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INTRODUCTION

This report details results of research performed during the period April 1, 1992
through September 30, 1994 under NASA contract no. NAG-1-1407.

The general objective of this research has been to construct a model capable of
predicting the damage development caused by out-of-plane static loading in laminated
graphite/epoxy composite plates.

SUMMARY OF COMPLETED RESEARCH
The following is a summary of research completed during the contract period:

1) a cohesive zone model has been developed for predicting delamination
growth in thermoset composites;

2) the cohesive zone model has been shown to be thermodynamically
acceptable and consistent with the continuum mechanics approach to fracture
prediction;

3) the cohesive zone model has been implemented to a finite element computer
algorithm developed specifically for use under this contract;

4) preliminary predictions have been made with the model;

5) preliminary experiments have been performed as a means of model
verification; and

6) the model predictions have been compared favorably to experimental
results.

The results reported above are documented in Appendix A.
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Modeling the Progressive Failure of Laminated
Composites with Continuum Damage
Mechanics

REFERENCE: Lo, D. C,, Allen, D. H., and Harris, C. £, “Madeling the Progressive Failure of
Laminated Composites with Continuum Damage Mechaanics,” Fracture Mechanics: Twenty-
Third Symposium. ASTM STP 1189, Ravinder Chona, Ed., American Society for Testing and
Matenals, Phiadelphaa, 1993, pp. 680-695.

ABSTRACT: A continuum-damage-mechanics-based model is proposed for the analysis of the
progressive failure process in laminated composite structures. The laminate’s response is deter-
minced by nonlinear constitutive equations that account for each type of matrix-dominated dam-
age through strain-like internal state variables. Evolution of these internal state vanables is gov-
erned by the damage-dependent ply-level stresses. The updated damage state and the ply-level
stresses arc then employed in the local-global evaluation of component failure. This model is
incorporated into a finite-clement analysis code to facilitate the examination of structures with
spatially varying stress fields. The stress and damage distribution obtained from the analysis at
vanious points in the loading history provide information about the progression of events leading
to the failure of the component. The progressive failure of fatigue-loaded rectangular crossply-
laminated plates containing a centered circular cutout has been examined with the model. Most
of the predicted damage is localized in a region near the cutout. Rather than propagating out- .
ward, the damage intensifies in this region until failure occurs. The feasibility of modeling the
cvolution of cach type of subcritical damage is demonstrated with the current framework. This

ability to simulate the progressive failure process at this level of detail will assist in the design of
safer and more efficient composite structures.

KEY WORDS: laminated composites, progressive failure, matrix damage, continuum damage

mechanics, finite-element analysis, damage accumulation, fracturc mechanics, fatigue
(matenals)

The accumulation of subcritical damage in laminated composites is of major concern espe-
cially in hight of the increased use of these advanced material systems in critical engineering
applications. Although in some instances distributed damage can retard the failure process in
a component by redistributing load away from the high stress region, it is still the primary
contributing factor to the eventual catastrophic failure. While efforts can be made to delay the
development of damage by modifying the laminate stacking sequence or the component
design, distributed damage is present throughout the life of the component. Even before enter-
ing service, damage is inflicted on the component by the manufacturing process.

To produce safe and reliable laminated composite components, it is essential 10 know how
such damage affects the performance and failure of these componcnts. Experimental
approaches are not economical due to the large numbers of parameters that can be varied by
the designer. Thus, much effort has been placed on the development of analytical methods to

! Graduate research assistant and director, respectively, Center for Mechanics of Composites, Acro-
space Eagineering Department, Texas A&M University, College Station, TX 77843-3141.

! Head. Mcchanics of Materials Branch, NASA Langlcy Rescarch Center, Hampton, VA 23665-5225.
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supplemient the desipner’s databiae

Fo accomplish this task requires a thorouph knowledpe
of the fatlure char;

icterisucs of laminated composites as well as the
this failure process.

"The progressive nature of the failure process in laminated composites has been well docu-
mented in the published literature [/-4]. This process involves the accumulation of several
types of damage. Generally, the firsg type of damage to appear is matrix cracking in regions of
high stress gradients. Along the free edges and at the intersection of matrix cracks from adja-
cent plics, delaminations are propagated by large intralaminar stresses. The st ress redistribu-
tion resulting from these two types of damage in turn assist in the development of damage in
the surrounding areas. As matrix-dominated damage accumulates, the loads are transferred 1o
the plies with fiber orientation aligned closest to the direction of the applied loads. The bonds
between the fibers and matrix are fractured in these plies. This is accompanied by the fracture
of the fibers. Since the reinforcing fibers are the primary load-carrying component of the lam-

inate, their fracture signifies the imminent failure of the structure itself. This failure process is
in contrast to that observ

ed in conventional homogeneous materials where failure can be
‘traced (o the propagation of a single flaw. In composites, each flaw in the laminate will not
greatly affect the overall response of the structure; instead, it influences the development of
other flaws. It is the cumulative effect of the subcnitical damage that results in the failure of the
structure. Thus, any attempt to predict the residual strength and life of laminated composite

structures must address the damage accumulation process as well as its effect on the response
of the matenal.

ability to analyucally model

Most analyses have not adequately accounted for this history-dependent subcritical damage
accumulation process. Some linear elastic fracture mechanics based approaches replace the
distnibuted damage with a single equivalent macrocrack [5.6]. When the stress intensity factor
or the strain energy release rate is equal to the fracture toughness, failure occurs. Other

approaches calculate the stress field with the assumption of no accumulated damage. To com-

pensate for the stress redistribution, the failure criteria are either evaluated at a distance away

[from the stress concentrator or are evaluated using the stresses that are averaged within this -
region {7-9]. A limitation of these approaches lies in the determination of the equivalent
macrocrack size or the evaluation zone. Analytical expressions are not provided to relate the
distributed damage 10 the equivalent geometric properties. Instead, these values are selected
to correlate with experimental data and thus are restricted to similar geometries and loading

histories /0]. Ofien these values that are supposed to describe the evolving damage state are
assumed to be constant throughout the failure process. Furthermore, in light of the increasing
inhomogeneity with damage accumulation,

these indirect approaches 10 the accounting of
subcnitical damage do not provide sufficient information to predict accurately the evolution
of the damaged region and the eventual failu

re of the component.
Ply discount methods have also been

method have to be cmployed for typical d

stress fields. cach flaw is modeled by a large number of clements. The stress ficlds arc then used

in the failure criterions 1o determine the initiation and propagation of cach flaw. 1t is necessary
o update the finite-clement model as the damage state evolves. This type of analysis, unfor-
tunately, can rapidly become computationally untenable since a component may
many interacting flaws before failure occurs.

The requirement for inform

amage configurations [/ /-16]. To obtain accurate

y accumulite

aton concerning the subceritical damage accumulation and the
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desire for o wactable analvas scheme have prompted the use of the contiuum-damagce-

mechanmes approach w e anatvsis of progressive failure in Linmunated composite structures
1417-20]. the size and distabution of the subceritical damage found 1 Lininated composites
cuable the sclecuon of a representative volume element {(RVE)ol material th

atissmallin scale
relative to the steucture, but is of suthicient size (o characterize the damay

e contaned within
by staustically averaged quantitics. These averaged quantities, known as internal state vari-
ables. describe the physicat attributes of cach mode off damage. The resulting efiects of the
distnibuted damage arc then reflected in the constitutive rclationship through the internad state
vartables. Therclore, o medium containing a multitude of small internal cracks can be ana-
fyzed as a continuum without internal boundarics. Duc 1o the nonlinear nature of the consti-
tutive cquations, this type of analysis is approached numerically by methods such as finite
clements. This homogenizaton of the subcritical damage climinates the task of modching indi-
vidual flaws: but since the homogenization is performed at a scale that is small with respect 1o
the structure, the results arce of suflicient resolution 16 provide an indication of the damage
accumulation and stress redistribution.

A progressive failure model incorporating the continuum-damage-mechanics approach to
model-matrix-dominated damage has been under development by the authors [2/-26]. The
model’s capability to predict the development of matrix cracks under tension-tension fatigue
loading conditions is used to examine the development of damage in composite laminates.
The information obtained is then used to predict the failure of the component.

Progressive Failure Model

The proposed progressive failure model consists of three components. The first is the non-
linear constitutive relationships derived using continuum damage mechanics. Next is the
structural analysis algorithm incorporating the aforementioned constitutive relationships,
and, finally, failure critenia to indicate the catastrophic failure of the structure: Duc to the pro- -
gressive nature of the failure process, these componentsare employed in a time
ner to evaluate the stress state and damage evolution throughout-the loadi
results obtained at each step are then used to update the model for the next st
history. The following sections will first present the essential aspects of each ¢
progressive failure model. These components will then be assembled in an a

form the progressive failure model. More in-depth discusstons on these co
found in the published literature [21-26].

-slepping man-
ng history. - The
cpin the loading
omponent of the
nalysis scheme to
mponents can be

Damage-Dependent Constitutive Relationships

The damage-dependent constitutive relationships form the foundation of this progressive
fatlure model. These relationships determine the stress-strain response in the presence of inter-
nal damage as represented by the internal state variables. Within the framcwork of continuum
damage mechanics, the rate of change of these internal state variables is calculated from his-
tory-dependent damage-evolution laws. Thus, in the course of the analysis, both the changes
in the stress state as well as in the damage state are determined. The probable focation and
mode of failure can then be inferred from these results ealculated at sequential points in the
loading history. The principles of continuum damage mechanics further require the se
of local volume clements in which homogenization is pecformed. For matrix crackit
volume can be specified at the ply level. This selection of the local volume serves as the logical
butlding block tn this analysis. The model of a composite laminate citn then be formed by

assembling these building blocks together. By also developing damage evolution |
ure funcuons 1o be applicable at the ply

lection
1g, this

aws and fail-
tevel, the formulation becomes idependent of the
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Linunation geometry. The eelative scale and location of occurence of debmmnaiion dan: TS
preclude s specdication at the ply level it s istead itroduced at the Gonrnsae level, 1o me un-
Lo the peometanie mdependence of the model, 2 set of ditmape-dependent Limnation equa
uons with modilications to accommodate the eflects of the delamination damage isemployed

The kinematie efiects of the matnx cracks and delaminations are quantificd by the internal
state vartables used in this model. Matrix cracking is measured by the volume aver: iped dyadic

product of the crack Lace displacement, i, and the erack face normul, M, as proposed by Vak-
ulenko and Kachanov {27]

-
= undsS (n

where «,) 15 the second-order tensor internal state variable, F, 15 the local representative vol-
ume in the deformed state, and S is the crack surface area. This product represents the aver-
aged kinematics of the crack faces and can be interpreted as additional strains incurred by the
matcrial as a result of the internal damage. Since the internal state variable is a second-order
tensor, it is capable of modeling all three kinematic modes of crack face displacement. From
micromechanics, it has been found that the effects of the matrix cracks can be introduced into
the ply-level constitutive equations as follows [ 28]

{od = [QNec — «ff) (2

where ¢, arc the locally averaged components of stress, [Q] is the ply-level transformed stiff--
ncss matrix, €, are the locally averaged components of strain, and «i' are the components of -
the internal state variable for matrix cracking. Since interlaminar delaminations are not sta-
tistically homogencous through the laminate thickness, their effects cannot be homogenized
at the ply level like the matrix cracks. The effects of the delamination are modeled instead
usingan RVE at the laminate level. The presence of interply delaminationsin a laminate intro-
duces jump discontinuities in the displacement and rotation of the normal line io the mid-

plane of the plate. The Kirchhoff-Love hypothesis is thus modified 1o account for these dis-
continuitics at the damage interfaces as shown here {29]

t(xp.z) = w(xy) — z [+ H(z — z)B°) + H(z — z)u” (3)
wxp,z) = 0(xy) — z[n® + H(z — z)af] + H(z — z)0? (4)
Wxp,2) = W(xy) + H(z — Z)w? ()

where o, u", and w’ arc the midplane displacements; 8° and n* are thc ply rotations;

u?, vf, and w?, are the ply jumpdisplacement due to delamination- B? and 5! are the ply jump
rotations duc to delaminations; and H(z — z,) is the Heavyside step function. These displace-
ment equations arce averaged over a local area to produce locally averaged displacements. The
cesults are then used in the calculation of the average strains via the ply lcvel constitutive rela-

tionship shown in Eq 2. [ntegrating these ply stresses through the thickness of the laminate will
produce the following damage-dependent lamination equations

{N) L (Qllzi — 2.0 {er) — % Z (Ql(zi — Zi-.)('\"l'_) 1 Z [Ql]:l.{“”),

L= R R |
d

+ 3 (Oz = 2 M) = ST HOWG = m N (6)

L=t
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where Vs the component of the sesultant force per unit length; A s the component of the
resultant moments per unit fength; 4 is the number of plicsin the laminate: ¢ and «§ arc com-
poacats of the midplanc strains and curvatures; [ Q). is the clastic modulus matrix for the &
ply i lamunate coordinates; {a*'), contains the matrix cracking internal state variables for the
K™ ply: d 1s the number of delaminated interfaces: and {Q)], arc the weight-averaged stiffness
matrices of the sublaminate associated with the ™ delaminated interface {26]. This sublami-
nate 1s composed of the ply directly above and below the delaminated interface. £, 1s the thick-
ness of this sublaminate. {«”}, are components of the delamination damage internal state vari-
able, which includes components for crack face displacements and rotations, for the ™
defaminated interface. These delamination internal state variables are defined in a similar
manner as for matnx cracking. However, the local volume is now specified at the sublaminate
level. The effects of the internal damage are accounted for by the last three terms on the right-
hand side of Eqs 6 and 7, the first two representing the contribution from delamination and
the last term from matrix cracking. These terms can be viewed as “damage induced™ forces
and moments whose application to the undamaged material will produce midplane strain and
curvature contributions equivalent to those resulting from the damage-induced compliance
increase. [f no damage were present, these equations would reduce to the elastic lamination
equations.

The internal state variables for the matrix cracks and delaminations can be determined
either from experimental data [22,28] or damage evolution equations {30]. The former
method requires prior knowledge of the damage state in the structure. Since the objective of
this research effort is to predict the accumulation of damage and its effect on the structure,
damage evolution equations are used in this model. These relationships describe the rate at
which the internal state variables are changing in the R VE and are functions ofonly the current
state at each locally averaged material point. The damage state at any point in the loading
history is then found by integrating the damage evolutionary laws. For symmetric crossply
laminates subjected to uniaxial loading conditions, the predominant type of damage is the
Mode I opening intraply matrix crack. [t is assumed that all the crack surfaces are oriented
perpendicular to the plane formed by the ply. Thus, matrix damage 1n cach ply can be char-
actenzed by only one component of the damage tensor. This component, .o, is associated
with the displacement of the crack face in a direction parallel to the crack face normal. Based
on the observation that the accumulation of matrix crack is related to the strain energy release
rate, G, in a power law manner [3/ ], the authors have proposed the following évolutionary
relationship for this component of the damage tensor when the load is applicd cyclically [30]

M
dalt = d;S“ KG*dN (8)
where the term daldi/dS reflects the changes in the internal state varable with respect to
changes in the crack surfaces. This term is calculated analytically from a relationship describ-
ing the average crack surface displacements in the pure opening mode (Mode 1) for a medium
contatning alternating 0° and 90° plics [ 28]. It has been found that for typical brittle graphite/
€poxy matcnal systems das3/dS varied little with damage when subjected to fatiguce at constant
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load levels. Therelore, dadi/ds s assumed to be mdependent of the number of matriy cracks
i the ply. This approximation leaves the component of the fuar-ficld load normeal to the crack
surface and the fayer thickness as the determming factor for the value of o, S dS (s the strain
energy cclease rate caleulated from the ply-level damage-dependent stresses. The nulerial
parameters, A and 7, are phenomenological in nature
mental data. For the preseat model, & and 7 are determined from the damage lustory of 4 [Oy
90,], AS4/3502-6 graphite/epoxy laminate fatiguc loaded at a maximum stress amplitude of

296.5 MPa and a cycle ratio of 0.1 as reported by Chou et al {37,
found to be

and must be determined from experi-

The paramceters have been

k=442, =639 %)
for this material system. Because £

and 11 are assumed o be material paramcters, the values
determinced from onc laminate stac

king scquence should be valid for other lamunates as well.
This has been found 1o be accurate for crossply laminates with varying numbers of transverse
plies and stress amplitudes [32]. Further tnvestigation of other laminate stacking sequences
will be required to determine whether this assumption is valid for noacrossply layups. Since
the interactions with the adjacent plies and damage sites are implicitly reflected in the calcu-
lation of the ply-level cesponse through the laminate-averaging process, Eq 8 is not restricted
toa particularlaminate stacking sequence. Thus, both the transverse matnx cracking and axial

splits in a crossply laminate subjected to tensile cyclic loading conditions can be modeled with
the same equation.

Structural Analysis Algorithm

To incorporate the damage-dependent laminate constitutive relationship into a finite
ment formulation, the damage-dependent force and moment resultants, Eqs 6 and 7, are sub-
stituted into the plate equilibrium equations. The restriction 10 symmetnic laminate stacking
sequence is taken to simplify the formulation. This assumption produces a zero coupling stiff-
ness matrix and results in uncoupled governing differential equations. These governing differ-
cntial equations are integrated against variations in the displacement components to produce
aweak formulation of the damage-dependent laminated plate equilibrium equations. The cur-
rent algonthm uses a three-node tnangular element with five degrees of freedom at each node;
this consists of two in-plane displacements, one out-of-plane displacement, and two out-of-
plane rotations. This element is formed by combining a constant strain tnangular clement and
a nonconforming plate bending element. Corresponding displacement interpolation func-
tions are substituted into the weak formulation of the plate equilibrium equations to produce
the following equilibrium equations in matrix form [33]

-ele-

K" K2 ¢ u F! Fi, FY
K K2 ¢ v =4{Fit +4{F,} + F (10)
0 0 K® 3 F} F, F3

where [K] is the element stiffness matnx, {8} contains the out
tions, {F,) is the applied force vector, and {Fu} and {
tors resulting from matrix cracking and delaminati
damage now appear on the night-haad side of the cquilibrium cquations as damage-induced

force vectors. This representation climinates the need o recalculate the clemental stiffness
matrices cach time the damage state evolves, thus saving much computational time.

-of-plane displacement and rota-
Fyp} are the “damage-induced™ force vee-
on, respectively. The effects of the internal
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Peiliove Crgrenice

e objective of the fdure eriteri is to evaluate the stracturl ety of the component
usinyg, the current stress and damage states calculated by the model. his eatads the examina-
ton of the falure process at both the local materiat level and the global structural fevel because
the nlure at one material point may create stress redistributions that can cause simultancous
falure i the surrounding regions. Typical failure du ring tensite conditions is signaled by fiber
friacture in the principal foad carrying plics of a1 multidicectional Luminate, This is evaluated
by the following criterion

Lo = ey, (1)

where ¢, 1s the average ply level strain in the fiber direction and ta, 15 the tensile fature strain
measured from a umidirectional laminate. After failure has been declared, the ply no longer
can support additional foad. The current analysis considers this condition as the failure of
componcnt. In situations where the failure process is permitied o progress bevond the first
fiber fatlure, the stability of the failure process is evaluated at the global level. The stress state
for the entire structure with the updated damage is recalculated using the current loading con-
dition. Local laminate failure is evaluated once again in the structure. If it has been determined
that additional laminate failure has not occurred, then the failure process is stable and the
analysis is continued to the next increment of loads. On the other hand. new local laminate
fatlure would indicate an unstable fracture process and signals the initiation of global failure.
Thus local-global procedure forms the failure evaluation of the progress failure model. Other

modes of failure can be included in the evaluation by the application of the appropniate critenia
at the local level of the analysis.

Progressive Analysis Scheme

The aforementioned components are assembled together as shown in Fig. 1 to form the pro-
gressive failure model. In a typical analysis, the applied loads and initial damage state are
entered into the damage dependent constitutive relationships to determine the effective dam-
age-induced forces. These resultant damage forces along with the applied forces are used in the
structural analysis algorithm to calculate the global structural response. The results are once
again sent to the constitutive relationships where the local stress/strain response is obtained.
The changes in the damage state are also determined at this stage by the damage evolutionary
relationships using the local ply stresses. The failure criteria are evaluated locally with the
updated damage state; if failure has occurred, global failure is examined. Next, the entire pro-

cess 1s repeated for the next load step. This model is coded into a computational program to
facilitate the analysis of engineering structures.

Numerical Results and Discussion

The proposed progressive failure model is employed to examine the residual life of crossply
laminated plate subjected to fatigue loading conditions. A circular cutoul is placed at the cen-
ter of the plate to produce stress gradients that are conducive 10 the growth of subcritical dam-
age. This configuration is similar to those used to model fastener holes found in many com-
posite structures. Thus, by examining how the stresses are redistributed and damage
accumulates near the fastener hole, information can be gathered 1o determine the menits ofa
particular design. The dimensions of the rectangular plate used in this study are 25.4 by 50.8

mm. The cirealar cutout has a diameter of 6.4 mm. A cyclic tensile toad is applied at the nar-
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row cnd of the plate. Due to symmetry about the length and width of the plate, the finite-
clement mesh represents a quarter of the plate. It is discretized into 90 three-node triangular
clements, asshown in Fig. 2. The plate has a {0/90,], laminate stacking sequence. The material
propectics, shown in Table 1, for AS4/3501-6 graphite/epoxy have been used in the calcula-
tion. The fatiguc load is applicd at a cycle ratio of 0.1 and follows the maxinmum stress lustory
shown i Fig. 3. The first 50 cycles consist of the ramp up to the test load. Thisis done in part
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FIG. 2—Finite-element mesh of plate with circidar cutout.

to control the incremental changes to the damage state during the initial portion of the loading
history. [n this simulation, matrix cracking is assumed to be the only form of damage mode
and because of the crossply stacking sequence, component failure is assumed to occur at the
first fiber fracture in the 0° plies.

The predicted accumulation of matrix crack damage in the 90°
maximum stress of 184.0 MPa is shown in Fig. 4. The amount of d

TABLE | —Ply-level material propertics for AS4/3501-6 used in

simulation.

£y
£y
G
Uiy
Un
’n‘y

!
Cifen

GrowTit LAW PARAMETERS

146.9 GPa
10.4 GPa

4.3 GPa

0.26

0.42

0.128 mm

15 000 pstrain

442
6.39

plies of a pancl loaded at a
amage is expressed in terms
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FIG. 3—Maximum fatigue stress history used in simulation (R = 0.1 ).

of the volume-averaged crack face displacement as defined by Eq [. At the end of the load
ramp up, matrix damage has developed throughout the plate. The greatest damage being
located near the notch. This region of high damage gradient expands outward after 1550
cycles. The amount of damage also increases in the rest of the plate. However, after 7550
cycles, much of the damage evolution emanates from the region adjacent 1o the notch. This
shiftin the damage evolution reflects the load redistribution occurring inside the laminate. The
corresponding axial stress history for the 0° plies is shown in Fig. 5. The effects of the damage
growth that occurs between 50 and 1550 cycles can be seen by the increase in stress near the
notch. The interesting changes in the stress distribution beyond this point in the loading his-
tory are not discernible from the stress contour plots; but examination of the numerical data
indicates load transfer taking place in a confined area adjacent to the notch. This decelerated
change in the stress distribution is in part due to the small fraction of the total load initially
carried by the 90° plies. Any loss in the load carrying capability in the 90° plies will translate
tosmall changes in the stress state in the 0° plies. The accumulation of damage further reduces
the load available for transfer. However, a sufficient amount of load is transferred o the 0°
plies to cause fiber fracture and component failure after 7634 cycles. During the life of the
plate, the greatest accumulation of matrix damage is located at a region adjacent to the notch.
Rather than expanding outward, the damage intensifies in this region until first fiber failure in
the 0° plies. This behavior has also been predicted by Chang et al. [34] in crossply laminates
subjected to monotonically increasing tensile loading conditions.

The predicted cycles to first fiber failure at various maximum fatigue stress levels are shown
in Fig. 6. At the higher stresses, the load redistribution progresses rapidly from the formation
of the high-damage gradient zone to the failure of the first fiber. This indicates a sufficient
amount of energy was available after the formation of this zone to produce this result. At lower
applied stresses, a large portion of the available energy is expended during the formation of the
damage zone. Therefore, the intensification stage spans over a relatively high number of
fatigue cycles. The increasc in the number of cycles to failure from decreasing the applied stress
at the lower stress levels is large. Decreasing the applied stress from 185.7 to 183.4 MPa
increascs the cycles to failure by more than 100 000 cycles. A possible cause for this response
ts related to the amount of load redistribution taking place inside the faminate. Recall that
these predictions are based on the assumption that matrix cracking is the only type of matrix-
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FIG. 6—Predicted cycles to first fiber failure of fatigue-loaded plate with a circular cutout.

dominated damage present. The inclusion of delamination damage into the analysis will alter
the stress redistribution and damage accumulation. Its effects will be most apparent at the
lower stress levels where the delamination damage can 1nitiate and accumulate before fiber
failure occurs. The number of fatigue cycles required for first fiber failure at these stress levels
will decrease due to the additional source of load redistribution. Since the stress redistribution
and damage formation are coupled, additional analysis and experimental verification would

be required before any quantitative conclusions can be drawn about effects of including

delamination damage. However, it would enable the current progressive failure analysts

framework to capture a more complete picture of the complex interactive process and enhance
the model predictions.

The type of information obtained from the simulation could be potentially very useful to
the designer or analyst. The ability to locate critical regions and to track the evolution of dam-
age in these regions would allow designers to create safer and more efficient components. Alter-
nately, a damaged region detected in a component can be characterized and then entered into
the model to determine its effect on the residual responses so that it can be removed from
service at the appropriate time. The proposed model demonstrates the feasibility of the con-
tinuum-damage-mechanics approach. Further developments are in progress to achicve the
capabilities for analyzing more complex damage states.

The current analysis assumes component failure 10 occur at the first fracture of fibers in the

principal load careying plics. This assumption is valid in narrow specimens where there is not

sullicient area to redistribute the tensile loads within these plics. In wader specimens, global
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fracture can be stable . thus, the nrogressive Glure process extends bevond the fuest tiber {adure.

Theeelore, the Tull implementation of the matrix-dominated damuge evolution iws and the
imtroduction of fibee fracture internal state variables and growth Loy

s are futuce objectives of
the rescarch effort.

Fhus wll be followed by the modchng of compressive faiture maodes.

Counclusion

The use of continuum damage mechanics in the progressive Calure model provides an cffi-
cient mcans of modecling, distributed damage found in laminated composites. |
damage is represented by a setof strain-like internal state variables. The mtern
evolve with the accumulation of damage at each material pomt. These valucs
damage cvolution relationships that are functions of the current state ofthe m
all the damage present. Since the formulation permits the gradual

Zach wype of
al state vanables
are predicted by
aterial including

accumulation of damage
and the concurrent growth of different damage types, the analysis reflects the events occu rrng

inside the laminate. The current framework operates in a time-stepping manner where the
stress distribution and damage accumulation predicted at each step are cmployed tn the local-

global structural integrty evaluation. This ability to simulate the progressive failure process
will enhance the design and maintenance of laminated com
dependence on experimental support.

Even though continuum damage mechanics is suited for the examination of damages that
are distributed in nature and fracture mechanics is applicable for the evaluation of well-defined
macrocracks, there are situations that require the incorporation of the two approaches. One
such case is the existence of a sharp notch in a composite laminate. In this instance, a damage
zone containing many distributed microcracks will develop ahead of this notch when load is
applied. To account for the stress redistribution in this zone, continuum mechanics can be
used to determine the state of the material. These results can then be cvaluated on the global
scale using fracture mechanics. Thus, rather than choosing one method over
should be viewed as integral uaits in the failure analysis of laminated composi

posite structures by reducing the

the other, they
te structures.
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Abstract. The results of the so-called encrgetic approach to {racture for the cases of a sharp crack without and with a
cohesive zone are bricflv reviewed with particular attention to the crack uip singularity analysis and to the issuc of
energy dissipation due 1o crack propagation. The case of a crack with a cohesive zone removing all thermomechanical
singulanties is then further analyzed, focusing the attention on the question of the thermodynamic admissibility of
subcritical crack growth. and on some of the hypotheses that lead to the derivation of subcritical crack growth laws. A

two-phase cohesive zone modecl for discontinuous crack growth is presented and its thermodynamics analyzed, followed
by an example of its possible application.

1. Introduction

Subcritical crack growth (SCG), under both general and cyclic loading conditions, is a
phenomenon that has been receiving more and more attention during the last forty years.
Starting with early investigations mainly on fatigue in metals [ 1-9], current research covers a
wide variety of materials, especially those such as polymers [9-13] and ceramics [14] that are
becoming important in the fabrication of composites. The phenomena of interest also include
phase transformation toughening and discontinuous crack propagation in polymers, R-
toughening by crack bridging in ceramics and interface evolution and -degradation both at
fiber-matrix interfaces in fiber reinforced composites and at the lamina-lamina interface in
laminated composites. In all these phenomena experimental research has shown the existence
of a zone, often referred to as a cohesive zone or damage zone located at the crack tip, whose
special behavior relieves the stress and/or strain singularity that otherwise would be predicted
at the crack tip of a sharp crack and allows for some inelastic behavior to occur. -
From the theoretical standpoint, the problem is that of relating crack growth to the load
history. In this sense, fundamental understanding has been provided by the energetic approach
to fracture [15-32] that showed [15-19] how subcritical crack propagation is strictly related to
the rate of energy dissipation in the vicinity of the crack front, although the distinction between
the surroundings of the crack, generically referred to as a process zone, and the rest of the body
is often unclear. Such an ambiguity leads also to inconsistencies in the development of a
thermodynamic theory of fracture. In fact, several theoretical studies in the continuum
thermodynamics of fracture, especially those by Cherepanov [15, 21] and Rice [22-23] and,
more recently, Gurtin [24-25] and Nguyen [27-32] have shown that, independently of the
global or local (around the tip) constitutive assumptions, a sharp crack with no cohesive zone
(i.e. a system of cohesive forces acting on the crack surface) is constrained to evolve according
to the Griffith criterion [20], the latter being a direct consequence of the second law of
thermodynamics. This result is in open contrast with many of the results obtained in fatigue,
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2.0 Basic cquations

The first two laws of thermodynamics, in the pomtwise form. rcad [37]

/)l-( = (T;jfzij -, + r, (l)

(" I
{)S+(%).~p?20, (2)

where v = u(x,, 1) is the specific internal cnergy; p = (x,, 1) is the density; s = s(x,, 1) is the (total)
specific entropy: T = T(x,,t) is the absolute lemperature: a;; = a,;(x, 1) is the Cauchy stress

lensor; &; = ¢£;;(xy, t) 1s the small strain tensor; g; = qi(xi, 1) is the heat flux; r = r(x,, t) is the heat
source.

The dot over a generic variable represents the material time derivative d/dr and x; 1s the
position vector. In addition to (1) and (2) we also have
giij+pfi=0, 3)

&j = %(“i.j + ), “4)

where f; = fi(x,,1) and u; = u;(x,,1) are the body force and the displacement vector fields,

respectively. As for the pointwise material behavior, we assume that it is described by the
following set of equations [33]:

gij = e, T, 2"),

qi = qi(ew, T, Ty, o),

(5)
u= u(ekl’ T) a"),
S = S(Ekla Ta !X"),
such that
oh ch
P _ = — —_— 6
Py T T | (©)
where It = h(x,, t) is the Helmholtz free energy
h=u-—Ts, . (7)

and 2" = x"(x,, t} is a set of N internal state variables (n =1, ..., N) whose evolution is governed
by N rate laws of the type :

" =Q"e, T,2™);, n,m=1,.., N. ®)
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Fig. i. Crack without a cohesive zone.

generic field variable ¢, let
¢* =lim ¢(x, £ &vi, 1), CeR*, x.eC(t) — K1),
&-0

(16)
¢ — ¢ =[4].

By the above definition, each field variable is allowed to suffer at most a jump discontinuity
across the interior of the crack surface. The behavior of such variables in the neighborhood of
the crack tip will be discussed separately for each variable if and when the problem is
encountered. Following Gurtin [24-25] we define a circle D; of radius 6, with center at the crack
tip and translating with the crack tip itself. Thus, all points on the boundary dD; of D; are

characterized by the same velocity vector as that of the crack tip. The unit normal vector to 9D,
outward with respect to Dy, will be called m;, as shown in Fig. 1.

2.2. Thermodynamics of a crack without a cohesive zone
[n this section the key results of the continuum thermodynamics analysis of a moving sharp

crack without a cohesive zone are stated. For a complete derivation of the relationships reported
here see the works by Gurtin [24-25] and those by Nguyen [28-29].

PRECEDING. PAGE BLANK NOT FILMED
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The sccond law of thermodynamics for the body B and the crack tip alone, respectively, can
be proved o take on the form:

J Migic TAA 20, (G = 2y,) = 0. (21
B

Remark 2.1. The second of (21) is nothing but the Griffith criterion:
[>0 if G224

Subcritical crack growth, ie. [>0and 0 < G < 270, violates the second of (21) and as such is
not thermodynamically admissible for the conditions described above (i.e. no cohesive zone). [t
1s important to realize that relationships (21) are independent of the chosen constitutive
equations as long as the resulting thermomechanical fields satisfy assumptions Al and A2, and
that they are a direct consequence of having assumed that the crack tip is sharp, i.e. represented
by a single geometrical point. Thus, theories that introduce a damaged zone around the crack
(with special constitutive behavior) but that still consider the crack tip as a single point in
general will not result in thermodynamical admissibility of SCG.

Remark 2.2. The temperature behavior at the crack tip is essentially determined by assumptions
Al and A2 rather than the heat conduction law assumed. In fact, for the right hand side of (19)
not to vanish it is necessary that the heat flux be singular of order 1/r. Thus, if we have a heat
conduction law in which the heat flux is proportional to the temperature gradient, then the
temperature field is singular at the crack tip, and the singularity must be weaker than 1/r. In

particular, if the Fourier law of heat conduction is assumed, then T is singular of order log(r)
[29, 42-43] ’

_ (G = 2)f

T log r 4+ more regular terms. (22)
2kn

The above equation shows that T has the sign of (G — 2y,)i. This result reinforces the
significance of (21) and what was discussed in Remark 2.1 since subcritical crack growth would
imply that the absolute temperature becomes infinite and negative at the crack tip. This is
clearly thermodynamically and physically incorrect. Note that relationships (21) and (22) suggest
the interesting interpretation of a moving crack tip as a moving heat source, and this is
consistent with numerous observations of intense heating ahead of a propagating crack [42—43].

Remark 2.3. Through singularity analysis various authors, such as Rice [35], Kfouri and Rice
[36] and Nguyen [28-29], have shown that the quantity G is automatically null for the running
crack problem, for almost every type of material behavior except the thermoelastic one. In other
words, the quantity G, as a fracture parameter, is meaningless in most cases, such as in
viscoplasticity. Nguyen has also shown that this is due to the fact that G (as given in (20)) is
determined under the erroneous assumption that the field equations remain everywhere elliptic.
In [44], for a nonlinear elastic material, the governing equations of the crack propagation
problem have been shown to change their nature, becoming locally hyperbolic and therefore
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Surface energy is m fact an cssential component of the driving foree i sintering [50]. Note
that. assuming that the second law holds in the form given in (24) but not in (21), SCG
appears 10 be possible only when some volumetric dissipation is present, in order (o compen-
sate for the negative contribution duc to the crack advancement [18]. Thus. even under the
assumption that incquality (24) holds. the present thermodynamic analysis is unable to cope
with the problem of SCG in ceramic materials that behave in a virtually perfectly brittle
fashion.

In Scction 3 it will be shown that SCG can occur cven under the restrictions of (21) when a
dissipative cohesive zone is present ahead of the crack tip or, in other words, when the crack
up is no longer considered 1o be a single geometrical point but a finite length crack line
segment that can display a special characteristic behavior of its own. The dissipation analysis
for a crack with a cohesive zone will show that, m such a case, no problems arise concerning

the temperature field and that a continuum thermodynamic theory consistent with SCG in
brittle materials can be provided.

2.3. Thermodynamics of a crack with a cohesive zone

As mentioned above, the analysis of the running crack problem (without a cohesive zone)
presents major difficulties in that the parameter G becomes meaningless except for materials
that behave, at least asymptotically, as if they were thermoelastic. Moreover, the dissipa-
tion analysis leads-to uncertain results especially as far as the temperature field is con-
cerned. A way to overcome some of these difficulties, while remaining in the framework of
continuum thermodynamics, is to postulate the existence of a cohesive zone (c.z.) ahead of the
crack tip.

With reference to Fig. 2, a cohesive zone is defined as a portion of the crack line
C(8):{¢:0 < { < B(t)} (a more formal definition is given later) such that along a(t) < { < B(1), a
system of cohesive forces is acting. At this moment it is not necessary to specify the nature of
the cohesive force system. From its definition it appears clear that a cohesive zone, even when
characterized by a certain opening displacement, has no volume associated with it. Thus, a cz.
appears to be more a ‘mathematical’ entity rather than a ‘physical’ one, but, as it will be
shown later, its introduction into the model allows one to overcome most of the aforemen-
tioned problems in the context of continuum thermodynamics, without using nonlocal the-
ories. A c.z. is not to be confused with a so-called process zone. The latter is usually defined as
a region of finite volume around the crack tip and possibly all around the crack faces with
special constitutive equations that translate the behavior of the damaged material ahead of the
crack tip and in the crack wake. Note that In principle the existence of a process-zone does
not necessarily overcome both the problem concerning G and that concerning the singularity
in the temperature field since the crack tip is still considered a single geometrical point and

since the process zone constitutive equations are not, in general, those of a thermoelastic
material.

The crack is now defined as follows

C1) = {x(0):0 < < Py},

: (25)
cz. = {x,(0):l0) < T < flo)}.
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Alter Gurtin [26], we dcfine the crack internal encrgy per unit length (surface), £ such that
2eg =const, 0< <A
<

=<l ), w1y < ¢ < i, (27)
0, C = fi(0).

An analogous definition can be given to the crack centropy ¢

@o =const, 0<{ <o),
@ =49 1), )<<
0. ¢ = ).

< ), (28)

Let 3 = 3({, 1) 2 0 be the crack absolute temperature, such that

I=T =T~
. . (29)
V{:{ecz.

The above definition implies that the temperature field is continuous across the c.z. From
(27)H29) the crack Helmholtz free energy y is defined in the traditional way

Y =e— @8 | (30)

Given the above definitions, the first law of thermodynamics for the cohesive zone alone can be.
proven to take on the form

d B By
d—f ed{ + 2ypa = J — [g:1vi) dg, (31

) 1)
Eqn. (31) can also be given the following local form
é = 0;0; — [q:]vi. : (32)
A statement of the second law for the cz cannot be deduced using the same arguments

employed to derive (21), but rather it must be postulated. Thus, the second law for the c.z. alone
will be given the following global and local forms respectively, after Gurtin [26]

B v,

J (¢ 4 ["g”‘) >0, | (33)
x(t)

P=g+ [qf,,] s, (34)

where / = 2((,f) for x <{ < f and % = 0 for { = f3, is the intrinsic entropy production per unit
length in the cohesive zone. It can be proven that relationships (33) and (34) are consistent with
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Modeling of Delamination Damage
Evolution in Laminated Composites
Subjected to Low Velocity Impact

DavID C. Lo* AND DAVID H. ALLEN**
Center for Mechanics of Composites
Texas A&M University
College Station, TX 77843

ABSTRACT: This study examines the delamination evolution, under pcnmm..ms.,mn condi-
tions, of laminated polymeric composites with mechanically nonlinear resin rich inter-
faces. The constitutive behavior of the interface is represented by two models developed
by Needleman [1] and Tvergaard [2]. These models assumed that the Eﬂo_.?oi 5&0:.9
a function of only the interfacial displacement, will behave similarly to .Eo interatomic
forces generated during the interatomic separation. The interface Bﬁo:w_.u. parameters
control the load at which the delamination growth initiates and the final delamination size.
A wide range of damage accumulation responses have been obtained by varying the Bo.ao_
parameters. These results show that Tvergaard’s model has been found to be cn.:ﬂ suited
of the two models in predicting damage evolution for the configurations examined.

KEY WORDS: delamination damage, low velocity impact, laminated composites, finite
element modeling.

INTRODUCTION

AMINATED COMPOSITES IMPACTED at low velocity by blunt objects are sus-
H\onnazo to the development of interply delaminations. While this subsurface
damage is not readily visible at the surface, it is capable of substantially reducing
the residual strength and stiffness of the laminate. The resultant damage induced
stress redistribution can lead to the failure of the component. Therefore, it is es-
sential to be able to predict the damage evolution that occurs during the impact
event so that the serviceability of the laminate can be determined.

Much effort has been directed in recent years toward gaining a better
understanding of the damage that results when laminated composites are sub-
jected to low velocity impact (LVI). This is evident from the numerous studies,

*Graduate Research Assistant.
**Director and author to whom correspondence should be addressed.

378 International Journal of DAMAGE MECHANICS, VWl. 3~ October 1994

1056-7895/94/04 0378-30 $6.00/0
© 1994 Technomic Publishing Co., Inc,

Delamination Damage Evolution in Laminates Subjected to LVI 3

both experimental and analytical, that have appeared in the literature. A brief
overview of the literature is presented here.

Greszczuk [3) provides an excellent treatment of the fundamentals involved in
the analysis of LVI. He has divided the problem into three logical steps: “(1) de-
termination of impactor-induced surface pressure and its distribution,” (the con-
tact problem), “(2) determination of internal stresses in the composite target
caused by the surface pressure, and (3) determination of failure modes in the
target caused by the internal stresses.”

Although most LVI events are three-dimensional in nature, a great deal can be
learned from a two-dimensional simplification of the problem (as in the current
work). Choi et al. [4,5] have conducted an extensive experimental and analytical
study of LVI that is two-dimensional. They have used a line-nosed impactor so
as to produce a uniformly distributed transient dynamic load across the specimen
width, thereby reducing the complexity of the problem from 3-D to 2-D. Tests
were conducted on specimens of several different stacking sequences constructed
from T300/976. Different values of mass and impact velocity were used as test pa-
rameters. A phenomenon observed to be common to all of the specimen types
tested was that damage initiation took the form of what the authors called critical
matrix cracks. These critical matrix cracks were located in the 90° plies, near the
specimen midplane and were inclined at an angle of about 45°. Delaminations
and concomitant secondary matrix cracks were observed to form and propagate
after the formation of critical matrix cracks. The authors conducted a two-
dimensional transient dynamic finite element analysis in an attempt to model the
impact event. They assumed Hertzian contact and used plane strain constitutive
relations. They were able to predict the location of damage initiation reasonably
well using a matrix failure theory. Once the critical matrix crack had been pre-
dicted by the model, a “post-failure” analysis was conducted to predict damage
growth. This analysis was executed by setting to zero certain members of the
material modulus matrix for elements where the critical matrix crack occurred.
Bogdanovich and larve [6,7] have conducted a two-dimensional analysis of the
LVI problem. They investigated the impact of a rigid body of revolution on sev-
eral different laminates, some of which possessed energy absorbing interleaves.
The analysis used in this work employs polynomial spline interpolation func-
tions. A maximum stress failure criterion is used to predict failure initiation.
Their results show that interleaves can provide significant benefits. Sun and
Rechak (8] have also conducted a two-dimensional analysis of the problem. They
reported the presence of matrix cracks inclined at 45°. In addition, they ad-
dressed the optimal location of interleaf layers so as to reduce damage. Jih and
Sun [9] and Sankar et al. [10] have shown that when the impact event is
characterized by a heavy impactor traveling at low velocities the impact event can
be modeled as a quasi-static process. In addition, Sankar found that for large con-
tact areas, the contact stress deviates from the often used Hertzian solution [1].
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While few papers have appeared which attempt to address the three-dimensional
problem of LVI, noteworthy are those of Wu and Springer (12,13] and of Wu and
Chang {14]. In these works a three-dimensional transient dynamic finite element
analysis is presented for the study of LVI. With the exception of the research by
Liu et al. {15], the authors have found no papers in the literature which model in-
ternal delaminations due to impact as traction free surfaces.

Although many aspects of the LVI problem have been investigated, the current
understanding of the process is still incomplete. This is due to the complexity of
the mechanisms involved in LVI damage. One area that has not received much at-
tention is the constitutive modeling of the resin rich ply interface region in which
delaminations are located. Fractographs of delamination surfaces from poly-
meric matrix composites show the presence of fibrils and hackles [16-23]. The
former is associated with the formation of crazes ahead of the delamination and
is normally found in thermoplastic resins. The latter is associated with the forma-
tion of micro shear cracks in front of the delamination. These micro cracks are
oriented along the plane of principal tensile stress and is found predominantly in
thermosets. In the regions that transform into crazes and shear cracks, the
material can be subjected to large strains and may not behave in a linear elastic
manner as assumed in the rest of the laminate. While the mechanical response of
the interface region may only have a small effect on the overall mechanical be-
havior of a laminate with a fixed damage state, it can significantly influence the
evolution of damage and in turn the laminate's response. Such behavior indicates
a need to account for the different material response found in the resin rich inter-
face region. Unfortunately, this region is not explicitly modeled in most LVI
damage analyses and of those analyses that do take this resin rich region into ac-
count most are for modeling linear elastic interleaves [6-8]. An exception is
Ladeveze's damage model in which the interface is explicitly modeled [24]. In his
model, the mechanical properties of the interface are governed by internal state
damage variables. Since the internal state variables are volume averaged repre-
sentations of the damage state, the stresses and strains obtained from this analysis
are also averaged quantities. To the knowledge of the authors, none of the
delamination damage models found in the published literature accounts for the
development of the process zone ahead of the delamination front and the resulting
nonlinearity in the interfacial mechanical response. The current paper will at-
tempt to address this issue by presenting an LVI damage analysis that employs
nonlinear constitutive relationships in the modeling of the interfacial response
caused by some of the available deformation mechanisms ahead of the delamina-
tion. The effects of the interfacial parameters on the evolution of LVI damage in
laminated composites will then be examined in detail.

PROBLEM APPROACH

At the present time, the LVI damage analysis is modeled as a two-dimensional
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three-point bending problem. In this paper, LVI is simulated by monotonically
increasing loads applied under quasi-static conditions. As previously stated, ex-
perimental evidence supports this simplification [9]. The stress states in the in-
dividual plies and resin rich interfaces are obtained from finite element analysis.
However, due to the nonlinear response of the interface, incremental and iterative
solution techniques are employed with the finite element algorithm. Delamina-
tion propagation is evaluated using a critical interfacial separation criterion at
each load step. If conditions are sufficient for propagation, the amount of growth
is calculated and the corresponding change in the interfacial constitutive proper-
ties is updated accordingly for the next load step. This procedure is repeated until
the maximum impact load is reached. The details of this analysis are presented
in the following sections.

Interface Model

The interface region in which the matrix cracks and delaminations initiate and
propagate is composed of resin rich matrix material. Depending on the polymer
classification of the resin, the deformation process can be attributed to many
mechanisms at the molecular level. These mechanisms include uncoiling and
straightening of molecular chains, dislocation movement, reorientation of molec-
ular chain segments, void formation, and chain breakage [25]. Whether.one or
more of these dissipative mechanisms is activated will depend on such factors as
loading rate, temperature, and processing history. Moreover, the mechanical re-
sponse of the resin in the interface region may be different from that of the re-
sponse measured in bulk resin specimens. The addition of reinforcing fibers, es-
pecially when the resin is sandwiched between two plies with different fiber
orientations, will impose constraints that will alter the stress state in the resin rich
region, thus suppressing some deformation mechanisms while enabling other
deformation mechanisms to occur. Therefore an understanding of the molecular
behavior is helpful in order to accurately predict the response of the resin under
these conditions.

Since this process is quite complex, phenomenological models for approx-
imating the interfacial response will be used as a first approximation. In the cur-
rent analysis, two interface models, originally applied to interfacial debonding
between the fibers and matrix in metal matrix composites, are considered. Both
models assume that the normal traction exerted on the interface during purely
normal separation behaves similarly to the interatomic forces during interatomic
separation.

The first model, proposed by Needleman, describes the interface surface trac-
tions in two dimensions as follows [1]:

27 Un u,\? ) (us

R:
N."MQ!-M~|MM+ 5 +Q.W ﬂl_ (n
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27 u, u, u.\?
ﬁ".m-qs:n.ml _Imm + 5 : (2)

for u, < 6. Where T is the interfacial traction and u is the interfacial displace-
ment. The subscripts n and ¢ signify the normal and tangential components of the
specific quantity, respectively. ., is the maximum traction acting on the inter-
face during a purely normal separation. § is the characteristic length and « is the
ratio of the interfacial shear stiffness to the normal stiffness. When u, /6 is equal
to one, complete separation has taken place and the tractions are equal to zero.
If we consider the expression for the normal component of the interfacial trac-
tion, Equation (1), the work done by this traction going from u,/5 = 0 to
u,/5 = 1 in a pure opening mode (,/5 = 0) is

9
Weo = 16 Omard 3)

Needleman refers to this as the work of separation. Thus, a larger o,,., or § will
result in a greater amount of energy required to fail an interface.

The second model was proposed by Tvergaard [2] and is a modification of
Needleman's model. The modification was undertaken to give the constitutive
equations a higher order dependence on the interfacial shear separation and also
to include the shear separation into the determination of interfacial failure. A pa-
rameter, A, representing the norm of the interfacial displacement vector, defined

by

C))

is introduced into the polynomial function. The interfacial tractions are defined
in this model by

27 2

T = Gy (1= 2+ ) (5)
27 .

suoﬂqz.ml: — 2\ 4 WY 6)

for 0 < M < 1. Complete separation occurs when A = 1. The parameters for
this model are similar to Needleman's except for the individual characteristic
length assigned to each component of the interfacial displacement vector. When

Delamination Damage Evolution in Laminates Subjected to LVI 383

the interface is undergoing a pure normal separation, both models are identical
and the work of separation, as shown in Equation (3), is applicable to Tvergaard's
model as well. Under this interfacial opening condition, the normal component
of traction increases to a value of 0., at u,/6 = u,/6, = 1/3 then decreases to
zero at u,/5 = u,/8, = 1 as shown in Figure 1.

Analytic Formulation

Due to the nonlinearity introduced by the interface failure criterion, the virtual
work equation is solved in incremental form, resulting in [26):

QC!DmZ%DmQ&w\ = Nanob~%buk'w. - QLQ%D@\&‘ A\\V
[ 4

v W

where C,, is the material tangent modulus tensor, ¢, is the infinitesimal strain
tensor, 7, is the traction vector, Ay, is the displacement increment vector, and o,
is the stress tensor. Also, the domain of interest has interior ¥ and boundary V.
The superscripts ¢ and ¢ + Ar denote quantities at time ¢ (which are assumed to
be known) and quantities at time ¢ + Ar, respectively. In the current paper the
modulus tensor C,, is everywhere constant and linear elastic except at the inter-
face, where it changes with the interfacial separation. The approximate nature of
Equation (1) is due to the fact that higher order terms in Au, are neglected in the
incrementalization process. However, this approximation is accounted for in a

0.80

0.80

Tn/omnx

0.40

adtiitiandsnaanreat haenssenantesonanyaalagtsanaalangy

0.00 Srrrrrmrrr S

0.00 0.20 0.40 0.60 0.80 1.00
uy/6
Figure 1. Normal tractlon—normal displacement response of Needleman's model.
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rather standard way by incorporating a Newton-Raphson iteration scheme for
each increment of boundary tractions. Thus, the displacement increment is suc-
cessively updated as follows for the jth iteration:

~>E~\ = nbtvl_ + ADD:_\ va
where {AAuj, is obtained by solving the following on the jth iteration:
Hs_ﬁbbt_\ = :ﬂ..b.w _ :a.‘f_.\-_ AOV

where {K] is the global stiffness matrix, {F} is the global force matrix, and [R}
is the global reaction matrix.

Equations (2) and (3) are solved recursively until the following convergence
criterion is satisfied:

[Au], = Aul,.,
—_— <, 10
—DE —\ t A v
where r,,, is a user specified convergence tolerance and || signifies the Eu-

clidean norm.

This algorithm has been implemented into a FORTRAN finite element code
developed by the authors. The code utilizes constant strain triangles except at the
interfaces, wherein both shearing and normal bar elements are incorporated at
each node. Their mechanical response follows that of the aforementioned interfa-

cial models.
COMPUTATIONAL RESULTS

Parametric Study

The first part of this section examines the effects of the interfacial parameters
on the evolution of delamination damage. By knowing how each parameter in-
fluences the damage process, it might be possible to tailor the properties of a
laminate to respond in a beneficial manner. ‘This may be to resist LVI induced
damage or it may be to accumnulate damage in a controlled manner so as to dissi-
pate energy. Recall from the previous section that Needleman’s and Tvergaard’s
models share similar model parameters, the only exception being Tvergaard’s
specification of separate characteristic lengths associated with the normal and
shear displacement components. For the purpose of this study, these two charac-
teristic lengths, 4. and §,, will be set to identical values and thus the parameters
to be examined will be the maximum interfacial stress, o..; the ratio of the inter-
facial shear stiffness to the normal stiffness, «; and the characteristic length, 4.
The range of parameters used in this study is listed in Table 1.
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Table 1. Range of model parameters examined in parametric study.

Parameter Omax?

Examined MPa (ksi) 8, mm (in) a

Omax 13.8 to 68.9 1.0 x 10~ 0.3

(2.0 to 10.0) (3.9 x 107)

$ 34.5 25 x 10*t0 2.5 x 107 0.3
(5.0) (1.0 x 10" 10 1.0 x 10~

a 34.5 1.0 x 10 0210 1.4
(5.0) (3.9 x 107)

The three-point load configuration shown in Figure 2 is utilized for the study.
This laminate has a [905/0,/90,] stacking sequence and possesses the ply level
mechanical properties shown in Table 2. Due to the low transverse strength of the
lamina, a transverse matrix crack will often appear in the mid-span of the lower
90° layer upon application of load. This transverse matrix crack then serves as
the initiation point for the delamination at the lower 0°/90° interface. In order to
focus on the evolution of this delamination, the transverse matrix crack is
assumed to exist prior to load application and interfacial elements are therefore

(90.5/0_5/90_5]

F* =178 N (40 Ibs)
L =254 mm (1.0 in.)
t_ply = 0.128 mm (0.00505 in.)

Interfacial Element
Locations

Figure 2, Schematic showing the geometry of the three-point loaded (90, /0
used In the parametric study. Pe (90,/04/50,] laminete
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Table 2. Ply level mechanical propertles

for laminates tested.

E, 120.0 GPa (17.4 Msl)
E, 9.8 GPa (1.4 Msi)
E, 9.8 GPa (1.4 Msi)
Gy 5.2 GPa (0.8 Msi)
Gy, 3.5 GPa (0.5 Msi)
Vay 0.3 0.3
Yyr 0.3 0.3

placed only at this 0°/90° interface. Furthermore, the damage state is assumed
to be symmetric about the mid-span, so that only the right half of the span has
been modeled by the finite element algorithm. Finally, the impact force is applied
as a point load that increases monotonically and at constant loading rate.

The first set of results illustrates the effect of the maximum interfacial stress,
Omass On the delamination evolution. The range of maximum interfacial stress
values has been chosen to reflect the tensile strengths of typical polymers used in
fiber reinforced polymer laminates. Figure 3 shows the delamination evolution
with respect to the applied load as predicted by Needleman'’s model. Delamina-
tion evolution was found to proceed in distinct stages. Initially, the growth is
relatively slow until a critical load has been reached. This critical load level ap-

a 3 OO0 T = mwm nw»
4 OOCOo0 dme = 27. a

5 1:00 3 AAAAA gne = 41.4 MPa
. 1 00000 0aus = 55.2 MPa
8 i eeesao,,, = 68.9 MPa o
» 3 0©
§0.80 3 )
s ] &
] E
2080 9 oF
E o%%o
2 3
s 3 o
Q b % [ A
5 040 & o 8 >%>
o -3 m
= 3 &5 & &
m ] % b% &
§0.20 ¢ ﬁ% o0 0
z p & [ a8 oo& °

3 o % 0q¢

b & a o& «*

YOI NERDSICM
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Figure 3. The effects of the maximum Interfacial stress, omaxs ON delamination growth for
Needleman's model.
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pears to be related to o,..,. The next stage is characterized by rapid growth with
the rate of growth decreasing with increasing o,.,. For the lowest value of the
maximum interfacial stress, 0... = 13.8 MPa, a third stage appears and is
characterized by a slower rate of growth. This slower rate of growth is believed
to be related to the advanced state of delamination damage in the laminate.
This set of results is characterized by the initiation of multiple delaminations
along the same ply interface. As shown in Figure 4, secondary delaminations are
formed ahead of the main delamination; then at a higher load, the delaminations
link up into a single unit. A convergence tolerance study has been performed to
investigate possible numerical causes of this behavior. However, it is not possible
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Figure 4. Delamination development for a three-point loaded [90,/0/90,) laminate at a)
50%, b) 80%, and ¢) 90% of maximum load as predicted by Neadleman’s model using the
following model parameter values: o,y = 41.4 MPa, § = 1.0 x 10~ mm, and &« = 0.3,
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) completely eliminate this effect. Thus, there might be other causes for the mul-
iple initiations.

The delamination evolution predicted by Tvergaard's model is shown in Figure
. This model also exhibits the three stage growth behavior predicted by Needle-
1an's model. However, Tvergaard's model is not as sensitive to the maximum in-
:rfacial stress as is Needleman's model. An interesting result predicted by Tver-
aard’s model is the delamination evolution for g... = 68.9 MPa. In this case,
1e delamination has the tendency to arrest momentarily before resuming at a
igher applied load, perhaps due to an energy dissipating mechanism. Then,
/hen sufficient energy has been supplied to overcome this barrier, the delamina-
on propagation resumes.

Figures 6 and 7 illustrate the typical force-displacement response predicted by
leedleman’s and Tvergaard's models, respectively. For Tvergaard's model, the
:duction in the transverse stiffness corresponds to the onset of rapid delamina-
on growth, While rapid delamination growth occurs after the reduction in the
-ansverse stiffness has taken place for Needleman's model. This delay in the
nset of rapid damage growth is most likely attributed to the use of only the nor-
12l component of the interfacial displacement in the determination of interfacial
iilure in Needleman's model.

Results from both interface models indicate that increasing the value of gp..
/ill produce intermittent crack arrest of the delamination and a shorter delamina-
on length. This behavior is related to the energy required to fail the interfaces,
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igure 5. The effects of the maximum Interfaclal stress, one,, 0N delamination growth for
vergaard's model.
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as described in Equation (3). Clearly, the required energy increased as g.., in-
creased, thus increasing the fracture toughness of a material.

The next parameter examined is the characteristic length, §. Values of & rang-
ing from 2.5 x 10®* mmto 2.5 x 10~ mm are considered, the largest § being
on the same order of magnitude as the thickness of the resin rich interfacial layer
in laminated composites which is generally observed to be of several fiber di-
ameters in thickness. The delamination evolution predicted by Needleman’s
model for these values of § is shown in Figure 8. It appears that the characteristic
length has only a minor effect on the rate of damage growth and the critical load
at which the growth accelerates. The final length of the delamination is shorter
for smaller values of &, while larger values of & cause local regions of unstable
growth. Once again, multiple delamination initiations are predicted in a single in-
terface by Needleman’s model.

With the exception of § = 2.5 x 107 mm, the results, shown in Figure 9,
from Tvergaard’s model are almost identical for the different values of the charac-
teristic length. & has little effect on the critical load, rate of damage growth, and
final delamination length; but for § = 2.5 x 10" mm, the delamination grows
unstably across the entire interface after reaching the critical load. This growth
is halted only briefly mid-way along the interface and no multiple delaminations
are observed. The corresponding force-displacement response is shown in Figure
10. Distinct changes in the transverse stiffness are apparent for this case. Such be-
havior has also been observed by Jackson and Poe [27].
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Figure 8. The effects of the characteristic length, 8, on delamination evolution for Needle-
man's model,
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Figure 9. The effects of the characteristic length, 8, on delamination evolution for Tver-
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For both models it appears that the characteristic length does not affect the
damage accumulation to a large degree for certain ranges of §. When it does, the
results are dramatic as illustrated by Tvergaard’s model for § = 2.5 X 10~ mm.
This response obtained by Tvergaard's model is related to the relative stiffness be-
tween the interface and the surrounding region. A relatively compliant interface
produces an interfacial displacement distribution that decreases gradually as one
moves away from the tip of the delamination. Increasing the relative stiffness of
the interface causes sharper decreases in this displacement distribution. There-
fore, a compliant interface will have a larger region that is close to the critical dis-
placement for failure than a stiffer interface. Thus, when the interface ex-
periences an increase in displacement, a larger increment of the delamination
growth occurs in the compliant interface. Consider Needleman's expression for
he normal tractions as an example once again. The initial stiffness in a pure
mode I opening case is,

aT, 27 Omes
Bt om0 = & D (n

Note that Equation (11) is also valid for Tvergaard’s model. Using 0n.. = 34.5
MPa, the initial stiffness corresponding to the &s used in this parametric study
ange in order of magnitude from 10* MPa/mm to 10° MPa/mm. It is postulated
hat in the case of 6 = 2.5 x 10~ mm, the stiffness is low enough as to cause
he unstable delamination growth,

Since the insensitivity of the damage evolution to the characteristic length, 8,
ippears to contradict the trends set by the expression for the work of separation,
Iquation (3), further investigation is required. Studies where o.... and & are
raried in a way that keeps the work of separation or the initial stiffness constant
:ould provide insight into this problem.

The final parameter to be examined is the shear stiffness to normal stiffness
atio, a. Since the ratio of the shear modulus to Young's modulus for typical
rolymers used in laminated composites is less than 1.0, values of « between 0.2
ind 1.4 are examined. Figure 11 illustrates the delamination evolution predicted
1y Needleman's model. In general, the critical load increases with & while the
inal delamination length and damage growth rate decreases with «. However,
hese changes are very minute. Only for the case where @ = 0.2 does there seem
o be a notable variation in behavior. This case produces unexpected fluctuations
n the rate of delamination damage growth. This response is possibly attributed
3 the fact that only the normal displacement is considered in Needleman’s inter-
acial failure criterion. In the current damage configuration, the delamination
'ropagation is initially Mode I opening dominated. As the delamination grows,
Aode 1 dominance decreases until its contribution is almost the same as the
Aode 1I contribution [28]. Decreasing o would have the effect of reducing the
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Figure 11. The effects of the interfacial shear to normal stitiness ratio, «, on delamination
growth as predicted by Needleman's model.

shear stiffness of the interfaces and thus increasing the interfacial shear displace-
ments and Mode II contribution. This increase in the shear displacement may
reduce the normal displacements to such a degree as to postpone failure under
Needleman’s criterion to a higher load, thus explaining the many changes in the
rate of growth and the abrupt cessation of the delamination evolution.

When Tvergaard’s model is used, the effect of o on the damage evolution,
shown in Figure 12, is similar to that for Needleman's model. In this case, the ef-
fects are more apparent than in Needleman's model. For both interfacial models
in general, the shear stiffness to normal stiffness ratio, «, affects the damage evo-
lution in a similar way as the maximum interfacial stress, o...,. This is due to the
fact that for the current interfacial models, the expression for the work of separa-
tion in a mixed mode opening case will have the following form,

W,

sep

= W, + aW, (12)

where W,, and W,, are components of the work of separation in the normal and
shearing directions, respectively. As « is increased, the work of separation is also
effectively increased. However, the increase will not be linear as u, and «,, used
in calculating W, and W,, are dependent on a.

Multiple Interface Examples

The second part of this section illustrates situations in which more than one in-
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terface is undergoing damage development. This process occurs when load is re-
distributed from a damaged region to an adjacent region. The additional load in
turn initiates and propagates damage in the adjacent region. Sometimes the load
transfer removes sufficient energy from the initially damaged area to prevent fur-
ther damage growth, while in other situations damage in both regions can propa-
gate simultaneously. The first example to be considered is shown in Figure 13.
This laminate has a [0/90, ), stacking sequence and the finite element mesh of this
configuration contains three interfaces. One interface is located at each 0/90 in-
terface, as shown in Figure 13. The remaining interface is located in the 90° layer
and inclined at a 45° angle. Based on experimental observations of other cross-
ply laminates [4], it is positioned close to the point of load application, as shown
in Figure 14. This interface models the “critical” matrix crack that initiates the
delaminations at both 0/90 interfaces. The ply level mechanical properties used

O s
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A d
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N
) 0.726 mm E%nn B
( Interface 2 Q.508 mm
Y
N
Ll Bl lddnddnbnd
\ 7 Interface 3 M Layer C 0127 mm

—]
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CLOSE-UP VIEW
Figure 14. Schematic showing the location of the Interfaces in the [0/90,/0] laminate.
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in this problem are the same as those used in the parametric study. Listed in Table
3 are the properties for the interfaces. For simplicity, the delaminations and the
“critical” matrix crack have identical interfacial properties. In addition, the im-
pact load is applied in the finite element model as a monotonically increasing
statically applied point load.

Figures 15 and 16 show the damage state near the point of load application dur-
ing various stages of the loading history for Needleman's and Tvergaard’s models,
respectively. The results from Needleman's model indicate that the “critical”
matrix crack initiates at the lower 0°/90° interface and then propagates in a stable
manner towards the upper 0°/90° interface. The matrix crack advances approx-
imately three fourths of the thickness of the 90° layer before being arrested. In
the mean time the delamination at the lower 0°/90° interface initiates and starts
to propagate. This delamination continues to grow for the remainder of the load-
ing history. The upper interface, however, remains intact. Delamination growth
at and near the upper interface is most likely suppressed by the compressive
stresses around the point of load application. Recall that in Needleman’s model,
interfacial failure occurs when the normal component of the interfacial displace-
ment is greater than the characteristic length. In other words, the tangential dis-
placement does not play a role in the determination of failure.

The initiation of the “critical” matrix crack is predicted to occur at a higher
load by Tvergaard’s model than the load predicted by Needleman’s model. The
matrix crack appears to propagate continuously across the ply. At 87% of maxi-
mum load, the matrix crack has completely propagated across the 90° layer, a
delamination forms at the lower 0°/90° interface and another one has initiated at
the upper interface. The delamination at the lower interface does not experience
further growth as the load increases, but the delamination at the upper interface
proceeds along the interface toward a region directly under the point of load ap-
plication. The prediction by Tvergaard’s model of a delamination in the region
around the point of load application, which is consistent with experimental
observations for cross-ply laminates [4], is due to the use of both interfacial dis-
placement components in the form of a displacement norm to determine failure.
Thus, even though the normal displacement may be much smaller than the char-
acteristic length, the tangential displacement is sufficient to initiate the failure. It
should be noted that this analysis omits Tvergaard’s friction force term. Had this

Table 3. Interfacial parameters for three
Interfaces test case.

Omax 68.9 MPa (10.0 ksi)
8 1.0 x 10* mm (3.9 x 10" in)
a 1.0 1.0
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been activated when the normal displacement is compressive, it would have
reduced the amount of tangential displacement and the delamination length.
The next multiple interface example is shown in Figure 17. This example con-
tains eight interfaces; each interface located in between the 0° and 90° ply
groups of the [(05/90,),/0,], laminate. The ply level mechanical properties used
in this case are identical to those used in the previous example. Listed in Table
4 are the interfacial properties used in the current example. Once again, simplify-
ing assumptions are made in this analysis. Presumption of a symmetric damage
state about the mid span of the laminate enables the finite element modeling of
only half the length of the laminate. Also, the impact load is modeled as a mono-
tonically increasing quasi-statically applied point load. The delamination damage
state predicted by Needleman's model for this eight interface example is shown in
Figure 18. Only a small amount of damage is predicted and it is located at the bot-

- - D U= W AR - O e W U P - S |
e G € -G D - @ - G D G -G N - D
- D G D G - . -~ A~

e MR - AR O e & - Y - e 8D~ -8

- . - - D - R - G D~ WD >
. D - - D - UD A~ OP e WP i D~
W - - G e Y ~EP B e G e 4D S -

- - D - -G W~ G WDe P EDr WD =G W

a—>»

» L >

[(0.5/90_5)_2/0_3]s

F* = 2224 N (500 Ibs.)
L =127.0 mm (5.0 in.)
t_ply = 0.128 mm (0.00505 in.)

= = = Interfacial Element
Locations
Figure 17, Schematic showing the geometry of the three-point loaded {(0,/90;),/0,], lami-
nate used In the elght interface damage evolution configuration.
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Table 4. Interfaclal parameters for elght
Interfaces test case.

Omax 34.5 MPa (5.0 ksi)
8 1.0 x 10 mm (3.9 x 10" In)
o 1.0 1.0

tom most interface. This delamination initiates at 85% of the maximum applied
load but it does not propagate any further as the load is increased. The results
from Tvergaard's model are shown in Figure 19. Delaminations are predicted in
three of the eight interfaces. The largest delamination and also the first to initiate
is located at the bottom interface. This delamination will be referred to as the
“main” delamination. At the interface immediately above the bottom interface, a
delamination about half the size of the main delamination is predicted. The final
delamination is located two interfaces down from the upper surface. Its size is
also about half that of the main delamination. Since the failed interfaces are not
connected to each other by matrix cracks, initiation and propagation of subse-
quent delaminations in the other interfaces are due to the redistribution of load
among the plies and are not due to the high stresses ahead of the crack front.
Damage evolves from the bottom interface and moves toward the upper surface
in a sequential manner. A new delamination initiates in another interface shortly
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Figure 18. Delamination damage state for the three-point loaded [(0,/90,),/0,), laminate
as predicted by Needleman's model.
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Figure 19. Delamination damage state for the three-point loaded [(0,/90,),/0,], laminate
as predicted by Tvergaard's model,

before the current delamination arrests. The delamination pattern predicted by
Tvergaard’s model appears to more closely follow the triangular profile observed
experimentally in LVI damaged specimens [29] than Needleman's model. Inclu-
sion of transverse matrix cracks into the finite element model will probably en-
hance the damage development in the interfaces located in the middle of the lami-
nate.

CONCLUSION

This study illustrates the range of damage accumulation that can be obtained
with Needleman's and Tvergaard's interface models. The parameters found in
these models control the stiffness of the interface, work of separation, and inter-
facial separation at failure. This in turn affects the load at which the delamination
growth accelerates, the rate of delamination growth, and the amount of damage
accumulated. Influence of the interfacial properties on the damage evolution is
most apparent in cases associated with parametric values that are at the extremes
of the range of values tested in this study. These parametric values cause a partic-
ular factor that controls the damage growth to become dominant and produced re-
sponses that differ from the trend established by the other parametric values in
the range examined. It is thus possible to obtain a wide range of damage response
from brittle to ductile by varying these model parameters. This behavior, unfor-
tunately, means that in order to study the damage response of a specific material,
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precise values of the associated model parameters must be determined. On the
other hand, if the physical characteristics of a material can be related to these pa-
rameters, it would aid in the design of materials to meet interfacial damage design
requirements,

For the cases considered, Tvergaard’s model predicts a greater amount of
damage than Needleman's model. This can be traced to the mode in which the
delamination is propagating. In the current examples, both the normal and shear-
ing components of interfacial displacement contribute to the failure of the inter-
face. Needleman's model, however, only considers the normal displacement
component in the failure criterion. This results in the delayed detection or omis-
sion of interfacial failure and may contribute to the numerical irregularities ex-

perienced by some of the test cases using Needleman's model. Tvergaard uses

both components of interfacial displacement in the form of a displacement norm
and therefore predicts a greater amount of damage. This approach weighs both
displacement components equally. It should be noted that the displacement com-
ponent may need to be weighed differently in order to reflect the deformation or
failure mechanisms at the interface. One way this can be accomplished is to use
different values of the characteristic length for the two displacement components
1s proposed by Tvergaard. The different responses predicted by the two interface
models are also attributed to how the interfacial displacement terms are intro-
luced into the expressions for the interfacial tractions, Equations (1), (2), (4),
ind (5). For example, the expressions for the tangential traction, Equations (2)
ind (5), are identical for the two models except for the use of the displacement
1orm for Tvergaard’s model in place of the normal interfacial displacement found
n Needleman's model. Since the norm of the displacement will be greater than
r equal to the absolute value of each individual component for a given interfacial
lisplacement, Tvergaard's model will be further along the tangential traction ver-
ius displacement curve than Needleman's model and thus closer to failure.

The difference in response between the two interface models is greatest for the
est case with eight interfaces. In this case, the ability of the interface to transfer
oad from one ply group to the adjacent group affects the damage evolution in the
ither interfaces. The development of the interface models is based on the
issumption that the interfacial traction behaves similarly to the force generated
luring interatomic separation. This means that the traction force initially in-
reases with interfacial separation. Once the maximum force has been reached,
he traction force decreases with separation until the interface fails. During this
reriod of decreasing traction force, the load is transferred from this portion of the
nterface to other parts of the laminate. Since the use of the displacement norm
n Tvergaard's model places the response further along the traction versus dis-
lacement curve than Needleman's model, an interface modeled by Tvergaard's
nodel will undergo the unloading process sooner, thus hastening the conditions
or failure in the adjacent interfaces. Overall, Tvergaard’s model appears to be
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better suited for predicting the mixed mode damage evolution found in the three-
point bend configurations tested.

The discussion now turns to the accuracy of these two models in the prediction
of damage in laminated fiber reinforced polymeric composites. As mentioned in
a previous section, there are numerous mechanisms at the molecular level that
cause the deformation and failure in the resin rich interface. The activity of the
deformation mechanisms is dependent on the molecular structure of the polymer,
loading conditions, temperature, and processing history. These mechanisms may
occur sequentially or concurrently. The objective is to relate these molecular
mechanisms to the response of the interface at the continuum level. Because the
interface models are functions of only the interfacial displacements, they will not
have the capability to capture the effects of rate and temperature dependent
mechanisms. Fortunately, models have been developed for the viscoelastic re-
sponse of polymers and can be incorporated into the present study [30,31]. Like-
wise, there are models available to represent the fibril dominated structures found
in craze zones ahead of a crack tip [32]. Due to the wide ranging nature and
unique response of each mechanism a model developed based on the behavior of
a single mechanism would not be sufficient to predict the entire deformation re-
sponse up to failure. The ideal model should contain components for representing
each deformation mechanism. Criteria should be established to govern the ac-
tivities of these components. Thus, the models examined in this study would
serve as a starting point in the development of a comprehensive procedure for
modeling the polymeric interface,
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Using the GSM theory (Halphen and Nguyen [20]) it is assumed that the c.z. free energy
is a function of the opening displacement &, the temperature 6 and, possibly, a set of internal
parameters representing the interface microstructure. For simplicity only one of such parameters
will be included herein and will be indicated by the symbol p. The present formulation differs from
the GSM theory in that the function 9 is not required to be convex in the kinematic variable &.

The total cohesive force o is assumed to be expressed by the following additive decomposition:

o=0"to°. (3.1)

e

o° is assumed to be the part of the total cohesive force that is mechanically conservative for

all processes constrained on hypersurfaces with & = const. and g = const.. In other words, any
transformation with = const., u = const. and o'" = 0 is an elastic process.
Under the above assumption the c.z. free energy is therefore a function of the following type:

b = 0(6,0, ) (3.2)
definable in the following manner (Edelen [22]):

V6,0, 1 w(6.0.) = bl + [ 6-0°36:0,m)dx A€o, (3.3)

where it has been assumed that for any given pair 6 = const., p = const., all admissible points &
on the hyperplane 6 = const., g = const. are reachable from the origin of said hyperplane along
a straight path. For the sake of simplicity and without loss of generality the function %,(6, p) is
assumed to vanish identically:

$ol6, 1) = 0. (3.4)

The above definition of free energy is clearly consistent with the classical one usually employed in
constitutive theories with internal state variables (see e.g. Rice [23]).

Eq. (3.3) implies that the 0" component of the cohesive force does not contribute to any local
energy storage mechanisms, whereas eq. (3.1) implies that o expresses the mechanics of some
phenomena acting in parallel with the c.z. deformation process. Hence, o" lends itself to the
description of those dissipative phenomena, such as the c.z. nucleation process, that cannot be
fully described in terms of the chosen set of c.z. state variables. Clearly, neither eq. (3.1) nor eq.
(3.3) are sufficient to fully characterize the function o*. In this regard it must be noted that if
o' is assumed to be a function of the chosen state variables and possibly of their rates, such a
function cannot be totally arbitrary. In fact, in order for egs. (3.1) and (3.3) to be compatible
the relationship linking 6 and o™ cannot associate a unique o*" to a given & (for any fixed pair
6 = const., pu = const.) since, in this latter case, o would have to replace ¢ in the integrand in
eq. (3.3). In other words, egs. (3.1) to (3.3) also imply that for any given & (and in particular for
6 = 0) the mapping § — o*", and in turn the mapping 6§ — o, is in general set valued. Thus, the
constitutive assumptions reflected in egs. (3.1) to (3.3) provide a possible solution to the problem
discussed in the introduction regarding the necessity for the mapping § — o to be set-valued at
6=0.

For the proposed formulation to be completely acceptable we have yet to show that the force
can be physically related to a particular crack or interface nucleation mechanism. In order
to achieve this result we will rely on considerations based on the second law of thermodynamics
and on a global thermodynamic analysis. The latter, presented in the next section, will show
that the field o' and the field &, although seemingly unrelated at the local level, are conjugate
with respect to the total free energy of the system B UC. This in turn suggests that the proper

o,"‘

8



characterization of the relationship between o'" and 6 is expressed by a kinetic equation, that is,
an equation of evolution. In the present theory, the c.z. evolution will be required to conform to
the maximum dissipation principle. Such a requirement will then be formalized by assuming that
the c.z. evolution equation can be derived from a dissipation potential.

The decomposition in eq. (3.1), central to the present formulation, has been suggested explicitly
in a number of works available in the materials science literature (Verheulpen-Heymans [24]; Leonov
and Brown [25]). Gurtin [14], in his discussion of viscoelastic c.z. models, also concludes that a
decomposition such as eq. (3.1) can be introduced, but the issue of giving o' a consistent physical
interpretation and a proper evolution equation is left unaddressed. Eq. (3.1) has also been less
explicitly suggested by other authors such as Riedel [26] and Hui et al. [9].

Substituting eqgs. (3.1) to (3.3) into eq. (2.20) we have

(g_f—ae)-S—a"-ZSJr(¢+%—>6’+g%-ﬂ30 (3.5)

By the use of classical arguments of the GSM theory (Germain, Nguyen and Suquet [27]), we
see that equation (3.3) and inequality (3.5) yield the following c.z. state equations:
L0 3y %

g

where « is the local free energy conjugate of the state variable p.
From egs. (3.6) and inequality (3.5) we see that the energy dissipation in the c.z. is given by

o b+ k->0. (3.7)

Having assumed that the c.z. thermodynamic state depends also on some internal variable I,
it is necessary to complement the set of c.z. constitutive relations with the appropriate equation of
evolution for the variable . In analogy to eq. (2.9) we assume that

i € Owi(k) (3.8)

where the subscript [ stands for interface.

4. GLOBAL THERMODYNAMIC ANALYSIS

As discussed in section 3, the cohesive force decomposition in eq. (3.1) and the c.z. free energy
definition in eq. (3.3) yield the desired result of a set valued relation between o and 6. However,
egs. (3.1) and (3.3) fail to provide a complete characterization of the c.z. constitutive behavior since
the quantity o*" is left undetermined. The purpose of this section is that of completing the c.z.
constitutive equations by providing a thermodynamically consistent characterization of the force
o'". In order to achieve this goal considerations based on global thermodynamics will be used. By
global thermodynamics we mean a thermodynamic analysis of the system at hand as a whole (almost
as if it were a single material point). A more precise definition is given in the excellent discussion
by Germain et al. [27]). Thus, similarly to what is done at the local level, the main objective of
the global analysis is the determination of thermodynamic potentials for the whole body. Such
potentials will be functions of all those parameters that one has to specify to fully determine the
amount of strain energy stored in the system at a given time. Said parameters will be referred
to as global state variables and they include the system geometric descriptors, the boundary data
and the internal microstructural configuration. Clearly, the global state variables in general belong
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to an infinite dimensional space, contrary to what happens in the local theory. Apart from this
important distinction, Germain et al. [27] have shown that under quite unrestrictive assumptions on
the pointwise thermodynamic behavior there is an impressive formal similarity between the global
thermodynamic potentials and the local ones. In particular, one can find quantities that, although
loosely related at the local level, behave like thermodynamic conjugates pairs with respect to the
global potentials. Moreover, those global variables that cannot be directly controlled through the
boundary of the body can be shown to behave like internal state variables at the local level. In
fact, it can be shown that the evolution of global internal variables can be characterized using a
global dissipation potential. A remarkable example of the usefulness of these concepts has been
provided by Nguyen [16, 19] in the field of fracture mechanics and plasticity. Generalizing an earlier
analysis by Rice [28], Nguyen {16] has shown that the total potential energy of an elastic cracked
body can be used to define a global thermodynamic potential that behaves at the global level like
the Helmholtz free energy at the local one, and has extended this result to elasto-plastic systems.
In such a context, the crack energy release rate, in both elastic and elasto-plastic systems, has
been shown to be precisely the generalized thermodynamic force conjugate to the crack length with
respect to the global free energy (cf. Rice [28]). Furthermore, Nguyen [16] has reformulated the
Griffith criterion as a crack evolution law obtained from a global dissipation potential function of
the energy release rate. Other important applications of global thermodynamics can be found in
the field of homogenization theories for composite materials (cf. Germain et al. [27]).

In the present section the set of the global state variables (external and internal) for the system
at hand will be determined. The crack fields o*" and § will be shown to be conjugate with respect
to the global free energy of the system. The existence of a global dissipation potential governing
the evolution of the (global) internal field § as a function of o" will be postulated and a class of
evolution equations for the field § will be obtained from said dissipation potential. In section 5
it will be shown that the formalisms developed in sections 3 and 4 can be given a clear physical
meaning and can be used in a great variety of practical applications.

Germain [29] has shown that the concept of global free energy for dissipative systems can be
derived by an extension of the concept of total potential energy. The total potential energy in the
sense of Germain [29)] for the system B in Fig. 1 is the functional

E[u,ud,fd,A,T,a,ﬂ,é,u]=/Bph(E(u),A,T)dA—/aB fd.udl-{-/ﬁzp(&,T,p) ¢ (4.1)
E 0

where, § = T on c.z., and u = u? on 63{3. For the moment, all the parameters listed within

brackets on the left hand side of (4.1) are assumed to be specifiable arbitrarily. This assumption
will be verified a posteriori with the intent of showing that in general the parameters & and B do
not satisfy such a requirement and therefore must be eliminated from the list of independent global
state variables. Furthermore, the field § will be shown to be a global independent field only when
the c.z. constitutive equations conform to the assumptions in egs. (3.1) to (3.3).

The functional £ can be thought of as a 9-parameter family of elastic total potential energy
functionals, each of which is obtained by computing the right hand side of (4.1) for an aribitrarily
given 9-tuple of said parameters. Since £ is well defined for any given 9-tuple of parameters,
the latter are not required (at least at this stage) to satisfy the equilibrium equations or to be
compatible with any actual evolution.

The satisfaction of the equilibrium equations, in a sense that will be made clear below, is now
used as a criterion to select a subfamily of potential energy functionals that will be later defined to
be the global Helmholtz free energy for the system at hand.

Among all possible displacement fields u a particular one can be found by specifying all other
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parameters on the left hand side of (4.1) and by solving the corresponding purely elastic boundary
value problem. The latter is defined as follows:

Given the fields u?, f¢, A, T, 8, and p on the corresponding domains of definition
find the field u € K such that the equilibrium equations (2.11) are satified,
subject to the boundary conditions in eq. (2.12).

where K is the set of all admissible displacement fields:

u € CY(B)

pkolu= u? Vt,Vx € 9BF (4.2)
[u(¢, )] = 8(¢,t) V(€ [e, 8]
[u]-v >0 V¢ € [0,5]

Note that o and A do not need to be explicitly specified since their position is implicitly assigned
once the field & is given.

In essence, the problem just defined is a classical elastic boundary value problem (BVP) where
together with the usual set of boundary data in eq. (2.12) some other (and less traditional) con-
ditions are specified, equivalent to the assignment of some eigenstrain fields. Thus, under the

assumption that the free energy h(E(u), A, T) is a convex function of E, the displacement field u
solution of the above BVP is unique and is such that

Elu;ud, .. . p4] = min &[u; u?

Jin youos i) (4.3)

Under these conditions, a unique global thermodynamic potential H for the system B can be defined
as the value of £ corresponding to the field u solution of eq. (4.3) (Germain (29]):

Hu?, £, A, T, e, 8,6, 1) = min £{u;u’, %, A, T, @, 8,6, ). (4.4)
u.

Globally, the functional H corresponds to the Helmholtz free energy h at the local level. Note that
since the field u is no longer considered as an independent parameter, it has been eliminated from
the list within brackets on the left hand side of eq. (4.4).

Once the potential H is defined, it is possible to determine the thermodynamic conjugate
pairs that characterize the crack energetics. In other words, it is possible to determine those
thermodynamic forces, analogous to the energy release rate in fracture mechanics, that govern the
c.z. evolution. In order to do this one needs to take derivatives of  with respect to the chosen global
independent state variables. Clearly, when referred to H the term derivative must be intended in
the sense of Gateaux (Sewell [30]). The notation H 4 will indicate the Gateaux derivative of H
with respect to the quantity ‘¢’ relative to a convenient topology.

The derivatives of H with respect to the fields u? and £¢ on 8B and of the fields A and T in B
can be considered a classical result in global thermodynamics (Germain et al. [27]):

Ha, = -Bi(x,t) x€B; Hr=-s(x,t) x€B,;

4.5
H‘ud = f(x,t) X € 83{’3; H'fd = u(x,t) X € 3B2E ( )

H.1 on C will be derived below along with the other results concerning the crack.
Next, the derivatives of i with respect to the crack state variables will be derived and discussed.
One simple way to obtain such derivatives is to compute the first variation of the potential H and
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apply the Reynold’s transport theorem. Thus, recalling that the function Y(6((,1),0(¢, 1), (¢, 1))
has been assumed continuous at { = a whenever éa # 0 we have

§H = — [p(s6T + Bi - §Ar) dA + [ppef - bu® dl - fypeu- 614 dl (4.6)
— (0 - %) 65 d( — [2(0bT + k- 6p) dC + 9 | 68

The top line of eq. (4.6) essentially represents the results already listed in eq. (4.5). Hence, recalling

that $(6(8,t),6(8,1), 1(B,t)) = 0 (where the symbol ‘=’ signifies identically equal to), from egs.
(3.1) and (3.6) we have

Hg=-0" Hr=—-p Hu=-x oncz. (4.7)

Furthermore, we have
Hp=0=H,. (4.8)

Equations (4.8) show that the global thermodynamic potentials  and, in turn, £ are indepen-
dent of the variables @ and 8. An important consequence of this result is that the variables a and 8
cannot be assigned arbitrarily under any circumstance. This is in contrast with the usual outcome
of standard fracture mechanics analyses. In fact, in fracture mechanics a quantity such as Ho is
in general non-null and represents the crack energy release rate according to the definition given
by Griffith [31]. If # o (H ) had not been identically null, then « (8) could have been considered
a global internal variable and its evolution could have been characterized via a dissipation poten-
tial function of the energy release rate H , (H g) as it can be done in a more traditional fracture
mechanics context (cf. Nguyen [16]). In the present case neither o nor § can be considered global
internal variables. Their values during an actual evolution are therefore completely determined
once the c.z. constitutive equations are accounted for in satifying the equilibrium equations. The
quantity that replaces the energy release rate in expressing the driving force for the ¢.z. evolution is
the conjugate with respect to H of the c.z. opening displacement, namely the field —o*" V( € [a, 8]
This latter point will be discussed in greater detail in section 6.

In view of the above result, it must be noted that if the c.z. constitutive equations were chosen
so that o could be derivable from the free energy potential 9, i.e. if o'" = 0, even the first of egs.
(4.7) would vanish identically. This does not only imply that the potential ¥ is independent of the
field § but also, and more importantly, that in reality a unique H cannot always be defined due to
the third of (4.2) (K 5§ = 0 = £ 5 implies that § cannot be treated as a boundary data) and to the
assumption that the c.z. free energy is non-convex and that the elastic bifurcation/stability problem
associated to eq. (4.3) must always be addressed before anything can be said on the c.z. evolution.
Moreover, the latter is essentially determined by the equilibrium equations (totally determined in
the absence of c.z. internal variables such as p).

As mentioned in the introduction, the issue of elastic bifurcation and stability of a purely linear
elastic body with a non-linear elastic interface (i.e. non convex interfacial free energy with 0" = 0)
has been studied by Suo et al. [10] by establishing the existence of certain interface stationary waves.
In the present context, the same problem can be treated using standard variational calculus. The
loss of solution uniqueness for the problem defined in eqs. (4.2) and (4.3) can be readily seen by

studying the sign of the second variation of the potential £. Under the hypotheses that o*" = 0,
§%€ takes on the form

?h(E) s %P
20 _ . .
55_/851-3 3E5 5EdA+/a 86 - 2o5 86 d( > 0. (4.9)

Since the function ¥ is not convex, the integral on the right hand side of inequality (4.9) may
become negative and overcome the positive contribution from the first integral thus leading to a
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loss of uniqueness in the solution of the given boundary value problem. Note that if the system
at hand is fully elastic (as in the case of Suo et al. [10]) then inequality (4.9) governs both the
uniqueness and the stability properties of the problem.

When a non-null field o' is included into the picture, bifurcation and stability become, at
least in principle, two separate issues and can be treated by studying the properties of the second
derivatives of the functional H as shown by Nguyen [19] in the context of plasticity and by Nguyen
et al. [32] in the context of brittle fracture. This topic will be considered separately in section 6.

Going back to the global thermodynamic analysis, we now need to provide an expression for
the system global dissipation. In reality the part of the dissipation that is of interest here is that
associated with the microstructural rearrangements occuring in the system B. Such a dissipation,
indicated by Dy, can be determined by computing the difference between the time rate of change
of M under isothermal conditions and the power expended on the body:

. 8.
Dm,-C:/ Bk-Ade+/ (0 &+ k- 1) dC > 0. (4.10)
B o

The result here above is certainly consistent with the third of inequalities (2.8) and with inequality
(3.7).

Relations (4.7) and (4.10) indicate that the field '™ is the global thermodynamic force conjugate
to the field &, and that the latter can be regarded as an internal variable at the global level.
Therefore, in the context of the GSM theory (Germain et al. {27]) the relationship between o™ and
6 must be given in the form of an equation of evolution. The latter, consistent with the principle
of maximum dissipation, will be assumed to be derivable from a global dissipation potential convex
in the conjugate force o*":

6 € 8 (o). (4.11)
Eq. (4.11) is formally identical to eq. (3.8). Note though that the potential wr(k) is a local
dissipation potential whereas Q;(a'") is a global one. In other words, it is only through a global
analysis that the evolution equation in (4.11) can be declared thermodynamically consistent (at
least in the context of the GSM theory).

The existence of the potential Q; is one of the most important assumptions in the present
theory. The choice of expressing & as the subgradient of 2 is motivated by the intent to construct
a theory applicable to rate independent models such as that by Dugdale [2], as well as to rate
dependent ones.

With the introduction of eq. (4.11) the cohesive zone constitutive equations are complete. In
fact, although the first of eqs. (4.7) con be used to evaluate the field o*" at a given state once
everything else is known, it does not yield any information about the physically admissible o*"
fields and their evolution. It is only through eq. (4.11) that the physics underlying the field o'
enters the problem and can be given a proper mathematical formulation.

5. A FEW COHESIVE ZONE MODELS RE-EXAMINED

Before moving to the analysis of the differences between the present formulation of the running
crack problem and a more classical one (i.e. without a c.z.), a few c.z. models available from the
literature are now reformulated using the present thermodynamic framework.

The model introduced in section 3 can be schematically represented by the rheological analog
model depicted in Fig. 2. It essentially consists of two parts: a purely dissipative element, such as
the friction element of the Coulomb type in Fig. 2, placed in parallel with a non-linear spring that
in turn is placed in series with another dissipative element represented by the box with the symbol
n.
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The simplest model that can be described in terms of the general one introduced herein is the

celebrated Dugdale model (Dugdale {2]). In its most elementary formulation, the Dugdale model
is expressed by the following relationships

0<0,<0"=26=0; o,=0" 0<6, <6, (5.1)

where 0, = ¢ - v, 6, = 6 -v and ¢¥ and b represent the critical values for the cohesive force

and the c.z. opening displacement, respectively. The o — 6 graph corresponding to the egs. (5.1)
is depicted in Fig. 3a.

Ao

Gir e

T

v°

Figure 2: Mechanical Analog of the Cohesive Zone Constitutive Relations.
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Figure 3: The Dugdale Model.

Dugdale {2] introduced this model to estimate the size of the plastic flow region ahead of a
stationary crack. Thus, egs. (5.1) are intended to describe a rigid perfectly plastic behavior, and,
from a thermodynamic viewpoint, a purely dissipative one.

Under isothermal conditions and assuming that the opening displacement § is the only ¢.z.
state variable, a purely dissipative interface can be readily modeled by setting 9(6) = 0. Moreover,

using some elements of rate independent plasticity (Moreau [33]), egs. (5.1) can be recast in the
following variational form:

(0-0")-6>0 Yo" €Cp, Cp= [0,6"], ¥ =|a¥| |;;|, | ¥ |= const. (5.2)

It can be shown (Moreau [34]) that constitutive relationships of the type given in eq. (5.2) essentially
describe a friction law of the Coulomb type.
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Eq. (5.2) can also be recast in a form identical to that indicated in eq. (4.11) as follows:
§ € dlc, (o) (5.3)
where Ic, (o) is the indicator function of the convex domain Cp:

0 ifloeCp
+o00 ifoe g Cp

Icp(o) = { (5.4)

Eq. (5.3) is therefore the kinetic equation that governs the evolution of the Dudgale model. Note
that eq. (5.3) is more general than eq. (5.1) since it includes both the behavior for & - v > 0 and
that for 6 - v <0.

Budiansky and Hutchinson [35] extended the original Dugdale model by including compressive
behavior for the study of crack closure effects during cyclic loading. Such a model can be refor-
mulated using egs. (5.3) and (5.4) extending the domain Cp to include a compressive cohesive
force:

Cp=[-a¥,a"]. (5.5)
Both the Dugdale and the Budiansky-Hutchinson models are represented by the simple rheological
model depicted in Fig. 3b. In section 6, eqs. (5.2) and (5.3) will be shown to be quite important
in the derivation of the Griffith criterion for brittle fracture as formulated by Nguyen [15-16].

A further rate independent generalization of the Dugdale model can be obtained by taking into
account some possible hardening or softening effects. One possible way to achieve this result is
to allow the convex domain Cp to be history dependent. For instance, Cp can be defined in the
following way:
Cp =[0,0Y(8)]. (5.6)

In this case the evolution law relating ¢ and § cannot be expressed by eq. (4.11) since the
function Q[(O’ir) would depend on other variables in addition to o' . Furthermore, in the case of
strain softening behavior the property of local stability in the sense of Drucker would be lost.

Another way of proceeding is that of endowing the c.z. model with a convenient free energy
function schematically represented in Fig. 2 by the non-linear spring. Some examples of the possible
relationships between o and § are shown in Fig. 4.

- s

Figure 4: A Few Possible 0® — § Relations.
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Assuming that 4 = ¢(6),i. e. u = 0, the evolution law in eq. (4.11) remains valid and the strain
hardening/softening effects are accounted for via the effect of o on o'". Consider, for example,
the following model:

V() = 9, — %5 -Ab, 1, =const.>0 A = AT, det(A) >0
g=0°+0", o°=-Aé (5.7)
o eCp= [-oY,a"], b€ alc,

For a one dimensional case with § - v > 0, the forces o, ¢ and '™ are shown in Fig. 5a.

The model described by egs. (5.7) is in essence a rate independent version of that recently
proposed by Xu, Hui, Kramer and Creton [36] for the description of crack growth along the interface
between two homopolymers toughened by di-block copolymer chains. Xu et al. [36] described the
loss of interface coherence using an idealized pull-out model. Indeed, force-displacement diagrams
like those depicted in Fig. 5a are qualitatively similar to those obtained in fiber pull-out experiments.
For such problems an interface free energy like the one proposed in the first of egs. (5.7) can be
justified with the following qualitative argument. Consider the pull-out problem depicted in Fig.
5b, in which a rigid whisker of diameter d + ¢ (¢ > 0) is extracted from a hole of initial diameter d
within a purely elastic matrix. When the whisker is still entirely surrounded by the matrix a certain
strain energy (&) is stored in the residual stress fields caused by the difference in diameter between
the whisker and the hole. Clearly, ¥(6) is a monotonically decreasing function of the displacement
6, with a maximum 4, for § = 0 and a minimum equal to zero for § = L where L is the depth of
the hole in the matrix. As the whisker is pulled out of the matrix, such a strain energy is released
at a rate 9¢/36 which is nothing but the elastic cohesive force o¢ and such that o€ - & <.

( d+¢€
A Af

(a) (b)

(s}

Figure 5: Interface Model Corresponding to Fiber Pull-Out.

From eq. (3.1) we then see that .
[ 2] o | (5-8)

which can be interpreted by saying that the o component of the cohesive force facilitates the pull-
out action. The interesting element of this particular example is that the model in egs. (5.7) does
indeed predict a global strain softening effect in the o — § curve, and that the energy dissipated
during separation is greater that the net pull-out work since o'" - dé > o -db. This last observation
may be significant in studies concerned with the determination of thermal effects at the interface.

In order to generalize the model in eqgs. (5.7) to include rate effects such as those considered by
Xu et al. [36], it is sufficient to modify the dissipation potential Q(o'") in the following way:

Q[(G'.r) — Ql(o.ir) + Qz(o,ir)

tr ir 1 _ir t (5'9)
Mo =1Ic,, Qo) = 270" -0, n = const. # 0
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where 7 is a scalar viscosity coefficient. In essence, eqs. (5.9) describe the rigid-viscoplastic cohesive

zone model, with instantaneous plasticity and linear viscosity whose analogical model is depicted
in Fig. 6a.

io o
o-ir o Xd
Lt * 5 Gi’[% )
J3p
vo |
@ ®)

Figure 6: (a) Model by Xu et al. [36]; (b) Model by Riedel [26].

As an example of a model with internal state variables, consider that depicted in Fig. 6b. Using
the formalism introduced in section 3, the equations describing the model are

5=6°467 p=6°

(5.10)
B(8, 1) = ¥(6 ~ 67)
Thus, the state equations are
o= 9Y n=ge =2t ot (5.11)
The c.z. dissipation takes on the form
o6 + %67 > 0. (5.12)

Consistently with eq. (3.7) the variable §” is assumed to evolve according to the following kinetic
equation:

8? € dwi(a) (5.13)

In order to see that the equations here above can indeed be used to obtain a cohesive zone model
of interest, consider a case in which the dominant interface deformation behavior is creep plastic
flow. In this case then the following approximations are justified:

6"’>>6“=>6"’z$

5.14
wi(o®) = A(o®)™. (5.14)

Thus,

6=A(c—-o'") (5.15)
where A and n are material parameters obtainable from experiments. In particular, if the viscosity
coefficient A is allowed to be a function of §, e.g. A = B(6)P™ and B, p, and n are constants, then

eq. (5.15) describes exactly the c.z. model for creep fracture proposed by Riedel [26]. A similar
model has been also proposed by Kramer and Hart [37].

17



6. COHESIVE ZONE MODELS AND FRACTURE MECHANICS
6.1. Introduction.

In the preceding sections a general c.z. constitutive theory has been presented. The proposed
model has been shown to be both thermodynamically consistent and to satisfy the requirement
that the relation o — 6 be set valued. As discussed in the introduction, in order for a c.z.
model to be applicable to a wide range of phenomena it should also allow for the prediction of
the transition from a fully cohesive interface to a cracked one, and, subsequently, for the analysis
of the crack propagation stage of the interface life. The purpose of the present section is exactly
that of confronting these last two issues. In particular, section 6.2 deals with the problem of
crack nucleation where the latter is seen as the evolution from full cohesion to the appearance of
microcracks whereas section 6.3 deals more properly with the running crack problem and analyzes
the differences and similarities between cracks with and without cohesive zones.

6.2. Cohesive Zone Models and Crack Nucleation.

In spite of the fact that they were not originally intended to study crack nucleation, interface models
in general carry an intrinsic capability of providing useful information about the crack initiation
process or, more specifically, on the possibility of microcrack pattern formation. As mentioned in
the introduction, this capability has been explored by Hui et al. (9] and more recently by Suo et
al. [10] by studying a bifurcation problem in which both the interface and the bulk behaviors are
elastic. In this case, the bifurcation problem coincides with that of elastic stability.

The present formulation of the interface constitutive equations, by including dissipative effects,
allows one to confront the interface bifurcation problem using methods developed in the field of
plasticity, in which the issue of bifurcation does not necessarily coincide with that of stability. From
a physical viewpoint this distinction is very important since the development of microcracking and
damage in most materials occurs, at least in its early stage, under global stability.

The purpose of this section is to show how techniques from the theory of plasticity can be
applied without significant changes to the study of the interface bifurcation problem.

For simplicity, the bulk material behavior will be assumed to be elastic and the e.z. constitutive
behavior will be assumed to be that described in egs. (5.7) except for the assumption that the
function (6) is now assumed to be general. Furthermore, the system B is assumed to evolve
under isothermal conditions, the external boundary data to be of the Dirichlet type only and the

interface is assumed to be initially fully cohesive. Given the above hypotheses, the potential H
reduces to

H[u?, 6] = /B W(E(u%, 6)) dA + /0 ® o(6) d¢ (6.1)

where W(E) = ph(E) is the strain energy function (under isothermal conditions).

By definition, the potential M already includes all the information that can be obtained from the
boundary value problem that characterizes the equilibrium of the system B, which, under the given
constitutive assumptions has been shown to yield a unique solution. Thus, if a loss of uniqueness is
to occur, it would appear in the solution of the rate problem that governs the interface evolution.
The rate problem for the particular case considered herein is constructed by noting that when the
domain Cp(o'") of the admissible irreversible cohesive forces is time independent, the following
relation, usually referred to as the consistency condition, must hold:

676 =0 VY(€[0,0]and Vi (6.2)
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Once the rate of the applied boundary condition u? is given, the rate of the field " is obtained
by using the first of eqs. (4.7):

' = H 556 + M 5.q0° 6.3
1)) Hu

Now recall that the last of eqs. (5.7) can be interpreted by saying that the unknown vector &
belongs to the set N¢,, defined to be the tangent cone to the set Cp:

Nep(o)={€|€- (0" —0*) 2 0Vo" € Cp} (6.4)

so that we have . ‘
o -£>0 VEe Ngp(o'). (6.5)

Hence, the rate problem whose primary unknown is the field § can be reformulated in the following
variational form:

(€ - 8)- (M 556 + M gua0?) >0 VE € Ng (o). (6.6)

Lions [38] showed that solutions to the variational inequality (6.6) exist if the tensor field M 56
satisfies the following positivity condition:

£-Hegsl >0 VEE€ Ny (o). (6.7)

Nguyen [19] showed that a unique solution to (6.6) exists if H 66 satisfies a positivity condition
stronger than (6.7), namely

¢- H,b‘&f >0 VY€e NCD(UiT) (6.8)

where Nc,,(0'7) is the vector space generated by Ng, (o) (i.e. the totality of all possible linear
combinations of the elements of N¢,(c'")). Condition (6.8) is more restrictive than (6.7) because
it must hold on the space N¢, (o) which clearly includes Nc,(o'") as a proper subset.

Solutions to inequality (6.8), being subject to a more severe constraint than that imposed on
solutions to (6.7), identify bifurcation modes under stable conditions. A complete discussion of
inequalities (6.7) and (6.8) is certainly out of the scope of the present paper and therefore will not
be given here. Nonetheless, a few qualitative results can be established with little effort by simply
providing a more concrete form for the abstract expressions in both (6.7) and (6.8).

Consider the second variation of the functional H, as required in inequalities (6.7) and (6.8),
under the requirement that the externally controlled displacement data remain fixed:

oW 8%
2
§7H = /6E SearlE dA + /66 Sas86 dC > 0 (6.9)

where, by definition of H, the field 6E is not arbitrary, but is a function of the variation §§ such
that
div(8S) = div(FHL6E) = 0

(6.10)
0E = V(éu) | 6u = 0o0n dBg and [fu] = 66 on C

Having assumed that the function W is convex, inequality (6.9) allows one to establish that the
interface evolution problem formulated herein has a unique solution for all interface constitutive
models with a convex or null free energy 1. The most renowned of such models is perhaps that
of Dugdale, which cannot therefore be used to predict crack formation from an otherwise sound
material via the use of bifurcation arguments. The Dugdale model, like any non-bifurcating model,
can only be used in fracture problems where a crack is present to begin with. Furthermore, in the
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present formulation, in order for a bifurcation in the solution & to occur it is necessary to have a
non-convex free energy 4.

In order to extract more information from inequality (6.9) it is necessary to rewrite it in such a
way that all integrals evaluated on the domain B are transformed into integrals evaluated on the
domain [0, B]. In general, the accomplishment of this task is quite difficult in that knowledge of the
functional dependence of the field §E on the field 66 is required. Thus, for the sake of conciseness,
and with the intent of providing only a qualitative result, assume that an admissible variation §u
of the displacement field u can be given the following form:

6u:Za,-sin(k,—-x) (6.11)
i=0

where the wave vectors k; (i = 1,...,00) are to be determined as functions of geometry and material

properties and where
[6u] = € = aj]sin(k;-2z) zeC. (6.12)

=
Substituting (6.11) and (6.12) into (6.9) and employing the Reynold’s transport theorem we obtain
I¢] a2¢
om = [T€-4s d 1
H 0£{0+6636£} (>0 (6.13)
where
2 (e o) + 2 oo -

bo = (—_BBE?;E ga; ® k; cos(k; - X)) v = (—BBE;[; 2 a; ® k; cos(k; - x)) v (6.14)

Inequality (6.13) can be further manipulated and cast in the form indicated in inequalities
(6.7) and (6.8) to define a classical eigenvalue problem. For the purpose of this discussion it is
sufficient to note that, from eq. (6.14), the sign of the integrand in (6.13) essentially depends on the
magnitude of the bulk tangent elastic moduli relative to the interface elastic tangent moduli and
on a set of characteristic length scales associated with the wave vectors k;. Note that the strain
energy W does not need to be continuous across the interface. The above result is qualitatively
consistent with that obtained in a quite different context by Suo et al. [10], and therefore shows
that the treatment of the bifurcation problem suggested herein is a valid one.

6.3. Cohesive Zone Models and Crack Propagation.

We now turn our attention from the crack initiation problem to that of crack propagation. In classi-
cal fracture mechanics, i.e. in analysis without cohesive zones, the expression crack growth problem
indicates a moving boundary problem in which the primary unknown is usually the trajectory of
a single (non material) point referred to as the crack tip. The global thermodynamic analysis in
section 4 has shown that in fracture problems with a cohesive zone the primary unknown associated
with the crack is neither the trajectory of the point at ¢ = a nor that of the point at { = 8 (cf. eq.
(4.8)), but rather the time evolution of the field §. Thus, the problem with and that without a c.z.
appear very different, at least from a mathematical viewpoint. In reality, since the two problems
are intended to model the same phemomenon it is reasonable to expect some similarities between
them. The purpose of this section is therefore that of providing some insight on the relationship
between the classical running crack problem and that with a c.z..
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In order to relate the two problems it is necessary to constrain the c.z. to behave as much as
possible like a single geometrical point. Taking into account that the c.z. must have finite size by
definition, one possible way to impose said constraint is to assume that the c.z. is small with respect
to the rest of the crack surface, i.e. 8 — @ < a and to rigidify the c.z., i.e. to assume that during
crack propagation the crack tip behaves like a rigid wedge moving ahead of the physical crack tip.
This latter approach is not at all new. In fact, it concides with that followed by Barenblatt [1] who
formalized it through the following two assumptions (p. 59 in Barenblatt [1]):

Al. ...the area of the part of crack surface acted upon by the forces of cohesion can be considered
as negligibly small compared to the entire area of the crack surface.

A2. ...the form of the crack surface near the edges, at which forces of cohesion have the maximum
intensity, does not depend on the applied load.

Under assumptions Al and A2 the function 6((,t), ¢ € [a, B] takes on the form

6 =68(x,L) (6.15)
where .
x=(—-a V¥(€la,f], L=~ a=const., g—%-VSO Vx € [0, L]. (6.16)
From egs. (6.15) and (6.16) we also have
. .06 3%
b=dgn=-ég (6.17)

From eqs. (6.17) and (4.10) we see that the dissipation rate D, due to crack propagation alone
becomes

° . 05
D='/ ir 90 o 6.18
e=& [ o7 5 dx (6.18)
Eq. (6.18) indicates that assumptions A1 and A2 are certainly sufficient to render the trajectory
of the point at { = & the primary unknown of the problem as in the classical fracture mechanical
formulation. Moreover, now that a has replaced the field & as a global internal state variable for
the system B we have
0 ir a6
—H,(,:J:/ o 2% ay. (6.19)
c dx

where J is therefore the generalized thermodynamic force conjugate to . The force J can also be
expressed via the following decomposition:

J=G-R (6.20)
where

o 9% o 3
= .= d = . 22 dy. .
G /L o % x and R /1: o ax dx (6.21)

The quantities G and R are the energy release rate, as defined by Griffith {31], and the resistance
to crack growth, respectively. The quantity R is usually referred to as intrinsic fracture energy
and expressed by the notation 2. In view of the discussion given in section 5, R may not always
be a positive number. Egs. (6.18) and (6.19) bring support to the claim made in section 4 that
when a c.z. is introduced into the formulation of a fracture problem, the generalized force o' takes
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the place that the energy release rate occupies in the classical approach. The first of egs. (6.21)
represents a generalization of a well known result obtained in the context of linear and nonlinear
elasticity by Rice [39].

Egs. (6.18) and (6.19) suggest that a dissipation potential .(J) can be found such that the
crack evolution law takes on the form:

a € 00(J) (6.22)

consistent with the principle of maximum dissipation. In fact, Q(J) can be computed explicitly
under assumptions A1 and A2 once the dissipation potential Qo) is given. As an elementary ex-
ample, consider the Dugdale model formulated in egs. (5.2) to (5.4) with the additional assumption
that there exists a constant value . of the crack opening displacement at which fracture occurs.
Hence, due to assumption A2, during crack propagation, every point in the c.z. experiences an
opening rate é = -&06/dx. From egs. (5.2) we then have

§#£0= 0" = (6.23)

oV if5‘u>0
0 ifé-vr<0

Having assumed that &(x, £)- v is a monotone decreasing function of x, from egs. (6.19) and (6.23)
we have

0 08 o
7 fﬁay-ggdx ifa>0 (6.24)
0 ifa<0
The integral on the top right hand side of eq. (6.24) has the evaluation (cf. Rice [39]):
0 )
/ o’ % dx = ¥ -6, = const.. (6.25)
c 0x

Letting J = oY - §., from the above equation we see that J € (0,J,) => & = 0 and that
& #0=J =0o0rJ = J,. Thus, the kinetic equation that governs the evolution of the independent
state variable a can be given the following form:

& € dlc(J) (6.26)

where Ic(J) is the indicator function of the closed convex domain C; = [0,Jc). Eq. (6.26) can
also be formulated in the following variational form:

(J=-JYa>0 VJ*eCy . (6.27)
or . )
(G-G)a>0 VG e€Cg Cg= [R,Jo + R] (6.28)
where A
- 09y 096
R= L 36 oy dx = ¥(é.) (6.29)

Note that in the specific case of the Dugdale model, at least according to the formulation given
herein, R is always identically null. In general though, based on physical observation it is customary
to assume that R < J., so that Cg =[0,G.,] where G = J.,. ,

The evolution equation (6.28) has been proposed by Nguyen [15-16) as a re-statement of the
Griffith criterion suitable for the formulation of rate independent brittle fracture problems. As
mentioned in the introduction, the derivation presented in this section shows that such evolution
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equations can be derived under suitable assumptions (namely A1 and A2) directly from the Dugdale
model.

The procedure with which eq. (6.28) was derived is quite general in nature. In other words,
given a certain evolution equation for the c.z. one can always construct, under assumptions A1 and
A2, a corresponding evolution equation for the global internal variable o that is derived from a

dissipation potential, where the latter can be explicitly constructed as shown above in the case of
the Dugdale model.

7. SUMMARY

The present work is in essence an extension of modern constitutive theories to include stationary
partially coherent interfaces. As stated in the introduction, the theory is built so as to satisfy
three fundamental physical requirements. First, the interface is required to be capable of strain
energy storage. It is assumed that such storage capability depends on the jump discontinuity
in the displacement field across the interface itself, the interface temperature and, possibly, its
microstructure. Second, the interface is assumed to be capable, at least in the initial stage of
its life, of transferring forces across itself even in the absence of interface deformation, where the
latter corresponds to a displacement field jump discontinuity as mentioned before. Physically, the
mechanism responsible for this type of behavior is assumed to be purely dissipative. Third, the
interface constitutive equations should permit the prediction of crack pattern formation from an
otherwise fully cohesive interface via bifurcation arguments. The rationale for these requirements
has been discussed in the introduction.

The first requirement has been formalized by the assumption that there exists a function
of the interface opening displacement, temperature and microstructure that is a work potential
for the interface. This idea has been originally explored by Gurtin [14] who provided a useful
thermodynamic theory for the development of the interface constitutive equations. Within such
a framework, requirement two has been formalized by a decomposition of the cohesive force o
into two parts: o, o'". o° is assumed to originate from the interface free energy and, in this
sense, to be the expression of mechanically reversible transformations, such as bond stretching in
crystalline materials or fibril elastic stretching in polymer crazing. o'" is not assumed to have
an explicit and one-to-one relationship with the interface opening displacement. This allows the
interface to transfer forces of various intensity even under the assumption of perfect cohesion, i.e.
a situation characterized by a null opening displacement. The physics behind the irreversible part
of the cohesive force o‘" depends on the particular system at hand. For example, in the case of
single craze formation, o*" can represent the average effect of the forces responsible for the craze
nucleation through secondary bond breakage. Such forces, which macroscopically appear to be
acting on the interface surface, do not originate from fibril stretching and for this reason are not
associated with a particular energy storage mechanism.

The global thermodynamic analysis presented in section 4 shows that the fields o' and & are
conjugate with respect to the global free energy of the system. This result leads naturally to
the hypothesis that the relationship between the fields '™ and 6 is governed by an equation of
evolution. It should be noted that global thermodynamics becomes an almost indispensable tool in
the thermodynamic analysis of multi-phase systems like the one considered herein (i.e. body-plus-
interface). In particular global thermodynamics is extremely useful in the analysis of composite
materials with an evolving internal microstructure.

The present theory has been shown to encompass most of the cohesive zone models available
from the literature and, as shown in section 6.2, to satisfy the third of the requirements listed above
under the assumption that the interface free energy is non-convex.
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In section 6.3 the proposed model has been shown to have another important characteristic,
namely that of naturally recovering the classical results of fracture mechanics once a macroscopic
crack propagates along the interface in a self-similar fashion. In particular, the relationship between
the interface dissipative behavior and the crack evolution law has been established.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. J. R. Walton (Department of Mathematics, Texas A&M Univer-
sity) for many valuable discussions, and gratefully acknowledge partial funding supplied by NASA
Langley Research Center, under Grant NAG 1-1120.

REFERENCES

(1] G.I. BARENBLATT, Adv. Appl. Mech. 7, 55 (1962).

(2] D.S. DUGDALE, J. Mech. Phys. Solids 8, 100 (1960).

[3] M. ORTIZ, Int. J. Solids Structures 24, 231 (1988).

(4] B. BUDIANSKY, J. C. AMAZINGO and A. G. EVANS, J. Mech. Phys. Solids 36, 167 (1988).
[5] E. JOHNSON, Int. J. Fracture 55, 47 (1992).

(6] L. 1. SLEPYAN, J. Mech. Phys. Solids 41, 1019 (1993).

[7] T. UNGSUWARUNGSRI and W. G. KNAUSS, J. Appl. Mech. 55, 44 (1988).

[8] T. UNGSUWARUNGSRI and W. G. KNAUSS, J. Appl. Mech. 55, 52 (1988).

(8] C.-Y. HUL D. C. LAGOUDAS and A. RUINA, in Constitutive Modelling for Nontraditional
materials, V. K. Stokes and D. Krajcinovic (eds.), ASME AMD-Vol. 85, 87 (1987).

[10] Z. SUO, M. ORTIZ and A. NEEDLEMAN, J. Mech. Phys. Solids 40, 613 (1992).
[11] Y. N. LI and R. Y. LIANG, J. Mech. Phys. Solids 8, 100 (1993).

[12] M. E. GURTIN, J. Elasticity 9, 187 (1979).

(13] M. E. GURTIN, Int. J. Solids Structures 15, 553 (1979).

(14] M. E. GURTIN, ZAMP 30, 991 (1979).

[15] Q. S. NGUYEN, J. Mécanique 19, 363 (1980).

[16] Q. S. NGUYEN, in Three-Dimensional Constitutive Relations and Ductile Fracture, IUTAM
Symposium, Durdan, 315 (1980).

(17] F. COSTANZO and D. H. ALLEN, Int. J. Fracture 63, 27 (1993).
(18] L.-O FAGER, J. BASSANI, C.-Y. HUI and B. -B. XU, Int. J. Fracture 52, 119 (1991).
[19] Q. S. NGUYEN, J. Mécanique 3, 41 (1984).

{20] B. HALPHEN and Q. S. NGUYEN, J. Mécanigue 14, 39 (1975).

24



[21] F. COSTANZO, Ph.D. dissertation, Texas A&M University, College Station, Texas (1993).
(22] D. G. B. EDELEN, Applied Ezterior Calculus, John Wiley and Sons, New York (1985).

[23] J. R. RICE, in Constitutive Equations in Plasticity, A. S. Argon (ed.), MIT Press, Cambrigde
(Mass.), 23 (1975).

[24] N. VERHEULPEN-HEYMANS, Polym. Eng. Sci. 24, 809 (1984).

[25] A. 1. LEONOV and H. R. BROWN, H. R. J. Polym. Sci., /B Polym. Phys. 29, 197 (1991).
[26] H. RIEDEL, (1977) Mater. Sci. Eng. 30, 187 (1977).

[27] P. GERMAIN, Q. S. NGUYEN and P. SUQUET, J. Appl. Mech. 50, 1010 (1983).

(28] J. R. RICE, J. Mech. Phys. Solids 16, 61 (1978).

[29] P. GERMAIN, (1982) Int. J. Eng. Sci. 20, 245 (1982).

[30] M. J. SEWELL, Mazimum and Minimum Principles, Cambridge University Press, Cambridge
(1987).

[31] A. A. GRIFFITH, Phil. Trans. R. Soc. A221, 163 (1921).
(32] Q. S. NGUYEN, C. STOLZ and G. DEBRUYNE, Eur. J. Mech., A/Solids 9, 157 (1990).

[33] J. J. MOREAU, in New Variational Techniques in Mathematical Physics, CIME, G. Capriz
and G. Stampacchia (eds.), Edizioni Cremonose, Roma, 175 (1974).

[34] J. J. MOREAU, in Trends in Application of Pure Mathematics to Mechanics, H. Zorski (ed.)
Pitman Press, London, 263 (1979).

7

[35] B. BUDIANSKY and J. W. HUTCHINSON, J. Appl. Mech. 45, 267 (1978).

[36] D.-B. XU, C.-Y. HUI, E. J. KRAMER and C. CRETON, Mech. Mater. 11, 257 (1991).
[37] E. J. KRAMER and E. W. HART, Polymer 25, 1667 (1984).

[38] J. L. LIONS, Contréle Optimal, Dunod, Paris (1968).

(39] J. R. RICE, J. Appl. Mech. 35, 379 (1968).

25









€]

&

do=o"

o-ir

— elr
'0'0'

(®)









o-ir

@)




LEL

Jews ¢ AuQ avjdwodut s st §59004d Y1 jo Juipurissopun JuasInd 3yl Yimold uoneuiwieldp
PUE SYDBID XUIBW UIIMIIQ SUONORJIAIUL SE Yons ‘DJeWEp AT Ul PIAJOAUL SWSIUBYIIW
Yy jo Auxsidwod ay1 01 anp ‘JoAImOH aumEsA| oyl ul paseadde aaey ey ‘jednkieue
pue Jeuawwadxa yioq ‘SIAPNIS SNOJIWNU Yl WOl 1WIPIAI ST SIYL “(JATT) 10edwt K1dojea
#0[ 01 pa1xa{qns aJe s3isodwod pareuiwe] uaym sinsay 1ey) 23ewep ay) jo