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ABSTRACT

Issues regarding tile experimental implementation of PDE-based controllers are discussed in
this work. While the motivating application involves the reduction of vibration levels for a cir-
cular plate through excitation of surface-mounted piezoceramic patches, the general techniques
described here will extend to a variety of applications. Tile initial step is tile development of
a PDE model which accurately captures the physics of the underlying process. This model is
then discretized to yield a vector-valued initial value problem. Optimal control theory is used to
determine continuous-time voltages to tile patches, and the approximations needed to facilitate
discrete time implementation are addressed. Finally, experimental results demonstrating the
control of both transient and steady state vibrations through these techniques are presented.
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1 Introduction

An increa.singly popular method for controlling structural vibrations is through the use of piezo-
ceramic patches bonded to or imbedded ill the structure. These patches exhibit the piezoelectric
property that inplane strains are generated in response to an applied voltage. Depending npon
the geometry of patch placement, location with respect to the structure's neutral surface, and
the method of excitation, this provides a mechanism for generating both inplane forces and/or
bending moments in the underlying structure.

The advantage of using such patches as actuators in many applications is due to the fact that
they are lightweight, space efficient, relatively inexpensive, and provide a means of obtaining
structural control without significantly changing the passive structural dynamics (they do not
mass load the structure in the manner of a shaker or proof mass actuator). Due to their
ceramic nature, they can also be molded in a variety of shapes so as to fit the structure under
consideration. Moreover, rigid bodv torques and spillover effects are minimized due to the fact
that they are fully self contained and distributed in nature. Finally, they also exhibit the inverse
piezoelectric property and hence generate a voltage in response to strains in the material. Hence
a single patch or patch pair can be used for either sensing or actuation. This contributes to
their efficiency and application in "smart material" structures.

In addition to their utility in purely structural applications, they are also finding increasing
use in structural acoustic and fluid/structure al)plications. Again, their advantage lies in the fact.
that they provide an efficient means of controlling the structure without significantly altering
its passive dynamics. Through consideration of the coupling between the structure and the
adjacent media, this provides a means of controlling acoustic sound pressure levels or adjacent
flow dynamics.

A great deal of research in the last several years has been directed toward questions re-
garding tile modeling of piezoceramic patch interactions with underlying structures (see [11]
and the references therein), strategies for determination of optimal I)atch location and number,
and control techniques which utilize tile patches as sensors and actuators. Due to tile steady
state periodic nature of tile dynamics in many structural and structural acoustic systems, a
large number of the current controlmethods are based upon frequency response input/output
analysis. For example, Fuller et al. have employed a feedforward filtered X version of an
adaptive LMS algorithm to control a. simply supported plate using piezoceramic actuators [18].
While such techniques have proven quite successful for controlling steady state vibrations, they
do not have the capability for direct control of transient responses. Other successfully im-
I)lemented methods employing piezoelectric actuators to actively control structural vibrations
include feedthrough techniques [17]and velocity feedback techniques [1, 24]. Ill general, these
methods are based upon modal techniques and are designed to control purely' steady state
resI)onses. An exception to this are tile experimental results reported in [24] in which tran-
sient plate vibrations, generated by an impact hammer, were reduced using an analog velocity
feedback circuit.

Similar studies have demonstrated the experimental success of using surface-mounted i)iezo-
ceramic patches to reduce structure-borne noise in structural acoustic systems [19, 20]. The
emphasis in these studies was again on using frequency input/output analysis to control steady
state dynalnics.



An alternative approach to controlling structural vibrations and sound pressure levels in
structural acoustic systems is through the use of PDE-based feedback control methods. Analysis
and numerical studies demonstrating these techniques for structural applications can be found
in [6, 7, S, 12] with corresponding results for structural acoustic systems given in [4, 5, 10]. These
techniques start with an infinite dimensional PDE model for the system under consideration.
When developing such models, care should be taken to incorporate not only the contributions
due to the piezoceramic patches but also dynamics clue to inexact boundary conditions [13],
coupling with adjacent acoustic fields [5], as well as any other physical phenomena which affect
the dwlamics of the structure. In this setting, mathematical issues such as model well-posedness
and approximation issues concerning simulations, parameter estimation and control can be
addressed.

By approaching the problems in this manner, one can avoid the difficulties caused, in purely
modal methodsby patch contributions, coupling between components, and inexact boundary
conditions. Moreover, by combining the PDE model with appropriate time-dependent feedback
control theory, one obtains a method which is equally applicable for controlling transient or
steady state vibrations.

In this paper, the experinlental implementation of such a PDE-based control method is con-
sidereal. While the motivating application involves the control of vibration levels for a circular
plate through the excitation of surface-mounted piezoceramic patches, the general techniques
described here will extend to a variety, of applications. Following a brief discussion regarding
the model and a Fourier/Galerkin scheme used to discretize it, relevant feedback control theory
is discussed. In the discussion of the continuous and discrete time control results, two cases are
considered; namely, the control of plate vibrations in the absence of a primary input force and
the control of a plate driven by a periodic exogenous force. Implementation issues such as the
effects of phase shifts and delays due to hardware are discussed and the experimental setup is
briefly described. Finally, experimental results demonstrating the transient and steady state
control results are presented. These demonstrate the effectiveness of the PDE-based controller
for this system and indicate the potential of these control techniques for reducing transient and
steady state dynamics in other structural and structural acoustic systems.

Finally, we offer comments on the nature of our contributions here to the literature. This
paper does 'not contain any new theoretical results; it reports on our successful use of PDE-
based methods in experiments at NASA Langley Research Center. The methods (which ar_
theoretically sound) for parameter estimation and feedback control are based on approximation
theory developed (by us and many others in the PDE control community) during the past
several decades. All necessary theorems on convergence of finite dimensional parameter esti-
mates, gains, filters, controls, observers, tracking variables, et cetera, needed for the examples
treated here either have appeared or will soon appear in the research literature. Many of these
theoretical results on PDE-based control have been largely viewed (especially in the engineer-
ing community) as non-implementable and, hence, as somewhat irrelevant to applied scientists
and engineers. The present manuscript refutes this notion and validates the practicality and
importance of much of the theoretical efforts over the past years on PDE-based control. Our
group is the first, to our knowledge, to provide irrefutable evidence that one can start from
basic physical laws, derive careful infinite dimensional distributed parameter or PDE control
models, and successfully implement PDE control methods (with the approximations necessary
to obtain finite dimensional controls) which behave as theory and siinulations predict.
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2 Circular Plate Model

The structure under consideration is a thin circular plate with s sets of piezoceramic patches
bonded to the plate either singly or in pairs as depicted in Figure 2.1. Throughout this discus-
sion, the radius and thickness of the plate are denoted by a and h, respectively. Moreover, the
density, Young's modulus, Poisson ratio, Kelvin-Voigt and air damping parameters are given
by p, E, u,CD and 7 while w and 0 are used to denote the transverse displacement and external
force on the plate. Finally, the region occupied by the unstrained neutral surface of the plate
is indicated by F0.

Equations of motion for the plate can be determined from both Newtonian (force and
moment balancing) and Hamiltonian (energy formulation) principles and we summarize both
approaches here. The presentation will be for a general Kirchhoff plate with potentially non-
axisymmetric responses.

Figure 2.1. Thin circular plate with surface-mounted piezoceramic patches.

2.1 Strong Form of Plate Model

Considering first the model which derives from Newtonian principles, we let M_, Mo, _llro denote
internal moments and (_l/r)p_, (ll!o)w denote external moments generated by the piezoceramic
patches. As detailed it, [9, 29], for a structure with patch pairs activated out-of-phase, the



internal moments are given by

M_ =-Dt0--_-2 +r-_-7-r+r2 _O-ff) CD\_-[ ,'OrOt t-r2_2-:Ot]

= -D (_0u,7)7.r-t :2102w_I--,.'--02W'0r2 ) - cD(! 02w._ + r2103w'0-_5-_1--t-,.'--0r201)0au' "k
Mo

(lO., (!o.,lO.,)M_o=-D(1-p) r0r00 7"200) CD(1--u) OrOOOt r2OOOt

where D = Eh3 denotes the plate stiffness. The external moments generated by the s patch12(1--v2)

pairs have the form

* ( 1 , (r,O) € i th patch region
(J]r)pe = (J]lo)p< = --Z _iB'lti([)\'i('"O) ' 3t'i('"O)----I, 0 elsewherei=1

where ui(t) is the voltage into the i tt` patch and K;iB is a parameter which depends on the geom-
etry, piezoceramic material properties and piezoelectric strain constants (see [11] for details).
The internal and external moments can then be combined to yield the general plate moments

M,. = M,.-(M_),,_
340 = M0- (M0)p<

./t4_o = kLo.

For a clamped plate with initial displacement wo(r, O) and velocity uh(r, 0), force and mo-
ment balancillg yield the equations

, 02w Ott, 02.A4,. 20.M_ 10Mo

ph-_ + 77_ Or 2 7" Or + r Or 0 < 0 < 2z

2 02M_o 20M_o 1 02Mo = O(t,r,O) 0 <_r < ar OrO0 r2 O0 r2 002
(2.1)

Ow,.,(t,<,,o)= -37,(t, <,,o)= o

Ow10(0,7",0) = '/.UO(/', 0 ) , _- (0, T', 0) = _.UI(/', 0 )

as the strong form of the plate model (see [9, 27] for details). From an applications perspective,
the following observatioIls can be made regarding this model.

1. It is first noted that in many applications, it is nearly impossible to maintain the truly fixed
(zero displacement and slope) boundary conditions specified in the model (2.1). For the
experimental plate which we used, parameter estimation results indicated minimal energy
loss through the boundary conditions and an adequate fit of the model (2.1) was obtained
(see the identification results in [2, 3]). For plates in which the boundary clamping is less
secure, a model for imperfectly clamped boundaries such as that presented in [13] should
be used in order to obtain a model fit which is adequate for control applications.



2. As discussed in [11], tile plate parameters p,D,u and CDare discontinuous due to tile
presence and differing material properties of the patches. Moreover, while 'handbook'
values can be determined for p, D and u for a plate which is devoid of patches, those values
usually cannot be used in the final system model with an3'accuracy due to nonuniformities
in the plate and boundary conditions, variations in materials, and contributions due to
the presence of the patches. In applications, such as that in this paper, these parameters
are estimated using fit-to-data techniques (see [2, 3] for the paraineter estimation results
pertaining to the plate used here).

3. The input parameters/£iB are discontinuous since they are nonzero only over the regions
of tile patches. While expressions for these constants are derived in [11], they too must
be estimated in applications due to manufacturing variations in tile patches.

It is readily noted in tile strong form of the modeling equations that the discontinuous plate
parameters and patch input terms are differentiated, thus leading to derivatives of the Dirac _5
'function'. TILedifficulties associated with this formulation are avoided in the weak form of the
modeling equations which is presented in the next section.

2.2 Weak Form of Plate Model

To provide a framework which facilitates analysis, approximation and imlflementation, it. is
advantageous to consider a weak form Ofthe modeling equations. Such a formulation can be
determined directly from Hamiltonian (energy) principles and is equivalent to that obtained by
integration by parts after multiplication of the strong form by suitably smooth test functions.

For tile plate problem under consideration, a suitable space V of test functions is the subset
;='"' 0 atof the Sobolev space H2(F0) which satisfies the essential boundary conditions w - 0_ -

r = a. As detailed in [9, 29], a weak or variational form of the equations of motion for the plate
is

i)2w Ou, , 0_'1 _ Mo [ W _ d7froPl'-_-:EtTd')'+fr ° "7-_-'7d7-fro JI,.0_.2d7- fro .. ["_Tr + 002]
('2.2)

__9!Fo _2d,_i/rO [ _)21] _ d..[ : fFo £ ]_:iBui(l,,_i(,.,O)_72,id_, .__ _Fo[l_d^[- • [1"_ ()0J i=1 '

for all 7/ E V. The overbar here denotes complex conjugation and the differential is d7 = rdO(h'.
It. is easily noted that in this form, derivatives that were originally applied to moments have been
transferred onto test functions. This eliminates the difficulties associated with differentiating
the plecewise constant parameters p, D, u and cm found in the internal momellts as well as the
discontinuous input parameters/C_,...,/C_.

2.3 State Approximation

As discussed in [9, 29], an appropriate choice for the basis and Fourier-Galerkin expansion
of the plate displacelnent, when considering clamped boundary conditions, is B_(r, 0) =
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,bh] m(r)cim07 B,+ and

A[ N m .,r

W At(+, 7+,O) _ Z A`r +l+rhlr)m" +' imO . Ar A r= w,,+Ct)? D,+t,)e = _ w_ (t)B+ (r, 0). (2.3)
m =--,_I n----1 k=l

Here B,'_(r) is the nth modified cubic spline satisfying B'_(a) = _ = 0 with the conditiondr

dB;;+(0)= 0 being enforced when m = 0 (this latter condition guarantees differentiabilitv at thedr

origin and implies that

N m = 0N'+= N.I , m €0

where N denotes the numt)er of modified cul)ic splines). The total number of plate basis
fimctions is N" = (2M + 1)(N + 1) - 1. As discussed in the [9, 29], the inclusion of the weighting
term r I'_flwith

0 --01 , me0

is motivated by the asymptotic behavior of the Bessel fimctions, which make up the analytic
plate solution, as r ---+0. It. also serves to ensure the uniqueness of the sohttion at the origin.
The Fourier coefficient in the weight is truncated to control the conditioning of the mass and
stiffness matrices (see the examples in [9]).

To obtain a matrix system (again, see [9, 29] for a careful derivation with complete details),
the N" dimensional approximating subst)ace is taken to be Har = span{B'_}'}and the product
space for the usual corresponding first-order vector system is 7-/Hx 7-/a_.The restriction of the
first-order form for the infinite-dimensional system (2.2) to the space 7-1Hx 7-1Hthen yields the
matrix equation

] i0 [01 [0]0 ill 'tr i)"tr(t) = -I@ _ -I@_ _)_t_(t) + [?+tr u(t) + {]J¢(t)

[][K__ 0 7)a;(0) = g_
.A,r

0 11IAr _)Ar(0 ) g2

where +)";(l)= [w)'(t), wS_(t),..., w_;:(Q]r denotes the cohmm N" vector containing the aI)prox-
imate state coefficients (see (2.3)). The component matrices and vectors are given 1)y

!X'ADr -----ND1 "1- !t'D2 nt- !X'D3 nt- !X'D4 "_" !X'D5

JfF DAr"'_+¢ ([^'I_C_D _- I_cD1 AV IkcD2 -}- I_CD3 "_- I_cD4 Al- IkcD5 A7 0 "I'DIv lJ_, I

[M+tr] =Jr phBZr-B)A+_dT'+,t. o (2.4)

[,x]+
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where

[1%&_= 0v [_ + -,.5-7,+_b-_ _d_'

f 10Bff" 1 02Bffr u 02Bff.r] OB'/
[h'D2]C.k=Jr'oD ,72 _ +¢ -_ +- _ j--_-r d5',r

f ,' ,,o<l10B)" 1 0 Bt,

[KD3]r,k= dro D ,75 _-r +,5 -_ +_ _ j--0--_ -dT,

1 02Bffr 10B,}"] 0"2By[KD4]c,k=2_oD(1--u) ._ r_ _j _dT,

[ 1 02Bk.H 1 OB_t._] OBy[KDs],,,k= 2 o D(1-u) ,:a _ + ,Ta N J -_ aT"

The index ranges here are k, ( = 1,... ,,_. The matrices I1_D1--I1cD.5 are defined sinfilarly with
the inclusion of the parameter CD in the various integrals. Finally, we remind the reader that
p, D, u and CD are piecewise constant in these definitions due to the presence of the patches.

For apl)lication purpose, it useful to note that the matrix system for the plate can thus be
written as the Cauchy system

._a_(t) = A'_yX'(t) + B'_'u(t) + gZ(t)
_ (2.5)

y'_(o) = .'1o

where 9"'(t) = [0_t_(/),0H(t)]T = [wlV(t),... u(_(l),'@"(t),-.., tb:_;(t)]T denotes the cohunn
2N" vector contailfing the generalized Fourier coefficients for the approximate displacement and
velocity. In this form, the control problem can be readily discussed.

3 Continuous Time Control Problem

In the preceding discussion leading fi'om the infinite dimensional PDE model to the finite dimen-
sional matrix approximation, the superscript ._ was used to denote the level of discretization;
i.e., the number of Fourier/spline basis elements used to approximate the state. This notation
is standard in the theory of finite element and spline approximations of infinite dimensional

systems, hi finite dimensional control theory, however, the level of discrctization is typically
fixed and these subscript N"s are usually omitted to simplify notation. We will do the same in
this and subsequent sections so as to remain consistent with standard control notation.

3.1 Initial Displacement and Velocity - LQG Control Law

We consider first the H-dimensional systems

_(t) = Ay(t) + Bu(t) , y(O) = yo

Yob(t)= Cy(t) (a.1)
z(t) = Hy(t) + Gu(t)



where yov denotes observations in ItlP and C is a P x N" observation matrix whose structure
is determined 1)3' the manner and number of observations being used (the specific C matrix
used in the plate experiments is described in Section 4.2). Moreover, z € IW denotes the
performance output obtained under the assumption that G and H are time invariant matrices
satisfying HTG = 0. In the event that P = Af and C is an identity, the optimal control ,l can be
obtained fi'om standard linear quadratic regulator (LQR) optimal control theory. The number
of observations P is usually limited, however, and we concentrate instead on the case P < A!"
which occurs when the full state is unavailable and must be reconstructed using a compensator
(e.g.,see[2.5]).

The general control problem for this case consists of determining the voltage 'u which mini-
mizes the performance index (or cost functional)

J(u) = I=(_)I_dt

f0 '2_'
= {(Ov(_),v(_))+ (_,.(t),..(_))}d_

subject to (3.1). The N" x N" matrix Q can be chosen to satisfy various design criteria including
frequency windowing, the weighting of various state components, or minimization of certain
energy measures. The Q matrix used here was chosen using energy considerations and con-
struction details can be found in Section 4.2. The s x s matrix R weights the voltages to the
various patches or pat;ell pairs.

Because full state information is not available in most applications, the state must be esti-
mated or reconstructed from observations before a controlling voltage can be determined. We
consider here a full order compensator or observer of Luenberger type [25]and refer the reader
to [16, 22] for details on reduced order observers.

The compensator or reconstructed state satisfies the matrix system

,Mr)=A_(t) + B_(t)+ p [yob(t)- ¢:,j_(t)]
w(0)=y_0

with the optimal voltage
_(_)= -1¢,j_(€)

where F and K denote the compensator and feedback gains, respectively. We note that K
and F are chosen so that the reconstruction error [y(t) - ydt)] _ 0 as t _ oc. Under usual
observability and controllability hypotheses (see [25]), the optimal feedback and compensator
gains are given by

K = R-1BTH

F = PcT_ -_ (3.2)

where II and P are unique nonnegative-definite solutions to the following feedback (regulator)
and compensator (observer) algebraic Riccati equations

HA + ATH -- HBR-aBTII + Q = 0
(3.3)

PA T + AP- pcTR -_CP + 0 = 0 ,



respectively. As was tile case with tile matrices Q and R, tile matrices 0 and /_ are design
criteria for the specific control application under consideration (specific choices used in the plate
experiments are smnmarized in Section 4.2). We point out that in terlns of the component
nla.t.ricesand control voltage, the compensator can be expressed as

_(t) = [A - BR-IBTH] y_(t)-I- pC:rR-'C [y(t)- y_(t)] .

Tile control law just. described must be implemented in real time in order to be a viable
method for reducing vibrations in physical structures. To facilitate implementation, it is pru-
dent to calculate offtine as many components as possible and then treat those pre-calculated
components as filters when performing online computations. The method for continuous time
implementation is summarized and offline and online components are categorized in the follow-
ing algorithm.

Algorithm 3.1.1: Continuous Time Control of Initial Displacement
and Velocity

Otttine (i) Construct matrices A, B, C, Q, R, 0,/_

(ii) Solve Riccati equations (3.3) for H and P

(iii) Construct I_ = R-IBTH and F = pcTR -_

Online (i) Collect data Yob(t) = Cy(t)

(ii) Solve the ODE system

{l_(t) = [A- BK- FC]y_(t) + Fyob(t)

= A_y_(t) + Fyob(t)

(iii) Calculate the voltage u(t) = -Ky_(t)

We note that tile expensive (time consuming) calculation of the component matrices A, B, Q, R,
C, 0,/_, and Riccati solutions II, P is performed oflline with the results loaded into the control
code as datafiles. This leaves the integration of the system _(t) = A_y_(t)+ Fyob(t) as the
primary computation to be performed during implementation. Issues regarding the numerical
integration of the system as well as the effects of discrete time calculations will be discussed in
Section 4, and a discrete version of Algorithm 3.1.1 is summarized in Algorithm 4.1.1. Finally,
the observed system, performance index and state estimator and LQG control law for the system
are summarized in Algorithm 3.4.1 in Section 3.4.

While this compensator does provide the desired performance, it may lack robustness in
some applications. In cases where added robustness with regard to certain types of system or
observation noise and modeling errors is required, an H_:'/MinMax compensator of the type
described ill the next section can be used.



3.2 Initial Displacement and Velocity- H_JMinMax Control Law

We consider now the design of a dynamic compensator which is robust with respect to certain
types of state and measurement uncertainties or disturbances (see [15] for details). To incorpo-
rate such uncertainties, we let w(t) € 1Rq denote input and output disturbances. The system,
with no exogenous force, is then given by

_(t) = Ay(t) + Bu(t)+ Dw(t)

yo_(_)= cy(_)+ Ew(_)
z(/) = Hy(t) + Gu(t) .

For this discussion, we assume that the input and output disturbance are independent and
hence DE T = O. This is a matter of convenience and the dependent case can be handled
similarly after slight modifications are made (see [15]).

In this case, the rain/max optimization problem leading to the controller consists of finding
a controller u* € U = L2(0, oo; IR*) and disturbance w* € W = L2(0, oo; LRq) such that

J_= in_sup&(_,w)=,]_(_*,_,,*)
uEU" wEW

for the disturbance augmented functional

:
= {(Qy(t),y(t))w(R'u(t),'u(t))-_'2(w(l),w(t))}dt.

As noted in [12, 15], the results from this optimization prohlem yield a hound 3' for the H <'
norm of the transfer function from disturbance £(w) to the performance output £(z) where £
denotes the Laplace transform.

Under the assumption that the pair (A, B) is stabilizable, (A, C) is detectable, (A, G) is
controllable, and (A, H) is observable, one can prove the existence of (ininimal) positive definite
solutions 1-iand P to the algebraic Riccati equations

HA + AT[[ -- H [BR-1B T - 7-2(_] [I + Q = 0

PA T + AP - P [cT!_-Ic - 7-2Q] P + (_ = 0

for a given attenuation ")'> 0. Moreover, if the spectral radius p of PI-I satisfies the condition

p(PU)<"t '2, or II-72P -1<0,

then there exists a unique optimal controller

u*(t ) = - R-_ BTIIy_( t ) .

The state estimator yc(t) € 1R"_ satisfies

O_(t) = A_y_(t) + Fyob(l)

>(0) =Y_0
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where

Ac = A- BK - FC + 7-2QH

F : [I -- ")-2p[I]-I Pc, TR -1 .

The iml)lementation issues concerning the method are similar to those discussed in the
algorithm for the LQG controller but determination of the Riccati solutions l-I,P and filter F
are complicated by the fact that a suitable design value of _ nmst be determined before matrix
calculations can proceed. Fortunately, these calculations can be performed ofltine and resulting
matrices input as data files for the online computations. Hence the actual online controller can
run at the same rate as that obtained using the LQG methodology.

The form of the observed system, the extended performance index and the H_/MinMax
control law are summarized in Algorithm 3.4.2 in Section 3.4. The various components can be
compared with the LQG components summarized previously as well as those which arise when
a periodic exogenous force is considered.

3.3 Periodic Primary Excitation

For the case in which a periodic exogenous force drives the system, knowledge of that force
can be used extend previously discussed results to include the effects of I)eriodicity. The .A!'-
dimensional system in this case is

_)(t) = A:q(t) + B.(l) +g(t) , y(0) = y(v)

yob(t) = Cy(l) (3.4)

where g(t) € 1RH is periodic with period r. That periodicity is then reflected in the performance
index

//= + Jt

which is minimized subject to (3.4).
With K and F defined in (3.2), the reconstructed state in this case satisfies the system

[1_(_)= Aye(t) + Bu(l) + F [yov(t)- Cy_(t)] + g(t)
(3.5)

y (0)=

with the optimal voltage given by

"tl(_) : --ICyc([ ) "q- !_-I_T,/.([) . (3.6)

Here r is a tracking variable defined 133;tile system

i'(t) = -[A- BK]Tr(t) + Hg(/)

,.(o)= (3.7)

where 1] solves the first. Of the algebraic Riccati equations (3.3). We i)oint out that in this
case, the voltage contains two contributions. The first incorporates transient information by

11



feeding back state estimates while tile tracking component incorporates information regarding
the periodic force.

Combining (3.5) and (3.6) yields the single expression

:O_(t)= [A- BK] y_(I) + FC [y(t) - y_(/)] + BR-_ BTr(t) + g(t)

yc(0)= yc(T). (3.s)

for the state estimator in terms of the tracking variable. The state estimate at time t is then
obtained by integrating (3.7) and (3.8) after solving the necessary Riecati equations.

As was the case when considering control of the unforced system with initial displacement
and velocity, the computations can be categorized with respect to those which can be performed
offline and those which must be done online. The following algorithm summarizes the continuous
time control method for periodic excitation and categorizes the offline and online components.

Algorithm 3.3.1: Continuous Time Control with Periodic
Exogenous Force

Offiine (i) Construct matrices A, B, C, (2, R, Q, fg

(ii) Solve Riccati equations (3.3) for Yl and P

(iii) Construct K = R-1BTII and F = P(.TT[_ -1

Online (i) Collect data Yob(t) = Cy(t) and force measurements g(t)

(ii) Solve the ODE systems

i.(t) = -[A - BIi]Tr(I) + IIg(t)

= +O(t)
_lc(t) = [A - BK - FC]y_(t) + Fyob(t) + B!_-IBT?'(/) -{- g(_)

= A_y_(t) + Fyot,(t) + A_r(t) + g(t)

(iii) Calculate the voltage u(t) = -Kyc(t) + R-1BTr(t)

In this case, the tracking equation i(t) = At_r(t) + 0(t) must be solved before tile state can
be estimated by integrating tile system 0_(t) = A_y_(t) + Fyob(t) + A,.r(t) + g(t). Details
regarding the solution of these two systems with discrete data and force measurements are
given in Algorithm 4.1.2 in the next section.

Finally, the governing equations and component matrices for the LQG controller are sum-
marized in Algorithm 3.4.3 of Section 3.4. Expressions similar to those in Section 3.2 arise
when an H-_/MinMax compensator is considered for the problem and the resulting control law
is summarized in Algorithm 3.4.4. We also refer tile reader to [4] where details concerning the
design of an H_/MinMax compensator for a structural acoustic system that is subjected to a
periodic exogenous force is considered.
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3.4 Summary of Systems_ Performance Indices and Control Laws

Tile modeling state equations, observed system, performance index and compensator design

for the previously discussed cases are summarized in this section. Specifically, the LQG and
H_'/MinMax control laws are summarized for the system with ilo primary force as well as

the system subjected to a periodic exogenous force. Details regarding the construction of the

individual components can be found in the preceding section or in the implementation section
which follows.

Algorithm 3.4.1: LQG Control Law for Unforced System

(1) Observed System

_(t) = Ay(t) + Bu(t) y E IR/V,u E IR?

yob(t)= Cy(t) YobEHIP
z(t) = Hy(t) + Gu(t) z E Ill_ , HTG = 0

(2) Performance Index

3(u) = [z(t)12 dt
)

= {(Qy(l),y(t)) + (Ru(t),u(t))} dt Q = HTH , R = GTG

(3) State Estimator and Control Law

_(t) = A_y_(t) + Fyo_(t)

A_ = A - FC- BIf

K = R-1BTH

F = PcTR -1

HA + ATII - HBR -1BTII + Q = 0

PA T + AP - pcT R-1Cp + _) = 0

Controlling Voltage

u(t) = -KyAt)

13



Algorithm 3.4.2: H'_/MinMax Control Law for Unforced System

(1) Observed System

[l(t ) = Ay( l ) + Bu( t ) + Dw( t ) y E Elat, u E LR_, w E IRq

Yob(l) = Cy(l) + Ew(t) yob E ]W' , DE T = 0

z(t) = Hy(t) + Gu(t) z € IR_ , HTG = 0

Q=HTH>O, R=GTG>o

O = DD T _ 0 , R = EE T > 0

(2) Performance Index

J.y(u,w) = {[z(t)[ 2 -3,2]w(t)12}dl

=/0_ {(Qy(t),y(_))+ (_,.(_),,.(_))- -?(w(_),..,(t))}dt

(3) State Estimator and Control Law

_(t) = A_y_(t)+ Fyob(t)

A_ = A - FC- BK + 7-2QII

Ii = R -1BTI]

F = [I-- _[,-2p[I]-I pcTT]7_ -1

+ ATI] - H [BR-1B T - 3-2(_] IF[. Q =HA 0

PA T + AP - P [CT[UaC - 3,-2Q] P + () = o

Controlling Voltage

_,(t)= -ICyc(t)

Note: p(PII) < 7 2 or H - .),2p-1 < 0
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Algorithm 3.4.3: LQG Control Law for Periodic Exogenous Force

(1) Observed System

_)(t) : Ay(t) + Bu(t) + g(t) y € IRH, u € 1Rs

9(0)= y(T)

yob(_)= Cy(t) Yob€ _."
z(t) = Hy(t) + Gu(t) z € IR_ , HTG = 0

(2) Performance Index

= {(Qy(_),_/(t))+(_,_(_),,,,(_))}(ztQ=HrH, _=ara

(3) State Estimator and Control Law

_)c(t) = Acyc(t) + Fyob(t) + A_r(t) + g(t)

Ac = A- FC- BIi

A_ = BR-1B T

F : pcTR -1

HA + ATI-[ -- IIBR-1BTFI + Q = 0

PA T + AP - PCT TI-Icp + Q -= 0

Tracking Equation

i(t) = At_,'(t) + _(t)

At_ = - [A - BK] T

_)(_)= n_(_)

Control Voltage

u(t) = -Ky_(t) + R-_BTr(t)
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Algorithm 3.4.4: H_/MinMax Control Law for Periodic Exogenous
Force

(1) Observed System

_r _ l[{q_)(t) = Ay(t) + Bu(t) + Dw(t) + g(l) y E 1R' ,,u E IR ,w E

y(O)= :j(T)

yob(t) = Cy(t) + Ew(t) Yob E IRp , DE T = 0

z(t) = Hy(t) + Gu(t) z E IRT , HTG = 0
f_T f_Q=HTH>_O, R=,_, _,>0

f2= ooY >--0, [_= EE T > O

(2) Performance Index

=J0T{(O_(_),_(t))+(_,t(_),.(_))- _/2w(_),.,(_))}dt

(3) State Estimator and Control Law

_(t) = A_y_(t) + Fyo_(t) + ATr(t) + g(t)

A_ = A - FC - BK + 7-ZQl-I

A_ = BR-IB T - 7-2(_

I_ = R-aBTN

F = [I-',-2pH]-IpcTR -'

"JF ATH -- H [BJ_-lJ_ T -- _f-20] [I . Q =
HA 0

PA T + AP - P [CT[_-IC - 7-2Q] P + _) = 0

Tracking Equation

,'(t) = At_r(t) + {l(t)

At_ = - [A- Bh'-7-2OH] T

_)(t)= ng(_)

Control Voltage

u(t) = -Ky_(t) . R-I_T,'(t)

Note: p(PII) < 0.2 or II - .)2p-1 < 0
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4 Discrete Time Control Problem

The control laws summarized in the last section were derived under the assumption of continuous
time sampling of observed state and force data. Hence it was assumed that Yob(t)and g(t) were
available for all t within the temporal interval of interest. Moreover, it. was assumed that
y(t),yc(t) and r(t) could be obtained through exact integration of the state, state estimator
and tracking equations. When implementing the method, however, one has available only
discrete data. values and the differential estimator and tracking equations must be numerically
approximated at discrete time values. The manner in which the control laws are implemented
in discrete time and the influence of this discretization on the overall performance are discussed
in this section.

In the last section, it was demonstrated that in the case with no primary exogenous force,
the state equation, state estimator and controlling voltage for the LQG and H_/MinMax
problems had the form summarized in column 1 of Table 4.1. The corresponding quantities for
a system subjected to a periodic exogenous force are summarized in the second colunm. Details
regarding the component matrices can be found in the previous section.

No Primary Input Periodic Exogenous Force

State "O(t)= Ay(t) + Bu(t) , y(O)= Yo _(t) = Ay(t) + Bu(t) + g(t) , y(O)= y(r)

Equation yon(t) = Cy(t) yob(t) = Cy(t)

State 9_(t) = A_y_(t) + Fyob(t) 9_(t) = A_y_(t) + Fyob(t) + A_r(t) + g(t)

Estimator y_(0) = Y_'0 y_(0) = y_(r)

Tracking i'(t) = At_r(t) + D(t)

Equation r(0) = r(r)
Control

u(t) = -R-1BTIIyc(t) u(t) = -R-1BTIIyc(t) + R-1BTr(t)
Voltage

Table 4.1. State, state estimator and controlling voltage for the systems with no primary
input and a periodic exogenous force.

The relationship of these components to the experimental plate setup, driven by a I)eriodic
exogenous force, is illustrated in Figure 4.1. For that setup, the physical process consists of the
clamI)ed circular plate with attached piezoceramic patches. The state equations represent the
spatial discretization of a PDE model of the process with physical parameters estimated using
experimental data so that the model accurately captures the plate dynamics.
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Physical Process

Observationa(t)

Exogenous __ [

Force Exogenous Force g(t) Filters
_o. DSP Board

IIu(t) = - K yc(t) + BTr(t)

PC Computer

(1) Integrate Acceleration Data
a(t)->v(t)

I (2) Determine Tracking Component

State Equations r(t) = Atr r(t) +YI g(t)
(Model Process)

(3) Estimate Process from Observations
_(t) = Ay(t) + Bu(t) + g(t)

_c (t) = Acyc (t) + Fv(t) + Bt_ ] BTr(t) + g(t)
Yob(t) = Cy(t)

(4) Calculate Voltage

u(t) = - K yc(t) + R-1BTr(t)

Figure 4.1. Experimental plate setup, modeling equations and computations necessary for
determination of controlling voltage.

We point out that when modeling the process or performing simulations, the observations
Yob(l) are obtained from tile apl)roximate state through tile relation !lob(t) -_ Cy(l) where C
is the matrix ol)servation operator. When experimentally implementing the method, temporal
data frotn the process is used to determine the observations yo_(t). This often requires processing
either through digital or analog filters or in the software. In the circular plate experiments,
accelerometer data a(t) was integrated to yield velocity ineasurements v(t) to be used for
the observations Yob(l) (see the final subsection of this section for details). Once Yob(t) has
been obtained, the state is estimated bv numerically integrating the estimator equation and a
controlling voltage is calculated. This voltage is then fed back to the process.

Because data is processed in a digital manner, the ol)serva.tionsYoband force measurements
g are obtained only at discrete times tj. The rate at which this data can be sampled is governed
by the data acquisition system, the soft.warebeing used and the number of calculations required
1)etweensamples. In particular, the tracking component r(tj), state estimate y_(tj) and voltage
u(tj) must be calculated before the arrival of data at time ti+l. While details regarding these
calculations are postponed until Section 4.1, it is noted here that the system sizes must be
minimized in order to permit real-time approximation of the estimation equation. This is
a major motivation for choosing appropriate, accurate approximation techniques to si)atially
discretize the modeling PDE's.

As indicated previously, the open and closed loop process dynamics can be simulated by
using the state equations to model the plate. The state estimate and state are then approxi-
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mated by simultaneously integrating tile corresponding equations. The integration of the state
equation can be performed using any sufficiently accurate ODE routine which is efficient for the
system under consideration; for example, a variable order, variable stepsize method was used to
solve the stiff system which arose when simulating plate dvnamics. If simulations demonstrating
the levels of control that can be obtained under "optinlal" conditions are desired, the estimator
equation can be integrated using the same high-order routine. On the other hand, simulations
representing the attenuation levels that can be expected under "implementation" conditions can
be obtained by incorporating values of Yoband g calculated at discrete times and approximating
y_(tj) using the techniques employed when implementing the method. Simulation results using
both techniques can be found in [14].

4.1 Approximation of the Estimator and Tracking Equations

In order to obtain tracking values and state estimates to be used when calculating controlling
voltages, the solution to the tracking and state estimator equations must be numerically ap-
proximated. If the goal is solely to perform simulations, this can be easily accomplished using
the same ODE solver used to integrate the state equation (indeed, the state and estimator
equations can be combined into a single system and integrated simultaneously). This is not
practical when experimentally implementing the method, however, and one must typically per-
form the work subject to the following criteria. The method must be sufficiently efficient so
as to facilitate real-time implementation and sufficiently accurate so as to resolve system dy-
namics. The systems are quite often stiff which implies that either a-stability or o-stability is
important. Finally, the difficulties in storing past data make it prohitfitive to use many popular
nmltistep methods.

For the experiments performed with the circular plate, the sample rate was sufficienth, fast
(and hence At was sufficiently small) that a modified backward Euler or trapezoidal method
produced adequate results. We illustrate here such a modified backward Euler method.

4.1.1 Initial Displacement and Velocity

Considering first the coml)ensator/estimator system with no primary exogenous force, we find
that the modified Euler approximate to the solution at time tj+_ is given 1)3,

y_,+, (I AtA_) -1= - y_ + (I -/.(__tAc)-1 Fyob(lj)

= A_y_ + ._'cYob(lj) •

The method is modified in the sense that current observation values Yob(tj) are used as input
since futures values at tj+l are unknown. The time step At is dictated by the sample rate. We
point out that the matrix .A_ = (I - AtA_) -1 and vector .T'_= (I - AtA_) -1 F can be computed
oittine and then loaded as data files for the online computations. Hence the implicit nature of
the method, which is necessary to ensure stability, does not slow the implementation. The
discrete time implementation of the method is summarized in AlgorRhm 4.1.1 which follows.
The definitions of the comi)onent matrices can be found in Section 3, and Algorithm 4.1.1 can
be compared with the corresponding continuous-time Algorithm 3.1.1 given in that section.
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Algorithm 4.1.1: Discrete Time Control of Initial Displacement
and Velocity

Offline (i) Construct matrices A, B, C, Q, R, (),/)

(ii) Solve Riccati equations (3.3) for II and P

(iii) Construct A" = R-iBTII

F = pcTR -1

A,. = A - BIi - FC

(it,) Choose appropriate At (determined by sample rate)

(t,) Construct Ac = (I- AtAc) -1

5_ = (I - AtAc) -1F

Online (i) Collect acceleration data a(tj)

(ii) Integrate to obtain yob(ti) = v(tj)

(iii) Time step the discrete estimator system

Yc_+l = AcYcj q-a_cyob(lj)

(it,) Calculate the voltage u(tj) = -Ky_

4.1.2 Periodic Exogenous Force

The application of these control techniques to systems with both transient and steady state
behavior invoh,es the approximation of both the tracking and state estimator equations be-
fore a control input is calculated. While a variety of techniques and strategies can be used
to obtain approximate values of r(tj), which are then used when computing y(lj), these cal-
culations must ultimately be performed in real time when implementing the method. In the

experiments involving the circular plate, the exogenous force was measured for several periods
and the solutions to the tracking equation were approximated and stored over a time period
commensurate with the driving frequency. These stored tracking values were then used as a
filter when approximating the estimated state during the remainder of the experiment.

Illustrating with the backward Euler discretization, the approximate to the tracking solution
was determined from the difference equation

rj+l = (I - AtAtr) -1 rj + (I -/-_tAt_) -1 _(tj)

subject to the final condition r(v) = 0 (when implementing the method, one can simply search
for a "suitable" zero crossing to start the approximation).

This approximation was continued throughout several periods of the driving force with rj
being stored in a circular buffer. This buffer was then treated as a filter when estimating the
state using the difference equations

y_j+_ = (I-AtA_)-lyc_ +(I-AtA_)-lFyob(tj)+(I-AtA_)-lA,.rj+(I-AtA_)-_g(tj)

= .AcYc, q- 2FcYob(lj) q- .Arrj q- .Acg(Ij) •
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As indicated in the following algorithm, the time intensive calculations involving matrix con-
struction, solution of the Riccati equations and matrix inversion were perfornmd offiine prior
to the experiments, and the matrices .At,.,..4,=,.,4,-and vector .T'cwere simply loaded as datafiles.
This, combined with the solution of the tracking filter before state estimation, yielded an al-
gorithm which was sufficiently fast for implementation. Current efforts are aimed toward the
sinmltaneous approximation of the tracking and state estimator equations during implementa-
tion.

Algorithm 4.1.2: Discrete Time Control of Periodic Excitation

Ofttine (i) Construct matrices A, B, C, Q, R, (_,/_

(ii) Solve Riccati equations (3.3) for 1I and P
(iii) Construct K = R-aBTII

F = pcT[_ -1

A_ = A- BK- FC

At,. = - [A - BK] T

•(it,) Choose appropriate At (determined by sample rate)

(v) Construct .A_= (I-ArAb) -1

.,4,.= (I - AIA_)-_ A_

.At_= (I - AtAt_) -1

_ = (I - AtAc) -_ F

Online (i) Collect acceleration data a(tj)
(ii) Integrate to obtain Yob(tj) = v(tj)
(iii) Approximate and store tracking values

7'j+l : .Atrrj . .Atrg(tj)

r(r) = 0

(iii) Time step the discrete estimator system

Ycj+_ = .AcYc, q- ._'cYob(tj) q- .Arrj _- .Ac(J(lj)

yc(/_'r)= 0

(iv) Calculate the voltage u(ty) = -Ky_, + R-1BTrj

4.1.3 Higher-Order Approximations

In the previous discussion, a modified backward Euler method was used to discretize the state

estimator and tracking equations. As indicated, by numerical sinmlations reported in [14]
and experimental results in the next section, for small At, this provides sufficient accuracy to
calculate an effective feedback voltage. If more accuracy is needed, a trapezoid rule or hybrid
method of the nature discussed on page 225 of [26] can be used. These provide increased
accuracy without adding complexity during implementation since the components .Ate,.A_,.A_
and _ can still be computed offline.

21



4.2 Example 1 - Matrix Construction

Tile control discussion thus far has been general in tile sense that it holds for general systems
of the form

,)(t)= Av(t)+ B t(t) = Ay(t)+ B,,(t)+ ,a(t)
or

Yob(t)= Cy(t) Yob(t)= Cv(t)

as long as the pair (A, B) is stabilizable and (A, C) is detectable. Moreover, the cost functional
matrices Q, R and observation matrices (_,/_ have been treated as general design criteria, to be
specified according to the application under consideration. In this example, we illustrate explic-
itly the matrices and filters used when implementing these control techniques for a vibrating
circular plate.

We first note that N = 16 modified cubic splines (see (2.3)) were sufficient for resolving the
plate dynamics in the frequency range under consideration. Due to the axisymmetric excitation
and response of the plate, the Fourier limit M = 0 was used in all calculations. Hence a total
of Af = 16 basis functions were used which led to 32 coefficients in the vector y.

The formulation and sizes of all components in the control system for the circular plate are
summarized in Figure 4.2 and 4.3 below.

Component Size Comments

32 x 32 The elements comprising the

0 I 16X16 matrices MH, KADr and

A = _ (l,_iN.)_li_r _ (2,lAr)-I ii.a_rcD I,°dkDf are sunlularized ill {2.4)

32 x 1 See (2.4) for the description of
o D.c

B=
--1 h_, r

32 x 1 The elements of 0At(t) are de-
0 tailed in (2.4)

g(t) =
Oz(t)

, BN- ly 01) p X 32 In the experiments, a,ccelera-0,... 0 BAlr(rl,Ol),..., Art1, tion data was integrated to
C = : : obtain velocity values which

BA)(rp,Op)ArBA_rv, Op_,"''l_J are the second state values in0,..- 0
' ' the second-order formulation.

Since one accelerometer was

used, p = 1. See Example 2
of Section 4.3 for a discussion

regarding the duality between
control and observation.

Figure 4.2. System and control matrices used in the circular plate experiments.
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Component Size Comments

dlI H 0 Kff 0 used for the penalty term Q.Q=
0 d2I Ar 0 M +v As discussed in [5], this pro-

rides a means of weighting the
kinetic and potential energy of

the plate.

Example 5.1: dl =d2 = 1
Example 5.2: dl = d2 = 5

x 8 In the plate experiments, one

Rll controlling l)atch was used so
R= ".. ._--1.

Rss Example 5.1: Rll -- 10 -7

Example 5.2: Rll -- 10-10

32 × 32 For the plate experiments, 1_

= eli H 0 was trea.ted solely as a design
0 c2I 2'r parameter as compared with

the choice in [4] where physical

arguments were used to con-
struct the matrix. The iden-

tity weights were taken to be
Cl = c2 = 1 in the experiments.

]_,11 p X p In the exl)eriments , p= 1 sinceone accelerometer was used for

!t, = "'. data collection. The weight

i-ivp was taken to be I'tll _- 1.

Figure 4.3. Control and observation matrices used in the circular plate experiments. The ex-
perimental results in Example 5.1 demonstrate control of transient dynamics while the periodic
case is illustrated in Example 5.2.

These matrices and vectors are then employed in Algorithms 4.1.1 or 4.1.2 to create the iml)le-
mentation matrices and filters which were ultimately used in the experiments.

23



4.3 Example 2 - Duality Between Control and Observation

The duality between control and observation can be noted by considering the form of the control
matrix B and observation matrix C. Illustrating with the case in which _ patch pairs are used
for control, the 2N" x _ control matrix has the form

[ 0 ]B= (j_i3,) __1BH

where the Af x s matrix/) ar has elements

: _jjthpatch )_j_-72B_f d-[

(here Xj(r, 0) denotes the characteristic function over the jth patch).
When data from accelerometers located at the points (7"l,0m),'",(rp,0p) is integrated to

obtain velocity values, the p x 2N"observation matrix is given bv

C=[0 1][ (_'0(:0]

where

H
= B r (rj,0j).

With C thus defined, it can immediately be noted that

:'Job(e)= Cy(¢)
H

k=l

denotes the I)hysical value of the velocity at the point (ry, 0j) given by the state equations at
time t. This is an approximation, to within modeling and processing error, of the actual plate
plate velocity v(t) which is measured in experiments.

Similarly, multiplication of the state estimator coefficients y_ by C produces an estimate of
the velocity which is then compared against the measured plate velocity when integrating the
state estimator equation

O_(l)= [A - BR-1BTII] y_(t) + pCTR -_ [v(t)- Cy_(t)] .

It should be noted that as the state estimates approach the measured plate values, the estimator
equation approaches the state equation

_(t) = Ay(t) - BR-1BTIIy_(t)

which is used to model the plate dynamics.
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4.4 Integration of Experimental Data

For tile experiments involving tile control of circular plate vibrations, data consisted of accel-
eration measurements obtained from one or more accelerometers oil the plate. It was then
necessary to approximately integrate this data to obtain velocity values so as to have a. state
variable for control calculations. An issue which turns out to be crucial when approximately
integrating experimental data concerns tile robustness of the integrator with respect to inexact
initial conditions and DC gains or biases (added constants) in the data. The inexact initial con-
ditions can be due to unknown system contributions, static shocks during system connections,
et cetera. While careful calibration can alleviate some of the uncertainty in initial conditions,
it cannot fully eliminate the problem. The problem of gains or biases due to small DC voltages
in the system can also be minimized but never fully eliminated. Hence an integrator which is
minimally affected by uncertain initial conditions and DC gains in tile data is crucial for success
when approximately integrating data.

Here we consider two techniques for approximately integrating acceleration data to obtain
velocity values in accordance with the relation

,',(t) = _,(t) .

Essentially, the idea is to replace the integration by either the first-order differential equation

1

i, + f_v = R---ca (4.1)

or tile second-order equation
1

i; + _H,+ f_2v= R---Ca (4.2)

(see [21]). The design parameters _ and RC are frequency and time constants, respectively,
which are chosen so that RC = 1 and 0.'> 6_, where _.,is the smallest observed frequency. For
solution, (4.2) is written as the first-order system

=_-= Az+ f

where _ = -_2v. The integration of (4..3)is subject to the initial conditions

Iv'°'--["'°
As will be detailed in the subsequent discussion, the first-order integrator (4.1) is robust

with respect, to inexact initial conditions but propagates DC gains in the data. In the second-
order integrator (4.2), or system (4..3), both disturbance in initial conditions and DC gains
in acceleration data are exponentially attenuated. Moreover, the frequency response of this
approximator is very close to that in the original signal for a_,> 6_. Hence this latter method
provides an accurate and robust means of approximately integrating experimental data..
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4.4.1 First-Order Approxilnate Integrator

Here we examine the properties of the first-order approximate integrator (4.1). We consider

first the case in which the exact initial condition v0 is known and the acceleration a(t) is free
from DC, gains or biases (added constants). If we let V(s) = £{v(t)} and A(s) = £{a(t)}, then
Laplace transformation of the system (4.1) yields

V(s) = __1 1 . R1.___s + flY° + s+_ d(s) .

Hence the approximate integrator (4.1) is a single pole filter. Inverse transformation then yields

v(t) = e:-atv0 + _ _:-a(t-S)a(s)ds (4.5)

as the solution to (4.1).
Similarly, if _'0denotes a perturbed initial condition and a DC gain _ is present in the data,

then the solution is given by

1

/o__-_(_-_![a(s)+ (_.]_,(_)= _-_ti.,o+ _ (is

It follows immediately that

( ')_a) ')oi,(t) = v(t) + e-at _o- vo RC_] + RC-fl "

It is first noted that the perturbations in initial conditions exponentially decay with the rate
of decay influenced by the magnitude of the parameter _. DC gains of the order _qa/(RCf_)
remain, however, thus leading to difficulties when such biases are present in the data. Both
properties are nmnerically illustrated through examples in [14].

The manner through which the solution (4.5) approximates the solution to the original
relation i,(t) = a(t) can be illustrated with a simple example. Consider a(t) = 1207rcos(120zrt).
The solution to (4.1) for this acceleration is

1 1207r [flcos(12OTrt) --t-1207rsin(12OTrt)] - 1 120_-f_ -at
v(t) = RC Q2 + (120zr)2 RC f12 -k (1207r)2e

which reduces to the solution of the original relation with f_ = 0 and RC = 1. For f_ = 16_-,
the solution v still provides an adequate approximation to the original whereas it is a very poor
approximation with f_ = 120zr,. This phenomenon is illustrated in [14].

4.4.2 Second-Order Approximate Integrator

The second-order al)proximate integrator (4.2), or equivalent system (4.3), eliminates the diffi-
culties associated with both inexact initial conditions and DC gains or biases in the data. The
elimination of constants in the data can heuristically be attributed to the differentiation of the
acceleration data. This can be made rigorous by analytically solving the problem.
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We again let V(s) = £{v(t)} and A(s) = £{a(t)} and let _'0,_'1 and a 0 denote initial
conditions. Transformation of (4.2) yields

1

[-'_2_';('S) -- $?-'0 --'1'1] "_- fl [8_7(,_)_ ?-'0] + f12_!-(,_)---- _ [_A(s)- a0]
fi'om which it follows that

,5 -_- _-_ ('U1- ao/RC) s 1

V(-_)= s2+fls+f! 2v° + .s2+fls+f!2 +._2+fis+f!2 RC A(s)"

Inverse transformation then yields the solution

1 (v'_flt/2) Vo "
'U(_) : € -_t/2 (V/3f_t/2) t,O--k _-_sin -J-_.._sii] (k//3f_/_)(u I (l° _]R(:/ j

[ 5 ]
As in the discussion of (4.1), we then consider the corresponding solution with perturbed

ilfitial conditions bo, 'bl and il0 and DC gain _. In this case, the perturbed solution _,(t) is given
by

1 1i,(t) = v(, ) + _..-_,/2 (Writ/2) + _ sin (v_f_l/2) [b0 -v0]

"-k €--fit/2" '---_2 SiIl(V/3_'/O)V_ [ ('_11 ____,)aO (yl __ (10

+ _-at/2. 2_a
VSRcfl

Here l)oth the perturbations in initM conditions and the added constants in the data e×po-
nentially decay with the rate of decay dependent on the magnitude of ft. This is illustrated in
examples given in [14]. We reiterate that while increased values of f_ lead to more rapid decay of
perturbations and biases, the solution to the differential equation less accurately approximates
the true velocity. This, in combination with the goal of accurately preserving signal frequencies,
leads to the condition f! < a.,/6.

4.4.3 Numerical Approximation

Because of the potential for problems involving DC gains with the first-order formulation (4.1),
we concentrate primarily on the second-order filter (4.2) and the corresponding system (4.3).
We note that similar scalar techniques can 1)e used to approximate the solution to (4.1). In
considering numerical techniques for integrating (4.3), emphasis was placed on using a technique
which could easily be implemented in real time. The two methods considered here are Euler's

method and a backward Euler's method. The two are summarized below.

Euler's Method:

z(t_.+_) = [I + dtA] :(tk.) + ,lt.f(tk)

v 1 - dtf! dt_ v ,- _--_-,
(tk-bl) = (_k) -[-

-dtf_ 1 e 0
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Backward Euler's Method:

Z([k) _-- [I -- d[A] -1 Z([k_l ) -_ [I -- d_A] -1 dt.f(tk_ 1 )

where
1 dtQ

l + dt_ + (dt_) 2 l + dt_ + (dt_) 2[/-  ltA]-1=
-dt!) 1 + dt

1 . dt_ + (d/Q) 2 1 . dr!2 . (d/Q) 2

(dt/RC)a(tk._l)
1 + dtf_ + (dtQ):

dt [I - dtA] -1 f(tk_ 1) =

(-dt2_/RC)a(tk-1)
1 + dtf_ + (d/Q) 2

The advantage of backward Euler's method over Euler's xnethod is its stability properties
with slightly more involved matrices being the disadvantage. Numerical examl)les demonstrat-
ing both methods with a variety of exogenous forces can be found ill [14].

5 Experimental Results

Experimental results demonstrating both tile transient and steady state capabilities of the
control methodology are presented in this section. The circular plate used in these experiments
had a radius of 9" (.2276 m) and a thickness of .05" (.00127 m). A pair of piezoceramic patches
having radius .7,5"(.01905 m) and thickness .007" (.0001778m) were bonded to the center of the
plate. In both the transient and steady state experiments, only one patch was used for control.
In the steady state exI)eriments, the opposite patch was used to drive the plate while it was
allowed to remain uncharged in the transient case. The plate was mounted in a wooden frame
by a circular aluminum collar which provided boundary conditions which were sufficiently close
to clamped (zero displacement and slope).

The first step in the process was the estimation of physical parameters through fit-to-data
techniques. As detailed in [2, 3], transient plate vibrations were excited though an impact ham-
mer strike or the input of a voltage spike to the patches, and acceleration data was measured.
The parameter values summarized in Table 5.1 were obtained through a least squares mini-
mization of the difference between the model response and the measured data. These values
were then employed when constructing the component matrices A, B and Q (see Figure 4.2)
used during the experimental implementation of the controller.
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Physical Paranleters

p. h Plate 3.170

(kg/m 2) Plate + Pzt 3.216

D Plate 11.151

(N. m) Plate + Pzt 11.506

CD Plate 1.443-4

(N • m .see) Plate + Pzt 2.031-4

u Plate .326

Plate + Pzt .325

7 (_ec. N/m 3) 17.021

ICB (N/V) - Controlling Patch .016

K B (N/V) - Driving Patch .017

Table 5.1. Physical parameters used in the experiments.

5.1 Transient Control

To investigate the caI)abilities of tile method for controlling transient vibrations, decaying plate
responses generated by an impact hammer strike were considered. In each case, the strike was
directed to the center of the plate and hence the plate response was axisymmetric. In the first
set of experiments, data was collected from an accelerometer located at the plate center on the
side opposite fi'om tile hammer impact; thus P1 = (rl,01) = (0,0) in the construction of the
observation matrix C described in Figure 4.2. The experiments were then repeated with tile
accelerometer placed at the off-center point/92 = (rl, 01) = (2", 0) to illustrate that collocation
between tile sensor and actuator is unnecessary in this control method (see Figure 5.1 for
sensor, actuator and impact locations). The results obtained with the off-center accelerometer
are presented here, and the reader is referred to [14] for a discussion of the transient control
results obtained with observations from the centered acceleroineter.

Accelerometerat P2

Hammer Impact _ , Accelerometerat PI

Controlling Patch

Figure 5.1. Patch, accelerometev and impact locations for the experiments involving control
of transient vibrations.
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Since no exogenous force was applied to tile plate, the state estimator and control law
summarized in Algorithm 4.1.1 were used to compute the controlling voltage to the patch. The
component matrices as well as the cost functional and observation parameters used in these
experiments are summarized in Figures 4.2 and 4.:3.

Data acquisition and processing were performed with a PC-based Texas hlstruments TMS
320-C30 digital signal processing (DSP) board. A schematic of the amplifiers, filters, DSP
configuration and PC algorithm is given Figure 5.2. In the experiments, the accelerometer
voltage was initially boosted by a factor of 10 and then reduced by 5 dB before reaching the
DSP board. The controlling voltage output fl'om the DSP was also boosted by an amplifier
before input to the patches. This was necessary since the maximum voltage output by the DSP
is 2.5 V whereas 60-70 V were needed at the patch. The reader is also referred to Figure 4.1 for
an illustration of the experimental process and to [14]for details regarding the implementation
process.. We point out that the ratio 2048illustrated in tile A/D conversion, results when the2.-Tgg,
voltage range -2.5 to 2.5 is discretized into 4096 possible digital values. The reciprocal process
occurs when digital values are converted to analog voltages in the D/A converter.

The control code was written in assembler in order to attain sufficiently fast sample rates
for resolving transient fi'equencies excited by the hammer impact. While the code ran at rates
greater than 7 KHz, a sample rate of 3.5 KHz was used in the experiments. This proved to be
sutticient for resolving the three axisymmetric modes (with frequencies of 60 Hz, 227 Hz and
512 Hz) excited in the experiments.

Representative plots of the plate velocity (integrated from the data.) at the off-center point
Pa in the uncontrolled and controlled cases are given in Figure 5.3 with reduction levels at times
t = 0.5, 1.0, 1.5_ec summarized in Table 5.2. The percentage reductions were calculated by de-
termining the ratio between the maximum values of the controlled and uncontrolled trajectories
through one period containing the time point of interest. As illustrated by the results in the
table and figure, the velocity level in the controlled case has been reduced by 50_, before .5sec
and is essentially fully attenuated by 1.5_ec. We reiterate that these results were obtained with
data obtained from an accelerometer at (2", 0) and a.centered actuating patch thus illustrating
that collocation is unnecessary for this control method.

The voltage, u(tj) = -Ky_,, was recorded in each experiment and that yielding the control
results reported here is plotted iI1 Figure 5.4. It is noted that the voltage has a maximum
magnitude of 70 V. In practice, it has been observed that the patches can be used for extended
periods at the frequencies of interest without damage or degradation of performance if the
voltage levels are maintained below 8- 10 rms V/rail [28]. Hence control voltage levels required
for control of the transient vibrations is well within the tolerance of the 7 rail patches used in
the experiments.

Finally, the force delivered by the hammer impact in the uncontrolled a.nd controlled cases
is plotted in Figure 5..5so as to provide a means of testing the equity of excitation levels in
tile uncontrolled and controlled experiments (the initial velocities in the two cases can also be
compared to determine whether the same level of energy is being delivered in each experiment).
As indicated by the results in this latter figure, the force delivered in the two cases is nearly
identical (a slight double hit was always present when an impact hammer was used to excite
the axisymmetric modes).
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Time Acceleration Velocity
.5 sec 69.5 68.2
1 sec 88.9 84.7

1.5 sec 93.8 97.8

Table 5.2. The i)ercent reductions in acceleration and velocity levels at the point t72= (2", 0)
when feedback control is implemented.

Hardware Software

l t
LowPass ._Co.nv_e__rt.e_r.

/I _ox I ] t.i_ns ] [Filter ] I 2048 a(tj)

A_ccelerometer / 2.5V I Integrate
V(tj )

Compute
State
Estimate

Ycj+l=AcYcj + Fcv(tj)

Compute
Controlling
Voltage

u(tj) = -K Ycj

Amplifier

I
Plate + Patches Hardware Software

Figure 5.2. AmI)lifiers,DSP configuration and PC Algorithm 4.1.1 for controlling a plate
excited by an initial ilnpact. Componentmatrices are definedin Figures 4.2 and 4.:3.
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Uncontrolled and Controlled Plate Velocity
J

0.15

-0.15
r I

0 0.5 1 1.5
Time (sec)

Figure 5.3. [!ncontrolled and controlled plate vibrations at (2", 0) in response to an impact
hammer hit; -- (Uncontrolled),_ (Cont rolled).

ControllingVoltageto the Patch
80 .......

60

40

2O
>
o
c_ 0
O
>

-20

' '4-8% 0.2 0.4 016 018 1 112 1.
Time (sec)

Figure 5.4. The controlling voltage for acceleration data observed at (2", 0).
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HammerForcesin the Controlledand UncontrolledCases
0.05 ....

0--0.05

_" -0.1
O
E
,?-o.15

-0.2 i
-0.25

"0.3; 0.()1 0.{)2 0.()3 0.()4 0.05
Time (sec)

Figure 5.5. The force delivered 1)ytile impact hammer ill tile uncontrolled and controlled
cases,---- (C,ontrolled C,ase),--- (Uncontrolled Case).

5.2 Control of a Periodic Exogenous Force

A second problem under consideration concerns the control of plate vibrations when the plate
is driven by a periodic exogenous force. To demonstrate the control capabilities ill this case, a
periodic driving voltage was supplied to one centered patch on the plate and the patch oll the
opposite side of the plate was used as the control actuator. Experimental tests indicated that
a 3,50Hz driving voltage produced a strong plate response and all tests were conducted with
the exogenous voltage at that frequency.

Two sources were used to generate this exogenous signal: namely, an external oscillator and
the PC running the control algorithm. As reported under Case 1 below, a purely steady state
response could be considered with the oscillator-generated exogenous force since the plate was
driven to steady state before the control program was initiated. Both a transient and steady
state response were noted in the PC-generated signal since the input of the exogenous force to
the plate began at the same time that the control algorithm was started. This latter means of
excitation is considered in C,ase 2.

Since the system was driven by a periodic exogenous force, the discrete time Algorithm
4.1.2 (corresponding to continuous time Algorithm 3.3.1) was used to calculate the controlling
voltage to the actuating patch. Again, coml)onent matrices as well as control and ol)servation
parameters are summarized in Figures 4.2 and 4.3.

For the off-center results reported here, velocity observation values were obtained by inte-
grating data fi'om an off-center accelerometer located at the point P2 = (2", 0) as depicted in
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Figure 5.1. Tile second input to tile algoritlun consisted of measurements g(lj) of the force
driving the plate. We point out that when implementing this control method, both phase
and magnitude information for the driving force were required as compared with many other
methods (e.g., feedforward) which require only phase information.

In these experiments, the tracking comi)onents rj were calculated first and stored in a cir-
cular buffer. These values were then used when calculating the state estimates yj and voltages
u(lj). While the implementation in this manner facilitated running the algorithm with sample
rates on the order of 7 KHz (again, the algorithm was coded in assembler), it limits the robust-
ness of the method with respect to changes and variations in the driving force. Current efforts
are directed toward simultaneous solution of the tracking and estimator difference equations.

A crucial issue when implementing the method concerns the handling of delays and phase
shifts produced by the filters, A/D and D/A conversions, computation of the control voltages,
et cetera. While the amount of delay and phase shift is fi'equency dei)endent, experiments
indicated that at 3,50Hz, 30 - 40° phase shifts were introduced by the hardware. This was suf-
ficient to destabilize the controller if left uncompensated. Ii1the experiments, we comI)ensated
by first conducting an ofl]ine, numerical 'identification' to determine the amount of added delay
necessary for stabilizing the controller in the presence of phase shifts of the order introduced by
the experimental hardware. A summary of these results can be found in [14]. This is analogous
to the online tuning or phase locking which is necessary for ensuring stability in other control
methods. The numerical tests, summarized in [14], indicated that the introduction of a 216°
delay in accelerometer or exogenous force data would stabilize the systeins, and this was im-
plemented in the experiments by using a DAC delay box. The compensation for phase delays
in this manner provides merely a first step toward optimal implementation of the method and
one aspect of current research efforts is directed toward online compensation in the algorithm.

Data acquisition and processing was again performed with a PC-based Texas Instruments
TMS320-C30board. A schematic of the setup is given in Figure 5.6.
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External

Oscillator

Hariware Software[

& _ [ ConvA_erter g(tj) Compute.............. Tracking

A _xl_O_"-_ zY._a2 _-_ _-_l_f "_ _ 2048 Components

Ac_celemmT _ I ...... [ I 25V --a(iJ)
Integrate rj+1 = A trrj + F rlg(t j)

V(tl) Compute

l State
Estimate

Ycj+_=Acycj + Fcv(tl) +Arr j +Acg(tj)

Compute
Controlling
Voltage

-1 T

u(tj) =-K ycj+ R B r j

Amplifier

1
Plate + Patches Hardware Software

Figure 5.6. Amplifiers, DSP configuration and PC Algorithm 4.1.2 for controlling a plate
driven by a periodic exogenous force. Component matrices are defined in Figures 4.2 and 4.:1.

Case 1: Oscillator-Generated Driving Signal

For the results described here, tile signal to the driving patch was generated by an external
oscillator. The plate was allowed to reach steady state and then the control program was initi-
ated. Acceleration levels measured by the accelerometer located at P2 = (2", 0) and integrated
velocity values for the uncontrolled and controlled cases are plotted in Figure 5.7. As noted
from the controlled trajectories in that figure, it takes the algorithm approximately 0.06 seconds
to calculate and store a sufficient number of tracking components rj. During that time interval,
no voltage is fed to the actuating patch. Once the tracking calculations are completed, state
estimation begins and the controlling voltage is computed and fed back into the system. The
vibration levels decay for approximately 0.3 seconds and then are maintained at levels that
are approximately 15% of those for the for the uncontrolled case for the remainder of the time
interval. This corresponds to a 20log(a_o_/a_,,_o,_)_ -16..5 dB reduction in acceleration levels.

While the magnitude of the controlling voltage is dependent upon the amplitude of the
driving signal, magnitudes less than 40 V (28.31:rms)were required to attain the levels reported
here. At 350 Hz, this was well within the range (.56- 70V rms in this case) that was considered
to be safe for the patch being used (see Example 5.1 for further discussion regarding the voltage
levels at which the patches can be driven without damage or degradation in perfornaance).

The results in this experiment demonstrate the effectiveness of the algorithm for controlling
a system that has reached steady state. Hence one is not required to start the control with a
system at rest.
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Uncontrolled and Controlled Plate Acceleration x 10`3 Uncontrolled and Controlled Plate Velocity

lC

-1c
I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (sec) Time (sec)

Figure 5.7. Uncontrolled and controlled plate acceleration and velocity at (2, 0) for system
driven by periodic exogenous force;- (Uncontrolled), _ (Controlled).

Case 2: PC-Generated Driving Signal

A second mechanism for generating the driving signal is with the PC that is used to process
data and run the control algorithm. Acceleration and velocity plots of the uncontrolled and
controlled plate vibrations excited in this manner are given in Figure 5.8. It can be seen that in
this case, the plate starts from rest and is still being driven through a transient stage when the
tracking calculations are completed and control begins. At that point, the controlled trajecto-
ries are reduced to the levels noted in the purely stead)' state case whereas the uncontrolled
trajectories are driven to steady state. Here, an 82% (15 dB) reduction in levels is noted at time
T = 1 second. This was obtained with a. controlling voltage of magnitude 12 1.';,_ (8.5 |_m_).
These results demonstrate the effectiveness of the control Mgorithm for a system undergoing
transient oscillations before reaching steady state in response to a periodic driving force.

Uncontrolled and Controlled Plate Acceleration x 103 Uncontrolled and Controlled Plate Velocity
3

2

-t8 -3
0 0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec) Time (sec)

Figure 5.8. Uncontrolled and controlled plate acceleration and velocity at (2,0) for system
driven by periodic exogenous force;- (Uncontrolled),----- (Controlled).
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6 Conclusions

In this work, the experimental implementation of a PDE-based controller was considered. While
the motivating application involves the control of vibration levels for a circular plate through
the excitation of surface-mounted i)iezoceramic patches, the general techniques described here
will extend to a variety of applications.

For such control techniques, the first step is the derivation of a PDE model which accurately
describes tile dynamics of the system under consideration. Physical parameters in these models
must typically be estimated through fit-to-data techniques before control applications can be
considered. Following a brief discussion regarding the strong and weak forms of a thin plate
model with a discontinuous control input term (due to the piecewise constant nature of the
piezoceramic patches), continuous-time LQG and H -<'methods for systems with no exogenous
force or a periodic exogenous force were discussed. The discrete-time approximations necessary
for implementing the methods with digital measurements were also presented. A crucial step
when implementing the discrete-time controllers involves the approximate integration of data
(e.g., accelerometer data integrated to obtain velocity state values), and first and second-order
filters for accomplishing this were discussed. Without such filters, DC biases, that are always
present in the data, would render the integrated values useless.

Experimental results demonstrating the control of transient and steady state vibrations were
then presented. One advantage of the PDE-based controllers over sta.ndard frequency response
input/output techniques is the capability for direct control of transient responses, and this was
demonstrated in the first set of examples. A centered hammer impact was used to excite the
plate and integrated data from an off-center accelerometer was used to reconstruct the state.
The results demonstrate that attenuation levels on the order of 95% reduction can be attained
by 1.5 seconds using the PDE-based controller.

The second example demonstrates the control of transient and steadv state responses when
the plate was driven by a periodic exogenous voltage to a secondary piezoceramic patch. These
results demonstrate that, after accounting for hardware delays, attenuation levels on the order
of 85% were attained when control was implemented. While implementation techniques are
still being refined, these results demonstrate the effectiveness of the PDE-based controller for
this system and indicate the potential of these control techniques for reducing transient and
steady state dynamics in other structural and structural acoustic systems.

ACKNOWLEDGEMENTS: The authors extend their sincere thanks to _2,nWang, Brooks
Air Force Base, for substantial collaboration throughout the duration of this work.
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