A PC Program for Estimating Measurement Uncertainty for Aeronautics Test Instrumentation

Philip Z. Blumenthal
NYMA, Inc.
Brook Park, Ohio

July 1995

Prepared for
Lewis Research Center
Under Contract NAS3-27186
A PC PROGRAM FOR ESTIMATING MEASUREMENT UNCERTAINTY FOR AERONAUTICS TEST INSTRUMENTATION

Philip Z. Blumenthal
NYMA, Inc.
Engineering Services Division
Brook Park, Ohio 44142

Abstract

A personal computer program was developed which provides aeronautics and operations engineers at Lewis Research Center with a uniform method to quickly provide values for the uncertainty in test measurements and research results. The software package used for performing the calculations is Mathcad 4.0, a Windows version of a program which provides an interactive user interface for entering values directly into equations with immediate display of results. The error contribution from each component of the system is identified individually in terms of the parameter measured. The final result is given in common units, SI units, and percent of full scale range. The program also lists the specifications for all instrumentation and calibration equipment used for the analysis. It provides a presentation-quality printed output which can be used directly for reports and documents.

Nomenclature

B'n: Bias component of error
B: Bias limit estimate
j: Number of measurement variables
N: Number of tests (measurement sets) averaged to obtain a result
S'n: Precision component of error
S: Precision limit of error
U: Uncertainty estimate
Θ: Sensitivity coefficient (partial derivative of result with respect to a variable)
σ: Population standard deviation

Subscripts:
i: Mathcad range variable
RSS: Root-sum-square
x: Measured variable
y: Measured variable

(Other terms are defined in the comment column for the program examples included)

Introduction

In order for valid conclusions to be drawn from the results of research experiments, it is vital that an uncertainty analysis be performed to determine the interval about the result in which the true value is thought to lie with a certain degree of confidence. However, the estimated errors reported for similar
research tests by different experimenters may differ substantially because of the methodology, assumptions, or data base used. Different procedures may be used because of the proliferation of standards and guidelines which have been published by technical organizations such as ANSI/ASME\(^1\), ISO\(^2\), AGARD\(^3\), NIST\(^4\) and NASA\(^5\) in recent years. Although there are efforts occurring at present to harmonize the principles of the ASME model (Performance Test Code 19.1) and the ISO model (Guide to the Expression of Uncertainty in Measurement) into a new U. S. National Standard on Measurement Uncertainty, any methodology described by one of the present standards is currently accepted.

Another cause of differing results is due to the instrumentation specification data and assumptions used by the experimenter. Manufacturer's performance specifications for data system equipment require proper interpretation or knowledge of information, such as the manufacturer's testing process, which is not usually available in the written specification. Often, the time span (i.e., 8 hours, one month, one year) that is covered for each stated error source is not indicated, as well as the confidence limits or standard deviations (i.e., 1, 2, or 3 \(\sigma\)) within which the stated error is contained. When a specification for amplifier noise is provided, it is only valid when it is adjusted for the particular gain and bandwidth used in the application.

In many instances, the experimenter may only consider the intrinsic error specifications given by the manufacturer, such as gain accuracy, offset, nonlinearity, hysteresis, repeatability, and noise, and neglect to include application-related performance specifications such as temperature coefficients, reference pressure changes, common mode rejection, source current and crosstalk.

Another factor to be considered is the uncertainty due to the equipment and methods used by the calibration laboratory. Laboratory calibrations are typically performed to reduce the total measurement uncertainty by providing traceability to national standards. It should be recognized that when only a single calibration is performed, there is no data scatter in the calibration curve provided, and all calibration process random errors (such as repeatability and noise) are permanently fossilized into the systematic (bias) error. Often, only the uncertainty of the reference standard is accounted for and other sources of error, such as the uncertainties in the transducer readout system used in the calibration facility, are ignored.

This paper describes a PC program that was developed in order to provide aeronautics and operations engineers at Lewis Research Center with a uniform methodology which can quickly provide quantitative values for estimating uncertainty in measurements. The software package chosen was Mathcad 4.0\(^1\), a Windows version of a program which provides an interactive interface which allows the user to enter values directly into equations with immediate display of results. Read-only files were written for the standard types of instrumentation and data acquisition systems used in the aero test facilities and for the data reduction equations most commonly used.

Program Assumptions

The method to calculate uncertainty for these files is consistent with the concepts developed and evolving in the international standards with enhancements most commonly accepted, and is in compliance with the recent NASA Metrology - Calibration & Measurement Process Guidelines\(^5\). For each measurement process, all likely elemental sources of error are identified and classified as either Systematic (B'\(n\)) or Precision (S'\(n\)) depending on their effect on the data. Systematic errors bias all data samples and cannot be observed in the data; they must be estimated using either good engineering judgement and experience, manufacturer's specifications, or other information. The Systematic or Bias Limit (B) is the experimenter's 95% confidence estimate of the band within which the mean value would fall if the experiment were repeated many times with the same equipment and test conditions. Precision or random errors are those that cause scatter in the data and are often estimated via statistical analysis of repeat measurements over an appropriate time interval. For the measurement processes evaluated in these files the distribution of these errors is assumed to be approximated by a normal (Gaussian) and symmetrical
distribution around the mean. A sufficient number of
data samples (≥10) are averaged by the data acquisition
to approximate the interval which should include 95%
of individual samples by multiplying the standard
development of the total data set (S) by a coverage factor
of 2.

To obtain the Total Uncertainty evaluated by
the Root-Sum-Square method (U_{rss}), the estimates of B
and S are combined with the equation,

\[
U_{rss} = \sqrt{(B)^2 + (2S/\sqrt{N})^2}
\]

The term \(\sqrt{N}\) is used to account for the
reduction of random error when multiple experiment
repetitions are averaged into a result. The
manufacturer's specifications for systematic limits used
in these files are assumed to be at a 3 \(\sigma\) (- 99%)
confidence level (unless other data is available) which
provides a theoretical confidence level for \(U_{rss}\) of about
97.5%. In order to account for the difficulty in
predicting environmental conditions, however, a more
conservative value of 2 \(\sigma\) (95%) is quoted for the
overall uncertainty. This provides an appropriate level
of confidence in the uncertainty estimates for the types
of tests performed in aero facilities.

For the files used to evaluate the uncertainty of
results in data reduction equations, an engineering
analysis was used to determine the systematic errors
which are correlated for the type of measurement
system used. It was assumed that all precision errors
are uncorrelated, although there are some special cases
where this is not true, as discussed by Hudson, et al.6
The value for the term \(\sqrt{N}\) requires an assessment of the
number of data sets that are averaged to obtain a result.
Since this requires a very careful examination of the
total measurement and data reduction process, a
conservative value of one (1) is usually chosen unless
the experimenter is certain that all data values which are
averaged together are truly random samples from the
total data set with all precision error sources having had
an opportunity to influence the result.

Measurement System Files

The group of data files used with this Mathcad
program are installed on a shared drive (with read-only
protection) on the Local Area Network Server (DIMS)
used by the Aeropulsion Facilities and Experiments
Division (AFED). An index is provided on a server file
to identify the data files available. A listing and detailed
description of the files is provided in AFED Preliminary
Information Reports. The selected data files are
downloaded to the hard drive or removable disk on the
engineer's office PC for computation and printout.
Measurement instrumentation, data acquisition system
and aerodynamic equation files can be linked together
in order to propagate the elemental errors in the
measurements through the data reduction equation,
thereby generating the bias and precision errors and the
uncertainty estimate for the experimental result.

The data files that were written for the measurement
and data acquisition systems were designed specifically
for the systems and practices in current use at NASA
Lewis and should not be used by other organizations
without careful examination of the factors and values
given. Also, when actual data is available from a test or
when a system is being used in a unique manner, the
best data available should be used.

Each of the files, when retrieved into the Mathcad
program, provides a page for entry of the numeric
values for the application, one or more pages of
calculations of the elemental bias and precision errors
and total uncertainty estimate, and a final page listing
the standard assumptions for the instrument
specifications and error source values. Data files are
currently available or are planned for the following
instrumentation:

- Electronically scanned pressure systems
 PSI, Inc Model 780B & Model 8400;
 rackmount or miniature modules
- Escort D/D+ (Lewis's facility DAQ systems)
 Neff Model 400, 100/200, 600, and
 470 mux/amp system
- Thermocouples
 Type K, T, J, E, and P13
- High output (capacitive type) pressure transducers
 Setra Model 204, 204D, 239, 270, and 370
- Strain gage pressure transducers
 Lewis Instrument Pool standard models
- Miniature semiconductor strain gage transducers
- Standard load cells
- Liquid turbine type flowmeters
 Lewis Instrument Pool standard models

A typical measurement file is shown in Example A. On the first page, the numeric values used in the test are entered in the placeholders for both the data acquisition system (Escort D/Neff 400) and the thermocouple system, since this is the arrangement commonly used. The calculations on the second page are used to convert the test temperature (T_F) and the reference temperature (T_REF) to a millivolt output using the conversion polynomial from NIST Monograph 175. On the third page, this millivolt value is used to determine a sensitivity factor (SEN) used for calculations of the elemental bias (B'n) and precision error (S'n) estimates in temperature (°F) and the Uncertainty limit (U_rss) in temperature (°F & °C) and % of test temperature. The term \(\sqrt{N} \) is assumed to be 1 for thermocouple files. The fourth page lists the specifications for this measurement system.

Data Reduction Equation Files

In most experimental programs, the measured values of different variables are combined using a number of data reduction equations to obtain test conditions and performance results. The methods used to propagate the errors in the measurements through these equations to obtain an estimate of the uncertainty limit in the results are given in detail in the references\(^1\)-\(^6\). For each case, not only must a sensitivity factor for the equation be calculated for the systematic and precision limit of each variable, but an engineering analysis should also be made of the elemental systematic or precision uncertainties that are correlated, that is, they arise from the same source. For a case where an experimental result, \(r \), is a function of two measured variables, \(x \) and \(y \), and the systematic uncertainties \(B_x \) and \(B_y \), are the systematic uncertainties in \(x \) and \(y \) that arise from the same source,

\[
B_r = \left((\Theta_x B_x)^2 + (\Theta_y B_y)^2 + 2\Theta_x \Theta_y B_x B_y \right)^{1/2}
\]

where \(\Theta_x = \partial r / \partial x \) and \(\Theta_y = \partial r / \partial y \)

Usually, the elemental error for the precision uncertainties in \(x \) and \(y \) are uncorrelated. Thus, the sample standard deviation in the result is,

\[
S_r = \left((\Theta_x S_x)^2 + (\Theta_y S_y)^2 \right)^{1/2}
\]

With a coverage factor of 2 and \(N \) sets of measurements obtained over an appropriate time period, the uncertainty estimate of the result is,

\[
U_r = \sqrt{ (B_r)^2 + (2S_r \sqrt{N})^2}
\]

In Example B, a Mach number file is combined with an ESP system file to obtain values of uncertainty in the Mach number for a series of test conditions. In this case, the bias errors in \(B_1 \), \(B_2 \), \(B_3 \), which are associated with the common Digiquartz calibration transducer, and \(B_4 \), which is a common module atmospheric reference. The partial derivatives for the Mach number equation were obtained with Mathcad's Symbolic Operator by setting the cursor on the variable to be evaluated and choosing the Differentiate on Variable command from the Symbolic menu. This must be performed before the range variable \((i) \) is added to the function.

Data files are currently available or are planned for a variety of data reduction equations including Mach number, dynamic pressure, flow angularity (\(\alpha \) & \(\beta \)), and mass flow (venturi, orifice plate).

Summary

This program has provided the experimenter with a user friendly method to estimate measurement errors for any particular set of test conditions. Since it identifies the error contribution from each component of the system, it provides insight into potential improvement areas where productive actions may be taken to reduce uncertainties. Thus, many "what-if" changes in the
instrumentation system design may be tried, and the results instantly determined. It assures that a uniform data base and methodology is used for all test facilities and it serves to document the specifications for all instrumentation and calibration equipment used in the analysis for future reference. It also provides a report-quality printed output.

References

Example A

Measurement Uncertainty Program

C) THERMOCOUPLES (including ESCORT/Neff 400 DAQ Syst)
 1.) Type K (Chromel-Alumel) (File TCK001.MCD)

 \[F := R \quad C := K \quad \mu V := mV \cdot 10^{-3} \]

 \[T_F := 0\text{F} \quad \text{ENTER: T/C temperature to be evaluated (0F)} \]
 \[0 \text{ to } 2300\text{F} \]

 \[T_C := \frac{5}{9}(T_F - 32) \quad T_C = \quad ^\circ\text{C} \quad \text{T/C temperature (0C)} \]

 \[T_{REF} := 0\text{F} \quad \text{ENTER: 150 for 150 0F Reference oven or 75 for Isothermal Block} \]

 \[MV := mV \quad \text{ENTER: ESCORT D/D+ Millivolt Range (+/- 5, 10, 20, 40, 80)} \]

 \[t := 0\text{F} \quad \text{ENTER: Temperature excursion of ESCORT System from calibrated temp (0F) (typical value, 5 0F)} \]

 \[CMV := V \quad \text{ENTER: Common Mode Voltage in Test Cell (Volts)} \]
 \[(\text{typical value, 5 - 10 volts}) \]

 \[CSTK := V \quad \text{ENTER: Voltage difference between consecutively scanned channels (Volts) (if less than 100 mV, enter 0)} \]

 \[G := \frac{10240 \cdot mV}{MV} \quad G = \quad \text{Neff Amplifier Gain} \]
Page C.1.2 TYPE K T/C Conversion Polynomial (Temp to mV)

0 C to 1372 C
\[
E_1 := \left(\sum_{i=0}^{n} \left(c_i \left(\frac{T - 0}{T - 1372} \right)^i \right) + a_0 c_1 \left(\frac{T - 0}{T - 1372} \right) - 1.26 \times 10^6 \right) \mu V
\]
\[
E_1 = \mu V
\]

-270 C to 0 C
\[
E_2 := \sum_{i=0}^{n} \left(c_i \left(\frac{T + 270}{T + 1372} \right)^i \right) \mu V
\]
\[
E_2 = \mu V
\]

\[
E_{\text{REF}} := \text{if}(T_{\text{REF}} < 150, 0.95 \cdot \text{mV}, 2.66 \cdot \text{mV})
\]
\[
E_{\text{REF}} = \mu V
\]

\[
E_3 := \text{if}(T < 0, E_2, E_1)
\]
\[
E_3 = \mu V
\]

\[
E_0 := E_3 - E_{\text{REF}}
\]
\[
E_0 = \text{mV}
\]

Output at Eval Temp

American Institute of Aeronautics and Astronautics
Error Source Evaluation (NOTE: all errors are +/-)

\[\text{SEN} := \frac{F - F_{\text{REF}}}{F_0} \]

Sensitivity (°F/millivolt at eval temp)

\[B'1 := \text{if}(F < 330, 2F, 0.00375) \]

Type K Thermocouple error (°F)

\[B'2 := \text{if}(F < 150, 1.096F, 0.746F) \]

Reference Junction Box Error (°F)

\[B'3 := (0.05\% \cdot \text{MV}) \cdot \text{SEN} \]

Neff Gain Accuracy

\[S'1 := (0.0017\% \cdot \text{MV}) \cdot \text{SEN} \]

Neff Thermal Gain Accuracy

\[B'4 := \left(0.02\% \cdot \text{MV} + \frac{1}{2.2^{13}} \cdot \text{MV}\right) \cdot \text{SEN} \]

Neff Non-Linearity

\[B'5 := 0.0010\text{mV} \cdot \text{SEN} \]

Chan-Chan Offset

\[S'2 := \left(0.005\text{mV} + \frac{1.25\text{mV}}{G} + 0.00028\text{mV} + \frac{0.06\text{mV}}{G}\right) \cdot \text{SEN} \]

Zero Stability

\[B'6 := \frac{6\text{mV} \cdot \text{CMV}}{10^6} \cdot \text{SEN} \]

Common Mode Voltage (NOTE: \(\log^{-1}(120/20) = 10^6 \))

\[B'7 := \frac{6\text{mV} \cdot \text{CSTK}}{10^6} \cdot \text{SEN} \]

Static Crosstalk

\[B'8 := \left(\frac{1}{2^{13}} \cdot \text{MV}\right) \cdot \text{SEN} \]

Digitizing Error

\[S'3 := \sqrt{\left(0.0085\% \cdot \text{MV}\right)^2 + \left(0.75\% \cdot \text{MG}\right)^2} \]

Noise (+/- 3 sigma)

\[B := \sqrt{(B'1)^2 + (B'2)^2 + (B'3)^2 + (B'4)^2 + (B'5)^2 + (B'6)^2 + (B'7)^2 + (B'8)^2} \]

\[S := \sqrt{S'1^2 + S'2^2 + S'3^2} \]

Temperature Measurement Uncertainty

\[U_{\text{RSS}} := \sqrt{B^2 + (2S)^2} \]

+/− Uncertainty (°F)

\[U_{\text{RSS}} = ± \]

+/− Uncertainty (°C)

\[U'_{\%} := \frac{U_{\text{RSS}}}{F} \]

+/− Uncertainty (% of Eval Temp)
Error Source Description

(+/- %FS, except where noted)

Type K T/C Conversion Polynomial - NIST Monograph 175

B'1 - ISA Type K Thermocouple Wire (Special)

<table>
<thead>
<tr>
<th>Range</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32°F to 530°F</td>
<td>+/- 2.0 °F</td>
</tr>
<tr>
<td>530°F to 1400°F</td>
<td>+/- 3/8% of Rdg</td>
</tr>
</tbody>
</table>

B'2 (150°F) - Thermocouple Reference Oven (U-48/U49)

<table>
<thead>
<tr>
<th>B'10</th>
<th>Oven Temp Error (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B'11</td>
<td>PRT Error (°F)</td>
</tr>
<tr>
<td>B'12</td>
<td>PRT Readout (Instrulab) Error (°F)</td>
</tr>
<tr>
<td>B'13</td>
<td>Thermocouple Output Error (°F)</td>
</tr>
<tr>
<td>B'14</td>
<td>T/C Readout (Keithly 182) Error (°F)</td>
</tr>
<tr>
<td>B'15</td>
<td>Ice Point Error (°F)</td>
</tr>
</tbody>
</table>

\[
B_{150} = \sqrt{(B'10)^2 + (B'11)^2 + (B'12)^2 + (B'13)^2 + (B'14)^2 + (B'15)^2} = 0.746
\]

B'2 (75°F) - Thermocouple Reference Isothermal Block

<table>
<thead>
<tr>
<th>B'20</th>
<th>RTD Accuracy (°F) (Mfr's spec is 0.5%, waver to 1% granted 1/6/87)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B'21</td>
<td>PRT Error (°F)</td>
</tr>
<tr>
<td>B'22</td>
<td>PRT Readout (Instrulab) Error (°F)</td>
</tr>
<tr>
<td>B'23</td>
<td>End to End Block Error (Specification) (°F)</td>
</tr>
<tr>
<td>B'24</td>
<td>T/C Stability Error (Specification) (°F)</td>
</tr>
</tbody>
</table>

\[
B_{75} = \sqrt{(B'20)^2 + (B'21)^2 + (B'22)^2 + (B'23)^2 + (B'24)^2} = 1.096
\]

Neff 400 Specifications

<table>
<thead>
<tr>
<th>B'3</th>
<th>+/- (0.05% FS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S'1</td>
<td>+/- (0.0017%FS/°F)</td>
</tr>
<tr>
<td>B'4</td>
<td>+/- (0.02% FS + 1/2 LSB)</td>
</tr>
<tr>
<td>B'5</td>
<td>+/-0.010 mV</td>
</tr>
<tr>
<td>S'2</td>
<td>+/- (0.005 mV RTI + 1.25 mV RTO) + (0.00028 mV/°F RTI + 0.06 mV/°F RTO)</td>
</tr>
<tr>
<td>B'6</td>
<td>80 dB plus gain (in dB) to 120 dB</td>
</tr>
<tr>
<td>B'7</td>
<td>120 dB</td>
</tr>
<tr>
<td>B'8</td>
<td>1/2 LSB</td>
</tr>
<tr>
<td>S'3</td>
<td>[(0.0085 mV x Gain)^2 + (0.75 mV)^2]^{1/2}</td>
</tr>
</tbody>
</table>

Gain Accuracy
Thermal Gain Accuracy
Non-Linearity
Chan-Chan Offset
Zero Stability
Common Mode Rejection
Static Crosstalk
Digitizing Error
Noise
Example B

Measurement Uncertainty Program

A) ESP SYSTEM

1.) 780B System using Rackmount Modules (File ESP001.MCD)

\[\text{psi} := \frac{\text{lbf}}{\text{in}^2} \quad \text{psf} := \frac{\text{psi}}{144} \quad \text{kPa} := \frac{\text{newton}}{\text{m}^2} \cdot 1000 \]

\[D := 15 \text{-psi} \quad \text{ENTER: Digiquartz Range (6, 15, 23, 30, 45, 65, 100, 300, 500)} \]

\[t_1 := 2 \quad \text{ENTER: DQ temp excursion from calibrated temp (} ^\circ\text{F}) \]

\[M := 5 \text{-psi} \quad \text{ENTER: Module Range (1, 2.5, 5, 10, 15, 30, 45, 100, 250, 500)} \]

\[M_t := 1 \quad \text{ENTER: Module sensor temp coeff factor (1 if S/N 1 to B02037 (9/93), 2 if S/N B02038 up)} \]

\[SF := 1000 \cdot \frac{1}{\text{psi}} \quad \text{ENTER: Scale Factor for module group (see Table 1)} \]

\[B'5 := 0 \text{-psi} \quad \text{ENTER: Module ref press change allowed between cals (psi)} \]

\[t_2 := 0 \quad \text{ENTER: Module temp excursion allowed between cals (} ^\circ\text{F}) \]

\[N := 20 \quad \text{ENTER: Number of Data Sets that are averaged to obtain result (if a single data set is used, enter 1)} \]

\[k := \text{if}(D < 15 \text{-psi}, 0.011, 0.012) \quad k = 0.012 \quad \text{Cal lab DQ calib error coefficient} \]

\[Z_1 := \text{if}(M < 5 \text{-psi}, 0.05, 0.02) \quad Z_1 = 0.02 \quad Z_2 := \text{if}(M < 2.5 \text{-psi}, 0.008, 0.004) \quad Z_2 = 0.004 \]

\[Z_3 := \text{if}(M_t < 2, Z_1, Z_2) \quad Z_3 = 0.02 \quad \text{Module thermal zero shift coeff} \]

\[S_1 := \text{if}(M < 2.5 \text{-psi}, 0.05, 0.02) \quad S_1 = 0.02 \]

\[S_2 := 0.003 \quad \text{Module thermal span shift coeff} \]

\[S_3 := \text{if}(M_t < 2, S_1, S_2) \quad S_3 = 0.02 \]
Error Source Evaluation (NOTE: all errors are +/-)

780B System using Rackmount Modules

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>B'1 := k \times % - D</td>
<td>Cal Lab DQ calibration error</td>
<td>0.0018 psi</td>
</tr>
<tr>
<td>B'2 := 0.001 \times t_1 \times % - D</td>
<td>DQ temp error</td>
<td>0.0003 psi</td>
</tr>
<tr>
<td>B'3 := 0.005 \times % - D</td>
<td>Time base error</td>
<td>0.00075 psi</td>
</tr>
<tr>
<td>B'4 := 0.005 \times % - D</td>
<td>Curve fit error (Digiquartz)</td>
<td>0.00075 psi</td>
</tr>
<tr>
<td>S'1 := 0.005 \times % - D</td>
<td>Repeatability (Digiquartz)</td>
<td>0.00075 psi</td>
</tr>
<tr>
<td>S'2 := 0.005 \times % - D</td>
<td>Hysteresis (Digiquartz)</td>
<td>0.00075 psi</td>
</tr>
<tr>
<td>S'3 := 0.0005 \times % - D</td>
<td>Counter resolution (Digiquartz)</td>
<td>0.0008 psi</td>
</tr>
<tr>
<td>S'4 := 0.010 \times % - M</td>
<td>ESP repeatability</td>
<td>0.0005 psi</td>
</tr>
<tr>
<td>S'5 := 0.005 \times % - M</td>
<td>ESP hysteresis</td>
<td>0.00025 psi</td>
</tr>
<tr>
<td>B'5 := 0 \times psi</td>
<td>ESP reference pressure change</td>
<td></td>
</tr>
<tr>
<td>B'6 := Z_3 \times % - t_2 \times M</td>
<td>ESP thermal zero shift</td>
<td>0 psi</td>
</tr>
<tr>
<td>B'7 := S_3 \times % - t_2 \times M</td>
<td>ESP thermal span shift</td>
<td>0 psi</td>
</tr>
<tr>
<td>B'8 := 0.010 \times % - M</td>
<td>Non-linearity curve fit error</td>
<td>0.0005 psi</td>
</tr>
<tr>
<td>S'6 := 0.012 \times % - M</td>
<td>ESP A/D converter resolution</td>
<td>0.0006 psi</td>
</tr>
<tr>
<td>S'7 := \frac{1}{SF}</td>
<td>ESP computer output resolution</td>
<td>0.001 psi</td>
</tr>
</tbody>
</table>

\[B = \sqrt{(B'1)^2 + (B'2)^2 + (B'3)^2 + (B'4)^2 + (B'5)^2 + (B'6)^2 + (B'7)^2 + (B'8)^2} \]

\[B = 0.00217 \text{ psi} \]

\[S = \sqrt{(S'1)^2 + (S'2)^2 + (S'3)^2 + (S'4)^2 + (S'5)^2 + (S'6)^2 + (S'7)^2} \]

\[S = 0.00167 \text{ psi} \]

Pressure uncertainty

\[U_{RSS} := \sqrt{B^2 + \frac{2 \cdot S^2}{\sqrt{N}}} \]

\[U_{RSS} = 0.00229 \text{ psi} \quad +/- \text{ Uncertainty (psi)} \]

\[U_{RSS} = 0.33044 \text{ psf} \quad +/- \text{ Uncertainty (psf)} \]

\[U_{RSS} = 0.01582 \text{ kPa} \quad +/- \text{ Uncertainty (kPa)} \]

\[U_{%} := \frac{U_{RSS}}{M} \]

\[U_{%} = 0.04589 \% \quad +/- \text{ Uncertainty (% of Module Range)} \]
Mach Number Uncertainty (File Mach001.MCD)

BPt := B BPt := B = 0.00217 psi

SPt := 2 - S

SPt = 0.00075 psi

SPs := 2 - S

SPs = 0.00075 psi

BPc := \sqrt{B_1^2 + B_2^2 + B_3^2 + B_5^2}

BPc = 0.00197 psi

Correlated bias errors

BPtc := BPc

BPsc := BPc

BPto := BPc

BPso := 0.00197 psi

Correlated bias errors in total p

Correlated bias errors in static p

Uncertainty in Results

Nr := 4
n := 12

ENTER: Number of measurement sets averaged

ENTER: Number of test conditions to be evaluated

ENTER: Values for total and static pressures at each test condition

\(\begin{align*}
\text{Pt}_i & : 14.487 & 14.462 \\
14.493 & 14.456 \\
14.503 & 14.438 \\
14.420 & 14.317 \\
14.535 & 14.391 \\
14.554 & 14.354 \\
14.457 & 14.232 \\
14.575 & 14.315 \\
14.598 & 14.275 \\
14.530 & 14.129 \\
14.657 & 14.168 \\
14.680 & 14.151 \\
\end{align*} \)

\(\text{Ps}_i = \)

Calculated Mach number (Mo) at each test condition

\(\text{Mo}_i = \sqrt{5 \left(\frac{\text{Ps}_i - 2}{\text{Pt}_i} - 1 \right)} \)

\(\text{Mo}_i = \)

0.04968
0.06044
0.08013
0.10125
0.11935
0.14074
0.14986
0.16056
0.17907
0.20035
0.2207
0.22958

\(\text{Mo}_{s_i} = \) \(\text{Mo}_{s_i} = \)

-0.99468
-0.81811
-0.61818
-0.49377
-0.41706
-0.35499
-0.3364
-0.31237
-0.28122
-0.25436
-0.23066
-0.22218

Mo sensitivity coeff. for static P
\[\theta_{P_1} := \frac{5}{\sqrt{\frac{\frac{5}{7}}{\left(\frac{P_1}{7}\right)^{\frac{2}{7}}} - 5 \cdot \frac{\left(\frac{P_s}{7}\right)^{\frac{2}{7}} \cdot \left(\frac{P_t}{7}\right)^{\frac{2}{7}}}{\left(\frac{P_t}{7}\right)^{\frac{2}{7}}}} } \]

Mo sensitivity coeff. for total P

\[\theta_{P_1} \]

<table>
<thead>
<tr>
<th>\theta_{P_1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99297</td>
</tr>
<tr>
<td>0.81602</td>
</tr>
<tr>
<td>0.61541</td>
</tr>
<tr>
<td>0.49024</td>
</tr>
<tr>
<td>0.41293</td>
</tr>
<tr>
<td>0.35011</td>
</tr>
<tr>
<td>0.33117</td>
</tr>
<tr>
<td>0.3068</td>
</tr>
<tr>
<td>0.275</td>
</tr>
<tr>
<td>0.24734</td>
</tr>
<tr>
<td>0.22296</td>
</tr>
<tr>
<td>0.21418</td>
</tr>
</tbody>
</table>

Combined precision component of Mo Uncert

\[\text{UMoS}_i := \sqrt{\left(\theta_{P_1} \cdot \Delta P \right)^2 + \left(\theta_{P_1} \cdot \Delta P \right)^2 + 2 \cdot \theta_{P_1} \cdot \left(\theta_{P_1} \cdot \Delta P \right) \cdot \left(\Delta P \cdot \Delta P \right)} \]

\[\frac{1}{\text{psi}} \]

Combined systematic component of Mo Uncert

\[\text{UMoS}_i := \sqrt{\left(\theta_{P_1} \cdot \Delta P \right)^2 + \left(\theta_{P_1} \cdot \Delta P \right)^2} \]

\[\frac{1}{\text{psi}} \]

Combined uncertainty in Mach number (RSS)

\[\text{UMo}_i := \sqrt{\text{UMoB}_i^2 + \left(2 \cdot \text{UMoS}_i \cdot \frac{1}{\sqrt{N_r}} \right)^2} \]

\[\text{Mo}_i, \text{UMo}_i \]

\[\begin{array}{cc}
0.04968 & 0.00165 \\
0.06044 & 0.00135 \\
0.08013 & 0.00102 \\
0.10125 & 0.00082 \\
0.11935 & 0.00069 \\
0.14074 & 0.00058 \\
0.14986 & 0.00055 \\
0.16056 & 0.00051 \\
0.17907 & 0.00046 \\
0.20035 & 0.00042 \\
0.2207 & 0.00038 \\
0.22958 & 0.00036 \\
\end{array} \]

\[\begin{array}{c}
\text{UMo}_i, 0.001 \\
0.002 \\
0.001 \\
0.000 \\
\end{array} \]

American Institute of Aeronautics and Astronautics
780B System using Rackmount Modules

Digiquartz - Cortez III Calibration

(Possible temperature variation during calibration: +/-0.5°F)

<table>
<thead>
<tr>
<th>Error Source Description</th>
<th>+/- 6 PSID</th>
<th>15 PSIA & Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability</td>
<td>0.0030</td>
<td>0.0015</td>
</tr>
<tr>
<td>Curve Fit Error</td>
<td>0.0015</td>
<td>0.0030</td>
</tr>
<tr>
<td>Temp Error</td>
<td>0.0015</td>
<td>0.0015</td>
</tr>
<tr>
<td>Ref Pressure Error</td>
<td>0</td>
<td>0.0030</td>
</tr>
<tr>
<td>Ruska Deadweight (0.01% Rdg)</td>
<td>0.0100</td>
<td>0.0100</td>
</tr>
<tr>
<td>Temp Uncert Error</td>
<td>0.0009</td>
<td>0.0009</td>
</tr>
<tr>
<td>Readout for Paroscientific</td>
<td>0.0023</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

B1 - Calib Uncertainty (RSS) 0.011% 0.012%

Digiquartz Specifications

B'2 - 0.001%/°F Temp error (per Cortez temp evaluation test)
B'3 - 0.005% Time base error (Estimate by PSI)
B'4 - 0.005% Curve fit error (estimate by PSI)
S'1 - 0.005% Repeatability (Paroscientific specs)
S'2 - 0.005% Hysteresis (Paroscientific specs)
S'3 - 0.0005% Counter Resolution (PSI specs)

ESP Rackmount Module (S1600/S3200) Specifications

S'4 - 0.010% Repeatability (estimate by PSI)
S'5 - 0.005% Hysteresis (estimate by PSI)
B'6 - 0.02%FS/°F Thermal zero shift (5 - 500 psid) (S/N 1 to BO2037)
 0.05%FS/°F " " " (10° WC -2.5 psid) " "
 0.004%FS/°F " " " (2.5 - 500 psid) (S/N BO2038 & up)
 0.008%FS/°F " " " (10° WC - 2.5 psid) " "
B'7 - 0.02%FS/°F Thermal sensitivity shift (2.5 - 500 psid) (S/N 1 to BO2037)
 0.05%FS/°F " " " (10° WC - 1 psid) " "
 0.003%FS/°F " " " (All Ranges) (S/N BO2038 & up)

780B DACU/PC Signal Processing & Data Reduction Specifications

B'8 - 0.010% Curve fit error (2nd order)
S'6 - 0.012% A/D converter resolution (0 to FS)
S'7 - 0.00025 psi Output resolution - ESP computer to ESCORT (Scale Factor 4000)
 0.0005 psi " " " " (Scale Factor 2000)
 0.001 psi " " " " (Scale Factor 1000)
 0.002 psi " " " " (Scale Factor 500)
 0.005 psi " " " " (Scale Factor 200)
 0.01 psi " " " " (Scale Factor 100)
 0.02 psi " " " " (Scale Factor 50)
A personal computer program was developed which provides aeronautics and operations engineers at Lewis Research Center with a uniform method to quickly provide values for the uncertainty in test measurements and research results. The software package used for performing the calculations is Mathcad 4.0, a Windows version of a program which provides an interactive user interface for entering values directly into equations with immediate display of results. The error contribution from each component of the system is identified individually in terms of the parameter measured. The final result is given in common units, SI units, and percent of full scale range. The program also lists the specifications for all instrumentation and calibration equipment used for the analysis. It provides a presentation-quality printed output which can be used directly for reports and documents.