Final Report

Impact of Uncertainty on Modeling and Testing
PRC 95-001

10 January 1994 to 30 April 1995

National Aeronautics and Space Administration
Marshall Space Flight Center
Contract Number NAS8-38609
Delivery Order #106

by
Hugh W. Coleman (Principal Investigator)
Kendall K. Brown (Graduate Research Assistant)
Propulsion Research Center
Department of Mechanical and Aerospace Engineering
University of Alabama in Huntsville
Final Report
10 January 1994 to 30 April 1995

Impact of Uncertainty on Modeling and Testing

National Aeronautics and Space Administration
Marshall Space Flight Center
Contract Number NAS8-38609
Delivery Order #106

by
Hugh W. Coleman (Principal Investigator)
Kendall K. Brown (Graduate Research Assistant)
Propulsion Research Center
Department of Mechanical and Aerospace Engineering
University of Alabama in Huntsville
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.0</td>
<td>Uncertainty Analysis</td>
</tr>
<tr>
<td>3.0</td>
<td>Results of Application of Uncertainty Analysis to TTB Testing</td>
</tr>
<tr>
<td>4.0</td>
<td>Results of Application of Uncertainty Analysis in SSME Modeling</td>
</tr>
<tr>
<td>5.0</td>
<td>Summary</td>
</tr>
<tr>
<td>6.0</td>
<td>Bibliography</td>
</tr>
<tr>
<td>I</td>
<td>Appendix I - Venturi Flowmeter Data Reduction</td>
</tr>
<tr>
<td>II</td>
<td>Appendix II - Mass Flow Rate Uncertainty Determination</td>
</tr>
<tr>
<td>III</td>
<td>Appendix III - ASME Technical Paper</td>
</tr>
<tr>
<td>IV</td>
<td>Appendix IV - AIAA Paper</td>
</tr>
<tr>
<td>V</td>
<td>Appendix V - Elemental Bias Limits Used in Venturi Uncertainty Determination</td>
</tr>
<tr>
<td>VI</td>
<td>Appendix VI - Engine Configuration and Averaged Test Data</td>
</tr>
<tr>
<td>VII</td>
<td>Appendix VII - Calculated Venturi Mass Flowrate Data and Test-to-Test Standard Deviations</td>
</tr>
<tr>
<td>VIII</td>
<td>Appendix VIII - Venturi Mass Flowrate Data and Calculated Bias Limits</td>
</tr>
<tr>
<td>IX</td>
<td>Appendix IX - Plots of Venturi Mass Flowrates</td>
</tr>
<tr>
<td>X</td>
<td>Appendix X - Output from Venturi Uncertainty Program</td>
</tr>
<tr>
<td>XI</td>
<td>Appendix XI - Venturi Uncertainty Analysis Computer Program</td>
</tr>
</tbody>
</table>
1.0 Introduction

1.1 Statement of Work

A thorough understanding of the uncertainties associated with the modeling and testing of the Space Shuttle Main Engine (SSME) Engine will greatly aid decisions concerning hardware performance and future development efforts. The goals of this research effort are delineated in the Statement of Work, reproduced below:

The goal of this effort is to enhance the rocket engine steady-state performance computer models through the incorporation of uncertainty analysis concepts. Analytical tools and analysis techniques are being investigated to better support performance analysis requirements. These requirements include assessing vehicle/engine feed system interface flow characteristics, engine hardware design changes, evaluating engine hardware performance, predicting engine hardware operation, and supporting failure investigations.

A major shortcoming within the current SSME power balance modeling scheme is that experimental data and the fundamental physical relationship are treated as absolutes. Both experimental data and the property requirements contain various sources or errors. The primary sources of error within the instrumentation system are calibration errors, signal processing and localized effects. The primary sources or errors within the fundamental relationships are uncertainties in physical approximations and fluid property computational predictions are forces to agree with the data at instrumented locations, often at the expense of physical consistency. This situation degrades the capability of the analytical tools and thus, reduces the amount of confidence in the results generated.

A test data integration strategy was developed based upon evaluating test data with respect to basic fluid conservation principles (mass, energy, and momentum relationships). This strategy systematically transforms uncertain experimental data into a physically self consistent set of data. This is accomplished by forcing the minimum adjustment required in engine pressures, temperatures, and flowrates necessary to satisfy prescribed uncertainty constraints.

This strategy incorporate uncertainty requirements explicitly. The overall success of the test data integration strategy is a function of determining these required uncertainty estimates.

Another major shortcoming within the current modeling scheme is that the current performance models do not present uncertainty estimates with predictions. A general framework for modular uncertainty estimates with predictions. A general framework for modular rocket engine performance models do not present uncertainty estimates with predictions. A general framework for modular rocket engine performance prediction program is currently being developed that will integrate physical principles, rigorous mathematical formalism, component and system level test data, and theory-observation reconciliation. This development effort will allow for simple implementation of uncertainty estimates associated with physical relationships. Incorporation of these estimates within the rocket engine performance model will support two crucial functions. First, These uncertainty estimates will represent a confidence band associated with each prediction. Secondly, these estimates will provide a measure of the success of the performance model.
The research required to implement these uncertainty analysis concepts will be conducted within the SSME engine 3001 test program which is currently being conducted on the technology test bed (TTB) test facility. Engine 3001 provides a significantly larger number of propellant property measurements as compared to standard SSME modeling strategies, and ultimately, improve the use of test data in generating performance predictions. Phase 1 involves applying uncertainty analysis techniques to obtain estimates for both the bias and the precision uncertainties of engine measurements. Phase 2 involves incorporating uncertainty analysis techniques to estimate uncertainties associated with model computation. A detail description of the specific tasks to support these phase are described below:

Phase 1 - Perform uncertainty analysis for engine 3001 test measurements.
1. Examine TTB instrumentation systems
2. Evaluate data from previous TTB testing
3. Identify all significant sources of errors
4. Estimate both precision and bias uncertainties for the TTB test measurements
5. Evaluate the use of these measurement uncertainty estimates by the PRM for supporting TTB test analysis

Phase 2 - Perform uncertainty analysis on the physical relationships within the Performance Reconciliation Model (PRM)
1. Identify assumptions and physical analysis on the physical approximations made by representing a real physical process as a mathematical model.
2. Determine methods for quantifying the influence of such assumptions and physical approximations.
3. Estimate the modeling uncertainties.
4. Evaluate the use of these uncertainty estimates within the PRM computations for supporting TTB test analysis.

1.2 Report Overview
This report will describe the determination of uncertainties in the modeling and testing of the Space Shuttle Main Engine test program at the Technology Test Bed facility at Marshall Space Flight Center. Section 2 will present a summary of the uncertainty analysis methodology used and discuss the specific applications to the TTB SSME test program. Section 3 will discuss the application of the uncertainty analysis to the test program and the results obtained. Section 4 presents the results of the analysis of the SSME modeling effort from an uncertainty analysis point of view. The appendices at the end of the report contain a significant amount of information relative to the analysis, including discussions of venturi flowmeter data reduction and uncertainty propagation, bias uncertainty documentation, technical papers published, the computer code generated to determine the venturi uncertainties, and the venturi data and results used in the analysis.
2.0 Uncertainty Analysis

The use and application of uncertainty analysis in engineering has evolved considerably since Kline and McClintock's classic paper\(^1\) in 1953. Developments in the field have been especially rapid and significant over the past decade, with the methods formulated by Abernethy and co-workers\(^2\) that were incorporated into ANSI/ASME Standards in 1984\(^3\) and 1986\(^4\) being superseded by a more rigorous approach\(^5\). Publication in late 1993 by the International Organization for Standardization (ISO) of the Guide to the Expression of Uncertainty in Measurement\(^6\) in the name of ISO and six other international organizations has, in everything but name only, established a new international experimental uncertainty standard.

The approach in the ISO Guide deals with "Type A" and "Type B" categories of uncertainties, not the more traditional engineering categories of bias and precision uncertainties, and is of sufficient complexity that its application in normal engineering practice is unlikely. This issue has been addressed by AGARD Working Group 15 on Quality Assessment for Wind Tunnel Testing and by the Standards Subcommittee of the AIAA Ground Test Technical Committee. The documents\(^6,7\) produced by these groups present and discuss the additional assumptions necessary to achieve a less complex "large sample" methodology that is consistent with the ISO Guide, that is applicable to the vast majority of engineering testing (including most single-sample tests), and that retains the use of the traditional engineering concepts of bias and precision uncertainties. (The chapters on uncertainty methodology in the AGARD\(^6\) and AIAA\(^7\) documents were authored by the Principal Investigator of this research program.)

2.1 Overview

The word *accuracy* is generally used to indicate the relative closeness of agreement between an experimentally-determined value of a quantity and its true value. *Error* (\(\delta\)) is the difference between the experimentally-determined value and the truth, thus as error decreases accuracy is said to increase. Only in rare instances is the true value of a quantity known. Thus, one is forced to

---

estimate error, and that estimate is called an uncertainty, \( U \). Uncertainty estimates are made at some confidence level -- a 95% confidence estimate, for example, means that the true value of the quantity is expected to be within the \( \pm U \) interval about the experimentally-determined value 95 times out of 100.

As shown in Figure 1(a), total error \( \delta \) can be considered to be composed of two components: a precision (random) component \( \varepsilon \) and a bias (systematic) component \( \beta \). An error is classified as precision if it contributes to the scatter of the data; otherwise, it is a bias error. It is assumed that corrections have been made for all systematic errors whose values are known. The remaining bias errors are thus equally as likely to be positive as negative.

![Diagram of error components](image)

**Figure 2.1** Errors in the Measurement of a Variable \( X \): (a) two readings; (b) infinite number of readings.
Suppose that we are making a number of measurements of the value of a variable \( X \) that is absolutely steady. The \( k \) and \( k+1 \) measurements are shown in Figure 1(a). Since the bias is a fixed error, it is the same for each measurement. However, the precision error will have a different value for each measurement. It then follows that the total error in each measurement will be different, since the total error is the sum of the bias error and precision error in a measurement.

If we continued to take measurements as previously described until we had a sample of \( N \) readings, more than likely as \( N \) approached infinity the data would behave as shown in Figure 1(b). The bias error would be given by the difference between the mean (average) value \( \mu \) of the \( N \) readings and the true value of \( X \), whereas the precision errors would cause the frequency of occurrence of the readings to be distributed about the mean value.

As an estimator of \( \beta \), a bias limit \( B \) is defined\(^8\). A 95% confidence estimate is interpreted as the experimenter being 95% confident that the true value of the bias error, if known, would fall within \( \pm B \). A useful approach to estimating the magnitude of a bias error is to assume that the bias error for a given case is a single realization drawn from some statistical parent distribution of possible bias errors. For example, suppose a thermistor manufacturer specifies that 95% of samples of a given model are within \( \pm 1.0 \) C of a reference resistance-temperature (R-T) calibration curve supplied with the thermistors. One might assume that the bias errors (the differences between the actual, but unknown, R-T curves of the various thermistors and the reference curve) belong to a Gaussian parent distribution with a standard deviation \( b=0.5 \) C. Then the interval defined by \( \pm B = \pm 2b = \pm 1.0 \) C would include about 95% of the possible bias errors that could be realized from the parent distribution. (The bias limit is sometimes called the "systematic uncertainty".)

As an estimator of the magnitude of the precision errors (the width of the distribution of readings in Figure 1(b)), a precision limit \( P \) is defined\(^8\). A 95% confidence estimate of \( P \) is interpreted to mean that the \( \pm P \) interval about a single reading of \( X_i \) should cover \( \mu \) 95 times out of 100. (The precision limit is sometimes called the "precision uncertainty".)

In nearly all experiments, the measured values of different variables are combined using a data reduction equation (DRE) to form some desired result. A good example is the experimental determination of mass flow rate using a venturi meter as discussed in Appendix II of this report. Functionally, the mass flow rate is given as

---

\[ W_\epsilon = W_\epsilon (P, T, \Delta P, d, D, \alpha, C_D) \]  

(1)

One can envision that errors in the values of the variables on the right hand side of Eq. (1) will cause errors in the experimental result \( W_\epsilon \).

A more general representation of a data reduction equation is

\[ r = r(X_1, X_2, \ldots, X_J) \]  

(2)

where \( r \) is the experimental result determined from \( J \) measured variables \( X_i \). Each of the measured variables contains bias errors and precision errors. These errors in the measured values then propagate through the data reduction equation, thereby generating the bias and precision errors in the experimental result, \( r \).

If the "large sample assumption" is made\(^a,^7\) then the 95% confidence expression for \( U_\epsilon \) becomes

\[ U_\epsilon^2 = \sum_{i=1}^{J} \theta_i^2 B_i^2 + 2 \sum_{i=1}^{J-1} \sum_{k=i+1}^{J} \theta_i \theta_k B_{ik} \]

\[ + \sum_{i=1}^{J} \theta_i^2 P_i^2 + 2 \sum_{i=1}^{J-1} \sum_{k=i+1}^{J} \theta_i \theta_k P_{ik} \]  

(3)

where

\[ \theta_i = \frac{\partial r}{\partial X_i} \]  

(4)

and where the 95% confidence precision limit for a variable \( X_i \) is estimated as

\[ P_i = 2 S_i \quad N \geq 10 \]  

(5)

and the sample standard deviation is calculated using

\[ S_i = \left[ \frac{1}{N-1} \sum_{k=1}^{N} f(X_i)_k - \overline{X_i} \right]^{1/2} \]  

(6)

where the mean value is defined as

\[ \overline{X_i} = \frac{1}{N} \left[ \sum_{k=1}^{N} (X_i)_k \right] \]  

(7)

and \( P_{ik} \) is the 95% confidence estimator of the covariance of the precision errors in \( X_i \) and \( X_k \), and \( B_{ik} \) is the 95% confidence estimator of the covariance of the bias errors in \( X_i \) and \( X_k \).

If we define the bias limit (systematic uncertainty) of the result as
\[
B_r = \sum_{i=1}^{j} \theta_i^2 \beta_i^2 + 2 \sum_{i=1}^{j} \sum_{k=i+1}^{j} \theta_i \theta_k B_{ik}
\]

(8)

and the precision limit (precision uncertainty) of the result as

\[
P_r = \sum_{i=1}^{j} \theta_i^2 P_i^2 + 2 \sum_{i=1}^{j} \sum_{k=i+1}^{j} \theta_i \theta_k P_{ik}
\]

(9)

then Eq. (3) can be written as

\[
U_r = B_r^2 + P_r^2
\]

(10)

and Eqs. (8) and (9) can be viewed as propagation equations for the bias limits and precision limits, respectively.

### 2.2 Determining Precision Limits

**Single Test.** When the result is determined from a single test -- that is, at a given test condition the result is determined once using Eq. (2)

\[
r = r(X_1, X_2, ..., X_j)
\]

(2)

and when the X_i's are considered single measurements, then Eq. (9) is used to find the precision limit of the result. This situation is often encountered in large scale engineering tests in which measurements of the variables are made at a given set point over a period that is small compared to the periods of the factors causing variability in the experiment. A proper precision limit (one indicative of the dispersion of the variable over several cycles of the factors causing its variation) cannot be calculated from readings taken over such a small time interval. For such data, the measurement(s) of a variable X_i should be considered a single reading -- whether the value of X_i is the average of 10, 10^3 or 10^6 readings taken during the short measurement time. In such a test, the value for the precision limit to be associated with a single reading would have to be based on previous information about that measurement obtained over the appropriate time interval. If previous readings of a variable over an appropriate interval are not available, then the experimenter must estimate a value for P_i using the best information available at that time.

For single tests in which some of the variables (X_2 and X_3, for instance) can be determined as averages from multiple readings over an appropriate time period but the other variables cannot be, then

\[
r = r(X_1, \overline{X_2}, \overline{X_3}, ..., X_j)
\]

(11)

---

and Eq. (9) is used to find the precision limit of the result as follows. For the variables that are single readings, the P_i's are the precision limits determined from previous information or estimated from the best available information. For the averaged variables when N_2 and N_3 are equal to or greater than 10, P_2 and P_3 should be taken as precision limits of means, (2S_2)/(N_2)^{1/2} and (2S_3)/(N_3)^{1/2}, with the S's calculated using Eq. (6). When N_2 and N_3 are less than 10, it is the authors' recommendation that the precision limits used in Eq. (9) for the averaged variables be taken as (P_a)/(N_2)^{1/2} and (P_a)/(N_3)^{1/2}, where P_a and P_a are determined from previous information, as is done for the single reading variables.

For tests in which multiple readings of all of the variables can be obtained over an appropriate period, the following method is recommended.

**Multiple Tests.** If a test is performed so that M multiple sets of measurements (X_1, X_2, ..., X_j)_k at the same test condition are obtained, then M results can be determined using Eq. (2) and an average result \( \bar{r} \) can be determined using

\[
\bar{r} = \frac{1}{M} \sum_{k=1}^{M} r_k
\]

If the M sets of measurements were obtained over an appropriate time period, the precision limit that should be associated with a single result would be

\[
P_r = t S_r
\]

where t is determined with M-1 degrees of freedom and is taken as 2 for M ≥ 10 and S_r is the standard deviation of the sample of M results

\[
S_r = \left[ \frac{1}{M-1} \sum_{k=1}^{M} (r_k - \bar{r})^2 \right]^{1/2}
\]

The precision limit that should be associated with the average result is given by

\[
P_{\bar{r}} = \frac{P_r}{\sqrt{M}}
\]

with P_r given by Eq. (13). Using the large sample assumption, the uncertainty that should be associated with a single result would be

\[
U_r^2 = B_r^2 + (2S_r)^2
\]

and with an average result \( \bar{r} \)

\[
U_{\bar{r}}^2 = B_r^2 + \left( 2 S_r / \sqrt{M} \right)^2
\]

with B_r given by Eq. (8).
Correlated Precision Uncertainties. The $P_k$ terms in Eq. (3) take into account the possibility of precision errors in different variables being correlated. These terms have traditionally been neglected\textsuperscript{1,3,4,5,7}, although precision errors in different variables caused by the same uncontrolled factor(s) are certainly possible and can have a substantial impact on the value of the precision limit\textsuperscript{10}. In such cases, one would need to acquire sufficient data to allow a valid statistical estimate of the precision covariance terms to be made if using Eq. (3). Note, however, that the multiple tests approach using Eq. (14) implicitly includes the correlated error effect -- a definite advantage when multiple sets of measurements over an appropriate time period are available.

2.3 Estimating Bias Limits

Bias Limits of Individual Variables. When attempting to estimate the bias limits $B_i$ of the individual variables in Eq. (8), one might separate the bias errors which influence the measurement of a variable into different categories: calibration errors, data acquisition errors, data reduction errors, test technique errors, etc. Within each category, there may be several elemental sources of bias. For instance, if for the $j$th variable, $X_j$, there are $M$ elemental bias errors identified as significant and whose bias limits are estimated as $(B_j)_1, (B_j)_2, \ldots, (B_j)_M$, then the bias limit for the measurement of $X_j$ is calculated as the root-sum-square (RSS) combination of the elemental limits

$$B_j = \left[ \sum_{k=1}^{M} (B_j)_k^2 \right]^{1/2} \quad (18)$$

The elemental bias limits, $(B_j)_k$, must be estimated for each variable $X_j$ using the best information one has available at the time. In the design phase of an experimental program, manufacturer's specifications, analytical estimates and previous experience will typically provide the basis for most of the estimates. As the experimental program progresses, equipment is assembled, and calibrations are conducted, these estimates can be updated using the additional information gained about the accuracy of the calibration standards, errors associated with the calibration process and curvefit procedures, and perhaps analytical estimates of installation errors.

As Moffat\textsuperscript{11} suggests, there can be additional conceptual bias errors resulting from not measuring the variable whose symbol appears in the data reduction equation. An example would be a point temperature measurement interpreted to be indicative of a cross-section averaged temperature, but there may be a cross-sectional variation of temperature, which may or may not have a


predictable profile, causing the "average" value to be different than the point value. Hence, the inclusion of an elemental bias term for the conceptual error would be appropriate.

**Correlated Bias Limits.** Correlated bias limits are those that are not independent of each other, typically a result of different measured variables sharing some identical elemental error sources. It is not unusual for the uncertainties in the results of experimental programs to be influenced by the effects of correlated bias errors in the measurements of several of the variables. A typical example occurs when different variables are measured using the same transducer, such as multiple pressures sequentially ported to and measured with the same transducer or temperatures at different positions in a flow measured with a single probe that is traversed across the flow field. Obviously, the bias errors in the variables measured with the same transducer are not independent of one another. Another common example occurs when different variables are measured using different transducers all of which have been calibrated against the same standard, a situation typical of the electronically scanned pressure (ESP) measurement systems in wide use in aerospace test facilities. In such a case, at least a part of the bias error arising from the calibration procedure will be the same for each transducer, and thus some of the elemental bias error contributions in the measurements of the variables will be correlated.

The $B_{ik}$ terms in Eq. (8) must be approximated -- there is in general no way to obtain the data with which to make a statistical estimate of the covariance of the bias errors in $X_i$ and the bias errors in $X_j$. The approximation of such terms was considered in detail in Ref. 12, where it was shown that the approach that consistently gives the most satisfactory approximation for the correlated bias limits was

$$B_{ik} = \sum_{a=1}^{L} (B_i)_a (B_k)_a$$  \hspace{1cm} (19)

where $L$ is the number of elemental systematic error sources that are common for measurements of variables $X_i$ and $X_k$.

If, for example,

$$r = r(X_1, X_2)$$  \hspace{1cm} (20)

and it is possible for portions of the bias limits $B_1$ and $B_2$ to arise from the same source(s), then Eq. (8) gives

For a case in which the measurements of \( X_1 \) and \( X_2 \) are each influenced by 4 elemental error sources and sources 2 and 3 are the same for both \( X_1 \) and \( X_2 \), Eq. (18) gives

\[
B_i^2 = \theta_i^2 B_i^2 + \theta_i^2 B_i^2 + 2 \theta_i \theta_i B_{i2}
\]

while Eq. (19) gives

\[
B_i^2 = (B_1)_{i1}^2 + (B_1)_{i2}^2 + (B_1)_{i3}^2 + (B_1)_{i4}^2
\]

and

\[
B_2^2 = (B_2)_{i1}^2 + (B_2)_{i2}^2 + (B_2)_{i3}^2 + (B_2)_{i4}^2
\]

while Eq. (19) gives

\[
B_{i2} = (B_1)_{i2} + (B_2)_{i2} + (B_1)_{i3} + (B_2)_{i3}
\]

2.4 Application of Uncertainty Analysis to TTB Testing

The focus in this effort is to identify the uncertainty that should be associated with a measured variable such as temperature or pressure or with a determined result such as flowrate that is calculated using a number of measured variables. The uncertainty given by Eq. (16) -- that associated with a single result -- is the appropriate uncertainty to use when data from a single TTB test are compared with the output of a predictive model.

![Figure 2.2 Schematic of TTB Measurement Process from an Error Sources Viewpoint](image)

Desired Variable

Environment
(Installation & conceptual biases; unsteadiness)

Sensor
(Calibration biases)

Data Acquisition System, DAS
(Calibration biases)

Measured Value of Variable

Figure 2.2 Schematic of TTB Measurement Process from an Error Sources Viewpoint
Figure 2.2 shows a schematic of the viewpoint used in identifying error sources that contribute to the overall uncertainty. The desired variable is taken to be the one with which a model output will be compared -- a cross-section averaged temperature, for example, that would usually be referred to as "the temperature" of the flow at a particular location in the engine. If the sensor responds to temperature at a point, then an installation or conceptual bias exists due to the sensor not actually responding to the desired variable (the average temperature). This is an elemental source that must be included in Eq. (18), and it is potentially one of the dominant elemental sources in temperature and pressure data in TTB testing. The estimation of these sources is a task in the follow-on effort to the work documented in this report. The traditional "measurement uncertainty" sources are shown as biases in the sensor calibration and biases in the calibration of the data acquisition system (DAS). Additionally, the effect of unsteadiness in, and due to, the operating environment must be considered since the sensor calibrations and DAS pre-test calibration checks are not done with the engine operating, and the unsteadiness certainly can have an effect on the final system output - the measured value of the variable.

Choice of the appropriate precision limit to use with TTB data needs to be carefully done. A precision limit determined using a standard deviation from a time slice during one test gives information about the steadiness of the "steady state" at that operating condition during that particular test, but includes no effects of the test-to-test variation of the variable at that operating condition. As discussed in Section 3, the authors believe that computing a standard deviation of a variable or result from multiple tests, all of which were at the same operating condition, gives the appropriate precision estimate for use in discussing the uncertainty in a measured TTB variable. It is also the appropriate precision limit to consider when comparing the results from one test to results from another test in an effort to determine if a change in component, for instance, had any discernible effect on the value of the result.

Detailed discussion of the uncertainty estimates associated with TTB flowrate measurements is given in Section 3 of this report.

2.5 Application of Uncertainty Analysis in SSME Modeling

When comparing output of a model with experimental data, the uncertainties that should be associated with the model predictions must be considered for proper conclusions to be drawn. In the past, most of the work reported in this area has simply considered the sensitivity of the model output to uncertainties in the input data. This obviously does not include any uncertainties in the model itself and thus is not a satisfactory approach. In this research effort, we have divided the sources that cause uncertainty in the model output into three categories: (1) uncertainties due to assumptions and approximations in the model, (2) uncertainties due to the incorporation of previous experimental data into the model, and (3) uncertainties due to the
numerical solution algorithm. Consideration of the third category is not within the scope of this program.

The first category, uncertainties due to assumptions and approximations in the model, does not include the installation and/or conceptual bias source shown in Figure 2.2 and discussed above since that uncertainty is associated with the measured value. Consider the temperature at a particular position in the flow. The uncertainty associated with the measured value of the temperature includes the effect of making a point measurement but desiring a cross-sectional averaged value. The inability of the model to calculate a correct average temperature at a particular location because the one-dimensional flow approximation has been made results in an uncertainty in the predicted temperature. (Stated another way, if the model predicts the correct average temperature at a particular location, then the one-dimensional flow approximation has caused no uncertainty in the model output.)

The uncertainties due to the incorporation of previous experimental data in the model arise when material property data is used, when valve resistance characteristics are used, when pump maps are used, etc. These are all instances in which previous experimental data has been used by replacing the data with curvefits. The original data contained uncertainties, but the curvefit equations used in the predictive models have been treated as the "truth" in most previous considerations of uncertainty in model outputs. Adding further complication, there is no accepted way of estimating the influence of systematic uncertainties on the uncertainty that should be associated with a regression. This aspect has been investigated in this program and is discussed in Section 4. An AIAA paper reporting the progress of this effort is included as Appendix IV.
3.0 Results of Application of Uncertainty Analysis to TTB Testing

An investigation to determine the experimental uncertainties associated with the test measurements from the SSME Engine 3001 installed in the Technology Test Bed facility was conducted. This investigation consisted of reviewing existing documents, discussions with NASA personnel, review of other technical literature, and new analyses. Since the thermodynamic performance analysis of the SSME was the motivation behind this contractual effort, the pressure, differential pressure, temperature, and mass flow rate measurements were the focus of the investigation. Initial discussions concluded to initially focus on the determination of uncertainty in the flowrate measurements, with particular emphasis on the venturi flowmeter determinations. This section will discuss the information obtained upon which the assessment of individual uncertainty source estimates were made.

3.1 Measurement System

The Technology Test Bed test measurement system is described here as all components between the phenomena being measured and the final computer data file in engineering units, including the sensors, transducers, data acquisition systems, and data reduction routines. A previous study by Sverdrup Technology\textsuperscript{13} studied the MFSC test facilities to assess the uncertainty in the measurement systems and to assess if any significant discrepancies existed between test areas. That report identified and quantified the uncertainties between the sensor and the final data file. However, several important points about this study need to be made. First, this study did not assess the uncertainty in a given measurement during the engine test, therefore any additional uncertainty due to the operating environment was not assessed. Secondly, no installation or conceptual uncertainties were considered. Finally, the study was performed in 1992 and prior to the adoption of new standards for the assessment of uncertainties\textsuperscript{5}, and some of the specific procedures used to combine uncertainty sources were not in accordance with the current standard.

The specific aspects of the TTB measurement system were reviewed with the TTB data acquisition personnel. This review showed the procedures and techniques being used are self-consistent, with a pre-test procedure conducted which recalibrates the data acquisition system prior to each test. This ensures that measurement system drift and gross errors do not go undetected.

3.2 Analysis of Previous TTB Test Data

The review of previous test data was cumbersome due to the format of the data being incompatible with commercially available software and the initial difficulties in utilizing MSFC resources for data analysis. To achieve a set of data to review which could be defined as the "same" hardware, tests TTB039 through TTB 051 were chosen. These tests were conducted with Engine 3001 with the large throat combustion chamber and a consistent set of other hardware. Another difficulty in the data analysis to assess uncertainties was the lack of repetition in the test profiles, with each test being conducted for the analysis of specific performance aspects. The data was reviewed in the full sample-rate format (25 or 50 samples/sec) and at the reduced sample-rate format (1 sample/sec). Because of inconsistencies in the way test data is stored in the computer systems, all of the measurements for these tests are not readily accessible. For example, most of the venturi mass flowrate calculations are not available from the computer systems being used. This created problems in assessing the precision uncertainties for the venturi flowrate measurements, particularly trying to assess test-to-test precision uncertainty behavior. To alleviate this situation a new computer program was developed by the COTR to access the test data directly and compute the mass flowrates. This program was then modified by the researchers to calculate the uncertainties associated with the given test data. A discussion of this new software tool is given in Section 3.5.

3.3 Determination Of Mass Flow Rate Uncertainties

The mass flow rate uncertainties for the venturi flowmeters were determined using the methodology previously discussed in Section 2. The data reduction equation is the equation for mass flow rate presented in Appendix III and the expression for the uncertainty in the mass flow rate and the necessary partial derivatives are presented in Appendix IV. This expression shows the density of the fluid within the square root, however the density of the fluid cannot be explicitly measured and must be determined within the data reduction by using the measured pressure and temperature and some equation of state.

The bias limits used in the uncertainty propagation equations were estimated based upon the information gathered from the available documentation, discussions with TTB personnel, and engineering experience. The values used in the calculation of the flowrate uncertainties are shown in Appendix V.

Potentially significant bias uncertainties to be addressed in the TTB measurements are the conceptual bias uncertainties discussed in Section 2. The conceptual bias uncertainties in the temperature and pressure measurements are particularly important in this effort because of the interest in comparing the experimental results with the analytical predictions. In many of the SSME measurements the flowfield is highly
complex due to the sharp turns and bends, valves, pump and turbine inlets and discharges, and other complicating factors. These factors accentuate the difference between the physical quantity at the sensor and the quantity for which the measurement is desired, typically an average value at a cross-section. Assessment of these bias uncertainties has not been accomplished. These assessments will require extensive review of the measurement, the sensor and its installation, the thermodynamic and fluid dynamic flowfield, and their interaction. This detailed analysis of the measurements will take place during the next contract period and based upon a prioritized list developed with the COTR.

The precision limits for the mass flowrate uncertainties are dependent upon the question being asked, or rather, what is purpose for the information. Precision limits can be calculated in many different ways, but the interpretation of the precision limit and the use of it depends upon data used to calculate it. The variables which must be considered for the precision limit calculation include:

- engine number
- specific engine component configuration
- engine test(s)
- power level
- test profile
- specific engine adjustments
- time slice within the test
- data sample rate (data points used for standard deviation calculation)

The precision limits for the flowrate uncertainties were based upon review of the flowrate data for the chosen time slice. Precision limits were estimated in two primary ways. First, one was based upon the full sample-rate data within each test. The second precision limit was estimated based upon averaging the full sample-rate data over a given time slice, for a given test, at a chosen power level to provide a single data point for that test condition and using similar points from other tests to estimate a precision limit.

The uncertainty in the thermophysical property data must be included in the uncertainty analysis since there was some experimental uncertainty in the original experiments upon which the property tables were developed. If the property data is represented by a curve-fit of the experimental data an uncertainty associated with the data and with the curve-fit must be included. The venturi flowrate data reduction utilizes the thermophysical property routine GASP\textsuperscript{14}. The GASP documentation shows the uncertainty in density

\begin{footnotesize}
\end{footnotesize}
for liquid hydrogen and liquid oxygen to be within 0.25%. The GASP program is based upon National Bureau of Standards data for the thermodynamic properties of hydrogen and oxygen.

3.4 Calibration of Mass Flowmeters, Determination of Discharge Coefficient, \(C_D\)

The accurate determination of the mass flow rate for cryogenic rocket propellants is difficult because of the special problems presented. These problems arise because of the extremely cold temperatures, the property data uncertainty, the difference in density and viscosity with respect to the calibration fluid, and limitations on the calibration procedures because of safety considerations. Each of these can introduce an uncertainty in the mass flow rate determination.

The accurate determination of a mass flow rate depends upon the ability to trace the output from a given device back to a standard certified by the National Institute of Standards and Technology (NIST) or some other respected standard. The basic problem with cryogen flowmeters is that there are very limited facilities which can produce an accurate standard using the actual cryogenic fluid. The facilities which do exist are limited to the calibration of liquid nitrogen flows, or have limited capacity. A few facilities exist which can perform calibration with the appropriate cryogen, but the reference standard in these systems use a meter which was calibrated with water and then adjusted for the particular cryogenic fluid. This procedure relies on the concept of dynamic similarity, matching the Reynolds number of the test fluid with the Reynolds number of the calibration fluid, and making corrections for the dimensional changes due to thermal contraction and other miscellaneous effects. A literature survey indicates that very little work has taken place to assess the accuracy of this procedure, primarily due to the cost and complexity involved with developing the necessary experiments with liquid oxygen and liquid hydrogen. Most of the documented work describes the calibration and use of turbine-type flowmeters. Since the facility flowmeters are turbine meters this is an important aspect to study. One of these studies conducted with liquid oxygen which used liquid nitrogen as the calibration fluid indicated that there is a difference on about the same order of magnitude as the uncertainty in the physical property data, about 0.25%\(^{15}\). This study also used liquid argon and the researcher concluded that turbine flowmeters have a dependence on the fluid properties. However, that study was too limited to make a firm conclusion. Since a property dependence was

---

noted between the cryogenic argon and nitrogen in comparison with the
cryogenic oxygen, one would expect a difference between water at room
temperature and cryogenic oxygen. Another study\textsuperscript{16} investigated the use of
calibrating the liquid hydrogen turbine flowmeters with high-pressure
nitrogen because: “Comparisons have been made between water and liquid
hydrogen calibrations. Results of these comparisons indicated that for
inaccuracies less than 1 percent at full-scale flow, water calibrations are
inadequate in predicting the meter constant for liquid-hydrogen flow in
turbine-type flowmeters.”

Very little literature is available which discusses attempts to assess
the uncertainty due to differences in the calibration fluids for differential
pressure producer mass flowmeters, such as venturis and orifices,
particularly for the operating Reynolds numbers of the SSME venturis.
However, it seems obvious from a review of the fluid and thermodynamic
processes going on in the venturi that a non-negligible difference exists. The
description of the venturi flowmeter data reduction equation shown in
Appendix III and the Rocketdyne venturi calibration report\textsuperscript{17} show that
significant assumptions and approximations are made to achieve the data
reduction equations. Two of the fundamental assumptions are that the flow
through the venturi is adiabatic and one-dimensional, which is not true
during engine operation. Another significant factor is that none of the
venturis are installed with the recommended length of upstream straight
duct. Rocketdyne attempted to account for this problem by calibrating the
venturis with the “as-installed” ducts connected, however they could not
reproduce the other flow characteristics, such as flow swirl, turbulence,
oscillations, etc.

The Rocketdyne venturi calibration report develops a polynomial
curve-fit to obtain the value of the discharge coefficients where the curve-fit
is based upon the Reynolds number of the flow through the venturi. They
recommended using an iterative method to determine the discharge
coefficient to use to determine flowrate through the venturi. For all of the
venturi flowmeters calibrated with water in Rocketdyne’s facility dynamic
similarity could not be obtained, that is, the flowmeters could not be
calibrated at the Reynolds number expected during an engine test. In fact,
most of the calibrations were performed at a fraction of the operating
Reynolds number, from 1.7% to 10%, and the curve-fits were extrapolated out
to the operating condition.

\textsuperscript{16} Szaniszlo, Andrew J., and Krause, Lloyd N., “Simulation of Liquid-Hydrogen Turbine-Type Flowmeter
Calibrations using High-Pressure Gas,” NASA TN D\_3773.

\textsuperscript{17} Lepore, Frank A., Rocketdyne Division, Space Shuttle Main Engine No. 3001, Technology Test Bed,
The extrapolation of the calibration curve-fits and the use of a different fluid for the calibration introduce an uncertainty which must be associated with the determination of the mass flowrate. In the absence of performing detailed experiments to assess these uncertainties, an estimate must be made based upon the existing information. The information upon which to base these estimates are the calibration data figures in the Rocketdyne report and the literature review previously discussed. A review of the calibration data figures shows that a curve was fit through the data, but for which a different curve would produce a substantially different result at the operating conditions. Figure 3.1 can be used as an example. The curve generated by Rocketdyne is used in the data reduction, however it can be observed that a significantly different calibration curve would have been obtained if a higher order curvefit was used, or if the last few data points were more heavily weighted.

![Venturi #296 Calibration Curve](image)

**Figure 3.1 Venturi #296 Calibration Curve**

### 3.5 Venturi Flowmeter Uncertainty Computer Program

A computer program was developed to calculate the uncertainty in the mass flowrate determinations. This program was based upon a program initially developed by the COTR to calculate the flowrates for the venturi flowmeters and expanded to perform the uncertainty calculations. This program resides within the EADS10 (Engineering Acquisition and Data System) computer system and assesses the raw, full sample-rate data for all of the engine measurements. The program uses the measured pressure, differential pressure, and temperature for each venturi, combined with the specific dimensional data and other constants (such as discharge coefficient), averages the data for the chosen time slice and calculates the mass flowrate. The bias limits and precision limits for the uncertainty sources for each
venturi are stored in the program as constants and propagated through data reduction equation using the uncertainty propagation equation presented in Appendix IV. The only correlated bias uncertainty included in the uncertainty propagation equation is the uncertainty in the venturi dimensions. All other possible bias correlations were considered negligible, particularly with respect to the magnitude of the discharge coefficient bias uncertainty. The partial derivatives are determined numerically using a finite difference technique, often referred to as a jitter routine. The data used for the bias limits and precision limits and a short description of how the estimates were obtained is shown in Appendix V.

The TTB venturi data reduction utilizes the methodology recommended by Rocketdyne which includes an iterative technique to determine the value of the discharge coefficient. The purpose behind the iterative technique is to provide a value for the discharge coefficient from the polynomial curvefit generated during the calibration. However, the value of the discharge coefficient does not change much within the operating range, so that using a constant value of $C_d$ is more appropriate. The iterative technique tends to encourage a higher level of confidence than is warranted, based upon the previously discussed uncertainties in the discharge coefficients. The program developed to determine the uncertainty in the mass flowrates does not use this iterative technique and provides essentially the same values for the calculated flowrate.

This program will allow the uncertainties in the venturi flowrates to be determined from any TTB test and allows the recalculation of the uncertainties when the bias and precision limits for the individual venturis are updated.

3.6 Flowrate Uncertainty Results

Tests TTB039 through TTB050 were chosen as the basic data to conduct the uncertainty analysis upon. These tests were conducted with the large-throat combustion chamber and represented engine configurations upon which comparisons to the analytical model were desired. A time slice at each of three power levels (100% RPL, 104% RPL, and 109% RPL) was chosen, and the full-sample rate (50 samples/sec) data was averaged over the time slice to obtain a single data point for each PID at each power level. The time slices used at each power level are shown in Table 3.1.

The averaged data was used in the venturi mass flowrate and mass flowrate uncertainty program to obtain the venturi flowrate and the bias limit for each power level for each test. It was observed that the bias limit, as a percent of the flowrate, was constant for all tests and all power levels. The venturi mass flowrate, the bias limit, and the percent bias uncertainty calculated for each of the tests considered at each power level and for each
venturi are shown in the tables in Appendix VII. The bias limits, standard deviations, and uncertainties for the venturis are shown in Table 3.2, for 100% rated power level. Appendix VII contains the mass flowrate data for the tests from which the standard deviations were calculated as well as the calculated bias limits for each test. It is observed that the bias limit is primarily a function of the bias uncertainty in the discharge coefficient.

The preferred method of determining the precision limit for a result is to calculate the standard deviation of the results (mass flowrates in this case) instead of propagating the precision limits of the individual variables. This allows for any correlated precision error sources to be inherently accounted for. Thus a set of tests which represents the nominal engine configuration is desired. The series of tests between TTB039 and TTB050 was chosen because the engine configuration was based upon the large-throat combustion chamber and design changes. However, during this series of tests a Taguchi test matrix was conducted and engine components were varied simultaneously. The changes between the standard Rocketdyne designed high pressure oxidizer turbopump (HPOTP) and the Pratt and Whitney HPOTP, and changes in the high pressure fuel turbopump create problems with data analysis. Since these engine components have different performance the grouping is not appropriate. If the components changed had all been “line-replacement” units, where each unit is expected to provide the same performance as the replaced unit the grouping would be meaningful. The specific engine component configuration for each test is shown in Figure A-VI.1 in Appendix VI. Review of this table showed that four tests were conducted with Rocketdyne HPOTP’s, with the other major components being the same or being line replacement units, thus this series of four was grouped. Other specific engine test variable changes are potentially responsible for some of the precision uncertainty, but the lack of test profile repetition in the TTB program makes specific distinctions difficult.
A standard deviation for the flowrates for the ten tests, as well as the four-test group, designated as RD HPOTP, was obtained, as shown Appendix VII. When these standard deviations are combined with the calculated bias limits using the "large-sample" approximation the results for 100% RPL are shown in Table 3.2, below.

<table>
<thead>
<tr>
<th>PID</th>
<th>Venturi ID</th>
<th>W (lb/sec)</th>
<th>B_w (%)</th>
<th>S_w (%) 10 Tests</th>
<th>S_w (%) RD HPOTP</th>
<th>U_w (%) 10 Tests</th>
<th>U_w (%) RD HPOTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>8801</td>
<td>LPFT Inlet</td>
<td>28.0</td>
<td>2.1</td>
<td>2.3</td>
<td>1.9</td>
<td>5.1</td>
<td>4.3</td>
</tr>
<tr>
<td>8818</td>
<td>CCV Inlet</td>
<td>73.8</td>
<td>3.0</td>
<td>3.4</td>
<td>0.6</td>
<td>7.4</td>
<td>3.2</td>
</tr>
<tr>
<td>8815</td>
<td>Nozzle Cint #1</td>
<td>13.8</td>
<td>2.1</td>
<td>5.5</td>
<td>4.1</td>
<td>11.2</td>
<td>8.5</td>
</tr>
<tr>
<td>8816</td>
<td>Nozzle Cint #2</td>
<td>13.5</td>
<td>2.1</td>
<td>4.7</td>
<td>1.2</td>
<td>9.6</td>
<td>3.2</td>
</tr>
<tr>
<td>8817</td>
<td>Nozzle Cint #3</td>
<td>13.6</td>
<td>2.1</td>
<td>18.5</td>
<td>7.5</td>
<td>37.1</td>
<td>15.1</td>
</tr>
<tr>
<td>8802</td>
<td>LPOT Inlet</td>
<td>188.0</td>
<td>2.1</td>
<td>2.4</td>
<td>1.8</td>
<td>5.2</td>
<td>4.2</td>
</tr>
<tr>
<td>8819</td>
<td>HPOP Discharge</td>
<td>947.0</td>
<td>2.1</td>
<td>1.2</td>
<td>0.8</td>
<td>3.2</td>
<td>2.6</td>
</tr>
<tr>
<td>8804</td>
<td>OPB LOX</td>
<td>26.1</td>
<td>2.1</td>
<td>8.7</td>
<td>1.6</td>
<td>17.5</td>
<td>3.8</td>
</tr>
<tr>
<td>8805</td>
<td>OPB LH2</td>
<td>35.7</td>
<td>2.0</td>
<td>3.6</td>
<td>1.5</td>
<td>7.5</td>
<td>2.5</td>
</tr>
<tr>
<td>8810</td>
<td>FPB LOX</td>
<td>61.3</td>
<td>2.1</td>
<td>4.6</td>
<td>3.9</td>
<td>9.4</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Table 3.2 - Venturi Mass Flowrates and Flowrate Uncertainties @100% RPL

PID #8817, Nozzle Coolant #3 is shown to have a very large precision uncertainty at all three power levels. Further review of the test data shows that the large standard deviation is caused by exceptionally low measurements during tests TTB043 and TTB045. This could be an actual result due to a specific hardware characteristic, a random phenomena, or due to an instrumentation malfunction. From the information available a specific cause cannot be identified and thus the data point cannot be eliminated.

It is interesting to note from Tables A-VII.1 - A-VII.6 in Appendix VII that the standard deviation of the total of the 10 venturi flowmeters is much lower than the standard deviation of any of the individual flowmeters, 0.8% at 100% RPL, for the 10 tests and 0.5% for the four tests. Since the primary engine control point is the main combustion chamber pressure, and since the chamber pressure is directly proportional to the total flowrate (for a set mixture ratio), this result is not surprising. It also indicates the overall performance variation from test-to-test is small, however the variation within the engine changes from test-to-test as the engine re-balances due to specific hardware changes.

The input data for the venturi flowrate calculations are shown in Table A-VI.2 and show that the pressure and temperature measurements have a small standard deviation and the differential pressure measurements have a large test-to-test variation. This verifies the opinion of the TTB
instrumentation engineers that the differential pressure measurements were not as accurate as the other measurements.
4.0 Application of Uncertainty Analysis in SSME Modeling

Assessing the uncertainties in the output of the SSME model is important to making decisions based upon those results. Uncertainties in the model output can be separated into three general categories, uncertainties due to modeling assumptions and approximations, uncertainties due to the numerical solution, and uncertainties due to using previous experimental information.

The primary methodology identified in the literature for assessing uncertainties in analytical models is a perturbation technique, perturbing the model inputs and checking the resultant output. This technique cannot adequately account for all of the identified modeling uncertainties and another methodology is needed.

The model of the SSME being used in this effort is a model based upon the rocket engine modeling platform developed by Pratt and Whitney, ROCETS (Rocket Engine Transient Simulations). This model provides a more structured format wherein the individual engine components are modeled in individual modules and the modules are solved simultaneously to provide the performance prediction.

4.1 Modeling Assumptions and Approximations

When a mathematical or engineering model of a physical system is developed certain assumptions and approximations about the system are made to simplify the system to one for which mathematical expressions can describe. By making these simplifications an error is introduced and the model cannot exactly describe the physical system.

Some of the primary assumptions and approximations made within the SSME model include:

- 1-dimensional
- fully developed
- steady-state
- adiabatic
- ideal gas

The primary problem with attempting to assess uncertainties with respect to these assumptions and approximations is that if the uncertainty to associate with a particular assumption or approximation can be estimated, then the model could be improved to include this estimate instead of trying to estimate the uncertainty. For example, it was determined by a researcher working on a complementary effort that a turbine exit temperature was being predicted using an ideal gas, constant specific heat approximation, which for the specific temperature range of interest was a poor approximation. Instead
of trying to estimate an uncertainty to associate with that approximation the model is being altered to include a better thermodynamic description of the process. Hence, extensive effort within this research program was not warranted in this area.

4.2 Numerical Solution Uncertainties

When the system of equations is solved numerically the exact solution will not be obtained. The error in the numerical solution is a combination of the round-off error specific to the computer system and the truncation error in the numerical solution scheme. The magnitude of the numerical solution uncertainties are assumed to be negligible with respect to the other uncertainties. Hence, extensive effort was not warranted in this area under this contract.

4.3 Uncertainties from using previous experimental information

In all of the component modules, information from previous testing is used. For example, the model of the liquid oxygen flow through a given duct or through a given valve is based upon its component testing, which provides an equation for the resistance through the duct as function of the flowrate. This test information is often reduced to the form of a line or curve.

The value of the discharge coefficient used in the test data reduction or the polynomial constants in the thermodynamic property routines are examples of using previously obtained uncertain test information in a model.

4.4 Linear Regression Uncertainty

The methodology to assess the uncertainty in the coefficients of a linear regression were developed as part of this effort. The uncertainty analysis methodology discussed in Section 2 was applied to the expressions for the regression coefficients to develop the technique. The details of this methodology were presented at a recent conference\textsuperscript{18}. This technical paper is attached in Appendix IV. The work presented in this paper demonstrates that this technique provides a method to determine the uncertainty in linear regression coefficients, and includes the effect of some correlated bias uncertainties. This technique is the first methodology which considers bias uncertainties and correlated bias uncertainties in determining regression coefficient uncertainties.

The methodology is fully developed at this time for linear regressions, but extension to the more general regression forms used in most models requires additional effort.

5.0 Summary

An uncertainty analysis of the SSME test program at the Technology Test Bed facility has shown that non-negligible uncertainties exist in the determination of the mass flowrates, ranging from 2% to up to 10%, and even larger in some cases. The bias uncertainty is dominated by the bias limit in the experimentally determined venturi discharge coefficient. The bias limits for the venturis can be refined as more, and more specific, information about the instrumentation and the installation bias uncertainties is obtained.

The uncertainty intervals provided in this report can be used for comparison to performance prediction models; however the engine configuration being modeled must be representative of the engine configuration for which the precision uncertainty was determined.

A primary source of uncertainty in the analytical modeling of the SSME is from the use of previous experimental information. This information is usually utilized in the form of regressions or curvefits. Initial research efforts to determine a methodology to properly account for the uncertainty in the regression coefficients has shown to be promising, and work is continuing to develop the methodology.
6.0 Bibliography


Appendix I
Venturi Flowmeter Data Reduction

The data reduction methodology for the determination of mass flow rate from differential pressure venturi flowmeters is reproduced from Fluid Meters: Their Theory and Application by ASME\(^1\) and the Rocketdyne Final Report [ref 17].

The mass flow rate through a differential pressure venturi mass flow meter is designated as \(W_e\), with units of [lbm/sec] and the data reduction equation is:

\[
W_e = K Y_a F_a C_w \sqrt{\rho \Delta P}
\]

where \(K\) is a unit conversion factor

\[
K = \frac{\pi}{4} \sqrt{\frac{2g_e}{12}} = 0.5250204
\]

\(Y_a\) is an expansion factor

\[
Y_a = \sqrt{\frac{2}{x^k} \left( \frac{k}{k-1} \right) \left( \frac{1-x^{(k-1)}}{1-x} \right) \left( \frac{1-\beta^4}{1-\beta^4 x^{3/2}} \right)}
\]

where \(k\) is ratio of specific heats, \(C_p/C_v\) and \(x\) is the pressure ratio, defined as

\[
x = 1 - \frac{\Delta P}{P}
\]

\(F_a\) is a thermal expansion factor, defined as

\[
F_a = 1 + 2\alpha(T - 528)
\]

\(C_w\) is the calibration coefficient for the particular venturi, defined as

\[
C_w = \frac{d^2 C_D}{\sqrt{1-\beta^4}}
\]

where \(\beta\) is the ratio of throat diameter to the inlet diameter, \(\beta = d/D\), and \(C_D\) is the discharge coefficient. The discharge coefficient must be determined experimentally, Rocketdyne developed curvefit equations for \(C_D\) as a function of inlet Reynolds number.

For all the venturis except No. 247 the curvefit equation is

\[ C_D = A_e - B_e \left( \frac{\left( \frac{\text{Re}_d}{\text{Re}} \right)}{\text{Re}_d} \right)^a \]

where the Reynolds number is determined from

\[ \text{Re}_d = \frac{4W_e}{\pi \mu d} \]

(Re\_d)\_t is the transition Reynolds number and the curvefit for venturi item No. 247 is

\[ C_D = A + B(\text{Re}_d) + C(\text{Re}_d)^2 + D(\text{Re}_d)^3 + E(\text{Re}_d)^4 \]

Further information and details on the venturi calibration is found in the Rocketdyne Flowmeter Final Report, reference [17].
Appendix II
Mass Flow Rate Uncertainty Determination

When the equations in Appendix I are combined for incompressible fluids ($Y_a = 1$) the equation for the mass flow rate can be written as

$$W_e = (0.525)(1 + 2\alpha(T - 528)) \frac{d^2C_d}{\sqrt{1 - \left(\frac{d}{D}\right)^4}} \sqrt{\rho \Delta P}$$

and performing a general uncertainty analysis the equation for the uncertainty in the mass flow rate can be written as

$$U_{w_r}^2 = \theta_a^2 U_a^2 + \theta_T^2 U_T^2 + \theta_d^2 U_d^2 + \theta_D^2 U_D^2 + \theta_c^2 U_c^2 + \theta_p^2 U_p^2 + \theta_{\Delta P}^2 U_{\Delta P}^2$$

and the partial derivatives are written as

$$\theta_a^2 = (0.525)2(T - 528) \frac{d^2C_d}{\sqrt{1 - \left(\frac{d}{D}\right)^4}} \sqrt{\rho \Delta P}$$

$$\theta_T^2 = (0.525)2\alpha \frac{d^2C_d}{\sqrt{1 - \left(\frac{d}{D}\right)^4}} \sqrt{\rho \Delta P}$$

$$\theta_d^2 = (0.525)(1 + 2\alpha(T - 528)) \frac{d^2C_d}{\sqrt{1 - \left(\frac{d}{D}\right)^4}} \sqrt{\rho \Delta P}$$

$$\theta_p^2 = (0.525)(1 + 2\alpha(T - 528)) \frac{d^2C_d}{\sqrt{1 - \left(\frac{d}{D}\right)^4}} \left\{ \frac{C_D \sqrt{\rho \Delta P}}{\sqrt{1 - \left(\frac{d}{D}\right)^4}} d + \frac{2d^5}{D^4\left(1 - \left(\frac{d}{D}\right)^4\right)^{3/2}} \right\}$$
Since the density of the fluid is not a measured variable, but must be determined as a function of the measured pressure and temperature, it is replaced in the data reduction equation with its functional relationship.

Using this data reduction equation and applying the uncertainty propagation equation in a slightly different form we obtain the expression for the uncertainty as

\[
U^2_{w_e} = \left( \left( \frac{\partial W_e}{\partial C_D} \right)^2 B^2_{C_D} + \left( \frac{\partial W_e}{\partial \Delta P} \right)^2 B^2_{\Delta P} + \left( \frac{\partial W_e}{\partial P} \right)^2 B^2_P \right) + P^2_{w_e} + \left( \frac{\partial W_e}{\partial \alpha} \right)^2 B^2_{\alpha} + 2 \left( \frac{\partial W_e}{\partial D} \right) \left( \frac{\partial W_e}{\partial D} \right) B_{\Delta D}
\]
better estimate of the precision limit and automatically accounts for any correlated precision error behavior within the measured variables.

If the bracketed term is multiplied and divided by $W_e^2$, terms such as

$$\frac{1}{W_e^2} \left( \frac{\partial W_e}{\partial C_D} \right)^2 = \left( \frac{1}{C_D} \right)^2 \approx 1$$

are obtained. This term for $C_D$ is important since it indicates that the square of the bias limit for the discharge coefficient is linear with respect to the square of the uncertainty in the flowrate. This indicates that the uncertainty in the discharge coefficient is an important parameter. Similarly the other terms of this nature can be obtained, (except for the pressure and temperature used in the density function) but are more complicated and are not as easily interpreted.
Appendix III
ASME International Mechanical Engineering Congress and Exposition
Technical Paper

Impact of Uncertainty on Modeling and Testing of the Space Shuttle Main Engine
by
Kendall K. Brown
Hugh W. Coleman
John P. Butas
IMPACT OF UNCERTAINTY ON MODELING AND TESTING
OF THE SPACE SHUTTLE MAIN ENGINE

Kendall K. Brown
Hugh W. Coleman
Propulsion Research Center
Department of Mechanical and Aerospace Engineering
University of Alabama in Huntsville
Huntsville, Alabama

John P. Butas
Liquid Propulsion Branch
NASA/Marshall Space Flight Center
Marshall Space Flight Center, Alabama

ABSTRACT

The Space Shuttle Main Engine (SSME) tests conducted at Marshall Space Flight Center's (MSFC) Technology Test Bed (TTB) facility are being used to assess the performance of new SSME hardware components. The experimental data from the engine tests is analyzed and compared with predictions from the engine's performance prediction model. A research effort is in progress to quantify experimental uncertainties and analytical uncertainties within the SSME performance prediction model. This paper will discuss some of the unique problems encountered in quantifying these uncertainties.

INTRODUCTION

The Space Shuttle Main Engine (SSME) tests conducted at Marshall Space Flight Center's (MSFC) Technology Test Bed (TTB) facility are being used to assess the performance of new SSME hardware components. These new components are being tested in the SSME Engine 3001 program because it provides a significantly higher number of instrumentation points than a normal flight engine. The data is being used to guide the development of new hardware for SSME flight engines as well as future advanced liquid hydrogen/liquid oxygen engines. The test data is also used with the SSME Power Balance Model (PBM), the engine's steady-state performance prediction model, to assess the predictions the model provides and in some cases to make alterations to the model based upon the test data. The fact that the test data contains uncertainties has not been taken into account, and no assessment has been made of the uncertainty in the model's predictions due to the assumptions, approximations, and uncertain data used in the development and solution of the model. The goal of the current effort is to enhance rocket engine steady-state performance models and rocket engine performance analysis through the incorporation of uncertainty analysis techniques. This paper discusses this on-going effort and some of the unique problems being investigated.

TECHNOLOGY TEST BED FACILITY

The Technology Test Bed (TTB) facility "was established to validate new propulsion technology hardware advances for large liquid oxygen and liquid hydrogen rocket engines." (NASA, 1991) The need for a facility in which detailed knowledge of the internal environment of large rocket engines could be obtained was recognized as being necessary for the technology development required for advanced hydrogen/oxygen engines. Planning for the TTB began in 1982 to use a highly instrumented Space Shuttle Main Engine and the test stand at MSFC which was originally constructed for the testing of the first stage of the Saturn V, a five engine cluster of F-1 RP-1/LO\textsubscript{2} rocket engines. The facility modifications were completed in 1984 and the first tests were conducted in 1989 with a SSME with standard flight instrumentation(NASA, 1991). Testing of the highly instrumented SSME, identified as Engine 3001, began in December of 1990 and has continued since then. The technology development items which have been tested in the TTB include the following (NASA, 1991):

* Large throat combustion chamber
* Combustion stability studies
* Engine start transient modifications
CONSIDERING UNCERTAINTY IN TESTING AND MODELING

Since both experimental results and "predictions" from a model contain uncertainties, one needs to consider how these uncertainties should be taken into account when evaluating a comparison of test results and model output. The general case is shown schematically in Figure 1. A physical system is studied both experimentally and analytically. In most situations, the analytical model is "calibrated" using experimental data from the physical system being studied or from a similar system — friction factor vs. Reynolds number correlations, for example. The model also uses property data, which originally was found experimentally and contains uncertainties.

The methodology for estimating the experimental uncertainties has received considerable attention, and the most current approaches are presented and discussed in Coleman and Steele (1989), ISO (1993) and AGARD (1994). To the authors’ knowledge, no equivalent methodology exists for estimating the uncertainty that should be associated with the "predictions" of a model.

In the analytical modeling approach the physical system is studied from the aspect of what physical laws can be applied and which laws of physics will help answer the posed questions. In a fluid system the conservation laws (continuity, momentum, energy) are important; however, these laws are generally not applied in an exact sense in a model. To obtain a solution which will answer the
posed question assumptions and approximations to the physical laws are typically made—for example, making a one-dimensional approximation for a three-dimensional physical process or assuming a structural material behaves linearly with a constant modulus of elasticity.

There are many other assumptions and approximations which are commonly used to reduce general equations to solvable forms, including assumptions such as homogeneous, isotropic, steady, incompressible, isothermal, adiabatic, isentropic, constant acceleration, rigid body, constant rotation, etc. It should be realized that these assumptions and approximations introduce an uncertainty into the output of the model. As mentioned above, often in the analytical approach results from an experiment or physical property data must be introduced along with the assumptions and approximations, thus introducing more elements of uncertainty. With the assumptions and approximations reducing the general physical laws to a solvable form and the necessary other data included, the model is complete and a mathematical solution can be found, that is, a prediction obtained from the model. This solution contains some uncertainty, but there is not any recognized methodology to quantify the uncertainty. In computational approaches, such as computational fluid dynamics, there are methods to estimate the error involved in the numerical solution of the differential equations. But little attention has been paid to how the other assumptions and approximations affect the degree of goodness of the final solution.

This can be taken further by asking how should the two answers, the experimental solution and the analytical solution, be compared. It is extremely unlikely that the two answers will be the same and since each has an uncertainty interval associated with it what can be said about how the two uncertainty intervals interact? Do the intervals overlap? If so, what does it mean and what conclusions can or should be drawn? If the uncertainty intervals do not overlap and a significant difference exists between the analytical solution and the experimental solution, is there justification for adjusting the analytical solution with a "fudge-factor"?

UNCERTAINTY IN SSME TESTING

The aspect of the Engine 3001 test program that is of primary interest in this effort is the engine's thermodynamic performance. As such, the variables of primary interest are the mass flowrates, pressures, and temperatures in various points of the engine. When Engine 3001 was developed 9 flowmeters, 15 temperature transducers, and 12 pressure transducers were added. Both differential pressure venturi flowmeters and orifice plate flowmeters are used for the flowrate determinations, depending on the location and type of flow to be measured. The temperature probes used are mainly thermocouples with a few RTD's in special locations, and the pressure transducers include absolute transducers, differential pressure transducers, and some high frequency pressure transducers.

The operating environment in a Space Shuttle Main Engine is very harsh, much harsher than that in most systems in which an uncertainty analysis has been applied. The combustion chamber operates at greater than 3000 psia, the high pressure fuel turbopump pressurizes the hydrogen fuel to over 5500 psia, and the oxygen is pressurized to over 3800 psia. At these pressures both of the propellants are in the supercritical region while at cryogenic temperatures. The size constraints necessary for the SSME's to fit in the Space Shuttle dictate that the ducting be very compact. The extreme nature of the SSME environment creates some unique problems in instrumentation and measurement and in the interpretation of those measurements.

One of the major tasks in this research effort is to assess the major contributors to the uncertainty in the measurements taken in the TTB Engine 3001 program. Some of the more significant uncertainty sources that have been identified and are being investigated are discussed below. These include the venturi discharge coefficient uncertainty and conceptual uncertainties.

In the analysis of the SSME performance the system flowrates are key parameters. The determination of the uncertainty in the discharge coefficient for the differential pressure venturi flowmeters appears to be a major contributor to the flowrate uncertainty. The SSME's are manufactured by Rocketdyne Corporation, and Engine 3001 was a specially built engine with modifications to the piping and ducting to install the venturi nozzles, orifice plates, and pressure and temperature probe taps. Because one of purposes of the Engine 3001 program was to characterize the internal flow environment in the SSME, Engine 3001 needed to be as similar to flight engines as possible, but with the added instrumentation. This created a number of problems for the design and installation of the venturi flowmeters, the most critical of these being encroachment on the required length of straight duct upstream of the nozzle entrances. The venturis were also designed with consideration of minimizing the pressure drop to help ensure that the cryogenic fluids would not be prone to cavitation and to minimize the added flow resistance.

In an attempt to account for some of these issues, Rocketdyne designed the calibration system to calibrate the venturis with the associated connecting ducting. They then performed calibrations on the venturis in their facility with ambient temperature water as the calibration fluid since a cryogenic calibration facility...
The uncertainty introduced with the use of equations of state to represent the physical properties of the propellants also needs to be addressed, particularly since much of the system operates much above the critical point. Experimental physical property data for hydrogen and oxygen at these conditions is limited and that available has a non-negligible uncertainty, about 0.5% for liquid hydrogen.

**UNCERTAINTY IN SSME MODELING**

As previously mentioned, the ROCETS SSME model is based upon each hardware component having its own module in the program which contains the mathematical model for that component. Each of the modules is a one-dimensional thermodynamic and fluid dynamic model for the particular piece of hardware. The ROCETS program contains the equations for the hardware components typically found in rocket engines and inputs for the specific hardware characteristics for the engine being modeled adjust the general equations to complete the model. The modules then form a set of equations which have to be solved. The ROCETS platform is a more structured platform which is more conducive to the development of the modeling uncertainties.

In order to understand why the modelling of the SSME is such a difficult task, a description of the engine is presented. The Space Shuttle Main Engine operates in a staged combustion cycle. The staged combustion cycle is the highest performance rocket engine cycle available and accordingly the most complicated. The maximum amount of available energy is extracted from the propellants by using the propellants to provide the power to operate the turbopumps and then ensuring that all of the propellants enter the main combustion chamber. The combustion processes occurring in the oxidizer preburner and the fuel preburner occur at approximately 5500 psia, and the main combustion chamber operates at 3160 psia, at 100% rated power.

In trying to assess the uncertainties which are introduced in the modelling process a comparison between the real operation of the engine and the operation of the engine as it is being modelled is necessary. For example, consider the flow of liquid oxygen through the main oxidizer valve. In the real engine the flow is three-dimensional, non-uniform, highly turbulent, and heat transfer is occurring. In the modeling process it is assumed that the axial velocity is the only important velocity and the flow is completely uniform, the effect of the turbulence can be characterized by the Reynolds number or the velocity in conjunction with the valve characteristics, the flow is adiabatic and the process is isenthalpic. A method to estimate the uncertainty propagated through the model due to each of these

capable of handling similar flowrates was not, and is not, available. The dynamic similarity between the calibration fluid and the operating fluid conditions was relied upon to provide appropriate values for the discharge coefficients for the test venturis. In most of the engine venturis the maximum Reynolds number tested during the calibration process was less than the Reynolds numbers expected during engine testing, in some cases by over an order of magnitude. The orifice plates were calibrated by Colorado Engineering Experimentation Station, Inc. and were calibrated with the associated ducting from the engine, but were calibrated with ambient air as the calibration fluid and good Reynolds number correlations were able to be obtained.

The potential difference between calibrating the venturis and orifices with water or air and testing with supercritical cryogenic fluids is an effect we believe might be a significant source of uncertainty. From the lack of published literature and from comments from individuals working in the field, at this time it appears this effect has not been fully addressed.

Another important area of uncertainty to be investigated is the conceptual uncertainty associated with the meaning of a particular measurement. Moffat (1988) introduced the concept of conceptual bias error as the error due to the difference in what the instrument or probe was reading and the use of that measurement in the data reduction routine. For example, if the flowrate of a fluid in a duct is desired, and the velocity of that fluid is measured at a single point in the flow field, there will be a conceptual bias error due to the probe measuring the velocity at a single point instead of measuring the average velocity of the bulk flow. The complicated and complex nature of the flows in the piping and ducting of the engine, due to sharp bends, valves, pump exits, and the like, assure that the readings of the pressure tap or thermocouple located at the inner surface of the pipe are not representative of the bulk flow in the duct.

Difficulties arise in quantifying the value of the conceptual bias errors. If one is able to determine an estimate for the conceptual error, that estimate could be used to adjust the measured value and an uncertainty due to the correction included. The error can be estimated by either analytical methods or by additional experimentation. In the Engine 3001 program additional experimentation for the purpose of assessing conceptual bias errors is prohibitive, with respect to the overall testing goals and the competition for resources. Thus the process of making analytical estimates for the conceptual bias errors is being undertaken. In some cases, CFD modeling of the flows in particular ducts has been previously completed for other purposes and that information will be used in formulating estimates.
assumptions and approximations must be formulated.

The modeling of the combustion processes is another uncertainty contributor. It models the combustion processes with an adiabatic flame temperature calculation using pressure corrected ideal gas assumptions. It does not account for real thermodynamic effects such as dissociation and non-equilibrium, which are potentially significant effects at the high chamber pressures involved. What is the uncertainty propagated through the model due to these assumptions and approximations? Again, a method to quantify these uncertainties must be developed and their influence on the overall result assessed.

After the conditions for which the model is to be solved and reasonable initial guesses are input, the ROCETS model uses a combination of a Newtonian and a Broyden numerical solution scheme to obtain a solution for the conditions throughout the engine. This solution scheme is relatively robust - it converges to a solution quickly and reliably. However, the solution scheme only provides a result within some preassigned tolerance, thus introducing an uncertainty due to the mathematical solution process and necessitating a methodology to assess this uncertainty.

SUMMARY

The ultimate goal of this research effort is to improve the development of rocket propulsion systems by providing information about the uncertainty of the experimental data and analytical predictions upon which decisions are based. Assessment of the experimental uncertainties in the SSME test program is presenting some interesting challenges due to the severe environment of the engine. Assessment of the uncertainties in the analytical predictions is even more challenging because there is not an accepted methodology to follow.

As of August 1994, several tasks are being pursued in support of the two research efforts described above. The progress in support of quantifying experimental uncertainties include the gathering of necessary information about the SSME and test program, a review of the instrumentation systems, identification of some significant uncertainty sources, and assessment of the uncertainties in the venturi flow measurements. Determination of the final values for flow rate, pressure, and temperature uncertainties will be completed by the end of CY 94. The progress in support of quantifying analytical uncertainties within the SSME performance prediction model includes identification of the key questions to be investigated. Further work on the modeling uncertainties will be pursued upon completion of the ROCETS SSME test data reductions model (Santi, 1994).

REFERENCES


FIGURE 1. EXPERIMENTAL AND ANALYTICAL ANALYSIS FLOWCHART
Appendix IV
1995 AIAA Aerospace Sciences Meeting and Exhibit
Technical Paper

Estimating Uncertainty Intervals for Linear Regression
by
Kendall K. Brown
Hugh W. Coleman
W. Glenn Steele
AIAA 95-0796
Estimating Uncertainty Intervals for Linear Regression

Kendall K. Brown and Hugh W. Coleman
Propulsion Research Center
Department of Mechanical and Aerospace Engineering
University of Alabama in Huntsville
Huntsville, AL 35899

W. Glenn Steele
Department of Mechanical Engineering
Mississippi State University
Mississippi State, MS 39762

33rd Aerospace Sciences Meeting and Exhibit
January 9-12, 1995 / Reno, NV
ESTIMATING UNCERTAINTY INTERVALS FOR LINEAR REGRESSION

Kendall K. Brown* and Hugh W. Coleman†
University of Alabama in Huntsville, Huntsville, AL

W. Glenn Steele‡
Mississippi State University, Mississippi State, MS

Abstract
The best straight line through a set of experimental data is often obtained through the application of linear regression analysis, which provides the values of the slope and intercept for this line. The uncertainty intervals that should be associated with the values of the slope and intercept are also important and needed information. Standard statistical techniques to estimate the uncertainties in the slope and intercept are of limited use, primarily due to their assumptions which preclude their use with bias uncertainties. The approach to determining the uncertainty in the values of slope and intercept presented in this paper is based upon applying the uncertainty propagation equations to the regression analysis equations for the slope and intercept. This approach provides for the inclusion of precision uncertainties, bias uncertainties, and correlated bias uncertainties. Using a Monte Carlo type simulation technique, it is shown that this approach provides appropriate estimates of the uncertainty intervals in cases with bias uncertainties and precision uncertainties in both the X and Y measurements.

Nomenclature
Br=bias limit
Bfc=covariance estimator
c=Y-intercept
m=slope of line
M=number of dependent variable measurements per independent variable
N=number of data points
P=precision limit
r=experimental result
S=s standard deviation
X=independent variable
Y=dependent variable
U=uncertainty interval
β=actual bias error
θ=sensitivity, Eq.8
ρ=correlation coefficient

Introduction
In many experimental programs, the quantity of interest is not the data itself, it is the relationship within the data. For example, a tensile test is often conducted to determine the modulus of elasticity for a specimen, where the modulus of elasticity is the slope of the stress-strain relationship that is assumed linear in the elastic region. This relationship can be expressed in the general form

\[ Y = mX + c \] (1)

where \( m \) is the slope of the line and \( c \) is the intercept on the Y-axis.

What are the uncertainties in the calculated values of \( m \) and \( c \) and why are they needed? A use which partially motivated this work is an on going effort to determine the uncertainty from a Space Shuttle Main Engine prediction model which uses regression coefficients from experimental data. This requires knowledge of the uncertainty in the regression coefficients.

The uncertainties in the slope, \( m \), and the Y-intercept, \( c \), are functions of the uncertainties in the determinations of the X and Y variables. The values of \( m \) and \( c \) are obtained by minimizing the sum of the squares of the deviations between the line and the data points, commonly known as the method of least squares. The development of the equations to calculate \( m \) and \( c \) can be found in statistics books and only the equations will be presented here. For \( N \) \((X_i, Y_i)\) data pairs, the slope of the line, \( m \), is determined from
\[ m = \frac{\sum_{i=1}^{N} X_i Y_i - \sum_{i=1}^{N} X_i \sum_{i=1}^{N} Y_i}{N \sum_{i=1}^{N} (X_i^2) - \left( \sum_{i=1}^{N} X_i \right)^2} \]  

(2)

and the intercept, \( c \), is determined from

\[ c = \frac{\sum_{i=1}^{N} (X_i^2) \sum_{i=1}^{N} Y_i - \sum_{i=1}^{N} X_i \sum_{i=1}^{N} (X_i Y_i)}{N \sum_{i=1}^{N} (X_i^2) - \left( \sum_{i=1}^{N} X_i \right)^2} \]  

(3)

In this paper we present a methodology to determine the uncertainties in linear regression coefficients. The effectiveness of this methodology was analyzed using a Monte Carlo-type simulation assuming the true relationship between the \( X \) and \( Y \) variables is in fact linear.

**Experimental Uncertainty Analysis**

The background of the methodology to obtain uncertainty estimates and how they propagate through a given data reduction equation is not presented in this paper -- only a brief overview is given. The reader is referred to references [4], [5], and [6] for a more thorough discussion.

The word accuracy is generally used to indicate the relative closeness of agreement between an experimentally-determined value of a quantity and its true value. Error is the difference between the experimentally-determined value and the truth, thus as error decreases accuracy is said to increase. Only in rare instances is the true value of a quantity known. Thus, it is necessary to estimate error, and that estimate is called an uncertainty, \( U \). Uncertainty estimates are made at some confidence level -- a 95% confidence estimate, for example, means that the true value of the quantity is expected to be within the ±\( U \) interval about the experimentally-determined value 95 times out of 100.

Total error can be considered to be composed of two components: a precision (random) component \( \varepsilon \) and a bias (systematic) component \( \beta \). An error is classified as precision if it contributes to the scatter of the data; otherwise, it is a bias error. As an estimator of \( \beta \), a systematic uncertainty or bias limit, \( B \), is defined. A 95% confidence estimate is interpreted as the experimenter being 95% confident that the true value of the bias error, if known, would fall within ±\( B \). A useful approach to estimating the bias limit is to assume that the bias error for a given case is a single realization drawn from some statistical parent distribution of possible bias errors. For example, suppose a thermistor manufacturer specifies that 95% of samples of a given model are within ±1.0 C of a reference resistance-temperature (R-T) calibration curve supplied with the thermistors. One might assume that the bias errors (the differences between the actual, but unknown, R-T curves of the various thermistors and the reference curve) belong to a Gaussian parent distribution with a standard deviation \( b = 0.5 \) C. Then the interval defined by ±\( B = ±2b = ±1.0 \) C would include about 95% of the possible bias errors that could be realized from the parent distribution.

As an estimator of the magnitude of the precision errors, a precision uncertainty or precision limit \( P \) is defined. A 95% confidence estimate of \( P \) is interpreted to mean that the ±\( P \) interval about a single reading of \( X \) should cover the (biased) parent population mean 95 times out of 100.

In nearly all experiments, the measured values of different variables are combined using a data reduction equation (DRE) to form some desired result. A general representation of a data reduction equation is

\[ r = r(X_1, X_2, \ldots, X_j) \]  

(4)

where \( r \) is the experimental result determined from \( J \) measured variables \( X_j \). Each of the measured variables contains bias errors and precision errors. These errors in the measured values then propagate through the data reduction equation, thereby generating the bias and precision errors in the experimental result, \( r \).

If the "large sample assumption" is made, then the 95% confidence expression for \( U_r \) becomes

\[ U_r^2 = B_r^2 + P_r^2 \]  

(5)

where we define the bias limit (systematic uncertainty) of the result as

\[ B_r^2 = \sum_{i=1}^{J} \theta_i^2 B_i^2 + 2 \sum_{i=1}^{J} \sum_{k=i+1}^{J} \theta_i \theta_k B_{ik} \]  

(6)

and the precision limit (precision uncertainty) of the result as

\[ P_r^2 = \sum_{i=1}^{J} \theta_i^2 P_i^2 + 2 \sum_{i=1}^{J} \sum_{k=i+1}^{J} \theta_i \theta_k P_{ik} \]  

(7)
and where \( B_k \) is the 95% confidence estimate of the covariance appropriate for the bias errors in \( X_i \) and \( X_k \) and \( P_k \) is the 95% confidence estimate of the covariance appropriate for the precision errors in \( X_i \) and \( X_k \), and

\[
\theta_i = \frac{\partial r}{\partial X_i}, \tag{8}
\]

The 95% confidence precision limit for a variable \( X_i \) can be estimated as

\[
P_{X_i} = 2S_{X_i}, \tag{9}
\]

where the sample standard deviation for \( X_i \) is

\[
S_{X_i} = \left[ \frac{1}{N-1} \sum_{k=1}^{N} \left( (X_i)_k - \bar{X}_i \right)^2 \right]^{1/2}, \tag{10}
\]

and the mean value for \( X_i \) is defined as

\[
\bar{X}_i = \frac{1}{N} \sum_{k=1}^{N} (X_i)_k \tag{11}
\]

Typically, correlated precision uncertainties have been neglected so that the \( P_k \)'s in Eq. (7) are taken as zero, and that is assumed in the work reported here. For a thorough discussion of the estimation of the \( B_k \)'s in Eq. (6), the reader is referred to Reference [7]. For the assumptions used in the work reported in this paper,

\[
B_{ik} = B_i B_k \tag{12}
\]

**Regression Uncertainty**

The standard statistical techniques for the determination of uncertainties in regression coefficients have been mainly restricted to random uncertainties. Recently it has been accepted that bias uncertainties and particularly correlated bias uncertainties play an important role in engineering measurements and must be properly accounted for. As such, a methodology which properly accounts for the propagation of both precision and bias uncertainties through linear least squares regression equations has been the subject of recent work.

Price\(^8\) presents a suggested methodology which provides an uncertainty interval associated with a given predicted value of \( Y \). Price's method uses the traditional statistical techniques for the random uncertainties (standard error of the estimate equations) and a new technique to propagate bias uncertainties from elemental error sources in \( X \) and \( Y \) into the predicted \( Y \) value. The ability of the methodology to handle correlated bias uncertainties is not explicitly discussed, nor is it shown that the methodology implicitly accounts for correlated bias uncertainty sources.

Clark\(^6\) again utilizes the traditional statistical techniques to calculate the standard deviations of the slope and intercept due to the precision uncertainties. He then uses a separate technique to propagate the elemental bias uncertainties into a bias limit for the slope and intercept, but the technique does not account for correlated bias uncertainties.

Montgomery\(^7\) is a standard statistical linear regression analysis text and discusses the Ridge Regression method as an appropriate technique to use with biased data and is generally used with higher order regressions. The Ridge technique is still mainly interested in providing the "best fit" of the data and does not allow for the inclusion of bias limits estimated by non-statistical methods.

The approach presented in this paper is an application of the uncertainty analysis methodology presented above to the regression equations for slope and intercept.

Considering Eq.s (2) and (3) to be data reduction equations of the form

\[
m = m(X_1, X_2, ..., X_N, Y_1, Y_2, ..., Y_N) \tag{13}
\]

and

\[
c = c(X_1, X_2, ..., X_N, Y_1, Y_2, ..., Y_N) \tag{14}
\]

and applying the uncertainty analysis equations, Eq.s (5)-(12), the most general form of the expression for the uncertainty in the slope of the line, \( m \), is

\[
U_m^2 = \sum_{i=1}^{N} \left( \frac{\partial m}{\partial Y_i} \right)^2 B_{Y_i}^2 + 2 \sum_{i=1}^{N} \sum_{j=1}^{i-1} \left( \frac{\partial m}{\partial Y_i} \right) \left( \frac{\partial m}{\partial Y_j} \right) B_{Y_i} B_{Y_j} + \sum_{i=1}^{N} \left( \frac{\partial m}{\partial X_i} \right)^2 B_{X_i}^2
\]

\[
+ \sum_{i=1}^{N} \sum_{j=1}^{i-1} \left( \frac{\partial m}{\partial X_i} \right) \left( \frac{\partial m}{\partial X_j} \right) B_{X_i} B_{X_j} + \sum_{i=1}^{N} \left( \frac{\partial m}{\partial X_i} \right)^2 B_{X_i}^2
\]

where \( B_{Y_i} \) is the systematic uncertainty for the \( Y_i \) variable, \( B_{X_i} \) is the systematic uncertainty for the \( X_i \) variable, \( B_{Y_i Y_j} \) is the covariance estimator for the correlated bias uncertainties in the \( Y_i \) and \( Y_j \)
variables, \( B_{X_{i}X_{j}} \) is the covariance estimator for correlated bias uncertainties in the \( X_{i} \) and \( X_{j} \) variables, \( B_{X_{i}Y} \) is the covariance estimator for the correlated bias uncertainties between \( X_{i} \) and \( Y \). \( \sigma_{Y} \) is the random uncertainty for the \( Y \) variable, and \( \sigma_{X} \) is the random uncertainty for the \( X \) variable.

A similar expression for the uncertainty in the intercept is

\[
U_{x}^{2} = \sum_{i=1}^{J} \left( \frac{\partial}{\partial Y_{i}} \right)^{2} B_{Y}^2 + 2 \sum_{i=1}^{J} \sum_{k=1}^{J} \left( \frac{\partial}{\partial Y_{i}} \right) \left( \frac{\partial}{\partial Y_{k}} \right) B_{Y_{i}Y_{k}} \]
\[+ \sum_{i=1}^{J} \left( \frac{\partial}{\partial X_{i}} \right)^{2} P_{X_{i}}^2 + \sum_{i=1}^{J} \left( \frac{\partial}{\partial X_{i}} \right) B_{X_{i}Y} \]
\[+ 2 \sum_{i=1}^{J} \sum_{k=1}^{J} \left( \frac{\partial}{\partial X_{i}} \right) \left( \frac{\partial}{\partial X_{k}} \right) B_{X_{i}X_{k}} + \sum_{i=1}^{J} \left( \frac{\partial}{\partial X_{i}} \right)^{2} P_{X_{i}}^2 \]
\[+ \sum_{i=1}^{J} \sum_{k=1}^{J} \left( \frac{\partial}{\partial X_{i}} \right) \left( \frac{\partial}{\partial X_{k}} \right) B_{X_{i}X_{k}} \]  

(16)

The partial derivatives are

\[
\frac{\partial m}{\partial Y_{i}} = \frac{N \bar{X}_{i} - \frac{\sum_{i=1}^{N} X_{i}}{N}}{N \sum_{i=1}^{N} (X_{i}^{2}) - \left( \frac{\sum_{i=1}^{N} X_{i}}{N} \right)^{2}} \]
(17)

\[
\frac{\partial c}{\partial Y_{i}} = \frac{N \bar{X}_{i} Y_{i} - \frac{\sum_{i=1}^{N} X_{i} Y_{i}}{N}}{N \sum_{i=1}^{N} (X_{i}^{2}) - \left( \frac{\sum_{i=1}^{N} X_{i}}{N} \right)^{2}} \]
(18)

\[
\frac{\partial m}{\partial X_{i}} = \frac{N \bar{Y}_{i} - \frac{\sum_{i=1}^{N} Y_{i}}{N}}{N \sum_{i=1}^{N} (X_{i}^{2}) - \left( \frac{\sum_{i=1}^{N} X_{i}}{N} \right)^{2}} \]
(19)

\[
\frac{\partial m}{\partial X_{i}} = \frac{N \bar{Y}_{i} - \frac{\sum_{i=1}^{N} Y_{i}}{N}}{N \sum_{i=1}^{N} (X_{i}^{2}) - \left( \frac{\sum_{i=1}^{N} X_{i}}{N} \right)^{2}} \]
\[+ \left( \frac{N \sum_{i=1}^{N} X_{i} Y_{i} - \frac{\sum_{i=1}^{N} X_{i} \sum_{i=1}^{N} Y_{i}}{N}}{2N \bar{X}_{i} - 2 \frac{\sum_{i=1}^{N} X_{i}}{N}} \right) \]
\[\left( N \sum_{i=1}^{N} (X_{i}^{2}) - \left( \frac{\sum_{i=1}^{N} X_{i}}{N} \right)^{2} \right)^{2} \]
\]

and

\[
\frac{\partial m}{\partial X_{i}} = \frac{2N \sum_{i=1}^{N} Y_{i} - \sum_{i=1}^{N} X_{i} Y_{i} - \sum_{i=1}^{N} X_{i}}{N \sum_{i=1}^{N} (X_{i}^{2}) - \left( \frac{\sum_{i=1}^{N} X_{i}}{N} \right)^{2}} \]
\[+ \left( \frac{N \sum_{i=1}^{N} X_{i} Y_{i} - \sum_{i=1}^{N} X_{i} \sum_{i=1}^{N} Y_{i}}{2N \bar{X}_{i} - 2 \frac{\sum_{i=1}^{N} X_{i}}{N}} \right) \]
\[\left( N \sum_{i=1}^{N} (X_{i}^{2}) - \left( \frac{\sum_{i=1}^{N} X_{i}}{N} \right)^{2} \right)^{2} \]
(20)

The equations above show the most general form of the equations for the uncertainty in the slope and the intercept, allowing for correlation of bias errors among the different \( X \)’s, among the different \( Y \)’s and also among the \( X \)’s and \( Y \)’s. If none of the systematic error sources are common between the \( X \) variables and the \( Y \) variables, the last term of the equations, the \( X \)-\( Y \) covariance estimator, is zero. This was the form of the equations used in the simulations.

Monte Carlo Simulations

Monte Carlo-type simulations are often used in uncertainty analysis to determine the effectiveness of a particular uncertainty methodology. For this work, what is referred to as a Monte Carlo-type simulation simply means generating numbers to represent experimental data with some amount of error randomly obtained from a predefined error distribution population. Figure 1 is a schematic flowchart of the Monte Carlo simulation technique used.

The Monte Carlo simulations were conducted in the following manner. “True” values for data from a linear relationship with specified coefficients were determined. The word true is emphasized to indicate that it represents the actual physical quantity of the parameter if it could be measured without any bias error or precision error, which is always an unobtainable value. The two-sigma (2 standard deviation or 95% confidence) bias limits and precision limits for each \( X \) and \( Y \) were then specified. The errors in each variable were assumed to come from these normally distributed error populations with the specified standard deviations. A random value for each bias error and precision error was found from a Gaussian random deviate generator subroutine using the specified standard deviations. The Gaussian deviates have a mean of zero and an equal probability of being positive or negative. In the cases presented in this paper all of the \( X \) bias errors were defined as being correlated.
and of the percent of full scale type, so the same random deviate was used for each $X_t$. The same held true for the $Y_t$ variables, but with a different bias error than that in the $X_t$'s. Precision errors were obtained by sampling the precision error populations repeatedly to obtain independent random deviates for each $X_t$ and $Y_t$. For each $X_t$, $Y_t$ pair, the individual bias errors and precision errors were then summed and added to the true value to obtain a data point with errors from the specified error populations. These data points were then used in the linear least squares equations to obtain the value of the regression coefficients. These values represent the regression coefficients of the experiment when the bias and precision errors are present.

A 95% confidence uncertainty interval for the result was calculated from the uncertainty propagation analysis equations for $m$ and $c$. A $\pm U_m$ interval was placed around the slope coefficient value, $m$, and if the true value of the slope was found to be within the interval a counter was incremented. A similar procedure was used with $c$. This procedure was repeated 10,000 times and the percent coverage, or number of times the true result was within the estimated interval, was determined. Using this procedure, the effectiveness of the uncertainty propagation equation could be investigated by checking whether or not the true value is within the 95% confidence uncertainty interval about the measured result 95% of the time.

A useful statistic from the simulation is the uncertainty ratio, the ratio of the average uncertainty intervals for the regression coefficients from the 10,000 iterations divided by the true 95% confidence intervals. The true 95% uncertainties are calculated as twice the sample standard deviations, $S_m$ and $S_c$, from the 10,000 samples of the regression coefficients. The sample standard deviations from the 10,000 sample population can be expected to be good representations of the actual standard deviations of the infinite population of the coefficients with the elemental uncertainty sources as defined. An uncertainty ratio of or near unity shows that the uncertainty methodology works for the particular case, with values greater than one meaning an overprediction and values less than one meaning an underprediction.

**RESULTS**

Simulations were performed with errors only in $Y$, multiple readings of $Y$ at each $X$ setpoint, and with errors in both $X$ and $Y$ for single and multiple readings per setpoint. The coefficients $m$ and $c$ were then determined with the standard linear regression equations, equations (2) and (3), and the uncertainty interval was calculated.

The simulations progressed from simple to complex, with the increasingly more complex simulations being a closer representation of an actual experimental program. Table 1 shows the input data used as the truth, Table 2 shows a summary of the simulations for the number of data points and the method used for the precision limits, and Table 3 shows the $2\sigma$ (95%) intervals used to determine the bias and precision errors from the Gaussian random deviate routines. The percent coverage and the uncertainty ratios were determined both with the propagation equations including the effect of correlated bias uncertainties and neglecting them.

**General**

A few comments and conclusions can be drawn from the results of all the simulations.

The first and third simulations are essentially verifications of the methodology. The actual $2\sigma$ (95%) confidence intervals for both the precision uncertainties and the bias uncertainties were used in the uncertainty propagation equations, including correlated bias effects. Since they yielded approximately 95% coverage the proposed methodology is demonstrated as appropriate.

In the simulations presented in this paper all of the bias uncertainties are a fixed value, or "percent of full scale." With the bias uncertainties being the same value for each data pair, the linear least squares line through the data simply translates vertically or horizontally from the true line. The value of the slope remains the same and there is no systematic uncertainty in the slope. The value of the intercept will change and will accordingly have an uncertainty. In the numerical calculation of the uncertainty of the slope when all of the bias uncertainties are correlated and there are no precision uncertainties, an error due to truncation and round-off was encountered. This problem was avoided by including a very small precision uncertainty during the cases of dominant bias uncertainties.

When the bias uncertainties are of a "percent of reading" nature, so that the bias limit is a function of the magnitude of the variable, the slope will have an associated non-zero systematic uncertainty. This case is not considered in this paper.
The first simulation included a systematic error and a random error for Y only. The systematic errors were totally correlated, that is the same value of systematic error was used for each Y. A random error, from the same error population distribution, but with a different value was used at each data pair. The uncertainty intervals were determined using equations (15) and (16) with all X uncertainties defined as zero. The simulation was repeated for the cases of dominant systematic error, dominant random error, and for systematic error proportional to random error.

Figure 2 shows the effectiveness of the regression coefficient uncertainty propagation equation for the slope as a function of type of dominant uncertainty (bias or precision) and as a function of the number of data pairs. This figure clearly shows that the propagation equation provides the appropriate 95% coverage for all cases. Similar results yielding 94% to 96% coverage for all types of dominant uncertainties was obtained for the intercept uncertainty propagation equation. Thus, when the correct values for the precision limit and bias limit are used in the propagation equations the correct uncertainty interval is obtained. Obtaining the correct value for the precision limit is only possible if an infinite amount of previous information is available upon which to determine the precision limits.

Simulation 2

The second simulation still only included errors in the Y variable, however M additional readings of the Y variable were generated at each X variable setpoint. The same systematic error was used for all of the readings within each iteration, but a different precision error was used for each Y. The m anc c coefficients for the N times M data pairs was found with the linear regression equations. The uncertainty interval was then calculated with the precision limit, \( P_Y \), determined by calculating the standard deviation of the M Y readings at each X setpoint and using the large-sample approximation (t=2).

Figures 3 through 6 show the effectiveness of the regression coefficient propagation equations as a function of the number of points and for the dominant types of uncertainties. Figure 3 shows that approximately 94% to 96% coverage is obtained after the total number of data points reaches about 25 or 30. A similar result was obtained for the intercept uncertainty for dominant precision uncertainties. Figures 4 and 5 show the percent coverage for the case of comparable magnitude bias and precision errors for the slope uncertainty and intercept uncertainty, respectively. These figures show that for even very small numbers of data points that the percent coverage is about 93%. In reference [6] it is discussed that the difference between 93% and 95% is essentially irrelevant since estimates for the bias limits cannot be made to that accuracy. When the systematic uncertainty is dominant (and the bias limit is estimated correctly) about 95% coverage is obtained, as shown in figure 6 for the intercept.

Simulation 3

The third simulation is similar to the first, but errors in both the X and Y variables are included. A single experimental (X,Y) data pair is determined at each X variable setpoint. The uncertainty intervals were determined from Equations (15) and (16). All systematic errors in the X variables are correlated and all systematic errors in the Y variables are correlated, but there is no correlation of systematic errors between the X and the Y variables. The true 95% confidence intervals for both the bias and precision uncertainties are used in the uncertainty propagation equations.

With the same three variations of dominant uncertainty types, bias, comparable, and precision, the uncertainty in the slope and the uncertainty in the Y-intercept the coverage is essentially the desired 95% and the plot appears identical to Figure 2.

Simulation 4

The fourth simulation is the most general. It includes systematic and random errors in both X and Y and there are M sets of (X,Y) experimental data at each nominal X setpoint. The uncertainty intervals were determined from Equations (15) and (16). As in the third simulation, the systematic errors in X are correlated and the systematic errors in Y are correlated, but there is no correlation of systematic errors between X and Y. The precision uncertainty is determined by calculating the standard deviation of the M readings of both variables at each X setpoint and using the large sample approximation at each setpoint.

Figure 7 shows the percent coverage for dominant precision uncertainties, for greater than about 15 total data points (3 Y data points at 5 X setpoints or 5 Y data points at 3 X setpoints) the "large-sample approximation" in the regression propagation equations provides coverage in excess of about 93%. A similar plot is obtained for the intercept. Plots essentially identical to Figures 4 and 5 for comparable bias and precision uncertainties.
Simulation 5

The final simulation has the same form of experimental data generation as the fourth simulation, but the linear regression is applied to the mean of the M readings at each setpoint. Accordingly, the precision uncertainty is determined using the standard deviation of the mean, \( S_M / \sqrt{M} \), and the large-sample approximation so that the precision limits are

\[
P_x = 2 \frac{S_x}{\sqrt{M}} \quad (21)
\]

and

\[
P_y = 2 \frac{S_y}{\sqrt{M}} \quad (22)
\]

where the index \( i \) represents the \( i^{th} \) X setpoint.

This methodology produces a higher coverage for a smaller number of data pairs, as shown in Figures 8 through 10. In the case of dominant precision uncertainties, Figures 8 and 9, the desired coverage of about 95% is reached with only a few measurements at each X setpoint. When bias uncertainties are included and of comparable magnitude to the precision uncertainties, and the correct bias limits have been used, the percent coverage is always greater than 92% and essentially in the desired 94% to 96% range, as shown in Figure 10. When the bias uncertainties are the dominant uncertainty source the coverage is again essentially 95% for both \( m \) and \( c \) and a plot similar to Figure 6 is obtained.

Effect of Correlation

The effect of correlated bias uncertainties has been a neglected part of uncertainty analysis until relatively lately, and a new method of accounting for correlated bias uncertainties was recently presented. In many, if not most situations where a regression is performed the test data will come from the same test apparatus. Since the data is taken with the same equipment the bias errors in the experimental data will be from the same sources and will therefore be correlated. As part of the Monte Carlo simulation the percent coverage and the uncertainty ratio were determined with the regression propagation equations both including and excluding the correlated bias uncertainty terms. Figures 11 and 12 show the uncertainty interval ratio (the calculated uncertainty interval divided by the actual 95% uncertainty interval) for the slope and intercept, respectively. The data from all of the simulations and all of the experiments within a given simulation type were grouped in categories of types of dominant uncertainties: bias dominant, precision dominant, or bias and precision of comparable magnitudes. Within each of the three dominance categories the results were randomized to confound the trends within the data. Figure 11 shows the uncertainty ratio for the slope, \( m \). In the experiments where the bias uncertainties were dominant ignoring the effect of correlation provided a dramatic overestimate of the uncertainty interval, by several orders of magnitude, since the actual uncertainty is of very small magnitude in these cases. In the experiments where the bias uncertainties and the precision uncertainties are of the same order of magnitude the uncertainty interval calculated ignoring the effect of correlated biases is still dramatically overestimated. A similar result is seen for the uncertainty ratio for the Y-intercept, although the overestimate is not quite as dramatic. Both figures also show that when precision uncertainties are dominant the appropriate uncertainty interval uncertainty interval is obtained even if the effect of correlation is ignored in the propagation equation.

These results show quite vividly the impact of not accounting for correlated bias uncertainties when they actually exist within the data. This also demonstrates the potential error involved with using the traditional, statistically based regression uncertainty methods which ignore bias uncertainties.

Conclusion

The techniques developed in this paper provide an engineering method to determine the uncertainty in linear regression coefficients for data containing both random uncertainties, systematic uncertainties, and correlated systematic uncertainties. There are many applications of linear regression analysis uncertainty which were not studied as a part of this effort. Work is continuing in several areas.

Acknowledgments

The authors (KKB and HWC) wish to acknowledge support from NASA under contract number NAS8-38609 D.O. 106 and the Eminent Scholar in Propulsion endowment.

References


### Table 1. True (X,Y) data for all simulations (true line: Y = X + 0)

<table>
<thead>
<tr>
<th>3 pairs</th>
<th>5 pairs</th>
<th>7 pairs</th>
<th>9 pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(90,90)</td>
<td>(80,80)</td>
<td>(70,70)</td>
<td>(60,60)</td>
</tr>
<tr>
<td>(100,100)</td>
<td>(90,90)</td>
<td>(80,80)</td>
<td>(70,70)</td>
</tr>
<tr>
<td>(110,110)</td>
<td>(100,100)</td>
<td>(90,90)</td>
<td>(80,80)</td>
</tr>
<tr>
<td>(120,120)</td>
<td>(110,110)</td>
<td>(100,100)</td>
<td>(90,90)</td>
</tr>
</tbody>
</table>

### Table 2. Summary of Simulations

<table>
<thead>
<tr>
<th>Sim</th>
<th># of X setpoints, N</th>
<th># of Y's per X, M</th>
<th>Precision limit determined from</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,5,7,9</td>
<td>1</td>
<td>2σ</td>
</tr>
<tr>
<td>2</td>
<td>3,5,7,9</td>
<td>3,5,7,9, 11,13,15</td>
<td>2σ, 2σ, 2σ, 2σ</td>
</tr>
<tr>
<td>3</td>
<td>3,5,7,9</td>
<td>1</td>
<td>2σ</td>
</tr>
<tr>
<td>4</td>
<td>3,5,7,9</td>
<td>3,5,7,9, 11,13,15</td>
<td>2σ, 2σ, 2σ, 2σ</td>
</tr>
<tr>
<td>5</td>
<td>3,5,7,9</td>
<td>3,5,7,9, 11,13,15</td>
<td>2σ, 2σ, 2σ, 2σ</td>
</tr>
</tbody>
</table>

### Table 3. Simulation Uncertainty Input Data.

n/a - These simulations did not include any uncertainty in X.
Define true expression

Choose the 95% confidence values (the bias limits and the precision limits) for the bias & precision error sources.

\[
\begin{align*}
Y_i(k) &= Y_{true} + \beta_y(k) + \varepsilon_{Y_i}(k) \\
X_i(k) &= X_{true} + \beta_x(k) + \varepsilon_{X_i}(k)
\end{align*}
\]

Calc \(m(k), c(k)\)

Calc \(U_m, U_c\)

Check

\[
\begin{align*}
m(k) - U_m(k) &< m_{true} < m(k) + U_m(k) \\
c(k) - U_c(k) &< c_{true} < c(k) + U_c(k)
\end{align*}
\]

Yes

Increment Counter

If \(k = 10,000\)

Calc % Coverage, \(S_m, S_c\)

Calc \(U_{m\text{avg}}, U_{c\text{avg}}\)

Calc \(\frac{U_m(\text{calc})}{U_m(\text{actual})}\) and \(\frac{U_c(\text{calc})}{U_c(\text{actual})}\)

Figure 1. Monte Carlo Simulation Flowchart
Figure 2. Simulation 1. Plot of Coverage of Slope vs Type of Dominant Uncertainty and Number of Data. Uncertainties only in Y.

Figure 3. Simulation 2. Plot of Coverage of Slope for Dominant Precision Uncertainties vs Number of Data. Uncertainties only in Y.

Figure 4. Simulation 2. Plot of Coverage of Slope for Comparable Bias and Precision Uncertainties vs Number of Data. Uncertainties only in Y.

Figure 5. Simulation 2. Plot of Coverage of Intercept for Comparable Bias and Precision Uncertainties vs Number of Data. Uncertainties only in Y.

Figure 6. Simulation 2. Plot of Coverage of Intercept for Dominant Bias Uncertainties vs Number of Data. Uncertainties Only in Y.

Figure 7. Simulation 4. Plot of Coverage of Slope for Dominant Precision Uncertainties vs Number of Data. Uncertainties in X and Y. Plot identical for Intercept.

Figure 8. Simulation 5. Plot of Coverage of Intercept for Dominant Precision Uncertainties vs Number of Data. Uncertainties in X and Y.

Figure 9. Simulation 5. Plot of Coverage of Slope for Dominant Precision Uncertainties vs Number of Data. Uncertainties in X and Y.

Figure 10. Simulation 5. Plot of Coverage of Slope for Comparable Bias and Precision Uncertainties vs Number of Data. Uncertainties in X and Y.
Figure 11. Plot of uncertainty ratios vs dominant uncertainty for slope uncertainty. With and without considering correlated bias uncertainties.

Figure 12. Plot of uncertainty ratios vs dominant uncertainty for Y-intercept uncertainty. With and without considering correlated bias uncertainties.
"PAGE MISSING FROM AVAILABLE VERSION"

Page 12-37 missing
### Appendix V
Elemental Bias Limits Used in Venturi Uncertainty Determination

#### Table A-V.1 LPOTP Inlet Venturi Bias Limit Inputs

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_P = 1%$</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>$B_I = 1%$</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>$B_{AP} = 1%$</td>
<td>Engineering estimate</td>
</tr>
<tr>
<td>$B_{CD} = 0.02$</td>
<td>~2%, Rocketdyne report, $C_D$ Extrapolation, Cryogenic application</td>
</tr>
<tr>
<td>$B_{DI} = 0.0005$ in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>$B_{DZ} = 0.0005$ in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>$B_a = 6.5e-07$ in/in-R</td>
<td>~10%, Engineering estimate</td>
</tr>
</tbody>
</table>

#### Table A-V.2 LPFT Inlet Venturi Bias Limit Inputs

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_P = 1%$</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>$B_I = 1%$</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>$B_{AP} = 1%$</td>
<td>Engineering estimate</td>
</tr>
<tr>
<td>$B_{CD} = 0.02$</td>
<td>~2%, 0.8% from RD report, but only cal’d at 7.6% Re</td>
</tr>
<tr>
<td>$B_{DI} = 0.0005$ in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>$B_{DZ} = 0.0005$ in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>$B_a = 4.2e-07$ in/in-R</td>
<td>~10%, Engineering estimate</td>
</tr>
</tbody>
</table>

#### Table A-V.3 CCV Inlet Venturi Bias Limit Inputs

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_P = 1%$</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>$B_I = 1%$</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>$B_{AP} = 1%$</td>
<td>Engineering estimate</td>
</tr>
<tr>
<td>$B_{CD} = 0.031$</td>
<td>~3%, 2% from RD report, but only cal’d at 1.7% Re</td>
</tr>
<tr>
<td>$B_{DI} = 0.0005$ in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>$B_{DZ} = 0.0005$ in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>$B_a = 5.5e-07$ in/in-R</td>
<td>~10%, Engineering estimate</td>
</tr>
</tbody>
</table>
### Table A-V.4 LPOP Discharge Venturi Bias Limit Inputs

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_P=1%)</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>(B_T=1%)</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>(B_{AP}=1%)</td>
<td>Engineering estimate</td>
</tr>
<tr>
<td>(B_{CD}=0.020)</td>
<td>~2%, 1% from RD report, but only cal'd at 4.8% Re</td>
</tr>
<tr>
<td>(B_{DI}=0.0005) in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>(B_{DZ}=0.0005) in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>(B_a=5.5e-07) in/in-R</td>
<td>~10%, Engineering estimate</td>
</tr>
</tbody>
</table>

### Table A-V.5 OPB LOX Venturi Bias Limit Inputs

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_P=1%)</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>(B_T=1%)</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>(B_{AP}=1%)</td>
<td>Engineering estimate</td>
</tr>
<tr>
<td>(B_{CD}=0.021)</td>
<td>~2%, .8% from RD report, but only cal'd at 18% Re</td>
</tr>
<tr>
<td>(B_{DI}=0.0005) in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>(B_{DZ}=0.0005) in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>(B_a=6.7e-07) in/in-R</td>
<td>~10%, Engineering estimate</td>
</tr>
</tbody>
</table>

### Table A-V.6 OPB LH\(_2\) Venturi Bias Limit Inputs

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_P=1%)</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>(B_T=1%)</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>(B_{AP}=1%)</td>
<td>Engineering estimate</td>
</tr>
<tr>
<td>(B_{CD}=0.031)</td>
<td>~3%, .21% from RD report, but only cal'd at 1.86% Re</td>
</tr>
<tr>
<td>(B_{DI}=0.0005) in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>(B_{DZ}=0.0005) in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>(B_a=3.2e-07) in/in-R</td>
<td>~10%, Engineering estimate</td>
</tr>
</tbody>
</table>
### Table A-V.7  FPB LOX Venturi Bias Limit Inputs

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bp=1%</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>Bt=1%</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>BAP=1%</td>
<td>Engineering estimate</td>
</tr>
<tr>
<td>Bca=0.021</td>
<td>~2%, .125% from RD report, but only cal’d at 20% Re and poor curve-fit</td>
</tr>
<tr>
<td>BD1=0.0005 in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>BD2=0.0005 in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>a=6.7e-07 in/in-R</td>
<td>~10%, Engineering estimate</td>
</tr>
</tbody>
</table>

### Table A-V.8  Nozzle Coolant #1 Venturi Bias Limit Inputs

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bp=1%</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>Bt=1%</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>BAP=1%</td>
<td>Engineering estimate</td>
</tr>
<tr>
<td>Bca=0.020</td>
<td>~2%, .115% from RD report, but only cal’d at 3.40% Re</td>
</tr>
<tr>
<td>BD1=0.0005</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>BD2=0.0005</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>a=5.5e-07 in/in-R</td>
<td>~10%, Engineering estimate</td>
</tr>
</tbody>
</table>

### Table A-V.9  Nozzle Coolant #2 Venturi Bias Limit Inputs

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bp=1%</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>Bt=1%</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>BAP=1%</td>
<td>Engineering estimate</td>
</tr>
<tr>
<td>Bca=0.020</td>
<td>~2%, .115% from RD report, but only cal’d at 3.40% Re</td>
</tr>
<tr>
<td>BD1=0.0005 in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>BD2=0.0005 in</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>a=5.5e-07 in/in-R</td>
<td>~10%, Engineering estimate</td>
</tr>
<tr>
<td>Source</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>$B_F=1%$</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>$B_T=1%$</td>
<td>Sverdrup Report</td>
</tr>
<tr>
<td>$B_{AP}=1%$</td>
<td>Engineering estimate</td>
</tr>
<tr>
<td>$B_{CD}=0.020$</td>
<td>~2%, 1.15% from RD report, but only cal'd at 3.40% Re</td>
</tr>
<tr>
<td>$B_{DI}=0.0005\text{ in}$</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>$B_{D2}=0.0005\text{ in}$</td>
<td>Machining tolerance, Rocketdyne report</td>
</tr>
<tr>
<td>$B_a=5.5e-07\text{ in/in-R}$</td>
<td>~10%, Engineering estimate</td>
</tr>
</tbody>
</table>

Table A-V.10 Nozzle Coolant #3 Venturi Bias Limit Inputs
Appendix VI
Engine Configuration and Averaged Test Data
<table>
<thead>
<tr>
<th>ENGINE</th>
<th>TEST_NO</th>
<th>TESTDATE</th>
<th>ADUR</th>
<th>PWRHEAD</th>
<th>MAININJ</th>
<th>MCC</th>
<th>NOZZLE</th>
<th>LPFTPUNIT</th>
<th>HPFTPUNIT</th>
<th>LPOTPUNIT</th>
<th>HPOTPUNIT</th>
<th>LPFTPSERIAL</th>
<th>HPFTPSERIAL</th>
<th>LPOTPSERIAL</th>
<th>HPOTPSERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3001 a50039</td>
<td>1/14/93</td>
<td>210</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>4406R2</td>
<td>2218</td>
<td>2722</td>
<td>4873079</td>
<td>4108675</td>
<td>4876205</td>
<td>4871900</td>
<td></td>
</tr>
<tr>
<td>3001 a50040</td>
<td>2/11/93</td>
<td>180</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>4406R2</td>
<td>2218</td>
<td>2722</td>
<td>4873079</td>
<td>4108675</td>
<td>4876205</td>
<td>4874500</td>
<td></td>
</tr>
<tr>
<td>3001 a50041</td>
<td>4/8/93</td>
<td>203</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>4406R2</td>
<td>2218</td>
<td>8105R5</td>
<td>4873079</td>
<td>4108675</td>
<td>4876205</td>
<td>BUF500</td>
<td></td>
</tr>
<tr>
<td>3001 a50042</td>
<td>4/30/93</td>
<td>203</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>8006R1</td>
<td>2218</td>
<td>8105R5</td>
<td>4873079</td>
<td>4876205</td>
<td>BUF500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3001 a50043</td>
<td>7/8/93</td>
<td>190</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>4406R2</td>
<td>2218</td>
<td>8202R4</td>
<td>4873079</td>
<td>4108675</td>
<td>4876205</td>
<td>XOPW02</td>
<td></td>
</tr>
<tr>
<td>3001 a50044</td>
<td>9/16/93</td>
<td>197</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>4406R2</td>
<td>2217</td>
<td>8202R5</td>
<td>4873079</td>
<td>4108675</td>
<td>4876390</td>
<td>XOPW02</td>
<td></td>
</tr>
<tr>
<td>3001 a50045</td>
<td>12/22/93</td>
<td>200</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>2227R2</td>
<td>2217</td>
<td>2315R3</td>
<td>4873079</td>
<td>4866524</td>
<td>4876390</td>
<td>4877218</td>
<td></td>
</tr>
<tr>
<td>3001 a50046</td>
<td>1/27/94</td>
<td>200</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>2227R2</td>
<td>4204</td>
<td>2315R3</td>
<td>4873079</td>
<td>4866524</td>
<td>4874193</td>
<td>4877218</td>
<td></td>
</tr>
<tr>
<td>3001 a50047</td>
<td>2/15/94</td>
<td>185</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>2227R2</td>
<td>4204</td>
<td>2315R3</td>
<td>4873079</td>
<td>4866524</td>
<td>4874193</td>
<td>4877218</td>
<td></td>
</tr>
<tr>
<td>3001 a50048</td>
<td>3/18/94</td>
<td>185</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>2227R2</td>
<td>4401R1</td>
<td>2315R3</td>
<td>4873079</td>
<td>4866524</td>
<td>4876580</td>
<td>4877218</td>
<td></td>
</tr>
<tr>
<td>3001 a50049</td>
<td>4/12/94</td>
<td>180</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>2227R2</td>
<td>4401R1</td>
<td>2315R3</td>
<td>4873079</td>
<td>4866524</td>
<td>4876580</td>
<td>4877218</td>
<td></td>
</tr>
<tr>
<td>3001 a50050</td>
<td>7/6/94</td>
<td>79</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>8106</td>
<td>4204</td>
<td>8107R10</td>
<td>4873079</td>
<td>XFPW06</td>
<td>4874193</td>
<td>XOPW07</td>
<td></td>
</tr>
<tr>
<td>3001 a50051</td>
<td>7/20/94</td>
<td>40</td>
<td>9</td>
<td>2008</td>
<td>6001</td>
<td>2026</td>
<td>4004R2</td>
<td>8003</td>
<td>4204</td>
<td>8107R10</td>
<td>4873079</td>
<td>XFPW03</td>
<td>4874193</td>
<td>XOPW07</td>
<td></td>
</tr>
</tbody>
</table>

Table A-VL1 Engine Hardware Component Configuration
<table>
<thead>
<tr>
<th>Input data for Venturi Calculations at 100% RPL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Venturi PID</strong></td>
</tr>
<tr>
<td>P((\text{psi}))</td>
</tr>
<tr>
<td>(\Delta P)((\text{psi}))</td>
</tr>
<tr>
<td>T((\circ)R)</td>
</tr>
<tr>
<td>P((\text{psi}))</td>
</tr>
<tr>
<td>(\Delta P)((\text{psi}))</td>
</tr>
<tr>
<td>T((\circ)R)</td>
</tr>
<tr>
<td>P((\text{psi}))</td>
</tr>
<tr>
<td>(\Delta P)((\text{psi}))</td>
</tr>
<tr>
<td>T((\circ)R)</td>
</tr>
<tr>
<td>P((\text{psi}))</td>
</tr>
<tr>
<td>(\Delta P)((\text{psi}))</td>
</tr>
<tr>
<td>T((\circ)R)</td>
</tr>
<tr>
<td>P((\text{psi}))</td>
</tr>
<tr>
<td>(\Delta P)((\text{psi}))</td>
</tr>
<tr>
<td>T((\circ)R)</td>
</tr>
<tr>
<td>P((\text{psi}))</td>
</tr>
<tr>
<td>(\Delta P)((\text{psi}))</td>
</tr>
<tr>
<td>T((\circ)R)</td>
</tr>
<tr>
<td>P((\text{psi}))</td>
</tr>
<tr>
<td>(\Delta P)((\text{psi}))</td>
</tr>
<tr>
<td>T((\circ)R)</td>
</tr>
<tr>
<td>P((\text{psi}))</td>
</tr>
<tr>
<td>(\Delta P)((\text{psi}))</td>
</tr>
<tr>
<td>T((\circ)R)</td>
</tr>
<tr>
<td>P((\text{psi}))</td>
</tr>
<tr>
<td>(\Delta P)((\text{psi}))</td>
</tr>
<tr>
<td>T((\circ)R)</td>
</tr>
<tr>
<td>P((\text{psi}))</td>
</tr>
<tr>
<td>(\Delta P)((\text{psi}))</td>
</tr>
<tr>
<td>T((\circ)R)</td>
</tr>
</tbody>
</table>

44
Appendix VII
Calculated Venturi Mass Flowrate Data
and Test-to-Test Standard Deviations
### Table A-VTL Venturi Mass Flowrates for Tests TTB 039-050 and Standard Deviations @ 100% RPL Data

<table>
<thead>
<tr>
<th>PID</th>
<th>ttb049</th>
<th>ttb048</th>
<th>ttb047</th>
<th>ttb045</th>
<th>avg</th>
<th>S</th>
<th>S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8801</td>
<td>26.6</td>
<td>26.6</td>
<td>27.8</td>
<td>26.6</td>
<td>27.1</td>
<td>0.62</td>
<td>2.3</td>
</tr>
<tr>
<td>8818</td>
<td>71.4</td>
<td>71.9</td>
<td>72.6</td>
<td>72.8</td>
<td>71.9</td>
<td>70.9</td>
<td>3.4</td>
</tr>
<tr>
<td>8818</td>
<td>13.1</td>
<td>12.6</td>
<td>12.4</td>
<td>12.8</td>
<td>13.1</td>
<td>13.1</td>
<td>5.5</td>
</tr>
<tr>
<td>8816</td>
<td>12.8</td>
<td>12.3</td>
<td>12.4</td>
<td>12.6</td>
<td>12.5</td>
<td>12.8</td>
<td>4.7</td>
</tr>
<tr>
<td>8817</td>
<td>13.0</td>
<td>13.8</td>
<td>14.0</td>
<td>13.6</td>
<td>14.6</td>
<td>13.4</td>
<td>18.5</td>
</tr>
<tr>
<td>8802</td>
<td>18.3</td>
<td>17.4</td>
<td>17.5</td>
<td>16.1</td>
<td>17.6</td>
<td>17.6</td>
<td>2.4</td>
</tr>
<tr>
<td>8804</td>
<td>24.1</td>
<td>22.2</td>
<td>22.1</td>
<td>22.8</td>
<td>25.8</td>
<td>20.1</td>
<td>8.7</td>
</tr>
<tr>
<td>8805</td>
<td>34.4</td>
<td>32.9</td>
<td>33.8</td>
<td>32.8</td>
<td>34.8</td>
<td>34.2</td>
<td>3.6</td>
</tr>
<tr>
<td>8810</td>
<td>57.5</td>
<td>64.0</td>
<td>58.7</td>
<td>60.9</td>
<td>64.5</td>
<td>66.5</td>
<td>4.6</td>
</tr>
<tr>
<td>total</td>
<td>1346</td>
<td>1337</td>
<td>1352</td>
<td>1350</td>
<td>1344</td>
<td>1341</td>
<td>0.8</td>
</tr>
</tbody>
</table>

### Table A-VTL2 Venturi Mass Flowrates for Tests TTB 045, 0048-049 and Standard Deviations @ 100% RPL Data (same engine components; Rocketdyne HPOTP)

<table>
<thead>
<tr>
<th></th>
<th>ttb049</th>
<th>ttb048</th>
<th>ttb047</th>
<th>ttb045</th>
<th>avg</th>
<th>S</th>
<th>S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8801</td>
<td>26.6</td>
<td>27.8</td>
<td>27.2</td>
<td>26.8</td>
<td>27.1</td>
<td>0.51</td>
<td>1.9</td>
</tr>
<tr>
<td>8818</td>
<td>71.9</td>
<td>72.6</td>
<td>72.8</td>
<td>72.7</td>
<td>72.5</td>
<td>0.41</td>
<td>0.6</td>
</tr>
<tr>
<td>8815</td>
<td>12.6</td>
<td>12.4</td>
<td>13.6</td>
<td>12.8</td>
<td>12.8</td>
<td>0.52</td>
<td>4.1</td>
</tr>
<tr>
<td>8816</td>
<td>12.3</td>
<td>12.4</td>
<td>12.6</td>
<td>12.3</td>
<td>12.4</td>
<td>0.15</td>
<td>1.2</td>
</tr>
<tr>
<td>8817</td>
<td>13.8</td>
<td>14.0</td>
<td>13.6</td>
<td>11.8</td>
<td>13.3</td>
<td>0.99</td>
<td>7.5</td>
</tr>
<tr>
<td>8802</td>
<td>17.4</td>
<td>17.5</td>
<td>18.1</td>
<td>17.6</td>
<td>17.6</td>
<td>3.10</td>
<td>1.8</td>
</tr>
<tr>
<td>8804</td>
<td>22.2</td>
<td>22.1</td>
<td>22.8</td>
<td>22.2</td>
<td>22.3</td>
<td>0.35</td>
<td>1.6</td>
</tr>
<tr>
<td>8805</td>
<td>32.9</td>
<td>33.8</td>
<td>32.8</td>
<td>32.9</td>
<td>33.1</td>
<td>0.49</td>
<td>1.5</td>
</tr>
<tr>
<td>8810</td>
<td>64.0</td>
<td>58.7</td>
<td>60.9</td>
<td>63.1</td>
<td>61.6</td>
<td>2.39</td>
<td>3.9</td>
</tr>
<tr>
<td>total</td>
<td>1337</td>
<td>1352</td>
<td>1350</td>
<td>1344</td>
<td>1346</td>
<td>6.69</td>
<td>0.5</td>
</tr>
<tr>
<td>PID</td>
<td>ttb049</td>
<td>ttb048</td>
<td>ttb047</td>
<td>ttb046</td>
<td>ttb045</td>
<td>ttb044</td>
<td>ttb043</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>8801</td>
<td>28.0</td>
<td>28.1</td>
<td>29.2</td>
<td>28.5</td>
<td>28.3</td>
<td>28.4</td>
<td>29.3</td>
</tr>
<tr>
<td>8818</td>
<td>73.8</td>
<td>74.0</td>
<td>74.8</td>
<td>75.0</td>
<td>75.0</td>
<td>74.1</td>
<td>74.2</td>
</tr>
<tr>
<td>8815</td>
<td>13.8</td>
<td>13.9</td>
<td>13.3</td>
<td>13.8</td>
<td>13.1</td>
<td>13.4</td>
<td>12.7</td>
</tr>
<tr>
<td>8816</td>
<td>13.5</td>
<td>13.5</td>
<td>13.1</td>
<td>13.3</td>
<td>12.7</td>
<td>13.0</td>
<td>13.3</td>
</tr>
<tr>
<td>8817</td>
<td>13.6</td>
<td>14.5</td>
<td>14.6</td>
<td>14.0</td>
<td>6.0</td>
<td>14.3</td>
<td>7.3</td>
</tr>
<tr>
<td>8802</td>
<td>188</td>
<td>178</td>
<td>179</td>
<td>185</td>
<td>180</td>
<td>181</td>
<td>182</td>
</tr>
<tr>
<td>8819</td>
<td>948</td>
<td>943</td>
<td>962</td>
<td>951</td>
<td>949</td>
<td>926</td>
<td>932</td>
</tr>
<tr>
<td>8804</td>
<td>28.1</td>
<td>23.9</td>
<td>24.0</td>
<td>24.5</td>
<td>23.9</td>
<td>27.2</td>
<td>27.4</td>
</tr>
<tr>
<td>8805</td>
<td>35.7</td>
<td>33.7</td>
<td>34.8</td>
<td>33.5</td>
<td>34.0</td>
<td>36.1</td>
<td>36.2</td>
</tr>
<tr>
<td>8810</td>
<td>61.3</td>
<td>67.6</td>
<td>63.2</td>
<td>65.4</td>
<td>67.6</td>
<td>69.0</td>
<td>66.6</td>
</tr>
<tr>
<td>total</td>
<td>1402</td>
<td>1390</td>
<td>1404</td>
<td>1404</td>
<td>1389</td>
<td>1382</td>
<td>1381</td>
</tr>
</tbody>
</table>

Table A-VII.3 Venturi Mass Flowrates for Tests TTB 040-050 and Standard Deviations @ 104% RPL.

<table>
<thead>
<tr>
<th>ttb049</th>
<th>ttb048</th>
<th>ttb047</th>
<th>ttb045</th>
<th>avg</th>
<th>S</th>
<th>S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8801</td>
<td>28.1</td>
<td>29.2</td>
<td>28.5</td>
<td>28.5</td>
<td>0.50</td>
<td>1.7</td>
</tr>
<tr>
<td>8818</td>
<td>74.0</td>
<td>74.8</td>
<td>75.0</td>
<td>74.7</td>
<td>0.47</td>
<td>0.6</td>
</tr>
<tr>
<td>8815</td>
<td>13.9</td>
<td>13.3</td>
<td>13.8</td>
<td>13.5</td>
<td>0.38</td>
<td>2.8</td>
</tr>
<tr>
<td>8816</td>
<td>13.5</td>
<td>13.1</td>
<td>13.3</td>
<td>12.7</td>
<td>0.32</td>
<td>2.4</td>
</tr>
<tr>
<td>8817</td>
<td>14.5</td>
<td>14.6</td>
<td>14.0</td>
<td>6.0</td>
<td>12.3</td>
<td>4.18</td>
</tr>
<tr>
<td>8802</td>
<td>178</td>
<td>179</td>
<td>185</td>
<td>180</td>
<td>180.4</td>
<td>3.07</td>
</tr>
<tr>
<td>8819</td>
<td>943</td>
<td>962</td>
<td>951</td>
<td>949</td>
<td>951.1</td>
<td>7.77</td>
</tr>
<tr>
<td>8804</td>
<td>23.9</td>
<td>24.0</td>
<td>24.5</td>
<td>23.9</td>
<td>24.1</td>
<td>0.27</td>
</tr>
<tr>
<td>8805</td>
<td>33.7</td>
<td>34.8</td>
<td>33.5</td>
<td>34.0</td>
<td>34.0</td>
<td>0.57</td>
</tr>
<tr>
<td>8810</td>
<td>67.6</td>
<td>63.2</td>
<td>65.4</td>
<td>67.6</td>
<td>65.93</td>
<td>2.11</td>
</tr>
<tr>
<td>total</td>
<td>1390</td>
<td>1408</td>
<td>1404</td>
<td>1389</td>
<td>1398</td>
<td>9.58</td>
</tr>
</tbody>
</table>

Table A-VII.2 Venturi Mass Flowrates for Tests TTB 045, 048-049 and Standard Deviations @ 100% RPL.
<table>
<thead>
<tr>
<th>PID</th>
<th>ttb040</th>
<th>ttb041</th>
<th>ttb042</th>
<th>ttb043</th>
<th>ttb044</th>
<th>ttb045</th>
<th>ttb046</th>
<th>ttb047</th>
<th>ttb048</th>
<th>ttb049</th>
<th>ttb050</th>
<th>avg</th>
<th>S</th>
<th>S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8801</td>
<td>29.8</td>
<td>29.9</td>
<td>31.0</td>
<td>30.3</td>
<td>30.0</td>
<td>30.1</td>
<td>31.1</td>
<td>28.6</td>
<td>30.4</td>
<td>30.1</td>
<td>0.73</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8816</td>
<td>76.6</td>
<td>76.8</td>
<td>77.4</td>
<td>77.7</td>
<td>77.9</td>
<td>76.9</td>
<td>76.9</td>
<td>75.8</td>
<td>76.5</td>
<td>76.9</td>
<td>0.65</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8815</td>
<td>14.7</td>
<td>14.8</td>
<td>14.4</td>
<td>14.5</td>
<td>13.8</td>
<td>14.6</td>
<td>13.9</td>
<td>13.0</td>
<td>14.0</td>
<td>14.2</td>
<td>0.57</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8816</td>
<td>14.4</td>
<td>14.1</td>
<td>14.2</td>
<td>14.0</td>
<td>13.4</td>
<td>14.2</td>
<td>14.3</td>
<td>13.0</td>
<td>13.7</td>
<td>13.9</td>
<td>0.45</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8817</td>
<td>14.3</td>
<td>15.4</td>
<td>15.5</td>
<td>14.9</td>
<td>8.3</td>
<td>16.2</td>
<td>8.4</td>
<td>15.4</td>
<td>16.0</td>
<td>13.8</td>
<td>3.15</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8802</td>
<td>195</td>
<td>182</td>
<td>184</td>
<td>190</td>
<td>185</td>
<td>187</td>
<td>186</td>
<td>184</td>
<td>181</td>
<td>186</td>
<td>4.47</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8819</td>
<td>993</td>
<td>989</td>
<td>1005</td>
<td>992</td>
<td>991</td>
<td>970</td>
<td>973</td>
<td>972</td>
<td>996</td>
<td>987</td>
<td>12.1</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8804</td>
<td>28.6</td>
<td>26.6</td>
<td>26.3</td>
<td>27.0</td>
<td>28.2</td>
<td>29.2</td>
<td>29.2</td>
<td>28.8</td>
<td>25.3</td>
<td>27.6</td>
<td>1.65</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8805</td>
<td>37.0</td>
<td>34.7</td>
<td>36.2</td>
<td>34.5</td>
<td>35.3</td>
<td>38.0</td>
<td>38.5</td>
<td>33.2</td>
<td>36.7</td>
<td>36.0</td>
<td>1.73</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8810</td>
<td>66.0</td>
<td>72.6</td>
<td>68.5</td>
<td>71.0</td>
<td>72.9</td>
<td>74.6</td>
<td>72.6</td>
<td>70.0</td>
<td>76.3</td>
<td>71.6</td>
<td>3.13</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1470</td>
<td>1455</td>
<td>1472</td>
<td>1465</td>
<td>1453</td>
<td>1450</td>
<td>1443</td>
<td>1435</td>
<td>1466</td>
<td>1457</td>
<td>12.68</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A-VL5 Venturi Mass Flowrates for Tests TTB 040-050 and Standard Deviations @ 109% RPL

<table>
<thead>
<tr>
<th>ttb048</th>
<th>ttb047</th>
<th>ttb045</th>
<th>avg</th>
<th>S</th>
<th>S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8801</td>
<td>29.9</td>
<td>30.3</td>
<td>30.0</td>
<td>30.3</td>
<td>0.47</td>
</tr>
<tr>
<td>8818</td>
<td>76.6</td>
<td>77.7</td>
<td>77.9</td>
<td>77.4</td>
<td>0.55</td>
</tr>
<tr>
<td>8815</td>
<td>14.8</td>
<td>14.5</td>
<td>13.8</td>
<td>14.4</td>
<td>0.41</td>
</tr>
<tr>
<td>8816</td>
<td>14.1</td>
<td>14.0</td>
<td>13.4</td>
<td>13.9</td>
<td>0.35</td>
</tr>
<tr>
<td>8817</td>
<td>15.4</td>
<td>15.5</td>
<td>14.9</td>
<td>8.3</td>
<td>13.5</td>
</tr>
<tr>
<td>8802</td>
<td>182</td>
<td>184</td>
<td>190</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>8819</td>
<td>989</td>
<td>1005</td>
<td>992</td>
<td>991</td>
<td>994</td>
</tr>
<tr>
<td>8804</td>
<td>26.6</td>
<td>26.3</td>
<td>27.0</td>
<td>26.2</td>
<td>26.5</td>
</tr>
<tr>
<td>8805</td>
<td>34.7</td>
<td>36.2</td>
<td>34.5</td>
<td>35.3</td>
<td>35.2</td>
</tr>
<tr>
<td>8810</td>
<td>72.6</td>
<td>68.5</td>
<td>71.0</td>
<td>72.9</td>
<td>72.1</td>
</tr>
<tr>
<td>total</td>
<td>1455</td>
<td>1472</td>
<td>1466</td>
<td>1453</td>
<td>1462</td>
</tr>
</tbody>
</table>

Table A-VL5.6 Venturi Mass Flowrates for Tests TTB 045, 048-049 and Standard Deviations @ 109% RPL
Appendix VIII
Venturi Mass Flowrate Data and Calculated Bias Limits
Table A-VIII.1 Venturi Flowrates and Bias Limits for test TTB050

<table>
<thead>
<tr>
<th>W (lb/sec)</th>
<th>Bw (lb/sec)</th>
<th>Bw (%)</th>
<th>W (lb/sec)</th>
<th>Bw (lb/sec)</th>
<th>Bw (%)</th>
<th>W (lb/sec)</th>
<th>Bw (lb/sec)</th>
<th>Bw (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8801</td>
<td>26.61</td>
<td>0.55</td>
<td>2.05</td>
<td>8801</td>
<td>28.02</td>
<td>0.58</td>
<td>2.05</td>
<td>8801</td>
</tr>
<tr>
<td>8818</td>
<td>71.41</td>
<td>2.17</td>
<td>3.04</td>
<td>8818</td>
<td>73.78</td>
<td>2.24</td>
<td>3.04</td>
<td>8818</td>
</tr>
<tr>
<td>8815</td>
<td>13.08</td>
<td>0.27</td>
<td>2.07</td>
<td>8815</td>
<td>13.77</td>
<td>0.29</td>
<td>2.07</td>
<td>8815</td>
</tr>
<tr>
<td>8816</td>
<td>12.78</td>
<td>0.27</td>
<td>2.11</td>
<td>8816</td>
<td>13.48</td>
<td>0.28</td>
<td>2.11</td>
<td>8816</td>
</tr>
<tr>
<td>8817</td>
<td>12.98</td>
<td>0.27</td>
<td>2.1</td>
<td>8817</td>
<td>13.58</td>
<td>0.29</td>
<td>2.1</td>
<td>8817</td>
</tr>
<tr>
<td>8802</td>
<td>183.29</td>
<td>3.8</td>
<td>2.07</td>
<td>8802</td>
<td>188.29</td>
<td>3.9</td>
<td>2.07</td>
<td>8802</td>
</tr>
<tr>
<td>8819</td>
<td>910.39</td>
<td>18.69</td>
<td>2.05</td>
<td>8819</td>
<td>947.63</td>
<td>19.43</td>
<td>2.05</td>
<td>8819</td>
</tr>
<tr>
<td>8804</td>
<td>24.05</td>
<td>0.5</td>
<td>2.07</td>
<td>8804</td>
<td>26.09</td>
<td>0.54</td>
<td>2.07</td>
<td>8804</td>
</tr>
<tr>
<td>8805</td>
<td>34.39</td>
<td>0.7</td>
<td>2.02</td>
<td>8805</td>
<td>35.68</td>
<td>0.72</td>
<td>2.02</td>
<td>8805</td>
</tr>
<tr>
<td>8810</td>
<td>57.47</td>
<td>1.19</td>
<td>2.07</td>
<td>8810</td>
<td>61.29</td>
<td>1.27</td>
<td>2.07</td>
<td>8810</td>
</tr>
</tbody>
</table>

Table A-VIII.2 Venturi Flowrates and Bias Limits for test TTB049

<table>
<thead>
<tr>
<th>W (lb/sec)</th>
<th>Bw (lb/sec)</th>
<th>Bw (%)</th>
<th>W (lb/sec)</th>
<th>Bw (lb/sec)</th>
<th>Bw (%)</th>
<th>W (lb/sec)</th>
<th>Bw (lb/sec)</th>
<th>Bw (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8801</td>
<td>26.63</td>
<td>0.55</td>
<td>2.05</td>
<td>8801</td>
<td>28.12</td>
<td>0.58</td>
<td>2.05</td>
<td>8801</td>
</tr>
<tr>
<td>8818</td>
<td>71.89</td>
<td>2.19</td>
<td>3.04</td>
<td>8818</td>
<td>73.99</td>
<td>2.25</td>
<td>3.04</td>
<td>8818</td>
</tr>
<tr>
<td>8815</td>
<td>12.61</td>
<td>0.26</td>
<td>2.07</td>
<td>8815</td>
<td>13.91</td>
<td>0.29</td>
<td>2.07</td>
<td>8815</td>
</tr>
<tr>
<td>8816</td>
<td>12.31</td>
<td>0.26</td>
<td>2.1</td>
<td>8816</td>
<td>13.47</td>
<td>0.28</td>
<td>2.1</td>
<td>8816</td>
</tr>
<tr>
<td>8817</td>
<td>13.75</td>
<td>0.29</td>
<td>2.1</td>
<td>8817</td>
<td>14.45</td>
<td>0.3</td>
<td>2.1</td>
<td>8817</td>
</tr>
<tr>
<td>8802</td>
<td>173.9</td>
<td>3.6</td>
<td>2.07</td>
<td>8802</td>
<td>177.65</td>
<td>3.68</td>
<td>2.07</td>
<td>8802</td>
</tr>
<tr>
<td>8819</td>
<td>907.18</td>
<td>18.65</td>
<td>2.06</td>
<td>8819</td>
<td>943.16</td>
<td>19.36</td>
<td>2.05</td>
<td>8819</td>
</tr>
<tr>
<td>8804</td>
<td>22.16</td>
<td>0.46</td>
<td>2.07</td>
<td>8804</td>
<td>23.92</td>
<td>0.5</td>
<td>2.07</td>
<td>8804</td>
</tr>
<tr>
<td>8805</td>
<td>32.92</td>
<td>0.67</td>
<td>2.02</td>
<td>8805</td>
<td>33.74</td>
<td>0.68</td>
<td>2.02</td>
<td>8805</td>
</tr>
<tr>
<td>8810</td>
<td>64</td>
<td>1.33</td>
<td>2.07</td>
<td>8810</td>
<td>67.59</td>
<td>1.4</td>
<td>2.07</td>
<td>8810</td>
</tr>
</tbody>
</table>

Table A-VIII.3 Venturi Flowrates and Bias Limits for test TTB048
<table>
<thead>
<tr>
<th>ttb047/100</th>
<th>ttb047/104</th>
<th>ttb047/109</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>W (lb/sec)</strong></td>
<td><strong>Bw (lb/sec)</strong></td>
<td><strong>Bw (%)</strong></td>
</tr>
<tr>
<td>8801</td>
<td>27.19</td>
<td>0.56</td>
</tr>
<tr>
<td>8804</td>
<td>72.77</td>
<td>2.21</td>
</tr>
<tr>
<td>8802</td>
<td>13.56</td>
<td>0.28</td>
</tr>
<tr>
<td>8816</td>
<td>12.64</td>
<td>0.27</td>
</tr>
<tr>
<td>8817</td>
<td>13.56</td>
<td>0.29</td>
</tr>
<tr>
<td>8802</td>
<td>180.74</td>
<td>3.75</td>
</tr>
<tr>
<td>8819</td>
<td>913.02</td>
<td>18.76</td>
</tr>
<tr>
<td>8804</td>
<td>22.83</td>
<td>0.47</td>
</tr>
<tr>
<td>8805</td>
<td>32.79</td>
<td>0.66</td>
</tr>
<tr>
<td>8810</td>
<td>60.88</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Table A-VIII.4 Venturi Flowrates and Bias Limits for test TTB047

<table>
<thead>
<tr>
<th>ttb045/100</th>
<th>ttb045/104</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>W (lb/sec)</strong></td>
<td><strong>Bw (lb/sec)</strong></td>
</tr>
<tr>
<td>8801</td>
<td>26.84</td>
</tr>
<tr>
<td>8804</td>
<td>72.77</td>
</tr>
<tr>
<td>8802</td>
<td>12.75</td>
</tr>
<tr>
<td>8816</td>
<td>13.33</td>
</tr>
<tr>
<td>8817</td>
<td>11.83</td>
</tr>
<tr>
<td>8802</td>
<td>175.52</td>
</tr>
<tr>
<td>8819</td>
<td>913.64</td>
</tr>
<tr>
<td>8804</td>
<td>22.18</td>
</tr>
<tr>
<td>8805</td>
<td>32.86</td>
</tr>
<tr>
<td>8810</td>
<td>63.05</td>
</tr>
</tbody>
</table>

Table A-VIII.5 Venturi Flowrates and Bias Limits for test TTB045

<table>
<thead>
<tr>
<th>ttb044/100</th>
<th>ttb044/104</th>
<th>ttb044/109</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>W (lb/sec)</strong></td>
<td><strong>Bw (lb/sec)</strong></td>
<td><strong>Bw (%)</strong></td>
</tr>
<tr>
<td>8801</td>
<td>27.13</td>
<td>0.56</td>
</tr>
<tr>
<td>8818</td>
<td>71.88</td>
<td>2.19</td>
</tr>
<tr>
<td>8815</td>
<td>13.05</td>
<td>0.27</td>
</tr>
<tr>
<td>8816</td>
<td>12.52</td>
<td>0.26</td>
</tr>
<tr>
<td>8817</td>
<td>14.62</td>
<td>0.31</td>
</tr>
<tr>
<td>8802</td>
<td>176.13</td>
<td>3.65</td>
</tr>
<tr>
<td>8819</td>
<td>891.37</td>
<td>18.33</td>
</tr>
<tr>
<td>8804</td>
<td>25.55</td>
<td>0.53</td>
</tr>
<tr>
<td>8805</td>
<td>34.61</td>
<td>0.7</td>
</tr>
<tr>
<td>8810</td>
<td>64.48</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Table A-VIII.6 Venturi Flowrates and Bias Limits for test TTB044
<table>
<thead>
<tr>
<th>ttb043/100</th>
<th>ttb043/104</th>
<th>ttb043/109</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (lb/sec)</td>
<td>W (lb/sec)</td>
<td>W (lb/sec)</td>
</tr>
<tr>
<td>Bw (%)</td>
<td>Bw (%)</td>
<td>Bw (%)</td>
</tr>
<tr>
<td>8801</td>
<td>27.94</td>
<td>27.94</td>
</tr>
<tr>
<td>8801</td>
<td>29.27</td>
<td>29.27</td>
</tr>
<tr>
<td>8818</td>
<td>71.92</td>
<td>71.92</td>
</tr>
<tr>
<td>8818</td>
<td>74.19</td>
<td>74.19</td>
</tr>
<tr>
<td>8815</td>
<td>12.18</td>
<td>12.18</td>
</tr>
<tr>
<td>8815</td>
<td>12.74</td>
<td>12.74</td>
</tr>
<tr>
<td>8816</td>
<td>12.59</td>
<td>12.59</td>
</tr>
<tr>
<td>8816</td>
<td>13.29</td>
<td>13.29</td>
</tr>
<tr>
<td>8817</td>
<td>7.18</td>
<td>7.18</td>
</tr>
<tr>
<td>8817</td>
<td>7.27</td>
<td>7.27</td>
</tr>
<tr>
<td>8802</td>
<td>76.08</td>
<td>76.08</td>
</tr>
<tr>
<td>8802</td>
<td>76.87</td>
<td>76.87</td>
</tr>
<tr>
<td>8818</td>
<td>1.28</td>
<td>1.28</td>
</tr>
<tr>
<td>8818</td>
<td>1.38</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Table A-VII? Venturi Flowrates and Bias Limits for test TTB043

<table>
<thead>
<tr>
<th>ttb042/100</th>
<th>ttb042/104</th>
<th>ttb042/109</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (lb/sec)</td>
<td>W (lb/sec)</td>
<td>W (lb/sec)</td>
</tr>
<tr>
<td>Bw (%)</td>
<td>Bw (%)</td>
<td>Bw (%)</td>
</tr>
<tr>
<td>8801</td>
<td>26.15</td>
<td>26.15</td>
</tr>
<tr>
<td>8801</td>
<td>27.37</td>
<td>27.37</td>
</tr>
<tr>
<td>8818</td>
<td>68.57</td>
<td>68.57</td>
</tr>
<tr>
<td>8818</td>
<td>72.12</td>
<td>72.12</td>
</tr>
<tr>
<td>8815</td>
<td>13.17</td>
<td>13.17</td>
</tr>
<tr>
<td>8815</td>
<td>13.39</td>
<td>13.39</td>
</tr>
<tr>
<td>8816</td>
<td>13.11</td>
<td>13.11</td>
</tr>
<tr>
<td>8816</td>
<td>13.33</td>
<td>13.33</td>
</tr>
<tr>
<td>8817</td>
<td>14.59</td>
<td>14.59</td>
</tr>
<tr>
<td>8817</td>
<td>14.96</td>
<td>14.96</td>
</tr>
<tr>
<td>8802</td>
<td>172.59</td>
<td>172.59</td>
</tr>
<tr>
<td>8802</td>
<td>177.16</td>
<td>177.16</td>
</tr>
<tr>
<td>8819</td>
<td>898.76</td>
<td>898.76</td>
</tr>
<tr>
<td>8819</td>
<td>933.2</td>
<td>933.2</td>
</tr>
<tr>
<td>8804</td>
<td>25.67</td>
<td>25.67</td>
</tr>
<tr>
<td>8804</td>
<td>27.38</td>
<td>27.38</td>
</tr>
<tr>
<td>8805</td>
<td>30.98</td>
<td>30.98</td>
</tr>
<tr>
<td>8805</td>
<td>32.26</td>
<td>32.26</td>
</tr>
<tr>
<td>8810</td>
<td>62.11</td>
<td>62.11</td>
</tr>
<tr>
<td>8810</td>
<td>65.58</td>
<td>65.58</td>
</tr>
</tbody>
</table>

Table A-VII? Venturi Flowrates and Bias Limits for test TTB042

<table>
<thead>
<tr>
<th>ttb040/100</th>
<th>ttb040/104</th>
<th>ttb040/109</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (lb/sec)</td>
<td>W (lb/sec)</td>
<td>W (lb/sec)</td>
</tr>
<tr>
<td>Bw (%)</td>
<td>Bw (%)</td>
<td>Bw (%)</td>
</tr>
<tr>
<td>8801</td>
<td>27.95</td>
<td>27.95</td>
</tr>
<tr>
<td>8801</td>
<td>28.61</td>
<td>28.61</td>
</tr>
<tr>
<td>8818</td>
<td>65.15</td>
<td>65.15</td>
</tr>
<tr>
<td>8818</td>
<td>73.7</td>
<td>73.7</td>
</tr>
<tr>
<td>8815</td>
<td>14.75</td>
<td>14.75</td>
</tr>
<tr>
<td>8815</td>
<td>13.34</td>
<td>13.34</td>
</tr>
<tr>
<td>8816</td>
<td>14.3</td>
<td>14.3</td>
</tr>
<tr>
<td>8816</td>
<td>13.21</td>
<td>13.21</td>
</tr>
<tr>
<td>8817</td>
<td>16.07</td>
<td>16.07</td>
</tr>
<tr>
<td>8817</td>
<td>15.22</td>
<td>15.22</td>
</tr>
<tr>
<td>8802</td>
<td>170.03</td>
<td>170.03</td>
</tr>
<tr>
<td>8802</td>
<td>175</td>
<td>175</td>
</tr>
<tr>
<td>8819</td>
<td>920.51</td>
<td>920.51</td>
</tr>
<tr>
<td>8819</td>
<td>953.27</td>
<td>953.27</td>
</tr>
<tr>
<td>8804</td>
<td>20.96</td>
<td>20.96</td>
</tr>
<tr>
<td>8804</td>
<td>22.5</td>
<td>22.5</td>
</tr>
<tr>
<td>8805</td>
<td>34.23</td>
<td>34.23</td>
</tr>
<tr>
<td>8805</td>
<td>35.84</td>
<td>35.84</td>
</tr>
<tr>
<td>8810</td>
<td>66.52</td>
<td>66.52</td>
</tr>
<tr>
<td>8810</td>
<td>70.23</td>
<td>70.23</td>
</tr>
</tbody>
</table>

Table A-VIII? Venturi Flowrates and Bias Limits for test TTB040
Appendix IX
Test-to-Test Plots of Venturi Mass Flowrate
LPFT Inlet Flowrate vs Test #

Test:
- TTB039
- TTB040
- TTB044
- TTB045
- TTB047
- TTB048
- TTB049
- TTB050

Flowrate (lb/sec):
- 109%
- 104%
- 100%

Test #
- TTB039
- TTB040
- TTB042
- TTB043
- TTB044
- TTB045
- TTB047
- TTB048
- TB049
- TTB050
Nozzle Coolant #1 vs Test #

![Graph showing the comparison between Nozzle Coolant #1 and Test #.](image_url)
Nozzle Coolant #2 vs Test #

Test #

11.5, 12, 12.5, 13, 13.5, 14, 14.5

TTB039, TTB040, TTB042, TTB043, TTB044, TTB045, TTB047, TTB048, T049, TTB050

Graph showing the comparison of Nozzle Coolant #2 with Test #, with different percentages (109%, 104%, 100%) plotted against test numbers.
Nozzle Coolant #3 vs Test #
Appendix X

Example Output from Venturi Uncertainty Program

The output provided is from test TTB050 for 3-5 second time slices. The definitions of the variables listed are as follows:

PID  Measurement identification
P1   Inlet pressure
DP   Differential pressure
T    Temperature
BP1  Inlet pressure bias limit
BDP  Differential pressure bias limit
BT1  Temperature bias limit
BCD  Discharge coefficient bias limit
BALP Thermal expansion coefficient bias limit
BD1  Venturi throat diameter bias limit
BD2  Venturi inlet diameter bias limit
PW   Flowrate precision limit
W    Flowrate
UW   Uncertainty in flowrate
% UW Percent uncertainty in flowrate

\[
\begin{align*}
\text{DWDP1} &= \frac{\partial W}{\partial P_1} & \text{BWP} = \left( \frac{\partial W}{\partial P} B_p \right)^2 \\
\text{DWDDP} &= \frac{\partial W}{\partial \Delta P} & \text{BWDP} = \left( \frac{\partial W}{\partial \Delta P} B_{\Delta P} \right)^2 \\
\text{DWDT} &= \frac{\partial W}{\partial T} & \text{BWDT} = \left( \frac{\partial W}{\partial T} B_{\Delta T} \right)^2 \\
\text{DWDCD} &= \frac{\partial W}{\partial C_D} & \text{BWCD} = \left( \frac{\partial W}{\partial C_D} B_{C_D} \right)^2 \\
\text{DWALP} &= \frac{\partial W}{\partial \alpha} & \text{BWALP} = \left( \frac{\partial W}{\partial \alpha} B_{\alpha} \right)^2 \\
\text{DWDD1} &= \frac{\partial W}{\partial D_1} & \text{BWD1} = \left( \frac{\partial W}{\partial D_1} B_{D_1} \right)^2 \\
\text{DWDD2} &= \frac{\partial W}{\partial D_2} & \text{BWD2} = \left( \frac{\partial W}{\partial D_2} B_{D_2} \right)^2 
\end{align*}
\]
**Test #: 8010050. Engine #: 3001. # of PIDS: 43 # of Slices: 3**

<table>
<thead>
<tr>
<th>SLNUM</th>
<th>SLICE START TIME &gt; 16.0</th>
<th>SLICE END TIME &gt; 21.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILTTB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DTTB(ILTTB) = 3998.69</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DTTB(ILTTB) = 256.49</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DTTB(ILTTB) = 473.62</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DTTB(ILTTB) = 5223.84</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DTTB(ILTTB) = 386.29</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DTTB(ILTTB) = 92.91</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DTTB(ILTTB) = 5383.70</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DTTB(ILTTB) = 119.84</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DTTB(ILTTB) = 91.82</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DTTB(ILTTB) = 5385.07</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DTTB(ILTTB) = 117.56</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>DTTB(ILTTB) = 92.69</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>DTTB(ILTTB) = 5392.00</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>DTTB(ILTTB) = 121.34</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DTTB(ILTTB) = 90.92</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>DTTB(ILTTB) = 3796.21</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DTTB(ILTTB) = 207.17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>DTTB(ILTTB) = 188.41</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>DTTB(ILTTB) = 3717.76</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>DTTB(ILTTB) = 245.44</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>DTTB(ILTTB) = 190.50</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>DTTB(ILTTB) = 6621.04</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>DTTB(ILTTB) = 134.31</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>DTTB(ILTTB) = 215.41</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>DTTB(ILTTB) = 4887.78</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>DTTB(ILTTB) = 261.37</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>DTTB(ILTTB) = 280.75</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>DTTB(ILTTB) = 6653.16</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>DTTB(ILTTB) = 97.34</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>DTTB(ILTTB) = 204.71</td>
<td></td>
</tr>
</tbody>
</table>

**LPTT INLET FLOWRATE - P(8801) > 26.61 LB/S**

**CCV INLET FLOWRATE - P(8818) > 71.41 LB/S**

**NOZ CLNT FLOWRATE - P(8815) > 13.08 LB/S**

**NOZ CLNT FLOWRATE - P(8816) > 12.78 LB/S**

**LPOP INLET FLOWRATE - P(8802) > 183.29 LB/S**

**HPOP DISCH FLOWRATE - P(8819) > 910.39 LB/S**

**OPB LOX FLOWRATE - P(8804) > 24.05 LB/S**

**OPB FUEL FLOWRATE - W(8805) > 34.39 LB/S**

**FPB LOX FLOWRATE - W(8810) > 57.47 LB/S**

**PID 8801 LPTT INLET VENTURI <20>**

- PI 3998.69 DP 256.49 T 473.62
- BPI 37.9521 BDP 2.0717 BTI 1.8841
- BCD 0.01992 BALP .417E-06 BD1 0.00050 BD2 0.00050
- PW 0.0000
- DWDP1 .3128E-02 DWDDP .4582E-01 DWDT .243E-01
- DWDCCD .2624E+02 DWALP .293E+04 DWDDDC .120E+02 DWDDDD .5076E+02
- BWP .1410E-01 BWDP .9010E-02 BWDT .1000E-02
- BWCD .2731E-00 BWALP .1490E-05 BWDD1 .3589E-04 BWDD2 .6442E-03
- W 26.6139 UW 0.54654 %UW 2.0536

**PID 8818 CCV INLET VENTURI <397>**

- PI 5223.84 DP 386.29 T 92.91
- BPI 52.2384 BDP 3.8629 BTI 0.9291
- BCD 0.03063 BALP .548E-06 BD1 0.00050 BD2 0.00050
- PW 0.0000
- DWDP1 .2260E-02 DWDDP .8235E-01 DWDT .114E+00
- DWDCCD .6990E-02 DWALP .612E+05 DWDDDC .156E+02 DWDDDD .1069E+03
- BWP .1394E-01 BWDP .1017E+00 BWDT .127E-01
- BWCD .4584E+01 BWALP .1126E-02 BWDD1 .6050E-04 BWDD2 .2855E-02
- W 71.4057 UW 2.17125 %UW 3.0407

---

65
PID 8815 NOZ CLNT
VENTURI <3541>
P1 5223.84 DP 386.29 T 92.91
BP1 53.8370 BDP 1.1984 BT1 0.9182
BCD 0.02033 BALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .233E-03 DWDDP .5311E-01 DWDT -.217E-01
DWDCD .1287E-02 DWALP -1.11E-05 DWDD1 -.328E+01 DWDD2 .3210E+02
BWP .3033E-03 BWDP .4051E-02 BWDT .3978E-03
BWCD .6842E-01 BWALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .3235E-03 DWDDP .5311E-01 DWDT -.217E-01
DWDCD .1287E-02 DWALP -1.11E-05 DWDD1 -.328E+01 DWDD2 .3210E+02
BWP .3033E-03 BWDP .4051E-02 BWDT .3978E-03
BWCD .6842E-01 BWALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWD Pl 1.3153E-03 DWDDP .5293E-01 DWDT -.215E-01
DWDCD .1283E-02 DWALP -1.10E-05 DWDD1 -.325E+01 DWDD2 .3131E+02
BWP .2882E-03 BWDP .3872E-02 BWDT .3977E-03
BWCD .6799E-01 BWALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWD Pl 1.3153E-03 DWDDP .5293E-01 DWDT -.215E-01
DWDCD .1283E-02 DWALP -1.10E-05 DWDD1 -.325E+01 DWDD2 .3131E+02
BWP .2882E-03 BWDP .3872E-02 BWDT .3977E-03
BWCD .6799E-01 BWALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
W 13.0899 UW 0.27095 %UW 2.0713

PID 8816 NOZ CLNT
VENTURI <3542>
P1 5385.07 DP 117.56 T 92.69
BP1 53.8507 BDP 1.1756 BT1 0.9269
BCD 0.02033 BALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .3235E-03 DWDDP .5311E-01 DWDT -.217E-01
DWDCD .1287E-02 DWALP -1.11E-05 DWDD1 -.328E+01 DWDD2 .3210E+02
BWP .3033E-03 BWDP .4051E-02 BWDT .3978E-03
BWCD .6842E-01 BWALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .3235E-03 DWDDP .5311E-01 DWDT -.217E-01
DWDCD .1287E-02 DWALP -1.11E-05 DWDD1 -.328E+01 DWDD2 .3210E+02
BWP .3033E-03 BWDP .4051E-02 BWDT .3978E-03
BWCD .6842E-01 BWALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
W 12.7825 UW 0.26978 %UW 2.1106

PID 8817 NOZ CLNT
VENTURI <3543>
P1 5392.00 DP 121.34 T 90.92
BP1 53.9200 BDP 1.2134 BT1 0.9092
BCD 0.02033 BALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .3074E-03 DWDDP .5182E-01 DWDT -.220E-01
DWDCD .1299E-02 DWALP -1.33E-05 DWDD1 -.331E+01 DWDD2 .3190E+02
BWP .2747E-03 BWDP .3954E-02 BWDT .3993E-03
BWCD .6978E-01 BWALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .3074E-03 DWDDP .5182E-01 DWDT -.220E-01
DWDCD .1299E-02 DWALP -1.33E-05 DWDD1 -.331E+01 DWDD2 .3190E+02
BWP .2747E-03 BWDP .3954E-02 BWDT .3993E-03
BWCD .6978E-01 BWALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
W 12.9831 UW 0.27326 %UW 2.1047

PID 8802 LPOT INLET
VENTURI <139>
P1 3796.21 DP 207.17 T 188.41
BP1 37.9621 BDP 2.0717 BT1 1.8841
BCD 0.02066 BALP .651E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .3118E-02 DWDDP .4420E-01 DWDT -.183E-00
DWDCD .1774E+03 DWALP -1.24E+06 DWDD1 -.446E+02 DWDD2 .2986E+03
BWP .1863E-02 BWDP .8386E-00 BWDT .1195E-00
BWCD .1343E-02 BWALP .5656E-02 BWDD1 .4981E-03 BWDD2 .2229E-01
W 183.2910 UW 3.79655 %UW 2.0713

PID 8819 HPOP DISCH
VENTURI <426>
P1 3717.76 DP 245.44 T 190.50
BP1 37.1776 BDP 1.9050 BT1 2.4544
BCD 0.01964 BALP .549E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .3711E-02 DWDDP .1851E+01 DWDT -.930E+00
DWDCD .9270E+03 DWALP -1.24E+06 DWDD1 -.326E+03 DWDD2 .9771E+03
BWP .4508E-01 BWDP .1247E+02 BWDT .5211E+01
BWCD .3313E-03 BWALP .1167E+00 BWDD1 .2658E-01 BWDD2 .2387E+01
W 910.3882 UW 18.69283 %UW 2.0533

66
<table>
<thead>
<tr>
<th>SLTTB</th>
<th>DTTR(ILTTB)</th>
<th>DTTB(ILTTB)</th>
<th>ILTTB</th>
<th>DTTB(ILTTB)</th>
<th>DTTB(ILTTB)</th>
<th>DTTB(ILTTB)</th>
<th>DTTB(ILTTB)</th>
<th>DTTB(ILTTB)</th>
<th>DTTB(ILTTB)</th>
<th>DTTB(ILTTB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4185.40</td>
<td>271.89</td>
<td>2</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4185.40</td>
<td>271.89</td>
<td>4</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4185.40</td>
<td>271.89</td>
<td>6</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4185.40</td>
<td>271.89</td>
<td>8</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4185.40</td>
<td>271.89</td>
<td>10</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4185.40</td>
<td>271.89</td>
<td>12</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4185.40</td>
<td>271.89</td>
<td>14</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4185.40</td>
<td>271.89</td>
<td>16</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4185.40</td>
<td>271.89</td>
<td>18</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4185.40</td>
<td>271.89</td>
<td>20</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4185.40</td>
<td>271.89</td>
<td>22</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4185.40</td>
<td>271.89</td>
<td>24</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4185.40</td>
<td>271.89</td>
<td>26</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4185.40</td>
<td>271.89</td>
<td>28</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4185.40</td>
<td>271.89</td>
<td>30</td>
<td>468.97</td>
<td>4590.61</td>
<td>410.88</td>
<td>94.84</td>
<td>5657.44</td>
<td>132.33</td>
<td></td>
</tr>
</tbody>
</table>

LPFT INLET FLOWRATE - P(8801) > 28.02 LB/S
CCV INLET FLOWRATE - P(8818) > 73.78 LB/S
NOZ CLNT FLOWRATE - P(8815) > 13.77 LB/S
NOZ CLNT FLOWRATE - P(8816) > 13.48 LB/S
NOZ CLNT FLOWRATE - P(8817) > 13.58 LB/S
LPOT INLET FLOWRATE - P(8802) > 188.29 LB/S
HPOP DISCH FLOWRATE - P(8819) > 947.63 LB/S
OPB LOX FLOWRATE - P(8804) > 26.09 LB/S
OPB FUEL FLOWRATE - W(8805) > 35.68 LB/S
PBX LOX FLOWRATE - W(8810) > 61.29 LB/S

PID 8801 LPFT INLET
VENTURI <20>
P1 4185.40 DP 271.89 T 468.97
BPI 39.8112 BDP 2.1858 BT1 1.8946
BCD 0.01992 BALP 417E-06 BD1 0.00050 BD2 0.00050
PW 0.0000

DWDPI 31.24E-02 DWDDF .4541E-01 DWDT -.256E-01
DWDCD .7263E+02 DWALP -.329E+04 DWDD1 -.126E+02 DWDD2 .5341E+02
BWP .1547E-01 BWDF .9854E-02 BWDT .2347E-02
BWCD .3030E+00 BWALP .1886E-05 BWDD1 .3970E-04 BWDD2 .7131E-03
W 28.0166 UW 0.57543 %UW 2.0539

PID 8818 CCV INLET
VENTURI <397>
P1 5490.61 DP 410.88 T 94.94
BPI 34.9051 BDP 4.1088 BT1 0.9494
BCD 0.03063 BALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000

DWDPI .2265E-02 DWDDF .7998E-01 DWDT -.114E+00
DWDCD .7222E+02 DWALP -.668E+05 DWDD1 -.160E+02 DWDD2 .1104E+03
BWP .1546E-01 BWDF .1077E+00 BWDT .1163E-01
BWCD .4893E+01 BWALP .1340E-02 BWDD1 .6425E-04 BWDD2 .3044E-02
W 73.7762 UW 2.24304 %UW 3.0403
PID 8815 NOZ CLNT
VENTURI <3541>
P1 5490.61 DP 410.88 T 94.94
BP1 56.5744 BDP 1.3233 BT1 0.9374
BCD 0.02033 BALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .3287E-03 DWDDP .5051E-01 DWDT -.223E-01
BWCD .7583E-01 BWALP .4079E-04 BD1 .2971E-05 BD2 .2854E-03
W 13.7743 UW 0.28523 %UW 2.0707
***** ********* ***** ******** *****

PID 8816 NOZ CLNT
VENTURI <3542>
P1 5660.28 DP 130.22 T 94.90
BP1 56.6028 BDP 1.3022 BT1 0.9490
BCD 0.02033 BALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .3267E-03 DWDDP .5005E-01 DWDT -.219E-01
BWCD .7555E-01 BWALP .4079E-04 BD1 .2971E-05 BD2 .2772E-03
W 13.7554 UW 0.28430 %UW 2.1098
***** ********* ***** ******** *****

PID 8817 NOZ CLNT
VENTURI <3543>
P1 5666.14 DP 132.12 T 92.95
BP1 56.6614 BDP 1.3212 BT1 0.9295
BCD 0.02033 BALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .3195E-03 DWDDP .4951E-01 DWDT -.218E-01
BWCD .7624E-01 BWALP .5671E-04 BD1 .2985E-05 BD2 .2832E-03
W 13.5752 UW 0.28555 %UW 2.1034
***** ********* ***** ******** *****

PID 8802 LPOT INLET
VENTURI <139>
P1 3981.13 DP 218.58 T 189.46
BP1 39.8112 BDP 2.1858 BT1 1.8946
BCD 0.02066 BALP .651E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .1165E-02 DWDDP .4306E-03 DWDT -.188E-01
BWCD .1417E+03 BWALP .1340E+00 BD1 .2880E-01 BD2 .2353E-01
W 188.2875 UW 3.90044 %UW 2.0715
***** ********* ***** ******** *****

PID 8819 HPOP DISCH
VENTURI <426>
P1 3895.58 DP 265.92 T 191.59
BP1 38.9558 BDP 1.9159 BT1 2.6592
BCD 0.01964 BALP .549E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDP1 .5951E-02 DWDDP .781E+00 DWDT -.958E+00
BWCD .3592E+03 BWALP .1340E+00 BD1 .2880E-01 BD2 .2586E+00
W 947.6333 UW 19.4336 %UW 2.0508
***** ********* ***** ******** *****

69
TEST #: 8010050. ENGINE #: 3001. # OF PIDS: 43 # OF SLICES: 3

SLNUM >»»»*» SLICE START TIME > 34.0 SLICE END TIME > 38.0
ILTTB = 1 DTTB(ILTTB) = 4426.71
ILTTB = 2 DTTB(ILTTB) = 291.82
ILTTB = 3 DTTB(ILTTB) = 464.59
ILTTB = 4 DTTB(ILTTB) = 5838.52
ILTTB = 5 DTTB(ILTTB) = 440.25
ILTTB = 6 DTTB(ILTTB) = 97.59
ILTTB = 7 DTTB(ILTTB) = 6016.47
ILTTB = 8 DTTB(ILTTB) = 149.35
ILTTB = 9 DTTB(ILTTB) = 96.34
ILTTB = 10 DTTB(ILTTB) = 6020.90
ILTTB = 11 DTTB(ILTTB) = 147.22
ILTTB = 12 DTTB(ILTTB) = 97.43
ILTTB = 13 DTTB(ILTTB) = 6026.65
ILTTB = 14 DTTB(ILTTB) = 146.61
ILTTB = 15 DTTB(ILTTB) = 95.76
ILTTB = 16 DTTB(ILTTB) = 4233.10
ILTTB = 17 DTTB(ILTTB) = 235.31
ILTTB = 18 DTTB(ILTTB) = 190.95
ILTTB = 19 DTTB(ILTTB) = 4136.17
ILTTB = 20 DTTB(ILTTB) = 292.10
ILTTB = 21 DTTB(ILTTB) = 193.23
ILTTB = 22 DTTB(ILTTB) = 7323.87
ILTTB = 23 DTTB(ILTTB) = 189.11
ILTTB = 24 DTTB(ILTTB) = 219.42
ILTTB = 25 DTTB(ILTTB) = 5467.02
ILTTB = 26 DTTB(ILTTB) = 283.85
ILTTB = 27 DTTB(ILTTB) = 284.05
ILTTB = 28 DTTB(ILTTB) = 7569.33
ILTTB = 29 DTTB(ILTTB) = 128.39
ILTTB = 30 DTTB(ILTTB) = 208.63

LPFT INLET FLOWRATE - P(8801) > 29.78 LB/S
CCV INLET FLOWRATE - P(8818) > 76.57 LB/S
NOZ CLNT FLOWRATE - P(8815) > 14.67 LB/S
NOZ CLNT FLOWRATE - P(8816) > 14.37 LB/S
NOZ CLNT FLOWRATE - P(8817) > 14.33 LB/S
LPOT INLET FLOWRATE - P(8802) > 195.37 LB/S
HPOP DISCH FLOWRATE - P(8819) > 993.06 LB/S
OPB LOX FLOWRATE - P(8804) > 28.55 LB/S
OPB FUEL FLOWRATE - W(8805) > 37.04 LB/S
FPB LOX FLOWRATE - W(8810) > 66.03 LB/S

PID 8801 LPFT INLET
VENTURI <20>
PI 4426.71 DP 291.82 T 464.59
BP1 42.3310 BDP 2.3531 BT1 1.9095
BCC 0.01992 BALP .417E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDPI .3099E-02 DWDDP .4479E-01 DWDT -.271E-01
DWDCCD .2938E-02 DWALP -.403E+04 DWDD1 -.134E+02 DWDD2 .5674E+02
BWP .1712E-01 BWDD .1111E-01 BWDT .2682E-02
BWCDD .3425E+00 BWALP .2817E-05 BWDD1 .4467E-04 BWDD2 .8049E-03
W 29.7824 UW 0.61157 %UW 2.0534
***** ********* ***** ******** *****

PID 8818 CCV INLET
VENTURI <397>
P1 5838.52 DP 440.25 T 97.59
BP1 58.3852 BDP 4.4025 BT1 0.9759
BCC 0.03563 BALP .548E-06 BD1 0.00050 BD2 0.00050
PW 0.0000
DWDPI .2265E-02 DWDDP .7734E-01 DWDT -.113E+00
DWDCCD .7498E-02 DWALP -.403E+04 DWDD1 -.134E+02 DWDD2 .5674E+02
BWP .1712E-01 BWDD .1111E-01 BWDT .2682E-02
BWCDD .3425E+00 BWALP .2817E-05 BWDD1 .4467E-04 BWDD2 .8049E-03
W 76.5676 UW 2.32890 %UW 3.0416
***** ********* ***** ******** *****

71
PID 8815 NOZ CLNT
VENTURI <3541>
  P1 5838.52 DP 440.25 T 97.59
  BP1 60.1647 BDP 1.4935 BT1 0.9634
  BCD 0.02033 BALP .548E-06 BD1 0.00050 BD2 0.00050
  PW 0.0000
  DWDP1 .328E-03 DWDDP .4741E-01 DWDT -233E-01
  DWDCD .1443E+02 DWALP -1.48E+05 DWDD1 -366E+01 DWDD2 .3596E+02
  BWP .3909E-03 BWDP .8014E-02 BWDT .4545E-03
  BWD .8602E-01 BWALP .6565E-04 BWD1 .3343E-05 BWD2 .3233E-03
  W 14.6686 UW 0.30373 %UW 2.0707

PID 8816 NOZ CLNT
VENTURI <3542>
  P1 6020.90 DP 147.22 T 97.43
  BP1 60.2090 BDP 1.4722 BT1 0.9743
  BCD 0.02033 BALP .548E-06 BD1 0.00050 BD2 0.00050
  PW 0.0000
  DWDP1 .322E-03 DWDDP .4701E-01 DWDT -222E-01
  DWDCD .1441E+02 DWALP -1.24E+05 DWDD1 -364E+01 DWDD2 .3517E+02
  BWP .3921E-03 BWDP .4789E-02 BWDT .4692E-03
  BWD .8588E-01 BWALP .4581E-04 BWD1 .3312E-05 BWD2 .3093E-03
  W 14.3658 UW 0.30303 %UW 2.1094

PID 8817 NOZ CLNT
VENTURI <3543>
  P1 6026.65 DP 146.61 T 95.76
  BP1 60.2665 BDP 1.4661 BT1 0.9576
  BCD 0.02033 BALP .548E-06 BD1 0.00050 BD2 0.00050
  PW 0.0000
  DWDP1 .323E-03 DWDDP .4706E-01 DWDT -222E-01
  DWDCD .1435E+02 DWALP -1.24E+05 DWDD1 -363E+01 DWDD2 .3521E+02
  BWP .3803E-03 BWDP .4760E-02 BWDT .4507E-03
  BWD .8512E-01 BWALP .4581E-04 BWD1 .3302E-05 BWD2 .3099E-03
  W 14.3339 UW 0.30167 %UW 2.1046

PID 8802 LPOT INLET
VENTURI <139>
  P1 4233.10 DP 235.31 T 190.95
  BP1 42.3310 BDP 2.3531 BT1 1.9095
  BCD 0.02066 BALP .651E-06 BD1 0.00050 BD2 0.00050
  PW 0.0000
  DWDP1 .6197E-02 DWDDP .1701E-01 DWDT -993E+00
  DWDCD .1012E+04 DWALP -1.34E+06 DWDD1 -476E+02 DWDD2 .3183E+03
  BWP .2489E-02 BWDP .9535E+00 BWDT .1353E+00
  BWD .1526E+02 BWALP .7591E-02 BWD1 .5676E-03 BWD2 .2533E-01
  W 195.3723 UW 4.04706 %UW 2.0715

PID 8819 HPOP DISCH
VENTURI <426>
  P1 4136.17 DP 292.10 T 193.23
  BP1 41.3617 BDP 1.9323 BT1 2.9210
  BCD 0.01964 BALP .549E-06 BD1 0.00050 BD2 0.00050
  PW 0.0000
  DWDP1 .6197E-02 DWDDP .1701E+01 DWDT -993E+00
  DWDCD .1012E+04 DWALP -1.34E+06 DWDD1 -476E+02 DWDD2 .1066E+04
  BWP .6570E-01 BWDP .1081E+02 BWDT .8408E+01
  BWD .3947E+03 BWALP .1340E+00 BWD1 .3161E-01 BWD2 .2841E+00
  W 993.0520 UW 20.35188 %UW 2.0494
### PID 8804 OPB LOX

**VENTURI <26/1>**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>7321.87</td>
</tr>
<tr>
<td>DP</td>
<td>189.11</td>
</tr>
<tr>
<td>BTI</td>
<td>219.42</td>
</tr>
<tr>
<td>BPI</td>
<td>73.2387</td>
</tr>
<tr>
<td>BDP</td>
<td>1.8911</td>
</tr>
<tr>
<td>BT1</td>
<td>2.1943</td>
</tr>
<tr>
<td>BCD</td>
<td>0.02066</td>
</tr>
<tr>
<td>BALP</td>
<td>0.671E-06</td>
</tr>
<tr>
<td>BD1</td>
<td>0.00050</td>
</tr>
<tr>
<td>BD2</td>
<td>0.00050</td>
</tr>
<tr>
<td>PW</td>
<td>0.0000</td>
</tr>
<tr>
<td>DWDP1</td>
<td>0.1687E-03</td>
</tr>
<tr>
<td>DWDDP</td>
<td>0.7350E-01</td>
</tr>
<tr>
<td>DWDT</td>
<td>-250E-01</td>
</tr>
<tr>
<td>DWDCD</td>
<td>0.254E+02</td>
</tr>
<tr>
<td>DWALP</td>
<td>-159E+05</td>
</tr>
<tr>
<td>DWDD1</td>
<td>-1.46E+02</td>
</tr>
<tr>
<td>DWDD2</td>
<td>0.6944E+02</td>
</tr>
<tr>
<td>BWCD</td>
<td>0.3237E+00</td>
</tr>
<tr>
<td>BWALP</td>
<td>0.1140E-03</td>
</tr>
<tr>
<td>BD1</td>
<td>0.1424E-04</td>
</tr>
<tr>
<td>BD2</td>
<td>0.2497E-02</td>
</tr>
<tr>
<td>PW</td>
<td>0.0000</td>
</tr>
<tr>
<td>DWDP1</td>
<td>0.1687E-03</td>
</tr>
<tr>
<td>DWDDP</td>
<td>0.7350E-01</td>
</tr>
<tr>
<td>DWDT</td>
<td>-250E-01</td>
</tr>
<tr>
<td>DWDCD</td>
<td>0.254E+02</td>
</tr>
<tr>
<td>DWALP</td>
<td>-159E+05</td>
</tr>
<tr>
<td>DWDD1</td>
<td>-1.46E+02</td>
</tr>
<tr>
<td>DWDD2</td>
<td>0.6944E+02</td>
</tr>
<tr>
<td>BWCD</td>
<td>0.3237E+00</td>
</tr>
<tr>
<td>BWALP</td>
<td>0.1140E-03</td>
</tr>
<tr>
<td>BD1</td>
<td>0.1424E-04</td>
</tr>
<tr>
<td>BD2</td>
<td>0.2497E-02</td>
</tr>
<tr>
<td>PW</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

**SLNUM >*»*»» SLICE START TIME > 34.0 SLICE END TIME > 38.0**

<table>
<thead>
<tr>
<th>PID</th>
<th>SLICE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>8801</td>
<td>29.78 0.61 2.05</td>
</tr>
<tr>
<td>8818</td>
<td>76.57 2.33 3.04</td>
</tr>
<tr>
<td>8815</td>
<td>14.67 0.30 2.07</td>
</tr>
<tr>
<td>8816</td>
<td>14.37 0.30 2.11</td>
</tr>
<tr>
<td>8817</td>
<td>14.33 0.30 2.10</td>
</tr>
<tr>
<td>8802</td>
<td>195.37 4.05 2.07</td>
</tr>
<tr>
<td>8819</td>
<td>993.06 20.35 2.05</td>
</tr>
<tr>
<td>8804</td>
<td>28.55 0.59 2.07</td>
</tr>
<tr>
<td>8805</td>
<td>37.04 0.75 2.02</td>
</tr>
<tr>
<td>8810</td>
<td>66.03 1.37 2.07</td>
</tr>
</tbody>
</table>
Appendix XI

Venturi Uncertainty Analysis Computer Program

This program is written in FORTRAN and resides in the EADS10 computer system as program VENJB2 in the following directory, SIMPSSP.MSFC.VENKB.
PROGRAM VENJB
C
C THIS PROGRAM HAS BEEN MODIFIED BY K. BROWN TO CALCULATE THE
C UNCERTAINTIES IN THE VENTURI CALCULATIONS.
C
DOUBLE PRECISION DTTB(40), DH
INTEGER PNSLC, PBTIME, PETIME
DIMENSION PIDTTB(40), WW(10), UNW(10), PER(10), NPID(10)
C
NPID(1)=8801
NPID(2)=8818
NPID(3)=8815
NPID(4)=8816
NPID(5)=8817
NPID(6)=8802
NPID(7)=8819
NPID(8)=8804
NPID(9)=8805
NPID(10)=8810
C
C READ IN TEST DATA
C
READ(36,100) TEST, ENGINUM, IPIDN, ISLCN
READ(36,110) PNSLC, PBTIME, PETIME,
& (PIDTTB(ITTB), ITTB=1,40)
1 READ(36,120,END=999) NSLC, BTIME, ETIME,
& (DTTB(ITTB), ITTB=1,40)
100 FORMAT(T11,F8.0, T32,F5.0, T5 1,I3, T70,I3/)
110 FORMAT(15(1XJ4))
120 FORMAT(5(1XE14.8E2))
C
WRITE (6,150) TEST, ENGNUM, IPIDN, ISLCN
WRITE (6,160) PNSLC, PBTIME, PETIME,
& (PIDTTB(ITTB), ITTB=1,40)
WRITE(55,150) TEST, ENGNUM, IPIDN, ISLCN
WRITE (6,170) NSLC, BTIME, ETIME,
& (DTTB(ITTB), ITTB=1,40)
150 FORMAT(2X,TEST #: 'F8.0, 3X,ENGINE #: 'F5.0,3X,
 & # OF PIDS: 'I3,3X, # OF SLICES: 'I3/)
160 FORMAT(15(I4))
170 FORMAT(5(1X,E14.8E2))
C
DO 700, ITTB=1, 40
WRITE (55,10) ITTB, DTTB(ITTB)
C
READ(10,702) DTTB(LITTBB)
C
WRITE(55,9) I
C
WRITE(55,205) NSLC, BTIME, ETIME
205 FORMAT(2X,SLNUM >',15,2X, SLICE START TIME >',F5.1,
 & 2X,SLICE END TIME >',F5.1)
DO 209, ITTB=1,40
WRITE(55,210) ITTB, DTTB(ITTB)
210 FORMAT(2X,ILTB=,I5,4X, DTTB(ILTTB) = ',F9.2)
209 CONTINUE
WRITE(55,9) I
C
C
H=1.0
CALL FLOWOR(20, DTTB(1), DTTB(2), DTTB(3), 9, H, DH, W, WG, RO, VDP)
WRITE(55,320) WG
320 FORMAT(2X,'LFTT INLET FLOWRATE - P(8801) >',F9.2,' LB/S')
CALL FLOWOR(39, DTTB(4), DTTB(5), DTTB(6), 9, H, DH, W, WG, RO, VDP)
WRITE(55,330) WG
330 FORMAT(2X,'CCV INLET FLOWRATE - P(8818) >',F9.2,' LB/S')
CALL FLOWOR(3541, DTTB(7), DTTB(8), DTTB(9), 9, H, DH, W, WG, RO, VDP)
WRITE(55,340) WG
340 FORMAT(2X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB/S')
CALL FLOWOR(3542, DTTB(10), DTTB(11), DTTB(12), 9, H, DH, W, WG, RO, VDP)
WRITE(55,350) WG
350 FORMAT(2X,'NOZ CLNT FLOWRATE - P(8816) >',F9.2,' LB/S')
CALL FLOWOR(3543, DTTB(13), DTTB(14), DTTB(15), 9, H, DH, W, WG, RO, VDP)
WRITE(55,360) WG
360
360 FORMAT(2X,'NOZ CLNT FLOW RATE - P(8817) >',F9.2,' LB/S')
   CALL FLOWOR(139,DTTB(16),DTTB(17),DTTB(18),9,H,DH,W, WG,RO,VDPT)
   WRITE(55,370) W
370 FORMAT(2X,'LPOT INLET FLOW RATE - P(8802) >',F9.2,' LB/S')
   CALL FLOWOR(426,DTTB(19),DTTB(20),DTTB(21),9,H,DH,W, WG,RO,VDPT)
   WRITE(55,380) W
380 FORMAT(2X,'HPOP DISCH FLOW RATE - P(8819) >',F9.2,' LB/S')
   CALL FLOWOR(268,DTTB(22),DTTB(23),DTTB(24),9,H,DH,W, WG,RO,VDPT)
   WRITE(55,390) W
390 FORMAT(2X,'OPB LOX FLOW RATE - W(8804) >',F9.2,' LB/S')
   CALL FLOWOR(271,DTTB(25),DTTB(26),DTTB(27),9,H,DH,W, WG,RO,VDPT)
   WRITE(55,400) W
400 FORMAT(2X,'FPB LOX FLOW RATE - W(8810) >',F9.2,' LB/S')
   CALL FLOWOR(296,DTTB(28),DTTB(29),DTTB(30),9,H,DH,W, WG,RO,VDPT)
   WRITE(55,410) W
410 FORMAT(2X,'THE TIME STEP - H- FOR THE PARTIAL DERIVATIVES IS
        H=1.001
C CALCULATE VENTURI FLOW FOR VENTURI 20 AND THE
C ASSOCIATED VENTURI UNCERTAINTY, THE UNCERTAINTY DATA IS
BP1=0.01*DTTB(16)
BT=0.01*DTTB(18)
BDP=0.01*DTTB(17)
BCD=0.01992
BALPHA=4.17E-07
BD1=0.0005
BD2=0.0005
PW=0.0
   CALL FLOWOR(20,DTTB(1),DTTB(2),DTTB(3),9,H,DH,W, WG,RO,VDPT)
C WRITE(55,720) W
C720 FORMAT(2X,'LPFT INLET FLOW RATE - P(8801) >',F9.2,' LB/S')
C CALCULATE THE PARTIAL DERIVATIVES
C PARTIAL DERIVATIVE FOR P1 IS
HP1=DTTB(1)*H
   CALL FLOWOR(20,HP1,DTTB(2),DTTB(3),9,H,DH,W,HW,RO,VDPT)
   DWDP=(HW-WG)/(HP1-DTTB(1))
C PARTIAL DERIVATIVE FOR DP
HDP=DTTB(2)*H
   CALL FLOWOR(20,DTTB(1),HDP,DTTB(3),9,H,DH,W,HW,RO,VDPT)
   DWDDP=(HW-WG)/(HDP-DTTB(2))
C PARTIAL DERIVATIVE FOR T1
HT1=DTTB(3)*H
   CALL FLOWOR(20,DTTB(1),DTTB(2),HT1,9,H,DH,W,HW,RO,VDPT)
   DWDT=(HW-WG)/(HT1-DTTB(3))
C PARTIAL DERIVATIVE FOR D1
   CALL FLOWOR(20,DTTB(1),DTTB(2),DTTB(3),1,H,DH,W,HW,RO,VDPT)
   DWDD1=(HW-WG)/DH
C PARTIAL DERIVATIVE FOR D2
   CALL FLOWOR(20,DTTB(1),DTTB(2),DTTB(3),2,H,DH,W,HW,RO,VDPT)
   DWDD2=(HW-WG)/DH
C PARTIAL DERIVATIVE FOR CD
   CALL FLOWOR(20,DTTB(1),DTTB(2),DTTB(3),3,H,DH,W,HW,RO,VDPT)
   DWDCD=(HW-WG)/DH
C PARTIAL DERIVATIVE FOR ALPHA
   CALL FLOWOR(20,DTTB(1),DTTB(2),DTTB(3),5,H,DH,W,HW,RO,VDPT)
   DWDALPHA=(BALPHA/DWDAIDP)**2
C CALCULATE THE SQUARED TERMS FOR THE PARTIALS TIMES THE
C UNCERTAINTY IN THE VARIABLES
BWP=(BP1*DWDPI)**2
BWT=(BT*DWDIT)**2
BWDP=(BDP*DWDDP)**2
BWCD=(BCD*DWDCC)**2
BWAALPHA=(BALPHA*DWDALPHA)**2
BD1=BD1*DWD1**2
BD2=BD2*DWD2**2
C CALCULATE THE FLOW UNCERTAINTY
C CALCULATE THE CORRELATED BIAS TERMS, SWAG FOR CORRELATION
C COEFFICIENT USED AT THIS POINT
BD1BD2=DWDD1*DWDDD2*BD1*BD2**1.00
BTBDP=DWDT*DWDPP*(BT*BDP)**0.00
BTBP1=DTBP*DWDP1*(BT*BP1)*0.00
BDFP1=DTFDP*DWFP1*(BD*BP1)*0.00
C VENTURI 20 UNCERTAINTY IS
UW=SQRT(BWP+BWT+BDP+BWCD+BWALPHA+2.*BD1BD2+BWD1+BWD2
&+2.*BDPB1+2*BDBP1+PW**2)
PERCENT=100.*UW/WG
WW(0)=WG
UNW(0)=UW
PER(0)=PERCENT
C VENTURI 20 OUTPUT
WRITE (55,*) 'PID 8801 LPFT INLET'
WRITE (55,*) 'VENTURI <20>'
WRITE (55,721) DTT(1),DTTB(2),DTTB(3)
WRITE (55,722) BP1,BDP,BT
WRITE (55,723) BCD,BALPHA,BD1,BD2
WRITE (55,724) PW
WRITE (55,725) DWDP1,DWDDP,DWDT
WRITE (55,726) DWCD,DWDALP,DWD1,DWD2
WRITE (55,727) BWP,BWDP,BWT
WRITE (55,728) BWCD,BWALPHA,BW1,BW2
WRITE (55,729) WG,UW,PERCENT
C 721 FORMAT(3X,T1',4X^8.2,5X,'DF^XJF8.2,5XT^X^8.2)
C 722 FORMAT(3X,'BP1,3X,F8.4,5X,'BDP3X,F8.4,4X'BT1,1XF8.4)
C 723 FORMAT(3X,TW,4XF8.4)
C 724 FORMAT(3X,TW,4XF8.4)
C 725 FORMAT(3X,TW,4XF8.4)
C 726 FORMAT(3X,TW,4XF8.4)
C 727 FORMAT(2X,'W',3XF9.4,4X,'UW',5X,F9.5,5X,'% UW',2X,F8.4)
WRITE (55,*) ****** ********* ******** *** ******
WRITE (55,*) C CALCULATE THE FLOWRATE AND FLOWRATE UNCERTAINTY FOR VENTURI 397
CALL FLOWOR(397,DTTB(4),DTTB(5),DTTB(6),H,DH,W,WG,RO,VDPT)
C WRITE(55,730) WG
C730 FORMAT(2X,CCV INLET FLOWRATE - P(8818) >,F9.2,' LB/S)
BP1=0.01*DTTB(4)
BT=0.01*DTTB(6)
BDFP1=0.01*DTTB(5)
BCD=0.03063
BALPHA=5.48E-07
BD1=0.0005
BD2=0.0005
PW=0.0
C CALCULATE THE PARTIAL DERIVATIVES
C PARTIAL DERIVATIVE FOR PI IS
HPI=DTTB(4)*H
CALL FLOWOR(397,HTTB(5),HDTB(6),H,DH,W,HW,RO,VDPT)
DWP1=(HW-WG)(HP1-DTTB(4))
C PARTIAL DERIVATIVE FOR DP
HDP=DTTB(5)*H
CALL FLOWOR(397,HDTB(4),HDTP(6),H,DH,W,HW,RO,VDPT)
DWDPP=(HW-WG)(HDP-DTTB(5))
C PARTIAL DERIVATIVE FOR TI
HT1=DTTB(6)*H
CALL FLOWOR(397,HDTB(4),HTT(6),H,DH,W,HW,RO,VDPT)
DWT=(HW-WG)(HT1-DTTB(6))
C PARTIAL DERIVATIVE FOR DI
CALL FLOWOR(397,HDTB(4),DTT(6),H,DH,W,HW,RO,VDPT)
DWD1=(HW-WG)*DH
C PARTIAL DERIVATIVE FOR D2
CALL FLOWOR(397,HDTB(4),DTT(6),2,H,DH,W,HW,RO,VDPT)
DWD2=(HW-WG)*DH
C PARTIAL DERIVATIVE FOR CD
CALL FLOWOR(397,HDTB(4),DTT(6),3,H,DH,W,HW,RO,VDPT)
DWDCD=(HW-WG)*DH
C PARTIAL DERIVATIVE FOR ALPHA
CALL FLOWOR(397,DTTB(4),DTTB(5),DTTB(6),4,H,D,H,W,HW,RO,VDPT)
DWDALP=(HW-WJRO/DH)

C CALCULATE THE SQUARED TERMS FOR THE PARTIALS TIMES THE
C UNCERTAINTY IN THE VARIABLES
BWP=(BP1*DWD1)**2
BWT=(BT*DWDT)**2
BWDP=(BDP*DWDPP)**2
BWCD=(BCD*DWDCD)**2
BWALPHA=(BALPHA*DWDALP)**2
BWD1=(BD1*DWD1)**2
BWD2=(BD2*DWD2)**2

C CALCULATE THE FLOW UNCERTAINTY
C CALCULATE THE CORRELATED BIAS TERMS, SWAG FOR CORRELATION
C COEFFICIENT USED AT THIS POINT
BD1BD2=DWD1*DWD2*BD1BD2*1.0
BTBDP=DWDPP*DWDPP*(BT*BDP)**0.0
BDPBP1=DWD1*DWD1*BD1BD2**0.0

C VENTURI 397 UNCERTAINTY IS
UW=SQR((BWP+BWT+BWDP+BWCD+BWALPHA+2.*BD1BD2+BWD1+BWD2
&+2.*BTBDP)**2*BDPBP1+FW**2)
PERCENT=100.*UW/WG

WW(2)=WG
UNW(2)=UW
PER(2)=PERCENT

C VENTURI 397 OUTPUT
WRITE (55,*) 'PID 8818 CCV INLET
WRITE (55,*) 'VENTURI <397>
WRITE (55,731) DTTB(4),DTTB(5),DTTB(6)
WRITE (55,732) BP1,BDP,BT
WRITE (55,733) BCD,BALPHA,BD1,BD2
WRITE (55,734) PW
WRITE (55,735) DWD1,DWDPP,DWDT
WRITE (55,736) DWDPP,DWDALP,DWD1,DWD2
WRITE (55,737) BWCD,BWALPHA,BWD1,BWD2
WRITE (55,738) BWCD,BWALPHA,BWD1,BWD2
WRITE (55,739) WG,UW,PERCENT
731 FORMAT(3X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB')
732 FORMAT(3X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB')
733 FORMAT(3X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB')
734 FORMAT(3X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB')
735 FORMAT(2X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB')
736 FORMAT(2X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB')
737 FORMAT(2X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB')
738 FORMAT(2X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB')
739 FORMAT(2X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB')
WRITE (55,*) '***** ********* ****                                              '}

C C CALCULATE THE FLOWRATE AND FLOWRATE UNCERTAINTY FOR VENTURI 3541
CALL FLOWOR(3541,DTTB(7),DTTB(8),DTTB(9),9,H,D,H,W,WG,RO,VDPT)

C WRITE(55,740) WG
C740 FORMAT(2X,'NOZ CLNT FLOWRATE - P(8815) >',F9.2,' LB')
BP1=0.01*DTTB(7)
BT=0.01*DTTB(9)
BDP=0.01*DTTB(8)
BCD=0.0233
BALPHA=5.48E07
BD1=0.00005
BD2=0.00005
PW=0.0

C CALCULATE THE PARITAL DERIVATIVES
C PARTIAL DERIVATIVE FOR PI IS
HP1=DTTB(7)**H
CALL FLOWOR(3541,HP1,DTTB(8),DTTB(9),9,H,D,H,W,HW,RO,VDPT)
DWDPP=(HW-WG)*(HP1-DTTB(7))

C PARTIAL DERIVATIVE FOR PD
HDP=DTTB(8)**H
CALL FLOWOR(3541, DTTB(7), HDP, DTTB(9), 9, H, DH, W, HW, RO, VDPT)

DWDDP = (HW - WG)/(HDP - DTTB(8))

C PARTIAL DERIVATIVE FOR T1

HT1 = DTTB(9)*H

CALL FLOWOR(3541, DTTB(7), DTTB(8), HT1, 9, H, DH, W, HW, RO, VDPT)

DWDT = (HW - WG)/(HT1 - DTTB(9))

C PARTIAL DERIVATIVE FOR CD

CALL FLOWOR(3541, DTTB(7), DTTB(8), DTTB(9), 3, H, DH, W, HW, RO, VDPT)

DWDCD = (HW - WG)/DH

C PARTIAL DERIVATIVE FOR ALPHA

CALL FLOWOR(3541, DTTB(7), DTTB(8), DTTB(9), 4, H, DH, W, HW, RO, VDPT)

DWDALPHA = (HW - WG)/DH

C CALCULATE THE SQUARED TERMS FOR THE PARTIALS TIMES THE UNCERTAINTY IN THE VARIABLES

BWP = (BP1*DWDP1)**2

BWT = (BT*DWDT)**2

BWDP = (BDP*DWDDP)**2

BWA = (BALPHA*DWALPHA)**2

BD1 = (BD1*DWDD1)**2

BWDD1 = (BD2*DWDD2)**2

C CALCULATE THE FLOW UNCERTAINTY

C CALCULATE THE CORRELATED BIAS TERMS, SWAG FOR CORRELATION

BD1BD2 = DWDD1*DWDD2*BD1*BD2*1.00

BTBDP = DWDT*DWDDP*(BT*BDP)*0.00

BDBP1 = DWDDP*DWDP1*(BDP*BP1)*0.00

C VENTURI 3541 UNCERTAINTY IS

UW = SQRT(BWP + BWT + BWDP + BWCD + BWALPHA + 2.*BD1BD2 + BWDD1 + BWDD2 & + 2.*BTBDP + 2.*BDBP1 + PW**2)

PERCENT = 100.*UW/WG

WW(3) = UW

UNW(3) = UW

PER(3) = PERCENT

C VENTURI 3541 OUTPUT

WRITE (55, *)

WRITE (55, *) ' PID 8815 NOZ CLNT
WRITE (55, *) VENTURI <3541>
WRITE (55, 741) DTTB(4), DTTB(5), DTTB(6)
WRITE (55, 742) BP1, BDP, BT
WRITE (55, 743) BCD, BALPHA, BD1, BD2
WRITE (55, 744) PW
WRITE (55, 745) DWPB, DWDDP, DWDT
WRITE (55, 746) DWD, DWALPHA, BD1, BD2
WRITE (55, 747) BW, BWDD, BWDD
WRITE (55, 748) BWCD, BWALPHA, BD1, BD2
WRITE (55, 749) LW, LW, PERCENT


742 FORMAT(3X, 'BP1', 3X, F8.4, 5X, 'BDP', 3X, F8.4, 4X, 'BT', 1X, F8.4)


744 FORMAT(3X, 'PW', 4X, F8.4)

745 FORMAT(2X, 'DP', 3X, F8.4, 2X, 'T', 3X, F8.4)

746 FORMAT(2X, 'BP1', 3X, F8.4, 2X, 'BDP', 3X, F8.3, 2X, 'BT', 1X, F8.4)

747 FORMAT(2X, 'PW', 5X, F8.4, 3X, 'BDP', 3X, F8.4, 3X, 'BT', 1X, F8.4)


749 FORMAT(2X, 'W', 3X, F8.4, 4X, 'UW', 5X, 'UW', 5X, 'UW', 2X, F8.4)

WRITE (55, *) '****** ********* ***** ******** ****

WRITE (55, *)
CALL FLOWOR(3542,DTTB(10),DTTB(11),DTTB(12),9,H,DH,W,WG,RO,VDPT)
C WRITE(55,750) WG
C750 FORMAT(2X,-NOZ CLNT FLOWRATE - P(8816) >',F9.2,' LB/S)
BP1=0.01*DTTB(10)
BT=0.01*DTTB(12)
BDP=0.01*DTTB(11)
BCD=0.02033
BALPHA=5.48E-07
BD1=0.0005
BD2=0.0005
PW=0.0
C CALCULATE THE PARTIAL DERIVATIVES
C PARTIAL DERIVATIVE FOR P1 IS
HP1=DTTB(10)*H
CALL FLOWOR(3542,HP1,DTTB(11),DTTB(12),9,H,DH,W,HW,RO,VDPT)
DWDPI=(HW-WG)/(HP1-DTTB(10))
C PARTIAL DERIVATIVE FOR DP
HDP=DTTB(11)*H
CALL FLOWOR(3542,HDP,DTTB(12),9,H,DH,W,HW,RO,VDPT)
DWDPP=(HW-WG)/(HDP-DTTB(11))
C PARTIAL DERIVATIVE FOR T1
HT1=DTTB(12)*H
CALL FLOWOR(3542,HT1,DTTB(11),HT1,9,H,DH,W,HW,RO,VDPT)
DWDTP=(HW-WG)/(HT1-DTTB(12))
C PARTIAL DERIVATIVE FOR D1
CALL FLOWOR(3542,DTTB(10),DTTB(11),DTTB(12),1,H,DH,W,HW,RO,VDPT)
DWD1=(HW-WG)/DH
C PARTIAL DERIVATIVE FOR D2
CALL FLOWOR(3542,DTTB(10),DTTB(11),DTTB(12),2,H,DH,W,HW,RO,VDPT)
DWD2=(HW-WG)/DH
C PARTIAL DERIVATIVE FOR CD
CALL FLOWOR(3542,DTTB(10),DTTB(11),DTTB(12),3,H,DH,W,HW,RO,VDPT)
DWDCD=(HW-WG)/DH
C PARTIAL DERIVATIVE FOR ALPHA
CALL FLOWOR(3542,DTTB(10),DTTB(11),DTTB(12),4,H,DH,W,HW,RO,VDPT)
DWDALP=(HW-WG)/DH
C CALCULATE THE SQUARED TERMS FOR THE PARTIALS TIMES THE
C UNCERTAINTY IN THE VARIABLES
BWP=(BP1*DWDPI)**2
BWT=(BT*DWDTP)**2
BWP=(BDP*DWDPP)**2
BWC=(BCD*DWDCD)**2
BWALPHA=(BALPHA*DWDALP)**2
BWD1=(BD1*DWD1)**2
BWD2=(BD2*DWD2)**2
C CALCULATE THE FLOW UNCERTAINTY
C CALCULATE THE CORRELATED BIAS TERMS, SWAG FOR CORRELATION
C COEFFICIENT USED AT THIS POINT
BD1BD2=DWD1*DWD2*BD1*BD2*1.0
BTBDF=DWDTP*DWDPP*(BT*BDP)*0.0
BTBP1=DWDTP*DWDPP*(BT*BP1)*0.0
BDBP1=DWDPP*DWD1*(BD*BP1)*0.0
BDBP2=DWDPP*DWD2*(BD*BP2)*0.0
C VENTURI 3542 UNCERTAINTY IS
UW=8SQRT(BWP+BWT+BWP+BWC+BWALPHA+2.*BD1BD2+BWD1+BWD2
&+2.*BTBDF+2.*BDBP1+2.*BDBP2)/PW**2)
PERCENT=100.*UW/WG
WW(4)=WG
UNW(4)=UW
PER(4)=PERCENT
C VENTURI 3542 OUTPUT
WRITE (55,*)
WRITE (55,*) 'VENTURI <3542>'
WRITE (55,751) DTTB(10),DTTB(11),DTTB(12)
WRITE (55,752) BP1,BDP,BT
WRITE (55,753) BCD,BALPHA,BD1,BD2
WRITE (55,754) PW
WRITE (55,755) DWD1,DWD2,DWDTP
WRITE (55,756) DWDCD,DWDALP,DWD1,DWD2
WRITE (55,757) BWP,BWDP,BWT
WRITE (55,758) BWC,BWALPHA,BWD1,BWD2
WRITE (55,759) WG,UW,PERCENT
751 FORMAT(3X,'P',4XF8.2,5X,DP,3X,F8.2,5X,T,3X,F8.2)
752 FORMAT(3X,BP1,3X,F8.4,5X,BDP,3X,F8.4,4X,T,1X,F8.4)
753 FORMAT(3X,BP1,3X,F8.3,5X,BDP,3X,F8.3,3X,BD1,2X,F8.5,
&6X,BD2,2X,F8.5)
754 FORMAT(3X,'PW',4XF8.4)
755 FORMAT(2X,BWP,5X,F9.5,'%UW',F8.4)
756 FORMAT(2X,' ',5X,3X,F9.5)
757 FORMAT(2X,' ',5X,3X,F9.5)
758 FORMAT(2X,' ',5X,3X,F9.5)
759 FORMAT(2X,' ',5X,3X,F9.5)

WRITE (55,760) WG
760 FORMAT(2X,-NOZ CLNT FLOWRATE -P(8817) >',F9.2,' LB/S)
BP1=0.01*DTTB(13)
BT=0.01*DTTB(15)
BDP=0.01*DTTB(14)
BCD=0.02033
BALPHA=5.48E-07
BD1=0.0005
BD2=0.0005
PW=0.00

C CALCULATE THE PARTIAL DERIVATIVES
C PARTIAL DERIVATIVE FOR P1 IS
HP1=DTTB(13)*H
CALL FLOWOR(3543,HP1,DTTB(14),DTTB(15),9,H,DH,W,RO,VDPT)
DWDPI=(HW-WG)/(HP1-DTTB(13))
C PARTIAL DERIVATIVE FOR DP
HDP=DTTB(14)*H
CALL FLOWOR(3543,DTTB(13),HDP,DTTB(15),9,H,DH,W,HO,RO,VDPT)
DWDPP=(HW-WG)/(HDP-DTTB(14))
C PARTIAL DERIVATIVE FOR T1
HT1=DTTB(15)*H
CALL FLOWOR(3543,DTTB(13),DTTB(14),HT1,9,H,DH,W,HO,RO,VDPT)
DWDTP=(HW-WG)/(HT1-DTTB(15))
C PARTIAL DERIVATIVE FOR D1
CALL FLOWOR(3543,DTTB(13),DTTB(14),DTTB(15),1,H,DH,W,HO,RO,VDPT)
DWD1=(HW-WG)/DH
C PARTIAL DERIVATIVE FOR D2
CALL FLOWOR(3543,DTTB(13),DTTB(14),DTTB(15),2,H,DH,W,HO,RO,VDPT)
DWD2=(HW-WG)/DH
C PARTIAL DERIVATIVE FOR CD
CALL FLOWOR(3543,DTTB(13),DTTB(14),DTTB(15),3,H,DH,W,HO,RO,VDPT)
DWDCD=(HW-WG)/DH
C PARTIAL DERIVATIVE FOR ALPHA
CALL FLOWOR(3543,DTTB(13),DTTB(14),DTTB(15),4,H,DH,W,HO,RO,VDPT)
DWDALPHA=(HW-WG)/DH
C CALCULATE THE SQUARED TERMS FOR THE PARTIALS TIMES THE
C UNCERTAINTY IN THE VARIABLES
BWP=(BP1*DWDPI)**2
BWT=(BT*DWDTP)**2
BDWP=(BDP*DWDPP)**2
BWCD=(BCD*DWDCD)**2
BWLALPHA=(BALPHA*DWDALPHA)**2
BD1=(BD1*DWD1)**2
BDW=(BD2*DWD2)**2
C CALCULATE THE FLOW UNCERTAINTY
C CALCULATE THE CORRELATED BIAS TERMS, SWAG FOR CORRELATION
C COEFFICIENT USED AT THIS POINT
BD1BD2=DWD1*DWD2*BD1*BD2*1.0
BTBDP=DWDTP*DWDPP*(BT*BDP)*0.0
BTBP1=DWDTP*DWDPI*(BT*BP1)*0.0
BDPBP1=DWDPP*DWDPI*(BDP*BP1)*0.0
C VENTURI 3543 UNCERTAINTY IS
UW=SQRT(BWP+BWT+BDWP+BWCD+BWLALPHA**2+BD1BD2+BDW1+BDW2

81
&+$2.0^2BTBDP+2^BDPBPl+PW^2$)
PERCENT=100.*UW/WG
WW(5)=WG
UNW(5)=UW
PER(5)=PERCENT
C VENTURI 3543 OUTPUT
WRITE (55,*)
WRITE (55,*)' PID 2817 NOZ CLNT'
WRITE (55,*)' VENTURI <3543>'
WRITE (55,761) DTTB(13),DTTB(14),DTTB(15)
WRITE (55,762) BP1,BDP,BT
WRITE (55,763) BCD,BALPHA,BD1,BD2
WRITE (55,764) PW
WRITE (55,765) DWDP1,DWDDP,DWDT
WRITE (55,766) DWDCD,DWDAI,P,DWDD1,DWDD2
WRITE (55,767) BWBP,BWP,BWT
WRITE (55,768) BWCD,BWALPHA,BWD1,BWD2
WRITE (55,769) WG,UW,PERCENT
761 FORMAT(3X,'PR,4XJ8.2,5X,'D?'JXf*.2,5X,T3Xf8.2)
762 FORMAT(3X,BP13XF8.4,5X'BDP',3X,F8.4,4X'B11,1X,F8.4)
763 FORMAT(3X,BCD3,3XF8.5)
764 FORMAT(3X,TP13XF8.5)
765 FORMAT(3X,TP23XF8.4)
766 FORMAT(3X,TP33XF8.4)
767 FORMAT(3X,TP43XF8.4)
768 FORMAT(3X,TP53XF8.4)
769 FORMAT(3X,'W ',3XF9.4,4X,'UW ',5X,F9.5,2X,2X,2X,2X,2X,2X,F8.4)
WRITE (55,*)' ***** ********* ***** ******** *****>'
WRITE (55,*)
C C CALCULATE VENTURI FLOW FOR VENTURI 139 AND THE
C ASSOCIATED VENTURI UNCERTAINTY, THE UNCERTAINTY DATA IS
BP1=0.01*DTTB(16)
BT=0.01*DTTB(18)
BDP=0.01*DTTB(17)
BCD=0.02
BALPHA=6.51E-07
BD1=0.0005
BD2=0.0005
PW=0.0
CALL FLOWOR(139,DTTB(16),DTTB(17),DTTB(18),9,H,HD,W,WG,RO,VDPT)
C WRITE(55,770) W
C770 FORMAT(2X,1MTOT INLET FLOWRATE - P(8802) '>E9.2,' LB/S)

C CALCULATE THE PARTIAL DERIVATIVES
C PARTIAL DERIVATIVE FOR P1 IS
C H=1.0001
C HD=DTTB(17)*H
CALL FLOWOR(139,DP1,DTTB(16),DTTB(17),9,H,HD,W,WG,RO,VDPT)
C WRITE(55,*)' H,H,HD,W,WG,RO,VDPT'
C PARTIAL DERIVATIVE FOR DP
C H=1.0001
C HDP=DTTB(17)*H
CALL FLOWOR(139,DP1,DTTB(16),DTTB(17),9,H,HD,W,WG,RO,VDPT)
C WRITE(55,*)' H,H,HD,W,WG,RO,VDPT'
C PARTIAL DERIVATIVE FOR T1
C H=1.0001
C HT1=DTTB(18)*H
CALL FLOWOR(139,DTTB(16),DTTB(17),HT1,9,H,HD,W,WG,RO,VDPT)
C WRITE(55,*)' H,H,HD,W,WG,RO,VDPT'
C PARTIAL DERIVATIVE FOR D1
C H=1.0001
CALL FLOWOR(139,DTTB(16),DTTB(17),9,H,HD,W,WG,RO,VDPT)
C WRITE(55,*)' H,H,HD,W,WG,RO,VDPT'
C PARTIAL DERIVATIVE FOR D2
C H=1.0001

82
CALL FLOWOR(139,DTTB(16),DTTB(17),DTTB(18),2,H,HD,HW,WG,RO,VDPT)
DWD2=(HW-W)/DH
CALL FLOWOR(139,DTTB(16),DTTB(17),DTTB(18),4,H,HD,HW,WG,RO,VDPT)
DWD4=(HW-W)/DH

C PARTIAL DERIVATIVE FOR ALPHA
C
H=1.0001
CALL FLOWOR(139,DTTB(16),DTTB(17),DTTB(18),4,H,HD,HW,WG,RO,VDPT)
DWD1=(HW-W)/DH

C CALCULATE THE SQUARED TERMS FOR THE PARTIALS TIMES THE
C UNCERTAINTIES IN THE VARIABLES
BWP=(BP1*DWDP1)**2
BWT=(BT*DWDT)**2
BWDP=(BDP*DWDDP)**2
BWCD=(BCD*DWDCD)**2
BWLPHA=(BALPHA*DWDALP)**2
BWD1=(BD1*DWDD1)**2
BWD2=(BD2*DWDD2)**2

C CALCULATE THE FLOW UNCERTAINTY
C CALCULATE THE CORRELATED BIAS TERMS, SWAG FOR CORRELATION
C COEFFICIENT USED AT THIS POINT
BD1BD2=DWDD1*DWDD2*BD1*BD2*1.0
BTBDP=DWDT*DWDDP*(BT*BDP)*0.0
BTBP1=DWDT*DWDP1*(BT*BP1)*0.0
BBDPBP1=DWDP*DWDP1*(BP1*BDP)*0.0

C VENTURI 139 UNCERTAINTY IS
UW=SQRT(BWP+BWT+BWDP+BWCD+BWALPHA+BWD1+BWD2
&+2.*BTBDP+2*BDPB1*BTBP1+2.*BD1BD2+PW*PW)
PERCENT=100.*UW/W
WW(6)=W
UNW(6)=UW
PER(6)=PERCENT

C VENTURI 139 OUTPUT
WRITE (55,*)
WRITE (55,*)'PID 8802 LPOT INLET'
WRITE (55,*)'VENTURI <139> '
WRITE (55,771) DTTB(16),DTTB(17),DTTB(18)
WRITE (55,772) BP1,BDP,BT
WRITE (55,773) BCD,BALPHA,BD1,BD2
WRITE (55,774) PW
WRITE (55,775) DWDP1,DWDDP,DWDT
WRITE (55,776) DWCD,DWALPHA,DWDD1,DWDD2
WRITE (55,777) BWP,BWDP,BWT
WRITE (55,778) BWCD,BWALPHA,BWDD1,BWDD2
WRITE (55,779) W,UW,PERCENT

771 FORMAT(3X,P1,4X,F8.2,5X,D1P,3X,F1P,5X,T,3X,F8.2)
772 FORMAT(3X,BP1,3X,F8.4,5X,BDP,3X,F8.4,4X,B1,T1,1X,F8.4)
773 FORMAT(3X,BCD,3X,F8.5,5X,BALPHA,3X,E8.3,3X,BD1,2X,F8.5,
&6X,BD2,2X,F8.5)
774 FORMAT(3X,PW,4X,F8.4)
775 FORMAT(2X,DWDP1,3X,E9.4,2X,DWDDP,3X,E9.4,2X,DWDT,3X,E9.3)
776 FORMAT(2X,DWALPHA,3X,E9.4,2X,DWDD1,3X,E9.3,
&2X,DWDD2,2X,F8.4)
777 FORMAT(2X,BWP,5X,E9.4,2X,BWDP,3X,E9.4,2X,BWDT,2X,E9.4)
778 FORMAT(2X,BWALPHA,5X,E9.4,2X,BWALPHA,5X,E9.4,2X,BWDD1,2X,E9.4,
&4X,BWDD2,2X,E9.4)
WRITE (55,*)

C CALCULATE THE FLOWRATE AND FLOWRATE UNCERTAINTY FOR VENTURI 426
CALL FLOWOR(426,DTTB(19),DTTB(20),DTTB(21),9,H,HD,W,RO,VDPT)
BP1=0.01*DTTB(19)
BT=0.01*DTTB(20)
BDP=0.01*DTTB(21)
BCD=0.01964
BALPHA=5.49E-07
BD1=0.0005
BD2=0.0005
PW=0.0

C CALCULATE THE PARTIAL DERIVATIVES 
C PARTIAL DERIVATIVE FOR P1 IS
HP1=DTTB(19)*H
CALL FLOWOR(426,HP1,DTTB(20),DTTB(21),9,H,DH,HW,WR,RO,VDPT)
DWDP1=(HW-WY(HP1-DTTB(19))

C PARTIAL DERIVATIVE FOR DP
HD=DTTB(20)*H
CALL FLOWOR(426,DTTB(19),HP,DTTB(21),9,H,DH,HW,WR,RO,VDPT)
DWDHP=(HW-WY(HD-DTTB(20))

C PARTIAL DERIVATIVE FOR HT1
HT1=DTTB(21)*H
CALL FLOWOR(426,DTTB(19),DTTB(20),DTTB(21),1,H,DH,HW,WR,RO,VDPT)
DWDTH1=(HW-WY-HT1-DTTB(21))

C PARTIAL DERIVATIVE FOR D1
CALL FLOWOR(426,DTTB(19),DTTB(20),DTTB(21),7,H,DH,HW,WR,RO,VDPT)
DWDTH1=(HW-WYHT1-DTTB(21))

C PARTIAL DERIVATIVE FOR CD
CALL FLOWOR(426,DTTB(19),DTTB(20),DTTB(21),4,H,DH,HW,WR,RO,VDPT)
DWDTCD=(HW-WYCD)

C PARTIAL DERIVATIVE FOR ALPHA
CALL FLOWOR(426,DTTB(19),DTTB(20),DTTB(21),10,H,DH,HW,WR,RO,VDPT)
DWDALPHA=(HW-WYALPHA)

C CALCULATE THE SQUARED TERMS FOR THE PARTIALS TIMES THE
C UNCERTAINTY IN THE VARIABLES
BWP=(BP1*DWDP1)**2
BWT=(BT*DWDPT)**2
BWDP=(BDP*DWDHP)**2
BWCD=(BCD*DWDCD)**2
BWALPHA=(BALPHA*DWDALPHA)**2
BWDI1=(BD1*DWDI1)**2
BDI2=(BD2*DWDI2)**2

C CALCULATE THE FLOW UNCERTAINTY
C CALCULATE THE CORRELATED BIAS TERMS, SWAG FOR CORRELATION
C COEFFICIENT USED AT THIS POINT
BD1BD2=DWDI1*DWDI2*BD1*BD2*1.0
BTBDP=DWDTP*DWDTP*BT*BDP*0.0
BTBP1=DWDTP*DWDTP*BT*BP1*0.0
BTBP1=DWDTP*DWDTP*BT*BP1*0.0

C VENTURI 426 UNCERTAINTY IS
UW=SQR(BWP+BWT+BWDP+BWCD+BWALPHA+2.*BD1BD2+BWD1+BWD2
&+2.*BTBDP+2.*BEDPBP1+BF)**2)
PERCENT=100.*UW/W
WW(7)=W
UNW(7)=UW
PER(7)=PERCENT

C VENTURI 426 OUTPUT
WRITE (55, *)
WRITE (55, FID 8819 HPOP DISCH)
WRITE (55, 'VENTURI <426>
WRITE (55,781) DTTB(19),DDTB(20),DDTB(21)
WRITE (55,782) BP1,BDP,BT
WRITE (55,783) BCD,BALPHA,BD1,BD2
WRITE (55,784) PW
WRITE (55,785) DWDI1,DWDI2,DWDTP
WRITE (55,786) DWDTP,DWDALP,DWDD1,DWD2
WRITE (55,787) BWP,BWDWP,BWT
WRITE (55,788) BWCBD,BWALPHA,BWD1,BWD2
WRITE (55,789) W,WW,PERCENT
C CALCULATE THE FLOWRATE AND FLOWRATE UNCERTAINTY FOR VENTURI 268
CALL FLOWOR(268,DTTB(22),DTTB(23),DTTB(24),9,H,DU,W,G,RO,VDPT)
BPI=0.01*DTTB(22)
BTD=0.01*DTTB(24)
BCD=0.02066
BALPHA=6.71E-07
BD1=0.0005
BD2=0.0005
PW=0.0
C CALCULATE THE PARTIAL DERIVATIVES
C PARTIAL DERIVATIVE FOR P1 IS
HP1=DTTB(22)*H
CALL FLOWOR(268,HP1,DTTB(23),DTTB(24),9,H,DU,W,G,RO,VDPT)
DWDPI=(HW-W)/(HP1-DTTB(22))
C PARTIAL DERIVATIVE FOR DP
HPD=DTTB(23)*H
CALL FLOWOR(268,HPD,DTTB(24),9,H,DU,W,G,RO,VDPT)
DWDPP=(HW-W)/(HPD-DTTB(23))
C PARTIAL DERIVATIVE FOR T1
HT1=DTTB(24)*H
CALL FLOWOR(268,HT1,DTTB(22),DTTB(23),9,H,DU,W,G,RO,VDPT)
DWDTP=(HW-W)/(HT1-DTTB(24))
C PARTIAL DERIVATIVE FOR D2
CALL FLOWOR(268,DTTB(22),DTTB(23),DTTB(24),2,H,DU,W,G,RO,VDPT)
DWD1=(HW-W)/D1
C PARTIAL DERIVATIVE FOR CD
CALL FLOWOR(268,DTTB(22),DTTB(23),DTTB(24),7,H,DU,W,G,RO,VDPT)
DWD2=(HW-W)/D2
C PARTIAL DERIVATIVE FOR ALPHA
CALL FLOWOR(268,DTTB(22),DTTB(23),DTTB(24),4,H,DU,W,G,RO,VDPT)
DWDALP=(HW-W)/ALPHA
C CALCULATE THE SQUARED TERMS FOR THE PARTIALS TIMES THE
C UNCERTAINTY IN THE VARIABLES
BWP=(BPI*DWDPI)**2
BWT=(BT*DWDTP)**2
BWP1=(BPT*DWDPP)**2
BWCBD=(BCD*DWD1)**2
BWAALPHA=(BALPHA*DWDALP)**2
BWD1=(BD1*DWD1)**2
BWD2=(BD2*DWD2)**2
C CALCULATE THE FLOW UNCERTAINTY
C CALCULATE THE CORRELATED BIAS TERMS, SWAG FOR CORRELATION
C COEFFICIENT USED AT THIS POINT
BD1BD2=DWD1*DWD2
BTBDP=DWDTP*DWDPP
HTBPI=DWDPP*DWD1*(HT1-HP1)*0.00
HTBTD=1-DWD1*(HT1-HP1)*0.00
UW=SQRT(BWP+BWT+BWP1+BWCBD+BWAALPHA+2*BD1BD2+BWD1+BWD2
&+2*BTBDP+2*BPTBDP+PW)**2)
PERCENT=100.*UW/W
WW(8)=W
UNW(8)=UW
PER(8)=PERCENT
C VENTURI 268 OUTPUT
WRITE (55,*)
WRITE (55,*) 'PID 8804 OPB LOX'
WRITE (55,796) DWDCD,DWDALP,DWDD1,DWDD2
WRITE (55,797) BWP,BWDP,BWT
WRITE (55,798) BWCD,BWALPHA,BWD1,BWD2
WRITE (55,799) W,UW,PERCENT

791 FORMAT(3X,T'n4XJ?8.2,5XT>F,3X,F8.2,5X,T,3X,F8.2)
792 FORMAT(3X,'BP1',3X,F8.4,5X,'BDP3X,F8.4,4X,<BT1',1XJ8.4)
793 FORMAT(3X,'BCD',3X,F8.5,5X,'BALP,3X,E9.3,3X,'BD1',2X,F8.5,
 &6X,'BD2',2X,F8.5)
794 FORMAT(3X,'BPW',4X,F8.4)
795 FORMAT(3X,'BWDP',3X,E9.4,3X,'BWCD',3X,E9.4,3X,'BWALPHA',3X,E9.4,3X,'BWDT',2X,F8.4)
796 FORMAT(3X,'BWCD',3X,E9.4,2X,'BWALPHA',3X,E9.3,2X,'BWDD1',3X,E9.3,
 &2X,'BWDD2',2X,E9.4)
797 FORMAT(3X,'BPW',3X,F9.2)
798 FORMAT(2X,T>WDPi;3X,E9.4,2X,TJWDDP,3X,E9A2XT>WDT,3X,E9.3)
799 FORMAT(2X,T>WDCD',3X,E9.4^X,T>WALF,3XJE9.3,2X,'DWDD1'^X,E9.3,
 &2X,T>WDD2I,2X,E9.4)

WRITE (55*)' ***** ********* ***** ******** *****>

C CALCULATE THE FLOWRATE AND FLOWRATE UNCERTAINTY FOR VENTURI 271
CALL FLOWOR(271,DTTB(25),DTTB(26),DTTB(27),9ADH,W,WG,RO,VDPT)
C WRITE (55,800) WG
C800 FORMAT(2X,'OPB FUEL FLOWRATE - W(8805) >'^9.2,' LB/S)
BP1=0.01*DTTB(25)
BT=0.01*DTTB(27)
BDP=0.01*DTTB(26)
BCEMJ.01992
BALPHA=3.23E-07
BD1=0.0005
BD2=0.0005
PW=0.0
C CALCULATE THE PARTIAL DERIVATIVES
C PARTIAL DERIVATIVE FOR PI IS
HP1=DTTB(25)*H
CALL FLOWOR(271,HP1,DTTB(26),DTTB(27),9,H,DH,W,HW,RO,VDPT)
DWDPl=(HW-WG),(HP1-RTTB(25))
C PARTIAL DERIVATIVE FOR DP
HDP=DTTB(25)*H
CALL FLOWOR(271,DTTB(25),HDP,DTTB(27),9,H,DH,W,HW,RO,VDPT)
DWDPP=(HW-WG),(HDP-RTTB(14))
C PARTIAL DERIVATIVE FOR T1
HT1=DTTB(27)*H
CALL FLOWOR(271,DTTB(25),DTTB(26),HT1,9,H,DH,W,HW,RO,VDPT)
DWDt=(HW-WG),(HT1-RTTB(27))
C PARTIAL DERIVATIVE FOR D1
CALL FLOWOR(271,DTTB(25),DTTB(26),DTTB(27),1,H,DH,W,HW,RO,VDPT)
DWDd1=(HW-WG),DH
C PARTIAL DERIVATIVE FOR D2
CALL FLOWOR(271,DTTB(25),DTTB(26),DTTB(27),2,H,DH,W,HW,RO,VDPT)
DWDd2=(HW-WG),DH
C PARTIAL DERIVATIVE FOR CD
CALL FLOWOR(271,DTTB(25),DTTB(26),DTTB(27),7,H,DH,W,HW,RO,VDPT)
DWDcd=(HW-WG),DH
C PARTIAL DERIVATIVE FOR ALPHA
CALL FLOWOR(271,DTTB(25),DTTB(26),DTTB(27),4,H,DH,W,HW,RO,VDPT)
DWDalp=(HW-WG),DH
C CALCULATE THE SQUARED TERMS FOR THE PARTIALS TIMES THE
C UNCERTAINTY IN THE VARIABLES
BWP=(BP1*DWDPl)**2
BWT=(BT*DWDt)**2
BWDP=(BDP*DWDPP)**2
BWCD=(BCD*DWDcd)**2
BWP=(BALPHA*DWDalp)**2
BWD1=(BD1*DWDd1)**2
BWD2=(BD2*DWDd2)**2
C CALCULATE THE FLOW UNCERTAINTY
BTBP1=DWDT*DWDP1*(BT*BP1)*0.00
BTBP1=DWDDP*DWDP1*(BDP*BP1)*0.00

C VENTURI 271 UNCERTAINTY IS

UW=SQRT(BWP+BWT+BWDP+BWCD+BWALPHA+2.*BD1BD2+BWD1+BWD2 &+2.*BTBDP+2*BDBBP1+PW**2)
PERCENT=100.*UW/WG
WW(9)=WG
UNW(9)=UW
PER(9)=PERCENT

C VENTURI 271 OUTPUT

WRITE (55,*)
WRITE (55,*)' PID 8805 OPB FUEL'
WRITE (55,*)' VENTURI <271>'
WRITE (55,801) DTTB(25),DTTB(26),DTTB(27)
WRITE (55,802) BP1,BDP,BT
WRITE (55,803) BCD,BALPHA,BD1,BD2
WRITE (55,804) PW
WRITE (55,805) DWDP1,DWDDP,DWDT
WRITE (55,806) DWDP1,DWDDP,DWDT
WRITE (55,807) BWP,BWDP,BWT
WRITE (55,808) BWCD,BWALPHA,BWDP,BWDT
WRITE (55,809) WG,UW,PERCENT

801 FORMAT(3X,'T1',4XF8.2,5X,'DP3XF8.2,5X,'^8.2)
802 FORMAT(3X,'BD2',2XF8.5)
803 FORMAT(3X,'PW,4X,E9.4)
804 FORMAT(3X,'BWP',5X,'E9.4')
805 FORMAT(3X,'BWDP',3X,'E9.4')
806 FORMAT(3X,'BWT',3X,'E9.4')
807 FORMAT(3X,'BWCD',3X,'E9.4')
808 FORMAT(3X,'BWALPHA',3X,'E9.4')
809 FORMAT(3X,'UW',3X,'E9.4')

WRITE (55,*) ' **** ******** ******** ******** ****'
WRITE (55,*)

C C CALCULATE THE FLOWRATE AND FLOWRATE UNCERTAINTY FOR VENTURI 296
CALL FLOWOR(296,DTTB(28),DTTB(29),DTTB(30),9,H,DH,W,WG,RO,VDPT)
BP1=0.01*DTTB(28)
BT=0.01*DTTB(29)
BDP=0.01*DTTB(29)
BCD=0.0252
BALPHA=6.71E-07
BD1=0.0005
BD2=0.0005
PW=0.0

C C CALCULATE THE PARTIAL DERIVATIVES
C PARTIAL DERIVATIVE FOR P1 IS
HP1=DTTB(28)
CALL FLOWOR(296,HP1,DTTB(29),DTTB(30),9,H,DTTB(28),W,WG,RO,VDPT)

DWP1=(PW-HP1)(DTTB(28))

C PARTIAL DERIVATIVE FOR DP
HDP=DTTB(29)
CALL FLOWOR(296,DTTB(28),HDP,DTTB(30),9,H,DTTB(29),W,WG,RO,VDPT)

DWDP=(PW-HDWP)(DTTB(29))

C PARTIAL DERIVATIVE FOR T1
HT1=DTTB(30)
CALL FLOWOR(296,HT1,DTTB(29),DTTB(30),9,H,HT1,W,WG,RO,VDPT)

DWD1=(PW-HT1)(DTTB(30))

C PARTIAL DERIVATIVE FOR D1
CALL FLOWOR(296,DTTB(28),DTTB(29),DTTB(30),1,H,HT1,W,WG,RO,VDPT)

DWDD1=(PW-DWD1)(HT1)(DTTB(30))

C PARTIAL DERIVATIVE FOR D2
CALL FLOWOR(296,DTTB(28),DTTB(29),DTTB(30),2,H,HT1,W,WG,RO,VDPT)

DWDD2=(PW-DWDD2)(HT1)(DTTB(30))

C PARTIAL DERIVATIVE FOR CD
CALL FLOWOR(296,DTTB(28),DTTB(29),DTTB(30),7,H,HT1,W,WG,RO,VDPT)

DWDCD=(PW-DWDCD)(HT1)(DTTB(30))

C PARTIAL DERIVATIVE FOR ALPHA
CALL FLOWOR(296,DTTB(28),DTTB(29),DTTB(30),4,H,HT1,W,WG,RO,VDPT)
DWDALP = (HW-W)/DH

C CALCULATE THE SQUARED TERMS FOR THE PARTIALS TIMES THE UNCERTAINTY IN THE VARIABLES
BWP = (BP1*DWDP1)**2
BWD = (BD*DWDD)**2
BWC = (BC*DWDC)**2
BWALPHA = (BALPHA*DWDALP)**2
BW1 = (BD1*DWDD1)**2
BW2 = (BD2*DWDD2)**2

C CALCULATE THE FLOW UNCERTAINTY
C CALCULATE THE CORRELATED BIAS TERMS, SWAG FOR CORRELATION COEFFICIENT USED AT THIS POINT
BD1*BD2 = DWDD1*DWDD2*BD1*BD2*0.0
BTBDP = DWDT*DWDDP*(BT*BDP)*0.0
BTBP1 = DWDT*DWDP1*(BT*BP1)*0.0

C VENTURI 296 UNCERTAINTY IS
UW = SQRT(BWP + BWT + BWDP + BWCD + BWALPHA + 2.*BD1BD2 + BWD1 + BWD2 & + 2.*BTBDP + 2.*BDPB1 + PW**2)
PERCENT = 100.*UW/W
WW(10) = W
UNW(10) = UW
PER(10) = PERCENT

C VENTURI 296 OUTPUT
WRITE (55,*)
WRITE (55,*) 'PID 8810 FPB LOX'
WRITE (55,*) 'VENTURI <296>'
WRITE (55,811) DTTB(28), DTTB(29), DTTB(30)
WRITE (55,812) BP1, BDP, BT
WRITE (55,813) BCD, BALPHA, BD1, BD2
WRITE (55,814) PW
WRITE (55,815) DWDP1, DWDDP, DWDT
WRITE (55,816) DWDCD, DWDALP, DWDD1, DWDD2
WRITE (55,817) BWP, BWD, BWT
WRITE (55,818) BWCD, BWALPHA, BD1, BD2
WRITE (55,819) W, UW, PERCENT

811 FORMAT(3X, 'T1,4X,F8.2,5X,DP,3X,F8.2,5X,T3X,F8.2)
812 FORMAT(3X, 'T1,3X,F8.4,5X,BDP,3X,F8.4,4X,BT1,1X,F8.4)
813 FORMAT(3X, 'T1,3X,F8.5,5X,BALPHA,3X,E8.3X,BD1,2X,F8.5, &6X,BD2,2X,F8.5)
814 FORMAT(3X, 'T1,4X,F8.4)
815 FORMAT(2X, 'TW,3X,E9.4X,TX,4X,F8.4,6X,TX,4X,DWDP1,3X,E9.4X, &2X,DWDT,3X,E9.3X,TX,2X,E9.3, &2X,DWDD1,2X,E9.4)
819 FORMAT(2X, 'W,3X,F9.4X,TU,5X,F9.5,2X,FU,2X,F8.4)
WRITE (55,*) '******** ******** ******* ******' WRITE (55,*)
C CALL FLOW(247, DTTB(1), DTTB(2), DTTB(3), 9, H, DH, W, GW, RO, VDPT)
C WRITE(55,911) W
C911 FORMAT(2X, 'HTX INLET FLOW RATE - (8888) >,F9.2,' LB/S)
C
WRITE (55,*)
WRITE (55,915) NSLC, BTIME, ETIME
915 FORMAT(2X, 'T3,2X,SLNUM >,J5,2X,SLICE START TIME >,F3.1, $ 2X,SLICE END TIME >,F3.1)
WRITE (55,*)
DO 925 I = 1,10
WRITE (55,920) NPID(I), WW(I), UNW(I), PER(I)
925 CONTINUE
WRITE (55,*)
C
C GO TO 1
C
999 STOP
C PURPOSE: TO CALCULATE FLOW VENTURI FLOWS IN LBM/SEC
C FORM OF CALL: CALL FLOWOR
C INPUT: ID FLOW ORIFICE ID NUMBER
ICD SWITCH TO ITERATE ON CD=F(REYNOLDS)
P1 UPSTREAM PRESSURE PSIA
T1 UPSTREAM TEMPERATURE DEG R
DP ORIFICE DELTA PRESSURE PSIA
C OUTPUT: WL FLOWRATE, LIQ CALCULATION LBM/SEC
WG FLOWRATE, GAS CALCULATION LBM/SEC
RHO DENSITY LBM/FT^3
C METHOD: 00480099
C RESTRICTIONS: FORT77
C NOTES: GASEOUS FLOW EQ REQUIREMENTS:
DP = MEASURED DELTA PRESSURE PSID
P1 = MEASURED INLET PRESSURE PSIA
T1 = MEASURED INLET TEMPERATURE DEG R
D1 = VENTURI INLET DIAMETER IN
D2 = VENTURI THROAT DIAMETER IN
CDFV = DISCHARGE COEFFICIENT MEASURED VIA WATER/AIR
TESTS AT RKDN ENGINEERING DEV LAB IN CANOGA PK
Z = COMPRESSIBILITY = F(P1,T1)
GAM = GAMMA = F(P1,T1)
RHO = DENSITY = F(P1,T1) LBM/FT^3
LIQUID FLOW EQ REQUIREMENTS:
DP = MEASURED DELTA PRESSURE PSID
P1 = MEASURED INLET PRESSURE PSIA
T1 = MEASURED INLET TEMPERATURE DEG R
D1 = VENTURI INLET DIAMETER IN
D2 = VENTURI THROAT DIAMETER IN
CDFVT= THEORETICAL DISCH. COEFFICIENT FOR ID = 247.
TESTS AT RKDN ENGINEERING DEV LAB IN CANOGA PK
CDFV = THEORETICAL DISCH. COEFFICIENT FOR ID = 247.
GAM = GAMMA = F(P1,T1)
RHO = DENSITY = F(P1,T1) LBM/FT^3
C REVISIONS: 00810099
C NONE 00820099
C
SUBROUTINE FLOWOR(IDJ14)P,T1^IVARADH,WL,WG^HO
IMPLICIT REAL (A-H,O-Z)
COMMON/PROPTY/KUJ)L»DV3L»HV,S^L
CHARACTER'S FLD 00870099
CHARACTER'S TYPE 00880099
REAL'S PFLUID,TFUJIDJlOI^UID.VFLUrojffUnD.SFLUID.CVFLUID, 0084199
REAL*4 XMW 00890099
CHARACTER*3 FLD 00870099
CHARACTER*2 TYPE 00880099
C
REAL*8 PFLUID,TFLUID,ROFLUID,VFFLUID,HFLUID,SFLUID,CVFLUID, 00841399
* CFFLUID,WFLUID,EFLUID,HFLUID,V2FLUID,ERFLUID,TFLUID 00841499
REAL*4 XMW 00890099
89
DATA NAMOX/2HO2/
DATA NAMHY/2HH2/
C-0920099
C CHECK TO SEE IF ZERO. IF SO, SET WL TO VERY SMALL NUMBER AND EXIT.
C 0930099
C-0940099
WRITE(6,*) 'VENTURI #ID,P1,DP,T1'
C WRITE (55,*) 'ENTERING SUBROUTINE FLOWOR'
C WRITE (55,*) ID,ID,NVAR,NVAR
C IF (1.EQ.1) RETURN
C-0950099
IF ((P1 .LE. 0) .OR. (T1 .LE. 0) .OR. (DP .EQ. 0)) THEN 0960099
WL = -10002.0 0970099
WRITE(86,*) INSTRUMENTATION INADEQUATE TO CALC. FLOWRATE'
GOTO 999 0990099
END IF 1000099
C 1010099
C SET A DUMMY VALUE FOR THE RETURNED STEP SIZE
DH=999. 1020099
C DH IS SET UNREASONABLY HIGH TO BE VISIBLE IN OUTPUT
TYPE = RO 1030099
C 1040099
C VENTURI CONSTANTS AS A FUNCTION OF VENTURI NUMBER (IMRL ITEM NO.)
C-1050099
MACHCOR = 1.0
IF (ID .EQ. 20) THEN 10110099
FLD = 'H2' 10116099
D1 = 1.9920 101170099
IF (NVAR.EQ.1) THEN
D1=D1*H
DH=D1-D1/H
ENDIF 101180099
D2 = 1.5225 101190099
IF (NVAR.EQ.2) THEN
D2=D2*H
DH=D2-D2/H
ENDIF 10120099
CDFV = 0.99610 01190099
CDFV = 1.0125 01190099
IF (NVAR.EQ.3) THEN
CDFV=CDFV*H
DH=CDFV-CDFV/H
ENDIF 101220099
XK = 0.448 01200099
RP = 1.948 01210099
ALPHA= 0.00000417 01220099
IF (NVAR.EQ.5) THEN
ALPOLD=ALPHA
ALPHA=ALPHA*1.01
DH=ALPHA-ALPOLD
ENDIF 101230099
TYPE = 'RO' 1020099
AO = 0.95522 101240099
AO = 1.0213183 101240099
BO = 0.000626 101250099
BO = 0.01503 101250099
REDT = 2.50E+06 01260099
REDT = 5.00E+06 01260099
AA = 1.80 01270099
AA = 0.20 01270099
TREF = 480.0 01280099
MACHCOR = 1.00246
C 10130099
ELSEIF(ID .EQ. 139) THEN 101310099
C *** LPT TURBINE DRIVE DUCT
IOP1 = 1
01320099
90
FLD = 'O2' 01330099
D1 = 2.2998 01340099
IF (NVAR.EQ.1) THEN
  D1=D1*H
  DH=D1-D1/H
ENDIF
D2 = 1.5743 01350099
IF (NVAR.EQ.2) THEN
  D2=D2*H
  DH=D2-D2/H
ENDIF
CDFV = 1.03332 01360099
IF (NVAR.EQ.7) THEN
  CDOLD=CDFV
  CDFV=CDFV*H
  DH=CDFV-CDOLD
ENDIF
XK = 0.316 01370099
RP = 2.441 01380099
ALPHA= 0.00000651 01390099
IF (NVAR.EQ.4) THEN
  ALPOLD=ALPHA
  ALPHA=ALPHA*1.01
  DH=ALPHA-ALPOLD
ENDIF
A0 = 1.04232 01400099
R0 = 0.01258 01410099
REDT = 4.00E+05 01420099
AA = 1.00 01430099
TREF = 190.0 01440099
ELSEIF (ID .EQ. 247) THEN 01450099
  C *** HEX OXIDIZER SUPPLY ********* NOTE: CDFV IS AN ESTIMATE ***** 01470099
  IQI = 1 01480099
  FLD = 'O2' 01490099
  D1 = 0.5535 01500099
  IF (NVAR.EQ.1) THEN
    D1=D1*H
    DH=D1-D1/H
  ENDIF
  D2 = 0.1745 01510099
  IF (NVAR.EQ.2) THEN
    D2=D2*H
    DH=D2-D2/H
  ENDIF
  CDFV = 0.9850 01520099
  IF (NVAR.EQ.3) THEN
    CDFV=CDFV*H
    DH=CDFV-CDFV/H
  ENDIF
  ALPHA= 0.00000569 01530099
  IF (NVAR.EQ.4) THEN
    ALPHA=ALPHA*H
    DH=ALPHA(1-(1./H))
  ENDIF
  TREF = 185.0 01540099
ELSEIF (ID .EQ. 268) THEN 01550099
  C *** OBF OXIDIZER SUPPLY 01560099
  IQI = 1 01570099
  FLD = 'O2' 01580099
  D1 = 1.0972 01590099
  IF (NVAR.EQ.1) THEN
    D1=D1*H
    DH=D1-D1/H
  ENDIF
  D2 = 0.6551 01600099
  IF (NVAR.EQ.2) THEN
    D2=D2*H
  ENDIF
C
ELSEIF(ID .EQ. 271) THEN
C Opp FUEL SUPPLY
IOP1= 2
FLD = 'H'
D1 = 2.0060
IF (NVAR.EQ.1) THEN
D1=D1*H
DH=D1-D1/H
ENDIF
D2 =1.4931
IF (NVAR.EQ.2) THEN
D2=D2*H
DH=D2-D2/H
ENDIF
CDFV= 1.02162
IF (NVAR.EQ.7) THEN
CDFOLD=CDFV
CDFV=CDFV*H
DH=CDFV-CDFOLD
ENDIF
XK =0.276
RP =1.233
ALPHA= 0.00000323
IF (NVAR.EQ.4) THEN
ALPOLD=ALPHA
ALPHA=ALPHA*1.01
DH=ALPHA-ALPOLD
ENDIF
AO= 1.02163
BO = 0.032321
REDT = 7.00E+05
AA = 1.50
TREF = 280.0
TREF = 280.0
C
ELSEIF(ID .EQ. 275) THEN
C Opp ASI OXIDIZER SUPPLY
IOP1= 1
FLD = 'O2'
D1 = 0.3030
D2 = 0.0818
CDFV = 1.05226
ALPHA= 0.00000549
AO = 1.0549
BO = 0.02565
REDT = 8.00E+05
AA = 1.75
TREF = 280.0
TREF = 280.0
C
ELSEIF(ID .EQ. 274) THEN
C Opp ASI IGNITOR OXIDIZER SUPPLY
IOP1= 1
FLD = 'O2'
TREF = 280.0
TREF = 280.0
D1 = 0.3030 0204099
D2 = 0.0561 0205099
CDFV = 0.99143 0206099
ALPHA = 0.00000549 0207099
AO = 0.99086 0209099
BO = 0.00000536 0221099
REDT = 1.00E+06 0230999
AA = 1.00 0235099
TREF = 200.0 02260099
TREF = 200.0 02270099
ELSEIF (ID .EQ. 277) THEN 02140099
C «»*OPBASI FUEL SUPPLY 0205099
IOP1 = 2 02160099
FLD = 'H2' 02170099
D1 = 0.4000 02180099
D2 = 0.1870 02190099
CDFV = 0.99061 02200099
ALPHA = 0.00000549 02210099
AO = 0.99086 02220099
BO = 0.00000536 02230099
REDT = 1.00E+06 02240099
AA = 1.00 02250099
TREF = 90.0 02260099
ELSEIF (ID .EQ. 296) THEN 02280099
C ***FPBOXIDIZER SUPPLY 02290099
IOP1 = 1 02300099
FLD = 'O2' 02310099
D1 = 2.0000 02320099
IF (NVAR.EQ.1) THEN 02330099
DH = D1 - D1/H
ENDIF 02340099
D2 = 1.1090 02350099
IF (NVAR.EQ.2) THEN 02360099
DH = D2 - D2/H
ENDIF 02370099
CDFV = 1.02573 02380099
IF (NVAR.EQ.7) THEN 02390099
CDOLD = CDFV
CDFV = CDFV * H
DH = CDFV - CDOLD
ENDIF 02400099
ALPHA = 0.00000671 02410099
IF (NVAR.EQ.4) THEN 02420099
ALPOLD = ALPHA
ALPHA = ALPHA * 1.01
DH = ALPHA - ALPOLD
ENDIF 02430099
AO = 1.02633 02440099
BO = 0.0006843 02450099
REDT = 1.80E+06 02460099
AA = 1.50 02470099
TREF = 200.0 02480099
ELSEIF (ID .EQ. 303) THEN 02490099
C ***FPB ASI OXIDIZER SUPPLY 02500099
IOP1 = 1 02510099
FLD = 'O2' 02520099
D1 = 0.3030 02530099
D2 = 0.0561 02540099
CDFV = 1.08269 02550099
ALPHA = 0.00000549 02070099
AO = 0.99086 02090099
BO = 0.00000536 02210099
REDT = 1.00E+06 02240099
AA = 1.00 02250099
TREF = 200.0 02400099
ELSEIF (ID .EQ. 302) THEN 02560099
C ELSEIF (ID .EQ. 303) THEN 02420099
C ***FPB ASI OXIDIZER SUPPLY 02430099
IOP1 = 1 02440099
FLD = 'O2' 02450099
D1 = 0.3030 02460099
D2 = 0.0561 02470099
CDFV = 1.08156 02480099
ALPHA = 0.00000549 02490099
AO = 0.99086 02500099
BO = 0.00000536 02510099
REDT = 1.00E+06 02520099
AA = 1.00 02530099
TREF = 200.0 02540099
C ELSEIF (ID .EQ. 302) THEN 02560099
C ELSEIF (ID .EQ. 303) THEN 02560099
C
C *** FPB ASI IGNITER OXIDIZER SUPPLY
IOP1 = 1
FLD = 'O2'
D1 = 0.3030
D2 = 0.0502
CDFV = .98288
ALPHA = 0.00000549
AO = 0.98296
BO = 0.00161
REDT = 4.00E+05
AA = 1.50
TREF = 200.0

C ELSEIF(ID .EQ. 305) THEN
C *** FPB ASI FUEL SUPPLY
IOP1 = 2
FLD = 'H2'
D1 = 0.4000
D2 = 0.1811
CDFV = 0.96581
ALPHA = 0.00000536
AO = 0.96835
BO = 0.008258
REDT = 1.00E-06
AA = 0.50
TREF = 90.0

C ELSEIF(ID .EQ. 3541) THEN
C *** FLIGHT NOZZLE COOLANT SUPPLY NO. 1
IOP1 = 2
FLD = 'H2'
D1 = 1.5241
IF (NVAR.EQ.1) THEN
D1=D1*H
DH=D1-D1/H
ENDIF
D2 = 0.9726
IF (NVAR.EQ.2) THEN
D2=D2*H
DH=D2-D2/H
ENDIF
CDFV= 1.01644
IF (NVAR.EQ.3) THEN
CDFV=CDFV*H
DH=CDFV-CDFV/H
ENDIF
XK = 1.123
RP = 1.656
ALPHA = 0.00000548
IF (NVAR.EQ.4) THEN
ALPHA=ALPHA*(1.-1./H)
ENDIF
AO = 1.01645
BO = 0.002959
REDT = 5.00E+05
AA = 1.50
TREF = 90.0

C ELSEIF(ID .EQ. 3542) THEN
C *** FLIGHT NOZZLE COOLANT SUPPLY NO. 2
IOP1 = 2
FLD = 'H2'
D1 = 1.5250
IF (NVAR.EQ.1) THEN
D1=D1*H
DH=D1-D1/H
ENDIF
D2 = 0.9760
IF (NVAR.EQ.2) THEN
D2=D2*H
ENDIF

C 02990099
C 02840099
C 02850099
C 02710099
C 02690099
C 02600099
C 02570099
C 02590099
C 02610099
C 02620099
C 02630099
C 02640099
C 02650099
C 02660099
C 02670099
C 02680099
C 02690099
C 02700099
C 02710099
C 02720099
C 02730099
C 02740099
C 02750099
C 02760099
C 02770099
C 02780099
C 02790099
C 02800099
C 02810099
C 02820099
C 02830099
C 02840099
C 02850099
C 02860099
C 02870099
C 02880099
C 02890099
C 02900099
C 02910099
C 02920099
C 02930099
C 02940099
C 02950099
C 02960099
C 02970099
C 02980099
C 02990099
DH=D2-D2/H
ENDIF
CDFV = 0.99590 03060099
IF (NVAR.EQ.3) THEN
CDFV=CDFV*H
DH=CDFV-CDFV/H
ENDIF
XK = 1.141 03070099
RP = 1.702 03080099
ALPHA= 0.00000548 03090099
IF (NVAR.EQ.4) THEN
ALPHA=ALPHA*H
DH=ALPHA*(1-(1/H))
ENDIF
XK =1.217 03100099
RP =1.795 03110099
ALPHA= 0.00000548 03120099
IF (NVAR.EQ.4) THEN
ALPHA=ALPHA*H
DH=ALPHA*(1-(1/H))
ENDIF

ELSEIF (ID .EQ. 3543) THEN 03150099
C ** FLIGHT NOZZLE COOLANT SUPPLY NO. 3 03160099
C *** FLIGHT NOZZLE COOLANT SUPPLY NO. 3 03170099
IOP1= 2 03180099
FLD = "32" 03190099
D1 = 1.5205 03200099
IF (NVAR.EQ.1) THEN
D1=D1*H
DH=D1-D1/H
ENDIF
D2 =0.9730 03210099
IF (NVAR.EQ.2) THEN
D2=D2*H
DH=D2-D2/H
ENDIF
CDFV = 0.99918 03220099
IF (NVAR.EQ.3) THEN
CDFV=CDFV*H
DH=CDFV-CDFV/H
ENDIF
XK = 1.217 03230099
RP = 1.795 03240099
ALPHA= 0.00000548 03250099
IF (NVAR.EQ.4) THEN
ALPHA=ALPHA*H
DH=ALPHA*(1-(1/H))
ENDIF

ELSEIF (ID .EQ. 397) THEN 03300099
C *** CCV FLIGHT NOZZLE COOLANT SUPPLY 03310099
C *** FLIGHT NOZZLE COOLANT SUPPLY 03320099
IOP1 = 2 03330099
FLD = "32" 03340099
D1 = 2.4382 03350099
IF (NVAR.EQ.1) THEN
D1=D1*H
DH=D1-D1/H
ENDIF
D2 =1.6939 03360099
IF (NVAR.EQ.2) THEN
D2=D2*H
DH=D2-D2/H
ENDIF
CDFV = 1.02091 03370099
IF (NVAR.EQ.3) THEN
CDFV=CDFV*H
DH=CDFV-CDFV/H
ENDIF

95
XK = 0.196 03390099
RP = 1.913 03400099
ALPHA= 0.00000548 03410099
IF (NVAR.EQ.4) THEN
  ALPHA=ALPHA*H
  DH=ALPHA*(1.-(1./H))
ENDIF
AO = 1.02106 03420099
BO = 0.01152 03430099
REDT = 5.00E+05 03440099
AA = 1.00 03450099
TREF = 90.0 03460099
endif

C
ELSEIF(ID_EQ.426) THEN 0347099
  HPOTP PUMP DISCHARGE
ENDIF 03640099

C *** HPOTP PUMP DISCHARGE
IOPI = 1 03500099
IF (IOPI .EQ. 1) THEN
  WRITE (6,*) 'FLOW ORIFICE OUTPUT--LIQUID'
  WRITE (6,*) 'FLD,FLD,D1,D1,D2,D2,CDFV,CDFV,XK,XK'
  WRITE (6,*) 'RF,RP,ALPHA,ALPHA,AO,AO,BO,BO'
  WRITE (6,*) REDT,REDT,AA,AA,TREF,TREF
  WRITE (6,*) NVAR,NVAR,T,H,DH,DH
ENDIF

C
WRITE (6,*) BEGIN PROPERTY LOOKUP

C
ELSE 03620099
GOTO 999 03630099
ENDIF 0371000
C PROPERTY LOOK-UPS FOR GAMMA AND DENSITY

IF (FLD.EQ. 'H2') THEN
  XMW = 2.016
  WRITE(6, »)
  CALL SETUP(NAMHY)
  WRITE(6, ») RETURN - SETUP(NAMHY)
  KU = 3
ENDIF
C *** KS = 1 RETURNS DENSITY, KP = 1+2+4+8=15 RETURNS CP,CV AND MU...
  WRITE(6, ») CALL - GASP2 H2
  CALL GASP2(1,15,T1,P1,JXX2,JIO23)
  WRITE(6, ») RETURN - GASP2 H2
  RHO = DH2
  CP1 = CP
  CV1 = CV
  VU = MU
  GAM = CP1/CV1
ELSEIF(FLD.EQ. 'O2') THEN
  XMW = 32.00
  WRITE(6, »)
  CALL SETUP(NAMOX)
  WRITE(6, ») RETURN - SETUP(NAMOX)
  KU = 3
ENDIF
C *** KS = 1 RETURNS DENSITY, KP = 1+2+4+8=15 RETURNS CP,CV AND MU...
  WRITE(6, ») CALL - GASP2 O2
  CALL GASP2(1,15,T1,P1,JXX2,JIO23)
  WRITE(6, ») RETURN - GASP2 O2
  RHO = Do2
  CP1 = CP
  CV1 = CV
  VU = MU
  GAM = CP1/CV1
ENDIF
WRITE(6, ») END PROPERTY LOOKUP

C
WRITE(6, ») BEGIN FLOW CALCULATIONS'
C
C FLOW CALCULATIONS
C
C ** B IS F/M BETA RATIO (DIAMETER RATIO) WHERE D1 IS INLET DIA. & **
C *** D2 IS THE THROAT DIAMETER ***
C *** TE IS THE THERMAL EXPANSION FACTOR ***
C *** CW IS THE CALIBRATION COEFFICIENT ***
B = D2/D1
A2 = D2**2.*3.14159/4.
B2 = B**2
B4 = B**4
T4 = TREF - 528.
TE = 1.0 + (2*ALPHA*(T1-528.))
CW = D2**3.*CDFV/(SQRT(1.-B4))
XP = 1-DP/PI
P2 = P1 - DP
P2OP1 = P2/P1
G2 = 2./GAM
GAM1 = GAM/(GAM-1)
GAM2 = (GAM-1)/GAM
GAM3 = (GAM+1)/GAM
YA = (XP**G2*GAM1)*((1-XP**GAM2)/(1-XP))*((1-B4)/(1-B4*XP**G2))
YA = SQRT(YA)
CONST = 2.*32.174/144.
AREAC = 3.14159/4.00
CSAVE = CDFV
WRITE(6, ») END FLOW CALCULATIONS'
C
C LIQUID EQUATION OPTION
C
C *** THE CONSTANT 0.525019 IS A UNIT CONVERSION FACTOR BASED ON:
C *** WL IN LB/S, DELTA P IN PSED, RHO IS LB/FT3, AND D2 IN INCHES ***
C *** K = 3.141594*SQR(T(2GC/144)) - 0.5250204 ***
IF (IOP1.EQ. 1) THEN
  03240099
ELSE
  03250099
ENDIF
*BEGIN LIQ EQUATION OPTION*
ENERGY = CONSTRH*DP
WL = MACHCOR * TE * CW * AREAC * SQRT(ENERGY)

**CURVE FIT FOR ID = 247**

C IB32 = 1
C GO TO 301

C300 CONTINUE

CW = D2**2 * CDFV / (SQRT(1. - B4))
ENERGY = CONSTRH*DP
WL = MACHCOR * TE * CW * AREAC * SQRT(ENERGY)

C301 CONTINUE
C RE = 48.0 * WL / (3.14159 * D2 * VU)
C IF (ID, NE, 247) THEN
C CDFVT = AO - ABS(B4*(REDT/RE)**AA)
C ELSE
C CDFVT = 0.7253 + 3.3476E-08 * RE - 2.862E-14 * RE**2 +
C X 8.6492E-21 * RE**3 - 7.048E-28 * RE**4
C ENDIF
C CALL PSLP5(CDFV, CDFV, CDFVT, B31, B32, 0.0001, IB31, IB32, 20, 300)
C IF (B331 .EQ. 1) GO TO 300
WLG = WL

*END LIQ EQUATION OPTION*

C
C

**GAS EQUATION OPTION - IOP1 = 2**
ENERGY = CONSTRH*DP
WG = MACHCOR * YA * TE * CW * AREAC * SQRT(ENERGY)

C601 CONTINUE
C RE = 48.0 * WG / (3.14159 * D2 * VU)
C CDFVT = AO - ABS(B4*(REDT/RE)**AA)
C CALL PSLP5(CDFV, CDFV, CDFVT, B31, B32, 0.0001, IB31, IB32, 20, 300)
C IF (B331 .EQ. 1) GO TO 600
WLG = WG

*END GAS EQUATION OPTION*

C

*** VENTURI RESISTANCE CALCULATION ***

C IF (ID, EQ, 296) THEN
VDP = DP * (0.436 - 0.86 * B + 0.59 * B**2.)
ELSE
VDP = DP * (0.218 - 0.42 * B + 0.38 * B**2.)
ENDIF

C

IF (ID, EQ, 275) ID = 274
IF (ID, EQ, 274) ID = 274
IF (ID, EQ, 303) ID = 3021
IF (ID, EQ, 302) ID = 3022

*VENTURI ID NO.*, ID

C WRITE (86, *)'FLOW ORIFICE OUTPUT--LIQUID'
WRITE (86, *)'FLOW ORIFICE OUTPUT--GAS'

C WRITE (86, *)'FLOW ORIFICE OUTPUT--LIQUID'
WRITE (86, *)'FLOW ORIFICE OUTPUT--GAS'

C WRITE (86, *)'VENTURI', VDPT, VDPT, MACH COR, MACHCOR

C WRITE (86, *)'FLOW ORIFICE OUTPUT--LIQUID'
WRITE (86, *)'FLOW ORIFICE OUTPUT--GAS'

C WRITE (86, *)'FLOW ORIFICE OUTPUT--LIQUID'
WRITE (86, *)'FLOW ORIFICE OUTPUT--GAS'

C WRITE (86, *)'FLOW ORIFICE OUTPUT--LIQUID'
WRITE (86, *)'FLOW ORIFICE OUTPUT--GAS'

C WRITE (86, *)'FLOW ORIFICE OUTPUT--LIQUID'
WRITE (86, *)'FLOW ORIFICE OUTPUT--GAS'

C WRITE (86, *)'VENTURI', VDPT, VDPT, MACH COR, MACHCOR
WRITE (86,*) 'VDPT,VDPT,MACH COR,MACHCOR' 03780299
WRITE (86,*) 'NVAR,NVAR,H,H,DH,DH' 03781099
C WRITE (55,*) 'NVAR,NVAR,H,H,DH,DH' 03790099
ENDIF 03802099
C 03810099
C WRITE (55,*) 'LEAVING SUBROUTINE FLOWOR' 03820099
RETURN 03830099
END 03840099

{THE THERMOPHYSICAL PROPERTY SUBROUTINE FOLLOWS
AT THIS POINT IN THE PROGRAM, HOWEVER
IT IS NOT INCLUDED IN THIS PRINTOUT}