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1.0 Introduction
1.1 Statement of Work

A thorough understanding of the uncertainties associated with the
modeling and testing of the Space Shuttle Main Engine (SSME) Engine will -
greatly aid decisions concerning hardware performance and future
i development efforts. The goals of this research effort are delineated in the
the Statement of Work, reproduced below:

The goal of this effort is to enhance the rocket engine steady-state performance
computer models through the incorporation of uncertainty analysis concepts. Analytical
tools and analysis techniques are being investigated to better support performance
analysis requirements. These requirements include assessing vehicle/engine feed system
interface flow characteristics, engine hardware design changes, evaluating engine
hardware performance, predicting engine hardware operation, and supporting failure
investigations.

A major shortcoming within the current SSME power balance modeling scheme is that
experimental data and the fundamental physical relationship are treated as absolutes.
Both experimental data and the property requirements contain various sources or €rrors.
The primary sources of error within the instrumentation system are calibration errors,
signal processing and localized effects. The primary sources or errors within the
fundamental relationships are uncertainties in physical approximations and fluid
property computational predictions are forces to agree with the data at instrumented
locations, often at the expense of physical consistency. This situation degrades the
capability of the analytical tools and thus, reduces the amount of confidence in the
results generated.

A test data integration strategy was developed based upon evaluating test data with
respect to basic fluid conservation principles (mass, energy, and momentum
relationships). This strategy systematically transforms uncertain experimental data into
a physically self consistent set of data. This is accomplished by forcing the minimum
adjustment required in engine pressures, temperatures, and flowrates necessary to satisfy
prescribed uncertainty constraints.

This strategy incorporate uncertainty requirements explicitly. The overall success of the
test data integration strategy is a function of determining these required uncertainty
estimates.

Another major shortcoming within the current modeling scheme is that the current
performance models do not present uncertainty estimates with predictions. A general
framework for modular uncertainty estimates with predictions. A general framework for
modular rocket engine performance models do not present uncertainty estimates with
predictions. A general framework for modular rocket engine performance prediction
program is currently being developed that will integrate physical principles, rigorous
mathematical formalism, component and system level test data, and theory-observation
reconciliation. This development effort will allow for simple implementation of
uncertainty estimates associated with physical relationships. Incorporation of these
estimates within the rocket engine performance model will support two crucial
functions. First, These uncertainty estimates will represent a confidence band associated
with each prediction. Secondly, these estimates will provide a measure of the success of
the performance model.




The research required to implement these uncertainty analysis concepts will be
conducted within the SSME engine 3001 test program which is currently being -
conducted on the technology test bed (TTB) test facility. Engine 3001 provides a
significantly larger number of propellant property measurements as compared to
standard SSME modeling strategies, and ultimately, improve the use of test data in
generating performance predictions. Phase 1 involves applying uncertainty analysis
techniques to obtain estimates for both the bias and the precision uncertainties of engine
measurements. Phase 2 involves incorporating uncertainty analysis techniques to
estimate uncertainties associated with model computation. A detail description of the
specific tasks to support these phase are described below:

Phase 1 - Perform uncertainty analysis for engine 3001 test measurements.

1. Examine TTB instrumentation systems

2. Evaluate data from previous TTB testing

3. Identify all significant sources of errors

4. Estimate both precision and bias uncertainties for the TTB test measurements

5. Evaluate the use of these measurement uncertainty estimates by the PRM for
supporting TTB test analysis

Phase 2 - Perform uncertainty analysis on the physical relationships within the
Performance Reconciliation Model (PRM)

1. Identify assumptions and physical analysis on the physical approximations
made by representing a real physical process as a mathematical model.

2. Determine methods for quantifying the influence of such assumptions and
physical approximations.

3. Estimate the modeling uncertainties.

4. Evaluate the use of these uncertainty estimates within the PRM computations
for supporting TTB test analysis.

1.2 Report Overview

“This report will describe the determination of uncertainties in the
modeling and testing of the Space Shuttle Main Engine test program at the
Technology Test Bed facility at Marshall Space Flight Center. Section 2 will
present a summary of the uncertainty analysis methodology used and discuss
the specific applications to the TTB SSME test program. Section 3 will
discuss the application of the uncertainty analysis to the test program and
the results obtained . Section 4 presents the results of the analysis of the
SSME modeling effort from an uncertainty analysis point of view. The
appendices at the end of the report contain a significant amount of
information relative to the analysis, including discussions of venturi
flowmeter data reduction and uncertainty propagation, bias uncertainty
documentation, technical papers published, the computer code generated to
determine the venturi uncertainties, and the venturi data and results used in
the analysis.

—————




2.0 Uncertainty Analysis

The use and application of uncertainty analysis in engineering has
evolved considerably since Kline and McClintock's classic paper! in 1953.
Developments in the field have been especially rapid and significant over the
past decade, with the methods formulated by Abernethy and co-workers? that
were incorporated into ANSI/ASME Standards in 19843 and 1986% being
superseded by a more rigorous approach®. Publication in late 1993 by the
International Organization for Standardization (ISO) of the Guide to the
Expression of Uncertainty in Measurement® in the name of ISO and six other
international organizations has, in everything but name only, established a new
international experimental uncertainty standard.

The approach in the ISO Guide deals with "Type A" and "Type B"
categories of uncertainties, not the more traditional engineering categories of
bias and precision uncertainties, and is of sufficient complexity that its
application in normal engineering practice is unlikely. This issue has been
addressed by AGARD Working Group 15 on Quality Assessment for Wind
Tunnel Testing and by the Standards Subcommittee of the ATIAA Ground Test
Technical Committee. The documentss’ produced by these groups present and
discuss the additional assumptions necessary to achieve a less complex "large
sample" methodology that is consistent with the ISO Guide, that is applicable to
the vast majority of engineering testing (including most single-sample tests), and
that retains the use of the traditional engineering concepts of bias and precision
uncertainties. (The chapters on uncertainty methodology in the AGARD¢ and
ATAA” documents were authored by the Principal Investigator of this research

program.)

2.1 Overview

The word accuracy is generally used to indicate the relative closeness of
agreement between an experimentally-determined value of a quantity and its
true value. Error (0) is the difference between the experimentally-determined
value and the truth, thus as error decreases accuracy is said to increase. Only in
rare instances is the true value of a quantity known. Thus, one is forced to

! Kline, S. J., and McClintock, F. A., "Describing Uncertainties in Single-Sample Experiments,” Mechanical
Engineering, Vol. 75, 1953.

2 Abernethy, R. B., Benedict, R. P., and Dowdell, R. B, "ASME Measurement Uncertainty," J. Fluids
Engineering, Vol. 107, 1985.

3 American National Standards Institute/American Society of Mechanical Engineers, Measurement Uncertainty
Jfor Fluid Flow in Closed Conduits, MFC-2M-1983, ASME, 1984

4 American National Standards Institute/American Society of Mechanical Engineers, Measurement Uncertainty,
PTC 19.1-1985 Part 1, ASME, 1986.

5 International Organization for Standardization, Guide to the Expression of Uncertainty in Measurement, ISO,
ISBN 92-67-10188-9, 1993 :
6 Quality Assessment for Wind Tunnel Testing, AGARD-AR-304, 1994.

7 American Institute of Aeronautics and Astronautics, Assessment of Wind Tunnel Data Uncertainty, AIAA
Standard S-071, 1995.




estimate error, and that estimate is called an uncertainty, U. Uncertainty
estimates are made at some confidence level -- a 95% confidence estimate, for
example, means that the true value of the quantity is expected to be within the
+U interval about the experimentally-determined value 95 times out of 100.

As shown in Figure 1(a), total error § can be considered to be composed of
two components: a precision (random) component £ and a bias (systematic)
component B. An error is classified as precision if it contributes to the scatter of
the data; otherwise, it is a bias error. It is assumed that corrections have been
made for all systematic errors whose values are known. The remaining bias

errors are thus equally as likely to be positive as negative.
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Figure 2.1 Errors in the Measurement of a Variable X:(a) two readings; (b) infinite number of
readings.




Suppose that we are making a number of measurements of the value of a
variable X that is absolutely steady. The k and k+1 measurements are shown in
Figure 1(a). Since the bias is a fixed error, it is the same for each measurement.
However, the precision error will have a different value for each measurement.
It then follows that the total error in each measurement will be different, since
the total error is the sum of the bias error and precision error in a measurement.

If we continued to take measurements as previously described until we
had a sample of N readings, more than likely as N approached infinity the data
would behave as shown in Figure 1(b). The bias error would be given by the
difference between the mean (average) value n of the N readings and the true
value of X, whereas the precision errors would cause the frequency of occurrence
of the readings to be distributed about the mean value.

As an estimator of B, a bias limit B is defined®. A 95% confidence estimate
is interpreted as the experimenter being 95% confident that the true value of the
bias error, if known, would fall within +B. A useful approach to estimating the
magnitude of a bias error is to assume that the bias error for a given case is a
single realization drawn from some statistical parent distribution of possible bias
errors. For example, suppose a thermistor manufacturer specifies that 95% of
samples of a given model are within +1.0 C of a reference resistance-temperature
R-T) calibration curve supplied with the thermistors. One might assume that
the bias errors (the differences between the actual, but unknown, R-T curves of
the various thermistors and the reference curve) belong to a Gaussian parent
distribution with a standard deviation b=0.5 C. Then the interval defined by +B
=4+ 2b =+1.0 C would include about 95% of the possible bias errors that could be
realized from the parent distribution. (The bias limit is sometimes called the
"systematic uncertainty”.)

As an estimator of the magnitude of the precision errors (the width of the
distribution of readings in Figure 1(b)), a precision limit P is defineds. A 95%
confidence estimate of P is interpreted to mean that the +P interval about a
single reading of Xi should cover u 95 times out of 100. (The precision limit is
sometimes called the "precision uncertainty".)

In nearly all experiments, the measured values of different variables are
combined using a data reduction equation (DRE) to form some desired result. A
good example is the experimental determination of mass flow rate using a
venturi meter as discussed in Appendix II of this report. Functionally, the mass
flow rate is given as

8 Coleman, H. W., and Steele, W. G., Experimentation and Uncertainty Analysis for Engineers, Wiley, New
York, 1989.




We = Wem,T:ApxdaD:a:CD) (1)

One can envision that errors in the values of the variables on the right hand side
of Eq. (1) will cause errors in the experimental result We.
A more general representation of a data reduction equation is

r=rXn Xz - Xs) V)

where r is the experimental result determined from J measured variables Xi.
Each of the measured variables contains bias errors and precision errors. These
errors in the measured values then propagate through the data reduction
equation, thereby generating the bias and precision errors in the experimental
result, r.

If the "large sample assumption" is made®’ then the 95% confidence
expression for U: becomes

J J-1 J (3)
Ul =26B +22 D 6:6B
i=l =l k=it]
J J-1 J
+GP+2) D 6:6Pu
i=1 =l k=itl
where
or
= 4
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and where the 95% confidence precision limit for a variable X: is estimated as
P =2 N210 ()
and the sample standard deviation is calculated using
1 N /2 ’
o= = ) -~ ¥ 6
S; [N-I ;[(Xx)k X,]]‘ (6)

where the mean value is defined as

— 1l &
Xi = F[Z(Xx)k:! 7
k=l B
and Py is the 95% confidence estimator of the covariance of the precision errors
in Xj and Xk, and B is the 95% confidence estimator of the covariance of the bias
errors in X; and Xx.

If we define the bias limit (systematic uncertainty) of the result as




B = 29,23,2 +2§ zjleiekBik (®)
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and the precision limit (precision uncertainty) of the result as

P = ZefPf + ZZ Za,-ekpg, ©

then Eq. (3) can be written as
U: = Bl+P! (10)

and Eqs. (8) and (9) can be viewed as propagation equations for the bias limits
and precision limits, respectively.

2.2 Determining Precision Limits
Single Test. When the result is determined from a single test -- that is,
at a given test condition the result is determined once using Eq. (2)

r= r(XI: XZ) eeey XJ) (2)

and when the Xi's are considered single measurements, then Eq. (9) is used to
find the precision limit of the result. This situation is often encountered in large
scale engineering tests in which measurements of the variables are made at a
given set point over a period that is small compared to the periods of the factors
causing variability in the experiment. A proper precision limit (one indicative of
the dispersion of the variable over several cycles of the factors causing its
variation) cannot be calculated from readings taken over such a small time
interval. For such data, the measurement(s) of a variable Xi should be
considered a single reading -- whether the value of X is the average of 10, 103 or
106 readings taken during the short measurement time. In such a test, the value
for the precision limit to be associated with a single reading would have to be
based on previous information about that measurement obtained over the
appropriate time interval®. If previous readings of a variable over an
appropriate interval are not available, then the experimenter must estimate a
value for P; using the best information available at that times.".

For single tests in which some of the variables (X and Xs, for instance)
can be determined as averages from multiple readings over an appropriate time
period but the other variables cannot be, then

r= r(Xl: st Y3r seey XJ) ‘ (11)

9 Steele, W. G., Taylor, R.P., Burrell, R. E., and Coleman, H. W., “The Use of Data from Previous
Experience to Estimate the Precision Uncertainty of Small Sample Experiments,” 4144 Journal, Vol. 31,
No. 10, 1993.




and Eq. (9) is used to find the precision limit of the result as follows. For the
variables that are single readings, the Pi's are the precision limits determined
from previous information or estimated from the best available information. For
the averaged variables when N2 and Ns are equal to or greater than 10, P: and
Ps should be taken as precision limits of means, (2S2)/(N2)2 and (2Ss)/(Ns)22,
. with the S's calculated using Eq. (6). When N2 and Ns are less than 10, it is the
authors' recommendation that the precision limits used in Eq. (9) for the
averaged variables be taken as (P2)/(N2)¥2 and (Ps)/(Ns)2, where P2 and Ps are
determined from previous information, as is done for the single reading
variables.

For tests in which multiple readings of all of the variables can be obtained
over an appropriate period, the following method is recommended.

Multiple Tests. If a test is performed so that M multiple sets of
measurements (Xi, X, ... Xok at the same test condition are obtained, then M

results can be determined using Eq. (2) and an average result r can be
determined using

Mk

7i (12)

= 1
y = —
M

If the M sets of measurements were obtained over an appropriate time period,
the precision limit that should be associated with a single result would be
P, =18, (13)

where t is determined with M-1 degrees of freedom and is taken as 2 for M>10
and S: is the standard deviation of the sample of M results

S, = [MJZ(rk-r)} (14)

The precision limit that should be associated with the average result is given by

N

with P: given by Eq. (13). Using the large sample assumption, the uncertainty
- that should be associated with a single result would be

U?>=B>+(2S,)* (16)

and with an average result »
- g+(2s. /VM) a7

with B: given by Eq. (8).




Correlated Precision Uncertainties. The P terms in Eq. (3) take into
account the possibility of precision errors in different variables being correlated.
These terms have traditionally been neglected!3457, although precision errors in
different variables caused by the same uncontrolled factor(s) are certainly
possible and can have a substantial impact on the value of the precision limit!0.
In such cases, one would need to acquire sufficient data to allow a valid
statistical estimate of the precision covariance terms to be made if using Eq. (3).
Note, however, that the multiple tests approach using Eq. (14) implicitly
includes the correlated error effect -- a definite advantage when multiple sets of
measurements over an appropriate time period are available.

2.3 Estimating Bias Limits _

Bias Limits of Individual Variables. When attempting to estimate
the bias limits Bi of the individual variables in Eq. (8), one might separate the
bias errors which influence the measurement of a variable into different
categories: calibration errors, data acquisition errors, data reduction errors, test
technique errors, etc. Within each category, there may be several elemental
sources of bias. For instance, if for the Jth variable, X;, there are M elemental
bias errors identified as significant and whose bias limits are estimated as (By)s,
By, ..., By, then the bias limit for the measurement of Xs is calculated as the
root-sum-square (RSS) combination of the elemental limits

B; = [Z (BJ)i]l (18)

The elemental bias limits, (Bi)x, must be estimated for each variable X
using the best information one has available at the time. In the design phase of
an experimental program, manufacturer's specifications, analytical estimates
and previous experience will typically provide the basis for most of the estimates.
As the experimental program progresses, equipment is assembled, and
calibrations are conducted, these estimates can be updated using the additional
information gained about the accuracy of the calibration standards, errors
associated with the calibration process and curvefit procedures, and perhaps
analytical estimates of installation errors.

As Moffat!! suggests, there can be additional conceptual bias errors
resulting from not measuring the variable whose symbol appears in the data
reduction equation. An example would be a point temperature measurement
interpreted to be indicative of a cross-section averaged temperature, but there
may be a cross-sectional variation of temperture, which may or may not have a

10 Frudson, S. T., Bordelon, W., and Coleman, H. W., “Effect of Correlated Precision Errors on the
Uncertainty of a Subsonic Venturi Calibration,” AIAA-95-0797, 1995.

11 Moffat, R. J., “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid
Science, Vol. 1, 1988.
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predictable profile, causing the “average” value to be different than the point
value. Hence, the inclusion of an elemental bias term for the conceptual error
would be appropriate.

Correlated Bias Limits. Correlated bias limits are those that are not
independent of each other, typically a result of different measured variables
sharing some identical elemental error sources. It is not unusual for the
uncertainties in the results of experimental programs to be influenced by the
effects of correlated bias errors in the measurements of several of the variables.
A typical example occurs when different variables are measured using the same
transducer, such as multiple pressures sequentially ported to and measured
with the same transducer or temperatures at different positions in a flow
measured with a single probe that is traversed across the flow field. Obviously,
the bias errors in the variables measured with the same transducer are not
independent of one another. Another common example occurs when different
variables are measured using different transducers all of which have been
calibrated against the same standard, a situation typical of the electronically
scanned pressure (ESP) measurement systems in wide use in aerospace test
facilities. In such a case, at least a part of the bias error arising from the
calibration procedure will be the same for each transducer, and thus some of the
elemental bias error contributions in the measurements of the variables will be
correlated.

The Bi terms in Eq. (8) must be approximated -- there is in general no
way to obtain the data with which to make a statistical estimate of the
covariance of the bias errors in Xi and the bias errors in X;. The approximation
of such terms was considered in detail in Ref. 12, where it was shown that the |
approach that consistently gives the most satisfactory approximation for the
correlated bias limits was

Bi = Z_ (Bi)z(Bt). (19)

where L is the number of elemental systematic error sources that are common
for measurements of variables X; and Xu.

If, for example,

r=r(Xx, X:) (20)

and it is possible for portions of the bias limits B: and Bz to arise from the same
source(s), then Eq. (8) gives

12 Brown, K. K., Coleman, H W., Steele, W. G., and Taylor, R. P., "Evaluation of Correlated Bias
Approximations in Experimental Uncertainty Analysis," AIAA 94-0772, 1994.
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B = 6/Bi+6;B>+26,6:B:: 21

For a case in which the measurements of Xi and Xo are each influenced by 4
elemental error sources and sources 2 and 3 are the same for both X, and X, Eq.
(18) gives

B} = (Bi);+(B. i+ (B, i+(B.); (22)
and
B = (B. S +(Bo ot (Bo)it (B, @3)
while Eq. (19) gives
Biz = (Bi1),(B2),+(B1)s(B2)s (24)

24 Application of Uncertainty Analysis to TTB Testing

The focus in this effort is to identify the uncertainty that should be
associated with a measured variable such as temperature or pressure or with a
determined result such as flowrate that is calculated using a number of
measured variables. The uncertainty given by Eq. (16) -- that associated with a
single result -- is the appropriate uncertainty to use when data from a single
TTB test are compared with the output of a predictive model.

Desired Variable

Environment
(Installation & conceptual

biases; unsteadiness)

Sensor

é (Calibration biases) |

Data Acquisition System, DAS

(Calibration biases)
Measured Value of

Variable

Figure 2.2 Schematic of TTB Measurement Process from an Error Sources Viewpoint
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Figure 2.2 shows a schematic of the viewpoint used in identifying error
sources that contribute to the overall uncertainty. The desired variable is taken
to be the one with which a model output will be compared -- a cross-section
averaged temperature, for example, that would usually be referred to as "the
temperature" of the flow at a particular location in the engine. If the sensor
responds to temperature at a point, then an installation or conceptual bias exists -
due to the sensor not actually responding to the desired variable (the average
temperature). This is an elemental source that must be included in Eq. (18), and
it is potentially one of the dominant elemental sources in temperature and
pressure data in TTB testing. The estimation of these sources is a task in the
follow-on effort to the work documented in this report. The traditional
"measurement uncertainty" sources are shown as biases in the sensor calibration
and biases in the calibration of the data acquisition system (DAS). Additionally,
the effect of unsteadiness in, and due to, the operating environment must be
considered since the sensor calibrations and DAS pre-test calibration checks are
not done with the engine operating, and the unsteadiness certainly can have an
effect on the final system output - the measured value of the variable.

Choice of the appropriate precision limit to use with TTB data needs to be
carefully done. A precision limit determined using a standard deviation from a
time slice during one test gives information about the steadiness of the "steady
state" at that operating condition during that particular test, but includes no
effects of the test-to-test variation of the variable at that operating condition. As
discussed in Section 3, the authors believe that computing a standard deviation
of a variable or result from multiple tests, all of which were at the same
operating condition, gives the appropriate precision estimate for use in
discussing the uncertainty in a measured TTB variable. It is also the
appropriate precision limit to consider when comparing the results from one test
to results from another test in an effort to determine if a change in component,
for instance, had any discernible effect on the value of the result.

Detailed discussion of the uncertainty estimates associated with TTB
flowrate measurements is given in Section 3 of this report.

2.5 Application of Uncertainty Analysis in SSME Modeling

When comparing output of a model with experimental data, the
uncertainties that should be associated with the model predictions must be
considered for proper conclusions to be drawn. In the past, most of the work
reported in this area has simply considered the sensitivity of the model output to
uncertainties in the input data. This obviously does not include any
uncertainties in the model itself and thus is not a satisfactory approach. In this
research effort, we have divided the sources that cause uncertainty in the model
output into three categories: (1) uncertainties due to assumptions and
approximations in the model, (2) uncertainties due to the incorporation of
previous experimental data into the model, and (3) uncertainties due to the

14




numerical solution algorithm. Consideration of the third category is not within
the scope of this program.

The first category, uncertainties due to assumptions and approximations
in the model, does not include the installation and/or conceptual bias source
shown in Figure 2.2 and discussed above since that uncertainty is associated
with the measured value. Consider the temperature at a particular position in
the flow. The uncertainty associated with the measured value of the
temperature includes the effect of making a point measurement but desiring a
cross-sectional averaged value. The inability of the model to calculate a correct
average temperature at a particular location because the one-dimensional flow
approximation has been made results in an uncertainty in the predicted
temperature. (Stated another way, if the model predicts the correct average
temperature at a particular location, then the one-dimensional flow
approximation has caused no uncertainty in the model output.)

The uncertainties due to the incorporation of previous experimental data
in the model arise when material property data is used, when valve resistance
characteristics are used, when pump maps are used, etc. These are all instances
in which previous experimental data has been used by replacing the data with

_curvefits. The original data contained uncertainties, but the curvefit equations
used in the predictive models have been treated as the "truth" in most previous
considerations of uncertainty in model outputs. Adding further complication,
there is no accepted way of estimating the influence of systematic uncertainties
on the uncertainty that should be associated with a regression. This aspect has
been investigated in this program and is discussed in Section 4. An AIAA paper
reporting the progress of this effort is included as Appendix IV.
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3.0 Results of Application of Uncertainty Analysis to TTB Testing

An investigation to determine the experimental uncertainties
associated with the test measurements from the SSME Engine 3001 installed
in the Technology Test Bed facility was conducted. This investigation
consisted of reviewing existing documents, discussions with NASA personnel,
review of other technical literature, and new analyses. Since the
thermodynamic performance analysis of the SSME was the motivation
behind this contractual effort, the pressure, differential pressure,
temperature, and mass flow rate measurements were the focus of the
investigation. Initial discussions concluded to initially focus on the
‘determination of uncertainty in the flowrate measurements, with particular
emphasis on the venturi flowmeter determinations. This section will discuss
the information obtained wupon which the assessment of individual
uncertainty source estimates were made.

8.1 Measurement System .

The Technology Test Bed test measurement system is described here
as all components between the phenomena being measured and the final
computer data file in engineering units, including the sensors, transducers,
data acquisition systems, and data reduction routines. A previous study by
Sverdrup Technology!3 studied the MFSC test facilities to assess the
uncertainty in the measurement systems and to assess if any significant
discrepancies existed between test areas. That report identified and
quantified the uncertainties between the sensor and the final data file.
However, several important points about this study need to be made. First,
this study did not assess the uncertainty in a given measurement during the
engine test, therefore any additional uncertainty due to the operating
environment was not assessed. Secondly, no installation or conceptual
uncertainties were considered. Finally, the study was performed in 1992 and
prior to the adoption of new standards for the assessment of uncertainties5,
and some of the specific procedures used to combine uncertainty sources were
not in accordance with the current standard.

The specific aspects of the TTB measurement system were reviewed
with the TTB data acquisition personnel. This review showed the procedures
and techniques being used are self-consistent, with a pre-test procedure
conducted which recalibrates the data acquisition system prior to each test.
This ensures that measurement system drift and gross errors do not go
undetected. ' '

3.2 Analysis of Previous TTB Test Data

13 Fish, James E., NASA/MSFC Test Area Measurement System Uncertainty Study, Sverdrup
Technology, Inc., MSFC Group, Report No. 335-002-92, October 1992.
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The review of previous test data was cumbersome due to the format of
the data being incompatible with commercially available software and the
initial difficulties in utilizing MSFC resources for data analysis. To achieve a
set of data to review which could be defined as the “same” hardware, tests
TTB039 through TTB 051 were chosen. These tests were conducted with
Engine 3001 with the large throat combustion chamber and a consistent set
of other hardware. Another difficulty in the data analysis to assess
uncertainties was the lack of repetition in the test profiles, with each test
being conducted for the analysis of specific performance aspects. The data
was reviewed in the full sample-rate format (25 or 50 samples/sec) and at the
reduced sample-rate format (1 sample/sec). Because of inconsistencies in the
way test data is stored in the computer systems, all of the measurements for
these tests are not readily accessible. For example, most of the venturi mass
flowrate calculations are not available from the computer systems being
used. This created problems in assessing the precision uncertainties for the
venturi flowrate measurements, particularly trying to assess test-to-test
precision uncertainty behavior. To alleviate this situation a new computer
program was developed by the COTR to access the test data directly and
compute the mass flowrates. This program was then modified by the
researchers to calculate the uncertainties associated with the given test data.
A discussion of this new software tool is given in Section 3.5.

3.3 Determination Of Mass Flow Rate Uncertainties

The mass flow rate uncertainties for the venturi flowmeters were
determined using the methodology previously discussed in Section 2. The
data reduction equation is the equation for mass flow rate presented in
Appendix ITI and the expression for the uncertainty in the mass flow rate
and the necessary partial derivatives are presented in Appendix IV. This
expression shows the density of the fluid within the square root, however the
density of the fluid cannot be explicitly measured and must be determined
within the data reduction by using the measured pressure and temperature
and some equation of state.

The bias limits used in the uncertainty propagation equations were
estimated based upon the information gathered from the available
documentation, discussions with TTB personnel, and engineering experience.
The values used in the calculation of the flowrate uncertainties are shown in
Appendix V.

Potentially significant bias uncertainties to be addressed in the TTB
measurements are the conceptual bias uncertainties discussed in Section 2.
The conceptual bias uncertainties in the temperature and pressure
measurements are particularly important in this effort because of the
interest in comparing the experimental results with the analytical
predictions. In many of the SSME measurements the flowfield is highly
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complex due to the sharp turns and bends, valves, pump and turbine inlets
and discharges, and other complicating factors. These factors accentuate the
difference between the physical quantity at the sensor and the quantity for
which the measurement is desired, typically an average value at a cross-
section. Assessment of these bias uncertainties has not been accomplished.
These assessments will require extensive review of the measurement, the
sensor and its installation, the thermodynamic and fluid dynamic flowfield,
and their interaction. This detailed analysis of the measurements will take
place during the next contract period and based upon a prioritized list
developed with the COTR.

The precision limits for the mass flowrate uncertainties are dependent
upon the question being asked, or rather, what is purpose for the
information. Precision limits can be calculated in many different ways, but
the interpretation of the precision limit and the use of it depends upon data
used to calculate it. The variables which must be considered for the precision
limit calculation include:

engine number

specific engine component configuration

engine test(s)

power level

test profile

specific engine adjustments

time slice within the test

data sample rate (data points used for standard deviation calculation)

The precision limits for the flowrate uncertainties were based upon
review of the flowrate data for the chosen time slice. Precision limits were
estimated in two primary ways. First, one was based upon the full sample-
rate data within each test. The second precision lim