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Preface

Internal fluid flows are subject not only to self-sustained oscillations of the
purely hydrodynamic type but also to the coupling of the instability with the
acoustic mode of the surrounding cavity. This situation is common to turbo-
machinery, since flow instabilities are confined within a flow path where the
acoustic wavelength is typically smaller than the dimensions of the cavity and flow
speeds are low enough to allow resonances. When acoustic coupling occurs, the
fluctuations can become so severe in amplitude that it may induce structural
failure of engine components. The potential for catastrophic failure makes

identifying flow-induced noise and vibration sources a priority.

In view of the complexity of these types of flows, this report was written
with the purpose of presenting many of the methods used to compute frequencies
for self-sustained oscillations. The report also presents the engineering formulae
needed to calculate the acoustic resonant modes for ducts and cavities. Although
the report is not a replacement for more complex numerical or experimental
modeling techniques, it is intended to be used on general types of flow
configurations that are known to produce self-sustained oscillations. This report
provides a complete collection of these models under one cover.

This report is divided into two parts. Part I (Chapters 2 through 6) presents
many of the methods used to calculate acoustic resonances for internal flow paths
inside turbomachinery for the conditions when the acoustic wavelength is much
larger than the cavity dimensions (discrete resonator) and in which the wavelength
is comparable to or smaller than the main flow path dimensions (distributed
resonator). Part II (Chapters 7 through 11) shows how to compute the modes of
instability for fluid oscillators that are self-sustained. These types of oscillations are
termed instability-induced excitation (IIE) and include jets, wakes, and mixing
layers. By combining Parts I and II, modes of flow instability and acoustic
resonances can be calculated to determine the potential for coalescence between
discrete or distributed resonators and instability-induced oscillators.

In addition to the report, FORTRAN 77 computer programs were developed
to perform the calculations described in the report which go beyond what is
reasonably expected from a hand-held calculator. To obtain copies of the programs,
contact Tom Nesman at (205) 544-1546 or E-mail Tom.Nesman@msfc.nasa.gov.
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CHAPTER 1

IDENTIFICATION AND CLASSIFICATION OF
FLOW-INDUCED SOURCES INSIDE TURBOMACHINERY

Although the concept of flow-induced vibration may be well known, it is
often difficult to identify an excitation source inside turbomachinery when the need
arises. The difficulty in excitation source identification is due to the flow
complexities and the bewildering number of geometric features that are found inside
turbomachinery. To complicate matters further, engineers are often faced with
having to identify possible sources of excitation with limited information on the
details of the flow’s thermo- and hydro-dynamic environment.

This report has been prepared to alleviate some of the difficulties with
identifying potential sources of excitation inside turbomachinery. The report
presents in consistent notation and format, the formulae, charts, and tables that are
needed to determine the frequencies for self-sustained oscillations. The report is
organized according to the basic acoustic and flow configurations common to
turbomachinery. With each configuration, solutions to predict the preferred
frequency of oscillation are provided using the latest analytical and empirical
techniques found in the literature.

Section 1.1 introduces the basic source excitation mechanisms. Section 1.2
identifies the parts of the turbomachine which have a potential for excitation, and
Section 1.3 classifies the excitation sources and presents the structure and

organization for the rest of the report.

1.1 Basic Source Excitation Mechanisms

The first step in the process of identifying sources of excitation is to establish
a classification scheme so that the distinction between each of the model categories is
clearly stated. This shall be done using the source and classification scheme
originally devised by Naudascher and Rockwell. The scheme begins by
distinguishing three basic categories of mechanism.
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* Extraneously Induced Excitation (EIE) - Generated by pulsations in the

flow or pressure that is not part of the vibrating system. The source of
excitation is independent of body movement or any instability that may
arise from vortex sheddmg An example EIE might be a pump surge
that produces a strong pressure spike that in turn induces a force on

downstrearn englne components

. nstablhty Induced Exatatlon !IIE) Caused by an [instability in the flow.

Often times the mstablhty is brought on by the very same structure that
is endangered by the vibrations. These instabilities are simply a result of
an inflection point in the mean veloc1ty proﬁle Many flow configura-
tions give rise to this type of flow. Some exampIes are jets, wakes, and
mixing layers. The feature common to all of these is the existence of a

shear layer.

* Movement-Induced Excitation (MIE) - An exciting force that is brought

about through the vibration of a body. When there is body movement

there is a phase relationshlp between the body displacement and the
" fluid force produced from the body dlsplacement At certain values of
phase the flow will induce forces that will enhance the body movement,
causing the body to undergo self—sustained oscillation. Common

examples of MIE are couple mode flutter and galloping.

Any one of these three basic excitation mechanisms can be further
subdivided. For example, the IIEs have three basic subdivisions these are: fluid-
dynamic, fluid-resonator, and body-resonator. Fluid-dynamic is the category of
oscillators that is dependent on the dynamics of the flow alone and is not coupled
to any other forcing mechanism. Fluid-resonator and body-resonator are two
other categories of oscillators where the fluid flow is modulated by either the
dynamics of the resonator or the movement of a body. In the case of the fluid-
resonator, a clearly identifiable acoustic mode or modes must be excited by the

action of a shear layer.

In practice there are many situations where these basic mechanisms may
appear in any combination inside turbomachinery. Such coalescence of excitation
mechanism is prone to highly amplified fluctuations and can lead to structural
failure. Being able to identify the basic mechanisms is one of the main tasks when

analyzing a vibration problem.
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1.2 Source Identification

In this section, a search is made of all the possible excitation sources having
geometric configurations that lend themselves to handbook treatment. Such a
survey of source geometries defines the types, shapes, and range of flow condi-
tions for which analytical models are suitable, and precludes modeling all types of
excitation models and resonators that are not likely to occur inside turbo-
machinery. To accomplish this task, a list of vibration sources is first developed.
Next, the sources are organized into a logical framework so as to define the
appropriate models and establish the range of flow and acoustic conditions that

might be expected.

Consider as an example the High-Pressure Fuel Turbo-Pump (HPFTP). This
pump is one of four pumps on the Space Shuttle Main Engine (SSME). The space
shuttle orbiter vehicle propulsion system has a total of three main engines. An
engineering drawing of the HPFTP is shown in Figure 1-1. Included in the figure
are the thermodynamic properties at selected locations along the flow path. The
engines are presently throttled over a thrust range of 60 to 109 percent of the
design thrust. The values reported here are for conditions at the full power level

of 109 percent.

Liquid hydrogen from the low-pressure fuel pump enters the HPFTP at a
pressure of 240 psia. After passing through the first impeller stage the hydrogen
changes its phase to vapor and remains vapor through the remainder of the pump.
At the pump exit, the hydrogen gas is used to cool the main combustion chamber
nozzle, drive the turbine in the Low-Pressure Fuel Turbo-Pump (LPFTP), and is
mixed with oxygen in the preburners of the High-Pressure Fuel and Oxygen
Turbo-Pumps. The HPFTP preburner (not shown in the figure) produces hot

gases that drive the turbine, that in turn drives the pump.

Using Figure 1-1 a search is made of all possible excitation sources. In
Table 1-1 are listed some of the major cavities that are capable of maintaining a
standing acoustic wave. Listed in the table are the major engine components and
beside each component is the expected Mach number and frequency range. The
frequencies reported here are for the quarter wavelength mode. Note that in

most instances the Mach number is less than 0.2.
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Cavities Capable of Acoustic Standing Waves

Table 1-1

C - Centrifugal Mode:

Engine Frequency Range
Basic Volumes Components Mach Number (One-Quarter Wave)
Circular Torus Pump Inlet and 0.02 to 0.22 C: 322 to 587 Hz
Exit Chambers
O Turbine Inlet and 0.03 to 0.22 C: 280 to 839 Hz
Exit Chambers
R ‘Englne
) Centerline
E Y
Be} r
E
L]
o Irregular Torus
a Ar>L Ar~L e Impeller Balance <0.08 C: 330to 764 Hz
Cavity R: 2500 to 11,000 Hz
L L
s Lubrication and/or <0.21 C: 296 to 1286 Hz
Ar Cooling Cavity R: 2500 to 20,000 Hz
Ar
—————————7— + Combustion 0.12 C: 790 Hz
engine centerline Chamber A: 2770 Hz
Drilling
¢ Lubrication Ports <0.25 A: 2700 to 6900 Hz
L * Bearing Slinger 0.12 A: 47,780 Hz
Drillings
| A )
=
-~
©
E’
| Duct « Impeller <0.35 A: 1500 to 2600 Hz
g
o ( « Diffuser <0.1 A: 1700 to 3200 Hz
4
L « Combustion <0.6 A: 2700 to 5000 Hz
Chamber
72
R - Radial Mode; A - Axial Mode




Figure 1-2 further illustrates the range of resonance frequencies for
selected engine components. The vertical scale is a logarithmic frequency scale.
The components highlighted beside the scale indicate the first wavelength
resonance mode. The figure is divided into two parts: on the left side of the
figure are eingme compoﬁentsWtilrl;éi;trié')iperience quarter wavélength modes in the
radial and axial directions; on the right side are the engine components that
experience circumferential standing waves. Longer wavelengths with frequencies
below 2000 Hz are the product of circumferential acoustic waves, while shorter

acoustic wavelengths are traceable to radial and axial resonance modes.

Continuing the search for excitation sources, Table 1-2 is another example
of how sources may be classified. Shown in Table 1-2 are the results of a survey
for cavities having dimensions smaller than the acoustic wavelengths. Four typés
of cavities are identified. The first two cavities, denoted as the cavities without
branch pipes, are relatively simple configurations that can be modeled using a
handbook. For example, the first cavity resembles the classical Rossiter cavity and

might be analyzed using one of a number of models for flows over rectangular

cavities. The second cavity is a Helmholtz resonator. Engineering data and

formulae are readily available for these types of resonators. -

The cavities appearing in the third and fourth rows are sufficiently more
complicated; the existence of the branch pipe makes it nearly impossible to
identify general handbook methodologies in the literature. In this situation, and
many more like it, handbook methodologies are unavailable and the only

appropriate measure is to use a computer modeling or a testing approach.

1.3 Source Classification

If one were to continue the search for sources through other parts of the
SSME, it would be quickly discovered that the engine spans a wide range of flow
conditions (liquid, vapor, and two-phase) and there are more possible flow situa-
tions than there are models. This statement is true in general for turbomachinery
and is not limited to a particular engine such as the SSME which was chosen for
this example exercise. Generally speaking, the following conclusions can be made
about turbomachinery: the Reynolds numbers are typically greater than 10,000,

the Mach number less than 0.2, and most frequencies of any significance are
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Table 1-2

Selected Cavities Inside Turbomachinery

. - Approximate
Basic Cavity Var.xatlon of Significant Range of
Basic Cavity Parameters Dimensions
Simple Axisymmetric Bellows
Cavit AR
avity ) U = Free-stream L/D <1
AV VAV, velocity
U ' M<0.15
Tk sliding Expansion Joint | L = Cavity length
2 I -
.E' D T D = Cavity depth
o Turbine Blade Tip Seal | M = Mach number
3]
g [
by
-]
<
g Non-Ax
& on-Axisymmetric _
%2 | Helmholtz Resonator L, = Neck length L, < 0.2 inch
B Combustion Chamber
) Resonator L, = Cavity depth L. <0.51inch
> —_—
8 } A, = Orifice cross- A, /A.<0.1
L, sectional area
L
A, = Cavity cross-
Le 1 sectional area
Simple Axisymmetric L/D <1
_Cavity'With . Lubrication and U = Free-stream
Exit Flowing Fluid Cooling Port velocity M<0.2
U, = Cavity velocity U./U< 1.5
( ( L = Cavity length
&
[ D = Cavity depth
o
§ M = Mach number
|
<o)
4 . .
Y Simple A'xlsyrpmetric U = Free-stream L/D 0.5
Cavity With velocity
Iy Entrained Flowing Lubrication and M<0.4
5 Fluid Cooling Port U, = Cavity velocity
) U/U.<0.1
/_|) L = Cavity length
D = Cavity depth
M = Mach number
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below 5000 Hz. Furthermore, most sources of vibration concern in turbo-
machinery will be traceable to IIEs of the fluid-dynamic and fluid-resonator type.
Based on this premise, all the models appearing in the handbook assume the basic

mechanism as an Instability-Induced Excitation.

Also, given that the flows are internal, it is highly possible that an IIE may
become coupled with an acoustic wave. To deal with this issue, the first part of
the handbook (Chapters 2 through 6) presents a number of methods used to

calculate acoustic resonances inside internal flow paths.

The second portion of the handbook (Chapters 7 through 11) reviews
models that pertain to IIE. Included in the handbook are frequency prediction
formulae for jets, wakes, and mixing layers. Also discussed at great length are
aspects dealing with leading edge interactions. The models are organized
according to the basic categories of shear layer flows and those having leading

edge interactions.

Shown in Tables 1-3 and 1-4 are the acoustic and flow models considered
in this handbook. The models appearing in these chapters were selected based
upon results of the previous survey. In Table 1-3, the table is divided into two
parts: discrete resonators - having a cavity small in terms of the acoustic
wavelength, and distributed resonators — having cavity length measuring several
acoustic wavelengths and a transverse dimension typically small in terms of the
acoustic wavelength. In Table 1-4, the top row shows the basic flow configura-
tions; below each configuration is shown the basic model acting with an acoustic

resonator. These two tables are keyed to chapters in the handbook.
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PART 1
ACOUSTIC RESONATOR MODELING
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CHAPTER 2
CAVITY RESONATORS

by Miguel C. Junger
Cambridge Acoustical Associates

The basic forms of cavity resonators are (a) resonators with cavities small
in terms of acoustic wavelengths; (b) elongated cavities, e.g., pipes, which display
a length measuring several acoustic wavelengths and transverse dimensions
typically small in terms of acoustic wavelengths; and (c) fluid-filled spaces whose
three dimensions measure several wavelengths. The mechanical analog of (a) is
the simple mass-spring oscillator. The mechanical analog of (b) is a waveguide,
viz, a column measuring several compressional wavelengths. The mechanical

analog of (c) is a multi-modal, three-dimensional structure.

Systems of type (c), which are typically dealt with by means of statistical
techniques, viz, room acoustics, are not relevant to turbomachine acoustics.
In covering type (a) and (b) systems, we shall rely as much as possible on the

familiar field of structural vibration.

Sections 2.1 and 2.2 introduces the basic mathematical models. Sec-
tion 2.3 considers the situation when the resonator is filled with a liquid and the
boundaries of the resonator are no longer rigid. Section 2.4 describes the
resonator characteristics when a damping material is inserted into the orifice.
Section 2.5 considers the Helmholtz resonator as a side branch. Sections 2.6
and 2.7 describe the effects of a high-incident pressure and turbulent flows inci-

dent on the mouth of the resonator.

2.1 The Helmholtz Resonator Reactance and Natural Frequency

2.1.1 The Mechanical-Acoustical Analog

A Helmholtz resonator's cavity is the equivalent of the spring of a simple
oscillator. Figure 2-1 presents a sketch of a Helmholtz-type cavity and its spring-
mass equivalent. The resonator's spring constant, K, is determined by the

compliance of the fluid-filled cavity and of its boundaries.
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The equivalent of the oscillator mass, m, is the fluid mass in the resonator
neck plus the entrained fluid mass. The latter can be envisioned as the reactive
radiating loading on two virtual pistons forming the boundaries between the neck
and, respectively, the cavity and exterior space. Even if the neck length L, (see
Figure 2-1) is small, the sloshing of fluid through the orifice as the cavity is
alternatively compressed and decompressed entrains a mass of fluid correspond-
ing to a volume A, AL of fluid, where A, is the orifice cross-sectional area and
AL is the sum of the lengths of the entrained fluid outside the cavity, AL, ., and the
entrained fluid within the cavity, AL,.

The analog of the dashpot resistance in the mechanical system, R, is the
sum of two components: the acoustic resistance R, associated with sound
radiation by the above-mentioned outward-facing virtual piston and the viscous
resistance R, embodying frictional losses. In airborne noise control applications,
the latter resistance is deliberately enhanced, e.g., by inserting a fiberglass plug in
the neck.

In this connection it is noted that Helmholtz resonators, which are now
used to absorb noise, particularly narrowband noise such as associated with
transformers, had been used traditionally in churches and theaters to render the
space more reverberant. The name of the 19th century physicist Helmholtz was
attached to the resonator not because he invented it but because he was the first
to analyze it. It is this reverberation-enhancing performance of the Helmholtz

resonator which is a potential problem in turbomachinery.

2.1.2 tyral Frequency of t 1t r

The adiabatic bulk modulus (B) of a fluid - whether gas or liquid - relates
the volume strain (AV/V) of the adiabatically compressed fluid to the applied

pressure. The applied pressure can be expressed as

p = -BAV/V. (2-1)
For a gas, B is a function of the ambient pressure Pe,

B = yP., (2-2)
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where 7y is the ratio of the specific heats at, respectively, constant pressure and
constant volume. The ratio y. which is 1.40 for air under normal atmospheric

conditions, is a function of pressure and, to a lesser extent, of temperature.! For
100 atm and -79°C  y,, = 2.20. The bulk modulus for a liquid and a gas is

commonly expressed as

B — pc2’ . (2'3)
where p is density and c¢ sound speed. The bulk modulus of a liquid is far less
sensitive to pressure and temperature. ’

Applying Equation (2-2) to thé resonator,

AV = _ A3
VT LA (2-4)

where A, and A. are, respectively, the cross-sectional areas of the orifice and of
the cavity, L. is the cavity depth, and & is the displacement of the virtual piston
defining the boundary between the orifice and exterior space. The force acting on

the piston is
F=ADp. (2-5)

Combining Equations (2-1), (2-4), and (2-5), one formulates the effective stiffness

= BAZ/V., (2-6)
where V., = L. A, is the cavity volume.

As already mentioned, the mass is the mass in the orifice neck (with
length L,) augmented by the entrained mass of the virtual pistons forming the
interface between the neck and, respectively, the exterior space (length AL,) and
the cavity (length AL;). For openings small in terms of the cavity's cross-sectional
area as well as of the wavelength squared, the entrained mass is that of a baffled

piston with lengths?
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AL, = AL; = 0.850 (A,/m'?%; A, <<A. \?

= 0.48A)°. (2-7)

This asymptotic small-orifice result is insensitive to cross-section geometry. As
the orifice area increases, AL, decreases, as seen from a graph in Figure 2-2

computed by Ingard.3 An approximate expression for these curves is

1/2

AL, = 0.48 A ° [1-1.25(A/A.)"?] . (2-8)

If the orifice opens outward through an extended boundary, the expression
for AL, in Equation (2-7) holds irrespective of A,/A. provided A, <<A?. Assuming

this to be the case, the effective resonator mass is
m = p A, L, (2-9)
where L. is the effective neck length shown in Figure 2-1 and is

L, + AL, + AL,

Leg

= L, + 0.48A% [2-1.25 (A,/A)?] . (2-10)

The density p of a gas is given by

- Po P
P (T/273) (2-11)

where p, is the density at 0°C (273°K) and atmospheric pressure (1.23 x
103 g/cm? for air), P. is the pressure of the gas in atmospheres, and T is the
temperature in degrees Kelvin.# The density of liquid is relatively insensitive to

pressure and temperature.>

Substituting the above results for stiffness and mass, the familiar expression

for the natural frequency of a simple oscillator is

— 1 (Ky/2
o= & (8
1 (BAo 2
2n \pVclesr/ . (2-12a)

2-5
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Since B = p c¢2, the term (B/p)!/2 can be replaced with ¢ so that

C Ao

b= o (vc Lﬁ)llz. (2-12b)

Recalling that gasses have a density and bulk modulus which depend
strongly on pressure and temperature, one would expect the same to hold for the
sound velocity and consequently for f,. Referring to Equations (2-2) and (2-11),
one notes that the pressure cancels out, the sound velocity and hence f;, afe only

dependent on temperature
c(T) = c, [T/273]"2, (2-13)

where c, is the sound speed at 273°K (3.31 x 104 cm/s for air), and T is in
degrees Kelvin. Consequently,

M = S (AT273)7 (2-14a)

2n Ve Lesr

Xam Iculati

To illustrate the above result, consider an air-filled resonator with L,/AL,
<« 1 and A,/A. <« 1. In view of the latter inequality, Equation (2-10) applies, and

Lg = 0.96A) = A, (2-14b)
The natural frequency now becomes
f, = 3.31x10° ( A/ZT/273)”2
2n Ve ' (2-15)

As an example, at a temperature of T = 293°K, an orifice cross-sectional area A, =
10 cm?, and a cavity volume V. = 1000 cm3 , the natural frequency computed with
Equation (2-15) is 307 Hz.



2.2 Range of Validity of the Helmholtz Resonator Theory
The range of validity of the mathematical model of the cavity as a spring will
be explored as it is applied to waveguides. A waveguide of length L. terminated

by a rigid boundary displays a standing wave pressure field of the form

px) = Pcos|k(x-L.)], (2-16)

where k = o/c = wavenumber and o = 2nf is the angular frequency. The corre-
sponding displacement . at the open end of the cavity (x = 0) is given by Euler's
equation specialized to harmonic motions whereby d.= -2 8, , or

& = _1_°P

—
pw ogx X0

= PK sin(k L)
p w?

= P _ sin(kL),
Zk

P (2-17a)

Preserving a constant volume velocity, the corresponding particle displace-

ment in the resonator neck is

. o = & 8(!.
A, (2-17b)

The pressure is also continuous at x = 0. Consequently, the effective stiffness at

the neck—cavity interface is

K = foP
)
- Al P
Ac 8¢
= A% 5%k cot k L.
Ac P (kLe). (2-18)
Noting that
= 1{;.x%
cot (x) x(l 3 ) (2-19)



The low-frequency limit of the stiffness, for which k° L2C /3«1, is

K =A_3_P_Cz_, .
A Lo (2-20)

This inequality can now be used to formulate the restriction that resonator
dimensions must satisfy to make the elementary theory applicable. The wave-
number at the Helmholtz resonance is obtained from Equation (2-12b):

K2 = @ = 4 n? f2
c? c?

= Ao
Ve Lest

_ Ao
Le Lef (2-21)

&

The inequality in Equation (2-20) now becomes

&.._I:C_ << 1 ,
3Ac Lest (2-22)

which is the restriction that resonator dimensions must satisfy to make the

elementary theory applicable.

Example Calculation

Using the numerical example selected in Section 2.1.2, the restriction

becomes
ALE = 10°L2 <« 1.
3V
The inequality implies
L. < 31 cm
and
A = % >> 32 cm?, (2-23)

A wave acoustic theory of the Helmholtz resonator which does not place
limitations on cavity dimensions, and which yields somewhat more accurate
expressions for the natural frequencies, was formulated by Bigg.6 In view of the
uncertainties brought on by dependence of the sound velocity on temperature as
well as the presence of impurities, the more refined theory need not be

introduced here.



2.3 The Liquid-Filled Cavity Resonator

For gas-filled cavities, the compressibility of the fluid in the cavity short-
circuits the compliance of the boundary. except for unusually high static
pressures. Boundaries were therefore considered rigid in the preceding sections.
Because of the large bulk modulus of liquids, the boundary compliance cannot be

ignored in this sectlon

The effective bulk modulus of a'bodyrgof liQuid/in an elastic boundary is
obtained by combining the compliances of the two media. The bulk modulus of
the liquid is of course p c?, as it is for gases but, as already mentioned, it is
comparatively insensitive to pressure and temperature. To illustrate the calcula-
tion of the effective bulk modulus, consider a cylindrical shell of diameter 2r,,
length L., and wall thickness h. The desired insight can be gained from an

elementary ‘mathematical model of the cylmdrlcal boundary whereby the radial

expansion is assumed uniform, the axial expansion of the cavity being ignored.
The hoop stress is computed from simple static equlhbrium considerations

6 = pr, /h. (2-24)

The hoop strain is

©»

e = g = pr
E Eh’ (2-25)

where E is the Young's modulus. From simple geometric considerations. the

hoop strain can also be related to the uniform radial displacement w where

W = €T,

pr
h (2-26)

The volume strain is

AV _ 2nrsLew
A nrll.

= 2W

r, (2-27)
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Substituting Equation (2-26),

AV _ 2DPTs

N Eh (2-28)
Consequently, the bulk modulus of the shell, B, .computed from Equation (2-1)
(with a sign reversal because the pressure acts outward on the boundary, while the

definition in Equation (2-1) assumes an inward-acting pressure), is

= Eh
Bs = 5 (2-29)

A slightly different expression would have been obtained had the axial strain
been taken into account. The reader can, as an exercise, compute the effective
bulk modulus contribution of various shells by referring to familiar handbooks.”
The effective volume change which determines the cavity stiffness at the neck-
cavity interface is obtained by adding the compression of the liquid and the

expansion of the boundary

AV - _p(LJ,&z;)

A pc2 Eh/ (2-30)
This can be generalized to arbitrary boundary geometries
AV = —p(B{+B]). (2-31)

A"

where B, is the bulk modulus of the liquid. The effective bulk modulus
is therefore
Br = (B + B}J'

= BL(I + —g-:)_l, (2-32)

Referring to electric circuit theory, the two bulk moduli are seen to add in
parallel. Clearly, if the shell is quite flexible, the compressibility of the liquid is

short-circuited.



Example Calculation

As a realistic example, consider a cylindrical steel shell (E=2.1x
1072 y bar) containing water (B, = 2.2 x 10!° u bar} , the thickness-to-radius ratio

being h/r, = 1/50. The ratio of the two bulk moduli is

BL _ 2pc?r
Bs Eh

= 1.04. (2-33)

The effective bulk modulus, Equation (2-32), therefore becomes ’

- 22x10% )
Ber (1+ 1.04) e |

= 1.1 x 1010 y bar. (2-34)

This can now be substituted in Equation (2-12). Retaining resonator dimensions

assumed earlier, the natural frequency of the liquid-filled resonator is

f, = L B AY? rs)l/2 E
7 27 \096pV I
= 958 Hz. (2-35)

Even though the natural frequency is considérably higher than for the air-
filled cavity, the inequality underlying the Helmholtz mathematical model is
readily satisfied because the sound velocity is correspondingly larger. In other

words, the cavity dimension rather than the acoustic fluid determines whether

the Helmholtz model is valid. This is apparent from the inequality in Equa-

tion (2-22) which does not contain any of the acoustic fluid parameters. The
above calculation does contain other approximations, the kinetic energy not only
of the shell wall but also of the radial motion of the liquid in the cavity having been
ignored. This is, however, small compared to the kinetic energy of the liquid

sloshing through the orifice for the small ratio A,/A. assumed here.

It is interesting to note that this result could have been obtained directly

from Equation (2-12) had the Korteweg-Lamb correction been applied to the

sound velocity in an elastic pipe.2 The Korteweg-Lamb correction will be dis-

cussed further in Section 4.1.




2.4 Helmholtz Resonator Damping

So far only the reactive portion of the resonator impedance has been
analyzed. When resonators are used for the purpose of sound absorption, screens
or fiberglass are inserted in the orifice to enhance sound dissipation, the maxi-
mum absorption cross-section being achieved when the acoustic and frictional
resistance are matched. As long as A, <<A?, the acoustic resistance depends

primarily on the orifice area A, and only mildly on its shape. Therefore, results
strictly applicable to circular orifices whose acoustic resistance is?

R, = 2mp {2 Al /c, (2-36)

are only considered. Referring to Equation (2-12), the acoustic resistance at

resonance (f = f,) becomes
R, = PCAS

2n Ve Leg
21th (2'37)

where use has been made of Equation (2-14b).

The corresponding acoustic quality factor, which is a measure of the

shafpness of the resonance of the Helmholtz resonator, is

_ (K m)l/2
: Ra (2-38)

Combining Equations (2-6), (2-9), and (2-37),

Qa = 2n (V_c Lsdf)llz

A (2-39a)
For the numerical example selected earlier, for which Ly = /2 | the quality
factor becomes
Qa = 2n(Vy/AY?)”
= 2rn(10%/10%?)"* = 35. (2-39b)

It is noteworthy that the fluid parameters drop out, and that the quality factor is
therefore independent of pressure and temperature. This, of course, does not
follow for the resistance, Equation (2-37), which is proportional to pc , since



pc = pPo Co P(m)lﬁ’

T (2-40)

where p,c, = 42.8 n bar/cm/sec for air, P is in atmospheres, and T is in

degrees Kelvin.

Additional damping is provided by fluid viscosity and to a much lesser
extent by heat conduction. For air in the absence of a screen, the viscous
resistance is typically small compared to the acoustic resistance. In our notation,
the viscous resistance is

R, = 2RsAo(le + 2), (2-41)

(Reference 3, Equation (11), where 8., the viscous end correction, is taken equal
to 4 R,/pc, rather than the theoretical result 2 R;/pc, to account for experi-
mental results also reported in Reference 3). The viscous surface resistance in

terms of the viscosity p is

Ry = (mupf)l/2. (2-42)
Normalizing to the acoustic resistance, the resistance ratio at resonance is

1/2 3 13 \1/4
R _ T (h + 2) (_8_&) (M)
Ra Ts pc A%

I
=]

(2-43a)

’

o ()" 22
pc/ Al

where use has been made of Equations (2-12b) and (2-14b). The relevant
parameters for air and water are tabulated in Table 2-1, as are the results of the
resistance calculations for the resonator parameters used in earlier examples.
The resultant Q accounting both for acoustical and viscous losses is
Ry, 1!

Q = Qa [1 + R (2-43b)
and also tabulated in Table 2-1. Even though the application of Equations (2-41)
and (2-42) to water is a crude approximation, it adequately shows that, in the

absence of an energy-absorbing device such as a screen, the resistance is mostly
associated with the radiation resistance for the Helmholtz resonator

parameters selected.
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Table 2-1

Examples of Resistance Calculations for
the Air and the Water-Filled Resonator

Parameter Air Water
Symbol Units (T = 293°K)
H ubar s 1.81 x 104 0.01
Y g/cm3 1.21 x 103 1.0
u/p cm?/s 0.15 0.01
c cm/s 3.43x10* 1.48 x 105
£ Hz 307 958
R, dimensionless
R, [see Eq. (2-43)a] 0.27 0.034
dimensionless
9. [see Eq. (2-39b)] 3 3
Q dimensionless 28
[see Eq. (2-43b)] 34




2.5 The Helmholtz Resonator as a Side Branch

Although sound propagation in pipes will be studied in detail in Sections 3,
4, and 5, this section considers an elementary low-frequency situation of an
incident plane sound wave propagating in a pipe. The purpose of this example is
to demonstrate an application of the Helmholtz model and its electrical circuit
analog to determine transmission loss as a function of frequency. Neglecting pipe
wall compliance, the pressure propagates at the speed of sound in the fluid in the

form of

P = P, exp (ik). (2-44)

Since the pipe cross-sectional area, A,, generally differs from A, , it is desirable
to introduce volume velocity. The volume velocity of the incident wave is

pc -’ (2-45)

Ap’ (2-46a)
That of the Helmholtz resonator is

ZH=A"—(%—wM)+§g— (1+%)

o

aN

(2-46Db)

= K |1 L f)_£
2an§[( an) fﬂn}

The reflected pressure can now be computed. The impedance at the pipe
resonator junction is represented by a shunt circuit in Figure 2-3, where the
Helmholtz resonator is short-circuiting energy flow into the downstream portion

of the pipe. Using the subscripts R and T to identify the reflected and trans-
mitted pressure, respectively,

pr(x) = Py exp (-ikx) .,

. - _ Pr Ap
Or pc ' (2-47a)
pr(x) = P exp (ikx),
> _ PrAp
o pc (2-47b)
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Figure 2-3. The Analog Circuit of a Pipe Provided With a Side Branch
in the Form of a Helmholtz Resonator.

[z, = pipe impedance, Equation (2-46a).
Z,, = resonator impedance, Equation (2-46b).)




Continuity of pressure and of volume velocity at x =0 requires that

Pr + P, = P, (2-48a)

= Py, (2-48Db)

Qi+ Or = Or+Qn | S (2-48c¢)
Y = P

O Zy ' (2-484)

where the subscript H identifies the Helmholtz resonator. Substituting Equa-
tions (2-45), (2-47a), (2-47b), and (2-48d) for the volume velocities, and using
Equations (2-46a) and (2-48b), Equation (2-48c) becomes

Boen )
H (2-49)

Consequently, the impedance just upstream of the resonator is (Figure 2-3)

z=(z}+2])" (2-50)

The simultaneous equ'atriorns, Equations (2-48&{&1& (2-49), can now be solved for
the reflected and transmitted pressure ratios:

(2-51)

At the Helmholtz resonance, the resonator impedance, Equation (2-46b),
reduces, with the application of Equations (2-12a) and (2-35), to

@:%(u&)  f=fa,

Ra (2-52)

At resonance, the resonator short-circuits the transmission of acoustic energy,
i.e.. |Pr/P,| approaches unity and | Pr/P, | = 0. The resonator effectively simu-

lates a pressure release termination. The transmission loss is

TL = -20 log ,Ol;h
‘ (2-53)

2
2010gw(1+ pCAO) , f=1f,.
2A,R,

2-18
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Example Calculation

For the resonator parameters used earlier, and selecting a pipe whose

cross-sectional area A, =10A,,

1/2
2ApRa _—_A)AO (1 +_B_U_) , f - fn'
pc A% TCVC Ra
= 0.127 for the air-filled resonator, and d
= 0.101 for the water-filled resonator. (2-54)

Substituting these results in Equation (2-53), one computes a transmission loss of
19.0 dB for the air-filled resonator and of 20.7 dB for the water-filled resonator at
their respective resonances. Sufficiently far from resonance, Zy is large com-
pared to Z, and the resonator does not short-circuit the downstream pipe
impedance. Substituting Zy , Equation (2-46b) in lieu of Ra/AZo in Equation (2-53),
the transmission loss at low frequencies becomes

1+(pcA%nq1

TL = 101
Og1o A K

10 logio [1 +(ﬂfVﬂ £2 << £2
cAp

0 as f-0 7 (2_55)

and, at high frequencies, the transmission loss becomes

TL

2
10 logso [1 + _M_” £2 5> £2

4nfApM

10 logio

1 + (__—CAO )2]
=0 as f/fao e (2-56)

These trends are plotted schematically in Figure 2-4.
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o /Equatlon (2-55) Equation (2-56)
TL

. ,/  T—Equations (2-53) and (2-54)
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Figure 2-4. Schematic Plot of the Transmission Loss Provided by a
Side Branch in the Form of a Helmholtz Resonator.

2.6 High Incident Pressure Amplitude on a Helmholtz Resonator

The basic discussion of Helmholtz resonators above assumes that the
resonator is excited in a quiescent acoustic medium. The more likely situation in
turbomachinery is one in which a cavity resonator is excited by a grazing flow
across the orifice. The presence of the flow alters both the reactance (i.e., effec-
tive end correction) as well as the resistance of the resonator, thus shifting the
resonance frequency and its quality factor. Uhfortunate]y, the ability to predict
these shifts has only been determined for a few geometries and flow ranges. The

following is a brief summary of pertinent literature and results in this area.

A problem related to grazing flow past a Helmholtz resonator - namely, the
non-linear dependence of the resistance of an orifice on large incident pressure
amplitude - is treated by Ingard.®1° Here the non-linearity is due to flow sepa-
ration and the formation of a jet on the downstream side of the orifice. This flow
switches from side to side through an excitation period as sketched in Figure 2-5.
Measurements made in the orifice show a distortion in the velocity curves with
increasing sound pressure level and a gradual change in phase between the
pressure and velocity. When the incident pressure amplitude exceeds a transition
point, where pressure and velocity in the orifice begin to become distorted, the

non-linear resistance of the orifice is approximately p u?, where u is the

acoustic velocity in the orifice.



Pressure and Velocity
in the orifice becomes
distorted with large
incident pressure
amplitude
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Figure 2-5. Schematic of Non-Linear Flow Separation and
Jet Formation Through a Period of Excitation.
(The source of this excitation is a large incident

pressure amplitude.)




Ingard!? provides a computational procedure to determine the transmission
loss for a high-amplitude incident pressure field. The procedure requires
knowledge of the angle of incidence and pressure amplitude of the wave front.
Both parameters are difficult if not impossible to determine inside turbo-
machinery. An approximation made is to apply the end correction in Equa-
tion (2-10) only once. This will reflect the lack of added mass on the jet side of

the orifice. Equation (2-10) then becomes

Lg = L, + AL,
(2-57)

172

=L, + 0.48A, .

The effect of steady (i.e., "DC bias") flow through the orifice is discussed in
Reference 9 where it is concluded that the dependence of orifice resistance on
flow speed is similar to the non-linear dependence on unsteady orifice flow speed.
The effect of a grazing turbulent flow on a resonator duct lining is briefly discussed
in Reference 10. Turbulent pressure fluctuations are viewed as causing a slowly
fluctuating bias flow in the orifice similar to the steady flow discussed above with

corresponding resistance and reactance effects.

An analytical model of a circular cylindrical Helmholtz resonator in the wall
of a duct carrying low subsonic flow is given by Howe in Reference 11. The duct
and the cavity communicate through a slit orifice. Howe's explanation for the
increased resistance of a resonator with a "DC bias" flow is that the vorticity
generated by an incident acoustic pressure fluctuation is swept downstream by the
flow carrying a portion of the aééﬁst{ceﬁefgy with it. Explicit expressions are
derived for the impedance of Vthé'cavity as seen by an incident plane wave in the
flow duct. Consistent with the results of Ingard, Howe finds that the cavity
resonance shifts to higher frequency (i.e., smaller end correction) as the flow
Mach number increases. The magnitude of the shift, however, depends on the

dimensions of the cavity, duct, and orifice slit.

Two other references are an experimental study of Helmholtz resonator
excitation by an external flow over a glider fuselage in flight!?2 and a semi-empirical
study of the effects of grazing flow over an array of resonators.!3 Both studies

confirm the reduction in end correction with flow Mach number.
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2.7 Excitation of Resonators by Turbulence

Sound radiation by turbulence-excited Helmholtz resonators will be dis-
cussed. Subsection 2.7.1 provides a description of the turbulent boundary layer;
Subsection 2.7.2 describes the response of a Helmholtz resonator to a turbulent
boundary layer; and Subsection 2.7.3 deals with the acoustic response of cavities of

constant cross-section, i.e., those devoid of the Helmholtz resonator neck.

2.7.1 Description of the Turbulent Boundary Layer

A concise description of the boundary turbulence in terms of cross-spectral
density and correlation length is adequate, particularly because the much debated,
controversial low-wavenumber portion of the spectrum associated with direct
sound radiation from the boundary layer proper, is not specifically relevant to
sound radiation by Helmholtz resonators and cavities. A more detailed discussion
including a review of various models of the low-frequency spectrum is found in
Reference 14. A recent comparison of various mathematical models is available in

Reference 15.

The randomly fluctuating surface pressures exerted on the boundary by the
turbulent boundary layer are expressed in terms of the mean-square value ( p? ) of

the pressure and of the correlation function R as
(px.y. ) plx+& y+n, t+1)) = (p?) R(&n.71). (2-58)

Here x and y are, respectively, the coordinate in the direction parallel and
normal to the flow velocity, £ and m are their respective increments. In a fully

developed turbulent boundary layer, the correlation function does not depend on
the location (x,y) but only on the separation (. m) between two points. The
mean square pressure is in the nature of a Bernoulli pressure, being proportional
to p U?, where p is density and U is flow velocity.

The cross-spectral density is the Fourier transform in time of Equa-
tion (2-58)

pl&nw) = Lﬁlj R (& M, 1) exp (iot) dt

(2-59)
= p(0)T(E ;).
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The spectrum density

plo) = ipi)f R (0,0, 1) exp (o) dr

2n | (2-60)
can be approximated in terms of the boundary layer thickness § as
~ 5x107 ¢? U3 5
(w) = -
P 1+ (wd/4n V)3 (2-61)

In Reference 13a, for fully developed turbulence in a pipe or duct, 2§ equals the

conduit's transverse dimension. The second factor in Equation (2-59) is the
normalized cross-spectral density

[~

. _ (P
T(En:w) = 5—((3) R(& n, 1) (2-62)

which can be approximated as the product of the - and n-dependent Cross-

spectral densities
T(E.nw) = T(§ 0, 0) TO N o). (2-63)

The two factors in Equation (2-63) are formulated in terms of the corresponding
Strouhal numbers

S = 28
g Ue

and (2-64)
Ue

where U, is the convection velocity. The ratio U. /U varies withreddy wave-
number and Reynolds number. A representative value for this ratio is 0.6 (Refer-

ence 14, page 744). The two factors in Equation (2-63) can now be expressed as

T(E, 0; ) = exp (-0.11 ISgl)cosSé
(2-65a)
T(0,n; ®) = exp (-0.60 ISWI)'

The latter factor indicates rapid monotonic decay in the direction normal to the
flow direction. The former decays slowly in an oscillatory manner, in the
direction of the flow.
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One can define a correlation length in terms of the limits of S; associated

with a change in sign of the cross-spectral density:
< S < L,

2 2 (2-65b)

This Strouhal number range can be expressed in a physically more meaningful

manner by introducing an unconventional parameter not found in the literature,

e.g., the convection wavelength

}"c = _L]_G_.
f (2-65c)
The inequality in Equation (2-65b) now becomes
She o & < Ao |
4 4 (2-65d)

A meaningful correlation length, § , can therefore be defined as equivalent to A, /2.

2.7.2 Helmholtz Resonator Response to the Turbulent Boundary Layer

The natural frequency of the resonator, Equation (2-12), is altered by mean
flow which modifies the entrained mass as well as the radiation resistance, as
summarized in Section 2.6 and in References 9, 10, 11, 15, and 16. The experi-
mental study which specifically addresses the response of Helmholtz resonators!?
concludes that in most cases the outside end correction is wiped out by mean
flow, shifting the natural frequency upward, a conclusion consistent with that of
the other experimental studies. Reference 12 does, however, conclude that in
some cases the outside end correction remains unchanged or is even increased by
mean flow. Obviously, additional studies are required to reconcile apparently con-
flicting experimental results. The resistive component of the acoustic impedance

of the resonator neck increases with flow velocity.
The experimental study in Reference 12 indicates a strong response when

2d, f, _
o = (2-66a)

or

d, = A /2 (2-66Db)



where d, is the Helmholtz resonator neck diameter and f, is either the Helm-
holtz resonance frequency, Equation (2-12), or the fundamental standing wave or
organ pipe resonance. For the latter, the effective cavity neck length, L.,
measures one acoustic half-wavelength, so the natural frequency would be

f, = € '
2L (2-67a)
or
Ly = A/2. (2-67b)

Once again, the convection wavelength defined in Equation (2-65c¢) can be
introduced to express the condition for strong coupling, Equation (2-66), in a

physically insightful manner if
d = A/2. (2-68)

The result in Equation (2-66) is based on a limited number of experiments
encompassing three values of d,/3 (between 1/4 and 1/2), and a single ratio
6/L =6 where L is the resonator neck length (0.32 cm). The boundary layer
thickness & is 2 cm. The free-stream velocity U is 30 m/s and air is the
acoustic fluid. The results are summarized in dimensionless form in Figure 2-6.
The pressure enhancement at resonance is of the order of 30 dB. The peak in

Figure 2-6 occurs for
od, /u, = 40, (2-69a)

where the friction velocity u, is defined and related to U, in the caption of that

figure. Expressing u, in terms of the convection velocity U,

od, /U, = 2d.f/U,)n

n

2n / A (2-69b)
= 40/15.

This is consistent with thation (2-66) since (40/15n) is of a first order

of magnitude.

It is useful to interpret these experimental results in terms of the standard
mathematical model of the turbulent boundary layer presented in Subsection 2.7.1.
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Figure 2-6. Strouhal Number Correlation of Strong Helmholtz Resonator
Excitation. (Reproduced from Panton and Miller.12)
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Relating the resonator neck diameter d, to &, the resonance condition in Equa-
tion (2-66) is equivalent to a Strouhal number spanning the range of -n/2 to =n/2,
l.e., to a neck diameter d, across which the cross-spectral density remains

positive. This is consistent with the results formulated in Equations (2-65b,c,d).

Strong coupling between the turbuleht boundary layer and the resonator
occurs when the resonator neck measures one convection half-wavelength,
Equation (2-65d). When the corresponding frequency coincides with either the
Helmholtz resonance frequency, Equation (2-12), or the organ pipe fundamental
natural frequency, Equaﬁon (2—(%7), the resonance peaks of the pressure spectrum
displayed in Figure 2-6 takes place. Clearly, referring to Equation (2—66), the
Helmholtz resonance being characterized by the smaller of the two resonance
natural frequencies is excited at a lower convection velocity than the organ pipe

resonance.

2.7.3 Turbulence Excitation of Cavities of Uniform Cross-Section

The response of cavities of uniform cross-section displays two types of
resonance. The primary one is the depth resonance. Insightful results were
obtained for a cavity in the form of a rectangular parallrele'pip'e'(?i one of whose six
faces was left open to air flow in a wind tunnel.!'” With the goal of approximating
two-dimensional flow conditions, the dimenéion perpendicular to the direction
was large compared to the gap width b parallel to flow. As anticipated, an organ
pipe depth resonance is observed when the depth d of the cavity is much larger

than its width b:
d =1
4
A b <«< 1 B
[ =c fd (2-70)

For this situation, the end correction is negligible. For aspect ratios b/d which

are not negligible, resonances are observed at a lower frequency (see Figure 2-7)

-1
f= o [1 + 0.65(3)”"} . 2-71)

Multiple resonances are observed for some values of b/d . These groups of peaks

correspond to roughly constant Strouhal numbers. The cause of these multiple
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Figure 2-7. Plot of Cavity Depth d Normalized to Wavelength (A = c/f) versus
Ratio of Depth d Normalized to Cavity Width b in the Direction of
Flow. (Reproduced from East.17)



resonances is not explained by existing theory, which associates depth mode
resonances with maxima of the expression

% = { Rsinkd? + (Xsin kd - cos kd)? }*/2 (2-72)
In Equation (2-72), p and p; are, respectively, the RMS pressure amplitude at
the cavity base and mouth, and k is the wavenumber 27n/A. R and X are compli-
cated functions tabulated in Reference 17. As anticipated from the impedance
components of the acoustically compact piston radiator for k2 b2 << 1, R varies
approximately as (kb)2 ‘while X grows linearly with kb. R and X are therefore in
the nature of the resistive and reactive components of the impedance ratio.
Consequently, for small kb, where the cosine is much larger than the R and X
terms, the pressure ratio displays a maximum for the first root of cos kd , which
corresponds to Equation (2-70). The theoretical basis of depth mode resonances,
which is seen to be in satisfactory agreement with measurements, can be found in
a paper by Plumblee et al.18

Equation (2-72) does not involve either the flow velocity or the convection
velocity. Consequently, one would anticipate resonances at any flow velocity.
This, however, is not the case. The reason is that the velocity must be such that

the Strouhal number

= wb
S = (2-73)

is compatible with the shear layer feedback mechanism. The empirical Strouhal

number proposed by Rossiter!? is

Sg = 21: (m_l/4)(UC/Ln , ms= 1’ 2
1+M U.) (2-74a)

Bn/2) U, /U, m=1
Mw 1
(7n/2) U. /U, m=2 }

(2-74b, 2-74c)

where M is the Mach number. Equating Equations’(2-74b) and (2-74c) to

Equation (2-73), one obtains two convection velocities:

U =4fb m=1

3
M« 1
U =4fb, m=2 (2-75)

"
1t

1

m



Rossiter showed that under resonant conditions, the shear layer develops into a
series of eddies having the same rotational direction, effectively like one-half of a
Karman vortex street. Strouhal numbers compatible with experimentally
observed resonances are plotted in Figure 2-8. These resonances require that the
frequency of which Equation (2-72) displays a maximum satisfy Equation (2-74).
These twin requirements explain why depth resonance, Equation (2-72), is
possible only at discrete velocities. For b/d<1 and M < 0.18, the principal
cavity pressure resonances observed occur in the fundamental depth mode with
m =1 and 2. For small Mach numbers, and small values of b/d, these require-
ments are satisfied by convection velocities obtained by substituting the funda-

mental depth resonance frequency, Equations (2-70), in Equations (2-75):

ad
M, b/d<< 1, f=c/4d (2-76)
Uc = Q_h , m-= 2
7d
1.5 | | | | | | l |
a b = Cavity Width in the
— a Direction of Flow =
d = Cavity Depth
1.0 ]
A A
A A
fb - y A A A A —
U X x x b x x
0.5 —
X X Q
o o o o 8 o o
0 | | 1 ] | 1 | |
2.0 4.0 6.0 8.0
d (in.)

Figure 2-8. Plot of Strouhal Number Versus Cavity Depth for
Resonant Conditions. (Reproduced from East.!?)
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CHAPTER 3
ACOUSTIC FILTERS AND NETWORKS

by Robert Noreen
Wyle Laboratories

Turbomachinery pipe systems containing propagating acoustic waves are
not simply constant area straight pipes with uniform pressure and temperature.
Rather, the pipes contain changes in cross-sectional area, pressure, and
temperature, and often have openings in a wall that lead to a cavity. Generally
these pipe changes create a change in the acoustic impedance of the pipe and
thus create a reflected acoustic wave. Interference between the incident and the
reflected waves then causes a decrease in the energy transmitted along the pipe,

i.e., the impedance change causes a pipe transmission loss.

Since the change in acoustic impedance for most changes in pipe
conditions is a function of frequency, the transmission loss corresponding to this
impedance change is also a function of frequency. Thus an impedance change is
an acoustic filter, passing acoustic energy at some frequencies while blocking this
energy at other frequencies. Pipe systems often contain many changes in area or
conditions, resulting in multiple impedance changes with differing frequency

relationships, and thus may be considered as a type of filter network.

The pipe elements described in the previous chapter are either acoustic
filters themselves, when considered as single pipe elements, or can be easily
combined with other elements to make a filter. A cavity on one side of a pipe can
form a Helmholtz resonator, and then would be an acoustic filter as shown
previously in Figure 2-3. A change in pipe cross-sectional area creates reflections
and, 1f separated some distance from another pipe impedance change, will create
a plpe transmission loss that is a function of both frequency and the distance

between the pipe changes — another example of an acoustic filter.

Combinations of these relatively simple elements can produce a complex
pipe system with many impedance changes having widely varying transmis-
sion loss versus frequency characteristics. Many of the pipe systems within
turbomachinery can be modeled as combinations of these individual simple
elements. This chapter will show how to calculate the acoustic performance of a

pipe system consisting of combinations of simple elements by using a transfer



matrix technique. Section 3.1 defines pipe acoustic impedance and transmission
loss. Section 3.2 presents calculation methods and examples for simple networks
containing only a few elements. Section 3.3 presents the transfer matrix method
for analyzing acoustic pipe systems containing any number of elements, i.e., a
network, and gives example calculations. Section 3.4 gives a brief description of
how the transfer matrix method is used to model pipe systems with mean flow

and energy losses with an example that includes mean flow.

3.1 Pipe Acoustic Impedance and Transmission Loss
3.1.1 Pipe Acoustic Impe

The specific or characteristic (both terms are used) acoustic impedance of
the gas or medium supporting the propagation of an acoustic wave is a charac-

teristic of the medium and has a single definition

z, = p/u (3-1)

where 1z,

p
u

specific acoustic impedance,

acoustic pressure, and

acoustic particle velocity.

For acoustic pressure variations small enough to be considered isentropic, the
specific impedance for plane wave propagation in a stationary medium is

Zup =pcC (3'2)
where z,, = specific acoustic impedance of a plane wave,
p = ambient density, and '
c¢ = speed of sound.

The acoustic impedance of a pipe can have several definitions - all of which
can be useful - and the most convenient definition to use will depend upon the
specifics of the particular problem. The most common definition is probably that
used earlier in Equation (2-46a) and by Kinsler and Frey,! which is based upon the

acoustic volume velocity in the pipe, A, u

=P =z
Zr u  Ap (3-3)
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where Z, acoustic impedance of pipe, based on volume velocity, and

A,

For a plane wave in a stationary medium, this acoustic impedance becomes

cross-sectional area of pipe.

_pc
va— —p. (3_4)

©

Since both the density and speed of sound are functions of temperature, for
actual calculations on problems in which the pipe temperature can vary it is

generally more convenient to define a pipe impedance based on the acoustic mass
velocity in the pipe, p A, u as

= P = =
Sy STy W (3-5)

For a plane wave in a stationary medium, this becomes

= c _ =

This is the definition of pipe impedance that will be used in this chapter, and
follows Munjal.?2 To simplify notation in later sections, Z, will be denoted by Z
and Z,, will be denoted by {. These impedance definitions are summarized in

Table 3-1.

Table 3-1

Definitions of Acoustic Impedance Used in Text

Parameter General Plane Wave
_ p
Specific acoustic impedance Z, = Ty z, =pc
z
Acoustic impedance based on z, =B = ¢ = PC
acoustic volume flow, A, u Ay u Ap Zp A
p
Z = z =2PC
Acoustic impedance based on M phAyu ™ pA,
acoustic mass flow, p A,u R , ’ .
. =a =°¢




The expressions for impedance given above assumed a single wave
propagating in the positive direction. Most pipe problems will involve two waves —
an incident wave propagating in the positive direction and a reflected wave
propagating in the negative direction. Using the basic wave equations for a pipe

containing incident and reflected waves it can be shown that

Incident Wave: p(x,t)/u = pc,
(3-7)

Reflected Wave: pg(x,t)/u = -pc,

where the subscript "i" designates the incident wave amplitude and the
subscript "R" designates the reflected wave amplitude. Using these relationships,
the impedance of a pipe containing both waves is

= P;+Pr
z ¢ P,-Pr’ (3-8)

3.1.2 Pipe Transmission Loss

The acoustic performance of a pipe is generally measured by the amount of
acoustic power reflected or transmitted by the pipe, usually in terms of the
amount of power initially incident on the pipe. The transmission coefficient is

simply the ratio of transmitted to incident power

a = W/W, (3-9)
where a, = transmission coefficient,
W, = incident acoustic power, and
W, = transmitted acoustic power.

The transmission loss, TL, of a pipe or pipe element is
TL = L - L (3-10)

incident acoustic power level, and

where L

L

The power level is

transmitted acoustic power level.

L = 101logo W/W), (3-11)

where W, . the reference power level, is generally 1 picowatt. The transmission

loss of a pipe is thus



TL

]

10 logo (W,/W}) (3-12)

or

TL -10 logo (on) - (3-13)

This definition of transmission loss provides positive values for the usual

situation of transmitted power being less than incident power.

The acoustic power of a propagating wave in a pipe is related to the acoustic

pressure and particle velocity by

_ Pms Ums
W= = A (3-14)

where the subscript "rms" designates the root-mean-square value of the

acoustic variable.

Combining this with the impedance from Equations (3-5) and (3-6) and

assuming a plane wave,

_ (pmy)’?

20C (3-15)

For a pipe having known inlet and outlet areas, a fluid with known temperatures

and densities, the transmission loss is

TL = 101 Ll e (Prms)xﬁ
Oglo {[ Ci} [ pi} [(prms)t (3_ 16)
and the transmission coefficient is
= E‘_ .p_‘ ____.(prms)_( :
. [QJ {pt} \ (pms)l} (3-17)

rms magnitude of the acoustic pressure,

where Prms

()
()t

Thus, given the pipe areas and temperatures, a determination of the rms

indicates the incident wave, and

indicates the transmitted wave.

magnitudes of the incident and transmitted acoustic pressures will provide both

the transmission coefficient and the transmission loss of the pipe.



3.2 Calculation Methods for Simple Networks

In Sections 3.2.1 and 3.2.2, the transmission loss of two simple pipe
configurations is derived using the "classical’ method of filter network evaluation
which, simply stated, is to write down the equations which describe the con-
figuration or network and solve them for TL. Section 3.2.3 then provides a brief
generahzatlon and dlSCLlSSlOIl of the approach The methods shown in this section
can be found in nearly any standard text on acoustics, with this section generally
following Reference 1, except for the use of acoustic mass velocity instead of
acoustic volume velocity.

3.2.1 Single-Element Configuration

The acoustic impedance, Z, of an element is a complex number, which can
be written in the form

Z =R+ iX, (3-18)
where R is the real part and X is the imaginary part.

For a section of pipe containing a single side branch as shown in Figure 3-1,

P = Al ei(.wt—kx) +Bl ei((l)t'i'kX) , (3'19)
p3: = A3 ei(mt-lc()+53 ei(ﬂ)t"'kx)_ (3‘2])

where w = 2nf, t istime, and k is wave number. .

The "As" are complex constants setting the magnitude and phase of the incident
waves and the "Bs" are complex constants for the reflected waves. If the cross-
section dimensions of the pipe and the branch opening are assumed to be small
compared to the wavelengths of the frequencies of interest, then

P3 = P2 = p;.

If it is also assumed that the branch is at the origin of the coordinate system
and that there is an anechoic termination downstream, meaning the pipe is either
infinitely long or otherwise terminates without creating any reflections, then
x=0,B, =0, and
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Figure 3-1. Single-Element Configuration.




A; elot 4 B; eiot

A, elot - A elot

A3 + B3 A2 = Al (3'22)

The impedances for the pipe sections are

Z = B - (Mt

v3 As - B (3-23)
2 =2, (3-24)
Zv= B =& og (3-25)
where the V's are the mass velocities of the corresponding pipe elements.
The incident mass ﬁow is conservéd. SO -
V3 = Vo + V, (3-26)
or, since the pressures at 1, 2, and 3 are equal, it follows that
A-ded 027
so that
1 (Mﬁi) =1 4+ 1
(Cg) Az + B3 Zy ¢, (3-28)

Assuming there are no temperature chéngés within the V};irpehand that the
upstream and downstream pipe areas are equal, {3 =, ={, then Equation (3-28)

can be rewritten as

(l) (A’s—Bs (3-29)

)=;+
] \As+Bs Z2

als

This can be rearranged to solve for the reflected pressure in terms of the incident

pressure,
- Mt
222+ (3-30)
Using Equation (3-22) to eliminate B;, one obtains
Ay _ Z+(C/2)
AT m (3-31)
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Using Z, = R + iX, the transmission loss is

[R+ (/2] + X2 }

TL = 10 AsY - g
IOglo (Al ) 0 10g1o R+

rms (3-32)
Example Calculation

As an example, a Helmholtz resonator can be selected for the branch
element. Assuming no acoustic energy is lost in the neck of the resonator, the

real and imaginary parts of the branch impedance z, are

X = oLt & (3-33)

where, as in Figure 2-1,

L.g = effective length of resonator neck = L, + AL, + AL;;
use Equation (2-7) for AL, and ALj ;

A, = cross-sectional area of resonator neck; and

V. = Volume of resonator cavity.

Figure 3-2 shows the transmission loss calculated by Equation (3-32) for the

following gas and resonator characteristics:

¢ = 1,670 ft/sec,

A, = 3.41 10 ft? (1/4-inch diameter]),

A, = 3.41 104 ft? (1/4-inch diameter),

V., = 2.89 1073 ft3 (5 in%, and

Lg = 0.026 ft (0.1 inch physical length + 2 (0.85) (A,/m)1/2).

As shown in Figure 3-2, the transmission loss rises to a large peak at 565 Hz, the

resonant frequency of this resonator, then decreases uniformly with increasing

frequency.
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3.2.2 Three-Element Configuratio

n

Figure 3-3 shows a pipe configuration containing three elements: a Helm-
holtz resonator, a section of straight pipe of length L, and then a sudden

contraction to a pipe with an anechoic termination. The pressures and velocities

in each of the five locations are
Ps

V5

P4

V4

P3

V3

P2

V2

Vi

= A5 + Bs,
= 1(As-Bs),
%
= A,,
= As
4 r
= A; + Bs,
= -1 (As-Bg),
Ca
= A3e‘“‘L + B3eﬂd‘ .
= L(A(;C'M—B:;C“d‘)
&
= A,
= AL
G

(3-34)

(3-35)

(3-36)

(3-37)

(3-38)

(3-39)

(3-40)

(3-41)

(3-42)

(3-43)

Again assuming that the pipe cross-section dimensions are small compared to a

wavelength,

and using continuity of mass flow,

]

Ps P4
Ps = P3.,

P2 = P1-

Vg = V4 + V3,

Vo = V).

(3-44)
(3-45)
(3-46)

(3-47)

(3-48)
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Figure 3-3. Three-Element Configuration.

Equations (3-34) through (3—48) are a set of 15 equations containing 16
unknowns if the impedances, the { and Z terms, are known. If either the incident
pressure, As, is known or if only the ratio of A;/A, is desired, the number of
unknowns is reduced to 15 and the system can be solved. Assuming a frequently
occurring configuration where the pipe area and temperature are constant from

location 5 to 2, then

G=0L=0L=¢ (3-49)
and the form of the solution is simplified.

Beginning at the downstream end of the pipe, Equations (3-38) through
(3-43), (3-46), and (3-48) can be used to obtain A, and B in terms of A,,

- £ +¢
A’; = A ClkL( ;Cl )' (3-50)
Ba = A] e-ikL(cl—g)
26, 1 (3-51)

[N




Equations (3-34), (3-38), (3-44), and (3-45) give
Bs = (A3 +Bg) - As (3-52)

and as in the previous section, Equations (3-34) through (3-39), (3-44), (3-45),
and (3-47) can be combined

1 =1 4+ L
Zs Za + Z3 " (3-53)

1 (f_;_%-&) = 1 4 (L L{:-Ba)
(C) +Bs Zs (Q) + B3/’ (3-54)
Now Equation (3-52) can be substituted into Equation (3-54) to obtain Aj; in terms

of A; and B;, then Equations (3-50) and (3-51) substituted for A; and B3 , and finally
the resulting expression solved for As /A,. Again using R and X for the real and

imaginary parts of this ratio,

As/A, = R + iX (3-55)

&) Kl+_§-) cos (kL) + (5512—4) sin (kL)‘,

1 112

where R

g - 5o
X (2)K +C1 sin (kL) Zi cos (kL)
and | | = indicates the magnitude of a complex number.

The transmission loss in terms of R and X is
TL = 10 log,o (R? + X?). (3-56)

Figure 3-4 shows values of transmission loss for the sample three-element
pipe configuration based on the same Helmholtz resonator geometry used for
Figure 3-2 combined with a 6-inch-long straight section of 1/4-inch-diameter
pipe then reducing to 1/8-inch diameter with an anechoic termination. The
transmission loss peak from the resonator is obvious at 565 Hz in Figure 3-4 and,
comparing to Figure 3-2, the cyclic variation of transmission loss caused by the
straight pipe section with an impedance change at each end has been combined
with the resonator transmission loss. The peak and minimum values of the cyclic
attenuation repeat at a frequency interval of about 1670 Hz, the frequency where

the length of the straight section corresponds to a half wavelength.
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Figure 3-4. Transmission Loss for a Three-Element Configuration. =




3.2.3 Discussion

As shown in the previous sections, the method presented for determining
the performance of simple pipe configurations, networks, is based upon setting up
the system of equations that defines the acoustic pressure and velocity relation-
ships within the pipe then solving for the desired performance characteristic.
The examples presented only solved for the pipe transmission loss, but the trans-
mission coefficient is merely the inverse of the same ratio presented as a fraction
instead of a level, and the reflection coefficient can be determined by using the

same techniques but solving for a different pressure ratio.

Four basic concepts are used in determining the system of equations. First,
the pipe impedance, {, relates pressures and velocities in constant area pipe
sections. Second, the assumption of plane wave propagation and wavelengths
large compared to pipe cross-section dimensions provides simplified relation-
ships between acoustic pressures in regions connecting elements. Third, mass
flow continuity provides relationships between velocities at various points in the
pipe. Finally, independently determined expressions for the acoustic impedance

provide pressure and velocity relationships for more complex elements.

Since acoustic impedance functions exist for many common pipe elements
and many seemingly complex pipe systems are simply combinations of a few basic
impedance changes with varying geometries, this method can be applied to
complex pipe configurations. As with the three-element example in Section 3.2.2,
one simply starts at one end of the pipe and writes the equations relating the
acoustic pressures and velocities for each section using pipe or element
impedances as required. Continuity and plane wave propagation are then used to

relate velocities and pressures between sections.

This approach is clearly analogous to that used for determining the
performance of an AC electrical circuit. Detailed analysis of the analogies shows
that they are so accurate that much of the terminology and methods for acoustic
analysis are derived from electrical circuit analysis. Acoustic pressures are anal-
ogous to electrical voltages and the acoustic mass, or volume velocity is analogous
to electrical current. Impedance is the ratio of pressure to velocity in acoustical
analysis and the ratio of voltage to current in electrical analysis. Table 3-2 shows
the quantities and units for the various parameters of this electroacoustic analogy.

Further discussion can be found in nearly any standard acoustics textbook.



Table 3-2

Major Variables for Electro-Acoustic Analogy

ACOUSTICAL ELECTRICAL
Units
Variable Variable Units
English S1 SI
Pressure Ib/ft2 Pascal Potential Volt
Mass lug/ kg/

Velocity slug/sec g/sec Current Amp
Imrly)elclj(;tnce (ft - sec)’! | (m - sec)’! Impedance Ohm

Just as in electrical filter network ahaiysisz, even though this classical
method will worrlr{iﬁérhrﬁan arbitféry 'pipéi'cvéﬁ_fiféﬁfation or network, significant
difficulties arise when trying to apply the method to a network with more than a
very small number of elements. The basic approach and methods are straight-
forward, but actual calculations very rapidly become quite laborious as the number
of elements increases. The example with only three elements involved a system of

15 equations and unknowns.

Standard computer routines could be used to obtain the solutions of large
systems of equations, but a system of equations corresponds to only a single pipe
configuration. If a simple change is made to the configuration by just adding or
deleting an element, or perhaps rearranging elements, a new set of equations
must be established. This classical method is useful in providing an understanding
of pipe system analysis and performance, but is clearly not efficient for
performance calculations involving actual multi-element configurations. The
transfer matrix method presented in the next sections provides a means of easily
calculating the characteristics of pipes containing any number of elements in

any sequence.




3.3 Transfer Matrix Analysis

The transfer matrix method of network analysis was originally developed
for electrical networks and its application to acoustical networks derives from the
analogy between electrical and acoustical analyses. This method is also called the
transmission matrix or four-pole parameter method and strictly applies to a net-
work of any number of impedance changes but with a single source and a single
termination. The transfer matrix method can be useful in the analysis of networks
with multiple terminations if the network can be divided into single source/
termination portions with the other branches represented by impedances that are
either known or can be evaluated. The presentation and terminology used in this

subsection generally follows Munjal.?

3.3.1 The Transfer Matrix Method

Figure 3-5 shows a schematic representation of a portion of a pipe
containing an impedance change represented by T,. The upstream acoustic
pressure is p,, the upstream acoustic mass velocity is Vv, ; Pnp.1 and v, are the
downstream acoustic pressure and mass velocity, respectively. Since we have

assumed small acoustic variables, they are linearly related and we can define a

-

The transfer matrix [T,] relates the upstream and downstream state

matrix [T,] such that

(Tn)l 1 (T")l 2

]
(Ta)y (Ta)p ' (3-57)

Vn-1

variables p and v in terms of the state vectors [pp » Vo) and [pn.y + Vool . From the

definition of [T, ] its individual terms are

(Tn)n = ppnr_‘] V1=0> (T“)xz - vr:: I Pr1=0
(3-58)
= n Vo
( n)2l - pvn_] V=0 (Tn)22 T Vp | Pn1=0"



ACOUSTIC VARIABLES

UPSTREAM DOWNSTREAM
Pressure = p, Pressure = p,_;
Mass Velocity = v, Mass Velocity = v,,_;

Figure 3-5. Schematic Representation of a Single-Element Pipe
Impedance Change, T, .
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If the pipe contains another linear element, T, ;, one can write

Pn-1 (Ta-1);, (Tn-1)y5]| [ Pn2

]l o ] 259
or

[‘r:] = [Tn] [Tn-1] [f:j] (3-60)
This can be generalized to yield

[Snl = [Ta] [Taal .- . [T2] [T1] [Sol (3-61)

[Sa] = [T¢] [Sol. (3-62)

where [T,] = [Ta] [Taa]. .. [T2][Ty] is the "total" transfer matrix,

[Sa] = [ p"] (3-63)

Vn

is the generalized state vector for the upstream or source end of the pipe, and

[So] = [po] : (3-64)

Vo
is the generalized state vector for the downstream or termination end of the pipe.

The transmission loss for this pipe can be calculated from

TL = 10 logo [(2_0) T;,m],

n

(3-65)

where Tierm = % T + % + G T + (%2) Tzz‘ and | | indicates the magnitude
0 ]

of a complex number.

This transfer matrix approach allows calculating the acoustic performance
of a pipe with multiple elements by forming a transfer matrix for each individual
element and then successively multiplying by a cumulative total matrix. This
process avoids the need to set up and solve a large system of simultaneous

equations.



The definition of the transfer matrix terms shows that they are related to
the impedance of the pipe element and two limiting cases for lumped impedances
will provide examples. For a purely "in-line" impedance, Z,, which alters acoustic
pressure but not velocity,

1z
w-[p ] -
ml=1, , (3-66)
or for a purely "shunt” impedance, Z,, which alters acoustic velocity but
not pressure,
1 0
Ts =
[T [1/25 1]' | (3-67)
Using these and the definitions of the element terms, one can develop

generalized transfer matrices for individual elements such as a straight pipe,

Helmholtz resonator, or many others.2

The equations for the matrix elements will be functions of frequency and
include flow and geometry terms. A relatively simple computer model can then
be constructed with separate subprograms that evaluate the transfer matrix terms
of each element type, multiplies an accumulating total transfer matrix by the
element matrix, successively proceeds to the next element repeating the
evaluation of matrix terms and multiplication, and finally calculates the overall
transmission loss. Since the transfer matrix terms are functions of frequency, all
portions of the computer model would loop through a frequency range to provide

transmission loss as a function of frequency.

3.3.2 Transfer Matrices for Tvpical Elements

This section presents transfer matrices for three pipe elements that are
found in turbomachinery: a straight pipe section, a side-branch Helmholtz
resonator, and a simple "wide mouth" side-branch cavity. Matrices for many other
elements can be found in Reference 2, but the three elements given here repre-

sent many of the turbomachinery pipe impedance changes.

MR R




3.3.2.1 Straight-Pipe Section

The transfer matrix terms for a section of straight pipe of length L and
pipe impedance { are

T, cos(kL) , T, =1i{ sin (kL},

(3-68)
Ta

ic- sin (kL) , Ty, = cos(kl).

Note that because the state variable v is a mass flow, the straight-pipe
matrix contains the pipe cross-sectional area within the impedance { . This area
would not appear in transfer matrix terms for a straight pipe which are based on a
state variable of simply u, or pcu. This also means that separate transfer
matrices for sudden expansions or contractions of the pipe are not required when
acoustic mass flow is used as a state variable; the mass flow does not change even
if the pipe area does. Sudden area changes are reflected in the changes in pipe
impedance { used in the elements on either side of the area change. A sudden

contraction with sections of straight pipe both upstream and downstream would
be modeled as just two separate lengths of pipe with different areas and this area
difference would be included in the individual {'s of the two pipes.

-3.3.2.2 Helmholtz Resonator

The Helmholtz resonator is a "side-branch" pipe element providing a

"shunt” impedance, so its transfer matrix would have the general form of

[z 3
/2 157

where Z is the impedance of the Helmholtz resonator. Again using Z=R+iX and

assuming no energy is lost in the neck of the resonator,

R =20,
X = OLei _
Ao (DVC’



where the Helmholtz parameters have the same definitions as given in Equa-
tion (3-33). The individual matrix terms are then

Th =1, T, = 0,
(3-69)
T2[ = Y , T22 = 1

3.3.2.3 Simple Cavity

The s{mple cavity described by this matrix is shown schematically in
Figure 3-6 and is a cavity with constant cross-sectional area, A_, along its depth
and a depth, L., that is long compared to wavelengths of interest. This type of
cav’iify”isj another side-branch (shunt) element, but without a neck and having a
" large depth; it is not a Helmholtz resonator. Again, the general side-branch form

but now Z. will be that for a length of straight pipe terminated at one end with
a rigid cap. The impedance, based upon acoustic mass velocity derived from

Reference 2, is ,
Z. = -il cot(kL.). (3-70)

Substituting this expression into the general form:
Th =1, Ty, = 0,

(3-71)
T2,

]
!
5
=
3
§
|
-

3.3.3 Example Calculations Using Transfer Matrices

This section shows the solution of the same example problems solved in
Sections 3.2.1 and 3.2.2 using the transfer matrix method rather than the
classical method.




Cross-Section
Area = A,

= <
CC-AC

Figure 3-6. Schematic of Cavity Side Branch.




3.3.3.1 Single-Element Configuration

In analyzing a pipe with only a single element, there is only one transfer
matrix to set up. Since the example selected in Section 3.2.1 is a Helmholtz
resonator, the single matrix is given by Equation (3-69). Using Equation (3-65)
one can obtain the expression for the transmission loss of this single resonator

|

TL = 1010g10<i [4 +(%)2H (3-72)

element

L = 101og10{(1) [%|(1)+(g)+('i§)+(1)

or

which is equal to Equation (3-32) when R =0, so the transmission loss deter-
mined by the transfer matrix method with the same element dimensions given in

Section 3.2.1 is exactly that shown in Figure 3-2.

Demonstrating the advantages of the transfer matrix method requires con-

sidering a pipe system with multiple elements as is done in Section 3.3.3.2.

3.3.3.2 Three-Element Configuration

The three-element pipe configuration solved in Section 3.2.2 consisted of a
Helmholtz resonator, a straight-pipe section, and a sudden contraction to an
anechoic termination. This example will use the same physical parameters. The
general transfer matrix method is to form the first matrix, form the second
matrix, multiply them to a current total, form the third matrix, multiply the total
and the third, then evaluate the transmission loss. This example presents a

special case, ending with an anechoically terminated sudden contraction.

The first matrix, [T;], is again the Helmholtz resonator matrix

(Ty),, = 1. (Ts),, = O,
(3-73)

Ty = -5 (T, = 1,

where X is given by Equation (3-33).

—
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The second matrix, [T, ], is that for a straight section with a length, L, of 6 inches

(Tg),, = cos kL, (To)y,, = G2 sin(k L) ,
' (3-74)
(Ta),, = —sin(kl), (T, = cos(kL).
2
Their product, [T3] [T2].1s
(Tsp),, = coskk L),
(T32112 =i cz Sln(k L) ,
(3-75)

-i )
(Tsg),, = ¢ COS (kL) + z: sin (kL) ,
(Taxy, = %(Z- sin (kL) + cos(kL).
The third element is an anechoically terminated sudden contraction, which
could be modeled as an added straight pipe with the new diameter and arbitrary
length using Equation (3-68). Calculating the transmission loss of a section of

straight pipe,

2 cos? (kL) + 2 sin? (kL)l -0

(TL)sp = 10 logw[ 2

(3-76)
which is why the selection of length would be arbitrary if the sudden contraction
were modeled this way. Since the models presented here do not consider any
viscous losses or losses through the pipe walls, there are no power losses in a

straight pipe section, only phase changes.

The other way to "model" the sudden contraction element is to simply
consider the new smaller diameter as defining the last pipe impedance in the

expression for transmission loss, which then becomes

e 100 (8] | [+ T2t T+ (]

2}, (3-77)

where (j is the impedance for the initial 1/4-inch-diameter pipe section, {; the

impedance of the 1/ 8-inch-diameter section, and the matrix terms are those from



the product of the two other elements given in Equation (3-75). If the substitution
of these equations into Equation (3-77) is made and the resulting expression
simplified, it reduces to the results given by Equation (3-56). Thus the transmis-
sion loss predicted by the transfer matrix method is exactly the same as shown in
Figure 3-4 for the classical method.

3.4 Mean Flow and Energy Loss

The transfer matrix method can be applied to pipe systems with mean flow
and energy losses by formulating the appropriate relationships for the transfer
matrix terms and including the effects of convection. For a pipe with no losses
but mean flow in the positive direction, there are separate wavenumbers for the

incident and reflected waves

= g (378
kp = —@_,

c-U (3-79)

where U is the mean flow velocity, the subscript "i" again indicates the positive
or incident direction, and the subscript "R" indicates the negative or reflected

direction. Introducing the Mach number, M, and a convected wavenumber, k.

ki = k. (1-M), (3-80)
kp = k. (1 +M), (3-81)
where M=U,
c
ke = — 0
c(1-m?)"

With these relationships and the basic wave equations, the resulting pipe
impedance is the same as for a pipe without flow, that is

) = ¢ = A (3-82)
(CC)R =Lr = -I—\C:, (3-83)

where (

Ee

pipe impedance with no flow and

pipe impedance with flow and no losses.

TTm




Since the pipe contains a mean flow, the acoustic waves will be convected

with that flow, and the pipe transmission loss of interest will be for the convected

acoustic power. The relation between the convected and stationary acoustic

variables can be expressed in transfer matrix form as

B[
lvl = % 1I v (3-84)

If the energy losses in the pipe are considered, the expressions for wave number

are again modified. Following Reference 2, where both viscous and boundary layer
losses are considered,

k -iA}
ki = ——1° (3-85)
ke = k-;iAl
IV (3-86)
where k = -Cal , and

Ay

combined loss factor.

k. can be defined as

kL = k-iA
1-M2 (3-87)
" so that
ki = k, (1-M), (3-88)
kR = kL (1 + M) . (3'89)

However, if the energy losses in the pipe are considered, the impedance of

the pipe is no longer equal to the stationary impedance. The impedance for the

positive or incident wave for a pipe containing mean flow and losses becomes

G, = C(l _LA—I)'

K (3-90)

where ( is the stationary impedance, c/A, . The equation relating the stationary
acoustic variables at either end of a section of straight pipe becomes

Pn cos (kL L) ifsin (ke L) Po-t
v"] = exp(-iMko L) o | (3-91)

% sin (kL L) cos (kL L)




Equation (3-84) and its inverse are used to obtain the desired relationship
between the convected variables

[(pc)n] _ _epHMkD 1 ME

(Ve)n 1-M2 M 1
¢
cos (kp L) i sin (ko
x .
Ci_ sin (ke L) cos (ki L) (3-92)
L
1 Mg {(pc) -1}
X .
-M 1 (VC)n-l
4

This general procedure can also be applied to other forms of losses such as
acoustically absorbing pipe walls. If there are no losses in the pipe, then

CL = gc = C {3-93)

and Equation (3-92) reduces to

(ve)n (3-94)

(Pc)n cos(ke) i¢sin (k. L) (pd,_,
{ ] = exp (i Mk.L) )
Ve

Z—Sin(kcL) cos (kc L)

a relatively simple expression for the convected acoustic variables, very similar to
Equation (3-68). Since the viscous or boundary layer losses in most pipe systems
with solid walls are extremely small, they can often be neglected and only the
effects of mean flow considered with the resulting simplification of relationships.

Figure 3-7 shows the results of calculations using the transfer matrix
resulting from Equation (3-94) for the straight section of the three-element
sample problem of Sections 3.2.2 and 3.3.3.2 with and without a mean flow
velocity of 250 ft/sec (M = 0.15). For this particular example, the pnmary effect of
adding flow is to decrease the period of the cyclic variation at frequencies above
100 Hz, similar to the results for a lengthened straight section between the
Helmholtz resonator and the contraction.
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CHAPTER 4

SOUND PROPAGATION IN PIPES
WITH NO MEAN FLOW

by Miguel C. Junger
Cambridge Acoustical Associates

This chapter deals with the situation in which one of three dimensions of
the fluid-filled space is large or at least comparable to the acoustic wavelength.
Sections 4.1 through 4.4 consider the most important situation where the pipe
diameter measures less than one-half wavelength. In Sections 4.2 and 4.3, stand-
ing wave resonance and anti-resonance frequencies are formulated. Section 4.4
considers the special situation in turbomachinery where a T-tube junction is used
to model the engine inlet and exit chambers. Section 4.5 examines the situation
where the pipe diameter is small enough to allow viscous stresses to play a pre-
dominant role. Section 4.6 considers the short-wavelength range, where higher
order modes characterized by cut-on frequencies begin to propagate. In Sec-

tion 4.8, the sound speed and wave number for two-phase medium is derived.

4.1 The Quasi-Planar Wave

Consider an infinite plane wave propagating in the x-direction:

PI ei((l)t - kX) .

Incident Wave: p, (x,t)
(4-1)

Reflected Wave: p, (x,t) = P, ellot + kx)

Now envision a rigid pipe aligned with the x-axis, i.e., with the direction of
propagation. Clearly, the pipe being normal to the plane wave front does not
disturb its propagation. Consequently, sound will propagate inside the pipe with
the sound velocity of the infinite plane wave. It will be shown later that, even in a
rigid pipe, waves can propagate with a speed other than the speed of sound.
However, these latter modes of propagation require that the pipe diameter
exceed approximately one-half wavelength (more precisely, 0.574).

When the pipe contains a liquid, the pipe wall compliance cannot be
ignored compared to that of the liquid. The volume strain of the liquid column in
an elastic duct is again given by Equation (2-31); the phase velocity, ¢, now dips

below the velocity of the liquid, c :



c = (Ba]”
P

= [(B} + BY) p]'?
= ¢ [1+(B/B)I'?, (4-2a)

1/2
where ¢, = (—L) .

This is specialized to circular pipes of radius ry by introducing Equation (2-33)

2B, r. 112
L = |1+4Z2L"s s} -
=1- Bl (—B”s)z «1 (4-2¢)
Eh Eh )

This is the Korteweg-Lamb correction! which was previously mentioned in Sec-
tion 2.3.

For example, for water (Bp = 2.25 x 10!° u bar) in a glass tube (E =6.03 x
10!! p bar) , with a wall thickness-to-radius ratio of 1/10, c/c. = 0.76. Note that
the wave is no longer plane, since the displacement of liquid particles adjoining
the wall displays a substantial radial component. In fact, only the particles located
on the pipe axis undergo a strictly axial displacement. The pressure does not,
however, display a phase reversal over the pipe cross-section. This type of mode

is therefore called quasi-planar.

4.2 Standing Waves: Resonances and Anti-Resonances in Pipes With
Rigid Terminations

Now consider a pipe of finite length L. If the pipe is terminated by a rigid
plug, the axial particle velocity must vanish at x =L . It is recalled from basic fluid
mechanics that Euler's law relates the fluid particle acceleration § to the

pressure gradient

]

o

1
t p

 au
8 = (4-3a)

53]

X
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For harmonic time dependence, the corresponding velocity and displacement are

i 9p

us=s--- -

pP® gx

- _1 9
pczk? 0x (4-3b)
Consequently, for the rigid termination (8 = 0), the pressure must satisfy the

boundary condition

ap
00X

=0, x =1L. (4-4)

The pressure in the fluid column can be formulated as the superposition of
an incident wave traveling in the positive x-direction, e.g., Equation (4-1), and a

reflected pressure traveling in the negative x-direction

px) = P el + Pgelx, (4-5)
where the exp (-iot) has been suppressed to simplify the notation.
The pressure gradient at the termination is
P _ ik [-P el + Pgetl]
dx (4-6)
For a rigid termination, the derivative satisfying Equation (4-4) requires that
P = P e2ikl (4-7)
The resultant pressure, Equation (4-5), now becomes
plx) = P, etk + efiex-20d)]
= P, etk [elkl-tkd 4 eliioc-1kl) |
(4-8)

2P e cosk (L-x).



L ET

(RHIT 4T 1 e A

This is a standing wave. The specific acoustic impedance at the drive point,
x=0, is

7o = B
u' x=0
=ipck P
dp/ox ' x=0
= ip c cot (kL)
- ipc
=—(j% , K*L%<«< 1. (4-9)

Consequently, like the resonator cavity, the liquid column in the closed

cavity acts as a spring when the pipe length is small in terms of wavelengths.
This impedance vanishes when kL =xn/2, 3n/2,... or

L = .} 2n+1) , n=2012, ... (4-10)

This is readily envisioned for the fundamental resonance (Figure 4-1a). At x=0,
the pressure is zero and the velocity, in terms of the Reynolds number

Re [u(0)] = % |sin k (x - L) -0
(4-11)
= 2P ginkL
pc

peaks when L =A/4. Natural resonant frequencies corresponding to Equa-

tion (4-10) are

2n+1)c N
f,= —i (4-12a)

These results apply to both gas- and liquid-filled pipes provided one uses Equa-
tion (4-2) for the sound speed (c) of the latter.

The pipe also displays anti-resonances whereby the drive point impedance
is infinite. Referring to Equation (4-9) this occurs when (Figure 4-1b)

kL = nx,

f = 0DC | =1,2,... -

an oL n (4-12b)
4-4



(a) Resonance, Rigid Termination [Equation (4-12a), n = 0].

(b) Anti-Resonance, Rigid Termination [Equation (4-12b), n = 1].

X ——e Lcﬂ- / i Leﬂ'

{c) Resonance, Pressure-Release Termination [Equation (4-17a), n = 1].

X —— Leff

(d) Anti-Resonance, Pressure-Release Termination [Equation (4-17b), n = 1].

Figure 4-1. Pressure, p, and Axial Fluid Particle Velocity, u, for Fundamental
Resonance (a, ¢) and anti-resonance (b, d), at end L having rigid (a, b)
or pressure-release (c, d) termination.



4.3 Standing Waves in Open-Ended Pipes

Consider a "pressure release” termination, i.e., a boundary condition which
requires that the pressure at x =L vanish. For a liquid-filled pipe, this is readily
approximated by an open-ended stand pipe. For either a gas- or liquid-filled pipe,
this boundary condition is also approximated by a pipe opening into a space filled
with the same acoustic fluid provided Apr <<A? . The interface between the fluid
column and the adjoining extended column is simulated by a virtual piston. The
piston impedance embodies a resistive component R, representing sound radia-
tion, Equatiqn.(2-36], and a reactive component associated with the entrained

mass -iop A, AL, , where AL, is the same end correction as for the Helmholtz
resonator, Equation (2-7) (AL, = 0.48 A‘f ). Consequently, for A, << A2 , the

impedance ratio at the open end of a pipe is

2
= {kAL, + T8 x=L
pc Ap 2n
) Al/2
= 2n|-10.48 7 +%, (4-13)

The resistance ratio can be neglected in the long waveiength limit. The
entrained mass is not negligible, but can be accounted for by substituting an
equivalent length L.;, a procedure already familiar from the analysis of the
Helmholtz resonator

Lg = L + AL,

=L + 048A°" . (4-14)

In what follows, L.g=L is used when dealing with a water-filled, open-ended
stand pipe, while L. is given by Equation (4-14) when dealing with a pipe
opening into a space filled with the same acoustic fluid. The "pressure-release”

boundary condition, p (L.g) =0, is satisfied by Equation (4-5) when

Pr = -P, e(-21k Legr)

|



The standing wave field therefore becomes

p(x) P, [t - glilex - 21k Lefr)]

= Pi e(-ik Lefd) [e(ik Leff -ikx) _ e(1]:::(- ik I.eﬂ')]
= 2i P, el Lefl) gin (k Leg — kx) . (4-15)

The drive point impedance is computed as in Equation (4-9). However, the
present calculation is approximate in that the radiation resistance in Equa-
tion (4-13) is ignored compared to the reactance. This approximation is valid if
kAlg2 « 1, an assumption inherent in Equation (4-13)

Im(zy,) = -pc tan (k Legy)
= -p @ Leg K2L% <«< 1. (4-16)
Consequently, as anticipated, the column of water displays the impedance of a
solid slug of fluid when its length is short in terms of wavelength.
The open pipe displays a resonance when
kLg = nxw, n=1,2,.

i.e., at frequencies

f, = 2r£cdf , n=1,2,... (4-17a)

This situation is illustrated in Figure 4-1c. The open pipe displays an anti-

resonance when (Figure 4-1d)

de,:(M , n=12 ..
2
(L _nsne |
an iLg (4-17b)

Consequently, the natural frequencies of the open-ended pipe corresponds to the

anti-resonance frequencies of the closed pipe, and vice versa.



4.4 T-Tube Junction

Consider the acoustic resonance frequency for a "T-tube" Jjunction (Figure 4-2).
This problem has immediate practical application in turbomachinery because of
its resemblance to an engine's inlet and exit volute. The engine inlet and exit
chambers are each formed by'Wi:épping the two branches of the top of a sym-
metrical T-tube around a cylinder and joining both ends together.

The general solution to the T-tube junction may be derived using the
techniques described in Chapters 2 and 3. The interested reader who wishes to
examine the details of this solution should see the paper by Merkli.2

The general solution is rather involved; however, after a few simplifying

assumptions it reduces to

2i L tankD) = 1+1(1/p0 (Zy) tan &)
l Pl (el 2V, + ipltank]) ° (4-18)

where { = c/A;, and (Z,), is the acoustic impedance based upon acoustic volume
velocity at the c end of the pipe (see Figure 4-2). This solution assumes that all
three pipes of the T-tube have the same cross-sectional area and that the ends
a and b are closed.

Figure 4-2. T-Tube Junction.
4-8
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In Chapter 3 the resonance frequencies were derived for a pipe section
with a single side branch. In this derivation it was assumed that the tubes were
long in comparison to the radius, making it unnecessary to consider the effective
length due to the junction. When the tubes are short, as in the case of an engine
inlet and exit chamber, corrections must be applied to the tube lengths. Merkli?
shows that when the pipe cross-sectional areas of all three branches of the T-tube
are the same, then

Lg = L, + AL} + AL, ,

(4-19)
leﬂ‘ = 10 + All + A12 N
= = -8
where AL = AL r(l Sn) .
AL2 = 16 r Lo
31t 2Lo+lo ’ (4‘20)
A12 = 16 r 1o

3n 2Lo+lo
where L, and 1, are the lengths of the purely cylindrical parts of the T-tube as
shown in Figure 4-2.

The general solution, Equation (4-18), can be solved for several special

cases:

1. The top of the T-tube junction is a special solution in which a standing
wave is confined to the top of the T with a pressure node at the
junction. Consequently, the length of the stem has no effect on the
resonance at the top of the junction. The effective length becomes

Lt = L, + T (4‘21)

and the resonance frequencies are determined using Equation (4-12a)
where the L appearing in that equation is the effective length.

9. A closed end at ¢ is a special solution for which (Z,), = . For this

condition, Equation (4-18) reduces to

SSin[%(Leﬂ"Plgﬁ)] + sin[%(Leﬁ—leﬁ)] = 0. (4-22)

This transcendental equation gives the resonances of the T-tube.



3. An open end at ¢ is a special solution for which (Z,), =0 . This is the

condition that applies in most turbomachinery applications. For this

condition, Equation (4-18) reduces to
3C0$[%(Leﬁ'+]eﬁ’)] - COS[%(Leﬂ"‘leﬂ')] = 0. (4-23)

In this situation, the end correction, Al,, given in Equation (4-20), must
be modified to account for the open end at ¢. In Section 4.3 it was
shown that the end correction is 0.48 A,'/?, so that Al, in Equa-
tion (4-20) becomes

= 1/2
AL = r(1-B]+ 048A)" (4-24)

Finally, when solving for the acoustic resonances in a T-tube junction,
whether it be open or closed at c, resonance frequencies given by Equa-
tion (4-12a) at the top of the T are found together with the resonance frequencies

given by Equations (4-22) or (4-23).

45 Capillary Tubes

The situations considered so far apply when the pipe diameter measures a
fraction of a wavelength. Before turning to the short-wavelength range in Sec-
tion 4.6, we consider, in this seciton, the extreme long-wave limit where the pipe
radius is comparable to the viscous boundary layer thickness. The equations
governing this situation will be presented in a manner appealing to the intuition
of the fluid mechanics rather than being rigorously derived from basic principles.
The reader who wishes to explore the matter in greater detail is referred to

Rayleigh's3 classical work.

Let us first consider the acoustic boundary layer thicknesses on a flat plate.
Rayleigh3 (page 317, Equation (5) ) shows that this thickness is

d = (n—*;;)m, (4-25a)

where p is the viscosity. Referring to Table 2-1, one computes

d = % cm for air and
f

(4-25b)

d = Q%%Q cm for water.
f

4-10

|




The propagation and attenuation of sound in capillary tubes can be compactly
expressed in terms of this boundary layer thickness. Sound propagates at a lower
velocity in a capillary tube than in a pipe where 2r,>>d. The effective phase
velocity ¢ in the capillary tube is '

- _.d
c, = Cp (1 21’5) . 2rg<< A. (4-26)

This wave is markedly attenuated compared to sound propagating in an extended
medium. The attenuation per diameter can be expressed in terms of the

boundary layer thickness:
oy = %ﬁ dB/diam., (4-27)

where A is the acoustic wavelength in the extended medium. Referring to the
second of Equations (4-25b), and substituting ¢ = 1.48 x 105 cm/s , the attenuation
per diameter in a water-filled capillary tube becomes

oq4 = 2.0x 103 fi2 dB/diam. [water-filled capillary] , (4-28)

where f is in Hz and the diameter is in cm. Consequently, for f= 1000 Hz, a
0.4 cm tube diameter, and a 1 m tube length, the total attenuation is

2 x 105 x 1000172 x 100/0.4 = 0.16 dB.

While this is a modest figure indeed, the attenuation in an extended body of sea
water, owing to viscosity as well as to other factors is a mere 10% to 104 dB/m at
this frequency.* If only viscosity were accounted for in computing attenuation, the

latter figure would be three orders of magnitude smaller.

In gas-filled tubes, the effective viscosity Mg is markedly increased by heat
conduction. For air at room temperature, the effective viscosity required to yield
the observed attenuation is

Heg = 1.93 1. (4-29)

Consequently, for air the effective boundary layer thickness to be used in
Equation (4-27) is 1.93'/2 larger than the one indicated in the first of Equa-
tions (4-25b). Substituting ¢ = 3.43 x 104 cm/sec into Equation (4-27), the result-

ing attenuation per diameter is
oy = 4.8x10% fi’2 dB/diam. [air-filled capillary] , (4-30)

where f is in Hz and the diameter is in cm. For the same tube dimensions as

before, one achieves an attenuation of 3.8 dB at 1 kHz.
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46  Modal Propagation in Gas-Filled Pipes

So far, we have limited the discussion to wavelengths measuring more than
two pipe diameters, i.e., to quasi-planar waves displaying no phase reversal over
the pipe cross-section and consequently no nodal diameters or circles. For the
quasi-planar mode, the pressure field could be approximated by the solution to
the one-dimensional wave equation, modified where necessary to account for
boundary elasticity. For pipe diameters commensurate with the wavelength, the
pressure field must be formulated as the solution of the three-dimensional wave
equation in cylindrical coordinates, the pressure distribution over the pipe
cross-section now becoming a function of the radial dimension r and of the
circumferential angle ¢ . As in the case of the capillary tube, we shall not derive
the solution rigorously from basic principles but start from an intuitively reason-
able basis. The interested reader can find a self-contained and detailed develop-
ment in Reference 5.

The three-dimensional pressure field in an effectively infinitely long pipe of
radius r, is described by a summation of orthogonal waveguide-type modes whose
radial dependence is formulated in terms of Bessel functions Jn (0gm T/1)

P(rz.9) = ) PomJn (Gam I/Ts) cOS (1 6) €Xp (i Yom X). (4-31)

The modal amplitudes P,, can be computed in terms of the source distribution
which gives rise to the pressure field. The number of modal circles is m , that of
modal diameters n. If the pressure field does not admit a plane of symmetry,
sin (n ¢) terms must be added. The radial wavenumbers Onm/Ts are determined
by the boundary condition at the inside pipe wall. Each mode separately must
match the pipe wall specific acoustic impedance, which will be considered here
to be locally reacting

- lpckp
ap/or

- 1pckrsJn (0nm)
Onm J'n (0om)  ° (4-32a)

T

[l




In this section, where we restrict ourselves to gas-filled pipes, the wall

impedances can be taken to be infinite. The boundary condition therefore
becomes
J'n (Onm) = 0. | (4-32b)

For Equation (4-31) to be a solution of the wave equation, the axial wavenumber
(Yam) must be related to the radial wavenumber (a,m/Ts) and the acoustic wave-
number k as follows

Ynm = [k2 - (amn/rs)2]1/2 . (4'338.)
Consequently the axial wavenumber is imaginary, i.e., the mode decays exponen-
tially if k ry < 0pm - The cut-on frequency, where the mode begins to propagate,
therefore is

fn = (_}_(!n_n_:_ .
m = o (4-33D)

The modal phase velocity in the propagating range is

Cnm = 2znf ’ f>fom
Ynm
= _ [Cnm 21172
= o[r-{mmf ] (4-34)

The phase velocity decreases monotonically from infinity at the cut-on frequency

to the sound velocity at high frequencies (Figure 4-3).

T

Figure 4-3. Schematic Dispersion Curves for the Phase Velocity ¢,
Equation (4-34), and the Group Velocity ¢z, Equation (4-36b),
in a Rigid Pipe, the Cut-On Frequency Being Given in Equa-
tion (4-33b).



For the effectively rigid boundary representative of gas-filled pipes,
Equation (4-32b), the fundamental planar mode has, as expected, a zero cut-on
frequency, since J', (0)=0. Consequently, c,, =c at all frequencies, as antici-
pated in Section 4.1. The higher modes are all non-propagating in the low-
frequency range, since they display a finite cut-on frequency. The lowest of these
corresponds to mode n =1, m=0, a mode diSplaying one nodal diameter and no
nodal circle, for which «,, = 1.8. Its cut-on frequency is therefore

flo = L& (4_35)

2nrs’

For a 4-inch (10 cm)-diameter water-filled pipe, this yields f;;=4.2 kHz. As a
radially oriented dipole Iocated on the pipe axis does not excite the planar mode,
such a source does not generate a propagating wave below 4.2 kHz for the
parameters selected in this example.

While the phase velocity diverges at the cut-on frequency, the modal group
velocity Cgny . i.€., the velocity at which energy associated with a wave packet
travels, cannot exceed the sound velocity ¢. The group velocity is computed from
the dispersion relation®

(4-36a)

Since the planar wave is non-dispersive (y,, = k), both the group and the phase

velocity equal the sound velocity ¢. For all other modes, the phase velocity is
dispersive and therefore differs from the group velocity. Elementary though
laborious calculations which the reader might want to check as an exercise yield
the group velocity )

2

1/2
Cgnm = c(l— o(“m) . Krs>0omm, > fum.
k? r2

(4-36Db)

Consequently, as the frequency approaches the cut-on frequency from above, the
group velocity tends to zero. In the high-frequency limit, it tends to the sound
velocity in the extended fluid medium (Figure 4-3).
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4.7 Wave Mode Propagation in Fluid-Filled Non-Rigid Waveguides
The specific impedance of unlined pipes is typically reactive, i.e.,
z, = ix,. (4-37)

Referring to Equation (4-32a), the boundary condition can be expressed as

_Xu = n -
T Fn(a) (4-38a)
where
Jn (0)
Fn = . -
(o) P (4-38b)

This function is plotted for axisymmetric (n = 0) modes in Figure 4-4. It is
apparent that an infinite reactance, | Fol = , calls for a =0, i.e., a zero cut-on

frequency, and, since J,(0) =1, a strictly planar wave, as anticipated in the

previous section.

Recall that, in our notation, a negative reactance indicates a mass-
controlled pipe wall. The branches labelled -F, (o) correspond to this situation.
The stiffness-controlled pipe, i.e., x, >0, cannot be matched by Bessel functions
of real argument, but requires imaginary arguments, i.e., @ =i|a| . This gives rise
to the curve labelled F,(i|a|) in Figure 4-4. The corresponding phase velocity
is obtained from Equation (4-34) where -o2= |a?| . The phase velocity is less
than the sound velocity in the extended medium as already anticipated from the

Korteweg-Lamb approximation

Coo = C l+(|i°°Lﬂ-m_ {(4-39)

k1

The low-frequency reactance of a cylindrical shell was already formulated in

connection with Helmholtz resonators

| 2
Xy = Z)E% = Ek% , f2cf? (4-40a)

where f, is the breathing mode resonance frequency

fo = & -
° = Zrr.’ (4-40Db)

where c, is the compressional wave velocity in the pipe wall (= 5.4 x 105 cm/s in

steel). The corresponding dimensionless frequency is

(k rJ, = 2.
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a/rg to the Pipe Wall Reactance, for the Axisymmetric Modes, F (o),

Equation (4-39). The negative values of F, correspond to mass-
controlled pipe wall reactances. (Reproduced from Junger and Feit.5)
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Substituting this result in Equation (4;38a), one obtains the boundary condition in
terms of the pipe parameters

gpcgll:zrg = Fo(ilal). (4-41)

Consider the low-frequency limit k?2r2« 1, where F, (i [a|) is large, its
small-argument asymptotic form being
Fo(i|lal) = 2]al? laf> <« 1. (4-42)

Combining Equations (4-41) and (4-42),

(lef)/krs)? = 2 pc®r./Eh, K12, |of?<« 1. (4-43)

When this is substituted in Equation (4-39), one retrieves the Korteweg-Lamb
correction, Equation (4-2), where B =p c2.

At higher frequencies, the pipe wall inertia forces reduce the stiffness-
controlled reactance. However, flexural rigidity, which is proportional'to
(h2/12r3 04 8/0 z¢ , keeps the reactance stiffness-controlled even above the ring

resonance. The boundary condition now becomes®

Xu = Eh _[krsc) h2 4 .a
pckrs p02k2r53 [1 ( Cb ) + 12 r2 Yon Is|. (4-44)

s

Setting this quantity equal to F, (i [a|), one solves for the frequency-dependent
value of |a| , and hence for the phase velocity in Equation (4-39). The results are

in fair agreement with phase velocity measurements as shown in Figure 4-5.

1.2 | T | T T T T T T
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Figure 4-5. Dispersion Curve for the Quasi-Planar Wave in a Liquid (Naphtha)
Column in a Glass Tube: h=0.14cm, 2r,=3.04 cm, p, = 2.6,
c=1.21x105cm/s, p=0.74 g/cm3. (Reproduced from Junger.”)
Dashed Curves Equation {4-44) for the wall reactance, and
Equation (4-39) with a =1 | a | (see Figure 4-4).

Solid line is the same, but ignores the flexural term in
Equation (4-44). (Reproduced from Field and Boyle.8)
Crosses: experimental points from Reference 8.
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The stiffness component of a soft rubber hose does not embody the flexural
term which prevents the pipe wall from becoming mass-controlled. The hose
therefore presents a mass-like impedance above its ring resonance. Sufficiently
far above that resonance, the membrane-stiffness can also be dropped, the wall
reactance being effectively that of the mass per unit area of hose wall

~ _psh _
chﬁrs - -Srs = Folo) . £ 1. (4-45)

An experimental study was performed on a soft rubber hose in air® (p,/p =
6.5 x 102, h/r, = 0.043). The resulting value of o obtained from the lower -F(a)
branch in Figure 4-4, or from the asymptotic small -o relation

Fo ((1) = —a% , a-2 <« 1 (4-46)
is
= (2" = 027 )
* ((ps/p) (h/rs)) (4-47)

The phase velocity is obtained from Equation (4-34)
v = [1-g2]" o
This dispersion curve is plotted in Figure 4-6 together with experimental
points. The velocity ratio was computed from the coincidence cone vertex
angle, 8., of the distribution-in-angle of the sound field radiated as a supersonic
line array, by the hose coupled to a small loudspeaker

Ca - _1 .
C S 0. (4-49)

where 0, is measured from the hose axis. A physical interpretation of the
enhancement of the effective sound velocity is that the hose responds out of phase
with the pressure exerted by air in the hose, thereby reducing the effective com-

pliance of the air within a mass-controlled boundary.
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4.8 Sound Propagation in Two-Phase Systems

Sound propagation in a boiling liquid, or in a liquid containing gas bubbles,
shares a fundamental feature with sound propagating in a liquid contained in an
elastic pipe or duct (Section 4.1). The reciprocal of the effective bulk modulus

Ber is the resultant of the compliance of the liquid BL", and of another

component, i.e., the elastic waveguide boundary in the former situation, and the
compliance Bs'1 of the bubble swarm in the present case. This mathematical
model applies as long as individual gas bubbles or vapor pockets are small in terms
of the liquid-borne sound wavelength. Furthermore, the situation where gas or
vapor has risen under the effect of buoyéhcy to form a continuous layer above the
liquid is not considered either. This latter situation does not, of course, arise in a
boiling liquid where the vapor bubbles collapse before they coalesce, or in a
zero-gravity environment. The next subsection reviews the thermodynamics of a
two-phase medium. Subsection 4.8.2 derives the sound velocity in various
frequency ranges. Subsection 4.8.3 deals with resonances in pipes containing a

two-phase medium.

4.8.1 henﬂod mics

The thermodynamic state of pure substances such as hydrogen and oxygen
is defined by two independent thermodynamic properties. The term "state” is
used to denote the phase (i.e., solid, liquid, vapor) and the pressure, tempera-
ture, etc., at which the substance remains in equilibrium. For conditions experi-
enced in turbomachinery, such as in the SSME, both substances can exist in
liquid and vapor phases through parts of the system. As described in the

following subsection (4.8.2), the sound speed in the substance, being proportional

to the square root of the bulk modulus, varies substantially between liquid and
vapor phases. Furthermore, the sound speed in two-phase mixtures that exist
during boiling or condensation is extremely sensitive to the fractional content of
vapor (i.e., the quality) in the mixture.

Thermodynamic states consisting of liquid-vapor mixtures can exist
between the triple point and the critical point. The triple point is a single state at
which the three phases exist in equilibrium. For oxygen the trii)le point
temperature and pressure are 97°R and 1.06 psia, while for hydrogen they are
24°R and 0.022 psia. The highest temperature and pressure that a liquid-vapor
mixture can exist in equilibrium is denoted as the critical point. The critical

4-20
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point temperature and pressure for oxygen and hydrogen, respectively, are
278°R, 735 psia, and 60°R, 188 psia.

Although all three phases can exist at pressures higher than the critical
pressure, there is no liquid phase at temperatures above the critical temperature.
Consequently, liquid-vapor mixtures can only exist between the triple and critical
point temperatures (97°-278°R for oxygen, 24°-60°R for hydrogen). Within this
range, the pressure at which such mixtures can exist is the saturation pressure
(i.e., the pressure at which boiling or condensation occurs) at the prescribed
temperature. The thermodynamic saturation properties (e.g., pressure and tem-
perature) for both substances are tabulated in chemical handbooks.!® Pressure
and temperature are not independent properties in saturated states. Rather,
either one of these properties along with the quality of the mixture (i.e., the mass

of vapor per total mixture mass) define the state.

In normal operation of the SSME, hydrogen changes phase after leaving the
high-pressure turbopump as it acquires heat in cooling the nozzle and combustion
chamber. Oxygen flows to the combustion chamber as a liquid; however, a portion
of the oxygen flow from the high-pressure turbopump is converted to vapor in the
Pogo suppression system. Except for these areas, both substances are either

liquid or vapor under normal operating conditions.

4.8.2 Sound Velocity in Two-Phase Media

If o is the volume fraction of vapor or gas, the effective density of the

medium is

= ap. + (1-0)pL

©
1

(4-50)
(I1-a)pL . o pc << pPL

It

where the subscripts L and c¢ refer, respectively, to the liquid and to the vapor
or gas forming the cavities or bubbles. The sound velocity is formulated as in

Equation (4-2a):
1/2

[e]
]

(Ba P
(4-51)

{[(l—a)BL“ + BS'I]p}'m,

where BS'I is the compliance contributed by the bubble swarm.



I

R

This compliance component is the product of the fractional volume of vapor
or gas and of the effective compliance B, of individual vapor-filled cavities or gas
bubbles. Since the cavities are acoustically compact, sound pressure acts uni-
formly over their entire surface, resulting in a spherically symmetric "breathing
mode" response. The cavity volume and the volume change associated with this

response are, respectively

vV = 4zna®
3 y
(4-52)
AV = 4nalw,
where a = cavity radius, and
= radial response.
From the definition of bulk modulus,
B, = 'P/(AV/V]
(4-53)
= -p/(Bw/a).

For air bubbles, B, = 1.4P.., where P. is the static pressure. The spring stiffness

K per unit surface area is
K =3B./a. (4-54)
Assuming that the bubble swarm is sparse enough to avoid overlap of the nearfield
of neighboring cavities, the entrained mass per unit area isll.12
M=p.a. (4-55)
The resultant entrained mass of the breathing mode of the entire cavity, 4t a?M,

therefore equals three times the mass of the displaced volume of liquid. The

natural frequency for air bubbles in water is

o, = (K/M)'?
= (3B./p)"?/a
= 2.0x 103 (P./atm) / (a/cm) (rad/sec),
k.a = (3B./B.)"?

1.4 x 102 P, / atm (dimensionless). (4-56)



The compliance of individual cavities is enhanced by resonance effects, each
bubble responding in its breathing mode as a single-degree-of-freedom oscillator
of natural frequency ®,. For cavities of uniform size, i.e., of identical natural fre-
quency ®,, the compliance Bs’1 of the bubble swarm takes the simple form

B—l = O |1 - _@1 - dwo 5 &
s B. 2 0o
(4-57)
= 9 @« o}
Bc

where the damping constant & has viscous, thermodynamic, and acoustic radia-
tion components!3 (Figure 4-7). As resonance is approached, Bs’l becomes very

large and imaginary

Bs‘1 =jia/B.8, © =0 . (4-58)
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Figure 4-7. Theoretical Thermal, Radiation, Viscous, and Total
Damping Constants for Resonant Air Bubbles in Water.
(Reproduced from Devin.!3) To relate this to bubble size,
see Equation (4-56). The radiation damping constant is
k,_a. The damping constant equals the reciprocal of

the resonance quality factor.
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Above the resonance region, Bs'l has a negative real component

w?a?py

= - 3a
kia=BL (4-59)

When this is substituted in Equation (4-51), the real component of the compliance
is negative in the frequency range ®, < ® < ®, , where ®, is the anti-resonance

frequency at which the real components of the two compliances cancel

-1
-B,

Re (B,")

o, = L[ 3aB |7
al(1-a)pL

{
R0 fp—

(BQ )I/ZCL
I-a

1/2
=(D[ aBL /

*l(1-a) B

(4-60)

The latter expression will be used in formulating wavenumbers. Since wave
motion requirés an elastic restoring force, i.e., a positivé bulk modulus, the
frequency range ©, < ® < @, constitutes a dead zone where pressure is attenuated
exponentially with distance. This will be discussed further in the subsection on
wavenumbers. At higher frequencies, ® > ®, , wave motion resumes. The three
frequency ranges are clearly revealed by experimental dispersion curvesl4
(Figure 4-8). Substituting the parameter values corresponding to this test,
(B = 1.4x108 pbar, p, = 1g/cm3®, a = 0.21cm, o = 5.3 x 10-3) Equa-
tion (4-56) yields the breathing mode natural frequency ®,/ 2r = 9.8 kHz and
Equation (4-60) the anti-resonance frequency 87 kHz. Equation (4-57) yields a
low-frequency reciprocal bulk modulus

w
u
e
[

o/YP = 3.8x10° pbar!, w?«w?. (4-61)
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Figure 4-8. Comparison of the Theoretically Predicted Phase Velocity and
Attenuation of a Sound Wave in a Bubble Swarm With Measurements.
[Reproduced from Silberman!4 who used the theory developed by
Spitzer, L., Jr., NDRC Report No. 6-1-sr20-918 (1943) and
Carstensen, E.L.. and Foldy, L.L., summarized in Physics of Sound
in the Sea, Wildt, R. (Ed.), "Acoustic Properties of Wakes", National
Research Council NSRDC Summary Report (Washington, D.C., 1946).]
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The low-frequency sound velocity obtained from Equation (4-57) is c¢=1.6x
104 cm/sec = 530 ft/sec. The results generated with the simple theory
developed above are seen to be in adequate agreement with measurements. The

attenuation will be evaluated in the last subsection which deals with wavenumbers.

A more realistic situation than cavities of uniform size is a bubble swarm
encompassing a random distribution of bubble radii, extending from a, to a;.

The bubble resonance spectrum is defined as
rion,) =dN/do,, (4-62)

where N is the number of cavities per unit volume. The spectrum r (w,) is the
number of these bubbles whose natural frequency falls within a bandwidth of
1 rad/sec. The spectrum r has units time/Length3 . Referring to Equation (4-56),
this can be formulated in terms of the cavity radius

dN - dN dwe

da dw, da (4-63)

or

dN da = r(w,) d wo.
da

This cavity size spectrum determines the fractional volume of cavities

aj
a = 4n | dN 34,
3 ) da

a (4'64)
Introducing the bubble natural frequency, Equation (4-56), to express a3
@ = L (&)3’2 .
@ ' P (4-65)

and substituting Equations (4-57) and (4-65) in Equation (4-64), one obtains an
expression for the fractional volume in terms of ,

« = 22 (B ra)da
P Jo @ (4-66)




This can be expressed concisely in terms of the general moment of the number

spectrum, defined as!®

w2
(o) = %f & T (@) d & .

o (4-67)
Consequently, Equation (4-66) now becomes
a = 22 (&)3/2 N (@2
PL
(4-68)

= 3.6 x 10! (Po./atm)*? N( w2 ) for air bubbles in water.

The sound velocity in Equation (4-51) can now be expressed explicitly for
statistical bubble size distributions. Since the density depends only on the frac-
tional volume of bubbles rather than on their size distribution and frequency, it is
convenient to formulate the results in terms of the reciprocal of the effective bulk

modulus. Referring to Equation (4-57) for the effect of resonance amplification:

-1

Beff = (pcz)-l
2
=Ly 4n(§&)"2 r(e,)do,
BL ' pf, ] (Do(ﬁ)i—(l)z—i(l)mo 5)

1-a + & w2<<af
B
C

n

By

i2r’r(w,) (3Bc

12 o <@ <o
PL602 pL) ' ’

l-a
BL , (x)2 >> of . | (4-69)

Finally, the anti-resonance frequency for a random distribution of bubble

sizes is

w, = (___“BL )1/2
= = \T-a) B,

(4-70)
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4.8.3 Pipe Resonances and Dead-Zone Attenuation in Two-Phase Systems

The solution developed in Section 4.1 formally holds for two-phase system,
it only being necessary to substitute the sound velocity, c . in Equation (4-51), and
the wavenumber k = w/c corresponding to the compliances in Equation (4-69).
An organ pipe-type resonance is only possible in the range where the compliance
is predominantly real, i.e., in the low-frequency range, ® < ®, and the high-
frequency range, ® > ®,. Consequently, resonances are not observed in the dead
zone o, < ® < ®,, where sound is attenuated exponentially. The values of the
normalized real and imaginary component of the wavenumber of a two-phase
medium are summarized in Table 4-1 for a two-phase medium endowed with
cavities of uniform size. Extension to statistical cavity size distribution is
straightforward but cumbersome. The results will not be formulated here. As
already mentioned, meaningful resonances can only occur when k; >k, i.e., when
k, is independent of the damping constant & . For these situations, rigid pipe
terminations correspond to the roots of cot (k, L), Equation (4-9), and open-
ended pipe terminations to the zeroes of tan (k; L.s), Equation (4-16). In other
words, the resonance frequencies obtained for the liquid-filled pipes
(Equation (4-12a) for the rigidly terminated pipe, Equation (4-17a) for the open-
ended pipe) are multiplied by the appropriate ratio K, /k,, Table 4-1.

The attenuation in the dead zone, w, < ® < ®, is
A = 8.68 k; dB/unit distance. (4-71)

Referring to Table 4-1 and to Equation (4-60), this becomes

A 8.68 (1 - a) (é)_a

L

(4-72)
8.68[3a(1-0]"*/a.

it

For the values of the parameters in Figure 4-8, e.g., o =5.3x 103, a=7x103ft,

this yields 160 dB/ft. This result is only in mediocre agreement with the
measured attenuation of approximately 100 dB/ft. However, the predicted
attenuation is so large that one anticipates some short-circuiting of the fluid-borne
path by the structureborne path in the tube wall.



Table 4-1

Asymptotic Expressions for the Complex Wavenumber (k, +1k)
of Sound Propagating Through a Swarm of Single-Size Gas-Filled or Vaporous Cavities

Frequency K, ky Bubble Propagation
Range & L Behavior Characteristics
(.02 << (1)20 , Cavity
W, ko compressibility Slow, non-dispersive
w?, << w2y, (1-0) © ?L' 7o short-circuits negligibly attenuated
° ° compressibility of waves.
Sd<<1 liquid, bubble size
irrelevant.
Reslistance-
l1-a o k, controlled cavity Very highly
W= 551172 —= % admittance attenuated, slow
° (20) ©o L short-circuits waves.
compressibility
of liquid.
w?, << W? Mass-controlled
° k ob (1- o) W, cavity admittance Highly attenuated,
kk 20 B short-circuits fast waves; dead
W? << @?y compressibility zone for & = O.
of liquid.
5w \1/2 Mass-controlled High-pass cut-off
0= 0, (1-0 ( 5 = ) X cavity admittance frequency:
k, cancels com- attenuated, fast
pressibility of liquid. waves.
0. o2 5 Compressibility of | Liquid-borne sound
w? >> 02, (1-o (1-0) 222 | liquid short-circuits diffracts around
2 highly mass-loaded effectively rigid
cavity pulsations. cavities.
_9& - o BL 172
o (1-a) B,

0
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CHAPTER 5

STANDING WAVE MODES IN
PIPES AND DUCTS WITH MEAN FLOW

by John Cole I
Cambridge Acoustical Associates

The purpose of this chapter is to investigate the effect of flow on the
acoustic resonance in turbomachinery piping systems. Sound propagation in
pipes is influenced in a number of ways. Since various aspects of the flow affect
sound propagation, Section 5.1.1 begins by reviewing the effect of a sound
pressure propagating in a mean flow in the absence of the pipe. Wall effect and
the attenuation due to turbulence are then considered in Sections 5.1.2 and 5.1.3.
Section 5.2 considers the acoustic losses both in the interior and at the ends of a
finite length pipe. This section shows that the presence of the flow in the pipe
will reduce any amplification that may occur from axial resonance and the

damping effect will increase with Mach number.

5.1 Flow Effects on Sound Propagation
5.1.1 Mean Flow Effects — Convection

In linear acoustics, sound is a small disturbance or perturbation that
propagates through a fluid medium. If the fluid medium is flowing with a uniform
speed U (i.e., constant in both space and time), sound is carried or convected
along with the flow as it propagates. To a stationary observer (e.g., a wall-mounted
pressure sensor), the effect of the flow is to give a directionally dependent sound

propagation speed,

c(® = c, (1 + M cos¥9) (5-1)
where ¢, = the sound speed in the fluid medium in the absence of flow,
M = U/c, is the flow Mach number, and
8 = angle of propagation relative to the flow direction

(i.e., 8 = 0 is the direction of the flow).

The propagation speed "with” the flow is ¢, (1 + M), that "against” the flow
is ¢, (1 - M), and that "across” the flow is c¢,. Note that, in the following
discussion, we assume that c, is the sound speed of the ambient medium, which

when applied to pipes assumes that the pipe walls are rigid.

5-1
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Because of the directionally dependent sound speed, the wavelength of a
propagating sinusoidal disturbance having frequency f (measured in hertz) also
depends on direction when measured by a stationary observer, that is,

A®) = c, (1 +Mcos9)/f (5-2)

We therefore express the sound pressure propagating as infinite plane waves in
the downstream (i.e., with the flow) and the upstream (i.e., against the flow)

directions respectively as:

p*x) = p6=0,x) = P* ellot + k' x) i
(5-3)
p- (X) = p (9 =T, X) = P’ ei(mt - k' ) ,

where x increases in the flow direction,

kKt = @ '(1+M), and

Co

k =-é% (1-M).

These expressions represent waves propagating in the fundamental mode of a
rigid-walled pipe carrying a uniform flow of an inviscid fluid (i.e., a fluid that can
"slip" along the wall).

The acoustic pressure field satisfies the wave equation obtained by lineariz-
ing the equations of motion about the state of uniform flow.! Assuming flow in the
positive x direction, this requires changing the time derivative to

N (i+u_3_)

ot at  ox (5-4a)
and gives the following momentum equation
) ) ap
—+U—Ju = - =,
P (at ax ) ax (5-4b)

Substitution of the expressions for downstream and upstream propagating waves
(Equation (5-3)) into the momentum equation (Equation (5-4(b)) provides the
following relationships between pressure and particle velocity:

=pc,

5[

(5-5)
= -pc;

&

5-2




that is, the magnitude of the acoustic impedance of plane waves propagating in the
moving medium is equal to the characteristic impedance of the medium. (The
negative sign results from the assumption of positive velocity in the x direction.)

The root-mean-square acoustic intensity (i.e., energy per unit area) of waves
propagating in a uniformly moving medium is given in Reference 2. The intensity
of downstream and upstream propagating waves is

I+ = 'p‘l2 (l +M)2_
pc
(5-6)
= PP (1 - M2
pc '

The "convective" wave equation that governs acoustic pressures measured
by a stationary observer in a uniformly moving medium is obtained by substituting
the convective time derivative (Equation (5-4a)) into the wave equation for a
stationary acoustic medium

(1_M2)az_p+§2_p+?ig—2_M_ 32p ——l—azp = O.
ax2 ay2 822 C gxot c? at2 (5-7)

Solutions for Equation (5-7) are obtained by specifying a source configura-
tion at a boundary. Analytical solutions and measurements are given in Refer-
ence 3 for a source located in the wall of a pipe. In the absence of flow, the
boundary conditions posed by such a source are well defined. For a source that
vibrates with constant amplitude over a region of the wall, the same disturbance is
applied to the fluid in the duct, that is,

W (X, T = %—‘2 (Xs. Ts) (5-8a)
where W = the radial wall velocity,
x, = the source region of the pipe wall,

rs = the pipe radius, and
the source displacement.

=
]

The corresponding boundary condition in the presence of uniform flow requires
interpretation and empirical correlation. Direct application of Equation (5-4a) to
Equation (5-8a) gives the following result for the source velocity at the pipe wall in
the presence of uniform flow:

W (Xs, Ts) = (E% +U 58;) N (X, 13) (5-8b)



Effectively this assumes that the flow over the source region is laminar and
that the normal velocity component merely displaces the streamlines. If, how-
ever, the flow in the source region is turbulent, the contributions to the spatial
portion of the derivative in Equation (5-8b) are uncorrelated and therefore tend to
cancel on average in this region. An approximate formulation of the boundary
condition is then the same as that for the duct with no flow (i.e., Equation(5-8a)).

Application of the two boundary conditions results in different flow depen-
dences of the acoustic pressures in the downstream and upstream directions. If
we consider only the fundamental propagation mode in a pipe whose walls are
rigid outside the source region, the ratios of downstream to upstream pressure
amplitudes corresponding to Equations (5-8a) and (5-8b) are, respectively,3

__._((11 j::; :  Turbulent Flow - Equation (5-10a)
P _ (5-9)
- 2
P (1+M) : Laminar Flow - Equation (5-10b)
(1-MpP

It is noted that convection of the sound field by the flow causes the
downstream pressure amplitude to be lower than the upstream amplitude. This
seems to be at variance with "common observation” associated with outdoor sound
propagation; however, as discussed in the next section, refraction, which often

dominates outdoor propagation, tends to reduce pressure amplitudes "upwind".

Compai‘ison of the predictions of Equation (5-9) with measurements is
shown on Figure 5-1. The data are consistent with the "laminar” assumption at
Mach numbers below 0.1 and show a transition to the "turbulent” result above a

Mach number of approximately 0.2.

5.1.2 Wall — Refracti

When discussing flows of real fluids in pipes, the presence of viscosity
makes the assumption of uniform flow invalid, especially near the walls. In the
simplest sense, the increase of flow velocity with distance with the wall means
that the effective propagation speed of sound also varies with distance from the
wall. Close to the wall where the flow speed is small (but outside the region of the
acoustic boundary layer, discussed in Section 4.4.), the sound propagation speed is
that of the fluid in the absence of flow. Near the centerline of the pipe, the
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Figure 5-1. Mach Number Dependence of the Measured Ratio
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where L

effective sound propagation speed is given by Equation (5-1). When sound
propagates with the flow, it therefore travels faster near the pipe center than it
does near the wall. If a plane wave of sound were to propagate in such a flow field,
it would tend to "bend” or be refracted towards the wall. Conversely, a plane wave
propagating against the flow would propagate slower near the pipe center, and it
would tend to be refracted away from the wall.

The importance of refraction in pipe flow is generally smaller at low
frequency and for lower order propagation modes. There are no general analytical
results available for estimating the effects of refraction on propagation within
pipes. Results that do exist in the literature are obtained by numerical calculation
for specific parameters. A primary effect of refraction is to alter the attenuation
rate of waves propagating with and against the flow from those predicted using

the uniform flow assumption.

5.1.3 Attenuation Due to Turbulent Flow

In the absence of flow, attenuation of sound propagating in the fundamental
mode in a circular pipe having rigid walls is due to irreversible processes
involving viscosity and heat conduction. This so-called "classical” attenuation

which is due to linear processes is given by*

o, = 87B,L, dB (5-10a)

pipe length,

B, = kld,+ (y-1)di/Dy,

k = w/c, = the acoustic wavenumber,
d, = V2v/w = the viscous boundary layer thickness,

d = \]2oz,r/ ® = the thermal boundary layer thickness,
ar = the coefficient of thermal diffusivity,
vy = the ratio of heat capacities (y = ¢,/c,), and

D, = 2r, = the pipe diameter.




For gases this attenuation is generally small. As an example, the classical
attenuation for air at standard temperature and pressure (v = 0.23 cm?/s,

or = 0.32 cm?/s) and a frequency of IOQO Hz is
a. = 0.02L/D, dB, (5-10b)
or approximately 1 dB per 50 diameters of pipe length.

When there is mean flow in a pipe, other mechanisms are present that
result in higher attenuation of sound. These mechanisms are viewed as being
"non-linear" and result either from the interaction of large amplitude sound waves
with the mean flow vorticity (i.e., dU/dy) or by the irreversible generation of
turbulence in the pipe.

A simple phenomenological formulation for this attenuation is derived in
Reference 5 by including in the momentum equation terms associated with the
steady-state pressure drop due to the presence of turbulent pipe flow. The result
is the following pair of complex-valued wavenumbers for propagation with and
against the flow

k* = © + 0B
co(l+M) 1+M
(5-11)
- = Q] - i A
co(l1-M) 1-M "'

where the loss factor A; =B, + 2 yf M [1 + (R./2) (@ In y1/0 RJ]/D, and yg is the
friction factor for turbulent flow at Reynolds number Re for steady pipe flow
(i.e., AI’/L=wpr_J2/2Dp where AP is the static pressure drop along length L of
pipe). (Note that the friction factor for circular pipes yr is four times larger than
that defined in Reference 5 owing to the definition of equivalent diameter for
ducts of arbitrary cross-section.)

This formulation is shown in Reference 5 to be in reasonable agreement
with measurements. At high Reynolds numbers the friction factor becomes
independent of Re, and the attenuation due to turbulence is given by

= _ 17y M
= 8.7 = =
O turb 8.7 AL +M Do dB | (5-12)

where the positive and negative signs refer respectively to downstream and
upstream propagation. For relatively smooth pipes the friction factor is yr = 0.02,
and the attenuation given by Equation (5-12) exceeds the classical attenuation for
the conditions of Equation (5-10b) when M > 0.06.



5.2 Flow Effects on Resonances in Finite Pipe Lengths

5.2.1 Qverview

The presence of flow in a pipe acts to reduce the amplification occurring at
the axial (i.e., "organ pipe") resonances that are found in the absence of flow. This
is observed in measurements of the sound pressure in a pipe shown on
Figures 5-2(a) and 5-2(b). In Figure 5-2(a), the sound source is external to the
pipe, and the results show decreasing resonance amplification with increasing
flow Mach number. The source of noise in Figure 5-2(b) is the flow through a pipe
having an unflanged sharp inlet and a flanged outlet. In this case the noise
increases as the flow Mach number increases; however, pipe resonances which

are apparent at M = 0.27 are nearly absent at M = 0.55.

Several factors contribute to the reduction of resonance amplification at
high flow Mach numbers. As discussed previously, the disparity of spatial wave-
numbers in the upstream and downstream directions means that there are fewer
opportunities for purely constructive or destructive interference of waves in the
pipe. Furthermore, additional attenuation mechanisms directly related to the flow
are present. One of these discussed previously is the interaction of the sound
wave with vorticity and turbulence within the pipe. Another dissipation
mechanism is the interaction of the sound wave with vorticity generated by the
flow entrance and exit. Although the basic physics of flow interaction with
vorticity is understood, quantitative results for specific flow geometries remain
empirical in nature. Available empirical results are therefore presented next,

followed by analytical aspects.

5.2.2 Reflection Coefficient Measurements

The effect of flow on the pressure reflection coefficients (i.e., P-/P*, or the
reciprocal) at unflanged pipe ends for propagation upstream and downstream
from Reference 6 are shown on Figures 5-3(a) and 5-3(b). The dimensionless
frequencies (i.e., k r,) for these data range from 0.12 to 0.50 for the downstream
data and 0.36 to 0.50 for the upstream data. Little dependence on flow Mach
number is found for the downstream end (Figure 5-3b), while the reflection
coefficient at the upstream end shows a reasonably strong Mach number
dependence. The magnitude of the downstream and upstream reflection

coefficients, respectively, is approximated by 1 and [(1 -M)/(1 + M)]2-33,
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(a) Effect of Flow on the Frequency Response of the Axial Modes of an
Open-Ended Duct to an External Random Noise Field.
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(b) Noise Spectra Produced by Flow Through a Sharp-Edge Smooth
Circular Duct 12 Inches Long, With an Inner Diameter of 0.75 inch.
The Entrance End is Unflanged and the Exit End Flanged.

Figure 5-2. Measurements of Sound Pressure in a Pipe.
(Reproduced from Ingard and Singhal.®)
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(b) Downstream End (R;) of the Duct.

Figure 5-3. Measured Mach Number Dependence of the Magnitude of the
Pressure Reflection Coefficients.

(Standing Wave Measurements: 0- 1400 Hz: x- 1000 Hz; V - 350 Hz.
Pulse Measurements: A - 1200 Hz.) (Reproduced from Ingard and Singhal.6)




When flow is present, a pressure reflection coefficient of unity does not
imply total reflection without absorption. The relationship between pressure
reflection coefficient and acoustic intensity is obtained using Equation (5-6). By
substituting the above results for pressure reflection coefficients, we obtain the

following “"energy” reflection coefficient at the downstream end

Aol e R (5134

At the upstream end the corresponding result is

- e <

p/ \1-M 1+M (5-13b)

Acoustic energy is therefore absorbed by reflection at both ends; however, more
energy is dissipated at the downstream end. Although the measurements only
extend up to M = 0.5, extrapolation of these dependences confirm that anechoic

ends (i.e., no reflections) are obtained at sonic conditions (M = 1).

Flow restrictions at the downstream end of a pipe can be designed to
provide anechoic termination. Results are shown on Figure 5-4 for flow restric-
tions in the form of a single nozzle and a perforated plate. The energy reflection
coefficient has minima that approach zero when the exit flow Mach number (M)
is approximately equal to the contraction ratio of the area (i.e., ratio of flow area of
the restriction to that of the pipe, this ratio being 0.132 for the results of
Figure 5-4). As indicated, this condition applies to low dimensionless frequency

and relatively low Mach numbers.

5.2.3 Analytical Modeling

Alteration by a flow of the acoustic characteristics of flow in a pipe can be
obtained using a simple analytical example, namely a pipe of length L carrying a
uniform flow with Mach number M. A disturbance at the downstream end
generates an equivalent plane wave velocity u, in the pipe. The wave propagating
upstream is assumed to reflect at the pipe end such that the pressure vanishes,
this being equivalent to an open pipe termination at low frequency. The acoustic
pressure field in the pipe is the sum of the waves propagating upstream and

downstream, that is,

px) = Pek'x 4 Prelkx (5-14)
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where k* and k- are defined in Equation (5-3). We determine the ampli-
tudes P+ and P- by requiring the particle velocity to be u, at x = 0 and the total
pressure to be zero at the other end. As discussed in Section 4.3, an end
correction is applied to the physical length of the pipe to account for the
entrained fluid outside the pipe. For circular pipes carrying flow, the end
correction for an unflanged pipe is given by®.7

T o-m2 (5-15)

Using the effective length in the condition giving zero pressure, we obtain the

following relationships for the amplitudes

P* _ P -
1+M 1-M pclo. (5-16)

P+ ek’ leffl 4+ P~ etk Leff = Q.

These amplitudes are used to calculate the acoustic impedance at the

source location (i.e., the ratio of pressure in the pipe to particle velocity at x = 0),

p X _ -ipc(1-M?) sinkeLes
cos ke Leg + i M sin ke Lefr (5-17)

Zo =

Uo
x=0

where k. = —©  is the convected wavenumber.
col1-M2)

In the absence of flow, the result given in Equation (4-14) is obtained in which the
source impedance is infinite (anti-resonance} when the pipe measures an odd
number of quarter wavelengths (i.e., the zeroes of cos kL) and zero (resonance)
when the pipe measures an integer number of half wavelengths. The effect of
uniform flow is to shift the location of the resonances and to eliminate the
possibility of pure anti-resonance in that there are no longer real-valued
frequencies that cause the denominator to vanish. Complex-valued frequency

roots of the denominator can be found, but these are effectively damped in time.

When the source is located in the wall of the pipe and reflections from
upstream and downstream ends are accounted for,® the function corresponding to

the denominator of Equation (5-17) is

1 - R, Ry e +Kller, (5-18)



where the pressure reflection coefficients R, and R4 are shown on Figure 5-3.
Anti-resonances in the pipe are obtained at frequencies that are the roots of
Equation (5-18). As discussed above, these roots or eigenvalues are complex-
valued frequencies

0= 0- 10 (5-19)

such that: exp (-io t) = exp (-io, t) exp (-w; t). The real and imaginary parts of these
roots are given graphically on Figure 5-5 for various flow Mach numbers and
turbulent flow friction factors (i.e., Equation (5-11) is used for the wavenumbers).
Purely real roots giving zero particle velocity for a finite pressure are only obtained
when flow is absent. When the Mach number is 0.4, a propagating signal at the
eigenvalue in the absence of attenuation due to turbulence (y; = 0) is attenuated by

anow = 8.7 Qilel - 87(0.475) = 4 dB (5-20)
(o)

in the time, L./c, . taken to travel the length of the pipe. The value 0.475 is
taken from Figure 5-5.

Analytical predictions of the absorption of sound through interaction with
flow vorticity have been made for several configurations (see References 7 to 10).
The physical understanding of this process is that dissipation is obtained when
sound interacts with the mean flow field to generate vorticity which is then swept
away by the flow. Tuning of this process to the flow and sound field results in the
anechoic termination (i.e., zero power reflection coefficient) shown on Figure 5-4.

Figure 5-5. Mach Number Dependence of the (Complex) Eigenfrequency of the
m'th Axial Acoustic Mode (m =1, 2, . . ) of an Open-Ended Duct of
Effective Length L for Several Values of the Turbulent Pipe Flow

Friction Factor, y,. (Reproduced from Ingard and Singhal.f)
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CHAPTER 6
ACOUSTIC RESONANCES IN CASCADES

by Louis C. Sutherland
Consultant in Acoustics

Cascades are defined as an array of parallel or annular plates in the plane of
flow of a gas or any compressible fluid - generally assumed to be subsonic. These
surfaces introduce fixed boundaries which can give rise to acoustic resonances.
The cascades can be considered as an idealized representation of stators in
hydraulic pumps or bends, guide vanes in bends, intake ports, etc. In contrast to
the well-known phenomenon of vortex shedding-induced vibration of structures
placed in a fluid flow of effectively infinite extent, the introduction of boundaries
within the fluid flow introduces a new element to this interaction of fluid flow and
structures. That is, the acoustic resonances that occur within these bounded
surfaces. It is often assumed that these acoustic resonances are, themselves, the
source of the structural excitation that frequently accompanies them. In fact,
Parker and Stoneman! have shown conclusively that the vortex shedding is still
the primary source of flow-induced vibrations in the presence of cascades.
However, the latter can have a strong influence on the strength of the resulting
aero-acoustic excitation. Particularly significant for this handbook can be:

e The vibration of blades in axial-flow compressors and other turbo-

machinery, and

e Noise and vibration from in-flow support spokes and corner vanes in

piping systems.

This chapter addresses these acoustic resonances from two aspects: (1) the
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