... I .... I .... I .... i .... I .... I .... I .... :

..... LU

[ GMRES I i -:-

-1 ..... FMM(GMRES)l}...... .....................................

........... i°'.i i i:11:..........................::

500 I000 1500 2000 2500 3000 3500 4000

Number of unknowns

Figure 6.8. Comparison of CPU time used for the LU factorization, GCR, GMRES, and
FMM.

Generalized Minimum Residual (GMRES) routine, is given in Fig. 6.8. The result from

LU factorization was C m = 518.06 fF, C{ = -415.88 IF, and C_ = -460.98 IF. The

FMM gave C m = 517.0 IF, C{ = -414.4 IF, and C_ = -460.1 IF. Although this particular

numerical example can be solved without the FMM, in general, the number of unknowns

can be quite large when modeling the thicknesses of the strips and the top ground plane,

and the usage of FMM for such cases will significantly improve the computation speed as

indicated by Fig. 6.8.

6.6 Summary

The computation of equivalent capacitances of a strip crossover is considered in this

chapter. Strips crossing at an arbitrary angle with both top and bottom ground planes are

considered for the first time in this chapter. The presented method is based on a static

integral equation in conjunction with a closed-form Green's function, and does not involve

numerical integrations or in/mite summations in the evaluation of the MoM matrix. The

application of the Fast Multipole Method to accelerate the computation is also discussed.
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CHAPTER 7

SUMMARY AND FUTURE WORK

/n this study, computationally efficient and accurate methods to compute the

transmission line parameters of interconnections and the equivalent capacitances of

discontinuities associated with interconnections were presented based on the quasi-static

approximation. An extensive amount of research has already been performed on this

subject and various numerical techniques have been developed thus far, as referenced

throughout the chapters; however, most of these techniques are applicable to only a certain

class of problems or are computationally intensive. For instance, some methods assume

conductors to be of zero thickness and are limited by the number of dielectric layers (often

two layers), whereas some methods require an evaluation of nested infinite summations, a

numerical integration, or modeling of additional unknowns over dielectric interfaces. In

contrast, the presented methods are applicable to multiple conductors embedded in

multilayered dielectric media, and the cross sections of conductors can be arbitrary

although, in the cases analyzed, we have used infinitely thin strips for modeling of

discontinuities to simplify the analysis. Moreover, these methods are numerically efficient

as they do not involve any of the computationally expensive operations described before.

The computational efficiency of the presented methods is mainly due to the

introduction of the closed-form Green's function for a multilayered dielectric medium.

Although the concept of the closed-form Green's function first originated in full-wave

analysis and had already been applied to a static case using complex images, the closed-

form Green's function based on real images, which is computationally more efficient than

the method based on complex images, was first developed in this study. In fact, the

closed-form Green's function (based on complex images) for static analysis was published

at an early stage of this study, and a similar concept using real images was independently

inspired by this author. The complete list of expressions for the closed-form Green's

functions for a point charge, a uniform line charge, and a semi-infinite uniform line charge,

all embedded in a multilayered dielectric medium, was presented in Chapter 2 with the

associated closed-form integration formulas for the collocation method.

The closed-form Green's functions derived in Chapter 2 were then applied to solve

various electrostatic problems. In Section 3.2, this Green's function was used to solve 2-D

electrostatic problems to compute the capacitance matrix of a multiconductor system. In
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Chapters4, 5, and6, it wasusedto formulateintegralequationsin termsof the excess
chargedistributions to computethe equivalentcapacitancesof various interconnection

discontinuities,suchasopenends,bends,variousjunctions,vias,andcrossovers.

The electrostatic solution obtained in Section 3.2 was further used to compute the

conductance matrix of a multiconductor system in Section 3.4. The normal component of

the electric field at the surfaces of conductors was determined from the charge distribution

obtained from Section 3.2; then, it was further related to the shunt current density at the

surfaces of conductors and used in the computation of the conductance matrix. Hence, the

presented method for the computation of the conductance matrix is perturbational in the

sense that the normal component of the electric field at the surfaces of conductors of a

lossless system was used to determine the shunt current density.

To compute the inductance and resistance matrices, an analogy between electrostatic

and magnetostatic problems was presented in Section 3.3. Then, an equivalent electrostatic

problem was solved instead of a magnetostatic problem, and the inductance matrix was

obtained from the capacitance matrix of the equivalent electrostatic problem in Section 3.3.

The conduction current density on the surfaces of conductors was also obtained from the

surface charge density of the equivalent electrostatic problem, and it was used to determine

the resistance matrix in Section 3.5. To include losses due to imperfectly conducting

ground planes, coupled integral equations were formulated in Section 3.5 to obtain the

current densities on the surfaces of the ground planes.

Throughout the chapters, the results obtained from the presented methods were

compared with other published results including some experimental results and, in general,

a good match was obtained.

The Fast Multipole Method (FMM) is a recently developed algorithm to accelerate

the evaluation of potentials in large system. Some authors applied this multipole algorithm

to a multilayered case by modeling the polarization charge on dielectric interfaces; however,

a more efficient implementation of the multipole algorithm to a multilayered case may be the

use of the closed-form Green's function. At the present time, the multipole algorithm has

been applied to the closed-form Green's function for only a stratified medium where all

conductors are located in the same dielectric layer. In this thesis, this method was

considered in the computation of the equivalent circuit of a crossover to obtain further

savings in the computation time and memory; a similar approach can also be applied to
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computation of the other discontinuities. The implementation of the multipole algorithm to

a more general closed-form Green's function, in which conductors can be located in any

layer, would be a good subject for future work.

Although only the capacitive nature of the discontinuity is considered in this thesis,

in general, the effect of the discontinuity will be far more complex and full-wave analysis

must be employed to circuits in the high frequency regions. The author is currently

investigating the application of the Finite-Difference Time-Domain (FDTD) method to

generate the equivalent circuits of discontinuities to account for the frequency-dependent

nature of these nonuniform structures.
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APPENDIX A

THE REAL-VALUED EXPONENTIAL APPROXIMATION
BASED ON THE RELAXATION OF CURVE FITTING

First, we will assume that a function y(x) to be approximated is real valued and

nonoscillatory and, furthermore, that its asymptotic value is zero. The latter assumption

can easily be satisfied if the function is limited at infinity. Our goal is to find the right-hand

side of

N N

y(x) = fa(X)= Zj_(x) = Z Cie3'x (A.1)

i=1 i=1

Let us for a moment assume that each first-order function 3_(x) approximates the

original function y(x) at some interval around one of the approximation points and is

decreasing fast enough so that its value is negligibly small at the approximation points

corresponding to larger values of the argument x. Then, we can safely determine one of

the first-order functions, say 3_ (x), by neglecting contributions due to the other first-order

functions, which are unknowns to be determined. The parameters of _ (x) can be easily

obtained by curve fitting two values of y(x) for some large value of x. In a similar

manner, we can find the parameters of the other first-order functions; however, this time

we have to take into account contributions due to the previous ones which are already

known.

From the above argument, given 2N approximation points, the equations used to

determine the parameters for the ith first-order function are then written by

'_i = 2_ln(Yi (X2i_ 1 )/Yi (X2i)) (A.2)

x2i - x2i_ 1

C i = e-Aix2i-lyi(x2i_l) (A.3)

where

Yi(Xj) = Yi_l(Xj)- fi_l(Xj); j = 1,..-,2N (A.4)

In the above, Yo(Xj) is equal to y(xj). Let us now consider the case in which the

value of a first-order function is not negligible at the other approximation points. In this
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case, if we perform the above procedure, there will be some difference between the original

and the approximated functions since we have ignored contributions due to some of the

first-order functions. In such a case, to reduce this difference, we can iterate the above

procedure including the contributions from all other first-order functions which were

obtained from the previous iteration. Thus, for the kth iteration, (A.4) must be modified as

i-1 N

y_k'(xj)= y(xj) Zfl'k'(xj) - Zfl(k-l'(xj); j= 1,...,2N (A.5)

l=l l=i+l

It can easily be shown that if y(x) had N distinct eigenvalues, by iterating the above

procedure, the approximate function will converge to the original function. However, in

general, the approximate function will never be exact and the iteration must be stopped at

some point at which the approximate function is optimal in the curve-fitting sense. Since

our curve-fitting algorithm, most likely, has the largest relative error for values of x

between X2N-I and X2N, one can check the approximated value with the exact value at any

point in this interval for the convergence criterion. In some cases, if the desired accuracy

can not be achieved, then one should increase the number of exponentials. This case can be

determined by checking the difference between the computed parameters of fi (/0 and

f/(k-1).

The described method allows one to find the parameters of an approximating

function one-by-one directly without solving a system of nonlinear or linear equations and

does not require an original function to be monotonic. Moreover, the limiting values of the

approximated function match exactly with the original function.

Finally, to demonstrate the method, the following testing function is approximated

and the results are shown in Fig. A. 1"

e-2X

y(x) = _ + e-x (A.6)

As illustrated in Fig. A. 1(b), to find the exact location of the pole at -1, we need a

large number of iterations; however, since our goal is to approximate the overall function,

only a few iterations were needed to approximate the function. To locate the poles exactly,
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Figure A. 1. (a) Comparison of approximated and exact values of Equation (A6) and (b)
the convergence of the location of the smallest pole (-1) with the number of
iterations.
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one should consider other methods such as those based on pencil of functions [1] or the

Prony approximation [2].

A.1 Reference

[1] S. L. Marple, Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice-Hall,
1987.

[2] Y. Hua and T. K. Sarkar, "Generalized pencil-of-function method for extracting

poles of an EM system from its transient response," IEEE Trans. Antennas

Propagat., vol. 37, pp. 229-234, February 1989.
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APPENDIX B

THE GREEN'S FUNCTION EXPRESSION FOR A STRIP LINE

Solving Poisson's equation with separation of variables, the Green's function for

the strip transmission line case with the distance h between two ground planes (see Fig.

B.1) can be written as follows (see [1]):

G(x, _x', y')= _ _'_ lsin¢ nrCY)sin¢ n_y' _e_(nltlx_x'l/h)
_teZ--'n \ h ) \ h .7

n=l

(B.1)

The above expression for the Green's function can be easily integrated analytically over the

pulse basis function. This summation is quickly converging due to the decaying

exponential factors, and only a few fh'st terms are needed; for instance, four digits of

accuracy can be obtained using less than five terms for Ix-x'l/h>0.5. However, when

Ix-x'l/h is small, the summation converges rather slowly, and the use of this Green's

function expression should be avoided.

Fortunately, the above series can be summed up using the following formula:

k=l

(B.2)

and the resulting closed-form expression is given by [(1.462), 2]

, l[sinh2[rt(x-x')l+sin2[rC(2hY')l]G(x, ylx,y')=-T--lnl rE _ )]41Ze [sinh2[ rl:(2hx'2h )]+sin2[rl:(Y-h y'

(B.3)

This expression for the Green's function can also be obtained using the conformal mapping

and the method of images (see Ch. 10 in [3]). The major disadvantage of this expression

compared to (B.1) and (2.24a) is that the closed-form integration over the pulse basis

function is unappealing; hence, the numerical integration scheme is unavoidable.

Therefore, this form of the Green's function must be only used when ix - x'i/h is small.

As discussed in [4], to integrate (B.3) numerically, it is convenient to rewrite this

expression by extracting the singularity as



133

Ground Plane

y=h

y=y'
Y

Ground Plane

Figure B. 1. A strip transmission line.

G( x, ylx' ,y ) = _B 1 ln[(x_x,)2 +(y_y,)2]+g(x,y[x,,y, ) (B.4)
4roe

where

g(x, ylx',y')=-_x ln[ [(x -x' )2 + (y_ y, )2_sinh2I___x(x2hx' )1 + sin2I.g(2hY' )11]
sinh2 [._(2hX' ) 1 + sin2 [ rC(2h y') ]

(B.5)

Now the first term in (B.4) can be analytically integrated over a line segment using the

formula given in [5], but the second term must be integrated numerically.

B.1 Reference
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Hill, 1953.
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transmission lines in the presence of a dielectric interface," IEEE Trans. Microwave

Theory Tech., vol. 18, pp. 35-43, January 1970.

D. R. Wilton et al., "Potential integrals for uniform and linear source distributions on
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