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PREFACE 

This volume contains the proceedings of the ICASE/LaRC Workshop on Benchmark 

Problems in Computational Aeroacoustics (CAA). CAA is a relatively new area of research 

addressing issues relevant to the acoustic propagation of sound generated by fluid flow. 

Advances in computer technology make addressing these issues in a more detailed manner 

a possibility. Such advances allow the treatment of the fully nonlinear propagation problem 

as well as the direct computation of the acoustic sources, the sound generation problem. 

These possibilities are expected to benefit both the validation of models that have been 

developed as well as help develop better models for more complex flows. In situations where 

calculations are not prohibitively expensive a direct computation of the acoustic and source 

fields becomes possible. 

When research in this area was first considered several technical challenges were apparent. 

The intention of these proceedings is to more fully investigate a subset of these numerical 

issues and make some progress in their resolution. These issues include: 

1. The small magnitude of the acoustical quantities of interest and the need to distinguish 

and extract them from the larger background fields. 

2. The sensitive dependence of the acoustical field on phase, dissipation and dispersion 

when propagated over large spatial distances. 

3. The potentially higher frequencies of the quantities of interest in comparison to those 

of interest in the problems more typically addressed in unsteady aerodynamics or 

structural vibrations. 

4. For the computation of acoustical spectra long time solutions are necessary for com- 

puting averages; numerical codes are required to be stable and accurate for long time 

integrations. 

5. Many codes are designed for stationary problems in which the path of approach to 

the asymptotic solution is not important (except from the viewpoint of cost). These 

schemes are potentially inadequate for aeroacoustical problems in which time accurate 

computations are required. The dissipation, dispersion, and anisotropic biases in these 

schemes are now very relevant to the aeroacoustical problems of interest. 

6. Time dependent boundary conditions are also required which will not reflect acoustic 

waves from imposed computational boundaries yet reflect acoustic waves properly from 

real physical boundaries. 



7. As many flows of interest occur at high Mach number nonlinear effects on the sound 

propagation problem are to be anticipated. This is in addition to the nonlinear effects 

of the sound generation problem and its additional complexity in higher Mach number 

situations. 

8. The wide range of spatial and temporal scales that require resolution when both the 

sound generation and propagation problem are simultaneously considered. 

The benchmark problems addressed in this Workshop were chosen with some of these 

issues in mind. The primary focus has been on numerical accuracy - dissipation, dispersjon 

- and on boundary condition issues. There are, in addition, problems on the nonlinear 

propagation and on the sound propagation in a non-uniform prescribed mean flow, While 

no problems addressing the sound generation problem are posed, there is a sample problem 

in which the acoustical field, due to a prescribed fluctuating velocity field, is required. In 

general, the problems chosen are simple requiring little computational effort; it is for that 

reason computational effort has not been used as a criteria in assessing the different schemes. 

Jay C. Hardin, NASA Langley Research Center 

J. Ray Ristorcelli, ICASE, NASA Langley Research Center 

Christopher K.W. Tam, Florida State University 
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BENCHMARK PROBLEMS AND SOLUTIONS 
Christopher K.W. Tam 

The Scientific Committee, after careful consideration, adopted six categories of benchmark 

problems for the workshop. These problems do not cover all the important co~putat ional  issues 

relevant to Computational Aeroacoustics (CAA). The deciding factor to limit ihr niimber of cat- 

egories to six was the amount of effort needed to solve these problems. For reference purpose, the 

benchmark problems are provided below. They are followed by the exact or approximate analyti- 

cal solutions. At present, an exact solution for the Category 6 problem is not available. 

BENCHMARK PROBLEMS 

Category 1 

Problems to test the numerical dispersion and dissipation properties of a computation 

scheme (linear waves). 

Use nondimensional variables with the following scales 

Ax = A r  = length scale 

a, (ambient sound speed) = velocity scale 
Ax - = time scale 
a m  

p, = density scale 
2 pooa, = pressure scale 

1. Solve the initial value problem 

Give numerical solution at t = 100, 200, 300 and 400 over -20 5 x 5 450. State the size of 

At used. 

2. Solve the spherical wave problem 
du u du - + - + - = o  
6t r ar 



over the domain 5 < r 5 450, with initial condition t = 0, u = 0. The boundary condition at 

T = 5 is: 

r = 5 ,  u=sinwt  

7r 
(a) w = , 

7r 
(b) w = - 

3 

Give the numerical solution at t = 100, 200, 300 and 400 for each case. (Do not recast the 

equation in a plane wave form.) State the size of At used. 

Category 2 

Problems to test the nonlinear wave propagation properties of a computational scheme. 

Use dimensionless variables with the following scales 

Ax = length scale 

a ,  (ambient sound speed) = velocity scale 
Ax - = time scale 
aco 

p, = density scale 

pooa2, = pressure scale 

In both problems, the one-dimensional Euler equations are to be solved. 

(You may use an equivalent form of the Euler equations.) 

1. Solve the initial value problem 



Use a computational domain -50 < x <_ 350. Give the spatial distribution of u ,  p, and p at 

t = 10, 20, 30, 40, 50, 100, 150, 200 and 300. 

2. Solve the one-dimensional shock tube problem using the following initial conditions 

Use a computational domain -100 5 x 5 100. Give the spatial distribution of p, p and u at 

t = 40, 50, 60 and 70. 

Category 3 

Problems to test the effectiveness of radiation boundary conditions, inflow and outflow 

boundary conditions and the isotropy property of the computation algorithm. 

Use dimensionless variables with the following scales 

Ax = length scale 

a ,  (ambient sound speed) = velocity scale 
Ax -- - time scale 
a00 

pm = density scale 

p,aL = pressure scale 

In both problems, the linearized two-dimensional Euler equations on a uniform mean flow are 

to be solved. 



where 

M, and My are constant mean flow Mach number in the x and y direction, respectively. 

(You may use an equivalent form of the above equations.) 

Use a computational domain -100 5 x 5 100, - 100 5 y 5 100 embedded in free space. 

1. Let M, = 0.5, My = 0. Solve the initial value problem, t = 0. 

P = exp [-(In 2) ( x2 + y2)l 
p = exp [-(In 2) 

(x2 
'l)] + 0.1exp [-(ln 2) 

25 (x - 67)2 + y21 
u = 0.04yexp -(ln 2) [ (x - 67)2 25 + y2 ]  

v = -0.04(x - 67) exp 
25 (x - 67)2 + y21 

Give the distributions of p, p, u and v at t = 30, 40, 50, 60, 70, 80, 100, 200 and 600. 

- 
- 7r 

2. Let M, = M y  = 0.5cos(-) Solve the initial value problem, t = 0. 
- - 

i 4 
1 
- - - - p = exp [-(ln 2) 

(x2 y2)] 
= - - - - 
- - - - 
- - - 
- - 

- - 

p = exp [-(I, 2) 
(x2 

'.)I + 0.1 exp [-(ln 2) (x - 67)2 25 + (y - 67)2 
- - - - - 
- 

- - 

(X - 67)2 + (y - 67)l - 
u = 0.04(y - 67)exp -(in 2) 

- 
= e [ 25 
- 

- 

I 
- 

- v = -0.04(x - 67)exp (x - 67)l + (y - 67)l 
- 25 

Note: The mean flow is in the direction of the diagonal of the computational domain. 

Give the distributions of p, p, u and v at t = 60, 70, 80, 90, 100, 200, 600 and 1000. 



Figure for Problem 1, Category 3 

c 
Figure for Problem 2, Category 3 

Category 4 

Problems to test the effectiveness of wall boundary conditions. 

Use dimensionless variables with the following scales 

Ax = AT = length scale 

a, (ambient sound speed) = velocity scale 
Ax - = time scale 
am 

p, = density scale 
2 pcoam = pressure scale 

1. Reflection of an acoustic pulse off a wall in the presence of a uniform flow in semi-infinite 

space. 



Figure for Problem 1, Category 4 

Use a computational domain -100 < - x 5 100, 0 < y 5 200. The wall is at y = 0. The 

linearized Euler equation in two dimensions are 

where M = 0.5. The initial condition is 

Give the pressure field at t = 15, 30, 45, 60, 75, 100 and 150. 

2. Acoustic radiation from an oscillating circular piston in a wall 

Piston ' 10 100 

Figure for Problem 2, Category 4 

nt 
Radius of piston = 10. Velocity of piston u = sin(-). Use a computational domain 

5 
0 5 x 5 100, 0 < r < 100. The wall and the piston are at x = 0. The cylindrical coordi- 

nate system is centered at the center of the piston. With axisymmetry, the linearized Euler 



equations are 

The initial conditions are: 
t = O  p = u = v = p = O  

1 1  3 
Give the time harmonic pressure distribution at the beginning, - - and - of a period of 

4 '  2 4 
piston oscillation. 

Category 5 

Problem to test the suitability of a numerical scheme for direct numerical simulation of very 

small amplitude acoustic waves superimposed on a non-uniform mean flows in a semi-infinite 

duct. 

Use nondimensional variables with the following scales 

Ax = length scale 

a, (sound speed far upstream) = velocity scale 
Ax 
- = time scale 
a00 

p, (density of gas upstream) = density scale 

,o,a2, = pressure scale 

A small amplitude sound wave is incident on a convergent-divergent nozzle as shown 

c 
M=0.5 Sound Wave Supersonic 

- W k  - 

Figure for Category 5 Problem 



Use a computational domain -200 < x < 80. The area of the nozzle is given by 

The quasi-one-dimensional unsteady flow equations are 

Far upstream x < -200, there is an incoming acoustic wave. Together with the steady inflow, the 

velocity, pressure and density are given by 

Take y = 1.4, M = 0.5, r = w = O.lrr, calculate the transmitted sound wave at the nozzle 

exit. Give p(t) - j5 over a time period; j5 is the time averaged pressure. 

Category 6 

Problems to test the ability of a numerical scheme to calculate aeroacoustic source. 

Use dimensionless variables with the following scales 

Ax = length scale 

a ,  (ambient sound speed) = velocity scale 
Ax - = time scale 
a w  

p, = density scale 

p,a2, = pressure scale 

1. Sound generation by gust-blade interaction (two-dimensional) 

8 



Figure for Category 6 Problem 

Use a computational domain -100 5 x  5 100, -100 < y < 100. The blade is a flat plate of 

length L (L = 30) lying along the x-axis centered at the origin. There is a Mach 0.5 uniform 

mean flow in the x-direction. The mean flow carries a gust with velocity component in the 

The linearized Euler equations are 

Determine the intensity of radiated sound, p2, along the coordinate lines x = f 95 and y = 

f 95. 

SOLUTIONS 

Category 1 

Problem 1. The solution is 

x - t  
u(x, t )  = 0.5exp [-(ln 2) (T) '1 

Problem 2. The solution is 



Category 2 

Problem 1. An approximate solution can be found by using the simple wave assumptions (Chap- 

ter 6, G.B. Whitham, "Linear and nonlinear waves"). These assumptions are 

1. The flow is isentropic 

2. The Riemann invariant % - u = A 7-1 ' which starts from the uniform region ahead of the 

pulse, is valid everywhere. 

With these assumptions, the Euler equations reduces to the nonlinear simple wave equation 

This quasi-linear first-order equation can be solved by the method of characteristics. For the 

given initial conditions, a shock will form at the front of the pulse as the disturbance propagates 

to the right. The location of the shock may be found approximately by the use of Whitham's 

equal area rule. 

Problem 2. The standard shock tube solution is a good approximate solution. The standard so- 

lution is available in most books on gas dynamics. 

Category 3 

(4n2) M = 0.5, 9 = [(s - Mt)2  + y2]!. Problem 1. Let cul = , as = 25 , 
The solution is 

where Jo( ) and J1 ( ) are Bessel functions of order 0 and I. 

10 



(Reference: C.K. W. Tam and J.C. Webb, (cDispersion-Relation-Preserving finite difference 

schemes for computational acoustics," J. Computational Phys., Vol. 107, pp. 262-281, 1993.) 

Problem 2. The solution can be obtained from that of problem 1 by a coordinate transformation. 

Category 4 

Problem 1. Let a = v, p = [(x - Mt)' + (y - 25)2] !, < = [(x - Mt)2 + (y + 25)2] 4 .  
The solution is 

00 

U = 
(X - Mt) 

e sin(&) J1 (Jp)t dJ + 
2 4  

J e - g  sin(&) J~ (E<)( d( 
0 0 

Problem 2. Let E = R = 10, w = i .  
The solution is 

J1(CR) 
Jo(tr)e 

1 - ( t2 - w 2 )  2 z - iwt  

( t2  - w2)5  

00 

1 
-ERJ J1(ER)lEJ~(Er)e - ( t 2 - w 2 )  2 Z- iwt  

((2 - w2)5 
0 

where Re[ ] = the real part of and Im[ ] = the imaginary part of. 

Note: ( t2  - w2)f = -ilC2 - w21f for ( < W. 



Category 5 

A fairly accurate solution of this problem can be found by first determining the governing 

equations for the amplitude functions of the t ime-periodic disturbances inside the nozzle. These 

equations are ordinary differential equations but with variable coefficients. They can be inte- 

grated numerically. 

Let the solution be separated into a mean and a time-periodic part in the form 

The physical quantities of the mean flow at the nozzle throat will be denoted by a subscript *. 
With the area ratio A./Al known, where A1 is the area.of the uniform duct, p, is first found by 

solving the equation 

The other variables at the nozzle throat are given by 

The mean flow solution is 

-2 
U 7 P*,-l--+-- 4 Y P* - + -- 

- f p  - 2 y - l p *  2 y - l p *  
A * 

The linearized governing equations for the amplitude functions p, u and p̂  are 



In the uniform region of the duct, the solution of (1) that matches the incoming acoustic 

wave is 

In (2), the second term represents the reflected acoustic wave. The unknown amplitude c is to be 

determined later. 

Equations (1) have a regular singular point at the nozzle throat (x = 0). Near the throat, 

there are two non-singular series solutions. The first two terms of these solutions are 

where uo and po are arbitrary constants. p l ,  u l  and pl are functions of uo and po. 

A numerical solution of (1) can be constructed by starting the solution slightly upstream of - 

the nozzle throat at x = -6 (6 << 1) using (3) as the starting solution. (For small 5, the terms 

of the series involving S and powers of 6 may be neglected.) The numerical integration proceeds 

upstream until the uniform duct region is reached. At this point, the numerical solution must 

match solution (2). This provides three algebraic equations for the three unknowns po, uo and c. 

Once these constants are found, the solution upstream of the nozzle throat is known. 

For the solution downstream of the nozzle throat one can start integrating (1) numerically at 

a point just downstream, say at x = 6. Again (3) is used as the starting solution. The numerical 

integration proceeds downstream until the nozzle exit is reached. With po, uo already found, the 

amplitude functions are now completely determined along the entire length of the nozzle. 

Christopher K.W. Tam 
Department of Mathematics 
Florida State University 
Tallahassee, FL 32306-3027 



Application of Essentially Nonoscillatory Methods to Aeroacoustic Flow Problems 

Harold L. Atkins 
NASA Langley Research Center 

Hampton, VA 

SUMMARY 

A finite-difference essentially nonoscillatory (ENO) method has been applied to several of the 
problems prescribed for the workshop sponsored jointly by the Institute for Computer Applications in 
Science and Engineering and by NASA Langley Research Center entitled c'Benchmark Problems in 
Computational Aeroacoustics." The workshop focused on computational challenges specific to aeroa- 
coustics. Among these are long-distance propagation of a short-wavelength disturbance, propagation of 
small-amplitude disturbances, and nonreflective boundary conditions. The shock capturing-capability 
inherent to the E N 0  method effectively eliminates oscillations near shock waves without the need to 
add and tune dissipation or filter terms. The method-of-lines approach allows the temporal and spatial 
operators to be chosen separately in accordance with the demands of a particular problem. The EN0 
method was robust and accurate for all problems in which the propagating wave was resolved with 8 
or more points per wavelength. The finite-wave-model boundary condition, a local nonlinear acoustic 
boundary condition, performed well for the one-dimensional problems. The buffer-domain approach 
performed well for the two-dimensional test problem. The amplitude of nonphysical reflections were 
less than 1 percent of the exiting wave's amplitude. 

INTRODUCTION 

Essentially nonoscillatory (ENO) methods have been under development at NASA Langley Research 
Center (LaRC) since 1988. The algorithms are intended for flow simulations that require a high degree 
of accuracy but that also contain shock waves or other fluid discontinuities. One early use of the method 
was in the simulation of supersonic shear-layer instabilities (ref. 1) in which small "eddy shocklets" 
appear. Both control-volume (ref. 2) and finite-difference (ref. 1) approaches have been implemented 
and applied to a variety of validation cases (ref. 3) to compare their strengths and weaknesses. Recent 
recognition that the methodology is an appropriate tool for the study of high-speed jet noise has prompted 
some ground-laying work in the area of aeroacoustics. Work in this area includes the development of 
nonreflective boundary conditions (ref. 4), and improved spatial operators based on bandwidth resolution 
rather than strict order properties (ref. 5). Applications of EN0 methods have included studies of 
shock-wave interaction with various other waves (ref. 6) and the combination of E N 0  methods with 

15 
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Kirchhoff's method for far-field noise prediction (ref. 7). 

The works cited above demonstrate that although the EN0 approach is intended for problems that 
contain discontinuities the method also performs well for smooth problems. The problems prescribed 
for this workshop focus on several difficulties specific to aeroacoustics. Among these are long- 
distance propagation of a short-wavelength disturbance, propagation of small-amplitude disturbances, 
and nonreflective boundary conditions. This work describes the performance of the finite-difference 
EN0 method for several of these problems. The first section gives a brief description of the method; a 
more detailed description can be found in ref. 1. The following section describes the results of applying 
the method to the workshop problems in categories 1, 2, 3, and 5. 

METHODOLOGY 

The program used for the benchmark problems implements the finite-difference form of EN0 for 
the Euler or Navier-Stokes equations in a full three-dimensional curvilinear form. The program runs 
efficiently in one- or two-dimensional modes and has quasi-one-dimension and axisymmetric capability. 
The program is third order in time and up to fifth order in space (user selected). The program was 
modified for the category 3 problem, which prescribes the linear form of the Euler equations; however 
no attempt was made to optimize the implementation to take advantage of the linearity. The category 1 
problem, which involved scalar advection, was solved by using a linear algorithm with operators similar 
to the "preferred" operator of the Eulermavier-Stokes program. The meaning of "preferred" will be 
addressed later in this work. The basic method is described here for a one-dimensional conservation law: 

The finite-difference form of EN0 was proposed by Shu and Osher (ref. 8) as an efficient means 
of implementing the EN0 strategy in multiple dimensions. The approach is well suited to a method- 
of-lines approach, and one-dimensional forms are easily extended to two or three dimensions. The 
time integration is performed with the following three-stage third-order Runge-Kutta method due to 
Shu (ref. 9): 

where crl = 1, era = 3/4, a3 = 1/3, and S denotes the spatial operator. This form of Runge- 
Kutta is total-variation diminishing (TVD), which is important to the overall stability of the EN0 
approach. High-order forms have been developed; however, the third-order form was chosen as a 
trade-off between storage and accuracy. 

The spatial operator is evaluated with a conservative flux-splitting approach. A split numerical flux 
?* is defined as an expansion of the split physical flux that achieves an approximation of the spatial 



derivative to the desired order of accuracy. 

In this splitting, 1 is a smooth function that is larger than the absolute value of the largest eigenvalue 
of the Jacobian of F .  The split numerical flux is evaluated by fitting a polynomial through the split 
physical flux and differentiating as needed. Polynomials with different stencils may be used for each 
element of each flux; however, they must be chosen such that they are upwind in some sense. 

The polynomial stencil is chosen by a solution adaptive procedure that results in the essentially- 
nonoscillatory property. Because the spatial operator depends on the solution, the algorithm is inherently 
nonlinear even if the problem to be solved is linear. The original adaptation procedure of Harten et al. 
(ref. 10) makes use of the divided-difference table of the solution to construct a polynomial whose 
stencil covers the smoothest segment of the solution that contains a specified starting point. Hence, the 
stencils for F+ and F -  can be biased upwind by choosing a starting point that is upwind. Although 
this adaptation procedure ensures the desired EN0 property, it has convergence problems that affect 
long-time calculations (refs. 1 land 12). The adaptation procedure used here avoids these problems by 
making the stencil choice a continuous and smooth function of the solution. With this procedure, for a 
smooth solution the stencil choice approaches a predetermined preferred stencil as the mesh is refined. 
The preferred stencils for F+ and F- are one-half-cell upwind and result in a linearly stable scheme. 
To increase the computational efficiency, all elements of a given flux use the same stencil, which is 
chosen by examining a single test function ( e.g., the density). 

RESULTS OF BENCHMARK CASES 

The finite-difference EN0 method has been applied to the problems in categories 1, 2, 3, and 5. 
Results for categories 2 and 5 are presented first because these problems required little or no changes 
to the program and the algorithm described above. A discussion of the results for categories 1 and 3 
follows. Unless otherwise noted, all results are third order in time and fifth order in space, with 64-bit 
precision and a Courant-Friedrichs-Lewy (CFL) number of 0.5. Also, all problems prescribed a uniform 
grid with unit spacing; hence, the size of the domain also indicates the number of grid point used. 

Category 2 prescribed two problems that were designed to test nonlinear wave propagation. Both 
involve the one-dimensional Euler equations, but they have different initial conditions. Problem 1 starts 



with a Gaussian pressure distribution and velocity and density distributions that are appropriate for a 
right-traveling acoustic wave. The wave quickly steepens into a shock wave that propagates to the right 
and weakens. The initial Gaussian distribution is resolved with 10 points across its half-width. Figure 1 
shows the pressure and density for t = 0, 50, 100, and 300. The inset in the pressure plot reveals no 
oscillations in the neighborhood of the shock at t = 100. The dip in density near x = 50 is due to 
entropy produced by the shock formation. 

The initial conditions for problem 2 of this category consist of two piecewise-constant pressure 
regions connected by a cosine function over a four-point region. The initial velocity is zero and the 
density is given by the isentropic relation. This initial distribution quickly evolves into a Ieft-traveling 
acoustic wave, a convecting entropy wave, and a right-traveling shock wave. Figure 2 shows the pressure 
and density distributions for t = 0, 30, 50, and 70. The inset shows the density in the neighborhood 
of the entropy wave for t = 50. As before, no discernible oscillations exist near the shock. For 
both problems 1 and 2, the shock wave has exited the domain by the final time. The finite-wave 
model (ref. 4) used for the boundary condition allows the shock to exit the domain without any visible 
reflection. For comparison, an additional simulation was performed in which the domain was extended 
by 10 points so that the shock did not leave the domain. The results of this case overlay the results 
of the workshop test case. 

The purpose of the category 5 problem is to assess the ability of the method to resolve a low- 
amplitude disturbance in a nonuniform flow. The test case consists of a shock-free quasi-one-dimensional 
flow in which a periodic disturbance with an amplitude of p / p ,  = 1.4 x is added at the inflow 
boundary. The mean flow is accelerated from a Mach number of 0.5 to supersonic conditions through 
a converging-diverging nozzle. The area distribution is defined by three regions that have second- 
derivative discontinuities at their interfaces. These discontinuities in the geometry were expected to 
produce some error (ref. 3); however, the effect was less than anticipated. 

The problem has been solved in two ways. The first approach is to obtain a discrete steady-state 
solution simply by a long time-accurate simulation. The residual is reduced to machine zero to ensure 
that the small disturbance to be added is well resolved. The simulation is restarted from the discrete 
steady state solution and is continued for 21 periods, during which the disturbance is imposed at the 
inflow boundary. The requested measurements of [ p ( t )  - ~ ] / ( ~ a k )  are taken during the 21st period. 
An alternative approach is to force the exact quasi-one-dimensional solution to satisfy the discrete 
spatial operator by adding a forcing function. The forcing function that achieves this is simply the 
usual spatial operator evaluated for the exact quasi-one-dimensional solution. The procedure is easily 
implemented by computing and storing the residual for the initial solution and then subtracting that 
residual from the instantaneous residual during the time integration procedure. The results of the two 
methods are identified by the terms "direct approach" for the first method and "residual subtraction" 
for the second method. 

Figure 3 illustrates the convergence history and the mean-flow solution of the direct approach. The 
dashed line in fig. 3(b) indicates the difference between the discrete mean-flow solution and the exact 
quasi-one-dimensional solution. As expected, jumps in the error occur at the point where the area 
definition has discontinuous second derivatives. Figure 4 shows the perturbation pressure ( p  - p ) / p ,  



for times of 2, 4, and 8 periods obtained with both the direct and residual subtraction methods. Both 
methods give the same prediction for the perturbation in spite of the error in the mean-flow solution 
for the direct approach. 

The problems in category 1 are intended to test the dispersion and dissipation properties of the 
method for a linear advection problem. Because the Euler/Navier-Stokes code could not be easily or 
efficiently modified to solve a scalar equation, a linear algorithm that uses the same preferred spatial 
operator and time integration was written for this case. However, the use of a linear algorithm may 
actually be more appropriate than the application of the nonlinear EN0 algorithm. As in the category 
5 problem, an acoustic disturbance will most likely be small in amplitude; thus, assuming the mean 
flow is smooth, the EN0 adaptation process will essentially return the preferred stencil. Because the 
category 1 problems prescribe waves with amplitudes on the order of one, the adaptation procedure 
would respond to the wave itself. 

Category 1 consists of two problems that are similar to those of category 2 and 5; however, these 
problems have more demanding resolution requirements. The initial condition for the first problem is a 
Gaussian distribution similar to that of problem 1 from category 2; however, the Gaussian half-width is 
resolved with only 6 points instead of the 10 points used in the earlier problem. The second problem in 
category 1 has two cases, both of which are similar to the category 5 problem in that a periodic wave 
is specified at the inflow boundary. The major difference is that the wavelengths prescribed for the 
category 1 problems are much shorter, with only 6 or 8 points per wavelength instead of the 30 points 
per wavelength specified for the category 5 problem. An important consequence is that the waves of 
the category I problems are examined for propagation distances as large as 75 wavelengths, whereas in 
the category 5 problem the wave propagated less than 10 wavelengths to reach the exit. 

Figure 5(a) shows the solution at t = 100, 200, 300, and 400 for the first problem of category 1. 
Results are shown for both fifth-order (solid line) and fourth-order (dashed line) spatial operators. Only 
the fourth-order operator was presented at the workshop. Figures 5(b) and 5(c) show an enlarged view 
of a portion of the solution at t = 400; the solutions are similar, and the error of the fifth-order case 
is approximately 10 percent. 

Problem 2 of this category is governed by a nonhomogeneous equation that produces a decaying 
solution, as illustrated in figs. 6 and 7. The solid line indicates the amplitude envelope of the exact - 

solution; the numerical solution is shown as a dashed line. At t = 300 (figs. 6(a) and 6(b)), the wave 
front for the case with 8 points per wavelength has propagated 37.5 wavelengths. At this time, both the 
fourth-order and fifth-order methods show the effects of dissipation; however, the fifth-order method 
is noticeably improved. At the same time, the solution that is resolved with 6 points per wavelength 
(figs. 7(a) and 7(b)) is completely damped for the fourth-order method and nearly so for fifth-order 
method. This result was expected based on earlier work (ref. 5 )  in which a set of optimized operators 
were developed. The large transient at the front of the wave is a result of the abrupt start-up of the 
simulation. If the amplitude of the wave imposed at the boundary is smoothly increased from zero, the 
transient is eliminated; however, this procedure has little effect on the solution behind the front. 

The category 3 problem employes the linear Euler equations in two dimensions to test nonreflective 



boundary conditions and scheme isotropy. The category defines two problems, only the first of which 
is solved here. This problem consists of a rectangular domain with initial conditions that prescribe a 
circular convective wave and a circular acoustic wave, as shown in fig. 8. The origin of the waves are 
such that both waves reach the right boundary at the same time. 

Due to its modular nature, the Eulermavier-Stokes program was modified to solve the linear Euler 
equations with relative ease. All boundary conditions, including the inflow, are implemented by a buffer 
domain approach. This method involves adding a region of points around the physical domain (also 
shown in fig. 8), in which the governing equations are modified such that all eigenvalues at the outer 
boundary of the buffer domain are indicative of outbound waves. For the linear Euler equations, this 
modification is easily accomplished by defining the linear Mach parameter as follows: 

where M, and My are the interior values and and ;2?, are the values in the buffer domain. Subscripts 
b and e denote the boundary between the physical domain and the buffer domain and the outer edge of 
the buffer domain. The f sign switches between + on the right and top boundaries and - on the left 
and bottom boundaries. The parameter 6 allows some control over the smoothness of at the interface 
of the physical and buffer regions. In addition to modifying the equations, the grid in the buffer region 
was stretched slightly so that the maximum CFL number did not occur in the buffer region. 

Figure 9 shows the density obtained with K = 2 and with 20 points in the buffer domain at 
t = 100, 200, and 250. The dark band indicates the boundary between the physical domain and the 
buffer domain. The waves remain cylindrical, and reflections are small. The minimum contour level is 
f 0.0025. Figure 10 shows the pressure on the horizontal ('y = 0) and vertical (x = 0) centerlines of the 
domain. The scale has been reduced for the plots in which the prescribed wave has left the domain, 
so that the nonphysical reflection can be seen. On both axes, the reflected wave is less than 1 percent 
of the wave that exited the domain. 

CONCLUSIONS 

The finite-difference essentially nonoscillatory (ENO) method performed well for all problems solved 
with adequate resolution. The fifth-order spatial operator gave accurate results for waves resolved 
with 8 or more points per wavelength, although the dissipation was noticeable in cases with long 
propagation distances; 6 points per wavelength was not adequate. Shock waves were captured without 
large oscillations and without additional dissipation. The finite-wave-model boundary condition was 
accurate and robust (shocks were able to exit without reflection) for the one-dimensional cases in which 
it was applied. The buffer-domain approach was easy to implement and worked surprisingly well, 



even at inflow boundaries. The method-of-lines approach offered flexibility, and allowed temporal and 
spatial operators to be optimized as needed. 

ACKNOWLEDGMENTS 

The author is grateful for the assistance of Dr. Freda Porter Locklear of Pembroke University for 
her assistance in setting up the program for several of the benchmark cases. 

REFERENCES 

1 Atkins, H. L.: High-Order EN0 Methods for the Unsteady Compressible Navier-Stokes Equations. 
AIAA-90-1557, July 1990. 

2 Casper, J.; and Atkins, H. L.: A Finite-Volume High-Order EN0 Scheme for Two-Dimensional 
Hyperbolic Systems. Journal of Computational Physics, vol. 106, no. 1, 1993, pp. 62-76. 

3 Casper, J.; Shu, C.-W.; and Atkins, H.: Comparison of Two Formulations for High-Order Essentially 
Nonoscillatory Schemes. AIAA Journal, vol. 32, no. 10, 1994, pp. 1970-1977. 

4 Atkins, H.; and Casper, J.: Nonreflective Boundary Conditions for High-Order Methods. AIAA 
Journal, vol. 32, no. 3, 1994, pp. 5 12-5 18. 

5 Lockard, D. P.; Brentner, K. S.; and Atkins, H. L.: High-Accuracy Algorithms for Computational 
Aeroacoustics. AIAA-944460, Jan. 1994. 

6 Meadows, K. R.; Caughy, D. A.; and Casper, J.: Computing Unsteady Shock Waves for Aeroacoustic 
Applications. AIAA-93-4329, Oct. 1993. 

7 Meadows, K. R.; and Atkins, H. L.: An Evaluation of a Hybrid Kirchhoff-CFD Approach for 
Computational Aeroacoustics. Proceedings of the Imacs 14th World Congress, vol. 2, July 1994, 
pp. 824-827. 

g Shu, C.-W.; and Osher, S.: Efficient Implementations of Essentially Non-oscillatory Shock-Capturing 
Schemes. Journal of Computational Physics, vol. 83, no. 1, 1989, pp. 32-78. 

9 Shu, C.-W.: Total-Variation-Diminishing Time Discretizations. SIAM J. Sci. Stat. Cornput., vol. 9, 
no. 6,' 1988, pp. 1073-1084. 

10 Harten, A.; Engquist, B.; Osher, S.; and Chakravarthy, S. R.: Uniformly High Order Accurate 
Essentially Non-oscillatory Schemes m. Journal of Computational Physics, vol. 71, no. 2, 1987, 
pp. 231-323. 

11 Rogerson, A. M.; and Meiburg, E.: A Numerical Study of the Convergence Properties of EN0 
Schemes. Journal of Scient$c Computing, vol. 5, no. 2, 1990, pp. 151-167. 

12 Shu, C.-W.: Numerical Experiments on the Accuracy of EN0 and Modified EN0 Schemes. Journal 
of ScientGc Computing, vol. 5, no. 2, 1990, pp. 127-150. 



-50 50 150 250 350 

X 

a) Pressure Distribution. 

0.9 

-50 50 150 

X 

b) Density Distribution. 

Figure 1. Solutions for problem 1 of category 2 at t = 0, 50, 100, and 300. Insert shows pressure 
near the shock at t = 100. 
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Figure 3. Mean-flow solution for the category 5 problem. 
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Figure 4. Perturbation pressures for the category 5 problem at various t .  
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Figure 5. Solutions for problem 1 of category 1 with fourth-order (dashed) and fifth-order (solid) 
methods. 
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Figure 6. Solution for problem 2 of category 1 with 8 points per wavelength at t = 300. 
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Figure 7. Solution for problem 2 of category 1 with 6 points per wavelength at t = 300. 

Figure 8. Initial density for problem 1 of category 3 with buffer domain around physical domain. 
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Figure 9. Density contours for problem 1 of category 3: contour increment = 0.005. 

X Y 

a) Solution on y = 0 b) Solution on x = 0. 

Figure 10. Density for problem 1 of category 3 at t = 0, 50, 100, 150, 200, and 250. 
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SUMMARY 

A compact high order three-spatial point, two-time level dissipationless scheme is 
derived by matching amplification factors from differential and difference forms 
hyperbolic systems of partial differential equations. This approach has the advantage of 
allowing large time steps (Courant numbers of one) and imposing boundary conditions 
that are globally compatible with the wave operators. Solutions are presented for planar 
and spherical one dimensional acoustic waves and more complex wave patterns in two 
dimensions. 

INTRODUCTION 

Computation of steady-state solutions to fluid flow problems are now well established. 
In some cases the same algorithms are used for unsteady flow, but results to date are 
mixed. A problem with these CFD-type algorithms is dispersive error that distort 
propagating waves. Dispersion is caused by numerical artifacts that selectively alter 
phase shifts among the component wavelengths at each time step. In complex problems, 
it is not possible to separate algorithmic dispersion from true physical dispersion. These 
effects are more subtle than amplitude related artifacts (dissipation) that cause either 
catastrophic failure or excessive smoothing. 

A new approach to dissipationless finite difference schemes was reported in Ref. 1 where 
dispersion errors are analyzed and compared with other published schemes. In Ref. 2 the 
algorithm was used to compute simple acoustic waves. In this paper, the algorithm will 
be rederived for a system of first order hyperbolic partial differential equations in two 
space dimensions. A process of operator splitting and diagonalization into primitive 
scalar wave equations is used to simplify the multidimensional problem. Once split into 
its simplest components, a basic fourth order implicit algorithm is used to advance each 
primitive. Solutions are presented for Category One and Category Three benchmark 
problems. 

FINITE DIFFERENCE FORMULATION 

aF Consider a one dimensional first order hyperbolic system - + A - = 0. If A is a 
dt dx 

constant matrix with real eigenvalues, it can be diagonalized into P-I AP and the system 
az z- reduced to the uncoupled normal form -+ A - - 0.  The physical solution to the 
dt dx 

matrix system is simply - P-'Z at each time step. It is sufficient to examine only the 
au dl4 simple scalar wave equation - +a - = 0 to solve the one dimensional system. The 
& ar 

dispersion relation associated with the simple wave operator is icc, + ika = 0 where w is 
the radian frequency and k a spatial wavenumber. The dispersion relation connects space 



and time scales in a simple manner. If z is a discrete time increment, the ratio of 
harmonic solutions at two subsequent times at the same spatial location x is: 
11(t+z) e Nm(n+l)r+kr) 

I 
ei(m(fl)r+kr) 

- e'" . Introducing the dispersion relation to eliminate the radian 
u(t) 

frequency, the amplification factor involves two important parameters: the Courant 
number Cn = adh and the nondimensional wavenumber kh = 23ch1h. 

The amplification factor has magnitude unity and its phase is directly proportional to both 
Cn and kh. 

Next consider a plane wave defined on a uniform grid (x,t) = (jh,nz) such that 
u; - ~ ~ ( @ m + ~ ~ h ) .  This generic plane wave is used as an intermediary to find the best local 
approximation on a two time-level, three-spatial point stencil. The molecule is: 

Substitute the discrete plane wave into Eq. (2) and use Eq. (1) to obtain the formula: 

~ n + l  
I 4i + 4e-% + cicn u 
un a,, +ale-& + a,efi (3) 

If the constants are real, and if b, = a , b, = a,, and b, = a,, the ratios are complex 
conjugates and Eq. (2) is dissipation tree. The two remaining constants are computed by 
matching the first and third terms in Taylor series expansions about kh = 0. The constants 
depend only on the Courant number and the final fourth order algorithm is: 

(Cn- l)(Cn -2)~;:: -2(Cn-2)(Cn+2)u;+l +(Cn+l)(Cn+ 2)uZ = 

(Cn+ l)(Cn+2)u;, -2(Cn-2)(Cn+2)u'f +(Cn- l)(Cn-2)u,?,, 
(4) 

- 

This algorithm has been derived previously by others using conventional finite difference 
approaches. It can be considered "compact" since-fourth order is achieved not with five 
spatial grid points at each time level, but by using the space-time connection afforded by 
the dispersion relation to maximize accuracy. If five points at each time level are 
allowed, an eighth order algorithm may be derived (Ref. 1). 

Some features of this derivation are: (1) It does not rely on separate finite difference 
approximations in space and time; (2) It yields maximum accuracy for a given mesh 
stencil; (3) The procedure can be extended to systems with non constant coefficients 
(which can arise from linear but variable coefficient problems, non linear effects, 
stretched meshes, or combinations thereof); and (4) Explicit recogni tion of the 
wavenumber kh=2lch Ih as a fundamental parameter in the analysis. 

ai7 d aU The two dimensional first order system - + A-+ B- - 0 is analyzed in a similar 
dt dx & 

manner but with a significant difference: As above, a loc i  harmonic solution of the form 
efh+* +i& is inserted into the equation to define the matr-i x dispersion relation 
id + ikA + ilB - 0. Following the same sequence as above, solutions at subsequent time 



steps are related by U(t + z) = eil"U(t) or, in terms of the spatial scales 
U(t + z) = e-mkh-iBplhU(t). In this formula, p is the ratio dh, kh is 2nhlh in the x direction 
and Ih is 2n h/h in the y direction. The basic formula now involves matrix exponentials. 
Next consider a plane wave defined on a discrete grid (x,y,t) = (jh,mh,m) such that 
u;,~ = ei@ m+k jh+l*), The discrete form of the incremental solution is now 
U;,+,' = e-*kh-iBplW;,. One could attempt to split the operator in an obvious manner, but 
this would not be appropriate since matrix exponential do not commute; e.g. 
e A + B  * e A e B  # e B e  A.  

Instead, a process attributed to G. Strang in Ref. 3 is used that is formally correct to 
second order in the matrix exponentials: 

This alternating splitting was found to be very accurate; the order of computed solutions 
seem to be closer to fourth than second order. Each stage in the splitting is equivalent to 
a one dimensional matrix equation in the indicated coordinate direction; that is the 

a- d l T  formula U* - e-*U U* implies that U* is the solution of + A - 0. These one 
dimensional matrix equations can be solved using the eigenfunctionbrocedure outlined at 
the beginning of this section. 

BOUNDARY CONDITIONS FOR ONE DIMENSIONAL INITIAL-BOUNDARY- 
VALUE PROBLEMS 

Classical explicit methods such as Lax-Wendroff and its variants are suitable tools for the 
numerical integration of initial-value hyperbolic systems. Difficulties arise when 
bounda~y conditions are imposed. This point is discussed in Refs. 4 and 5. There are 
three cases to be considered depending on the eigenvalue spectrum of A. If A is positive 
definite and initial values are given on the half line t=O, DO, boundary values along the 
line x=O, then the problem is well posed in the first quadrant. If A is negative definite 
and initial values are given on the half line t=O, x 4 ,  boundary values along the line x=O, 
then the problem is well posed in the second quadrant. If a two-point boundary value 
problem is given, and A possesses both positive and negative eigenvalues, forward and 
backward waves are generated. The problem is now well posed if components of on 
each boundary match the number of positive and negative eigenvalues. This is rarely true 
in practical problems. 

The new method used here for radiation boundary conditions is to impose boundary 
conditions on the left for normal solutions with positive eigenvalues and boundary 
conditions on the right for those with negative eigenvalues. In practice, these imposed 
boundary conditions are not given explicitly, but must be deduced from the solution at 
the previous time step. Each one dimensional matrix equation is solved as described and 
then reassembled as outlined in the previous section. 

CATEGORY ONE, PROBLEM ONE 



au au 
The initial pulse is given as u(x) =.5e'-*"~"* and the exact solution of - + - = 0 is 

131 dx 
u(x,t) = u(x-t). A numerical solution is required on the domain -20(1)4%.   his simple 
problem can be analyzed precisely from an analysis of dispersion errors. The dispersion 
plot for two Courant numbers are shown in Fig. 1. Over the allowable range of 
wavenumbers from 0 to n the exact slope is -Cn from Eq. (1) and is depicted by the 
straight lines. The discrete part of Eq. (3) is shown as a solid line and a second order 
form of Eq. (2) -- a standard Crank-Nicolson scheme centered at the half-time step -- is 
shown dashed. The dispersion plot shows that if Cn=l the algorithm is _an exact solution 
while at Cn=.5 only wave numbers to about 1.3 are correctly resolved. The initial pulse 
has significant energy content to about kh=1.8 from the chosen mesh. Predicted pulses at 
t=lOO,2OO3OO, and 400 are shown in Fig. 2 for Cn=.5. The incorrect phase resolution of 
short waves in the range kh=1.3-1.8 leaves a small but growing "tail." Note that the 
amplitude of the signal is reduced due to redistribution of wave energy into the tail as this 
algorithm has no dissipation. Figure 3 presents the same information but at Cn=l. The 
wave is predicted exactly and will remain exact for all times. This behavior could have 
been predicted from Fig. 1 alone. 

CATEGORY ONE, PROBLEM TWO 

a u u a u  The simple spherical wave - + - + - = 0 is to be solved on the domain 5(1)450. The & r &  
exact solution is u(r,t) = Ssin(ot - or + 5 0 )  1 r. The presence of the term not invofving 
first derivatives in the equation requires some analysis. Consider a plane wave 
solution efld+h) from which follows the dispersion relation io + ik + 11 r - 0. Using this 
relation to eliminate the radian frequency from the amplification factor, the analog to Eq. 
(1) is: 

This splitting property of the scalar exponential suggests a two step approach. (1) The 
formula u* = u n e d r  implies that u* is the solution of the ordinary time-domain 

&A u differential equation + - 0. This equation can be solved at any r using standard 

methods. (2) The formula unt1 - u'e-icnh is simply a representation of the scalar wave 
equation. The outcome after two steps (which commute with one another from properties 
of the exponential) is the updated solution. Note that the first step does not involve the 
wavenumber k since no spatial derivatives are involved. 

Solutions are required for the two radian frequencies w=aB and w n / 4  corresponding to 
6 and 8 points per wavelength respectively. Only the more severe test case ~ n l 4  will be 
presented here. Computations for Cn (equivalent to time step z) of 0.125 and 1.0 will be 
shown. Figure 4 presents the general character of the solution. The value of Cn is 0.125 
and the time is 400. The wave envelope decays at l /r  and the wave front, although 
decayed, has progressed to r-405. The problem for Cn=l looks similar at this scale. A 
microscopic view near the wave front for these two Courant numbers is shown in Figs. 5 
and 6. Thirty two hundred time steps were required for the wave to reach x=405 at 
Cn=. 125 as depicted in Fig. 5. Dispersion errors have severely compromised the wave 
front. Figure 6 indicates the case where Cn was increased to the "perfect resolution" 
value of 1.0. The wave is predicted exactly. Even though a microscopic analysis of the 
simulation shows significant differences, the global patterns as exemplified by Fig. 4 for 



Cn=. 125 may be adequate for certain applications. At any rate, it is always desirable to 
use the largest time step possible. 

CATEGORY THREE, PROBLEM ONE 

The problem to be solved is 

U a O O  O O a O  

where x, y, and t are physical quantities and the Mach number M = U/a = 0.5. 
The perturbation density, velocities, and pressure are normalized by p,, a, and pma2 
respectively. Initial conditions are given as a combination of an acoustic pulse at the 
origin and a combined entropylvortex centered at (x,y)=(67,0). Numerical solutions are 
required on a 201 x 201 mesh centered at the origin with step size one. Initial conditions 
were chosen so that the acoustic and entropylvortex wave fronts first meet at the outflow 
boundary x = 100. This problem was designed to test the propagation algorithm and 
imposition of radiation boundary conditions. 

The solution process follows the following ste s: (1) Reduce the equation to component 
one dimensional matrix equations as describe I above. The matrices A and B have 
eigenvalues w+a,U-a,U,U] and [a,-a,O,O] respectively. An eigenvector decomposition 
reduces each direction to four individual scalar wave equations with wave speeds 
indicated by the eigenvalues. (2) Solve each of the primitive scalar wave equations using 
the fourth order a1 orithm given in Eq. (4). Choose the time step so that the Courant fi number based on t e step size and sound speed is unity. This will give exact simulation 
for the component acoustic sweeps. There is a second Courant number based on the 
convection speed and it is 0.5. (3) Boundary conditions are applied to scalar waves that 
exit the computational domain using a four point two time-level implicit scheme at and 
just inside the boundary. (4) Boundary conditions for waves that enter the computational 
domain must be imposed. They are extrapolated from known solutions at the previous 
time level one grid point beyond the boundary. (5) Reassemble the physical components 
at each time step. In summary, four one-dimensional vector PDEs are solved at each 
time step. Each matrix problem, in turn, reduces to four primitive scalar problems. A 

a a4 total of sixteen elementary primitives of the form - + A - = 0 are solved at each time 
a & 

step. Much of this work is mutually independent and may be natural for parallel 
processing applications. 

Initial computations are presented to show the effect of not commuting matrix operations 
as in Eq. (5). Figures 7 and 8 show contour plots of density from numerical solutions of 
Eq. (7) at time t=30. Figure 7 compares density contours at t=30 with initial condition 
shown dotted. The acoustic waves are the larger circles that convect in the x direction 
and propagate with the speed of sound in all directions. The wave behaves as a ripple 
with a long tail (not shown here) that is similar to throwing a pebble in a moving stream. 
The entropy wave is physically translated 15 steps to the right based on its speed M = 0.5. 
Figure 8 shows the same information except that an x sweep is followed by a y sweep, 
e.g. only half the algorithm in Eq. (5). The acoustic waves seem to be unaffected, but the 
entropy wave is no longer isotropic. Numerical experiments show that a computation 



with the sweeps reversed would reverse the sense of the distorted entropy wave. 
Alternating directions at each time step is also a viable strategy. These simulations were 
compared with other strictly second order methods. The second order method left an 
oscillatory trail that is a severely limiting numerical artifact. 

Figures 9 and 10 present line graphs of the solution vector at time 60. Figure 9 shows the 
waves on the axis of symmetry, y=O. The backward acoustic wave is characterized by p = 
p = -u. The forward wave is interfering with the entropylvortex and results in the 
complex pattern near the right outflow boundary. The tail of the clockwise vortex is 
visible in the v profile and is almost halfway out of the computational domain. The 
pressure is unaffected by the entropylvortex wave and only the acoustic portion of the 
pressure is evident near the boundary. Constructive interference of the density is 
apparent near the right boundary. 

Figure 10 shows the solution vector along the vertical outflow boundary x= 100. The 
density field should be exactly symmetric about the horizontal centerline y=O. The fact 
that there is some asymmetry indicates that the boundary conditions are not exactly 
correct. However, this misalignment does not seem to have a long range effect as shown 
in Fig. 11 where the acoustic wave (all that remains) is shown on the vertical boundary at 
time 100. 

CONCLUSIONS 

A class of dissipationless algorithms were used to compute one and two dimensional 
wave problems with high fidelity. Simple one dimensional waves were examined and 
distortion traced to phase error artifacts of the finite difference scheme. Spherical wave 
were found to be well predicted using a simple splitting scheme. Finally, relatively 
complex two dimensional acousticlpropagation problems were found to be well suited to 
a splitting scheme using a sequence of elementary one dimensional wave solutions. 

The decomposition into wave primitives has the following advantages: (1) it allows large 
time steps corresponding to Courant numbers of about one, and (2) it allows the 
imposition of natural boundary conditions without any a priori assumptions regarding 
solution behavior. 

The class of linear systems of hyperbolic equations in two independent variables with 
constant coefficients can be analyzed completely. These equations always admit 
exponential solutions that can be Fourier analyzed and discretized as shown here. Other 
problems using equation sets with non-constant coefficients (or variable meshes) and 
nonlinear problems are under study. 
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FIGURE CAEJTIONS 

Figure 1. Dispersion plot for second and fourth order dissipationless finite difference 
schemes. The curves for exact resolution are straight lines with slope -Cn. Curves for Cn 
of 0.5 and 1.0 are shown. Solid: Fourth order algorithm, Dash: Second order algorithm. 

Figure 2. Pulse profiles at time 100,200,300, and 400. Step size (Courant number) = .5. 

Figure 3. Pulse profiles at time 100,200,300, and 400. Step size (Courant number) = 
1 .o. 

Figure 4. Spherical wave spatial pattern at time 400. The Courant number is 0.125. 

Figure 5. Spherical wave spatial pattern at time 400 near the leading edge. The Courant 
number is 1.0. Symbols: Computed solutions at discrete mesh points. Dash: Exact 
solution. 

Figure 6. Spherical wave spatial pattern at time 400 near the leading edge. The Courant 
number is 0.125. Symbols: Computed solutions at discrete mesh points. Dash: Exact 
solution. 

Figure 7. Density contours at initial instant and at time 30. Contours of density 0.01, 
0.02, and 0.03 shown. 

Figure 8. Density contours at time 30. Same as figure 7 except on x-sweep followed by 
y-sweep with no contributions from communed operator. 

Figure 9. Solution vector along the horizontal axis of symmetry Y=O at time 60. 

Figure 10. Solution vector along the outflow boundary at X=100 at time 60. 

Figure 11. Acoustic wave along the outflow boundary at X=100 at time 100. 
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OF TVD3, UNO3-ACM AND OPTIMIZED COMPACT SCHEME 

Duck-Joo, Lee*, Chang-Jeon, Hwang**, Duck-Kon, KO** and Jae-Wook, Kim** 
Department of Aerospace Engineering 

Korea Advanced Institute of Science and Technology 
Taejon, Korea - 

SUMMARY 

Three different schemes are employed to solve the benchmark problem. The first one is a conventional 
TVD-MUSCL( Monotone Upwind Schemes for Conservation Laws ) sheme. The second scheme is a UN03-  
ACM( Uniformly Non-Oscillatory-Artifitial Compression Method ) scheme. The third scheme is an optimized 
compact finite difference scheme modified by us: the 4th order Runge Kutta time stepping, the 4th order 
pentadiagonal compact spatial discretization with the maximum resolution characteristics. The probletns of 
category 1 are solved by using the second(UN03-ACM) and third(0ptimized Compact) schemes. The 
problems of category 2 are solved by using the first(TVD3) and second(UN03-ACM) schemes. The problem 
of category 5 is solved by using the first(TVD3) scheme. It can be concluded from the present calculations thiit 
the Optimized Compact scheme and the UN03-ACM show good resolutions for category 1 and category 2 
respectively. 

INTRODUCTION 

Schemes of high accuracy and resolution have been developed with two different viewpoitlts. 01ie is to 
have Iiigh resolutions of discontinuities such as shock and contact discontinuity. The otlier is to have ;i ovcrall 
liigli resolution with spectral accuracy. The former has been concerned by aerodynamists, on the othertiand, 
the latter has been developed by turbulence researchers using DNS( Direct Numerical Simulation ). 111 the 
meantime, reseachers of CAA( Computational AeroAcoustics ) have been devised the better scheme which 
have minimal dissipation and dispersion errors in order to simulate not only acoustic propagation but also 
source generations in aeroacoustic field. 

Three different schemes are employed here. The first one is the conventional Roe-MUSCL-TVD3 scheme, 
which is widely used in the CFD field. The second scheme is a UN03-ACM scheme. The resolution of 
UN03 scheme is enhanced by ACM at contact discontinuity. The last one is an Optimized Compact scheme 
modified by us for maximum resolution characteristics and minimum dispersion errors. The problems of 
category 1 are solved by using the second(UN03-ACM) and third(0ptimized Compact) schemes. The 
problems of category 2 are solved by using the first(TVD3) and second(UN03-ACM) schemes. The problem 
of category 5 is solved by using the first(TVD3) scheme. 

* Associate Professor 
** Graduate Student 



NUMERICAL ALGORITHM 

In order to know the performance of the convetional TVD scheme for CFD, we employ the 3rd order 
TVD-MUSCL-Roe scheme. Detailed descriptions are as follows(ref.1): 

where 

- - 

dU dF dA - + -= a-Q 
dt d x  Adx 

U = (p, pu, e)l 

F = (pu, pu' + p, ( e  + p ) ~ ) '  
Q = -(pu, put, (e + p ) ~ ) ~  

Here, a is set to 0 for the category 2 problem and 1 for the category 5 problem. 
We employ the 2nd order Runge-Kutta method for time stepping as below(ref. 1): 

I st steg 
U; = U; - (At1 2)[ ( ~ 1 1 1  - g;,,, ) I  Ax + a(& I Adx)Qnl 

. . 

The numerical flux, fi based on Roe's approximate Riemann solver with entropy fix is employed(ref.2). 
,,,,, = (1 /2)(U:,,, + u:,, + Rj+ll, @,+I,,) (4) 

where the Ith element @: ,,,, of @ ,,,,, are written as: 
@j'+112 = - ~ ( a ~ + I n ) a ~ ~ l n  

where 
a, ,,,, = R,'+,,,(U" - UL),+lll 

and 

. . 

where 6 , is some small number, and Vis the so-called entropy fix function. The right eigen matrix, R,,,,, and 
eigen values, a!,,,,, are evaluated using Roe's average, 

a:,,,, = al(U" uL)Jrlll 

R ,.,, = R(U",UL) ,,,, , 
Higher order schemes can be constructed from MUSCLas follows(ref.2): 

Ut,, = ( 1 + ( (1 - r)d'Jlll + ( 1  + K ) A ~ , , , ,  114 1 

where 
AS ,,,, = rninmodl AU, ,,, , bAU ,,, 1 ~ 0 , , ,  = m i ~ n o d l  AU,,,, qhAUJ I , A U ~ , ~ ~ ,  = u1.1- U~ ( 1  1) 

Flere, K is 113 to obtain the 3rd order spatial accuracy and h is 2. The minmod slope limiter function is used to 
prevent the nunlerical solution from oscillations as below(ref.2): 

minmod(x, y) = sgn(x) max[O.min(l x1.y sgn(x))l 



- 
m(x,y) = [x when lxl<ly(, otherwise y] (1  2 )  

So, the resulting scheme has the 2nd order temporal accuracy and the 3rd order spatial accuracy. 

The UN03-ACM scheme uses 1 step time integration. Its formulation is as below (ref.6). In Eq.(4), the 
tenn controls the upwind properties(ref.2). 

a j . I n  = [ # ; + I ! z  # ;4 in  @;+In #; ' lnr  (13) 
where = gi + &?id - ~ ( a ; . ~ ~ ~  + fi+112) (14) 

Y : , , , ~  = 0 elseif a:,,,, = 0 

The term Y:.,,, compliments the characteristic speed, a:,,,, , to be the proper accuracy. 
The expression of the term g:, which makes the scheme to the 3rd order accuracy, is described in a new 

compact form in this paper as below - - 

orherwise 

and the characteristic speed is expressed in a new compact form as below 

where 

j 

0 = ",.In - = 
Ax' 2 

The derivatives pi, 8; and 8: in the equation (16) is obtained by using the function (1 2) respectively(ref.4. 
ref.5). 

8 ' = ~ ( ~ . a i  -,,. ~ . a i - , , )  $ = ~ t ~ . a :  ,,.,. ~ , a :  ,,., (20) 

?'he above new expressions (13)-(20) correctly describe symmetric behaviors for the left and right going 
waves. 

ACM(Artificia1 Compression Method) 

Most interpolation functions including the EN0 interpolation have smooth properties in computation 
domain. Therefore, those interpolation functions have limitations in capturing the physical discontinuities such 
as contact surfaces and shocks. Even though a shock has the tendency to sustain the steep solution of itself, a 
contact surface cannot keep its discontinuities to be much smeared. Therefore, a special technique is required 
to resolve the discontinuities. To increase the resolutions of the scheme, we adopted a ACM(Artificia1 
Cornpression Method) technique. 



d a  d d5 
else 1 = 1  - (R (x ,v ) )= - (R (x ,v ) )+~  

d d dr 

where 1 : Order of the derivatives 
x  : Arbitrary position in cell 
v : A variable 

Ilere, R(X, V) and ~ ( x ,  V) are reconstruction functions. 
The function modifying the slope, ds:, is as below 

ds; = 2 m ( a ;  m ~ ~ , l , , ~ l , ~ ) , m ( ~ l . l n , ~ ,  ,,)) 
W t  N I W -  

(27) 
where 6 ,,,,, =v  ,,,,, ( 0 = 0 ) - v ~ ~ , ( a = O ) ~ , , ~ , ,  =v,,, -vl,,,(O=O) i,,,ir = v ,  ,,l(~=O)-vI.I 

The minmod function , m ( ~ , ~ )  , was expressed as equation (12). The coefficient a; controls the quality of 
the solution. We adopted a; = 1.5. 

Optimized Compact Finite Difference Scheme 

For the purpose of obtaining high order accuracy and high resolution characteristics, we use the 
compact finite discretization as follow(ref.7): 

PA!, + ax', +A'+ ax:, +PJ:, 

'I'he Fourier Transform of the left and right side of Eq.(28) is as follow(ref.7): 
iw(Pe-"* + ae-'* + 1 + mi* + pex* ) j  = 

Tlie Fourier analysis provides an effective way to quantify the resolution characteristics of Eq.(28). 
From the equation(29). modified-wavenumber is derived as : 

where Tiidx is a defined modified-wavenumber. To assure that the Fourier transform of Eq.(28) is a 
good approxirnation of that of the partial derivative, the modified-wavenumber should coincide with the 
true-wavenumber(=oAx) in wide range(i.e. 0 5 wdx I n). 

Let's define the weighted deviation(integrated error) as(ref.8): 
E = [ ' (WAX - BAX)' W(OAX) d(odr) (31) 

where W(wAx) is a weighting function and 2.' is a factor to determine the optimizing range(0 c r 51 ). 
The weighting function and the range factor give important effects to the optimization of Eq.(28). 

The integrated error defined in Eq.(31) is a function of each coefficientsa,b,c,a and P.  It is 
necessary to find the optimal values of the coefficients that would minimize the integrated error. The 
conditions that E is a minimum are : 



These equations(32)-(36) and the constraints to match the Taylor series coefficients of vdous orders 
provide a system of linear algebraic equations by which the coefficients can be determined. 

The weighting function and the optimizing range factors for each scheme are as follows : 
W ( K )  = [(I + 2ams(r)+ 2/3ms(2 r)) sr ]l 

(where K = a&) 
1. Tridiagonal 

2nd order : r = 0.820 4thorder : r=0.790 
6thorder : r=0.715 

2. Pentadiagonal 
2nd order : r = 0.90 4th order : r = 0.890 
6th order : r = 0.865 8thorder : r=0.815 

The coefficients a,b,c,a and@ are finally determined with the above constraints, i.e. they are 
optimized to obtain the maximum resolution characteristics for each scheme and given truncation order of 
accuracy. The optimized coefficients are presented in Table1 and Table2 for the tridiagonal and the 
pen tadiagonal schemes, respectively. 

Table 1. Optimized Coefficients for the Maximum Resolution : Tridiagonal Schemes 

Tridiagonal a b c a P 
- - - - - - -- - - - - - 

2nd order 1.545790417 0.434249728 -0.078236437 0.45090 1855 0 
4th order 1.551941906 0.361328 195 -0.042907397 0.435181352 0 
6th order 1.568098212 0.271657 107 -0.022576781 0.408589269 0 

Table 2. Optimized Coefficients for the Maximum Resolution : Pentadiagonal Schemes 

Pen tadiagonal a b c a D 

2nd order 1.265667929 1.079904285 0.053798648 0.59663 1925 0.103053504 
4th order 1.280440844 1.049309076 0.044465832 0.589595521 0.09751 2355 
6th order 1.323482375 0.944394243 0.027596356 0.566458285 0.08 1278202 
8th order 1.373 189728 0.8 14447053 0.0 16707870 0.537265947 0.064906379 

RESULTS AND DISCUSSION 

Category 1 

In Fig. 1 (a)-(d), we present the solved results of the problems in Catagoryl and compare the numerical 
dispersion and dissipation properties of three numerical schemes(0ptimized Compact, UN03 with and 
without ACM). Time step, AT is 0.5 and Ax is 1. It is shown that the UN03-ACM can obtain solutions 
that have less dispersive and dissipative errors than UN03, i.e. the ACM contributes to the resolution 
characteristics of UN03. Thus the ACM is combined with the UN03 successfdly. The Optimized 



Compact scheme shows the best solutions that have little dispersive and dissipative errors, thus retains 
the amplitudes and geometric symmetries of the waves for a long time. It was so optimized to achieve the 
maximum resolution characteristics for a given truncation order that it can resolve the waves very 
accurately. It has the central difference form in space and there are no dissipative errors resulted from the 
spatial discretization, so it shows very small dissipative errors as well as small dispersive errors. 

Category 2 

Three different scheme of TVD3 and UN03 without and with ACM are employed to solve the 
category 2. Time step, AT is 0.2 and Ax is 1. In Fig.2(a), it is shown that the same accuracy in most 
regions is obtained except the maxima region of the shock at t=200. It is because the UN03 and UN03- 
ACM have the uniformly third order accuracy in every region while the accuracy of TVD3 come down to 
1st order at the maxima or minima point (ref.2). We used the ACM only to isentropic characteristics 
value. Therefore, there is no differece in figures of the shock between UN03 and UNO3-ACM. In 
Fig.Z(b), the differences near the contact discontinuity are shown. In the box of Fig.2(b), we can tell the 
obvious differeces among the three methods. The UN03-ACM method gives better results than the 
others. The results of UN03 are slightly better than those of TVD3 because of the uniformly third order 
accuracy. 

Category 5 

The results of category 5 solved by the TVD3 are shown in Fig.3(a)-(c). Figure 3(a) shows the 
convegence history to obtain the steady solution for a initial condition. We obtain the machine accuracy 
of double precision i.e. 10-l6 after 15,000 iterations. The converged steady state solutions are shown in 
Fig.3(c) The numerical solutions are described well the sonic behaviors at the throat. Figure 3(b) is 
shown the periodic solution due to the inlet excitation with amplitude. For this problem, time step, 
AT is 0.05 and Ax is 1. The amplitude of the outlet trasrnitted signal decrease due to the reflection of the 
incident wave at the throat. The conventional TVD scheme for the CFD field is useful for simple 
problems of CAA field with a appropriate grid points(PPW-points per wavelength ). 

CONCLUSION 

It can be concluded that the optimized compact scheme shows good resolutions for the category 1 
problems and the UN03-ACM for the category 2 problems. However, the UN03-ACM may have the 
best results among the three schemes if the mixed problems of category 1 and category 2 are concerned. 
But in these calculation, we employed the ACM to isentropic characterics only. The ACM can be applied 
to all caracteristics, it enhances the resolutions in one dimensional calculation. But multi-dimensional 
problems makes some oscillations. So we typically use the ACM on the isentropic characteristic only. 
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Figure 1. Catagory 1 
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SUMMARY 

This paper demonstrates that the linearized, dimensional Euler equations for acoustic computation can 
be accurately solved as a set of decoupled first-order wave equations, and that if ordered properly, this 
system of simple waves has unambiguous, easily implemented boundary conditions, allowing waves of 
same group speeds to pass through numerical boundaries or comply with wall conditions. Thus, the task 
of designing a complex multi-dimensional scheme with approximate far-field boundary conditions reduces 
to the design of higher order schemes for the one-dimensional simple wave equation. 

A compact finite-difference scheme and a characteristically exact but numerically nth order accurate 
boundary condition are introduced for solving the first order wave equation. Spanning a three-point two- 
level stencil, this low-dispersion implicit scheme has a third order spatial accuracy when used on 
nonuniform meshes, fourth order accurate on uniform meshes, and a temporal accuracy of second order 
due to the choice of trapezoidal integration for algorithmic simplicity. The robustness and accuracy of the 
scheme are demonstrated through a series of numerical experiments and comparisons with published 
results. When tested on the one-dimensional wave equation on a uniform grid, this scheme allows a 
Gaussian wave packet to pass through any finite domain with low numerical dispersion characteristic of a 
spatially fourth-order scheme and reflections at numerical boundaries maintained below truncation error. 
On highly stretched and irregular grids, only mild dispersions are found in the solution while solutions by 
other methods fail or were severely distorted. Yet, this scheme is no more sophisticated to solve or 
implement than the Crank-Nicolson scheme. 

This scheme has been tested on four categories of the ICASE/LaRC benchmark problems, which 
include propagation of acoustic and convective waves in Cartesian and cylindrical domains, reflection of 
acoustic wave at stationary/moving boundaries, and sound generation by gust-blade interaction. 

INTRODUCTION 

For various reasons, direct time-domain solution by finite difference methods, especially of the implicit 
type, has not been a widely accepted numerical approach to wave propagation problems1. Chief among 
the reasons cited for its unpopularity is the inability of a majority of popular, robust, and successful 
numerical schemes to track waves with low dispersion and dissipation for large distances2. Successful, 
popular approaches to wave propagation problems, e.g. underwater acoustics, by finite differences do 

* partial support for this author under NASA Grant NCA2-707 i s  gratefully acknowledged. 



exist, but are predominantly indirect, spatial approximations of the so-called parabolic wave equation3 
(Helmholtz) in the frequency domain, Many space-time higher order explicit schemes have been 
proposed, e.g., Tam and Webb4. Being explicit and higher order these schemes inevitably involve multi- 
level, broad band data structure and algorithmic non-uniformity at domain boundaries. Higher order 
schemes with simple data structure, two time levels and tridiagonal matrices, are possible, e.g., Refs. 5 & 
6, but it is not clear how these schemes can be implemented for solution of practical problems involving 
more than one spatial dimension without compromising solution accuracy. 

i 
Here, a class of high order schemes for solving the convection (simple wave) equation on nonuniform 

meshes is derived. A commonality of these schemes is the absence of purely spatial truncation error terms 
lower than second order. Due to the absence of a truncation error term proportional to the third spatial 
derivative of the dependent variable, this class of schemes has low dispersion comparable to the most 
accurate scheme possible for a three-point two-level stencil on uniform mesh. Among the schemes derived 
here, the most accurate scheme has fourth order temporal-spatial accuracy but is not suitable for 
systematically stretched grid or extension to systems of conservation laws. A compact spatial fourth order 
scheme is possible, but may not be in conservation law form unless the grid is stretched appropriately and 
may allow the growth of high wave number components on grids with large stretching ratio. Lastly, a 
compact, spatial third order, low-dispersion scheme with damping for all high wave number components 
and in conservation form, regardless of the stretching ratio, is introduced. The robustness of these 
schemes is tested and compared on grids with stretching ranges from random to systematic. 

These schemes, like all other schemes for simple wave propagation that involve a centered stencil, by 
themselves without an alternate scheme for the end points are incomplete and insufficient to ensure 
accuracy. Here, a class of higher order one-sided schemes based on the method of characteristic is derived 
for the end point where waves are ropagating out, and shown to be progressively more effective in P minimizing reflections due to the arti icial boundary regardless of its location, or the size of the domain. 

The third order compact scheme together with an n-th order interpolated end value based on the method 
of characteristics constitute the building block for construction of solution of wave propagation here. 

I 
For problems of more than one spatial dimensions, the key issue is whether they can be converted into 

a system of simple waves for each of which the direction of propagation is known a priori and the 
corresponding boundary condition is known or enforceable. It will be shown through the benchmarking 
cases indeed the propagation of aeroacoustic waves, consisting of a combination of acoustic, entropy and 
vorticity waves, is reduceable to a system of simple waves. This equivalence implies that algorithms 
developed for one spatial dimension is immediately applicable for multi-dimensions, that the computation 
for each simple wave can be advanced in parallel with that of the others, and that the size of the 
computational domain can be as small as the region of interest. 

z 
LOW DISPERSION COMPACT SCHEMES 

In his 1986 review paperl, Candel remarked that implicit finite difference schemes had not been 
reported in acoustic wave applications, and illustrated the potential savings due to their unconditional 
stability over the CFL-restricted explicit schemes by an application of the Crank-Nickolson scheme to the 
propagation of acoustic wavelets in a close-end duct. However, it is arguable, e.g. Ref. 2, that since the 
time step restriction for solution accuracy is comparable to that for algorithmic stability, the advantage of 
implicit methods is seen only when the spatial resolution of the spectral contents of the solution is amply 
sufficient. Clearly, the choice can not be made on the basis of stability or accuracy alone. Algorithmic 
simplicity, including implementation of boundary conditions, especially in multi-dimensional applications 
is equally, if not more, important. A prime reason for using explicit methods, despite their inefficiency 
which nowadays can be compensated by massively parallel computer architecture, is the simplicity in the 
data structure, if only all boundary conditions are also explicit. Unfortunately, this is not the case in 



unsteady problems. Pressure, being of prime interest in most cases, is not known a priori and can not 
simply be given at the boundary as a function of time. However, aside from having to cope with the 
difficulty of implementing certain types of boundary condition, implicit methods, as illustrated by Davis6 
using his optimum space-time fourth-order difference scheme, can afford a data structure as simple as 
three-point two-level and a savings of as much as 60% fewer mesh points per wave length per dimension 
than a three-point explicit method. Whereas a comparable explicit method, the DPR scheme of Tam and 
Webb4 for instance, involves a five-point four-level data structure and seven-point one-sided schemes for 
boundary points. If the ultimate application of these schemes involves other distinct flow features and/or 
complex boundaries that necessitate the used of nonuniform grids, accuracy, algorithm robustness, data 
structure simplicity, and solution efficiency must all be considered together for a fair assessment of their 
effectiveness. 

For uniform mesh, weighted differencing has been used on a three-point two-level computational 
molecule to produce all known finite difference methods5, including a temporal second order spatial fourth 
order accurate compact scheme and the temporal and spatial fourth order scheme derived and proposed 
separately by ~avis6 .  Here, similar techniques are used to derive schemes suitable for propagation of 
phase-sensitive waves over nonuniform meshes. 

The most general stencil for the convection equation 

Here, u; denotes the solution u(x,t) at the spatial node xj and n-times the temporal advancement At. The 
coefficients, aj and bj chosen by design, characterize the accuracy, stability and usefulness of a scheme. 

Let a locally plane wave of the form e"'" propagate through the nonuniform mesh. The amplitudes 
at the two time levels are related by Eq. (2): 

e icD(n+l)At e - i ~ x  (a, + ale-& + a2ekh) = ewe'"(bo + ble** + b2ekh) 

Whence the amplification factor is obtained: 

If, instead, in Eq. (2) Taylor-series expansion is used to express the values at different points of the 
stencil, the truncation error can be obtained. For example, the Crank-Nicolson type (CNT) scheme with 



&I Uj+1 - Uj-1 centered differencing for the spatial derivative, -= , has the truncation error: 
ax x ~ + ~ - x ~ - ~  

c (r-1) Ax c3At2 c ( r2-r+l)  Ax2 T.E. = - U, -- Uxax - U- + o((Ax, ~ t ) ) ) ,  which is formally only k t  
2 12 6 

order accurate when used on a nonuniform grid, i.e. r # 1. In that case, the scheme has coefficients: 

c At 
where the Courant number v = -. 

Ax 

The compact difference approximant for spatial derivative, 6,uj, can be written as: 

where the shift operators are so defmed: E u j  = uj+, , E" u, = uj., , and the coefficients to be determined 
an: a,, a, a,, b,, b, b,. For simplicity, these coefficients are chosen to be functions of the grid 
stretching ratio r only. Since five of the above coefficients are independent, the spatial gradient can at best 
be approximated to fourth order accuracy. With trapezoidal integration, the finite difference equivalent of 
Eq. (I), At 6,u + Ax v 6,u = 0, when put into the form of Eq. (2), will have the coefficients, 

where a=l is set for convenience. The maximum spatial accuracy of fourth order is obtained when the 
coefficients are: 

This Com~act Fourth order scheme for Nonuniform mesh (C4N), as it will be referred here, has 
c3 llt2 truncation error, T.E. = - - urn + " (r - u, +  AX, At)'). This scheme reduces to 

. - 12 24(r2 + r + 1) 
Noye's fourth orda linear finite element scheme (LFE)~ on a uniform mesh and maintains its accuracy on 
a nonuniform grid as well. This is because the spatial approximant reduces back to the (2,2) Pad6 
Approximant for three-point two-level differencing for uniform mesh (r-1), with amplification and phase 
error identical to what has been shown by Beam and warming' for the fourth order version of their 
scheme when used with trapezoidal time integration. 



As mentioned, C4N has only a second order temporal accuracy but there is no pure spatial error term 
lower than fourth order. However, the second term on the right hand side above is a third order cross term 
involving both Ax and At. It can be seen by a comparison of the complex amplification factors that due to 
the absence of spatial second order truncation error term that is proportional to the thhd derivative of u the 
improvement in phase over CNT is comparable to that of LFE, whereas the absence of the third order pure 
spatial error term (r=l) only brings a very slight reduction of the error in the amplification magnitude. As 
the switch to compact differencing introduces two more coefficients, five instead of the original three, and 
only one is needed to eliminate that second order term, a free coefficient can be used for the design of a 
scheme with some other desirable characteristic instead of the marginal improvement of the amplification 
magnitude. This defines a family of schemes which will be spatially third order accurate in general. 

For instance, by stipulating b = 0, the resulting approximant has coefficients, 

A rather simple result which will again reduce back to the Pad6 Approximant for uniform mesh. The 
scheme, which is called the compact third order scheme for nonuniform mesh (C3N) here, has truncation 

c3 ~t~ error: T.E. = -- c3 (r - 1)AxAt2 + c (r - l)(r + 1)2Ax3 
12 uxxx - 24 ux,x 72 urn + O((AX. ~ t ) ' )  T h e 

amplification factor for the C3N scheme differs from that of the C4N scheme mainly by a spatial third 
order damping term proportional to the fourth derivative of u. This desirable feature especially for 
damping high frequency waves on an expanding grid (r > 1) in the direction of propagation is in fact a 
result of setting b=O. For r close to unity, both Compact schemes have phase accuracy essentially that of 
the LFE scheme because the spatially related third order truncation error terms al l  have a factor of (r - 1). 

First, the schemes are tested on a domain with periodic boundary condition to avoid having to address 
effects of alternate schemes for end points and boundary conditions. Following ~ o ~ e s ,  a Gaussian pulse, 
i.e. u(x,0)=e-100(~-0-s)~, is placed in the domain, (KxKxSl, as initial condition. The domain is discretized 
into 50 points, a slightly higher resolution, and a smaller time step of 0.008 is used to give the same 
Courant number of 0.4 as in the above reference. Four different grids are used. Grid A is a simple uniform 
grid. The others are nonuniform. Two of them represent the extremes in systematic variation and the last 
one is completely lacking in order except the inherent periodicity. Grid B is called a sawtooth grid where 
the spacing between grid points alternates between wide and narrow, with about 1.1 as r, the ratio of wide 
to narrow spacing. Grid C is called a compressed-expanded grid because points are clustered near the 
periodic ends and dispersed in the middle. The stretching ratio r varies smoothly from around 1.3 in the 
expanding region to the reciprocal value of about 0.87 in the compressing region. Gird D is a grid obtained 
by displacing each grid point of the uniform grid by a random amount less than a quarter of the nominal 
spacing. Therefore, the absolute minimum spacing possible will be half while maximum twice. The 
probability of any amount of displacement is intended to be equal. The solutions after 4 periods, or 500 
time steps, are plotted. 

Figure l a  almost reproduces a similar figure in Ref. 5, showing that the Crank-Nicolson type (CNT) 
scheme is highly dispersive and incapable of resolving the Gaussian pulse on the uniform grid. Figure lb 
shows that, on the sawtooth grid, with cancellation of alternating errors due to the sawtooth 
nonunifonnity, the CNT scheme behaves as on a uniform grid. Figure l c  shows that, on the compressed- 
expanded grid, the CNT scheme behaves much worse, loosing completely any phase coordination, while 
Figure Id shows that, on the random grid, same phase coordination as on the uniform grid but with 
embedded wiggles due to the randomness. 



Figure lb, CNT Scheme on Sawtooth Grid Figure la,  CNT Scehme on Uniform Grid 

Figure lc,  CNT on Compressed-Expanded Grid 
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Figure 28, C4NIC3N on Uniform Grid 

Figure Id, CNT Scheme on Random Grid 

Figure 2b, C3N on Sawtooth Grid 

i Figure 2.d. C3N on Random drid 
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Of all three-point two-level schemes of Eq. (2) the temporal-spatial fourth order scheme TS4 proposed 
by Noyes and independently by ~ a v i s ~  gives the optimum and close to exact solution on the uniform mesh 
for which it was derived and almost as good on the other types except that on the compressed-expanded 
grid the solution becomes unstable and fails after fives time steps. Being identical to each other and 
equivalent to the LFE scheme5 on the uniform grid, the compact schemes, C4N and C3N, give solutions 
far better than those of CNT, Figures 2a-d, nearly as good as TS4 on the other grids except for some 
slight dispersion of high frequency most noticeably on the compressed-expanded grid which has lower 
resolution in the expanding region. 

Schemes for End Points 

By itself, Equation (2) is incomplete for a solution of Eq. (I), which describes the propagation of a 
wave from point a to point b, left to right assuming c>O. At the end opposite to the direction of 
propagation u(a,t) must be specified, while at the other end u(b,t) should obey the same equation in theory 
but in practice can not follow Eq. (2) as an interior point. A common remedy is to approximate the spatial 
derivative using one-sided difference formulae, which pose no difficulty of implementation for explicit 
schemes. For implicit schemes, one-sided formulae for the spatial and temporal derivatives inevitably 
either complicate the data structure or degrade the scheme to a lower order. Since the schemes considered 
here are of higher order, to preserve the tridiagonal structure the following scheme is proposed, 

Here, for the end point Ni the value ugl is updated according to the method of characteristics as the value 
at xc, depicted in the sketch between points Ni and Ni-1 when v S 1, interpolated from K interior values 

uk-, using a Kth order interpolant L,, or at t, interpolated implicitly from ui-,  and ~2- l~  using a linear 
interpolant when v > 1- for it is only necessary that the temporal accuracy of Eq. (6) be comparable to 
that of the compact schemes which by choice is only second order. Equation (6) maintains the implicitness 
and simplicity of a tridiagonal data structure while allowing choices of spatial accuracy. 

Category I Problems 

For the nondimensional time tc400 based on grid points travelled, the Gaussian pulse, initially 
&- ..I 

u(x,O) =O.Sexp , remains within the domain -2OSxS450 and should be insensitive to 

boundary conditions. Figure 3 shows the computed pulses at t=100,200,300,400 using the numerically 
optimum time step of At=0.125, for further reduction of which led to no significant improvement. The 
fourth order accuracy and the small but increasing trailing dispersion of high frequency are clear from a 
comparison with the exact solution and other known higher order schemes. The effort to solve Eq. (2) is 
the same as that for CNT, one inversion of a tridiagonal matrix for each time step, but a comparable 
solution using CNT requires a grid roughly eight time finer, or the savings of using compact differencing 
is eight times fewer storage and correspondingly eight times faster. It is of interest to know for 
comparisons with other schemes that no discernible dispersion was found if a grid spacing of Ax=0.5 
instead of 1.0 was used. 



To test the effectiveness of Eq. (6), the same pulse is computed as it is exiting the reduced domain 
202x2-20 at the right boundary where a fourth order Lagrange interpolant is used. Figure 4a shows at 
t=27 trailing packets of spurious fluctuations of magnitude 5x104 propagating in the opposite direction as 
the pulse is moving w i t h  a few grid points out of the domain. After the pulse completely left the domain 
at t=40, Fig. 4b, the fluctuations congregate at the left boundary where no wave is allowed to escape and 
rebound towards the right boundary where some reflection is bound to occur for Eq. (6), bein one-sided, 
has different dispersion characteristics than a centered scheme. The spurious fluctuations ling r on with a 
slowly reducing magnitude even after long times, Fig. 4c. However, the use of an eighth orde interpolant 
instead of same fourth order as the compact schemes reduces the magnitude of the spurious re ection by a 
factor of 20 for four additional additions and multiplications which amounts to the work of ad ng one grid 
point. i 

Figure 3, Application of C3N to Prob. 1 d Cat. I 
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Application of C3N to the spherical wave equation is achieved by modifying the coefficients of Eq. (2) 

according to the difference equation: (a,~.' +a  +a$) S,u + + v(b ,~- l+  b + b$)u = 0. Figure 5a ( 3 
shows the computed wave as the front reaches ~ 4 0 0 .  The rl decay is well captured up to the second 
peak with a small phase shift, but at the higher frequency, Fig. Sb, the fust five peaks are significantly 
damped with a phase shift of n, which can be easily improved by slightly increasing the spatial resolution. 

MULTI-DIMENSIONAL EXTENSIONS 

One drawback in the application of implicit schemes to multi-dimensional problems is the drastic 
increase in system bandwidth for each additional dimension unless operator splitting or approximate 
factorization is used. However, a factorized or split scheme often involves intermediate variables that have 
no clear connection to the physical variables on which certain constraints are to be satisfied. Hence, the 
success of an implicit scheme for multidimensional problems hinges on whether the dependent variable in 
each factorized or split step can be consistently related to the physical constraints at boundary. This seems 
to be the case for aeroacoustic problems governed by the linearized Euler equations in Cartesian 
coordinates: 

M,,1,0,0 My,O,l,O 

au a ~ u  asu O,M,,O,I O,M,,O,O -+- at ax +--0; ay w h e r e U = l ] , A = [  O,O,M,,O ]andB=[ O,O,My ,1 ] (.,I 

0,1,O,M, O,O,l,My 

6,U + 6,AU = 0 
Equation (7) can be split into two sets of equations which can then be transformed 

6,U + SYBU = 0' 

6,GA + 8,nAUA = O 
into two sets of first order decoupled equations corresponding to the characteristic 

6,GB + 6$,UB = 0 

P-P P-P Mx , 0,090 My, 0 
O N , ,  

variables = 1 U-P uB = [: - 1 and eigenvalueS ilA = [ O,O,Mx - 1,O 1, AB = bM O,O,M,, - "0~1. 
u + P  V+P O,O,O,M, +1 O,O,O,My + 1 

Interestingly, subscripts A and B correspond to the coefficient Matrices A and B, which define the 
transformation from the physical variables to the characteristic variables, or the corresponding processes of 
wave propagation for each spatial dimension. It is clear that the last three equations in both transformed 
sets can be solved independently of the first, that only p affects p, and thus the first equation is needed 
only to find p after knowing p. The f i t  equations in transformed sets A and B describe the convection 
of entropy p-p in two distinct directions at corresponding speeds Mx, My. Being linear and independent, 
these equations, or processes, can be advanced in any order. The second equation in set A describes the 
convection of a vortical disturbance v at the speed Mx, while the third and fourth equations describe the 
propagation of acoustic disturbances at the receding speed Mx-1 and advancing speed Mx+l. The 
advancements of v and u in set A follow two distinct processes, hence are independent, whereas the roles 
of u and v exactly reverse in set B. Thus the linearized Euler equations, Eq. (7), which describe the 
convection of entropy and vorticity and the propagation of acoustic pulses, can be seen as eight one- 
dimensional modes of wave propagation at speeds corresponding to their eigenvalues. Unlike 



factorization, which approximates the governing equation for easier inversions, splitting simply 
acknowledges the decomposition of vectors and the possibility of advancing their components in separate 
fashions. The two sets are indeed coupled through the common scalar variable p, which adjusts to the 
vortical and acoustical disturbances from alJ directions, and through which mass conservation is assured. 
The extension of Eq. (7) to three spatial dimensions is straight forward since all the preceding arguments 
for splitting remain valid. 

Once split, the system becomes a set of one-dimensional wave equations, which can be solved using 
the compact schemes, or any appropriate schemes. A problem is set by specifying a value for each wave 
mode at the incoming end. Take for example the set A variables 

rp. - P. 1 [M, , 0,0,01 

uA = 1:: - pb 1 , which correspond to the eigenvalue matrix A. = I""' O,O,Mx ' - O'O 1,O 1 , and assume hat  

u. + P, O,O,O,Mx +1 

O<Mx<l. All variables corresponding to right running characteristics must be specified at the left 
boundary x=a except the third specified at the right x=b. For an undisturbed upstream or downstream, 
these values are unambiguously given. However, as disturbances propagate outward beyond b, the 
information for the third variable which should come from the value at a location beyond b is lost. 
Depending on the type of disturbance and approximation used, different degrees of reflection are found in 
the solutions as they are presented and discussed later. 

Category 111 Test Problems 

Figure 6a shows the density contours of a vortical pulse and an expanding acoustic pulse after being 
convected horizontally 15 grid points downstream from their initial positions. Perfect numerical symmetry 
is found in both pulses before their fronts hit the sides, confirming the one-dimensional nature of linear 
wave propagation. As the wave front of the acoustic pulse catches up with the vortical pulse at the 
downstream boundary, a slight asymmetry is observed in the density contours around the exiting vortex 
due to the boundary condition, Fig. 6b. 

fung.cat3.pl .t30 - p fung.cat3.pl .t60 - 
L - . .-- 

Figure 6a, Convected Acoustic and Vortical Pulses at t=30, and Figure 6b, t=60 



A similar plot of pulses convected diagonally is shown in Fig. la ,  where the vortical pulse is not 
visible in pressure contours, but appears in density contours in Fig. 7b as it exits the domain at the upper 
right comer. Again slight contour distortion can be detected due to the boundary condition as the wave 
exits the domain. 

Figure 7a, Convected Acoustic and Vortical Pulses at t=30, and Figure 7b, t=80 

The flow at any location is undisturbed until the arrival of a wave. At an exit plane, the incoming 
characteristic variable, e.g. u-p, for an undisturbed flow is zero, corresponding to u equals p. However, 
u and p are not always equal for a wave. A specification of u-plb=O, referred to as BCO here on, could 
cause a phase shift and correspondingly a reflection to enter the domain along the incoming characteristics. 
Much weaker reflections are found when u-p is kept at the updated value from the sweep in the alternate 
direction, referred here on as BC1, or even weaker ones when it is corrected by a fraction a of its change 
from the previous value, u-p=u-p+aA(u-p), referred as BC2. 

The authors have not investigated the use of asymptotic expressions for the far field, since they are 
domain and problem dependent. 

Category IV and VI Fkblerns 

The reflection of an acoustic pulse from wall or the satisfaction of a wall condition when the velocity 
component normal to the wall is constrained is achieved by ordering the characteristic variables and 
solving the one approaching the wall fist, e.g. v-p, and setting v+p to comply with any condition on v, 
such as v+p=-(v-p) to enforce v=O. This ordering establishes a causality relation between the acoustic 
components, which should be solved one after the other as two arrays or merged into a large array with the 
first element of the second connected to the last element of the first to satisfy the wall constraint. If wall 
constraints are to be imposed on both ends, the joint array has cyclic boundary condition which can be 
solved using standard cyclic tridiagonal solvers. 

Figure 8a shows the reflection of an acoustic pulse from wall, at y=O v 4 ,  and Fig. 8b shows the exit 
of the wave fronts from the right boundary at a later time (t=60) and a spike of reflection due to applying 
BCO. A much weaker reflection, less thqn 10% of the frontal magnitude, is found when BC1 is used, 
Fig. 8c, and practically no reflection, less than 5%, when BC2 and a=O.15 are used instead. 



Figure 8a, Pressure Contours of a Reflected 
Acoustic Pulse at t=20 

Figure 8c, Pressure Contour of Fronts Exiting 
Numerical Boundary at x=50 Using BC1 

Figure 8b, Pressure Contour of Fronts Exiting 
Numerical Boundary at x=50 Using BCO 
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Figure 8d, Pressure Contour of Fronts 
Numerical Boundary at x=50 Using 

Exiting 
BC2 

The extension to problem in cylindrical coordinates is nontrivial in that unlike in Cartesian coordinates 
the acoustic part of the split equations in the radial direction can not be transformed into uncoupled 
characteristic components due to the souxce-like tern, vh. viz., 

However, it is found that the couplin between the acoustic components is only a weak one, and the f source-like term can be treated explici y to a second order in time to maintain the same simplicity in data 
At At 

structure as in Cartesian coordinates, e.g., u;" = u; + -lr(u;+' 2 + u;) + g ( u :  2r + u; + -lr(u: 2 - ui)). 
- 

Another complication arises due to the transformation singularity at the radial symmetry point d. 
Numerically this is just a boundary point where the incoming characteristic variable v-p into the 
outgoing variable v+p to satisfy the condition at r=O, where v also vanishes, but not necessarily v/r. 
Fortunately, the assumption that v/r is regular and hence, approaches the adjacent value at r=Ar proved 



adequate for the application of the acoustic field of a harmonically moving piston. Figure 9a shows a plot 
of pressure contours at t=160, and Fig. 9b gives the pressure variations at two instances (x/4 & 2x) along 
and normal to the piston axis. 

Finure 9a, Acoustic Field of a Piston Flgurm Ob, Axla1 and Radlrl Prerrure Vrrlatlonr 

The compact schemes presented here are nondissipative but dispersive for short waves whose presence 
is unavoidable whenever a discontinuity is involved in the boundary condition. In the case of a piston, for 
example, the edge of a piston at I=R is a source of discontinuity where the axial velocity changes abruptly 
from the piston velocity to zero wall velocity. Spurious waves immediately disperse unless they are either 
filtered or damped. Here, a damping, ~=0.01, consistent with a three-point scheme and proportional to the 

At un+' + un 
second derivative, E - a2 

AX' 2 
, is found adequate for the present applications. 

The last application hereis tocompute Figure 10a, Acoustic Field of an Airfoil in a Gust 
the acoustic field of an airfoil 
encountering a sinusoidal gust, or a 
sinusoidally deforming airfoil in a 
subsonic stream. An extra array is 
needed to represent the jumps in 
pressure and correspondingly in 
tangential velocity component across 
the airfoil slit at y=O and lxlIc/2. The 
acoustic components are ordered 
differently for the upper and lower half 
planes such that the one towards the 
airfoil is solved before the other. For 
points other than the airfoil slit on y=O, 
pressure assumes the average value 
while jumps in tangential velocity are 
allowed. Figure 10a shows the 
acoustic field, and Figure 10b&c shows 
the powers p2 radiated at x,y=f95 
respectively. 



Figure 10c, Acoustlc Power at x=f95 Figure 10c, Acoustic Power at y=f95. 

CONCLUDING REMARKS 

The effectiveness of C3N and a class of outgoing boundary conditions has been established on various 
wave propagation problems and nonuniform grids. This compact scheme, though not the most accurate 
one on a uniform grid, is simple to implement, robust under all conditions tested, and requires standard 
tridiagonal solvers to invert and negligible overhead storage. 

The equivalence between the propagation of acoustic waves in two spatial dimensions and that of a 
system of one-dimensional simple waves is shown, and conversion to characteristic variables allows 
decoupling and ordering of the wave components. All solutions presented, regardless of the number of 
spatial dimensions, are obtained by passing segments of self-contained, one-dimensional arrays through 
the same solver, which can occupy concurrently a massive array of computers for rapid data processing. 

Contrary to others, the present approach requires specification of the incoming components into the far 
field boundaries. This component must be compatible with the outgoing ones to ensure no spurious 
reflection. It is shown here how the spurious reflections are reduced but not completely eliminated, for 
which further research is warranted. 
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ABSTRACT 

We investigate accurate and efficient time advancing methods for computational aeroacoustics, 
where non-dissipative and non-dispersive properties are of critical importance. Our analysis pertains 
to the application of Runge-Kutta methods to high-order finite difference discretization. In many 
CFD applications, multi-stage Runge-Kutta schemes have often been favored for their low storage 
requirements and relatively large stability limits. For computing acoustic waves, however, the stabil- 
ity consideration alone is not sufficient, since the Runge-Kutta schemes entail both dissipation and 
dispersion errors. The time step is now limited by the tolerable dissipation and dispersion errors in 
the computation. In the present paper, it is shown that if the traditional Runge-Kutta schemes are 
used for time advancing in acoustic problems, time steps greatly smaller than that allowed by the 
stability limit are necessary. Low Dissipation and Dispersion Runge-Kutta (LDDRK) schemes are 
proposed, based on an optimization that minimizes the dissipation and dispersion errors for wave 
propagation. Optimizations of both single-step and two-step alternating schemes are considered. The 
proposed LDDRK schemes are remarkably more efficient than the classical Runge-Kutta schemes for 
acoustic computations. Numerical results of each Category of the Benchmark Problems are presented. 
Moreover, low storage implementations of the optimized schemes are discussed. Special issues of 
implementing numerical boundary conditions in the LDDRK schemes are also addressed. 

1. INTRODUCTION 

Computational acoustics is a recently emerging tool for acoustic problems. In this approach, 
the acoustic waves are computed directly from the governing equations of the compressible flows, 
namely, the Euler equations or the Navier-Stokes equations. Special needs of numerical schemes for 
computational acoustics have been indicated in recent works (eg. [9], [12]). It has been recognized 
that numerical schemes that have minimal dispersion and dissipation errors are desired, since the 
acoustic waves are non-dispersive and non-dissipative in their propagations. In this regard, it has 
appeared that high-order schemes would be more suitable for computational acoustics than the lower- 
order schemes since the former are usually less dispersive and less dissipative. Recently, high-order 
spatial discretization schemes have gained considerable interests in computational acoustics, among 
them the explicit DRP [12], implicit (or compact) [8,11] and EN0 schemes[6]. In this paper, we 

This work was supported by the National Aeronautics and Space Administration under NASA 
Contract NAS 1 - 19480 while the authors were in residence at the Institute for Computer Applications 
in Science and Engineering, NASA Langley Research Center, Hampton, VA 23665, USA. 



investigate accurate and efficient time advancing schemes for computational acoustics. In particular, 
the family of Runge-Kutta methods is considered. The present analysis pertains to the application of 
Runge-Kutta methods to high-order finite difference schemes. 

In many CFD applications, popular time advancing schemes are the classical 3rd- and 4th-order 
Runge-Kutta schemes because they provide relatively large stability limits [lo]. For acoustic caIcu- 
lations, however, the stability consideration alone is not sufficient, since the Runge-Kutta schemes 
retail both dissipation and dispersion errors. The numerical solutions need to be time accurate to re- 
solve the wave propagations. In Category 1 problems, we show that when the classical Runge-Kutta 
schemes are used in wave propagatibn problems using high-order spatial finite difference, time steps 
much smaller than that allowed by the stability limit are necessary in the long-time integrations. This 
certainly undermines the efficiency of the classical Runge-Kutta schemes. 

Runge-Kutta schemes are multi-stage methods. Traditionally, the coefficients of the Runge-Kutta 
schemes are chosen such that the maximum possible order of accuracy is obtained for a given number 
of stages. However, it will be shown that it is possible to choose the coefficients of the Runge- 
Kutta schemes so as to minimize the dissipation and dispersion errors for the propagating waves, 
rather than to obtain the maximum possible formal order of accuracy. The optimization also does 
not compromise the stability considerations. The optimized schemes will be refereed to as Low 
Dissipation and Dispersion Runge-Kutta (LDDRK) schemes. Consequently, remarkably larger time 
steps can be used in the LDDRK schemes, which increases the efficiency of the computation. The 
optimized 4-, 5-, and 6-stage schemes are proposed. In addition, optimized two-step schemes are also 
given in which different coefficients are used in the alternating steps. It is found that when two steps 
are coupled for optimization, the dispersion and dissipation errors can be further reduced and higher 
formal order of accuracy be retained. 

Optimization of numerical schemes for wave propagation problems has been conducted in several 
recent studies (e.g., [8], [12], [16]). In [12], a Adam-Bashforth type multi-step time integration scheme 
was optimized for acoustic calculations. In that work, the optimization was canied out to preserve the 
numerical frequency in the development of Dispersion-Relation-Preserving finite difference schemes. 
In [16], a 6-stage Runge-Kutta scheme was optimized for the linear wave propagations. Most recently, 
optimization of 5-stage Runge-Kutta schemes was considered in [8] for long-time integration, in which 
optimized coefficients were given depending on the spectrum of initial condition. There are, however, 
differences between the present and previous works in several aspects. First, the optimization of 
time advancing is separate from the spatial discretization schemes. The optimization is done once 
and for all. The proposed LDDRK schemes are applicable to different spatial discretization methods. 
Second, the optimization is carried out only for the resolved frequencies/wavenumber in the spatial 
discretization. It will be shown that LDDRK schemes preserves the frequency in the time integration 
and thus is ~is~ersion-  elation-preserving in the sense of [12]. Third, optimizations of two coupled 
Runge-Kutta steps are considered for the first time. Our results indicate that the two-step schemes 
offer better properties and are more efficient than the optimized single-step schemes. 

The advantages of Runge-Kutta methods also include low storage requirements in their imple- 
mentations, as compared to Adam-Bashforth type multi-step methods. The low storage requirement 
is important for computational aeroacoustics applications where large memory use is expected. In the 
past, it has been shown that the 3-stage 3rd-order scheme can be implemented with only two levels 
of storages. Recently, the 4th-order scheme has been put into a two-level format using 5 stages in 
141. We point out that, in light of recent studies, most of the LDDRK schemes proposed here can be 



implemented with two levels of storages, since the number of stages are larger than the formal order 
of accuracy retained in all schemes except one. 

In section 2, results of Fourier analysis of high-order finite difference schemes are reviewed 
briefly. l ime advancing with Runge-Kutta methods is described in section 3, Optimization process 
and LDDRK schemes are given in section 4 and low storage implementations are discussed in section 
5. Special issues of implementing boundary conditions are discussed in section 6. Numerical results 
are discussed in section 7. Concluding remarks are given in section 8. 

2. FOURIER ANALYSIS OF HIGH-ORDER SPATIAL DISCRETIZATION 

In this section, results of Fourier analysis of high-order finite difference schemes are reviewed 
briefly [14]. For simplicity of discussions, we consider the convective wave equation 

Let the spatial derivative be approximated by a central difference scheme with an uniform mesh of 
spacing Ax as 

in which a central difference stencil has been used. In (2.2) uj represents the value of u at x = xj 
and ae's are the coefficients of the difference scheme. Applying the spatial discretization (2.2) to 
(2.1), a semi-discrete equation is obtained as 

at interior points. Using Fourier analysis, it is easy to show that the semi-discrete equation yields 

dii 
- + i c k ' ~  = 0 
dt 

where ii is the spatial Fourier transform of u and k* is effective wavenumber : 

and k is the actual wavenumber. i = fl. 

Thus k* of (2,4) is seen as an approximation to the actual wavenumber k. Moreover, we note 
that the non-dimensionalized effective wavenumber k*Ax as a function of kAx is a property of the 
finite difference scheme, depending only on the coefficients of the scheme, at. (Similar analysis can 
also be performed for implicit finite difference schemes, such as the compact schemes [8, 1 11). In 
Figure 1, k t A z  as a function of kAx is plotted for several high-order spatial discretization schemes. 



It is observed that k*Ax approximates kAx adequately for only a limited range of the long waves. 
For convenience, the maximum resolvable wavenumber will be denoted by k:. Using a criterion of 
lk*Ax - kAx(  < 0.005, a list of kZAx values for high-order central difference schemes is given in 
Table I. Often the "resolution" of spatial discretization is represented by the minimum points-per- 

8 

wavelength needed to reasonably resolve the wave. Here the points-per-wavelength value will be 
computed as 2nlk:Ax. 

TABLE I 

Values of k,*Ax and k&Ax for several high-order central difference schemes 
of the spatial derivative. j indicates that the scheme has been optimized to have 
maximum kZ Ax. 

Also listed in Table I are the values of maximum effective wavenumber k$,,Ax. Clearly, when 
finite difference schemes are used for the spatial discretization, only the long waves (i.e. for k 5 k,*) 
are resolved within a given accuracy. 

3. TIME ADVANCING WITH RUNGE-KUITA SCHEMES 

k ~ a ~ A r  

1.4 

1.65 

1.77 

1.9 

2.0 - 

Spatial Discretization 

5-point 4th-order [7] 

7-point 4th-ordert [13] 

9-point 6th-order+ 

1 1 -point 6th-ordert 

5-point compact [ l l ]  

We now consider the time advancing schemes. In particular, the Runge-Kutta methods will be 
considered. For convenience of discussions, a general explicit Runge-Kutta scheme is described below. 
Let the time evolution equation be written as 

An explicit, p-stage Runge-Kutta scheme advances the solution from time level t = t, to t, + At as 
follows : 

P 

k,* Ax 

0.7 

1.16 

1.3 1 

1.48 

1.36 

where 

Resolution 

(Point-Per-Wavelength) 

9.0 

5.4 

4.8 

4.2 

4.6 

- In the above, w, and pij are the constant coefficients of the particular scheme. 
- - 
I - 



The choice of the time step At is an important issue in the Runge-Kutta schemes. One criterion 
for the time step is that the time integration be stable. The time integration would be considered 
as stable if the step size is limited by the stability boundary, usually from the "foot print" of the 
particular Runge-Kutta scheme. For references, the stability "foot prints" of the classical 3rd- and 
4th-order Runge-Kutta schemes are shown in Figure 2 in the complex XAt plane, where X is the 
eigenvalue of the linearized operator of F(U) in (3.1). 

To get time accurate solutions, however, the time step size At is now limited by the tolerable 
dissipation and dispersion errors, in addition to the stability considerations. Consider, for example, 
the semi-discrete equation (2.3) of the convective wave equation (2.1) and suppose that the classical 
4th-order Runge-Kutta schemes is used. Here, the eigenvalue is - ic  k* and k* is real for central 
difference schemes. Thus, from Figure 2, the 4th-order Runge-Kutta scheme should be stable if At 
is chosen such that 

c  k;,, At _< 2.83 

in which k;,, is the maximum effective wavenumber of the spatial difference scheme. Figure 3 shows 
the computational results of Category 1 problem 1 where several different values of At have been 
used, i.e. c  k;,, At = 2.83, 2.0, 1.0. Numerical results at t = 400 are shown. Since our purpose is 
to demonstrate the time integration schemes, a 9-point central difference scheme has been used in the 
spatial discretization for the calculations presented. The numerical solutions exhibit serious dissipation 
and dispersion errors for the first two cases. This example shows that, to get time accurate solutions, 
time steps much smaller than that allowed by the stability limit is necessary when the classical Runge- 
Kutta schemes are used. 

To analyze the numerical errors in the Runge-Kutta schemes, we consider the amplification factor 
of the schemes, i.e. the ratio of the numerical solution at time levels n + 1 and n in the wave number 
domain. From the semi-discrete equation (2.3), it is easy to find that the Runge-Kutta scheme leads 
a numerical amplification factor, 

where a = c  k* At.  U; is the spatial Fourier transform of Un. The exact amplification factor, on the 
other hand, is found to be 

-I c k* ~t - e-i a re = e - (3.5) 

The numerical amplification factor r  in (3.4) is seen as a polynomial approximation to the exact 
factor e-'". In fact, the order of a Runge-Kutta scheme is indicated by the number of leading 
coefficients in (3.4) that match the Taylor series expansion of e-'". To compare the numerical and 
exact amplification factors, we express the ratio r / r ,  as 

In this expression, Irl represents the dissipation rate (or the dissipation error) where the exact value 
should be 1, and S represents the phase error (or the dispersion error) where the exact value should 
be 0. It is easily seen from (3.4) that IrI and 6 are functions of c k t A t .  The dissipation rate Irl and 
the dispersion error S of the classical 3rd- and 4th-order Runge-Kutta scheme are plotted in Figure 4. 
Only the values for positive ck*At are shown, since Irl and S are even and odd functions, respectively. 



Using the criteria, say, that Irl - 1 < 0.001 and 161 1 0.001, it is found that the numerical solution I I 
would be time accurate for c k* At 1 0.5 and c k* At < 0.67 in the 3rd- and 4th-order Runge-Kutta 
schemes, respectively. 

Following above analysis, we let R denote the stability limit of c k* At, i.e. the scheme is stable 
for c k* At 5 R, and L denote the accuracy limit, i.e. the solution is time accurate for c k* At 5 L. 
Then, it is necessary for the time advancing scheme to be both stable for all wavenumbers and accurate 
for resolved wavenumbers. These considerations lead to the following conditions of determining At 
for the convective wave equation : 

c k: At 5 L ( 3 . 7 ~ )  

c k;,, At 5 R (3.7b) 

That is, in non-dimensional terms, 

k* Thus, the accuracy limit would give a smaller time step whenever k < +. . 
mac 

4. LOW DISSIPATION AND DISPERSION RUNGE-KUlTA SCHEMES 

4.1 Minimizing the dissipation and dispersion errors 

To optimize the Runge-Kutta schemes, we modify the coefficients cJ in the amplification factor 
(3.4) such that the dissipation and the dispersion errors are minimized and the accuracy limit L is 
extended as much as possible. This is in contrast to the traditional choice of cJ that maximizes the 
possible order of accuracy. The optimized schemes will be to as Low Dissipation and Dispersion 
Runge-Kutta (LDDRK) schemes. The optimization is carried out by minimizing Ir - re l 2  as a function 
of ck*At. It can be shown that this minimizes the total of the dissipation and dispersion errors. 
Certain formal order of accuracy has been retained in the optimization processes. In other words, the 
coefficients C, will be determined such that the following integral is a minimum : 

where r specifies the range of c k* At in the optimization. This leads to a simple constrained minimum 
problem which yields a linear system for c J .  Once the values of cJ have been determined, the actual 
coefficients of the Runge-Kutta schemes, i.e. w; and Pij, can be found accordingly. This optimization 
process can also be viewed as preserving the frequency (Appendix A) and thus is Dispersion-Relation- 
Preserving in the sense of [12]. 

Optimizations of 4-, 5-, and 6-stage schemes have been carried out. At least a 2nd order accuracy 
has been maintained, i.e., cl = 1 and c2 = 1/2 for all the schemes and 4th-order accuracy has been 
retained in the optimized 6-stage schemes. The optimized coefficients are given in Table II. Also 
listed are the respective accuracy and stability limits of the optimized schemes. The accuracy limits 



L are determined using the criteria 1 lrl - 11 5 0.001 and 161 5 0.001. The value of T. used in (4.1) 

has been varied such that the accuracy limit'L is as large as possible. The dissipation and dispersion 
errors of the optimized schemes are plotted in Figure 5. Plotted in dotted lines are the errors of 
un-optimized scheme in which the coefficients cj equal to the that of the Taylor expansion of e-'". 

Table I1 shows that the optimized 5-stage scheme can be more efficient than the 4-stage scheme, 
as the increase in the accuracy limit out-weights the cost of the additional stage incurred. On the other 
hand, the optimized 6-stage scheme has a smaller stability limit than the 5-stage scheme, although 
the accuracy limit is larger. This scheme, perhaps, is more useful for spectral methods than finite 
difference methods [3]. 

TABLE I1 

Optimized coefficients for the amplification factor (3.4). L and R are the accuracy 
and stability limits, respectively. All the schemes have at least second-order formal 
accuracy , i.e. cl = 1, c2 = 112. 

4.2 Optimized two-step alternating schemes 

In two-step alternating schemes, we consider schemes in which different coefficients are employed 
in the alternating steps. The advantages of the alternating schemes are that, when two steps are 
combined in the optimization, the dispersion and dispersion errors can be further reduced and higher 
order of accuracy can be maintained. 

St ages 

4 

5 

6 

Let the amplification factors of the first and the second step be 

CS 

- 

0.00781071 

0.00781005 

where pl and p2 are the number of stages of the two steps, respectively. Accordingly, the scheme 
will be denoted as PI-p2 scheme below. It is easy to see that the amplification factor for these two 
steps combined equals to rlr2. The exact ampfification factor, on the other hand, is r:. Again, we 
now choose the coefficients aj and b j  such that lrlrz - r:1 is minimized. That is, the coefficients 
in the alternating steps will be determined such that the following integral is minimum 

c3 

0.162570 

0.166344 

1/3! 

Y 

0.0409464 

0.0395041 

1/4! 

c6 

- 

- 

0.00132141 

L 

0.86 

1.36 

1.75 

R 

2.85 

3.54 

1.75 - 



Optimized coefficients for 4-6 and 5-6 schemes are given in Table III. In both schemes, a 4th- 
order accuracy has been maintained for each step. Thus, the first step in 4-6 scheme is actually the 
same as the traditional 4-stage 4th-order Runge-Kutta scheme. The dissipation and dispersion errors 
are shown in Figure 6 and the stability foot prints are given in Figure 7. For efficiency, we note that 
the computational cost of the 4-6 alternating scheme is comparable to that of 5-stage schemes while 
the 5-6 scheme is slightly higher. However, the 4-6 and 5-6 schemes are 4th-order accurate whereas 
the optimized single-step 5-stage scheme is 2nd order. 

2 

Optimized coefficients for the 4-6 and 5-6 schemes of (4.2). 4th-order accuracy 
has been retained in each step, i.e. a1 = bl = 1 ,  a2 = b2 = 112, a3 = b3 = 116, a4 = 
b.4 = 1/24. L and R are the accuracy and stability limits of each step, respectively. 

j = l  

da = MIN (4.3) 

Numerical results of Category 1 are shown in Figure 7. By and large, it has been observed that 
the optimized two-step alternating schemes appear to be more efficient than the single-step optimized 
schemes. 

Finally, we point out that, unlike [8], the condition Irl 5 1 has not been forced explicitly in the 
optimization processes. Although this gives a simpler optimization problem, the optimized schemes 
are, consequently, very slightly unstable for some narrow region of the wavenumber within the given 
stability limits R. However, Irl < 1 . 0 1  in all cases. Such weak instability is not expected to cause 
numerical problem and can be overcome in practical computations, for instance by artificial damping 
or viscous effects. 

5. LOW STORAGE IMPLEMENTATION OF LDDRK SCHEMES 

L 

1.65 

2.05 

a6/b6 

- 

0.00286365 

- 

0.0028.5919 

In this section, we study the implementation of the LDDRK schemes. Particularly, we will be 
interested in the implementations that require low memory storages. For linear problems, the following 
implementation is convenient for a p-stage scheme. Let the time evolution equation be given as (3.1). 
Then, 

I .  For i = 1 . . . p, compute (with pl = 0) 

R 

2.52 

2.85 

a5/b5 - -  
- 

0.0162571 

0.00366849 

0.0121101 

Stages 

4 

6 
_ I _ . c _ _  

5 

6 

Scheme 

4-6 

Step 

1 

2 

5- 6 1 

2 



Ki = At F(Un + pi K;-1) 

2. Then, 

u"*' = Un + Kp (5. lc) 

The coefficients Pi in (5.1) are related to the coefficients cj of the amplification factor of LDDRK 
schemes as follows : 

c2 = Bp 

The above scheme can also be applied to non-linear problems, but it will be formally second-order 
in general [3,10]. This implementation requires at most three levels of storage. 

6. IMPLEMENTATION OF BOUNDARY CONDITIONS 

Numerical boundary condition is another important issue in computational aeroacoustics. Often the 
physical boundary conditions are given in the form of differential equations, such as the characteristics- 
based boundary conditions or the boundary conditions based on the asymptotic forms of the far field 
solutions [ I ,  121. When boundary conditions are coupled with governing equations of the interior 
grids, it is not immediately clear as to how the Ki's in the Runge-Kutta time integration process 
should be computed at the boundaries. 

For simplicity, we assume that the problem is linear or can be linearized at the boundaries. To 
examine the situation around the boundary grid points, we note that K, is related to the time derivatives 
of the solution U ,  rather than being some "intermediate" value of the solution [S ] .  Specifically, for 
the iterations of (5.1) for linear problems, we have 

au 
K1 = At- 

a t  
au - 2 a 2 ~  

K2 = A t -  + P2At - 
a t  a t  
au - a2u a3u 

K3 = At- + ,&At2= + a h A t 3 -  
a t  a t  3 

du - a2u - a3u - - -  a4u 
& = At- d t + P4At2- a t 2  + P&At3- d t  + P4p3p2~t4arJ 

au a2u ,a3u - @U - - - -  5 a 5 ~  
K5 = Att-- a t  + h ~ t  - a t  + p 5 h ~ t  - a t  + P 5 P 4 P 3 ~ t ~ ~  + &/%&&At 

du - a2u - - - a4u - - a 5 ~  - - - a6u 
4 = At- d t  + p6At2- a t  + ~ 6 p 5 ~ t  - a t  + ~ 6 / % p 4 ~ t ~ ~  + P 6 a & p 3 ~ t 5 x  + +6P5,&j3&~t6F 

(6.1) 



The above relations are exact. Thus, it becomes clear that, if U is known at the boundary, Ki at 
the boundary points should be computed according to (6.1). On the other hand, when the boundary 
condition is given in the form of differential equations, Ki at the boundary points should be computed 
from the boundary equations using the same Runge-Kutta scheme as at the interior points. 

7. RESULTS OF BENCHMARK PROBLEMS 

The proposed LDDRK schemes have been applied to each category of the workshop benchmark 
problems. Very favorable agreements between the numerical results and known analytic solutions were 
found. The results of Category 1 have been shown in sections 2-5. In this section, brief discussions 
of numerical solutions of Category 2-6 are given. 

7.1 Category 2 

We solve one-dimensional non-linear equations. Spatial derivatives are discretized by a 7-point 
central difference scheme [13] and the time integration is done by the optimized LDDRK scheme. 
At boundary points (3 points inward), backward differences are used [7]. Moreover, at left boundary, 
x = -50, -49, -48, the following linearized equations, supporting only left-going waves, are used : 

The boundary equations are integrated using the same Runge-Kutta scheme as the interior equations. 

Artificial damping has been used in the shock region. In particular, the semi-discrete temporal 
equation (3.1) is modified to be 

where E if proportional the variation of u3. The coefficients dl were chosen such that only the 
unresolved short waves are damped [I 31. 

Another artificial damping method, filtering, has also been experimented. In this case, the temporal 
equation becomes 



Similar numerical results are observed in the two methods of damping. The computational solutions 
are shown in Figure 8. 

7.2 Category 3 

Linearized Euler equation is solved. Schematic of the computational grid is shown in Figure 
9. Radiation and out-flow conditions of [12] are used for boundary grid (3 points inward). These 
boundary equations are based on the asymptotic form of the far field solution. They are integrated 
using the same Runge-Kutta scheme as the interior Euler equation. It has been experimented in which 
the boundary equations were applied on grids 3, 5 and 10 points inward from the numerical boundary. 
No significant differences were found. Backward differences are used where central difference can 
not be applied. Specifically, 5-point 4th-order closure scheme of [7] gives 

Density contours of Problem 2 are shown in Figure 9 for t = 50, 70, 90. For the calculation presented, 
5-6 LDDRK scheme have been used with At = 0.84. 

7.3 Category 4 

In Problem 1, solid wall boundary condition is applied at y = 0. Physically, the boundary condition 
at solid wall is that the normal velocity equals to zero for inviscid flows. That is, v = 0 at y = 0. 
Then, from (6.1), since all the time derivatives of v are also zero, the numerical implementation in 
the Runge-Kutta schemes is 

K, = 0 for the normal velocity components (6.3) 

No additional condition is applied on the wall. The schematic of the computational grid is shown in 
Figure 10. The explicit 5-point boundary closure scheme of [7] is applied for backward differences. 
The radiation and out-flow boundary conditions of 1121 are applied at upper, left and right boundary, 
respectively. Pressure contours are shown in Figure 10. 

In Problem 2, we solve 

The above equation becomes undefined at r = 0. However, at r = 0, v = 0. By L'Hospital's rule, 
av ; -+ 5. The equations at r = 0 becomes 



No additional conditions are specified along the symmetry line r = 0. Along the boundary x = 0, 
following condition for u is applied : 

x = 0, r < 9, u = l ~ - ~ s i n ( ~ t / S )  
a = 0, r = 10, u = 0.5 x s in(~t /5)  
x = O ,  r >_ 11, u = O  

Computational grid and numerical results are shown in Figure 11.  

7.4 Category 5 

The given equations are integrated directly with the boundary condition at x = -200 : 

The initial state at t = 0 for p, u and p is the linear profile shown in Figure 12. The spatial 
discretization is the 7-point central difference and the time integration is the 5-6 LDDRK scheme, 
The K; at left boundary x = -200 in the RK scheme is calculated according to (6.1), since here the 
boundary conditions as functions of t are know. 

The time history of pressure at exit x = 80 is shown in Figure 13. After time greater than 
around 2500, the solution appears to reach a periodic stead state, as shown in the very fine scale. 
The variation of p - p,,,, is also shown for time between 3900 and 4000, demonstrating a well 
defined periodic oscillation of amplitude 0.36 x The state of p, u and p at t = 4000 is plotted 
in Figure 12. 

7.5 Category 6 

In this problem, acoustic waves are generated as the gust passes the flat plate. Since the gust 
satisfies the convective linearized Euler equation, it is convenient computationally to separate the gust 
and the secondary flow generated by the plate. This leads to the foIlowing boundary condition on 

the plate for scattered field : at y = &O and -15 < x _< 15, v = 0.1 s i n ( $ ( r / ~  - t)) 

Two calculations with different computational domains were carried out. The first is the full 
domain of [- 100,1001 x [-100,1001 and the second is a half domain of [-100, 1001 x [O, 1001. 
Physically, with a mean flow M,, a wake is formed after the trailing edge. Consequently, the velocity 
is discontinuous across the wake. It is convenient to use the half domain to allow the discontinuity 
of velocity. In this case, an anti-symmetry condition for p, i.e. p = 0, is imposed at y = 0. However, 
numerical results of the two calculations do not show significant differences in the radiated sound 
field, although the velocity in the wake region are different. 



Since the flow field has discontinuities around the leading and trailing edges of the plate, artificial 
damping is applied on the grids around the edges. Since the damping scheme is designed to damp 
the unresolved high frequency wave only, the radiated acoustics wave, which has a wavelength of 
resolved waves, is not expected to be affected by the damping. However, no quantitative study has 
been conducted. 

Figure 14 shows the instantaneous pressure p and velocity u contours. A well defined vorticity 
wave is convected downstream in the wake region. The directivity pattern of r i 2  is given in Figure 
15. 

8. CONCLUDING REMARKS 

An analysis of dissipation and dispersion properties of Runge-Kutta time integration methods has 
been given for high-order finite difference discretization. Low Dissipation and Dispersion Runge- 
Kutta (LDDRK) schemes are proposed, based on an optimization that minimizes the dissipation and 
dispersion errors for wave propagations. 

The importance of dispersion relations of the finite difference schemes have been emphasized in 
recent works of computational aeroacoustics. The proposed condition of determining the time step, 
(3.8), is based on the wave propagation properties of the the finite difference schemes. It takes account 
of both the spatial and temporal discretizatons. This ensures the correct wave propagation of resolved 
waves and, thus, improves the robustness of the computation. 

APPENDIX A: OPTIMIZATION VEWED AS PRESERVING THE FREQUENCY 

In section 4, the optimization is carried out by minimizing the difference of the numerical and 
the exact amplification factors. This actually minimizes the total of dissipation and dispersion errors. 
In this appendix, we show that minimizing integral (4.1) also preserves the frequency in the time 
integration. As such the LDDRK scheme is dispersion relation preserving in the sense of [12]. By 
(6.1) for linearized problems, it is easy to show that the Runge-Kutta scheme leads to 

where c; are identical to the coefficients of the amplification factor (3.4). This will be true regardless 
of the particular form of partial differential equations concerned. The above relation only involves 
the time derivatives of the solution. Upon replacing t ,  by t and applying Laplace transforms on both 
sides of (A l ) ,  it is found that 

L.H.S. 1" U(t  + at)eiWtdt = e-iwAtu 
2n 

R.H.S. 
au , a2u apu 

[U(t) + clAt--(t) + c2At ?(t) + - . - . + cp~ tP- ( t ) ] e iw td t  
2n '1" at ai atp 

where 0 is the Laplace transform of U (For simplicity, we assume that U = 0 for t 5 At). Next we 
express 

1 + cl (-iwAt) + c2(- iw~t) '  + . . . . + cp(-iwAtg G e - i w " ' ~ t  (A41 



(A4) equals to the amplification factor r in (3.4) when w is replaced by ck*. By comparing (A4) 
and (A2), it is seen that w* represents the numerical frequency in the Runge-Kutta time integration 
scheme. By replacing ck* with w, we have 

for w*At - wAt small. From above, it is easy to see that the optimization integral (4.1) results in I 
the preservation of the frequency. 
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k Ax 

Figure I .  Numerical wave number k*Ax V.S. the actual wave number kAx for several high-order 
finite difference schemes. - 5-point 4th-order [7], - - - 7-point 4th-order [13], - - 
- 9-point 6th-order, - - - - - - I 1 -point 6th-order, - - - - - 5-point compact [I  I]. 

Figure 2. Stability foot prints of the 3rd-order (rk3) and 4th-order (rk4) schemes (left). A is the 
eigenvalue of the linearized operator F in (3.1). Indicated are the stability limits on the imaginary 
axis. Also shown are the stability limits of optimized 4th-order LDDRK schemes (right). 



Figure 3. Numerical results of Category 1 Problem 1. The classical Cstage 4th-order Runge-Kutta 
scheme is used. A Ppoint central difference scheme has been used for the spatial discretization. - - 
- - - - exact, -0- numerical. t4OO. 



Figure 4. Dissipation and phase errors of the classical 3-stage 3rd-order (rk3) and 4-stage 4th-order 
(rk4) Runge-Kutta schemes. L and R are the accuracy and stability limits, respectively. 



I ' 1 

- 
I 
I L 

(e )  , , . , .  , R K ~  

Figure 5. Dissipation and phase errors of the optimized schemes. Dotted line is the un-optimized 
scheme. (a) and (b) : 4-stage; (c) and (d) : 5-stage; (e) and (fj : 6-stage. 
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Figure 6. Dissipation and phase errors of the optimized 4th-order two step alternating schemes. (a) 
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Figure 7. Numerical results of Category 1 Problem I .  using optimized schemes. - - - - - - exact, 
-0- numerical. t4OO. 



Figure 8. Numerical solutions of Category 2 problem 1.  Shown are the values of u at t = 10, 20, 
30, 40, 50. 
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Figure 9. Grids and density contours of Category 3 Problem 2. 
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Figure 10. Grids and density contours of Category 4 Problem 1 .  
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Figure 11. ReSJun contours of Category 4 bblem 2 (above) and profiles along x = 0 and r = 0 
(below). Cirles are the computed results and the solid lines are the analytic solution (courtesy of D. 
Nark, NASA Langley). 
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Figure 12. Initial and final states of p, u and p. 
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Summary. Two new methods for the numerical solution of conservation laws (the Euler 
equations in particular) are presented: a uniformly second-order accurate upwind scheme and 
a third-order accurate centered scheme. Results of these schemes are shown for problems in 
categories 1, 2, and 5. 

1. Introduction. Problems in aeroacoustics generally require fourth- or higher-order ac- 
curate schemes. In this article, we present two lower-order schemes that are considerably more 
accurate than standard low order methods. These two schemes are designed to resolve discon- 
tinuities without oscillations. They perform well for a wide class of problems in fluid dynamics, 
and they can capture shocks with high resolution. The question is how well can these schemes 
resolve acoustic waves? In addition, can the concepts and techniques employed to derive these 
methods be applied to high-order schemes in acoustics? 

The first method is a second-order accurate upwind scheme. It consists of two key steps (of 
MUSCL type): a reconstruction step which estimates the slopes in each cell (piecewise linear), 
followed by an upwind step which obtains the fluxes at each interface. For the upwind step, 
Roe's flux-difference splitting (1981) is employed. We present here a simple explanation of this 
splitting: it is identical to a flux-vector splitting via linearization and diagonalization. The 
reconstruction step, however, is different from those in the literature. We start with the slope 
of the quartic through five points. To avoid oscillations near a discontinuity, we introduce a 
monotonicity constraint that preserves uniform second-order accuracy. The constraint consists 
of two bounds (limits). The lower bound, which preserves accuracy, is defined by a slope 'closest' 
to zero among all second-order accurate slopes. This bound can also be defined by the UNO 
slope of Harten and Osher (1987). The upper bound, which prevents the slope from becoming too 
steep, is derived by making use of the upper limit of Van Leer's MUSCL scheme. The constraint 
requires the final slope to lie between these two limits. This requirement is conveniently enforced 
by using the median function: the final slope is the median of the quartic slope and the above 
two limits. To save computing time, we present a simple criterion that detects the smooth part 
of the data: if a cell is in the smooth region, then the monotonicity constraint has no effect, and 
the slope reduces to the quartic formula. 

The second method is a third-order accurate centered scheme. It carries not only the average 
of the conserved variables in each cell but also the interface values of these variables. For this 
reason, the dispersion error is small even for the highest frequency waves (Van Leer 1977). Similar 
to upwind schemes, this method employs a reconstruction step which, for third-order accuracy, 



is piecewise quadratic. Oscillations in the solutions are avoided by limiting the interface values. 
Here, as in the Linear reconstruction case, we introduce a simple monotonicity constraint that does 
not cause a loss of accuracy near extrema. What is different from an upwind scheme, however, is 
that instead of an upwind step, a duaI-mesh (staggered) system is employed (Sanders and FVeiser 
1989, 1992, and Nessyahu and Tadmor 1990). This mesh system facilitates the updating of both 
variables (averages and point values) and yields a centered scheme. 

We present these schemes first for the advection equation and then for the Euler equations. 

2. Second-order upwind scheme for advection equation. Consider the advection 
equation with constant speed a, 

du a u  
-+a-=0 ,  
dt dx 

~ ( ~ 7 0 )  = uo(x), (2.1 b) 

where the initial condition uo(x) is assumed to be of compact support or periodic. As a result, 
boundary conditions are straightforward. 0 ther boundary conditions will be addressed as needed. 
The derivation below facilitates the extensions to systems of equations. 

Let xj  be the cell center, x , + ~ / ~  the interface between the j-th and j + l-th cells, and h the 
cell width; the mesh is uniform. At time tn = nr where T is the time step, assume that we know 
u l  which approximates the solution u at xj  for all j. We wish to calculate ti?+'. Here, the time 
step T is assumed to satisfy the CFL condition 

By applying the midpoint rule, we obtain a second-order accurate scheme: 

n+l/2 - 
"+ 'I2 is obtained in two steps. The flux fj+l/2 - auj+l/2 

The first step is called the reconstruction step: in each jth cell and for tn < t < tn+', we 
approximate u(x, t) by a linear function rj(x, t). Suppose, for the moment, (u,)j is known. We 
can calculate (ut)j via (2.la): 

(ut)j = -a(u,)j. (2-4) 

Thus, r ,  is known: 
rj(x, t) = U j  + (X - xj)(uz)j $ (t - tn)(ut)j. 

At  time tn+1/2 and at the two interfaces of the j th cell, Taylor series expansions yield 

The second step is the upwind step. At each interface j + 1/2, we now have two values for 
u: one from the Taylor series expansion in the j th  cell, namely, rj(xj+1/2, tn+l12); and one from 
that in the j + 1 cell, T ~ + ~ ( z ~ + ~ / ~ ,  tn+lj2). Denote these two values respectively by ur. and un. 
The flux is obtained simply by upwinding: 

n+1/2 = a u ~  if a 2 0, 
fj+l/2 UUR otherwise. 



Equivalently, 
n+l/2 - 1 fj+lll - 5 ( ~ U L  + 'UR) - $ l a l ( u ~  - UL). 

The problem therefore reduces to defining (u,)~. 
In the rest of this section, time is frozen at level n. For simplicity of notation, we omit the 

superscript n and, when it does not cause confusion, the subscript j is set equal to 0. One of the 
simplest formulas for (u , )~  which does not cause oscillations near a discontinuity is a weighted 
average employed by Van Albada, Van Leer, and Roberts (1982): with 

s = ( 0  - u )  and s+ = (ul - uo)/h, (2-9) 

The above slope works well for a wide class of problems, but it is quite diffusive and is only 
first-order accurate near an extremum. We present below a uniformly second-order accurate 
slope which has a much smaller diffusion error. 

The key idea is to preserve monotonicity of the data by a constraint that does not cause a 
loss of accuracy. To be precise, we need a few definitions. Let the median of three numbers 
be the one that lies between the other two. With real numbers x and y, denote by I [x, y] the 
closed interval whose two end points are x and y. In addition, let minmod(x,y) be defined as 
the median of x, y, and 0. Then for the purpose of coding, 

where sgn (x) = 1 if x is positive; sgn (x) = -1 if x is negative. Note that if x = 0, the 
above minmod function returns 0, and it does not matter whether sgn (x) is defined a s  1 or - 1. 
Conversely, the median function can be expressed in terms of minmod: 

median (x, y,  z )  = x + minmod (y - x, r - x) = y + minmod (x - y, z - y) 
(2.12) 

= x + $ [sgn(y - x) + sgn (z - x)] min(1y - XI, lz - 21). 

The minmod function of three arguments will also be used: with a = min(zl, 22, z3) and 
/? = max(zl, 22, z3), define minmod (zl, 22, z3) = median (0, a, P ) .  Equivalently, 

minmod (zl, z2, z3) = i{sgn (21) + sgn (22)) /sgn (21) + sgn (%)I min(lzil, lz21,1231). (2-13) 

We are now ready for the constraint. It requires the final slope to lie in a certain interval. 
Between the two ends of this interval, the one closer to 0 is called the lower bound; the other, 
the upper bound. Let p,, po, and p+ be the slopes at j = 0 of the three quadratics defined 
respectively by {u-2, U-1, uo), { u - ~ ,  UO, ul}, and (UO, u1, UZ): 

The lower bound, denoted by q,, is given by (see Fig. 2.1) 
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Figure 2.1. The constraints. 

Clearly, the three slopes (2.14) are accurate to O(h2); as a result, q, is accurate to the same 
order. Loosely put, q, is the slope closest to 0 among the (three) second-order accurate slopes. 

For the upper bound, the argument to the right of j = 0 is carried out first. In our context, 
Van Leer's constraint requires that for xo 5 x 5 XI,,, the reconstruction rj(x, tn) takes values 
in I [uo7u1]; that is, the final slope ( u ~ ) ~  lies between 0 and 2s+ (Fig. 2.1). It is the limit 0 
that causes accuracy to degenerate near extrema. To obtain uniform second-order accuracK we 
require the final slope to lie between q, and 2s+. The requirement to the left of j = 0 is for (u , )~  
to lie between q, and 2s,. The two requirements together resuIt in the following constraint: the 
final slope lies in the intersection of the two intervals I [q,, 2s-] and I [q,, 2s+]. Clearly, one end 
of this intersection interval is q,; the other is 

q* = median (q,, 2s,, 2s+). (2.16) 

And the constraint requires the slope (uZ)* to lie in I [q,, q*]. 
Our next task is to define an accurate slope. Using the quartic (five-~oint) formula, set 

The above slope is highly accurate; however, near a discontinuity, it may have the wrong sign 
(see Fig. 2.2(a)). We avoid this problem by requiring q5 to lie between po and p, where 

pm = median (p- , p+ , PO). (2.15) 

To bring q5 into the interval I [po,pm], we once again use the median function: 

Note that at the smooth part of the data, one can show via a Taylor series argument that q6 is 
generally identical to q5; that is, p, and po provide plenty of room for an accurate slope. 

Finally, using the median function, we limit q6, 

(uZ)0 = median ( q ~ ,  q., q"). (2.20) 



(a) q, has a wrong sign (b) (uX)j near an extremum (c) (uX)j near a discontinuity 

Figure 2.2. Eflects of the constraints. 

Since q, and q6 are accurate to O(h2), the above (u,)* is also accurate to the same order. 
The following remark shows the effect of the above constraint. At the smooth part of the 

data where the slope is nonzero, expression (2.20) yields (u , )~  = q6 because q, is closer to 0 than 
q6, and qR is further from 0. Near an extremum, the interval I [q,, q'] may reduce to the point 
{q,) and, in this case, (u , )~  = q* (see Fig. 2.2(b)). It is here that our monotonicity constraint 
preserves second-order accuracy whiIe Van Leer's may not. Near a discontinuity, or where the 
data change rapidly, the slope qe is generally steeper than q', and the final slope is identical to 
q*, which is either 29+ or 2s- (see Fig. 2.2(c)). 

An alterative definition for q, is the UNO slope: 

q- = median (9, , p- , po), q+ = median (s+, p+, po), q, = minmod (q+, q-). (2.21a, b, c) 

We can also steepen the slope near a discontinuity: after (2.19) and before (2.20), we reset q6, 

Here, the factor 5 is found by numerical experiments. At smooth regions, Iq+ - q-1 is a small 
number of order O(h2), and the above modification does not alter q6. Near a discontinuity, on 
the other hand, q- and q+ are far apart, and (2.22) steepens q6 considerably. 

Next, we present a simple criterion which detects the smooth regions where the constraint 
has no effect. Let A,2u be the second difference of u: 

For each index j ,  if 

3 < A:-Iu/A:u 5 $, and 3 < A ~ + + I u / A j ~  5 j ,  

then the solution is considered to be 'smooth' in the j th cell, and it can be shown that a constraint 
slightly more general than the above has no effect on the quartic slope. In this case, there is no 
need to carry out the constraint, and the final slope is given by the quartic formula (2.17). (See 



also Huynh 1993a, 1993b.) For the Euler equations, this test is generally performed only on the 
density field. 

3. Second-order upwind scheme for the Euler equations. The one-dimensional flow of 
an inviscid and compressible gas obeys the conservation laws for mass, momentum, and energy: 

m 

(3.273) 

where t is time, x distance, p density, m momentum, e total energy per unit volume, u velocity, 
and p pressure. Let 7 be the ratio of specific heats, then for a perfect gas, 

At smooth regions of U, (3.1) is equivalent to the non-conservation form 

au au 
-+A, -=  

dF dF dF dF 
at 0, where A, = - - ax au - (-7 - - ) a  dp dm' de 

And after some algebra, 

0 1 0 
Ac= ( (7 - 3)u2/2 (3 - Y)U 7 - 1 )  - (3.7) 

(7 - 1)u3 - 7ue/p -3(y - l)u2/2 + yelp 7 u  
i 

For the primitive variable V (more precisely, the vector of primitive variables), 

av av 
- +A,- = 0, where Ap = (3.8,9,10) 
at ax 

I 
Denote the Jacobian matrix of the transformation between the primitive and conservative 

variables by M (Warming, Beam, and Hyett 1975): 

Then 

Using the chain rule, (3.5, 9, 11) imply 



Next, we diagonalize A, and then A,. Let c be the speed of sound, c = (yp/p)'/2. Equation 
(3.13) implies A, and A, have the same eigenvalues. They are 

Let L, be the matrix of the left eigenvectors of A,; q, that of the right. Let A be the diagonal 
matrix whose diagonal entries are A('), A(2), and A(3). Then 

and 
L P = R i 1 ,  LpApRp=A,  Ap=RpALp.  (3.16,17a, b )  

The diagonalization of A, follows from (3.13): 

L,A,R, = A, where LC = L,M-', R, = M&. (3.18,19,20) 

Let H be the total enthalpy, H = (e + p ) / p .  Expressions (3.20, 12a, 15b) lead to 

To define the characteristic variables, let u be a fixed state, and let U vary. Equation (3.5) 
can be linearized around U: 

du - au 
- + A c -  = 0. at ax (3.22) 

The characteristic variable W, and the corresponding characteristic equation are 

Similarly, for the primitive variable V, with a fixed state v, 

3.1. Reconstruction step. For the Euler equations, given {Uj}, we first calculate {Vj}. 
If the weighted average (2.10) is employed, we can simply apply it on Vj to obtain (V=)j. Since 
(2.10) is quite diffusive, it damps out oscillations (if any) quickly. We can also apply (2.10) on 
Uj; because A, is more complex than A,, the algorithm is slightly costlier. 

As shown by (3.24,27), however, the quantities being advected are the characteristic variables. 
With a more accurate reconstruction step such .as (2.14-20), we need to employ W, as follows. 
For each index j, if conditions (2.24) are satisfied for the density field, the slopes (VI)j are given 
by (2.17). Otherwise, for -2 5 1 5 2 (five-point stencil), employing (3.26) with V = Vj, set 



(W,)[ = L,v,+,. Algorithm (2.14-20) is carried out for each component of (Wp)r, and the result 
is denoted by W,. Finally, (V,)j = %w.. 

Note that when the constraints have no effect, because t, and I%,, are the inverse of each 
other, the above interpolation of (W,)[ yields a (V,)j identical to the interpolation of Vj. 

Knowing (V,)j, one can calculate (Vt)j via (3.9). For each interface j + 1/2, Taylor series 
expansions from the two adjacent cells j and j + 1 yield VL and VR at time tn+'I2. 

3.2. Upwind step. Given VL and VR, we next define the upwind flux. For linear advection, 
the speed is known; here, to obtain the characteristic speeds, which depend on VL and VR, we 
need to linearize. The simplest and most obvious state for linearization is v = f (VL + VR). AS 
shown by (3.24, 27), the Euler equations can then be approximated by three advection equations. 
The speeds of advection are A(') given in (3.14). Denote FL = F(VL). The characteristic flux 
and characteristic variables are 

Similar expressions hold with subscript L replaced by R. The upwind characteristic flux, denoted 
Gu ,  is given by the sign of X('), 1 5 i 5 3. Omitting the superscript (i), each component of Gu 
is given by: 

1 
gu = (gr. + 9 ~ )  - ! spn (X)(~R - 9 ~ ) .  (3.28) 

Here there is a problem. When 1 = 0, should we select g~ or g~ as the upwind flux? This 
problem no longer exists, however, if the state of linearization v has the property that 

if X = O ,  then g r , = g ~ .  (3.29) 

For convenience, let 4 be the difference operator R minus L, e.g., A F  = FR - FL. From 
(3.6), aF = A,BU. Suppose 9 (to be determined) is a fixed state that satisfies 

A F  = A,AU. Then, AG = AAW,, (3.30,3.31) 

where AW, = &,Au. Expression (3.31) implies that property (3.29) holds with v replaced by 
V. Rewriting (3.28) in vector form and employing (3.31), 

Multiplying the above on the left by R,, we obtain the upwind flux: 

Further simplification can be made by requiring-and the motivation is (3.11)hthat satisfies 

- 

Multiplying the above on the left by LC, we obtain, by (3.19), AW, = L,MAV = &,AV = 
- AWp. Thus, 
- 

- 
Fu = t (FL + FR) - t i&lAlip~v. (3.35) 

- - - - 
- 
- 
- 
- 
- 

- - - 
- - = 
- 

- 106 



Since f,, is simpler than f,,, (3.35) is more economical than (3.33). 
Finally, to determine v, the first component of (3.30) turns out to be useless (redundant). 

The second yields a quadratic in 6;  among the two solutions of this quadratic, only one always 
makes sense and yields 4. The third component gives 8. Similarly, the last two components of 
(3.34) lead to ,6 and 4. Expressions (3.30) and (3.34) together define 9 uniquely: 

For more details as well as a simple entropy fix, see (Huynh 1993b). 
Expression (3.35) is very simple, but it involves all three components (waves). Employing 

a conditional statement, (3.35) can be coded economically by stepping across only one wave as 
follows. Let 9 be given by (3.36-39), and c", the corresponding speed of sound. 

If ii - c" > 0, then Fu = FL; 
else if ii > 0, then with A$) the first component of ~ , A V ,  Fu = FL + (& - E ) A ~ ( ~ ) R ; ;  
else if B + 2 > 0, then Fu = FR - (6 + z ) A w ( ~ ) ~ ;  
else, Fu = FR. 

Note that for the tilde state, (3.28), (3.33), and (3.35) yield identical upwind fluxes. With 
a different state of linearization, e.g., V, they yield different fluxes; for (3.33) and (3.35) the 
results still depend continuously on the data; for (3.28), however, the result no longer depend 
continuously. In fact, with v in place of v, (3.33) and (3.35) work well for most problems, but 
(3.28) does not. 

4. Third-order centered scheme for advectionequation. At time tn, as in 92, let 
xj  be the cell center and xj+1/2 the cell interface. Assume that we know a, and uj+lp which 
respectively approximate the average value in the j-th cell and the interface point value at 
xj+l/z of the solution u, for all j. (For a parabolic reconstruction, as shown by (4.2~) below, 
the cell average iij is generally different from the point value uj. Again the superscript n is 

n+1/2 understood.) We wish to calculate, and note the changes in the subscripts, ii;:$ and uj , 
which respectively approximate the cell average and the interface point value of the solution at 
time tn+'I2 = tn + r/2. Here, T is assumed to satisfy the CFL condition (2.2). Notice that we 
take only half of a regular time step and, at time tn+'I2, the mesh is staggered. See Fig. 4.1. 

The algorithm proceeds as follows. Set 

(When monotonicity constraints are introduced, u ~ j  and u ~ j  will be defined differently.) At 
time level n and in each cell j, we reconstruct the solution by a parabola denoted by Pj(x) using 
the three pieces of information: the cell average G j  and the two point values UL j and UR j- The 
second and first derivatives and the point value at x j  of the parabola Pj are, respectively, 



The time partial derivatives can be evaluated by differentiating the advection equation (1.la): 

DIuj = -a(D,u,), Dfuj  = a2(~:uj) .  (4.3a7 b) 

We can now update the point value u;+"~ via a Taylor series expansion: 

Observe that since the half time step corresponds to a CFL number less than 112, the discon- 
tinuity in slope at ( x ~ + ~ / ~ ,  tn) has not arrived at xj  or xj+l when t = tnC1/2. For this reason, the 
dual-mesh formulation does not need an upwind step; nevertheless, upwinding takes effect when 
we employ the differential equations to calculate the time derivatives from the spatial ones. 

n+1/4 The values u, , u,+,/~, and uj-1/4 can be obtained by expressions similar to (4.4). Define 

i the average flux 6 (in time) by 

The same calculations as in (4.2-5) are then carried out for the cell j + 1. The cell average 
-n+1/2 u,+,,~ is updated by balancing the fluxes for the control volume whose four corners are (x, , tn), 

- 
(xj+17 tn), (xi, tn+1/2), and ( ~ j + ~ ,  tn+'l2) (shown in Fig. 4.1), 

I - 

The next half time step is identical to the above except for obvious changes in indices due to 
the staggering of the mesh system. We then obtain {%:+I) and { ~ ; 2 / ~ } ~  and this completes the 
basic algorithm. 

Note that the single-mesh version of the above scheme was presented by Van Leer (1977). For 
a single-mesh system, the scheme must be formulated as an upwind scheme. This formulation 
makes extensions to systems of equations very difficult since it is not clear how to update the 
interface values. The above dual-mesh piecewise-parabolic formulation is due to Sanders (1988), 
except for the following key difference. Instead of evolving in time via the partial differential 
equations and a Taylor series expansion as in (4.3-4), he employed characteristic tracing. This 
characteristic tracing makes preserving third-order accuracy a nontrivial task. Our monotonicity 
constraint below is also considerably simpler than Sanders'. If we discard the interface values 
and reconstruct the function in each cell by interpolating the cell average quantities via a limiter 
such a s  (2.10), we obtain the staggered-mesh scheme of Nessyahu and Tadmor (1990). They 
also employed the time evolution (4.3a) above. Due to the linear reconstruction, their algorithm 
is simple. It takes very little work, however, to carry the point values, and as shown by the 
analysis in (Van Leer 1977, scheme 1 and 2), the resulting scheme (Chang and To 1992) is more 
accurate. Finally, these dual-mesh methods can be considered as higher-order extensions of the 
Lax-Friedrichs scheme. 

Next, we move to the subject of preventing oscillations. ColelIa and Woodward (1984) pre- 
sented a constraint which assures that the reconstruction parabolas are always monotone. This 
constraint, however, causes accuracy to degenerate to first-order near extrema. Sanders (1988) 
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Fig. 4.1. Dual-mesh system. Fig. 4.2. Monotonicity constraint. 

derived a constraint that preserves at least second-order accuracy near extrema, but it is complex 
and costly. We introduce below a simple constraint that preserves accuracy. 

Due to symmetry (reflection), we carry out the constraint only for u ~ , j .  This constraint has 
two bounds: a lower bound u, and an upper bound u*, and u ~ , j  is required to lie between these 
two bounds. To obtain the lower bound, consider the parabola defined by the three quantities 
iij, uj-112, and Gj-1. The value of this parabola at xj+l/2 is 

u.f[ = f iij - 2uj-1/2 + 5 iij-1; (4.7) 

here, the subscript x f I stands for 'extrapolating from left'. And, 

See Fig. 4.2. Note since uj+l/2 and u.11 are accurate to O(h3),  so is the lower bound u,. This is 
why accuracy is preserved. Finally, 

U R j  =  median(^,+^^^, u,, u*) . (4-9) 

Loosely put, u, is generally too close to itj, and u* too far from aj; as a result, at most smooth 
regions, u ~ , j  is identical to uj+1/2, i.e., the constraint that u ~ j  lies between u, and u* has no 
effect on ~ j + ~ / ~ .  Near a discontinuity, however, u , + ~ / ~  often lies outside the interval formed by 
u, and u", and expression (4.9) yields u" as shown in Fig. 4.2. 

Although the constraint (4.7-9) is very simple, for the Euler equations we apply it to the 
characteristic variables, which are somewhat expensive to calculate. Since the constraint has no 
effect at most smooth regions, it would save considerable computing time if we can derive simple 
criteria to detect when it has no effect, and in that case, u ~ j  and u R ~  are respectively identical 
to uj-112 and uj+l/2 as in (4.1). Such a criterion is presented below. 

Again, for the j-th cell, let Di be the second derivative of the parabola defined by iij, uj-1/2, 
and iijV1; DR, that of the parabola defined by iij, Uj+1/2, and iij+1. Then if 

2 5 D;/D:uj 5 J and f 5 Dk/D:uj 5 f, 3 (4.10) 



the data are considered to be 'smooth' in the j-th cell, and the interface values are left unchanged. 
For the Euler equations, this test is performed only on the density field. Therefore, the resulting 
scheme is economical. 

5. Third-order centered scheme for the Euler equations. The above formulation 
facilitates the extensions to systems of equations. For the Euler equations, if condition (4.10) 
is satisfied for density, the interface values ULj and U R , ~  are given respectively by Uj-lla and 
UjclI2. Otherwise, the monotonicity constraints (4.7-9) are carried out for the characteristic 
variables W,, and then these characteristic interface values are transferred back to the conserva- 
tive quantities. Note that the characteristic variables and the constraints are generally needed at 
only a few cells near a discontinuity. Next, the x-derivatives of the conserved variables are given 
by (4.2). The t-derivatives are calculated by differentiating (3.5). The updating of the conserved 
variables are then straightforward: the point values via (4.4) and the nonconservation form; the 
averages, via (4.5-6) and the conservation form. 

6. Numerical results. In the following numerical examples, unless otherwise stated, the 
CFL number is 0.8; thus, for the dual-mesh scheme, each half time step corresponds to a CFL 
number of 0.4. The continuous lines (curves) represent the exact solutions, and the circles the 
numerical ones. 

The first problem of category 1 is the advection equation (l.la) with a gaussian initial con- 
dition. Here, to see how the schemes advect discontinuities, in addition to the gaussian, we also 
have a square, a triangle, and a semi-ellipse wave. The results after propagating a distance of 
200 cells ( t  = 200) are shown in Fig. 6.1. We aIso present the results of a steepening technique 
for the third-order method (due to space limitation, the details of this technique were omitted). 

The second problem of category 1 is a spherical wave problem. The results for the second- 
order scheme are shown in Fig. 6.2, and the third-order in Fig. 6.3. For w = 713, the waves are 
damped out by the second-order scheme very quickly (the plot is omitted). 

For problems in categories 2 and 5, the two schemes yield essentially identical results. There- 
fore, we present only the results of the second-order upwind scheme. For category 2, the solutions 
of the first problem at t = 200 and the second problem at t = 60 are shown in Fig. 6.4. Note 
that for shocktube problems, the first few time steps corresponding to a fixed CFL number are 
generally too big because the flow has not developed. These big time steps may cause oscillations. 
To avoid this problem, the first 4 time steps rr, (k  = 1,. . . ,4) are replaced by (k/5)rk. 

The results by the second-order upwind scheme for category 5 are presented in Fig. 6.5(a). 
Here, several snapshots of the spatial distribution of the pressure disturbances are plotted by a 
continuous curve. A similar result with a shock in the steady state solution is shown in Fig. 6.5(b). 
The steady state solution with shock is shown in Fig. 6.5(c). Note that for this problem, we 
employ the standard characteristic boundary conditions. 

7. Conclusion and discussion. A second-order accurate upwind scheme and a third- 
order dual-mesh centered scheme are presented. These schemes are simple, and they can capture 
discontinuities well. For nonlinear acoustic problems, the results are highly accurate if waves are 
represented by 15 or more mesh points. Waves with too few mesh points are damped out. 



To resolve waves with only 6 to 8 mesh points per period, higher-order schemes are preferred. 
Conceptually, the techniques presented here can be applied to several of these high-order schemes. 
Indeed, high-order schemes often can be formulated in conservation form; more specifically, the 
interpolation yields the interface values for the conserved variables rather than the slopes at a 
cell center. The constraint or limiting technique can then be applied to these interface values. 
At smooth regions, the constraint has no effect. Near a discontinuity, however, the constraints 
for the two sides of each interface yield two different values. We can then employ a flux splitting 
to define an upwind flux. Such a scheme employed with, e.g., a Runge-Kutta time stepping, 
reduces to a centered scheme at  smooth regions, and turns into an upwind scheme only when the 
constraint takes effect, i.e., near discontinuities. Whether such schemes are capable of accurately 
resolving shocks and acoustic waves remains to be shown. 
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SUMMARY 

We use a new staggered grid Chebyshev spectral multidomain method to solve three of the 
Workshop benchmark problems. The method defines solution unknowns at the nodes of the Chebyshev 
Gauss quadrature, and the fluxes at the nodes of the Chebyshev Gauss-Lobatto quadrature. The 
Chebyshev spectral method gives exponentially convergent phase and dissipation errors. The 
multidomain approximation gives the method flexibility. Using the method, we solve problems in 
Categories 1 and 5. 

INTRODUCTION 

In this paper we demonstrate the use of a new staggered grid spectral multidomain method on the 
Category 1 and Category 5 Workshop problems. The desirable features of spectral methods regarding 
the solution of wave-propagation problems are their excellent phase and dissipation properties, and the 
fact that special boundary approximations are not needed to avoid overhang of the computational stencil. 
It has long been known that Chebyshev spectral methods require a minimum of 7c modes per wavelength 
to resolve a sine wave (Ref. 1). Exponential convergence of the phase and dissipation errors for 
Chebyshev spectral methods was demonstrated in Ref. 2. For large computational domains, however, 
large numbers of points are required even if only n: points per wavelength are required to resolve a 
propagating wave. To reduce the inflexibility associated with a single global approximating polynomial 
through all those points, multidomain spectral methods were introduced. See Ref. 3, Chapter 13 for a 
review of early work. 

* This research was supported in part by the U.S. Department of Energy through Contract # DE-FC05-85ER250000 and by 
the National Science Foundation through Grant DMS-9404322. 



The multidomain methods that have been used in the past defined all solution values at the Gauss- 
Lobatto quadrature points. Characteristic upwinding at subdomain interfaces was imposed by using 
upwind values of the derivatives (Ref. 4) or by correcting the solution values obtained by integrating the 
equations directly on either side of the interface (Ref. 5). The advantage of the former is that the high 
order temporal accuracy required for wave-propagation problems can be obtained, at the expense of 
flexibility in two space dimensions. The latter approach is more geometrically flexible, but is limited in 
temporal accuracy. 

The new multidomain method uses a staggered grid and does not have the same limitations of the 
single grid methods. Solution unknowns are defined on a grid defined by the Gauss quadrature points. 
This grid interlaces the Gauss-Lobatto grid on which the fluxes are evaluated. Interface conditions 
require only flux continuity and can be evaluated to any temporal order of accuracy. The increased 
flexibility is balanced by the extra cost of a spectral interpolation from the Gauss to Gauss-Lobatto grids. 

THE STAGGERED GRID APPROXIMATION 

The staggered grid approximation computes the solution values and the advective fluxes on two 
different grids. Unlike the common approximation (Ref. 3), which uses only the nodes of the 
Chebyshev Gauss-Lobatto quadrature as collocation points, the new method uses both the Gauss and the 
Gauss-Lobatto points. We denote the Lobatto points by Xj and the Gauss points by q,,,,, defined by 

In ( I ) ,  we have mapped the usual collocation points defined on [-1,1] to the more convenient unit 
interval. The use of the overbar and half point notation for the Gauss points is used only for its value as 
an analogy to staggered grid finite difference methods. It must be understood that the Gauss points do 
not lie halfway between the Lobatto points (Ref. 3). 

Two polynomial approximations are defined, one for each grid. Let the space of polynomials of 
degree less than or equal to N to be denoted P, = {~olynomials of Degree _< N). Let l ,(<) s P,be the 
Lagrange interpolating polynomial 

defined on the Lobatto grid. On the Gauss grid, we define h,,,,, EP,-, to be the polynomial 



Finally, let Qj be a grid point value on the Lobatto grid and c,,,, be a value defined on the Gauss grid. 
Then we write the polynomials that interpolate these values as 

The workshop problems called for uniform unit grid spacing. The spectral approximation, however, 
uses the non-uniform spacing defined by (1). To be consistent, the calculations were performed so that 
the average grid spacing was unitary. In this paper, all results are reported on the non-uniform grid. 
However, the spectral results reported in the overview by Tam in this volume are interpolated to a 
uniform grid using the representations (3). 

We first consider the approximation of scalar problems of the form 

The interval [a,b] is subdivided into multiple, non-overlapping subdomains, L$ =[ak,bk], k - 1,2, ...z, 
which are ordered left to right, as shown in Fig. 1. A simple linear transformation can be made to the 
unit interval, so that on each subdomain we solve the problem 

Figure. 1 Diagram of the domain decomposition in one space dimension. 

On each subdomain is placed the staggered grid defined by (1). For convenience, we will assume 
that the same number of points is used in each subdomain, but this is not required by the method. We 
then let vk(x) €PN-, , defined by (3a), approximate the exact solution, u on @. Similarly, the flux is 

approximated by the polynomial F'(x) E PN, defined by (3b). Substitution of these approximations 
into (5) gives 



To obtain the equations that define the solution unknowns at the Gauss points, we require that the 
residual, R, be zero at the Gauss points of the subdomain. This leads to the colIocation approximation 

Eq. (7) can be used to update the grid point values of the approximate solution, ~ ~ , , , ,  from which the 

interpolant U k ( x )  is computed. 

The spatial derivative operation in (7) can be evaluated as the multiplication of the vector of flux 
values that are defined at the Lobatto points, by a derivative matrix, D. From (3a), we see that 

Thus, we write 

and the collocation approximation can be written in vector form as 

where 8' = [u:, u:/, ... U; -,,, ]T,F' = [F: F: ... FLIT. 

To compute the flux values, we first evaluate the interpolant F k ( x )  EP,-, at the Lobatto points. 
This can be computed by the multiplication of the vector of solution values in the Gauss grid times an 
interpolation matrix, I, i.e., 

Since the characteristics of (4) run left to right, we expect that extrapolation to the left to be an unstable 
procedure. Instead, we use the -. boundary . condition to define the j = 0 value on the furthest left 
subdomain. At subdomain interfaces, where two values gk- ' ( l ) ,Fk(0)  are available, we choose the 
value computed from the upwind, i.e., left, side of the interface.   he result is an upwind evaluated 
approximation at both the left boundary and at the interfaces. The fluxes Fj, are then computed from 
these solution values. 



Equation (10) is a system of ordinary differential equations that must be integrated in time to get the 
approximate solution values at the Gauss points. In principle, any common integration procedure can 
be used. We have chosen to use low storage Runge-Kutta methods that require only 2-N storage 
locations per subdomain. In particular, the third order 2-N storage method of Ref. 6 and a new fourth 
order method by Carpenter and Kennedy (private communication). 

The method can be easily extended to systems of hyperbolic equations of the form 

where Q and F are m-vectors. The approximation of the system follows that of the scalar equation, 
except for the treatment of boundary and interface conditions. 

At a subdomain interface between two subdomains k-1 and k, there are two values of the interpolated 
solution available, Qb-' and Q!. The flux computed at the interface must use these two values in such a 
way that waves are allowed to propagate freely through the interfaces. For constant coefficient linear 
problems, we can write 

where A* = A + IAI. The first term represents waves moving left to right, and the second waves moving 

right to left. To define an upwind approximation we choose Q;' for the right going components, and 

Qi for the left going components. Thus, at each interface, we compute the flux 

1 k - l  F;-1 = ~k = F(Q~-I,Q;) I ZA+Z- QN + ZA-Z-~Q: 
0 

Characteristic decompositions for the nonlinear case have been addressed extensively in the finite 
difference community (e.g. Ref. 7) 

Boundaries can be considered to be interfaces between the computed solution and the solution 
assumed to exist outside the computational region. Thus, at boundary points, we can compute the flux 
by 

where Q represents the exterior solution at the boundary. 



SOLUTIONS OF CATEGORY 1 PROBLEMS. 

A solution of the Category la  problem using the method described above is shown in Fig. 2. The 
calculation shown here was performed on the interval [-20,4201. That interval was subdivided into 22 
subdomains of equal length on which 20 Lobatto points were used. The fourth order low storage Runge- 
Kutta method was used for the time integration. The match between the exact and computed solutions 
are evidence of the excellent phase and dissipation properties of the method for smooth solutions. In 
fact, the resolution required by the problem specification is greater than that required to get an 
acceptable answer. Fig. 3 shows a plot of the maximum error as a function of the number of points per 
subdomain. As expected, the error decays exponentially fast. The box marks the error of 10-4 obtained 
for the resolution requested in the problem. 

-0.1 ~ * n ~ c ' ~ ~ ~ ~ ' ~ ~ ~ ~ ' ~ . . . J * s n . ' a ~ . . " " " " . . ~  
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X 

Fig. 2. Solution of Gaussian pulse at time t = 400. 
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PointslSubdomain 

Fig. 3 Error as a function of 
resolution for the Gaussian 
pulse of Fig. 2. 

- 

The second problem of Category 1 computed a long sinusoidal wavetrain. Results for time t-300 at 
the requested resolution are shown in Figures 4 and 5. These calculations used Again, we see excellent 
agreement between the exact and computed solutions for both wave numbers, with no evidence to 
graphical precision of phase and dissipation errors. The errors we do see, however, are from the Gibbs' 
phenomenon that results from the discontinuity in the first derivative at the front of the wave. It is 
possible to filter the oscillations at the front, but we have not done it here. 



Figure 5. Solution of the spherical wave Figure 6. Solution of the spherical wave 
problem, o = 7d4, t - 300. problem, o - 7d3, t - 300. 

SOLUTION OF THE CATEGORY 5 PROBLEM 

The Category 5 problem is flow in a quasi-one-dimensional nozzle. We solved the equations in the 
standard conservation form, using the density, momentum and energy equations (Ref. 7). The 
calculation presented here was performed with 19 subdomains of equal size and 16 Lobatto points per 
subdomain, which is at lower resolution than that required by the problem. At the interfaces, Van Leer's 
(Ref. 8) flux vector splitting was used to upwind the approximation. The inflow boundary condition was 
specified by computing the incoming Riemann invariant from the boundary values, and computing the 
outgoing Riemann invariant from the interpolation of the solution. Those Riemann invariants, plus the 
entropy give enough equations to determine the flux at the boundary. The time integration was done by 
the third order Runge-Kutta. 

Both steady and unsteady solutions were computed, and the difference between the two is shown in 
Fig. 6. Also plotted on Fig. 6 is the exact solution for the envelope of the acoustic wave. A comparison 
of the exit pressure and the exact linear wave solution is included in the overview by Tam. 
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Figure 7. Acoustic wave pattern for the Cat. 5 problem with the envelope of the exact solution. 
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SUMMARY 

A numerical method has been developed in order to address aeroacoustic problems modeled by the 
linearized Euler equations. A weak formulation of the equations leads to a time-dependent equation for the 
test functions. The basic solver being one dimensional, two dimensional problems are handled by 
directional splitting. This method shows low dissipation and dispersion errors. 

INTRODUCTION 

Since 1952, Aeroacoustics has been dominated by Lighthill's Acoustic Analogy (ref. 1,2). In this 
formulation, an inhomogeneous wave equation is derived from the exact equations of fluid motion. The 
wave operator accounts for the propagation of acoustic fluctuations in an external medium at rest. The 
flow effects are taken into account in the source term. The source term cannot be calculated without some 
assumptions and simplifications. If one choose a statistical approach, it is possible to model the sources 
of Lighthill's analogy from the knowledge of mean quantities given by codes using sfatistical models for 
Navier-Stokes equations (ref. 3,4). If one wants to solve directly the Lighthill equation, instantaneous 
solutions of the Navier-Stokes equations are needed (ref. 5). These two approaches can be applied to 
turbulent jet noise. The problem is more complicated for confined flows. In this case, the flow might be 
complex, and the best way for tackling the problem of sound generation and propagation is to solve the 
Euler linearized equations (ref. 6). It is known that accurate algorithms are needed in order to minimize 
dissipation and dispersion errors. 

We shall present in the next section the numerical method used. Results obtained for the proposed 
problems of category 1 and 4 are presented and discussed. 

THE NUMERICAL PROCEDURE 

Equations 

The flow is assumed to be isentropic. A propagation operator for the acoustic waves can be derived 
from the linearization of Euler's equations about a mean steady flow: 



Overbared quantities denote steady flow parameters. Two dimensional problems are handled by 
directional splitting.The set of equations (I) leads to the following one dimensional matrix equation: 

a zaG 2- + 
+ A + B  W + C = O  where W= 
at ax (2) 

The equations (I), (2) are hyperbolic and have to be solved on a segment [a,b] between the time steps 
tn and tn+l. Characteristics method is combined with a weak formulation of the equations (ref. 7). An - adjoint problem, where the unknowns are the test functions, is obtained . The weak formulation reads: 

r b  

1 
Discretization 

I 
The discretization of a scalar function is performed using linear finite elements and basic function gi(x): 

X l = a  )(2 X3 X4 Xm-b  

Disc reM scalar and vector fields read: 

rn r p i = [ ; ]  if i~ [l,m] 
p(x,t) = pi (I) gi (x) and $x,t)) = Wi(t) Gi (x) where (4) 

i =  I i =  1 ( p i = [  O ] i f i ~  [m+l,2m] 
gi-rn 

Application of the weak formulation 

The weak formulation (3) applied to the discretized field gives: 

Neglecting boundary and source terms, an integration by parts with respect to time and space yields: 
rb 



The second term can be set to zero with an appropriate choice of the test functions. 

Determination of test functions 

It is assumed that test and basic functions coincide at time tn+l. In order to determine the test functions 
at time t", the following problem has to be solved: 

The resolution is performed using a lagrangian transport of the test functions along the characteristics 
curves. Finally, (7) gives: 

b 

v k E [1,2m] e wi (tn+l, mi m& = El wi (tn) [ mi lytk (9) 
i =  1 i = 

The left hand side of (9) consists of a three diagonal linear system and the right hand side is known. 

PROBLEMS OF CATEGORY 1 

The aim of this category of problems is to test the dispersion and dissipation properties of a 
computation scheme. 

Problem 1 

The problem 1 consists in solving the following initial value problem: 

au au - + - = 0 over the domain -20 5 x 5 450 with initial condition t = 0, u = 0.5 exp [- In 2 (;r] 
at ax 
Figure 1 displays the time evolution of the gaussian pulse at t = 100,200,300,400. The mesh size is 

1 and the time step is 1. For this problem, the computation gives the exact solution. 

Problem 2 

The problem 2 consists in solving the spherical wave problem: 

au au 
- + - + - = 0 over the domain 5 5 r 1450 with initial condition t = 0, u = 0. 
at ar 

The boundary condition at r = 5 is: 

u=sinw with ( a ) o = f : , ( b ) ~ = :  

Figures 2 and 3 show the theoritical (solid line) and the numerical (dashed line) solutions at t = 200 
over the domain 100 S r  I I50 for the two frequency values. The mesh size is 1 and the time step is 1. 
No dispersion appears in the solutions. Some dissipation affects the solutions but it has a limited 
influence. 



PROBLEMS OF CATEGORY 4 

The aim of this category of problems is to test the effectiveness of wall boundary conditions. 

Problem 1 

The problem 1 deals with the reflection of an acoustic pulse off a wall in the presence of a uniform 
flow in semi-infinite space. One uses a computational domain -100 I x  -<IOU, 0 -<y 1200 and the wall 
is at y= 0. The flow Mach number Mx is 0.5. The initial condition is: 

Figures 4 and 5 display the pressure isolines at t = 45 and t = 100. The mesh size is 1 and the time step 
is 0.5. It appears that the numerical treatment of the wall boundary condition does not introduce any 
disturbances in the propagation process. 

Problem 2 

The problem 2 deals with the axisymrnetric radiation of an oscillating circular piston in a wall. The wall 
and the piston are at x=O and one uses a domain 0 5 x  I 100, 0 5 r  _< 100. The radius of the piston is 10 
and its velocity u is 10-4sin . The initial conditions are: t=O, p = u = v = p = 0 .  

Figure 6 shows the pressure isolines at half a period. The mesh size is 1 and the time step is 1. An 
axisyrnrnetric boundary condition is applied on the axis r = 0 . No oscillations are produced at the edge of 
the piston. 

CONCLUSION 

In thls paper, an original computational method for the resolution of the linearized Euler equations is 
described. The . applications - -  carried out on the proposed problems show low dispersion and dissipation 
errors. 

The aim of developing such numerical methods is to build computational codes in order to deal with 
the noise generation and propagation in complex flows. Additional work is necessary to obtain accurate 
time dependent informations about the turbulent sources. 
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Figure 1. Problem 1 of category 1: time history of the convection of a gaussian pulse. 
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Figure 2. Problem 2 of category 1: solution at t = 200 for o = 4 ' 



Figure 3. Problem 2 of categoxy 1: solution at t = 200 for a, = . 
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Figure 4. Problem 1 of category 4: pressure isolines at t = 45 . 
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Figure 5. Problem 1 of category 4: pressure isolines at t = 100 . 

Figure 6. Problem 2 of category 4: pressure isolines at half a period . 
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SUMMARY 

A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely 
a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space 
and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant 
number is set to one. 

INTRODUCTION 

Many different numerical schemes have been developed to solve problems such as those under consideration in 
this paper. These include the MacCormack finite difference scheme (the two-two scheme) which is second-order 
accurate in time and space, or the fourth-order extension of the MacCormick scheme by Gottlib and Turkell. Other 
approaches are the Dispersion- Relation- Preserving (DRP) schemes of Tam2 and Essentially Non- Oscillatory (ENO) 
schemes proposed by Shu and Osher3. All of these schemes have certain characteristics associated with them which 
influence the solutions. The characteristics of particular interest in this paper are dissipation and dispersion from 
the discretization process. Rather than test an existing scheme, such as the ones mentioned above, which have been 
developed for fluid problems, we have used the basic principles of finite differences to discretize the wave problems 
under consideration. The schemes developed here are interesting because although the time and space discretizations 
both exhibit dissipation and dispersion, when they are coupled by the partial differential equation, they yield an 
exact result. The reason for this is that the discretized equation has the same solution as the continuous equation 
if the Courant number is properly chosen. The existence of such schemes for simple wave equations suggests that it 
may be possible to develop similar schemes for more difficult equations. 

'Work performed while residing at ICASE under NASA contract number NAS1-19480. 



Plane Wave 

We consider first an initial value problem for the equation 

solved to the initial conditions 
- 0.5e[-'n2(f)aI . u(z, 0) = f (2) - 

The computational range in space is -20 5 z 5 450. The exact solution to thia initial value problem is 

Numerical Algorithm 

Finite differences were used to discretize the space and time derivatives in equation (1). Since u(z, t )  ie a function 
of both z and t, the mesh size for each variable will have to be specified. A second-order time derivative is 
approximated by a Taylor expansion of uyt1 and u;-', where u(iAx, nAt) - u?. Therefore, 

A similar Taylor expansion for the spatial derivative allows equation (1) to be discretized and solved for ult', 
namely; 

u;+' = ur"-' - U[U&~ - u?-,I. (5) 

Since u(x, t )  is a function of both z and t ,  the mesh size for each variable will have to be specified. This is 
accomplished by the Courant number, u, which is a ratio of the mesh sizes. For this problem, 

Initial Conditions 

Inspection of equation (5) suggests that it is second-order in time differences and therefore requires two initial 
conditions. The second initial condition ie found by using equation (I), 

Moreover, 
u t t ( ~ ,  0) = -u=~(z,  0) = ~zs(x,O) = fl'(z). 

Therefore a Taylor expansion of u p  using the above expressions yields the second condition, 

uft  = f (z - At). (9) 



Boundary Conditions 

Recall the grid spans -20 5 z < 450. To implement the algorithm, the solution at  z = -21 and z = 451 is 
required. The downstream boundary condition (the boundary at  the right edge of the spacial domain) is 
determined by substituting into equation (1) a time derivative approximated by a Taylor expansion backward in 
time and a spacial derivative expanded forward in space. This yields the boundary condition 

However at the upstream boundary, the solution must be specified as it enters the domain. By the initial condition 
of the problem, there is a wave entering our domain at the left boundary, given by 

Stability 

The Courant number, a, plays a crucial role in the stability of any algorithm developed; it is important to know 
what are the admissible values of a for which the solution is stable. This wae accomplished by eeparating the time 
from the spacial components in equation (5), following the method described by Strause4. The result ie that 
although the scheme ia stable for a 5 1, for an exact reeult the time mesh grid needs to lie on the characteristics, 
which in this problem, are along z = t. Therefore, Az = At, and a = 1. Since we were told in the problem 
statement that Az = 1, we must take At = 1. Note that this condition holds true for the spherical wave problem as 
well. 

Reeults and Discussion 

The numerical results from the plane wave problem are compared with the exact solution in Figure 1 for a = 1. 
The results show that an exact solution was obtained using this algorithm. Moreover, an approximation for this 
problem was also obtained for a = 0.5. Figure 2 shows the solution at a t = 100, which clearly shows deviations 
from the exact solution, which is a Gaussian pulse passing through the computational domain with time. This 
result illustrates the fact that, although such algorithm are exact when the proper Courant number is utilized, 
they rapidly deteriorate for other values of the Courant number. 

Spherical Wave 

The second problem concerns the spherical wave equation 

solved to the conditions 
u(r, 0) = 0 

and 
(13) 

u(5, t )  = siwt  (14) 
over the range 5 < z 5 450, and for w = 2 and w = 3 .  It is easy to prove that the exact solution to this problem is 



where U is the Heaviside Function. 

Numerical Algorithm 

The space and time derivatives are approximated by second-order finite differences, as  in the onedimensional 
problem. The term is approximated by the radial average of u(r, t), namely 

The discretized formula is therefore 

where the Courant number, u, is again defined to be 

Initial Conditions 

The initial condition given in equation (13) gives rise to the other required initial condition for implementation of 
the algorithm. By means of the procedure used in the plane wave problem, it can be shown that 

Boundary Conditions 

The numerical algorithm of equation (17) requires that the entrance and exit conditions on the spacial grid be 
defined. While one boundary condition u(5, t) is specified, an exit condition is also required. Following the 
procedure used in the plane wave problem, it can be shown that 

Results and Discussion 

The numerical results for w = 5 are plotted next to the exact solution in Figure 3 for the spherical wave problem. 
A comparison of the data shows that an exact solution was obtained for u = 1. Figure 4 shows the numerical and 
exact results for w = 3 for a = 1; again, exact results are obtained. 

Conclusions 

Numerical solutions that are formally exact have been obtained for two first-order hyperbolic problems. The finite 
difference discretization of both time and space provides a simple means of obtaining the solutions; the only 



requirement is the specification of the solution as it enters and exits the domain. The algorithms are exact for a 
Courant number of 1, but deteriorate for the Courant number less than one. 
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Figure 2. Numerical solution of u(z, 100) verses x. 



Figure 3. Comparison of numerical solution (1) and exact solution (2) of u(r, t) verses r for w = 5 at a) t = 100, 
b) t = 200, c) t = 300, d) t = 400. 
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SUMMARY 

This paper resents the lattice gas solution to the category 1 problems of the ICASE/LaRC 
Workshop on 8 enchmark Problems in Com utational Aeroacoustics, held 24-26 October 1994. 
The first and second problems were solved P or At = Ax = 1, and additionally the second 
problem was solved for At = 114 and Ax = 1/2. The results are striking: even for these lar e 
time and space grids the lattice gas numerical solutions are almost indistin uishab e 
from the analytical solutions. A simple bug in the Mathematicu code was foun % in the 

f 
solutions submitted for comparison, and the comparison plots shown at the end of this volume 
show the bug. An Appendix to the present paper shows an example lattice gas solution with 
and without the bug. 

INTRODUCTION 

Lattice gas methods are new simulation methods which have great potential in computational 
aeroacoustics, CAA. Lattice gas methods are tailor-made for massively parallel processing 
computers since only nearest neighbor communication is needed between grid points. This is in 
contrast to high order finite difference schemes whose stencils require communication between 
grid points separated by several spatial steps. 

Unlike finite difference methods, lattice gas methods exhibit zero anomalous dispersion and 
dissipation both for one-dimensional problems [I] and along all coordinate axes for 
multidimensional problems [2]. It is well known that one can attain such excellent agreement for 
the lane wave propagation problem (problem 1 of category 1) by using certain finite difference 
met R ods with At = Ax = 1. The lattice gas solutions generated for this Workshop, however, 
also show excellent agreement with the analytical solutions for the spherical wave problem for all 
source frequencies (problem 2 of category 1). 

This a er will first give a nutshell explanation of the underlying rinciples behind the lattice P gas metRorP, and then it will demonstrate the excellent results. All o the work was done using 
the symbolic manipulation pro am Mathematica [3]. A small bug was found in the results a submitted for comparison for t is Workshop. This bug is pointed out in an Ap endix. Although R beyond the scope of this paper, it is worth mentioning that the lattice gas met od already has 
been extended, separately, to problems with dissipation, nonlinearity, and mean flow [4]. 

METHOD 

Overview 

The lattice gas method is fundamentally different from finite differences in that a cellular 
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Figure 1. Comparison between lattice gas simulation and analytical result for problem 1 at t = 400. 

automaton approach is taken. To re resent acoustic waves, one uses finite amounts (or numbers) P of particles moving under specific ru es in a discrete spatial lattice. 

As is described elsewhere [I], the most important caveat in the lattice gas method for CAA is 
that the CFL number, c AtlAx, must be a ratio of integers. Throughout this paper the speed of 
sound c will equal unity. Then the CFL number for a simulation with At = 114 and Ax = 112 
will be taken as the ratio of integers 

Here the denominator, equal to 2 in this example, .gives the number of temporary values, called 
states, needed at every spatial position in the spatial lattice. The numerator, equal to 1, gives 
the number of states which are associated with propagation. The remaining states are associated 
with resting. Carefully definin which states propagate or rest ensures that information always 
is accounted for, and no data f alls "in between" nodal positions. 

Algorithms for the Benchmark Problems 

For problem one of cate ory one, solving the the plane wave advection equation, ! du/& + du/dx = 0, the fol owing lattice gas algorithm was used: 

where 6 is the Kronecker delta, vj = 1 if a state is a propagation state, 0 otherwise, and where 8 
is a circular shift operator. One finds the total field at each spatial position by summing over the 
states: 

For problem 2 the spherical advection equation, du/dt + u/r + duldr  = 0, is solved using the 
lattice gas algorithm 



Figure 2. Comparison between lattice gas and analytical for problem 2, 6 points/A, at t = 400. 

The only change from Eq. (2) is the factor of (r - l ) / r  that represents the decrease in the 
amplitude of u over a single spatial step. 

CATEGORY ONE RESULTS 

Problem One 

For brevity, only selected results for each simulation run will be shown. Usin a CFL = 1.0, 
At = 1.0, and Ax = 1.0, a blow up of the interestin part of the field at  the fina time of t = 400 B I 
is shown in Fig. 1. Here {vj) = (1) was used. The attice gas result, given by the round dots, is 
indistinguishable from the analytical result, given as a continuous line. Other CFL give similarly 
spectacular results. 

Problem Two 

Here only the 6 point/A results will be shown, as the 8 point/X results were all similar. For 
the 6 point/A cases, excellent results were obtained for any CFL being the ratio of integers. 
Figure 2 shows a result for CFL = 1.0 with At = 1.0 and Ax = 1.0 at the final time of t = 400. 
Again { y j )  = (1) was employed. The plot is scaled by multiplying the data by r. This blow up 
of the leadin portion of the spherical wavefront shows that the "kink" is propagated with zero 
dispersion. figure 3 further shows a 12 point/A case at the midpoint of the run, t = 200, for a 
CFL = 0.5 using At = 0.25 and Ax = 0.5. Here {vj) = {1,0) was used. 

CONCLUSIONS 

The lattice gas simulation results in this paper show that zero anomalous dispersion and 
dissipation can be achieved for any CFL that is the ratio of inte ers. Certainly the lattice gas 
method should be explored further for direct application to CA d . 



Figure 3. Comparison between lattice gas and analytical for a 12 point/X case at t = 200. 
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APPENDIX 

with a Mathematica 
shown at the end of 

= 0, 100, 200, 300, 
the solution was 

at the final time of t = 400, with the 
It is interestin to note that the 
dissipation or 8i spersion. 



Figure 4. Lattice gas solution (WITH BUG) for problem 2, 8 pointsjh, a t  t = 400. 

Figure 5. Lattice gas solution (WITHOUT BUG) for problem 2, 8 pointsjh, a t  t = 400. 
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SUMMARY 

The 7-point stencil Dispersion-Relation-Preserving scheme of Tam and Webb is used to solve 
all the six categories of the CAA benchmark problems. The purpose is to show that the scheme 
is capable of solving linear, as well as nonlinear aeroacoustics problems accurately. Nonlinearities, 
inevitably, lead to the generation of spurious short wave length numerical waves. Often, these 
spurious waves would overwhelm the entire numerical solution. In this work, the spurious waves 
are removed by the addition of artificial selective damping terms to the discretized equations. 
Category 3 problems are for testing radiation and outflow boundary conditions. In solving these 
problems, the radiation and outflow boundary conditions of Tam and Webb are used. These con- 
ditions are derived from the asymptotic solutions of the linearized Euler equations. Category 4 
problems involved solid walls. Here, the wall boundary conditions for high-order schemes of Tam 
and Dong are employed. These conditions require the use of one ghost value per boundary point 
per physical boundary condition. In the second problem of this category, the governing equa- 
tions, when written in cylindrical coordinates, are singulax along the axis of the radial coordinate. 
The proper boundary conditions at the axis are derived by applying the limiting process of r + 0 
to the governing equations. The Category 5 problem deals with the numerical noise issue. In the 
present approach, the time-independent mean flow solution is computed first. Once the residual 
drops to the machine noise level, the incident sound wave is turned on gradually. The solution is 
marched in time until a time-periodic state is reached. No exact solution is known for the Cate- 
gory 6 problem. Because of this, the problem is formulated in two totally different ways, first as 
a scattering problem then as a direct simulation problem. There is good agreement between the 
two numerical solutions. This offers confidence in the computed results. Both formulations are 
solved as initial value problems. As such, no Kutta condition is required at the trailing edge of 
the airfoil. 

1. INTRODUCTION 

All the six categories of benchmark problems are solved by using the 7-point stencil 
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Dispersion-Relation-Preserving (DRP) scheme (ref. 1). 

In wave propagation theory, it is known that the propagation characteristics of the waves, 
governed by a linear system of partial differential equations, are completely determined by the 
dispersion relations. Thus, to ensure that the characteristics of the waves of a system of finite 
difference equations are (nearly) identical to those of the partial differential equations, it is suffi- 
cient that both systems have (nearly) identical dispersion relations. The first step in constructing 
such dispersion-relation-preserving finite difference algorithms is to determine what is the wave 
number and angular frequency of a finite difference scheme. In ref. 1, Tam and Webb demon- 
strated how this can be done using Fourier-Laplace transforms. 

1.1. Wave Number of a Finite Difference Scheme 

Suppose a 7-point central difference is used to approximate the first derivative at the tth 
node of a grid with spacing Ax; i.e. 

Equation (1) is a special case of the following finite difference equation with x as a continuous 
variable, 

The Fourier transform of (2) is, 

where-denotes the Fourier transform and or is the Fourier wave number. By comparing the two 
sides of (3), it is evident that the quantity, 

is effectively the wave number of the finite difference scheme (2) or (1). Tam and Webb (ref. 1) 
suggested to choose coefficients aj so that (1) is accurate to order  AX)^ when expanded in Tay- 
lor series. The remaining unknown coefficient is chosen so that i~ is a close approximation of a 
over a wide band of wave numbers. This can be done by minimizing the integrated error 



Tam and Shen (ref. 2) recommended to set 7 = 1.1. The numerical values of aj determined this 
way are (see also ref. 3) 

Figure 1 shows the relation E Ax versus &Ax. Over the range of aAx up to 1.0 the curve is 
nearly the same as the straight line ZE = a. This is the range of wave number in which the finite 
difference scheme will behave almost identically to the original partial differential equation. 

a An 
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Figure 2. dz/da versus aAx for the DRP scheme, 
-. , and the sixth order standard central 
difference scheme, .......... . 

1.2. Angular Frequency of a Finite Difference Scheme 

For time discretization, ref. 1 proposed to use the following four levels marching scheme, 

where the superscript indicates the time level. The Laplace transform of (6) with zero initial con- 
dition (for nonzero initial condition, see ref. 1) yields 

where " represents Laplace transform and w is the angular frequency (transform variable). The - 
Laplace transform of the time derivative, i.e., the right side of (7), is equal to -iw f .  On compar- 



ing the two sides of (7), the quantity 

is identified as the effective angular frequency of the time marching scheme (6). The coefficients 
bj are determined by requiring (6) to be second order accurate. Tam and Webb found the re- 
maining coefficient by minimizing a weighted integral error which forces ij to be a good approxi- 
mation of w. The numerical values of B,  are 

For a given value of G At, ( 8 )  yields four roots of w At. In order that the scheme is numeri- 
cally stable, all the roots must have a negative imaginary part. Numerical investigations reveal 
that this is true as long as GAt is less than 0.4. Hence by choosing a sufficiently small At, the 
scheme is stable. A detailed discussion of the numerical stability of the DRP scheme is provided 
in ref. 1. 

1.3. Group Velocity and Numerical Dispersion 

Numerical dispersion is caused by the variation of the group velocity of the wave components 
of different wave numbers. For example, consider Category 1, Problem 1. The governing equa- 
tion and the finite difference equations of the DRP scheme are 

It is easy to find, by using Fourier-Laplace transforms, that the dispersion relation of (9) and fi- 
nite difference equations (10)  and ( 1 1 )  are 



Formally, therefore, the dispersion relations of the two systems are the same. 

The speed of propagation of a wave component of a particular wave number is given by the 
group velocity 2. For the DRP scheme, we have 2 = %/%. For small At, 2 z 1.0 so that 
the group velocity is directly related to the slope of the E(a) curve (figure 2). Over the wave 
number range of a Az < 0.9, 2 differs from unity by no more than 0.3%. With a group velocity 
deviation of 0.3%, the wave component will be misplaced by 1.2 mesh spacings after propagating 
a distance of 400 mesh spacings. This is not excessive numerical dispersion. With this dispersion 
error regarded as acceptable, the 7-point DRP scheme may be considered as adequate for wave 
propagation computation for waves with wavelengths longer than 7 mesh spacings (aAx 5 0.9). 

1.4. Numerical Dissipation 

Numerical dissipation can arise from spatial discretization or temporal discretization or both. 
The 7-point DRP scheme is a central difference scheme so that Z(a) is real for real cr. In this 
case, there is no numerical dissipation due to spatial discretization. On the other hand, for up- 
wind scheme ?? is complex for real a .  Now for a given set of governing equations, the angular fre- 
quency ~ ( w )  is related to ?? through the dispersion relation. Thus, if ?? is complex, G and hence 
w is complex as well. The numerical damping rate is given by Im(w) for the particular wave 
number. 

For a marching scheme such as (6), w is complex although a,  cl. and w are all real. The 
damping rate is again given by Im(w). This time, the origin of damping is temporal discretiza- 
tion. In general, by using a small At, Im(w) is reduced over the range of resolved frequencies. 
This is an effective way to reduce numerical damping. For the DRP scheme, a way to determine 
the size of the time step At for a prescribed amount of dissipation is discussed in ref. 1. 

1.5. The Order versus the Dispersion Relation of a Finite Difference Scheme 

In computational fluid dynamics, the order of a finite difference scheme is used as a yard- 
stick to measure the anticipated quality of the computed results. For instance, a fourth-order 
scheme is expected to provide more accurate results than a second-order scheme. For computa- 
tional aeroacoustics problems in which numerical dispersion, numerical dissipation errors and the 
accurate reproduction of the wave speeds are important, the order of a scheme is less relevant. 
The formal order of a scheme sheds no light on the accuracy of the wave speeds, anisotropy and 
other wave propagation characteristics. But these characteristics are contained in the dispersion 
relations of the scheme. Thus; it would be more beneficial to judge a numerical scheme through 
how good its dispersion relations approximate those of the original partial differential equations 
than to rely on the traditional formal order criterion. 



2. CATEGORY 1 PROBLEMS 

2.1. Problem 1 

The initial value problem is solved by the 7-point stencil DRP scheme; equations (9) and 
(10). The calculated waveform and the exact solution at t = 400 are shown in figure 3. Shown 
in this figure also are the numerical solutions using the standard fourth-order and sixth-order 
central difference schemes. The results of the standard schemes reveal appreciable numerical 
dispersion. There is much smaller dispersion error in the computed result of the DRP scheme 
even though the stencil size is the same as the sixth-order scheme. For the given initial condi- 
tion Fourier transform analysis indicates that a 9-point stencil DRP scheme is needed to reduce 
the effect of dispersion to a not-easily-observable level at t = 400. 
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2.2. Problem 2 

r = 5 

Figure 4. Ghost point and boundary points at -5 

This initial boundary value problem is again solved by the 7-point stencil DRP scheme. 
There is a nonhomogeneous boundary condition at r = 5. To ensure that the discretized govern- 
ing equation, as well as the boundary conditions, are satisfied at r = 5, the method of ghost point 
(ref. 4) is employed. Figure 4 shows the configuration of the ghost point and the two boundary 
points where backward difference stencils (see ref. 3) are used to approximate the spatial deriva- 
t ive. 

The computed results for case (a) with w = f at t = 400 are shown in figure 5 and 6. Shown 
in dotted lines are the exact solution. Overall, there is good agreement between the numerical 
and the exact solution as can be seen in figure 5. Near the wavefront in figure 6, the agreement 



is not as good due to dispersion effect. The computed results for case (b) with w = at t = 400 
are shown in figures 7 and 8. The spatial resolution as prescribed by the benchmark problem is 6 
mesh points per wavelength. This is near the resolution limit (with acceptable dispersion error) 
of the 7-point stencil DRP scheme. The agreement between the numerical and the exact solution 
is comparable to that of case (a). 
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Figure 5. Spotiol distribution of waves at t = 400, o = n/4. Figure 6. Spotiol distribution of waves at t = 100, w = f i  
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figure 7. Spotiol distribution of woves ot t = 400, o = 4 3 .  Figure 8. Spotiol distribution of waves ot t = 400, w = n/J. 

3. CATEGORY 2 PROBLEMS 

3.1. Artificial Selective Damping 

We use the 7-point stencil DRP scheme to solve both problems of this category. It is known 
that during the propagation of a strong acoustic pulse the nonlinear steepening process causes 



high-order finite difference scheme to generate spurious spatial oscillations. When unchecked, 
these spurious oscillations would overwhelm the entire numerical solution, The origin of these 
spurious spatial oscillations has recently been studied by Tam and Shen (ref. 2). They suggest to 
eliminate these oscillations by the addition of artificial selective damping terms (see ref. 5). Here 
our computation follows essentially the method of ref. 2. 

The discretized one-dimensional Euler equations written in conservation form according to 
the DRP scheme are 

The last term on the right side of (14) represents the variable artificial damping. .-, The coefficients - 

d, are given in ref. 2 and 3. uSt,,il = lu,, - uminl is the difference between.the maximum 
and the minimum velocity in the 7-point stencil. R, is the artificial Reynolds number. We use 
R, = 0.05 as suggested by numerical experiments. 

3.2. Problem 1, Nonlinear Acoustic Pulse 

The initial value problem was solved using the DRP algorithm (13) and (14). Figures 9 and 
10 show the acoustic pulse density and velocity waveforms at time t = 200. At this time a shock 
has been formed at the front of the pulse. Also showing in these figures (in dotted line) are the 
approximate analytical solution using the nonlinear simple wave equation. The location of the 
shock is determined by the equal area rule of Whitham (ref. 6). According to the approximate 
analytical solution, at t = 200, the pulse has already become triangular in shape. This solution 
matches well with the numerical result. The equal area rule gives a slower shock. The shock in 
the numerical solution is smeared out to about 5 mesh spacings. If a sharper shock is desired, a 
scheme specifically designed for shock capturing should be used. Such a scheme may reduce the 
shock thickness to 3 mesh spacings but at substantial additional computation costs. 
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Figure 9. Density distribution 01 1 = 200 
X 

Figure 10. Velocity distribution 01 t = 200. 

3.3. Problern 2, Tlle Shock Tube Problem 

Finite difference equations (13) ant1 (14) of the DRP scheine are used to generate a sliock 
tube solution numerically using tlie pjiven i~iitial conditions. Computationally, there is no differ- 
ence between the nonlinear acoustic pulse problem above and the present sliock tube problem. 
Oilly the initial conditioils are different. 
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Figure 11. Density distribution ot t = 60. 
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x Figure 13. Velocity distribution near the pmpogoting 
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Figure 11 shows a comparison between the computed density profile and the standard shock 
tube solution at t = 60. Overall, there is good agreement. The contact discontinuity of the nu- 
merical solution is, however, not very sharp. It spreads over a considerable distance. Figure 12 
shows the corresponding computed velocity profile. There is, again, good overall agreement. The 
DRP scheme is a high-order finite difference algorithm. It cannot faithfully reproduce the dis- 
continuities in the computed variable, such as shocks and contact discontinuities. In addition, it 
cannot faithfully reproduce discontinuities of the first derivatives of the solution variables, such 
as the first derivative discontinuities that occur at the beginning and the end of the expansion 
fan. Figure 13 is an enlarged profile of the shock front. The shock is smeared out over 5 mesh 
spacings as in Problem 1 above. 

4. CATEGORY 3 PROBLEMS 

4.1. Formulation of Radiation and Outflow Boundary Conditions 

Broadly speaking, there are three general ways of formulating radiation and outflow bound- 
ary conditions. They are, 
1. By the use of characteristics, 
2. By the use of asymptotic solutions, 
3. By the addition of an absorbing layer outside the computation domain. 

In one-dimensional problems, the solution of the Euler equations can be constructed by 
means of the three sets of characteristics of the equations. The information concerning the so- 
lution are transmitted in space and time by these characteristics. Thus, at the boundary of the 
computation domain the characteristics provide a natural way to formulate the radiation and 
outflow boundary conditions. Radiation and outflow boundary conditions developed this way 



have the advantage that they are valid even for nodinear waves. One important drawback for 
characteristics based radiation and outflow boundary conditions is that there are no true charac- 
teristics in two- or three-dimensional problems. As an approximation, some investigators ignore 
the multi-dimensionality of the problem near the boundary of the computation domain. They 
treat the problem as if it is one-dimensional with the distance normal to the boundary as the 
only coordinate variable. This approximation has been found to lead to significant reflections 
when the wave incident angle is oblique to the boundary and also when there is a strong mean 
flow tangential to the boundary. 

Absorbing layers are, by and large, empirical in nature. In general, it is difficult, if not im- 
possible, to assess the error and reflection characteristics of such layers. 

In this paper, we use the radiation and outflow boundary conditions derived from the asymp- 
totic solutions of the linearized Euler equations (ref. 1). Here the asymptotic solutions form the 
extension of the numerical solution; all the way to the far-field outside the computation domain. 
With respect to a polar coordinate system (2-dimensional problems) with coordinates (r, 8) cen- 
tered at the center of the computation domain, the radiation boundary conditions given in ref. 1 
may be written in the form 

where V(0)  = [M cos 8 + (1 - M Z  sin2 8) $1. M is the mean flow Mach number and 8 is mea- 
sured from the direction of the mean flow. (15) is applied to boundary regions without an out- 
flow where the outgoing disturbances are acoustic waves only. 

In regions with outflow, the outgoing disturbances consist of a combination of gcoustic, en- 
tropy and vorticity waves. The latter two types of waves are convected out by the mean flow. 
Tam and Webb (ref. 1) derived the following outflow boundary conditions that are used in the 
present computation. 

4.2. Problem 1 

The 7-point stencil DRP scheme is used to obtain the solution of the initial value problem. 



The discretized linearized Euler equations and radiation and outflow boundary conditions are 
given in ref. 1. In this problem, the mean flow is parallel to the x-direction. As a result, radia- 
tion boundary conditions are imposed on the left, top and bottom boundaries of the computation 
domain. At the right boundary, there is outflow. Here, outflow boundary condition (16) is used. 

Figure 14 shows the computed density contours at t = 30. The exact solution is shown in 
dotted lines. But the dotted lines cannot be seen because the difference between the numerical 
and the exact solution is less than the thickness of the lines. Figure 15 gives the computed den- 
sity waveform and the exact solution at t = 30 along the line y = 0. At this time, the acoustic 
pulse and the entropy pulse are separated from each other. Figures 16 and 17 show the com- 
puted density contours and waveform along y = 0 at t = 60. At this time, the acoustic pulse 
catches up and merges with the entropy pulse. The merged pulse leaves the right boundary of 
the computation domain as a single entity. By examining the numerical solution at later times, 
we find no significant reflections off the boundaries of the computation domain. 

Figure IJ. Density contours at t = 30. 
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x 
Figure 16. Density contours at t = 60. 
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Figure 15. Density waveform along the x-axis of t = 30. 

x 
Figure V. Density waveform along the x-axis at t = 60. 



4.3. Problem 2 

This problem can be made identical to Problem 1 by applying a coordinate rotation of 45 de- 
grees. In this case, radiation boundary conditions are imposed at the bottom and left boundaries 
of the computation domain where there is an inflow. Outflow boundary conditions are imposed 
on the top and right side of the computation domain. 

Figures 18 and 19 show the computed density contours and the waveform along the line 
x = y together with the exact solution at t = 80. Again, the difference between the computed 
and the exact contours are too small to be noticed. At t = 80, the entropy pulse and the acoustic 
wave pulse are about to merge and then exit through the upper right-hand corner of the compu- 
tation domain. A careful examination of the computed results at different time levels reveals that 
no significant reflection of waves occurs at the boundaries. Based on the above and other ex- 
amples, we believe that radiation boundary condition (15) and outflow boundary condition (16) 
are almost transparent to outgoing disturbances provided they are in the resolved wave number 
range. 

X s 
Figure 18. Density contours ot t = 80. Figure 19. Density waveform olong the x=y line ot t = 80. 

5. CATEGORY 4 PROBLEMS 

5.1. Wall Boundary Conditions for High-Order Schemes 

Unless all the first-order derivatives of the Euler equations are approximated by first-order 
finite difference, the order of the resulting finite difference equations is higher than that of the 
original partial differential equations. When this is the case, the finite difference equations will 
support solutions that have no counterpart in the original partial differential equations. Those 



are spurious solutions. They can be excited by initial conditions or generated at the surface 
of discontinuity such as at a wall. Also, with higher-order governing equations, the number of 
boundary conditions required for a unique solution is larger. The set of wall boundary condi- 
tions, appropriate for the Euler equations, is no longer sufficient. For high-order schemes, we, 
therefore, need a new set of wall boundary conditions that would provide a unique solution with- 
out producing spurious waves. Here the wall boundary conditions of ref. 4, deveIoped with the 
above reasonings in mind, are used. 

5.2. Problem 1, Reflection by a Flat Plate 

This problem was considered in ref. 4. To ensure that the solution of the finite difference 
scheme satisfied the governing equations as well as the boundary condition at the boundary 
points on the surface of the plate, a set of wall boundary conditions based on the use of ghost 
values was developed in ref. 4. In this reference, the qualities of these wall boundary conditions 
were examined quantitatively through an analysis of the problem of a plane acoustic wave train 
incident on a plane wall. The results indicated that only an insignificant amount of spurious nu- 
merical waves was generated. Further, the numerical boundary layer adjacent to the wall, formed 
by the spatially damped spurious numerical waves of the computation scheme, was no more than 
two mesh points thick. This strongly suggested that the proposed wall boundary conditions 
could yield high-quality numerical solution. In this work, the wall boundary treatment of ref. 4 
is used. Figures 20 and 21 show the computed pressure contours at t = 30 and 60. By compar- 
ing the contour patterns of the two figures, the mean flow convection effect becomes evident. To 
an accuracy corresponding to the thickness of the contour lines shown, the computed results are 
identical to the exact solution. 

X 
Fipurs 21. Pressure contours at t = 60. 
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Figurn 20. Ressure contours at t = 30. 



5.3. Problem 2, Oscillating Piston in a Wall 

The problem is axisymmetric. Here it is solved as a two-dimensional problem in the r-x- 
plane where (r, x, 8) are the cylindrical coordinates with origin centered at the center of the pis- 
ton. The governing equations are 

The boundary condition on the wall surface, x = 0, is 

x > R  
E sin wt ,  x < R  

where R is the radius of the piston. 

At the axis of symmetry, r = 0, equation (19) is singular and should not be used. We note 
that as r -r 0, v + 0 so that f -+ 3. Thus, for the mesh points lying on the axis of symmetry, 
the following equation is used in lieu of (19). 

The present problem is three-dimensional. Radiation boundary condition (15) is not appro- 
priate. The three-dimensional version of (15) applicable to this problem is 

where R = (x2 + r2 )3 .  

We solve equations (17), (18) and (19) by the 7-point stencil DRP scheme. Figure 22 shows 
the computation domain. Along the axis of symmetry (17), (18) and (20) are used. On the top 
and right boundary regions radiation boundary condition (21) is used. Below the wall and pis- 
ton surface, a row of ghost points, each with a single ghost value pp,-l ( l  = 0,1, . . . , loo), are 
included in the computation. The ghost values are chosen so that the wall and piston surface 
boundary conditions are satisfied as in Category 1, Problem 2 and Category 4, Problem 1. The 
mesh point at l = 10, m = 0 (1, m are the indices in the r- and x-directions) corresponds to 
the edge of the piston. Here, the boundary condition is discontinuous. In the computation, we 
choose to set u to be equal to the mean value at this location. 
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Figure 22. The computation domain and boundary conditions 
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Figure 25. Schemetic diagram of Ihe compufation domain 
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Figure 24. Ressure distribution along the axis of the piston 
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In this problem, because of the use of equation (20) instead of (19) at r = 0, there is an 
abrupt change in the governing finite difference equations between the first two columns of mesh 
points on the left side of the computation domain. In addition, there is a rapid change in the 
boundary condition at the edge of the piston. Short wave length spurious numerical waves are of- 
ten generated in these regions of rapid changes. This was noticed immediately in our trial runs. 
To eliminate these waves, artificial damping terms are added to the DRP scheme as discussed in 
section 3. An artificial mesh Reynolds number, R = (Ax)*, "? of 5 is used in the numerical com- 
putation. With the inclusion of the artificial selective damplng terms, spurious waves are effec- 
tively eliminated in the numerical solution. 

Figure 23 shows the computed zero-pressure contours (p = 0) at one-quarter period of a cy- 
cle. There is excellent agreement with the exact solution. Figure 24 shows the computed pressure 
waveform along the axis of the piston at each quarter cycle. As can be seen, the agreement with 
the exact solution is very good. It is believed that for problems of this kind, the D R P  scheme, 



together with the wall boundary condition of ref. 4, can provide very accurate time-domain solu- 
tions. 

6. CATEGORY 5, THE NOZZLE PROBLEM 

6.1. Formulation 

The one-dimensional nozzle flow equations are solved by the 7-point stencil DRP scheme. At 
the left boundary of the computation domain, see figure 25, radiation boundary conditions, which 
allow the incoming sound wave to propagate into the computation domain and at the same time 
permit the reflected waves to leave the computation domain, are to be imposed. Here, these ra- 
diation boundary conditions are developed from the asymptotic solutions of the governing equa- 
tions. 

To the left of the computation domain, the duct has a constant area. In this region, the gov- 
erning equations for small amplitude disturbances are 

where M is the mean flow Mach number. The general solution of (22)) which is valid outside the 
computation domain all the way to x -+ -m, consists of three arbitrary functions, F, G and H. 
It may be written in the form, 

In (13)) F represents the incoming acoustic wave. To match the given incoming wave, we let 

G represents an incoming entropy wave that is zero for the present problem. H represents the 
reflected acoustic waves that is unknown until after the problem is solved. By eliminating H 
through differentiation, we derive the following nonhomogeneous radiation boundary condition 



This equation is used to update the solution at the left boundary points of the computation do- 
main. 

The outflow at the right boundary is supersonic. All the disturbances will be convected out 
of the computation domain automatically. No special outflow boundary condition is needed. The 
spatial derivatives of the governing equations are discretized using backward difference stencils at 
the right boundary points. 

6.2. Steady State Solution 

A two-step procedure is used to compute the transmitted sound waves. The first step in- 
volves the computation of the mean flow. For this purpose, the right side of (24) is set equal 
to zero. To speed up the computation, the exact analytical solution is used the initial condi- 
tion. But this is not the solution of the finite difference equations of the DRP scheme. The differ- 
ence between the exact and the numerical solution contributes to the initial residuals. The initial 
residual (based on infinite norm) is of the order of This is shown in figure 26. As the com- 
putation proceeds in time the residual decreases gradually. But the rate of decrease is very slow. 
Figure 26 shows the time history of the convergence of the numerical solution to the steady state. 

Numkr of Ifemtions 
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figure 27. Time variation of the pressure fidd of the 
transmitted ocoustic wove ot the nozzle dt. 

To accelerate the rate of convergence, we use the technique of "canceling-the-residual" dis- 
cussed in ref. 7. In this method, small source terms are added to the right side of the govern- 
ing equations to momentarily reduce the residual to zero. But when the computation resumes, 
the residual in the next time step is not completely zero. However, because of the added source 
terms, it is usually several orders of magnitude smaller than before. In figure 26, the two abrupt 
decreases in the residual is due to the application of this accelerated convergence technique. Of 
course, when small source terms are added to the finite difference equations, the steady state so- 
lution is slightly changed. But the exact numerical solution differs from the exact analytical so- 



lution generally by the order of Thus, as long as the added source terms are of the order 
or smaller, the change in the numerical steady state solution is of no consequence to the 

overall accuracy of the result. In the present computation, the steady state solution has a numer- 
ical noise level limited only by the machine truncation error as shown in figure 26. 

6.3. Numerical Solution 

After the numerical solution settles down to a steady state condition (with low numerical 
noise level), the right-hand side of equation 24 is turned on slowly at the boundary points on the 
left. This allows the incoming acoustic waves to enter the computation domain. The numerical 
computation continues untiI a time-periodic state is attained. The time variation of the com- 
puted pressure field of the transmitted acoustic waves at the nozzle exit is shown in figure 27. 
Plotted in this figure also is the exact solution. There appears to be very little difference between 
the numerical and the exact solution. This good agreement indicates that although the sound 
wave is many orders of magnitude smaller than the mean flow, it can be directly computed with 
high accuracy by the DRP scheme. 

7. CATEGORY 6, GUST-BLADE INTERACTION PROBLEM 

We formulate the mathematical problem in two entirely different ways. Both problems are 
solved by the 7-point stencil DRP scheme. The good agreement between the two solutions as- 
sures that the numerical solution is correct. 

7.1. Gust-Blade Problem as a Scattering Problem 

We will regard the gust as the incident disturbance. When impinging on the flat plate, a 
scattered field of acoustic and vorticity waves is generated. The total disturbance field near the 
plate is the sum of the incident disturbance and the scattered pressure and velocity fluctuations. 
Let the scattered field be denoted by a prime then 

On substituting (25) into the linearized momentum and energy equations, the governing equa- 
tions for the scattered field are found that may be written as 



The wall boundary condition on the plate becomes 

To allow the scattered field to be turned on gradually, we have added the last factor to the right 
side of (27). This factor becomes unity when t is much larger than T. 

The problem is antisymmetric with respect to the plate so that we may use a reduced com- 
putation domain as shown in figure 28. On the left and top boundaries, the radiation boundary 
condition (15) is imposed. On the right boundary, the outflow boundary condition (16) is im- 
posed. On the bottom boundary, (27) is to be satisfied over the region of the flat plate. This is 
enforced by adding a row of ghost points below the plate. For the rest of the boundary, the anti- 
symmetric conditions 

P (x , -Y ,~)  = -P(x,Y,~)  

4 2 ,  -9, t) = -u(x, Y, t)  (28) 

vl(x, -9,t) = vl(x, Y, t) 

are used. The present problem is solved as an initial value problem (zero initial disturbances) so 
that no Kut t a condition is required. 

one row of ghos~ points 

Figure 28. Computation domain for the scattered field. 
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Figure 29. Computation domain for direct simulation. 

At the leading and trailing edge of the plate there is an abrupt change in the boundary con- 
dition. This inevitably results in the generation of spurious numerical waves. To eliminate these 
waves, artificial selective damping terms are added to the DRP scheme. Since artificial damping 
is needed primarily around the plate, the mesh Reynolds number is taken to be for all mesh 
points lying in the rectangular region within 3 mesh points from the plate. Far away from the 
plate, a mesh Reynolds number of 10 is found to be adequate. A Gaussian distribution with a 
half-width of 3 mesh points is used for transition from the former value of mesh Reynolds num- 
ber to the latter. 



7.2. Direct Simulation of Gust-Blade Interaction 

Instead of solving for the scattered field, one can compute the total field directly. The gov- 
erning equations are the linearized momentum and energy equations that are the same as (26) 
except that v' is to be replaced by v. For the total field, the boundary conditions are 

at the boundaries of the computation domain away from the plate and 

at the wall. 

Now at the left and top boundaries of the computation domain, we have a combination of 
the inflow gust disturbance given by (29) and the radiated sound field. On using the asymptotic 
solution of ref. 1 to represent the outgoing acoustic field, the velocity and pressure field in the 
boundary region may be written in the form 

where V(B) = [M cos 0 + (1 - M2 sin2 0) f 1. (r, 0) are the polar coordinates with origin at the 
center of the plate. The unknown function F of the outgoing acoustic waves may be eliminated 
by differentiation. This gives the nonhomogeneous radiation boundary condition 

cos 0 1 + v(e )  a t  dr  + ) 2r [,] = {o.l: (- - -) cos [ E  (z - t ) ]  
M V(@) 8 M 

Figure 29 shows the computation domain and the various boundary conditions. Nonhomo- 
geneous radiation boundary condition (32) is to be satisfied at the left and upper boundary of 
the computation domain. The nonhomogeneous terms are turned on slowly by multiplying them 
with the factor (1 - e - S ) .  On the outflow region, the gust solution satisfies the outflow bound- 
ary condition identically. Thus, the same homogeneous outflow boundary conditions as before are 
applied to the right boundary region of the computation domain. Antisymmetry condition (28) 
is, again, used at the bottom boundary outside the flat plate. Artificial selective damping is also 
required around the flat plate. The same mesh Reynolds number distribution as discussed above 
is used. 



7.3. Numerical Results 

In implementing the second formulation, it was found, because of the use of backward dif- 
ference stencil in the boundary region, low intensity acoustic waves were radiated out from the 
upper left corner of the computation domain. This spurious source of noise caused a slight con- ! 

tamination of the numerical results. The first formulation was implemented by 2. Dong. In this 
case, the nonhomogeneities were on the plate boundary condition. No spurious source of noise 
was created. i 

Y 
f7gum 30. Distr~btion d mdioted sound intensity dong x=% Figvre 31. Distribution d mdioted soundintens;ty dong yo95 

Figure 30 shows the calculated distribution of radiated sound intensity along the line x = 95. 
Figure 31 and 32 show the corresponding distribution along the lines y = 95 and x = -95, re- 
spectively. In spite of the fact that the computed results of the second formulation are slightly 
contaminated by spurious numerical noise, there is good agreement between the two sets of re- 
sults. All the local directions of peak noise radiation are in agreement with each other. Time 



constraint has prevented us from developing a counter-measure to eliminate the numerical noise. 
We believe that had we been able to suppress the spurious noise source at the upper left corner, 
the two formulations would give identical results indicating strongly that the computed results 
are correct. 
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THE CONSTRUCTION OF HIGH-ACCURACY SCHEMES FOR ACOUSTIC 
EQUATIONS 

Lei Tang and James D. Baeder 
University of Maryland 

College Park, MD 

SUMMARY 

An accuracy analysis of various high order schemes is performed from an interpolation 
point of view. The analysis indicates that classical high order finite difference schemes, which 
use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for 
time-dependent problems. Thus, some schemes improve their numerical accuracy within grid 
cells by the near-minimax approximation method, but their practical significance is degraded by 
maintaining the same stencil as classical schemes. One-step methods in space discretization, 
which use piecewise polynomial interpolation and involve data at only two points, can generate a 
uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more 
accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedo- 
particle (CIP) scheme is recommended for computational acoustics. 

INTRODUCTION 

The emergence of computational acoustics as a discipline has focused more attention on 
the numerical accuracy requirements for time-dependent problems, which classical finite 
difference schemes seem to satisfy poorly. Thus, several improved schemes have been proposed. 
Two typical examples of them are: the Dispersion-Relation Preserving (DRP) finite difference 
schcmes[ll, and the compact finite difference schemes with spectral-like resolution[21, which 
indeed generate a higher accuracy within grid cells. Unfortunately, they have the same 
computational costs as classical high order schemes. Since the ultimate goal of applying a high 
accuracy scheme is to reduce the necessary number of grid points, and therefore improve 
numerical efficiency, these improved schemes are not much better than classical schemes in 
practice. 

This paper analyzes various high order schemes from an interpolation point of view in 
order to determine their suitability for time-dependent problems. The analysis shows that the 
accuracy deficiency of classical high order schemes results from the application of polynomial 
interpolation. If one applies one-step methods in space discretization, which use piecewise 
polynomial interpolation, then high computational cost can be avoided. Numerical results 
indicate that third order one-step schemes can satisfy the accuracy requirements of computational 
acoustics. In particular, the Cubic-Interpolated Psuedo-particle (CIP) scheme[3] is recommended 
for computational acoustics, which is the most efficient third-order accuracy scheme. 



At last, note that in order to clearly indicate the role of interpolation in the numerical 
solution of differential equations, only the linear convection equation 

is discussed in this paper. 

THE ANALYSIS OF CLASSICAL HIGH ORDER SCHEMES 

Standard textbooks (e.g. ref. [4]) indicate two approaches to construct high order finite 
difference schemes in space: ex licit and implicit formulas. If one considers the approximation 
of the first order derivative au/ if x at the ith node of a uniform grid of spacing Ax, and use the 
nodal values of u and a d a x  at the M nodes to the right and N nodes to the left of the point i, then 
the corresponding finite difference scheme is 

where a, and 4 are constants, and not all aj are zero, and Po # 0. The scheme (2.1) is explicit 
if 4 = 0, and implicit (or compact) if P, # 0 when j # 0. 

Expanding both sides of (2.1) in Taylor series of Ax, e.g. 

the second order central scheme for ( u , ) ~  is 
- Ui+,  - UiWL 1 - -(um),AX2 +*.. x i  2k 6 (2.2) 

Notice that the second order of such a scheme does not come from accurately evaluating the 
second order derivative term in the Taylor series expansions of the solution, but from balancing 
the contribution of second order derivative terms from different points i - 1 and i + 1 at a certain 
grid point i. Obviously, such balances occur only at nodes. Thus, the second order accuracy of 
such a scheme only holds at nodes, not within the grid cells. Furthermore, if we classify our 
solutions into two categories: low curvature components (e-g. sin(x/lO)), and high curvature 
components (e.g. sin(lOx)), then such balances would have a significant influence on the 
numerical accuracy within grid cells only for high curvature components. 

For time independent problems, the accuracy deficiency of such a scheme does not 
appear explicitly because the nodal values of the solution are fixed. One is only interested in the 
nodal values of the solution. So "the quality of CFD schemes is generally ranked by the order of 
(Taylor series) tnmcation"[l]. However, for time dependent problems, this criterion is  not 
sufficient. For example, the exact solution of the linear convection equation (1.1) is U(x - at), 

and if U,"(x) represents the solution function over the grid cell [xi-,,xi] at n time step, the nodal 
value of solution at the ith node and n+ 1 time step would be 



u:+l = Uin (xi - A t )  (2.3) 
So, if local CFL number C( = A t l h x  is less than one, ui"+" would be equal to the solution value 

at a certain interior point within the grid cell [xi-, ,xi] at n time step, i.e. U,!'((r), where 
xi-, < (r = xi -/Ax < xi 

Therefore, different from time independent problems, one is now interested in the accuracy of a 
numerical scheme over the whole grid cell, not only at nodes. This motivates further examining 
finite difference schemes from an interpolation point of view. 

A classical finite difference scheme is equivalent to locally representing the solution by a 
Taylor polynomial. The truncation error of a nth order Taylor polynomial p, ( x )  is 

e,(x) = 4 x 1  - p, ( x )  = 
( x  - xi )(x - x z )  ...( x - x,) 

n ! (u, ),={ 

XI  c x2 c... < x, (2.4) 
where x, < 6 < x,. For low curvature components, the truncation error is very small because of 
( u ~ ) , ~ {  << 1. Also the behavior of the polynomial 

$ ~ ( x ) = ( x - x 1 ) ( x - x Z )  ...( x-x , )  (2.5) 
is not important. Thus, classical high order schemes are still suitable for time-dependent low- 
curvature solutions. 

However, for high curvature components, the behavior of the polynomial @,,(x) 
significantly influences the truncation error e,(x) because of a large (u,),.{. Consider the 
standard sixth order central scheme for (u , )~  : 

1 
( u ~ ) ~  = - ( - u ~ - ~  + 9 ~ ~ - ~  - 4 5 ~ ~ - ~  + 45ui+" - + Ui+3) 60Ax (2.6) 

The solution is approximated locally in the range xi-, 5 x S xi+, by a polynomial p6 ( x )  : 

p 6 ( ~ )  =ax6 + bxS+cx4 +h3 +ex2 + f x + g  
with p6(xh j )  = ui+j, j=-3, -2. -1,0, 1,2,3.  The truncation error of this approximation is 

e6 ( x )  = U ( X )  - p6 (x) = (x-xj-]) . .* (x-xi+3)(u ) 
7! 7 x  x=C 

Fig. 1 The distribution of @7 ( x )  



where xi-, S 6 S xi+, , Fig. 1 is a plot of &(x): 
@7(~)  = (X -~i-~) . . - (x  - xi+3) (2.8) 

which shows that for large values of n, say, 1127, the values of @,,(x) vary greatly throughout the 
interval xi-, I x 5 xi+,. The values in [X~-~,X~-,]  and [xi+,,xi+,] become much larger than the 
values in the middle of [xi-, ,xi+,]. As n increases, this disparity also increases[5]. 

Theorem 2.1 For each n, let p, (x) be the polynomial interpolant to f (x) = rim, a E %, 
in the points 0, 1, ..., n. Then 

If - ~,,l,~,., -+ 0 as n + - 
if and only if I a l l  lc/3.[6] 

This means that increasing the order of a Taylor polynomial interpolant does not necessarily 
increase the interpolation accuracy, and at least six points per wavelength are required for a good 
interpolation of solution. Further, repeatedly applying the standard sixth order central scheme 
(2.6) on the intervals [X~,X~],[X,,X~], ...,I xNN6,xN], there are six eigenmodes within each ce11[7]. 
The large truncation errors in [ x ~ - ~ , x ~ - ~ ]  and [ x ~ + ~ , x ~ + ~ ]  will appear as spurious roots. 

So, for time-dependent high-curvature components which are typical for computational 
acoustics, if one reduces the number of grid points to make less points than this critical value per 
wavelength for classical finite difference method, then "a consistent, stable, and convergent high 
order scheme does not guarantee a good quality numerical wave so lu t i od~~~] .  

THE NEAR-MINIMAX APPROXIMATION METHODS 

The last section demonstrates that for time-dependent high-curvature solutions, it is 
necessary to reduce #,(x) within grid cells. Naturally, the first approach considered is the near- 
minimax approximation methods, i.e. applying a polynomial interpolant at the Chebyshev points. 

Consider once more the sixth order central scheme (2.6). Equivalent to (2.8), 
#,(x) = (x + 3Ax)(x + 2 h )  ...( x - 3hx) (-3Ax I x 5 3Ax) 

If we set b = 1 / 3, then the interpolation points are: 
0, f1/3 ,  f 2 / 3 ,  f 1 (3.1) 

Theorem 3.1 Let n2l be an integer, and consider all possible monic polynomials of 
degree n. Then the degree n monic polynomial with the smallest maximum on [-1,1] is 
the modified Chebyshev polynomial q (x ) ,  and its maximum value on [-1,1] is 
1/2"-' .PI  

So, the smallest possible value of max h ( ~ ) (  can be attained with a polynomial 
x,-, <x<x,+J 



Then one obtains the Chebyshev points: 
0, f 0.4338837388, f 0.78 183 14826, f 0.9749279125 (3.2) 

Consider the construction of the sixth order central scheme on a more general grid: 

It can be shown, after some algebraic operations, that .. - 

where a1 =l/elf, a2 =-(l/el +l/e2)/d:f, a3 = l/d:e2f, and dl = l+kl ,  dz =l+kl  +k2, 

q = k1(2+ kl), e, = 4 ( 2  +2k1 + k2), f = 2Ax[lle, -(llel + lle,)l& + lld;e,]. Thus for the 
equally spaced interpolation points of (3. l), 

a, = 2.25, a, = -0.45, a, = 0.5 (3.4) 
and for the Chebyshev points of (3.2), k-, = 0.801937737, k2 = 0.445041868, 
h = 0.4338837388 and then 

a, = 2.076521402, a, = -0.797473384, a, = 0.228243471 (3.5) 

Fig.2 is a plot of modified wavenumber vs wavenumber k for (3.4) and (3.3, which 
indicates that a polynomial interpolant at the Chebyshev points can significantly enlarge the 
resolution range of a numerical scheme. However, the resulting oscillatory behavior of a 
minimax method is not desired. Therefore, the DRP schemes directly apply the dispersion 
relation to modify classical high order explicit formulas (11 (the same idea is used on the implicit 
formulas by the compact finite difference methods with spectral-like resolution [2]). 

Fig.2 The curve of vs k 



More general than (2.1), 

The DRP schemes apply a Fourier transformation to (3.6). then . M 

where ii(k) = - u(x)e-"dx, and k is the wave number, Define the discreti =presentation of 

the exact wave number as 

The phase error can be expressed as 

Then, for the sixth order central scheme (3.3), the DRP schemes choose a, and a, to attain 
fourth order, and determine a, to minimize the phase error of (3.8). The data of Tam and Webb 
are [I]: 

a, = 2.39779929, a, = 4.56823942, a, = 0.07955985 (3-9) 
And Tam and Shen improve them further to[8]: 

a, = 2.31264714, a, = -0.5001 177, a, = 0.06252942 (3.10) 
which are closer to the standard values of (3.4). 

From Fig.2, it is observed that the result for the DRP scheme (3.10) agrees very well with 
the dispersion relation to the extent that i t  is very close to the result for (3.5). It indicates that 
high order schemes are not necessarily equivalent to high accuracy schemes. If a Taylor 
polynomial of some degree is being used, then there exists another polynomial of much lower 
degree that will be of equal accuracy. More importantly, different from classical schemes, 
increasing the order of the DRP schemes necessarily improves their numerical accuracy within 
grid cells. Unfortunately, on the other hand, the DRP scheme (3.10) still use the same stencil as 
the sixth order central scheme (2.6), so the numerical efficiency is not improved. This is because 
they keep the polynomial interpolation, which is very sensitive to the choice of interpolation 
points. Then some parameters are needed to attain a certain order, and some to satisfy the 
dispersion relation. If the accuracy of approximating Utn(x) can be automatically improved by 
increasing the order of an interpolant, then the necessary number of free parameters would be 
reduced. Actually, such an approach exists, i.e. one-step methods in space discretization, which 
use piecewise polynomial interpolation. 

THE CONSTRUCTION OF HIGH ACCURACY SCHEMES 

Numerical solution of differential equations involves two steps: 1) discretize the 
differential equations; 2) solve the resulting algebraic equations. The numerical stability and 
accuracy are related to the first step. Indeed, as we discussed above, the discretization step 



includes an interpolation or approximation of solution. Each discretization scheme is equivalent 
to a certain interpolant. Then a good interpolant would lead to a more accurate and also more 
stable numerical scheme. Now let us see how to interpolate the solutions of differential equations 
accurately. 

Consider the linear convection equation (1.1): 

If we approximate the time derivative u, alone, and leave the space derivative u, analytic, then 
(1.1) can be converted into a set of O.D.E.: 

Define the left- and right-hand eigenvector matrices to be [XI-' and [XI respectively, and [A] as 
the diagonal matrix with the eigenvalues Ai of [A] along the diagonal, then the solutions of (4.1) 
are 

i=l 

where are the eigenvectors. 

Further, from the so-called a - A relation, one finds that indeed, the finite difference 

methods use the Taylor polynomial to approximate the exponential functions ehx". Therefore, 
the first order approximation of solution is the piecewise linear interpolation: 

Ui"(x) =u; +(uJ . ( x - x ; )  (4.3) 
and within [xi-l, x i ] ,  

which is the first order backward scheme, and within [x i ,  xi+* J, 

which is the first order forward scheme. From the exact solution u ( x - a t ) ,  it is natural to 
introduce the " upwind " concept which is very important to numerical stability: 

n n 

Ui"+* = + ui -U,-l 

Ax 
f - a b )  

Actually, (4.6) is the first order form of the CIP scheme. 

In this level, almost all numerical methods give the same result, and also the same 
accuracy, i.e. first order. However, from constructing second order schemes, the difference 
between each method will appear, and lead to the different accuracy within grid cells. 

Define a second order approximation as 
1 2 

~ i " ( x )  = u; + (uX);(x - x; )  + -(u,)i"(x - x; )  
2! 



The CIP scheme sets (u,): as a free parameter to evaluate (u,):: 

then 

which is second order accurate in both time and space. 

A more general way is to evaluate (u,)~ explicitly by ui , u ~ - ~ ,  and (u, k-, : 

then 

L L 
Ji = ~ ( u j  - ui-1 ) - -(ux )i-1 (4.13) 

Ax Ax 
where (4.12) is the second order implicit formula. Obviously, it is also second order accurate, 
because the-second order of this scheme comes from accurately evaluating the second order 
derivative term. If one uses (uXji instead of (u,),-, in (4.13) by (4.12), one would get (4.8) again. 

Moreover, there are three second order explicit formulas. As mentioned above, these 
schemes are equivalent to locally representing the solution in the range [xi-,, xi], or xi+,], 
or [xi, xi+,] by a quadratic polynomial. Apparently, compared with the above two second order 
accuracy schemes, the "effective stepsize" of these explicit formulas doubles, and therefore in 
order to keep the same accuracy as one-step methods, it is necessary to reduce the stepsize. More 
importantly, these explicit formulas generate spurious roots which degrade their numerical 
accuracy within grid cells. So, increasing the order of a numerical scheme by a larger stencil is 
not a good idea. 

A numerical example illustrates this fact. Consider the linear convection equation (1.1) 
with a = 1, and initial condition 

Apply the Trapezoidal scheme in time discretization: 

L 
which is second order accurate in time and unconditionaIIy stable. In space discretization, the 
second order implicit forrnula (4.12), and two different second order explicit formulas are 
considered: one is the second order central scheme given by (2.2), and the other is second order 
upwind scheme: 

1 3  1 



Also considered is the second order form of the CIP scheme (4.9). 

Fig.3 The comparison of various 2nd order schemes (Ax = 1,p = 0.8, t = 400) 

Fig.3 shows that although the structures of truncation errors are different for two 
explicit formulas, and they generate different oscillation positions, the difference between their 
accuracy is small. Also it is true for the accuracy difference between the second order implicit 
formula and the second order form of the CIP scheme. However, as expected, there is a large 
accuracy difference between the second order explicit formulas and the second order accuracy 
schemes (4.9) and (4.12). 

It is also noteworthy that even for continuous solutions, similar to 2nd order central 
scheme, the 2nd order upwind scheme produces numerical oscillations. So, numerical oscillation 
is not related to "the apparent contradiction between the physical one-way propagation of waves 
and the symmetrical central differenced schemes which are direction independent"I91 which is 
only important to numerical stability. The numerical oscillation results from the accuracy 
deficiency of the numerical scheme. It will be shown later that with accuracy improvement, the 
numerical oscillation will disappear. 

Continue to think about a third order accuracy scheme: 

The CIP scheme introduces an additional parameter (uX),"_, combined with the previous nodal 
condition u,f, : 



to evaluate (u,),!' and (u,),!': 

{ 
(urn),!' = -6(u? - u:-,)/Ax2 + [4(ux)f + 2 f u x ~ ,  ]/Ax 

(u,); = 6[(uX)7 + (u,);-, ]/Ax2 - 12($ - u:-,)/Ax3 
Finally one gets 

I 
u:" = u: + (u, g(-aAt)  + [-3(u: - u:-,)/Ax2 + (2(ux),!' + (u,):-, ) / A x ~ ( - a A t ) ~  

+{[(u,),!' + (ux),Yl ]/Ax2 - 2(u: - 24:-,)/Ax3 
(u, gtl = (u,),!' + 2[-3(u: - 24:-, )/Axz + (2(ux)7 + (u,):-,)/Ax](-a&) 

+3{[(~,);  + (u, );-, ] / h 2  - 2(u; - u:-,)/dx3 } ( - U A ~ ) ~  
which is third order accurate in both time and space. 

However, similar to the difficulty which the explicit formulas meet for constructing a 
second order accuracy scheme, there is no additional nodal conditions for the implicit formulas 
to construct a third order accuracy scheme without balances. If the solution within the grid cell 
[xi-,, x i ]  is approximated by D*U = 0, we And that the CP scheme makes full use of the nodal 
conditions: ui ,  u , -~ ,  (u , )~ ,  (u,),-,. So, we would like to say that the CIP scheme is the most 
efficient third order accuracy scheme. 

If one wishes to extend the CIP scheme approach to construct a fourth order accuracy 
scheme, one must introduce an extra condition besides those four nodal conditions. One could 
introduce a higher order derivative, or an additional evaluation, or an extra interior point within 
the grid cell [xi- , ,xi] .  However, then the numerical efficiency will degrade. Recall that the 
ultimate goal of using high order schemes is to reduce the number of grid points necessary for a 
certain accuracy requirement, and thus to enhance the numerical efficiency. So, if the numerical 
efficiency of a higher order scheme degrades, we would rather choose a lower order scheme with 
a finer grid, especially an adaptive grid. 

Fig. 



Fortunately, the CIP scheme satisfies the general accuracy requirements well. In Fig.4, 
the results of the CIP scheme are compared with that of the DRP scheme in space[81 and the 
third order Jameson scheme in time for the problem (4.14). Both the dissipation and dispersion 
errors of the CIP scheme are smaller. Further, consider the DRP scheme in both time and 

which is a fourth order scheme in s ace and an optimized four-level scheme in time. 
Fig.4 shows that the dispersion error of the 8 IP scheme is still smaller, and the DRP scheme 
reduces the dissipation error only a little. Moreover, the stability limit of the DRP scheme is: 
p S 0.22857, and 2000 iterations with p = 0.2 are used to obtain this result at t=400. On the 
other hand, a similar result is obtained by the CIP scheme after only 500 iterations with p = 0.8. 
In Fig.4, the result of a fourth order form of the CIP scheme which includes the information from 
second order derivative term is also shown. It is seen that the amplitude is further improved such 
that the result is indistinguishable from the exact solution. 

CONCLUSION 

The definition of numerical accuracy according to the order of (Taylor series) 
truncation is not sufficient for time-dependent problems, especially for computational acoustics. 
A uniform accuracy over the whole grid cell is required, which is represented by the order of the 
corresponding piecewise polynomial interpolant. In general, a third-order one-step scheme can 
satisfy the accuracy requirement. We recommend the CIP scheme for computational acoustics. 
Further work should be concentrated on the treatment of discontinuity.[lOl 
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SUMMARY 

In this study, upwind schemes and MacCormack schemes are evaluated as to their suitability for 

aeroacoustic applications. The governing equations are cast in a curvilinear coordinate system and 

discretized using finite volume concepts. A flux splitting procedure is used for the upwind schemes, 

where the signals crossing the cell faces are grouped into two categories: signals that bring information 

from outside into the cell, and signals that leave the cell. These signals may be computed in several 

ways, with the desired spatial and temporal accuracy achieved by choosing appropriate interpolating 

polynomials. The classical MacCormack schemes employed here are fourth order accurate in time and 

space. Results for category 1,4, and 6 are presented. Comparisons are also made with the exact 

solutions, where available. The main conclusions of this study are finally presented. 

INTRODUCTION 

Application of numerical techniques for the evaluation of acoustic wave propagation has been 

the subject of recent research, with the current emphasis on reducing community noise and developing 

quieter aircraft. Higher order schemes are necessary for the evaluation of wave propagation. In this 

paper, the resolution properties of upwind and MacCormack schemes are evaluated. Both second and 

fourth order accurate time discretizations have been employed. The upwind schemes discussed in this 

work have the following advantages. They have built-in dissipation and do not require an explicitly- 

* Work done under contract NAS 1-20102. 
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added numerical viscosity. At the far field boundaries, the signals entering the computational domain 
may be turned off, eliminating reflection of all normal waves. A spatially third-order accurate version of 

the present class of upwind scheme has been applied to a number of classical aeroacoustics problems. 

For comparisons, Gottlieb and Turkel's [I] extension of the MacCormack scheme, the 2-4 scheme, and a 

fourth order accurate temporal discretization of the MacCormack scheme, the 4-4 scheme, have also 

been used for the solution of the benchmark problems. 

NUMERICAL SCHEMES AND SOLUTION PROCEDURE 

Category 1 problems test the dissipation and dispersion properties of computational schemes for 

one dimensional wave propagation. The discretizations used in the upwind and MacCormack schemes 

are first given. The two stage time integration is illustrated for the upwind scheme and the four stage 

time integration for the MacCormack scheme. Consider the model problem, 

The 2-3 upwind scheme may be written, 

where superscript (p) denotes the predictor stage. The quantities uiR and uiL are defined as, 

The 4-4 MacCormack scheme may be written, 



where the superscripts (I), (2), and (3) denote the intermediate stages. The difference operators AQ's 

are given by 

1 
AQ, = -[7ui  - 8Ui-, + 

6 
(5a) 

Problems in categories 4 and 6 involve the solution of the linearized 2-D Euler equations. The 

effectiveness of wall boundary conditions are tested in category 4. The noise radiated by a flat plate 

subjected to a gust is computed in category 6. The numerical methodology, using explicit time 

integration for the solution of the governing Euler equations, was developed by Sankar and is reported in 

Sankar et a1 [2]. A brief description is provided here. The computational formulation starts with the 3-D 
compressible Euler equations in a Cartesian coordinate system: 

Here q is the flow properties vector, 

4 = [p,pu, pv, pw,eIT 

E, F, and G are the inviscid fluxes. The flow field q is decomposed into a mean flow component and 

a perturbation component, 

q=q+q' (8) 

The magnitude of the perturbations are usually much smaller than the mean flow. Therefore, the 

instantaneous fluxes may be expressed as perturbations about the mean flow fluxes. A linearization 
about the mean quantities permits the evaluation of the flow fluxes from the mean quantities, 



The matrices A, B, and C are the Jacobians of the fluxes E, F, and G , respectively. When the above 

decompositions are substituted into equation (6), and the unsteady Euler equations for the mean flow are 

subtracted, a system of equations for the perturbation results, 

Equation (10) is discretized using standard finite volume schemes as follows. Consider a control 

volume surrounding node (i,j,k). The governing equation may be cast in an integral form on such a 
control volume. The divergence theorem is invoked to convert the volume integral to surface integrals, 

to yield 

If the coefficient matrices A, B, and C could be computed at the centers of the cell faces in some 

fashion, the above equation may be written 

where Voli is the volume (3-D) or area (2-D) of the control volume. 
Y ,  

A number of schemes may be devised for the solution of equation (12), which may be written in a form 

suitable for time integration as, 

Both two and four stage Runge-Kutta time integrations have been implemented in the code. For the 

upwind scheme, the matrix H may be split and grouped into two matrices which have only positive or 

negative eigenvalues, using a similarity transformation. These ma@ces are computed at the cell faces 

(i+1/2,j), (i- 1/2,j), etc. using Roe averages of the mean flow. The positive eigenvalues correspond - to the 
waves traveling downstream and the negative values to the upstream propagating waves. The flux Hq' 

is finally computed as 

The term H'qL , which represents the flux associated with waves traveling from left to right, is 

computed using the q' values that are weighted towards the nodes upstream or left of the (i+1/2) plane. 



Similarly, the term H-qi, which represents the flux associated with waves traveling from right to left, is 

computed using an interpolation that is weighted towards the nodes that are to the right of the face 

(i+1/2). With a sufficiently high order of upwind-weighted interpolation, high formal accuracy may be 

achieved. In the current calculations, though, a third order upwind-biased interpolation has been used. 

The difference operators for the x direction are given by 

The MacCormack scheme adopts a procedure similar to the one used for the 1-D problem. The fluxes 

are evaluated using the node points to the left/bottom of the cell face or those on the righthop during 

alternate sweeps. 

RESULTS AND DISCUSSION 

Results for categories 1,4, and 6 are now presented. Figures la, lb, and lc  show the computed 

and exact solutions for the Gaussian pulse propagation problem at time t=100,200,300, and 400. The 
CFL number for all the calculations is 0.2. In figure la, the 2-4 MacCormack scheme with Ax=l.O and 

At=0.2 is seen to produce oscillations and has a large dissipation. In figure 1 b, the 2-3 upwind scheme 

has a much larger dissipation. There was only a marginal improvement when the CFL number was 
reduced. Use of a four stage time integration also did not improve the solution when the value of Ax 

was fixed at 1.0. But there is a dramatic improvement when the spatial resolution is increased. The 
results from the 2-4 MacCormack scheme with Ax=0.25 is compared with the exact solution in figure 

lc. There is a small amount of dissipation but there is very little difference even at t=400. This clearly 

shows that spatial resolution is a critical factor in wave propagation studies. 

Figures 2a, 2b, and 2c show the computed and exact solutions for the spherical wave propagation 

problem at time t=400. Figure 2a depicts the results from the 4-4 MacCormack and the 4-3 upwind 
schemes. Here, the frequency -18, Ax=l .O and At4.01. There are 16 points per wavelength and the 

MacCormack scheme resolves the wave accurately. The upwind scheme exhibits some dissipation and 

furthermore, propagates the wave not at the correct speed at large distances from the source. In figure 
2b the frequency co=7c/4, with the same Ax and At. Now there are only 8 points per wavelength and the 

computed solutions are not good. The upwind scheme has substantial dissipation and damps out the 



wave beyond x=100. To further illustrate the importance of spatial resolution, the same case was run 
with a step size Ax=0.5. In addition, the two stage time integration was used and the CFL number was 

purposely increased to be 20 times the value used in figure 2b. The comparison, though not very good, 

is still much better in figure 2c. 

For the category 4 problem, the following wall boundary conditions were specified: 

ap' -=o -=o JP' -=o v'=O du' 
dn dn dn 

(16) 

At the other three boundaries, boundary conditions were specified as follows. For the MacCormack 

schemes, all the flow variables were set to zero. Radiation conditions were not enforced and this is 

expected to produce some reflections. For the flux splitting scheme, there is an easy way of ensuring 

that no external waves enter the computational domain. This is achieved by setting the incoming wave 
(either H'q; or H - q i )  to zero, as shown in the diagram. At the top boundary B-qi = 0.  

The pressure distributions for problem 1 in category 4, shown in figures 3a and 3b at t=45 and t=100, 
respectively, - . -  have been obtained MacCormack scheme with Ax=l.O and At=0.25. In figure 

3a the pressure - diMbutionis - see etric. . - At the later time, - ther 
solution close - to  - - the - ==-- outflow - boundary - - due - & - - -  to reflection. - These oscillation 

-- - - . -  - 

pronounced when the flux splitting scheme was implemented. J%&res 4a, 4b, 4c and 4d show 

comparisons -- -- - of the wall pressure at different time levels from the two schemes. The pressure 

distributions at %lie* time - - levels of t=30,45, , - -  and 60, before the pulse reaches the downstream . ... 
- -  . - -  

boundary, are compared with the exact solutions in figures 4a and 4b. As can be seen in 4a, the 4-4 

MacCormack scheme provides excellent agreement, except for some dissipation at the peaks. The 4-3 

upwind scheme has a larger dissipation - and the peaks are under-predicted in 4b. 

The pressgedistributions at time levels t=75, 100, and 150 are shown in figures 4c and 4d. Again, the 

4-4 Mac_Cprmackscheme produces - -- excellent results away from the outflow boundary. Due to the 

implementation of simple outflow conditions, reflections from the boundary are seen to produce 

oscillations which propagate farther into the computational domain with time. In figure 4d, the 4-3 



upwind scheme exhibits more dissipation, but the reflections are not quite as severe as for the 

MacCormack scheme. 

Results for the noise radiated by a flat plate in a gust are now presented. The root mean squared 

pressure is required at a distance of x= + 95 and y=f 95. For this problem, the MacCormack scheme was 

chosen because of the large dissipation in the upwind scheme. At the four boundaries, the fluxes were 

computed using the appropriate conditions for the outgoing waves. Thus, the incoming waves 

represented by the terms A' and B+ at the left and bottom boundaries, and A- and B- at the right and 

top boundaries, respectively, were set equal to zero. Figure 5a shows the rms pressure contours. Five 

dominant lobes on the top and bottom may be identified. Also, the solution is seen to be symmetric 
above and below the plate. The pressure distributions at x=f  95 for the top half plane (0 I y 5100) are 

shown in figure 5b. As expected, the values at the upstream plane are very low. But in the downstream 

direction there is a single well-defined peak, the location of which is in good agreement with the 

solutions presented by Atassi and Tam et al in this workshop. For the pressure distributions at y=f 95 
(not shown here), the rear lobes are well predicted. But the signal drops off in the forward direction due 

to dissipation, even with the MacCormack scheme. 

CONCLUDING REMARKS 

A spatially fourth order accurate MacCormack scheme and a third order upwind scheme have 

been applied for the solution of the benchmark problems. Both two and four stage Runge-Kutta time 

integrations have been implemented. The MacCormack scheme provides very good solutions, while the 

upwind scheme exhibits significant dissipation. The importance of adequate spatial resolution has been 
emphasized. The use of appropriate one-sided fluxes at the boundaries allows one to turn off non- 

physical incoming waves. Radiation boundary conditions are necessary to prevent reflected waves from 

contaminating the solution in the computational domain. 
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Figure 1. Comparison of exact and computed solutions of Gaussian pulse propagation. 
Symbols: exact solution, lines: computed solution. (a) 2-4 MacCormack scheme, Ax=l, CFL=0.2 
(b) 2-3 upwind scheme, Ax=l, CFbO.2 (c) 2-4 MacCorrnack scheme, Ax4.25,  CFL-0.2. 





Figure 3. (a) t=45 (b) t= 100. 

Figure 4. Comparison of computed wall pressure with exact solution. (a) 4-4 MacCormack scheme, 
t=30,45,60 (b) 4-3 upwind scheme, t=30,45,60 (c) 4-4 MacCormack scheme, t=75, 100, 150 
(d) 4-3 upwind scheme, t=75, 100,150. 
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Figure 5. Noise radiated by flat plate in a gust. (a) root mean squared pressure contours (b) pressure 
distribution in the y direction. Open symbols: downstream, closed symbols: upstream boundary. 
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SUMMARY 

This paper describes an implementation of a high order finite difference technique and its appli- 
cation to the category 2 problems of the ICASE/LaRC Workshop on Computational Aeroacoustics 
(CAA). Essentially, a popular Computational Fluid Dynamics (CFD) approach (central differenc- 
ing, Runge-Kutta time integration and artificial dissi ation) is modified to handle aeroacoustic 
problems. The changes include increasing the order o ! the spatial differencing to sixth order and 
modifying the artificial dissipation so that it does not significantly contaminate the wave solution. 
All of the results were obtained from the CM5 located at the Numerical Aerodynamic Simulation 
Laboratory. It was coded in CMFortran (very similar to HPF), using programming techniques 
developed for communication intensive large stencils, and ran very efficiently. 

INTRODUCTION 

The occasion of this worksho is testimony to the fact that CAA has matured into a discipline 
that is somewhat distinct from 8 FD. Proper propagation of the high frequency, small amplitude 
waves (compared to hydrodynamic disturbances) associated with aeroacoustics is essential to 
any successful CAA a1 orithm, while the often are not considered in CFD. In fact, many CFD 
algorithms damp out t f ese waves to acce r erate the solution to a steady state. 

The algorithm presented here is an adaptation of a popular CFD method. The original scheme, 
developed by Jameson [I], has many desirable features. These include robust shock capturing, 
good convergence rates and relaxed stabilit requirements. Also, since it is an explicit algorithm, r it is simple to code and performs quite we1 on parallel processors. 

Some of the features that make the original algorithm undesirable for noise predictions include 
the low order spatial differencing and the nature of the artificial dissi ation. The second order 
spatial operator has very poor wave resolving capabilities. To proper 7 y propagate a wave, the 
second order scheme needs 30 to 40 grid points per wavelength. Considerin the high frequency 
waves that must be resolved, very fine grids are necessary, making the prob em computationally 
stiff. 

P 

The artificial dissipation, while having good shock resolving capabilities, can significantly 
contaminate the acoustic solution. In general, this scheme adds second order dissipation to the 
entire domain (although in small amounts) and is quite dispersive near discontinuities. Adding the 
second order dissipation terms to the smooth regions will hamper the advantages of increasing the 
order of the spatial operator. Also, the dispersion errors generated near discontinuities will llkely 

'work supported by NASA GSRP Fellowship NGT-51118 



convect into the smooth regions affecting the wave propagation there. The modified algorithm 
increases the order of the spatial operator and provides a dissipation that has good shock capturing 
qualities while keeping the scheme high order in smooth regions. 

An additional advantage is the performance of the algorithm on parallel processors. Explicit 
schemes, such as the Jameson scheme, are known to run efficiently on these machines [2]. The 
modifications made here, though, certainly affect the parallel performance. For instance, increas- 
ing the spatial order increases the stencil size, thus increasing the interprocessor communication, 
which leads to poor performance. Modified coding strategies are implemented in the code to 
reduce the communication time. They have been evaluated and found to make the performance 
comparable to the original, efficient scheme 131. 

NUMERICAL ALGORITHM 

The Workshop problems considered here are designed to evaluate a scheme's ability to model 
nonlinear acoustics. The one dimensional Euler equations in conservative form are used to solve 
a wave steepening roblem and the shock tube problem. The domain is sufficient1 large so that 
there are no boun i' ary condition effects. As mentioned earlier, an adaptation o f the Jameson 
scheme is used. The second order spatial operator is replaced by a sixth order operator derived 
from Taylor series expansions. An alternative dissipation, considerate of CAA issues, is imple- 
mented as a replacement for the one proposed by Jameson. The dissipation has the form 

where 

F is the filtered flux, F is the unfiltered flux, D2(Q) is a second order dissipation operator, D6(Q) 
is a sixth order operator (both operating on the solution, Q) and a is a free parameter. For a 2 1 
the second order dissipation is turned off, resulting in a sixth order scheme everywhere. When 
a 5 0 the scheme has second order dissipation everywhere. Finally, for 0 < a < 1 some regions 
may have second order dissipation while others have sixth, depending on the solution. 

RESULTS 

In this section, results for the category I1 problems are resented. For all calculations a CFL 2 number of 0.5 was used. Two different values of a are use to generate the results. A value of 1 
is used to illustrate the behavior of the sixth order schemei Results for a combination of second 
and sixth order dissipation are also obtained by using a = E. This number was obtained by trial 
and error on problem 1 (the same value is used on problem 2). 

Figure 1 contains density traces at different sample times for the wave stee ening problem 
(problem 1) for a = 1. Noticeable oscillations are observed in front of and be 1 ind the shock. 



There also appears to be a growth in amplitude of the wave before it shocks. These problems are 
somewhat suppressed when o = & is used. This is illustrated in figure 2. The oscillations are 
significantly attenuated. There is an undesirable damping of the wave amplitude before it shocks 
( t  = 10.0). The wave amplitude at the final sample time ( t  = 300.01, though, is invariant with 
the type of dissipation. 

Figures 3 and 4 contain density traces at different sample times for the shock tube problem. 
Again, non hysical oscillations are observed near discontinuities when only sixth order dissipation 
is used. &e addition of the second order dissipation damps these oscillations with mlnimal 
smearing of the shock. 

CONCLUSIONS 

An implementation of a hi h order finite difference technique and its application to the category 
2 problems of the ICASE/L a % C Workshop on CAA is presented. The scheme is essentially an 
adaptation of the well known Jameson Runge Kutta scheme. The modifications include increasing 
the order of the spatial operator and implementing a more appropriate dissipation function. It 
has the advantages of being simple and getting good performance on parallel processors (a 3D 
Navier-Stokes version of this algorithm achieves 1.25 GFLOPS on a 128 processor CM5 3 ). It 
has been demonstrated in this paper that the scheme performs quite well on nonlinear pro U ems. 
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Figure 1: Density profiles, category 2, problem 1, sixth order dissipation 

Figure 2: Density profiles, category 2, problem 1, sixth and second order dissipation 



Figure 3: Density profiles, category 2, problem 2, sixth order dissipation 

Figure 4: Density profiles, category 2, problem 2, sixth and second order dissipation 
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Abstract  
We present results of benchmark problems of the 

category 2. This category of problems is designed 
to test the nonlinear wave propsgation properties of 
a computational scheme. We chose three high or- 
der spatially accurate algorithms for our computa- 
tions. These are the Dispersion- Relation- Preserving 
(DRP) scheme proposed by Tam and his colleagues, 
a fourth order extension of the MaeCormack scheme 
proposed by Gottlieb and Turkel and an Essentially 
Non Oscillatory (ENO) scheme proposed by Shu and 
Osher. 

1. Introduction 
High order accurate schemes are essential for the 

computation of the noise source. These schemes have 
very little numerical dissipation. Numerical solutions 
with such schemes are very good in the smooth flow 
region. In this study, the test problems focus on the 
numerical solution of nonlinear waves. For this type 
of flow, high order schemes, because of their lack of 
numerical dissipation, usually generate spurious nu- 
merical oscillations near the shock. One may add ar- 
tificisl numerical dissipation to these schemes to s u p  
press spurious oscillations. Tam and his colleagues 
developed a class of high order schemes, known as 
the DRP schemes1 * for aeroacoustic compu- 
tations. They proposed adding a selective artificial 
damping to capture nonlinear waves in the flow field. 
Instead of adding artificial dissipation, one may also 
choose a scheme which is high order accurate and also 
sufficiently dissipative. The fourth order extension of 
the MacCormack scheme proposed by Gottlieb and 
~ u r k e l ~ ,  also known as the 2-4 scheme, is spatially 
fourth order accurate and is also dissipative. Inher- 
ent dissipation allows this scheme to capture weak 
shocks. There are many shock capturing schemes 
used for fluid dynamics simulations. Most of these 

'Work funded by NASA Cooperative Agreement 
NCC3-233 through the ICOMP program. 

schemes fsil to maintain high order accuracy near the 
shock. As indicated earlier, high order of accuracy is 
essential for the noise computations and a low or- 
der shock capturing scheme may not be suitable for 
noise computations. Recently a class of high order 
shock capturing scheme has been developed. These 
schemes are known as the the Essentially Non Oscil- 
latory (ENO) schemesS* 6* 7. They maintain high 
accuracy even very near the shock and may exhibit 
only minor oscillations. 

In this study, we examine the DRP schema with 
artificial dissipation2 3. We also examine the fourth 
order extension of the MacCormack scheme by Got- 
tlieb and l'nrke14 and an EN0 scheme6 # 7. We 
present the governing equations and the test p rob  
lems in section 2. Descriptions of the schemes and 
discussion of the results of our test problems are p r o  
sented in sections 3 and 4 respectively. 

2. Tert problem 
We solve the one-dimensional Euler equation 

written in the following form 

P 
where p, u, P, E and H are the density, velocity, pres- 
sure, total energy and enthalpy respectively. We solve 
two model problems with the following initial condi- 
tions. 
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2.1 Test Problem 1 

Initial conditions are given as 

The computational domain is -50 5 x 5 350. 

2.2 Test Problem 2 

Initial conditions are 
u - - 0 
P = 4.4, x < -2 
P = 2.7 + 1 . 7 c o r [ ~ ] ,  -2 5 z 5 2 
P = 1. 2 > 2 
P = (7~)t 

The computational domain is -100 5 x 5 100. 

3. Numerical Schemes 

5.1 The DRP Scheme 
Tam and webbl developed 4 numerical algo- 

rithm known as the Dispersion Relation Preserving 
(DRP) scheme for computational acoustics. They 
chose the coefRcients of their spatial discretisation 
scheme by requiring the Fourier transform of the finite 
difference scheme be a dose approximation of that of 
the partial derivatives. ~&flicients of the finite differ- 
ence- time integration metgod were chosen such that 
the Laplace transform of the finite difference scheme 
is a good approximation of the partial derivative. In 
summary, their scheme for our test problem can be 
written as 

= 0, a1 = -a-1 = 0.79926643, a2 = -a-1 = 
- 0.18941314, a8 = -a-8 = 0.02651995, bo = 
2.30255809, bl = - 2.49100760, b2 = 1.57434093 
and bs = - 0.38589142. This scheme is formally 
fourth order accurate in space and third order ac- 

3 curate in time. In a later paper Tam and Shen re- 
vised the values of the coefficients a, to obtain best 
overall numerical wave characteristics for a 7 point 

. . 

stencil. Revised aj coefficients are a1 = -a-1 = 
0.770882380518, a, = -a-2 = - 0.166705904415, 

and as = -a-8 = 0.029843142770. We used these 
values of the aj coefficients for our computations in 
this paper. Tam and his colleagues2 proposed an 
artificial selective damping term to remove spurious 
numerical oscillation from the solution of nonlinear 
waves. Thus, the equation (3.1) becomes 

where u,ten&l = - uminl is the difference be- 
tween the maximum and the minimum velocity in the 
stencil. Unless otherwise mentioned, in this study, 
we chose all constants as recommended by Tam and 
shen3. They are, R,ten&r =0.1, co = 0.327698660846, 
cl = - 0.235718815308, C, = 0.086150669577 and 
cs = - 0.01428118469. Coefficients of the artificial 
damping are chosen to damp high frequency errors. 
Near a sharp gradient, the proposed scheme with the 
selective artificial damping loses its formal accuracy 
(in the sense of an expanded Taylor series). 

3.2 Four th  Order MacCormack Scheme 
Gottlieb and 'Turkel4 extended the standard 

MacCormack scheme to a spatially fourth order ac- 
curate scheme. This is a widely used scheme in flow 
calculations. We used this scheme for jet flow simu- 
lations8. This scheme has a predictor and a corrector 
stage and for our test problem may be written as: 

The predictor step with forward differences 

The corrector step with backward differences 

This scheme is second order in time and becomes 
fourth-order accurate in the spatial derivatives when 
alternated with symmetric variants. We define L1 
as a one di&ensional operator with a forward differ- 
ence in the predictor and a backward difference in 
corrector. Its symmetric variant La u E  abackward 
difference in predictor and a forward difference in the 
corrector. For our computations, the sweeps are ar- 
ranged as 

Qn+' = LIQn 

Q R + ~  = L ~ Q " + ~  



3.3 Essentially Non-oscillatory Scheme 

Essentially Non-Oscillatory schemes were devel- 
oped to capture shocks and maintain the high order 
accuracy of the solution. In this paper, we examine 
the ENO-Roe scheme for spatial discretisation and 
a RungoKutta method for time integration. Both 
these schemes are proposed by Shu and 0sher6 7. 
For our present computations, we chose third order 
accuracy for both space and time. The Runge-Kutta 
scheme is may be written as 

where L is the finite difference approximation of - f,. 
The ENO-Roe is an EN0 scheme based on the fluxes 
and selects the locally 'smoothest' stencil using di- 
vided differences. The details of this scheme are given 
in Shu and 0sher7. 

4. Results  

We used 201 grid points for our computations 
of the test problems. Characteristic boundary con- 
ditions were used a t  the boundaries. In all our @- 
ures, we show profiles of pressure. In Figure 1.1, we 
show the evolution of the pulse in time. This solution 
was computed using the fourth order MacCormack 
scheme. The computed solutions with this scheme 
show undershoots ahead of the shock. In Figures 1.2 
and 1.3, we compare solutions with three schemes at 
t=10 and t=200. We observe sharp shock profiles 
with the MacCormack scheme. Solutions of the test 
problem 2 are given in Figure 2. In Figure 2.1 we 
show the initial pressure profile and the solutions o b  
tained by using three schemes at  t=60. Details of the 
solutions at this time level are shown in Figures 2.2 
and 2.3. In Figure 2.2 we see minor oscillations with 
the DRP scheme for R, = .l. With R, = .05, the arti- 
ficial dissipation becomes larger and and it essentially 
eliminates all oscillations. However, in Figure 2.3 we 
observe a significant smearing of the shock due to the 
larger artificial damping. From these two test prob 
lems, we found that the fourth order MacCormack 
scheme gave a sharp shock, but it had a large under- 
shoot ahead of the shock. We did not use any artifi- 
cial damping with this scheme. The undershoot of the 
computed solution can likely be damped or eliminated 
by using artificial dissipation. The DRP scheme with 

the selective damping gave essentially smooth solu- 
tions. One needs to use the proper amount of arts- 
cial dissipation to ensure the quality of the solution. 
The third order ENO-Roe scheme gave clean shocks. 
The EN0 schemes are likely to give very good solu- 
tions for problems with shocks. As is known, they 
can be very expensive to compute. Among the three 
schemes we studied, the fourth order MacCormack 
scheme was computationally the most inexpensive. 
The DRP scheme was observed to be a few times 
more expensive than the fourth order MscCormack 
scheme. Even though there were some oscillations 
and also smearing of the shock, in general solutions of 
with all three schemes appear to be reasonable within 
the range of our present study. 
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SUMMARY 

Many recent computational efforts in turbulence and acoustics research have used higher order 
numerical algorithms. One popular method has been the explicit MacCormack 2-4 scheme. The 
MacCormack 2-4 scheme is second order accurate in time and fourth order accurate in space, and is 
stable for CFL's below 2/3. Current research has shown that the method can give accurate results 
but does exhibit significant Gibbs phenomena at sharp discontinuities. The impact of addin 
Jameson ty e second, third and fourth order artificial viscosity was examined here. Categor I? 
problems, t g e nonlinear traveling wave and the Riemann problem, were computed usin a ~ F L  d number of 0.25. This research has found that dispersion errors can be significantly re uced or 
nearly eliminated by using a combination of second and third order terms in the damping. Use of 
second and fourth order terms reduced the magnitude of dispersion errors but not as effectively as 
the second and third order combination. The program was coded using Thinking Machine's CM 
Fortran, a variant of Fortran 90/Hi h Performance Fortran, and was executed on a 2K CM-200. 
Simple extrapolation boundary con ! itions were used for both problems. 

INTRODUCTION 

What is called the MacCormack 2-4 scheme was published in 1976 by Gottlieb and Turkel 11. 
The method is a predictor corrector scheme that is second order accurate in time and fourth or 6 er 
accurate in space. The fourth order accurate derivative in space is often cited as being needed 
to accurately resolve the nonlinear behavior of the flow, especially if turbulence quantities are to 
be resolved. The split accuracy makes the method truly time accurate when the time and space 
errors are of approximately equal magnitude. Simple tests such as solving the traveling wave 
problem for acoustic waves readil shows that wave speed is not accurately reproduced at CFL's 
significantly larger than 0.25. T g erefore it can be ,said that time accuracy occurs at a CFL of 
about 0.25 while overall stability can be achieved for CFLs of 2/3 or less. As applied to the Euler 
equations in a single space direction, the stencil is given as 

'Work supported by NASA Langley Research Center under grant NAG-1-1479 
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Similar to the second order MacCormack scheme, this method can be time split into separate 
spatial operators. The time split operator sequence is illustrated by the following equation. 

Where L,(At,) is the one dimensional predictor corrector o erator sequences. Time splitting 
improves the size of time step for which the method is stable. T i e operators must be applled in a 
symmetric se uence to maintain order of accuracy. To avoid biasin errors, each spatial operator 1 f is alternated etween between a forward-backward and backward- orward sequence of redictor 

in greater B etail in Hudson [2]. 
8. corrector a plication. The MacCormack met hod, its characteristics and application are ~scussed 

The modified equation for the linear wave equation shows that the largest terms of the dif- 
ferencing error are second, third and fourth order derivatives of the solution variables. Artificial 
viscosity based on similar order terms was investigated. MacCormack and Baldwin [5] developed 
the use of the second derivative of pressure pressure as part of the coefficient to the damping terms. 
This feature causes the coefficients increase the appked dam ing in regions of stron gradients ff and to reduce damping in smooth regions. Second order di erencing was used for t h e pressure 
derivative. Jameson et d. [4] is cited in Hirsch [3] as having developed the ractice of using several 
derivatives of differing order as part of the damping function. The artificiafviscoaity terms applied 
in this work combine these two concepts. Three terms are developed representing second, third 
and fourth order damping. These terms are applied individually in two combinations; 1) second 
and third order damping terms and 2) second and fourth order dampin terms. The coefficient 
of each damping term has a unique constant a that has been optimized f or its effectiveness. The 
damping terms are applied to the conservative fluxes and yield the following set of equations. 

fAV = f - e p S ( P ) B U  - ( 4 )  8' U 
BZ e p ~ ( ~ ) %  + eps p 

Where 

For the workshop problems the constants had the following values: a2 = 0.25, a3 = .9, and 
a4 = 0.1. These constants were optimized for the traveling wave problem but were found to be 
very effective for both the traveling wave and the Riemann problem. 



RESULTS 

PROBLEM 1 

Three cases of the traveling wave problem were solved: case 1 used the basic numerical scheme 
without any artificial damping, case 2 used second and third order damping terms and case 3 
used second and fourth order damping terms. The wave calculation is presented in Figure 1 
showing a com osite of the nine solution times required. Only the density variable is shown since E it adequately s ows the wave profile and the numerical influences on the solution. 

Significant dispersion error can be seen to occur early and to persist across solution times 
for case 1. The correct wave form should maintain peak wave ma nitude until the shock forms. 
Solution time 20 occurs before the wave forms a shock and yet it s % ows dispersion increasing the 
wave magnitude. Beginning with solution time 30 the wave peak decreases in magnitude but the 
wave speed and the area under the wave curve were accurately maintained. The dispersion at 
the front and trailing edge of the wave is considered minor. However, the dispersion occurrin at 
the top of the wave completely destroys any resemblance of a ph sically correct wave shape. !he 
magnitude of the oscillations appean to be roughly proportionaf to the magnitude of the initial 
wave front. 

Case 2 provides the best overall matching of the wave form and speed. A combination of 
second order dissipation and third order dispersion damping are used for this case. As expected 
it provided the best control of dispersion error in the solution. Figure 2 shows a composite of 
the nine solution times. The most significant improvement is the correct rendering of the wave 
magnitude at  time 20. The wave magnitude maintains constant am litude from the initial wave 
shape and shows only a small amount of wave shape distortion. !he wave magnitude be ins 
decreasin at time 30. The reduced dis ersion makes the decreasing profile much smoother. $he 
reduced d ispersion also significantly re $ uces the distortion of the wave shape near the peak, but 
a lot of improvement is st111 desirable. The wave speed and overall shape are correct. 

Case 3 uses second and fourth order dissipation damping. This solution was a si nificant 
improvement over the undamped case. The dispersion error was si nificantly reduced rom the B B 
undamped case but was not quite as good as the case 2 results. ase 3 results are shown in 
Figure 3. The wave leading edge dispersion was also reduced in this case. The wave speed 
and general shape are accurately maintained. The purely dissipative damping of this case has 
produced significant improvements in the wave shape. But, it still lags the results produced by 
the combination of dissipative and dispersive damping of case 2. 

PROBLEM 2 

Problem 2 is the Riemann shock tube problem and the solutions have a ain been solved in a set 
of three cases: a) undamped, b) damped by second order dissipation an d third order dispersion, 
and c) by a combination of second and fourth order dissipation. Figures 4, 5, and 6 show the 
results for these three cases respectively. 

In the undamped solution (case a), variable magnitudes in each of the flat regions are accurately 
produced, as are the shock, contact surface, and front and back edges of the expansion wave. The 



dispersion error at each of the discontinuities is the obvious problem with this solution. Oscillations 
at the top of the shock wave are the most significant. 

Case b, use of second and third order damping, shows spectacular elimination of dispersive 
oscillatory errors. However, this improvement ie not without cost. The shock has smeared; the 
contact surface speed has decreased- and the point of increasinq densit at the beginning of the 
expansion wave has been smeared. But these effects are fairly mlnor. T e expansion wave is still 
in the correct place. The contact surface has been delayed about the distance traveled in ten time 
units and the shock is not smeared any wider than one wavelength of the undamped oscillations 
in case a. 

In case c, dissipation was again able to significantly reduce the magnitude of the dispersive 
errors in the solution. This solution would generally be acceptable for all discontinuities except 
the shock itself. Significant oscillations at the shock are still large and ersist over a greater 
distance than the shock smearing that occurred in case b. Magnitudes an8 discontinuity speeds 
for this case were the same as for the undamped case, including the contact surface. 

CONCLUSIONS 

The results of this investigation show that combinations of damping terms can be very effective 
in reducing error introduced into the solution from the differencing scheme. Each damping t e r n  
was found to contribute both dissipation and dispersion error. Yet, as according to conventional 
analysis, the even order terms contributed primarily dissipation and the odd order term con- 
tributed primarily dispersion behavior. The MacCormack 2-4 scheme has sipificant dispersion 
errors especially at the high pressure side of a shock. The addition of dissipation is limited in 3s 
ability to reduce these errors, as evidenced by the results of the second-fourth order combination. 
The second-third order combination produced the results most like the ideal wave forms for the 

roblems. Interestingly, the second-third order combination produced the only error in the 
of the contact surface for the Riemann problem. Overall, the combination of second and 

order terms provided the best elimination of numerical errors. 
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Figure 1. Catagory I1 Problem 1, Density profile of a traveling wave, solved with no damping, at 
solution times t=10,20,30,40,50,100,150,200, and 300. 
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Fi ure 2. Catagory I1 Problem 1, Density profile of a traveling wave, solved with second and third 
or f er damping, at solution times t=10,20,30,40,50,100,150,200, and 300. 



Figure 3. Catagory I1 Problem 1, Density profile of a traveling wave, solved with second and 
fourth order damping, at solution times t=10,20,30,40,50,100,150,200, and 300. 

Figure 4. Catagory I1 Problem 2, Density profile for the Riemann shock tube problem, solved 
with no damping, at solution times t=40,50,60,and 70. 
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Figure 5. Cata ory I1 Problem 2, Density profile for the Riemann shock tube problem, solved 
with second an f third order damping, at solution times t=40,50,6O,and 70. 
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Figure 6. Cata ory I1 Problem 2, Density profile for the Riemann shock tube problem, solved 
with second an f fourth order damping, at solution times t=40,50,60,and 70. 



NONLINEAR WAVE PROPAGATION USING THREE 
DIFFERENT FINITE DIFFERENa SCHEMES* 

(Category 2 Application) 

D. Stuart Pope 
Lockheed Engineering and Sciences Company 

Hampton, VA 

J. C. Hardin 
NASA Langley Research Center 

Hampton, VA 

SUMMARY 

Three common finite difference schemes are used to examine the computation of one-dimensional 
nonlinear wave propagation. The schemes are studied for their responses to numerical parameters such 
as time step selection, boundary condition implementation, and discretization of governing equations. 
The performance of the schemes is compared and various numerical phenomena peculiar to each is 
discussed. 

INTRODUCTION 

The emergence of computational aeroacoustics(CAA) as a discipline distinct from computational fluid 
dynamics has brought with it a need to develop efficient, reliable numerical schemes. Much is known 
from CFD concerning performance of particular algorithms, but their application to acoustic problems 
merits further investigation. In this work, the centered-time centered-space algorithm, and both the 
second and fourth-order MacCmack explicit predictor-corrector algorithms are applied to two model 
problems: nonlinear propagation of an acoustic pulse, and wave propagation in a shock tube. These 
schemes are examined for their ability to propagate discontinuities, damping and dispersion 
characteristics, and their sensitivities to various numerical considerations. 

Common Numerical Considerations 

For the schemes to be discussed, several numerical specifications are common to all three. For 
example, for problem 1, the grid used consisted of 401 evenly spaced points where -50 S x 5 350 so 
that Ax = 1.0. Similarly for problem 2, a grid of 201 evenly spaced points is used in all computations 
with -100 S x S 100 so that again, h = 1.0. Additionally, a time step of either At =.25 or At =.SO is 
used in all computations. Initial calculations with At =.75 and At = 1.0 proved unstable for all 
schemes. 

* Work done on contract at Lockheed Engineering and Sciences Company, NAS 1-19000. 
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The boundary conditions used in all calculations are based on characteristics theory. By noting that 
along characteristic lines the quantity &+U is conserved at inflow while 3-u is conserved at 

7-1 Y - 1  
2 outflow, requiring no incoming acoustic or entropy waves reduces these quantities to - and the 
Y - 1  

following relations can be obtained: 

Inflow: 

Outflow: 

where 

and ~ 1 . 4 .  Derivatives are implemented using first-order one-sided differences. 

Centered-Time Centered-Space Algorithm 

For linear problems, the centered-time centered-space(CTCS) scheme reproduces the exact solution 
with the proper i&%&n of time step and is second-order accurate in both space and time1. Its marginal 
stability characteristics make it highly desirable for its ability to perfectly advect initial disturbances in 
applications where the propagation speed is constant. However, for our model problems, the 
propagation speed is not constant and it is natural to ask how the scheme performs in this case. The 
discretized equations are 

* .  . . - 
. , 

For both problems 1 and 2, this pdcular  discretization(referred to as 'attempt 1) becomes unstable 
early in the flow evolution. Changing At from .SO to .25 does not help, though some high frequency 
content apparent in the solution for At= .50 is removed from the smaller time step calculations. In an 

l~oache ,  Patrick I. -tation- Herrnosa Publishers, 1972, pp. 53-55. 
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effort to stabilize the calculations, equation(7) is re-discretized(attempt 2) wherein the momentum term 
is broken up, i.e., 

This discretization also fails to stabilize the calculations and the only noticeable change over attempt 1 is 
an introduction of undesirable high frequencies for both problems 1 and 2. In a further attempt at 
stabilization, the coefficients p,%d u: of equation (10) can be spatially averaged: . 

This change(attempt 3) reduces the high frequency oscillations introduced by breaking up momentum in 
the continuity equation, but gives no real improvement. Finally, spatial averaging of difference 
coefficients may be applied to all three governing equations(attempt 4) which further removes the high 
frequency content and stabilizes the calculations to much later values of time. However, ultimately this 
attempt also fails to produce a stable solution. A snapshot of the four attempts is given in figure 1 for 
At= S O .  For problem 2, the first three attempts become unstable almost immediately. The fourth 
attempt yields a somewhat stable, although erratic solution as depicted in figure 2. Note that the ill- 
behaved compression front is only slightly amplified as it travels to the right. The leftward propagating 
expansion wave remains somewhat well-behaved and as in problem 1, reducing AZ from .50 to .25 
removes some of the high frequency oscillations. In summary, the CJTCS scheme, despite all efforts at 
stabilization, fails to give acceptable results for either problem considered. 

Second-Order MacCorrnack Scheme 

Using MacCormack's method of second order, the discretized equations have the form: 

Predictor 

Corrector 

At p,* = p; - - [u; (p; - p;-,) + w; ( u; - 4 - 1  )] 
Ax 

@d = pIou1* 



For this method, there is no problem with stability for either time step for either problem. However, for 
problem 1, the propagating wavefront becomes more spread out over space at later b e  as At is 
decreased from .50 to .25. For both time steps, the wavefront location as a function of time is the same. 
For the CTCS scheme, various foms of the discretization were used in attempts to achieve stability. 
While stability is not the issue for this scheme at these time steps, the same attemptsat varying the form 
of the discretization are tried again to see their effects on a well-behaved gheme. It was found that 
breaking up the momentum term in the continuity equation discretization as well as averaging of the 
difference term coefficients in the overning equations made only slight changes in the results. One 
noticeable result for problem 2 is 8 e introduction of high frequencies behind the compression front 
when At is lowered from .50 to .25. All attempts give very similar results and those of attempt 1 
appear as figure 3. 

Fourth-Order MacCormack Scheme 

Both the CTCS and the MacConnack scheme examined so far are of s_econdorder in both time and 
space. A spatially fourth-order MacCormack scheme was implemented to study the effect of spatial 
order on the computations. The discretized equations for this method are the same as those ~f the 
second-order MacCormack except for the forward and backward spatial differencing operator used. In 
particular, differences arc replaced with their fourth-order counterparts in all equations, i.e., 

-7qf + 8#,k1 - @,:, 
6Ax (21) 

I 

Adjacent to the computational boundaries, second-order differences are used. In the fourth-order 
results, fewer high fr-equency oscillations are observed &in in the qond-order results for both 
problems at both At= .50 and At= .25 and in general, the solutions are better resolved than those of 
the second-order MacCormack method. As in the second-order M a c h a c k  method, the computations 
seem nearly insensitive to the form of the discretization used, so that breaking up the momentum term in 
continuity as well as spatial averaging of difference coefficients has negligible effect. A comparison of 
the two MacCormack methods for both problems is given in figure 4. 

CONCLUSION 

Three finite difference schemes commonly used in CFD have been examined for their appfication to 
acoustic propagation. The CTCS scheme appears inadequate for these nonlinear model problems and is, 
in fact, unstable. The two MacCormack schemes, while stable, fail to resolve the discontinuous 
wavefronts arising in the problem solutions and are perhaps, poor candidates for solution of these 
problems. This work illustrates the need for a thorough understanding of applied algorithms with 
regard to the impact of choices such as time step, forms of discretization, and boundary condition 
implementation, as all exert a strong influence on the quality of the computed solution. 

i 



Attempt 1 Attempt 2 

Attempt 3 Attempt 4 

Figure 1 - CTCS pressure solution for problem 1, Af =.50 

Figure 2 - CTCS pressure solution for problem 2, At =.SO 



Problem 1 
At =.25 

Figure 3 - MacConnack second-order pressure. solution for 
problems 1 and 2, attempt 1 



Problem 1 
second-order, At =. 50 

Problem 1 

Figure 4 - Pressure solution for second and fourth order MacCmack scheme 
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ABSTRACT 

This paper describes redictions of model roblems in com utational aeroacoustics. Two S P problem classes are consi ere& The first (Wor shop Category 81, Problem 1 and 2) considers 
two-dimensional wave pro a ation and non-reflectin boundary conditions in the presence of a $ t  E mean flow. The second ( or shop Category IV, Pro lem 1) examines wall boundary conditions. 
For the last problem we introduce the Im edance Mismatch Method (IMM) to treat the solid 
wall boundaries. In this method the soli d' wall is simulated usin a wall region in which the t characteristic impedance is set to a different value to that in the uid region. This method has 
advantages over traditional solid wall boundary conditions including simplicity of codin , speed of 
computations and the ability to treat curved boundaries efficiently. Several numeric af examples 
are given in addition to the Workshop Problems. The discretization of the Euler equations is 
performed in all cases with a Dispersion-Relation-Preserving (DRP) algorithm. The numerical 
results are compared with either analytical solutions or solutions obtained using traditional solid 
wall boundary conditions. 

INTRODUCTION 

In aeroacoustic computations, special consideration must be given to the accuracy of the nu- 
merical scheme and t he implementation of solid wall boundary conditions. Computational acoustic 
algorithms must describe unsteady, small scale, high-frequency quantities. This means that they 
must have high-order temporal and spatial accuracy, and minimize dispersion and dissi ation. Re- 
cently, Tam and his co-workers introduced a Dispersion-Relation-Preserving (DRP) sc%eme (Tam 
and Webb, [I]). This algorithm is used in this paper. The philosophy behind the DRP scheme 
is that it attempts to reproduce the dis ersion relationship of the partial differential e uation in 
the discretized problem. This can only \ e achieved over a specified range of wavelengt 1 s with a 
known error in numerical dispersion and dissipation. The algorithm used in this paper is formally 
fourth-order accurate in space and second-order accurate in time; however it was a seven-point 
spatial stencil and a four-time level discretization to achieve its optimized dispersion properties. 

Another important problem is the implementation of solid wall boundary conditions. For 
inviscid flow the boundary condition at a solid wall is that the normal velocity is zero. For low- 
order finite-difference schemes or finite-volume schemes, the imposition of solid wall boundary 
conditions can usually be carried out in a straightforward manner. For high-order finite-difference 
schemes, treatment of this condition is complicated. Here we introduce a ver efficient method 
to implement the solid wall boundary condition. We call this the Impedance 6l ismatch Method 

lWork supported by NASA Langley Research Center under grant NAG-1-1479 
'Research Assistant 
3Boeing Professor of Aerospace Engineering, Associate Fellow AIAA 



(IMM). This method can be ap lied easily to high-order finite difference schemes. Actually, in this z method, no special wall boun ary conditions need to be implemented at all. All that is needed 
is to define a wall region and set a different characteristic impedance in this region. Since this 
method does not involve any changes in the stencil, it can be used to represent the geometry of 
any object without difficulty. Also, it makes the corn utation much faster and the coding is very P. simple compared to other methods of dealing with so id wall boundary conditions. 

WAVE PROPAGATION COMPUTATIONS USING THE DRP SCHEME 
(Workshop Category 111, Problem 1 and 2) 

In this pa er the two-dimensional linearized Euler equations are solved. The-DRP method 
developed by 5 am and Webb [l has been used to discretize these equa&ionsl T-he DRP scheme is 
a fourth-order central finite dl d erence scheme in space and is second-oraer in time. In addition, 
it is optimized to minimize the dispersion and dissipation over a specified range of wavelen ths. 
The detailed procedure for the development of the scheme is given b Tam and Webb [l . k& 
only a brief review of the DRP scheme is given. A seven-point stenciy in space is used. dhe key 
point is how to fix the coefficients in the stencil to minimize the dispersion and dissipationover a 
s ecific range of wavelengths. The technique to evaluate the coefficients involves first taking the 
gurier  transform of the discretized spatial derivative with respect to the spatid variable. This 
leads to an expression for the numerical wavenumber as a function of the exact wavenumber. Four 
of the unknown coefficients in the algorithm are determined from a Taylor series expansion by 
the requirement of fourth-order accuracy in space. The remaining two coefficients are found by 
minirmzation of the difference between the numerical and exact wavenumbers over a finite range of 
wavenumbers. For a uniform rid the scheme is non-dissipative and the coefficients are symmetric. 
A similar procedure, using a faplace transform is used to optimize the time derivatives. 

It is known that high-order finite difference schemes ihvariably generate spurious waves. These 
oscillations are generated in regions of steep radients that could be physical or numericall such 
as a shock or a change in the grid spacin ~!e presence of these spurious oscillations inev~tably t renders the computed solution unaccepta le. Artificial dam ing must be added to the numerical 
scheme to eliminate these spurious waves. In this paper se 7 ective artificial damping (Tam et a1 
[2EPas been used. This damping has the characteristks that it removes the spurious short waves 
w e having a negligible effect on the long waves which constitute the known useful band of 
wavelengths for the numerical simulation. 

Non-reflecting boundary conditions are needed at the outer boundaries of the com utattional 
domain. The asym totic non-reflectin boundary conditions of Tam and Webb [I 1 f. 1 ave* been used in this paper. 'Fhese boundar con itions become increasingly accurate as more erms in the 
asymptotic expansion are used a n 1  as the boundary moves further from the source region. When 
only acoustic waves exit the computational doman, a radiation boundary condition is needed. 
When the outgoin waves include acoustic entrop and vorticity waves, the outflow boundary 
condition is used. %or Workshop Category ~ I I ,  protiem 1, only the downstream boundary is the 
outflow boundary, the other three are radiation boundaries. . . 

Figure 1 shows the computed density contour at time t = 50, At = 0.07677 for Problem 111. 
1. It can be seen that the entropy pulse has partially gone throu h the outflow boundary, no \ reflection is observed. Figure 2 is the corresponding density distri ution along the z-axis. An 
interaction between the acoustic and entropy pulse has occurred. The computed results have been 
compared with published results and the agreement is good. This example demonstrates that the 
DRP scheme and the asymptotic non-reflecting boundary conditions work well. 



When there is a mean flow in both the x and directions, the non-reflecting boundary condi- 
tions must be modified; however, they can still be g erived from the asymptotic anal tical solutions. 
For a radiation boundary, the set of equations has the same form as that used in d' roblem 1; how- 
ever, the polar coordinates are now based on the mean flow direction instead of the x-axis direction. 
For the outflow boundary, the pressure equation is the same as for the radiation boundary. The 
equations for the density and velocity are the Euler equations, with additional terms accounting 
for the y-direction mean flow. For problem 2, the outflow boundary conditions are applied on 
the u per and right boundaries. The radiation boundary conditions are used on the other two 
bountfaries. 

Figure 3 shows the computed density contour at time t = 80. Figure 4 is the corresponding 
density distribution along the x = y axis. It can be seen that the whole wave pattern has 
been convected in the 45' direction, and part of the wave has gone through the boundaries. No 
reflections are observed. The computed results have been com ared with published results and the 
agreement is good. These examples demonstrate that the DR and the asymptotic non-reflecting 
boundary conditions have good isotropic properties. 
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COMPUTATIONS OF ACOUSTIC REFLECTION AND SCATTERING 
USING THE IMPEDANCE MISMATCH METHOD 

(Workshop Category IV, Problem 1) 

From classical acoustics theory (Kinsler and Fre [4]), it is known that when a normal incident 
plane wave in a fluid medium impinges on the boun d' ary of a contiguous second medium, a reflected 
wave is generated in the first medium and a transmitted wave ap ears in the second medium. The 
ratio of the ressure amplitudes of the reflected and transmitte waves to those of incident wave E B 
depend on t e characterlstic impedances poao) of the two media. When the second medium has 
a much higher characteristic impedance, t h en most of the wave energy is reflected. As the ratio of 
the characteristic im edance of the second medium to the first ap roaches infinity, all the incident 
waves are reflected. $he second medium acts like a solid object. 'fhus, setting a higher impedance 
in a certain re ion can be used to simulate the effect of a solid object in this region. This was the 

problem. 
% basic idea of t e IMM; however, the numerical implementation requires some modification of the 

Based on the above idea, the impedance of the scattering bod may be set to 30 times that of 
the ambient region in numerical simulations. The speed of soundrinside and outside the body is 
kept the same. This means that the wave speed is constant throughout the domain and permits 
the CFL number to be kept at almost the same value as when no object is present. For physical 
problems, the linearized Euler equations in non-conservative form have the mean density and speed 
of sound outside the spatial derivatives. At the interface the pressure and the normal velocity are 
continuous. When this method is used directly in two-dimensional cases, instability occurs if the 
same time step size is used. This is because of the large discontinuity in the equation coedcients 
(po). In order to avoid this instability and maintain the time step size, an auxiliary problem is 
proposed. 

For the auxiliary problem, new variables are defined: j = p/po., D =  up^, # =fpo A 
set of equations, equivalent to the linearized Euler equations in a uniform density me lum, are 
introduced in the form 



The equations are written in one-dimensional form for simplicity. This set of equations is the 
same as that in the physical problem in the fluid region and wall region, but not at the interface, 
since po is piecewise uniform and has a jum at interface. We im ose the condition that the new P variables are continuous at the interface o the two media. If t 1 e second regioqis to mimic a 
solid wall then the mean density in the wall region must be set to a ve low value, instead of a 
higher vafue than that in first region. Since po is alway unity in the firstror real fluid) region, the 
physical solution is then obtained in this region from the auxiliary problem. The accuracy of the 
computations depends on the density ratio; the smaller the value, the more clo~ely the ~olution 
simulates the solid wall. However, test calculations have shown that this density ratio can not be 
set infinitely small to avoid instability. 

-- - 

In order to simulate theinfinite wall using the IMM for the Workshop Category IV, Problem 
1, an extra wall re ion is needed as shown in Figure 5. In this wall the mean density is 
set equal to 1/30. $he thickness of this wall regon is chosen to be 
be smaller, but in that case the source would be too close to the boundary of the 
computational domain, and some wave reflections would occur at It will be 
seen in some following examples that this problem does not exist for scattering computations. An 
extra wall region is needed only when the source is close the boundary. In the new computational 
domain, the computations can be carried out directly. No stencil change is needed and no s ecial f solid wall boundary conditions are implemented. This makes the computation fast. Even t ough 
the extra wall region increases the corn utational domain size, the overall computation time is B decreased. Figure 6 shows the calculate pressure contours associated with the acoustic pulae at 
t = 100, At  = 0.05. At this time the pulse has reached the wall and has been reflected, creatin 

FI 

Y double ulse pattern; one from the orlginal source and the other from an image source below t e 
wall. T e mean flow convects the pulse so that the entire pressure pattern is moved downstream. 
Figure 7 shows the corresponding corn uted pressure wave form don the line x = 50, which 

asses through the center of the pulse. f h e  analytical solution is also p f otted on the same figure. 
rt can be seen that the agreement is reasonable though same small errors can still be seen in the 
reflected wave form; both in the amplitude and phase. The amplitude error is mainly due to the 
choice of the wall mean density. The phase error is caused by the fact that the location of the 
wall can not be defined exactly. The error for the wall position is within one step size. However, 
this error can be minimized if enough grid points are used between the source and the wall. 

A second exam le of the use of the IMM concerns the reflection of a periodic acoustic wave 
train by a solid w a!' 1 in the absence of a mean flow. The geometry of the domain is the same as 
that in the previous example (Fi ure 5). The acoustic wave train is generated by a time periodic 
source in the energy equation. f h e  simulation is carried out with zero initial cQnditions. After 
the transient solutlon has propagated out of the computational domain, the pressure fluctuation 
is periodic in time. 10 grid oints er wavelength are used. Figure 8 shows the computed pressure 
contours adjacent to the so f! ~d wal f at time t = 180 in the right half of the computational domain. 
The interference pattern is due to the cancellation between the incident wave and reflected wave. 
Figure 9 gives the corresponding pressure wave forms along the y-axis. The analytical solution is 
also plotted. The agreement between the computed and analytical solutions is good. 



CONCLUSIONS 

In the first part of this paper a Dis ersion-Relation-Preserving (DRP) scheme was used to 
compute the wave pro agation of initial P y Gaussian pulses with mean flow in x-direction and at 
45' to this direction. $he numerical simulations demonstrated that the DRP and the asymptotic 
non-reflecting bound conditions worked well in both cases. Then the Im edance Mismatch 
Method was introduce 9 to simulate solid wall boundaries. This method was appyied to several two- 
dimensional reflection and scattering problems. The method was also compared with a traditional 
solid wall boundary condition method. Some advantages and disadvantages of this method have 
been revealed. The advantages of the IMM are: no special solid wall boundary conditions need 
to be implemented; no stencil changes are involved in the presence of solid objects; the coding 
is very easy; the computations are much faster than when the traditional solid wall boundary 
conditions are used; and there is no difficult for an geometry. No matter whether the solid 
boundary is flat or curved the amount of co d! ing wor f and the corn utation time are the same. 
The disadvantages of the ~ M M  are: the accuracy of computations iepends on the value of the 
mean density in the wall region. there is an ambi uity in the wall position of one grid spacing. f and an extra wall region is needed for sources an walls close to the edge of the computation& 
domain. The IMM is a promisin method for simulations of acoustic scatterin diffraction and 
reflection problems. Further deve opment is underway to apply this method to t ree-dimensional 
problems. 
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Figure 1: Density contour at t = 50. Figure 2: Density dirtribution along z-axis at t = 50. 

Figure 3: Density contour at t = 80. Figure 4: Density distributionalong a = y axis at t = 80. 



Figure 5: Sketch of computational domain for infinite wall Figure 6: Pressure contour at t = 100 for reflection of 
reflection problem. acoustic pulse by infinite wall with mean flow Mach 0.5. 

Figure 7: Preseure distribution along z = 50 axis at  t = 
100 for reflection of Bcoustic pulse by infinite wall with Figure 8: Pressure contour a t  t = 180 for reflection of 
mean flow Mach 0.5. acoustic wave train by infinite wall. 



~i~~~~ 9: preMure distribution .long at t = 180 Figure 10: Sketch of computational domain for finite 
for reflection of acoustic wave train by infinite wall. plate scattering problem. 
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Figure 12: Pressure distribution along upper boundary 
Figure 11: Preseure contour a t  t = 194 for scattering of at t = 194 for scattering of acoustic wave train by finite 
acoustic wave train by finite plate. plate. 



THE USE OF STAGGERED SCHEMES AND AN ABSORBING BUFFER ZONE 
FOR COMPUTATIONAL AEROACOUSTICS 
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SUMMARY 

Various problems from those proposed for the Computational Aeroacoustics (CAA) workshop 
were studied using second and fourth order staggered spatial discretizations in conjunction with 
fourth order Runge-Kut ta  time integration. In addition, an absorbing buffer zone was used at the 
outflow boundaries. Promising results were obtained and provide a basis for application of these 
techniques to a wider variety of problems. 

INTRODUCTION 

In this work, problems from categories three, four, and six were attempted which tested the 
chosen numerical scheme's ability to resolve acoustic waves with minimal isotropy, damping, and 
dispersion. Additionally, outflow and wall boundary conditions were required which would 
properly handle the articular problem eometry. A staggered spatial discretization was employed 
to resolve the difficu f' ties in the interior 3 omain. This arrangement was chosen because of the 
simplification of physical boundary treatment and an improvement in dispersion characteristics 
without addition of artificial damping. At the outflow boundaries, an absorbing buffer zone was 
used in which the original equations are modified in such a way that no wave will be reflected 
from the outer boundary of the buffer zone. The virtue of this treatment is that local acoustic 
boundary conditions need not be applied at the computational boundary. 

The two approaches mentioned were used in all of the problem solutions. Any changes in 
implementation were a result of the inclusion of stationary or oscillatory solid boundaries. With 
this in mind, the rest of this discussion proceeds with a description of the staggered spatial 
discretization and the absorbing buffer zone. The problems that were attempted are then 
introduced beginning with category three, continuing to problem two of category four, and ending 
with category six. Each of these cases is presented with any special boundary treatment required 
by the geometry as well as the results. Finally, the work is closed with some conclusions and 
thoughts for future consideration. 

STAGGERED DISCRETIZATION 

The staggered technique, which has been used in the solution of a variety of problems [I, 21, 
entails calculating the primitive variables at only a specified collection of points. In this work, the 
scalar quantities were all solved at the same point, whereas the vector quantities were calculated 
at different points. In order to illustrate this, focus on a small portion of the grid in the interior of 
the domain comprised of five points (figure 1). 

'Thin is a portion of research being conducted by the author for inclusion in a Doctoral Dissertation with The 
George Washington University. 
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Figure 1: Staggered discretization for the linear problem. 

This piece of the grid may be thought of as a cell with a grid point in the middle and a grid 
point at the midpoint of each cell wall. Scalar quantities are obtained at the cell center and the 
components of the vector uantities are calculated at the sides. The entire computational domain 

points (figure 1). 
9 may be thought of as a co ection of these cells with the variables determined at  the specified 

Having set up the computational grid, the question now arises as to how to discretize 
equations on to this rid. The linearized Euler equations will serve as an example of how this is 
accomplished, since 5 of the problems investigated in this work involve their tsolution on s 
uniform grid. The linearized Euler equations in Cartesian coordinates may be written 

where p and p are the density and pressure, u and v are the x and y components of velocity, and 
Ma and M, are constant mean flow Mach numbers in the x and y directions. 

A staggered semi-discrete form of the equations which has O(Ax2) accuracy is given by 



In many cases, higher order accuracy is desired, and in this investigation, both second and 
fourth order spatially accurate discretizations were used. Thus, an O(Az4) accurate staggered 
semi-discretization of equations (1-4) is introduced and may be expressed as 

Time Integration 

The time integration may be handled several ways. Originally, staggered time differentiation 
was also attempted. However, this approach in combination with the staggered spatial operator 



led to unstable schemes. Therefore, standard fourth order Runge-Kutta integration was used for 
both the second and fourth order spatial operators. Generally, for an equation in the form 

where W is the unknown and L is a spatial operator, the O(At4) Runge-Kutta scheme to obtain 
the solution at time step n + 1 is 

ABSORBING BUFFER ZONE 

Having set down the solution method for the governing equations, it is helpful to present the 
outflow boundary treatment before proceedin to the specific problems. The approach used at the B outflow boundaries involves an absorbing bu er in which the governing equations are modified to 
minimize reflection. This idea has been successfully applied to different types of wave propagation 
problems [3, 4, 5, 6). The modified equations are constructed by gradually changing the domain of 
dependence for the problem as one moves from the edge of the interior domain to the outer edge 
of the buffer zone. The implementation is usually very strai htforward and begins with the P addition cf points to the original computational domain to orm an outer buffer zone with the 
same spatial discretization (see figure 2). Within this zone, an artificial velocity field 

Figure 2: Computational domain with Cartesian grid overlaid. 
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U' = (Ub,Vb)) is introduced which is directed outward from the interior domain. This velocity 
f ,  eld is set up such that its value is zero at the edge of the interior domain and its normal 
component is approximately 1.3 times larger than the maximum interior velocity at the outer edge 
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of the buffer zone. The value 1.3 was arbitrarily chosen to ensure that the flow was Usupersonic" 
in the normal direction at the buffer zone edges. 

A proper velocity profle may be illustrated by setting up a Cartesian grid with the origin at 
the center of the interior domain. The velocity is forced to be zero at  the edge of the interior 
domain by writing 

u; = ~ ( x ' - x : ) " , q  = 0 (14) 
on the x' = const. sides, and 

~ = P ( Y ' - y ~ ) m , u ~ =  0 (15) 

on the y' = const. sides. Here, (x', y') is the location of a point on the Cartesian grid and x. and 
ye are the values of x' and y' at the edges of the interior domain as shown in figure 2. The veloc~ty 
field is made continuous at the corners of the buffer zone by considering it to be of the form 

in these regions. The parameter P is used to impose the chosen value of 1.3 times the maximum 
interior velocity for the normal component at the outer edge of the buffer zone. Figure 3 shows 
the upper right hand corner of the buffer zone with superimposed radial velocity vectors. In this 

Figure 3: Radial velocity vectors of the buffer zone. 

figure, and in the given results, the value of m was set to 8. This was chosen through numerical 
experimentation, and it should be noted that the effect of varying m or the entire imposed velocity 
profile is a point which could warrant further research. On the outer edge of the buffer zone, the 
finite difference stencil still requires some information from outside the domain. For this work, a 
simple solid wall condition was used, however, any reasonable condition could be employed. 

Once the velocity field is established in the buffer zone, the equations must be modified in 
order for it to have an effect. This is achieved by adding an artificial mean flow term of the form 
V (U'p) to each equation where U' is the buffer zone velocity field and (p is the variable being 
computed. Note that the equations are unchanged in the interior since the imposed velocity field 
is zero there. 

Time Stepping Consideration 

A final point needs investigation before continuing; that is the effect of the buffer zone 
velocity field on the CFL number. In general, the CFL number is given as where U,, is 



the maximum velocity in the interior domain (Urnam = c + J u ~  + V,'). By imposing a velocity 
field which has components which are approximately 1.3 times larger than Urn,, it can be seen 
that the time step must be reduced in order to maintain stability. This lower time step then leads 
to  increased computation time. One approach to deviating this problem is to lower the wave 
s eed in the buffer zone to counteract the increased velocity. This is accomplished by multiplying 
t E e actud operator by a variable p. For instance, the equation ut + L(u) = 0 would be written 
ut + U' Vu + pL(u) = 0. The value of p is set to 1 on the interior and is decreased to .1 at the 
outer edge of the buffer zone. The decrease of p from 1 to .1 in the buffer zone is accomplished by 
using the relation 

p = 1 - q (x' - x:)" (17) 
on the z' = const. sides and 

P =  ~ - . I I ( Y ' - - Y : ) ~  
on the y' = const. sides. At the corners, the parameter takes the form 

where z', y', z:, y: are defined as before and q is a constant which allows the proper value of p to 
be set at the edge of the buffer zone. This multiplication by p d o w s  one to maintain stability 
without lowering the CFL number. Thus, the final form of the governing equations (1-4) becomes 

Previous work employing the staggered discretization and the absorbing buffer zone has 
shown that a buffer zone width of approximately 2.5 times the maximum wavelength of the 
ropagating signal is necessary to achieve less than one percent error (71. Thus, with this result in 

[and, the aforementioned techniques were applied to selected problems proposed for the 
Computational Aeroacoustics (CAA) workshop. 

CATEGORY THREE 

This category was devised in order to test the isotropy property of the computational 
algorithm as well as the capabilities of radiation, inflow, and outflow boundary conditions. Two 
problems were included which both involved the solution of the linearized Euler equations, but 
with different mean flow and initial conditions. The computational domain of both was -100 

x 5 100, -100 < y 5 100 embedded in free space with Ax = Ay = 1. Results were obtained 
through a straightforward implementation of the second and fourth order staggered spatial 
operators with fourth order Runge-Kutta time integration at a CFL number of .6. Additionally, a 
buffer zone of non-dimensional width 40 was employed at the boundaries to maintain one percent 
error as mentioned previously. 



Problem 1 

In this case, the mean flow was given as M, = .5, Mu = 0 and the initial conditions were as 
described earlier in these proceedings. Solutions were obtained at successive times as the waves 
left the interior domain, however, only those at t = 100 are included. In figure 4, first a view of 
the entire domain is shown for the fourth order staggered solution. Then, a line plot of the density 
along the line y=O is included for both the second and fourth order discretizations. The second 

Figure 4: Results for Problem 1. 

order scheme shows some dispersion error, which is diminished by the fourth order version. 
Overall, reasonable results were obtained and the schemes were therefore applied to problem two 
of this category. 

Problem 2 

This problem is very similar to problem one except that the mean flow is M, = Mu = 
0.5 cos ( 2 )  and the initial conditions, as given in the problem description, are slightly different. 
The fact that the mean flow is directed toward the corner does not require special treatment by 
the buffer zone or the staggered discretization. The solution obtained by the fourth order scheme 
for t=100 is presented in figure 5. Also included is a line plot of the second and fourth order 
results along the line y = x .  Here, part of the entropy and vorticity pulses are seen just leaving 
the interior domain at the upper corner. The second order result does again show some dispersion, 
but this is resolved by the fou~ th  order code. The performance of both schemes was improved in 
comparison to problem one, and the staggered discretization and buffer zone handled these 
problems quite well. Therefore, having shown that these approaches may be used effectively 
together, the next step is to include a solid boundary. This geometry is found in category 4. 

CATEGORY 4 

In this cate ory, the problems were set up to test the capabilities of wall boundary conditions, 
and for this wor f c  only problem two was investigated. It involves acoustic radiation from an 
oscillating piston in an infinite wall and is governed by the linearized Euler equations in cylindrical 



Y,. Y,. 4 .o.(d4),1.100.0 
100 0.07 

0.08 

0.w 
60 

0.01 

0.0) 

Y O p 0.w 

0.01 

0.00 
1 0  

4.01 

4.01 

-1 00 
-1 00 1 0  0 10 100 -1 00 4 0  0 10 100 

4.03 

X X 

Figure 5: Results for Problem 2. 

coordinates with axisymmetry. The piston (radius ~ = 1 0 )  oscillates with normal velocity 
u = 1.0-'sin into a computational domain 0 _< x 5 100, 0 5 T < 100 with Ax = AT = 1. 

Figure 6: Geometry for Problem 2, Category 4. 

The eometry of this problem includes two radiation boundaries which may be handled usin 
the absor % ing buffer zone. In addition, the x-axis is a symmetry axis and the T-axis coincides wit 
the rigid piston and wall as shown in figure 6. Also presented is the placement of the primitive 

1 
variables. The symmetry axis is managed by setting the radial velocity component, v ,  equal to 
zero along its entirety and %eflectingn the other variables. The treatment of the piston and wall 
boundary depends on the size of the spatial stencil. 

L 

For the second order scheme, no shifting of the spatial stencils is required. Only grid points 
for the normal component of velocity lay on the boundary, and this is given for the piston and is 
zero on the wall. Any of the stencils needed to discretize the governing equations remain in the 
interior and ghost points are not necessary. However, this is not the case for the fourth order 
version. A ain, only grid points for the normal component of velocity fall precisely on the 
boundary, $ut the spatial stencils include more points and thus extend beyond the solid boundary. 
This problem was alleviated by following a procedure similar to that given by Tam and Dong [8]. 
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Ghost points for pressure are obtained by using the momentum equation $ + 2 = 0 along the 
piston and wall. This allows for a full spatial stencil to be used for the term 2. The remaining 
spatial stencils are shifted at the boundary so that they require only known data points. 

One more item should be considered before presentation of the results; that being the 
implementation of the time dependent boundary conditions on the piston for the Runge-Kutta 
integration. If a time dependent boundary condition for a system of equations described by 
equation (13) were given by Wi(O, t )  = f( t ) ,  the standard treatment at each stage would be 

wg = f ( t  + At) w;+' = f(t + At).  (25 )  
As mentioned by Carpenter e t .  a1 [9], higher order accuracy may be maintained at larger CFL 
numbers by the alternate implementation 

At At (At)' wi' = f ( t )  + f l ( t ) ,  w.! = f ( t )  + Z f ' ( t )  + q f l ' ( t )  

(At)' - (At)3  f "'(t) w,? = f ( t )  + Atf'( t )  + T f ' ' ( t )  + 
4 w;+' = f ( t  + At).  (26 )  

These expressions were used to specify the normal velocity of the oscillating piston. With the 
normal velocity on the rigid wall set equal to zero, the lower boundary was then handled and 
solutions could be obtained. 

Results 

In this case, a linearized analytic result is shown along with those from the second and fourth 
order schemes. In figure 7,  these are presented in the form of line plots along the x and T axes at 
time t = 160 with a CFL number of .5005 and a buffer zone width of 25 units. These plots show 
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Figure 7: Results for Problem 2 ,  Category 4 along the x and T axes. 

that the fourth order scheme captures the solution quite well with only small errors along the 



piston face. As in the category three problems, the second order version shows some dis ersion 
which is evident in both directions. It should be noted however, that this problem was f? ormerly 
solved with a second order MacCormack scheme and the results for the staggered schemes are an 
improvement over those obtained previously. Thus, with the staggered scheme and buffer zone 
continuing to show promise, the approaches were applied to the problem of category 6. 

CATEGORY 6 

The proposed problem of this category tests the scheme's ability to calculate sound generation 
by a gust-plate interaction and requires conditions on the flat plate as well a .  inflow, outflow, and 
radiation conditions. It is governed by the linearized Euler equations in Cartesian coordinates, 
and there is a mean flow in the x direction given by M, = 0.5 which carries with it a gust 
velocity component in the y-direction of the form v = 0.1 sin [:(& - t ) ] .  A computational 
domain -100 5 x 100, -100 5 y 5 100 was used with Ax = Ay = 1. 

As mentioned above, the problem geometry includes inflow and outflow boundaries. These are 
handled by the absorbing buffer zone technique as shown in figure 8. Additionally, the flat plate 
requires that the total normal velocity be zero on its surface. For the second order discretization, 
this is handled quite easily since only the grid points for the normal components of velocity fall on 
the plate surface, as seen in figure 8. Thus, the normal velocity may be specified and the other 
primitive variables calculated directly since the second order stencils do not extend beyond the 
plate. The fourth order implementation is only slightly more complicated and is accomplished in 
the same way as the piston and wall were handled in problem 2 of category 4. The grid points for 
the normal velocity are still the only grid points exactly on the plate, however the spatial stencils 
extend beyond the plate. Ghost points for pressure are obtained by using the momentum equation 
h at + '$;" + $ along the plate surface. The stencils for the remaining variables are shifted so that 
they require only known data points. 
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Figure 8: Geometry for Problem 1, Category 6. 

Results 

An analytic solution was not available for this problem, so the results included are those 
outlined in the problem description. In figure 9, the intensity of the radiated sound dong the 



lines z = f 95 is resented with a CFL number of .5625 and a buffer zone width of 40. This P clearly shows the arger sound intensity being emitted behind the flat plate. The second line plot 
gives the intensity along the lines y = f 95. In this case, the curves fall directly on top of one 
another showing that the sound field is symmetric above and below the plate. In addition, there 
are lobes evident in this solution which give insight into the directivity of the radiated sound. 
Although a direct comparison with an exact solution is not possible, the schemes seemed to give 
very reasonable results for this problem. 

Radiated Sound Intensity at x=H5  Radiated Sound Intensity at y=f95 
6 9 0 E i  r (2ndOdr-- - - - ,4hOrbr-)  (2nd On*r- - - - - , 4 h  Oldor ----) 

Y X 

Figure 9: Results for Problem 1, Category 6. 

CONCLUSIONS 

The problems presented in this work have shown that the staggered schemes and buffer zone 
technique can perform quite well when properly employed. The staggered schemes have been 

, found to exhibit some very nice properties. First, the schemes show an improvement in dispersion- 
characteristics without the addition of any artificial damping. Also, the required stencils generally 
simplify the implementation of physical boundaries by requiring only certain quantities at 
specified locations. This aspect simplified the coupling with the outlow conditions as well. 

The absorbing buffer zone conditions provide a straightforward way of handling outflow 
boundaries without the need for local acoustic boundary conditions which can be problematic. 
Additionally, there are modifications that could be made to improve the efficiency of the 
technique. The imposed velocity field in the buffer zone may be modified by using different 
ramping functions or optimizing those used in this work. This change may in turn lead to a 
decrease in reflection as a wave enters the zone. The spatial discretization in the buffer zone may 
also be a point of investigation. In these cases, the computational grid was unchanged in the 
buffer zone. It may be possible to increase the step size in the zone and achieve similar results 
with less computation. Possible improvements aside, the staggered schemes and buffer zone 
technique provided very good results as they were implemented and show promise in their use for 
a wider variety of more complicated problems. 
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A NUMERICAL SOLUTION METHOD FOR ACOUSTIC 
RADIATION FROM AXISYMMETRIC BODIES* 
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SUMMARY 

A new and very efficient numerical method for solving equations of the Helmholtz type is spe- 
cialized for problems having axisymmetric geometry. It is then demonstrated by application to 
the classical problem of acoustic radiation from a vibrating piston set in a stationary infinite 
plane. 

The method utilizes "Green's Function Discretization" [I], to obtain an accurate resolution of 
the waves using only 2-3 points per wave. Locally valid free space Green's functions, used in the 
discretization step, are obtained by quadrature. 

Results are computed for a range of grid spacing/piston radius ratios at a frequency parame- 
ter, wR/co,  of 2n. In this case, the minimum required grid resolution appears to be fixed by the 
need to resolve a step boundary condition at the piston edge rather than by the length scale im- 
posed by the wave length of the acoustic radiation. It is also demonstrated that a local near-field 
radiation boundary procedure allows the doma.in to be truncated very near the radiating source 
with little effect on the solution. 

INTRODUCTION 

A method of discretizing the Helmholtz equation over a finite domain for the purpose of effi- 
cient numerical solution has recently been given by Caruthers, French, and Raviprakash [I]. The 
method proved to be nearly optimal in the sense that the accuracy of the discretization does not 
fail until the grid coarseness approaches 2 points/wave along the grid diagonal, while standard 
finite difference and finite element methods require approximately 10 points/wave to maintain 
adequate wave resolution. 

As an intermediate step in the construction of the discretizing equations, free space Green's 
functions for the Helmholtz equation are used. For three-dimensional and two-dimensional pla- 
nar problems these functions are simply given by e-'"/47rr and i~:'(kr)/4, respectively. A 
certain important class of practical problems, however, are quasi-three-dimensional in nature. 
For example, acoustic fields generated or scattered by axisymmet ric bodies are generally three- 
dimensional but may be Fourier decomposed in the azimuthal coordinate yielding decomposed 

* Work supported by Propeller and Acoustics Technology Branch of NASA Lewis Research Center, through grant 
NAG3-1516. 



"modes" which are uncoupled in the radial-axial plane. Problems involving turbofan noise gener- 
ation and propagation to the environment, for example, are often modeled in this manner. That 
is, letting 6 be the acoustic velocity potential 

where 

The corresponding free space Green's functions for equation (2) are harmonic ring source fields 
and are given in simple quadrature form in the following section. Fully axisymmetric problems, 
such as the benchmark circular piston radiation problem considered in this paper, correspond to 
the special case v = 0, but the method, as presented herein, is valid for v # 0 as well. 

In the following we consider the solution of the acoustic problem of a circular disk set in a in- 
finite wall (as indicated in Figure 1) and oscillating as a rigid body in simple harmonic motion 
normal to the surface. The Helmholtz equation for the acoustic velocity potential and boundary 
conditions are discretized using Green's Function Discretization [I] (summarized briefly in the 
following section) resulting in a large linear algebraic system of equations which is solved by a 
standard direct technique for sparse banded systems. The accuracy of the resulting solution is 
then examined by comparison with a solution obtained from the exact quadrature formula. At 
first a solution is obtained on a very large domain with high grid resolution (10 points/wave). 
Then the beneficial features of the method are highlighted by solving the same problem on a 
subdomain at grid densities of 10,5,4, and 3 points/wave. The structure - - of the discretization 
method allows a convenient formulation of a local near-field radiation approximation which d- 
lows consideration of the small subdomain problems with negligible penalty in accuracy. 

ANALYSIS 

Summary -- of Green's Function Discretization 

The foundation for Green's Function Discretization [I] (GFD) is the idea that the acoustic 
field may be approximated in the vicinity of each discrete point of the domain by a superposi- 
tion of the acoustic fields generated by N hypothetical simple sources of strength 7, located at 
N points r, surrounding each discrete point. That is, dropping the subscript v ,  with that im- 
plied 

N 

where G(r; r,), is the free space Green's function for equation (2) given by 



where 
r' = dP2 + p: - 2ppn cos B + ( r  - ro)2 

and where p and pn are the cylindrical radial coordinates of r and rn respectively. Then for each 
of M points in the local neighborhood where equation (3) is valid we have 

In matrix notation 
4=G7 

where 4 and 7 are M x 1, and N x 1 matrices respectively (i.e., column vectors) with elements 
4(r,); m = 1,2, ..., M and 7,; n = 1,2, ..., N, and G  is an M x N matrix with elements G(r,; r,). 
Intentionally letting N > M, a solution of equation (7) for the hypothetical source distribution 7 
having a minimum L2 norm property is given by 

where G+ is the so-called pseudo-inverse of the rectangular matrix G. 

Letting g represent the column vector with elements gn(r) = G(r : rn), equations (3) and (8) 
combine to give 

T + #(r) = G 4 (9) 

The field discretization is now obtained simply by letting r take on successive values ri,j at  
each lattice point of the grid while 4 refers to the corresponding set of M surrounding nodes 
which is different for each point. For uniform grids the row vector quantity g T ~ +  needs to be 
computed only once for the entire grid, yielding. 

In this case, the discretizing relation is exactly the same for all field points just as it would be for 
standard finite difference or finite element discretization met hods. In the current axisymmetric 
case, however, even uniform grid spacing in the axial-radial plane does not provide the necessary 
uniformity since the azimuthal scale of the grid varies with the radius. Then the quantity g T ~ +  
must be recomputed for each lattice point of different radius so that 

It remains to select the number, N, and relative locations rn of the hypothetical sources. The 
neighboring point set [i.e., the rm and M of equation (6)) must also be selected. There is a de- 
gree of arbitrariness about this selection. For the purpose of computing the example of this pa- 
per we have chosen N = 20, and M = 8, with the locations as indicated in Figure 2. 

Radiation Boundary Conditions 

The upper and right boundaries of this problem are free radiating surfaces along which some 
condition must be applied, which implies that all disturbances present at this boundary had 



their origin below the upper boundary and to the - - "  left --- of the right boundary. A procedure for 
applying such conditions in the near-field has been developed previously by the present authors 
fdr application to turbofan noise propagation problems and may be found developed in some 
detail in [2]. The procedure presents itself quite naturally, however, in the current context of 
the GFD method since one needs only to choose the discretizing point set in a manner simiIar 
to that shown in Figure 2 at the radiating boundaries and then-ihoose the locations r,; n = 
1,2,3, .  . . , N, all entirely within the . bounded - -.,. . , - domgin. - - --- - .  - .- This - is all - - -  that - - is required to satisfy the 
conditions of a free radiating surface. No far-field property a r the  radiating boundary is im- 
plied by this simple Limiting the discretizing.& of points to only the adjacent points 
makes this a "numerically local" method which has the advantage of preserving the block tridi- - 
agonal nature of the overall linear system of equations. Obviously, a numerically non-local proce- 
dure may be constructed by extending the discretizing set to - more remote points - - -  at the expeq9.g 
of the overall iinear.system -ir block . = =  - band width. & = -  A F +  ~ui-nerical -&+.-  - e~~e~ in? .G<a t&~ hp shown$iE;to ... be a ; + 
unhe~esi&~.  - z . This-neir-field . - - . 

1 I : :: radiatiog . .. - . procedure-&wed .L.) . . - . .z ' f  . . c&gi&rati&qf ._ . --- . ' . -  L = - .  , the.,xych . . qzm*dler -,. .qga;r: ,-A %- 

fiel~'si6domain*in the example ?esults.' . ___--_ _ _ _ .#  a . I T - - - -  , - & h  , v  a,y -: <-# . 7.;< = .. *3-'-.? >: - : -*TL!T!zX-:: 5 5.: - r l  

Finally, in this regard, for the current example problem, one may take advantage of the limited 
extent of the radiating surface by choosing dhe hypothetical sources for each point along the ra- 
diation boundary to lie along the piston surface. Notice that hypothetical source strengths are 
not given (this would be cheating) but are calculated from equation (8) as for the field points. 
Indeed, each radiation boundary point may see a different distribution of hypothetical radiator 

-,.-. > sources. _ , .'-=.,=.~ 

=. 1 = < = I . _ , * 
7 

- - 
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Along the piston and wall surface, as well as along the axis of dymmetry ior this example-prob- 
lem, Neumann boundary conditions are - applied. - .  Along the piston face 9 I,=o= 1 represents the 
normalized velocity amplitude of the piston iurl'ace. Along the remaining wall 2 I,=o= 0. The 

a 
**. Tax< symmetry condition gives 2 0 along the axis of symmetry.' -,. :: ?--- -& --  + 

i ". 
- _  A -_*_ * * _  -4* -' 2 f, - a 1 ,  , . : . : : : . - * &m-2i=::ab " - $  3 t 3 ~ & : . 5 * * < : . -  

To discretize these boundary conditions we merely select a one-sided set of neighboring pointst 
fbr the discretizing point set as depicted in Figure 2, and add constraint equations to th&-sgd-=-.a' 
tem of equations (7) to reflect the given values of 2 at a chosen number of points (indicated =.; 
by the solid dots) along the portion of - boundary . + A .  bound by the point set. It should be pointed 
out that it is possible to do this exactly only becausesthe choice of N > M yielded an under- 
determined system of equations (7) to which up to N - M additional constraints may be added 
without coh@omGie  = - - - - - *  the collocating property of the resulting ir?cerpolation .... .- [given - -. . . by . .  equatibn- - - -  

(9)J: The net result of t%is%ou&ary . p r ~ i e d ~ r e  ---- - - - - -  ;s a iolutionwhich - -  - is'locally -- - - &exact, -- --- - so1'utio$'-- -.. = A  -- - - 
to the Hklmholtz equation all the way to the wall and . . ..*- saGsfies J the specified - - -  NGmann boundaryr ~ - 
conditions exactly at2* to N - M boundGy points within each boundary lattice. 

For the example problem considered in this paper, the jump discontinuity in the boundary 
condition at the piston edge pesents Hsevere challenge to the boundary algorithm if accurate 
solutions are to be obtained using desirable coarse grids. It was found by numerical experimen- 
tation that the best results were achieved by applying the boundary conditions at the mid-points 
of the lattice as indicated in Figure 2 along the piston/wall surface. 



RESULTS 

The numerical solution of the Hellnltoltz equation is'obtajned'in the largedomdn (10 x ID) 
using a 100 x 100 g i d .  Tlle reduLed frequGncy for t1k test problem is given by k = 5 = 27r .. . ; - , . . _, . . . , . a  .. . ... . - - - -- -i -- 
(R is radius of the piston). The m'igliit6de aild pl~ase -. n contours u ., - -  of p/(pocovp) are plbtted ip Fig- 
ures 3al  and 3a2. In the plots,'tick 1i;&ki'o~-tlle = -  - .c -.= a r d r  _ - &  _-  itxis _ i A _  corresp&d to the grid used. The 
accuracy of the solution obtained caii b;k easily seen by plotting the corresponding exact solution 
as in Figures 3bl  and 3b2. It is difficult to distinguish the difference between the two solutions. 
In order to look at  tlie near-field solution more:closely, a 2 x 2 window is considered in the large 
domain. The solution obtaiiled earlier is plotted in this window domain by a post solution in- 
terpolation procedure bascd on t l ~ e  interpolation formula given by equation (9), and is shown in 
Figures 4al and 4a2. This pl-ocedlire uscs the solution in the 20 x 20 grid window domain to 
interpolate the solution to a 100 x 100 subgrid in the same-window domain. These results, in 
Figures 4al  and 4a2, compare very well with those of the exact solution in Figures 4bl and 4b2. 
It can be seen that the post solut io~~ interpoliiticm procedu~*e gives a very accurate representation 
inside each grid box. It can Le ilotctl tllnt tlle illaxiiiluin value of the amplitude of p/(pucovy) 
differs from the exact solution only I)y 0.5%. 

- - - * - - . - - . ' I !  1 -  :. .... - < t . .  '*: . *.. . 
To look at the effectiveness of tlle near-ficld local radiation boundary condition, a smaller sub- 

domain (2 x 2) is considered for carrying out tlle basic solution. The numerical solution obtained 
in this sribdomain with a 20 x 20 grit1 is plottetl in Figures 5a and 5b. These resultsobtained ln'  
this subdomain are nearly itlcntical to tllnt olitaihed in the largcr domain problem. 

. . 

Tlie power of the GFD 
lem. The results for a 10 
also compare very well wi 

mctllotl can Ile sllowll by ~ising coarser grids to solve tlie same prob- 
x 10 grid with 5 grid spaces on tlie piston, shown in Figures 6a and 6h, 

,i . . J  - .  th the exact solution. 

The magnitude and phase contours 
+ A  ..1; 1 . .  for an 8 x 8 grid probleln are shown itl" ' ' -. ' 

, * & I  

Table 1. 'b 
Figures 7a and 7b. Tlie accuracy of . . :- ... 

- A  - 

the detailed solutioil that is ol>tained 
between grid points, by using post 
solution interpolation, can be eas- 
ily seen now by looking at the grid 
box at  z = 0, y = 0.4 in Figures 
6a and 6b and at  z = 0, y = 0.5 ill 
Figures ?a and 7b. The maxi~~lum 
pressure p/(pocovp) amplitude in tlie 
8 x 8 coarse grid problein differs by 
just 1.7% from tlie exact lnaxiinulil 
pressure. The errors in inagilitude 
normalized by the maxi~n~iill val~ie 
of p/(pocovp) in the dolllain are cal- 
culated for all these cases ant1 are 
shown in Table I. 

Finally a very coarse (6 x 6 )  grid witli just 3 grid spacings on the piston is solved. The overall 
behavior of the solutioil looks reasollal,lc, but tlle maximum pressure differs by 9.5% from the 



exact maximum pressurc (Figures 8a ant1 SL). Also tlie contours above tlie piston edge are not 
very accurate. It must be noted tliat any numerical method for this problem has to resolve jump 
boundary conditions at the piston edge as wcll as the wavelength of the radiating sound field. 
The inaccuracy in the above sol~~t ion is more likely due to the insufficient resolution of the jump 
condition at  the pistoll edge than failure to resolve tlie resulting wave structure which is already 
< 3 points/wave along tlie priinary direction of wave propagation. 

CONCLUSIONS 

The Green's bnc t ion  Discretization teclinique has been successfully adapted to quasi- three- 
dimensional boundary value problclns for tlie Helnilioltz equation. The accuracy and efficiency of 
the method have been demonstrated by application to the classic problem of acoustic radiation 
from an harmonically oscillating circular pistoil sct in an infinite plane wall. 

Once the discretization process is completed, resulting in a large linear system of equations, 
the number of arithmetic operatioils rccl~iired to solve the system goes like 2n;n, for large n,, 
wliere n,. is the nul111)c:r of grid poii~ts in tlic raclial cliroction al~cl n ,  is tlie   lumber in the axial 
direction. Tliis translates into work statio~i computcr sol~itioi~ times measured in tiny fractions 
of a second for all the subdomain example sol~~tioils of tlie benchmark piston radiation problem 
considered here. By far tlie greatest complltiiig effort is spent in forming the initial discretization 
and producing the post-sol~ition interpolation for high resolution display. 

The need to resolve the jump discontinuity in the boundary condition at  the piston edge, on 
a scale small relative to the piston radius, appears to set the nlinimum grid spacing required for 
accurate solution of tliis example problem. 

Finally, the utility and simplicity of the GFD method in accuiately implementing both Neu- 
mann and radiation type boundary coilditions with a discretization procedure almost identical to 
that for the field points have Lcten tlcinonstrated. 
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Figure 1. ICASEILaRC benchmark problem: acoustic 
field of an oscillating circular piston in a wall. 

Ring source distribution, field 
point, and the neighboring points. Axial view of r i n ~  nnrrr~o n a+ n - - - -  -- ---- 0 -----" '- - V  rn- 

2a. Field point. 

2b. Points along the wall 2c. Points dong the axis. 
boundary and on the piston. 

2d. Points along the radiating boundary. 

Figure 2. Illustration of the ring source GFD method. 



3al. Numerical solution contours 3a2. Numerical solution contours 
of Ip/(pocovp)l in 0.025 intervals, of phase in 60" intervals. 
max = 2.01. 

. - - - -- -- - 

- - 
3bl.Exactsolutioncontoursof _ _ 3b2. Exact solution contours 
Ip/(pocovp)l in 0.025 intervals, -- - of phase in 60" intervals. 
max = 2.0. 

- 
Figure 3. Acoustic field of an oscillating circular . . piston (large domain solution). 
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4al. Numerical solution contours 
of Ip/(pocovp) 1 in 0.05 intervals, 
max = 2.012. 

0 I 2 

4a2, Numerical solution ~ o n t ~ u r s  
of phase in 15" intervals. 

4bl. Exact solution contours of 4b2. Exact sGl;tioi contours of 
lp/(pocovp)l in 0.05 intervals, max phase in 15" intervals. 
= 2.0. - . . - - - - . . 

Figure 4. Acoustic field of an oscillating circular piston 
(solution inside 2 x 2 window of the large domain). 
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5a. Contours of ~p/(poeovp)~in 
0.05 intervals, rnax = 2.011. 

I 1 

5b. Contours of phase in 15" 

Figure 5. Subdomain numerical solution using local near- - 

field radiation boundary conditions (20 x 20). 



6a. Contours of Ip/(pocovp)l in 6b. Contours of phase in 15' 
0.05 intervals, max = 1.982. intervals. 

Figure 6. Coarse grid solution 1 (10 x 10 grid). 

7a. Contours of Ip/(pocovp)l in 7b. Contours of phase in 15' 
0.05 intervals, max = 1.966. intervals. 

Figure 7. Coarse grid solution 2 (8 x 8 grid). 
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8a. Contours of Ip/(pocovp)l in 8b. Contours of phase in 15' 
0.05 intervals, max = 1.815. intervals. 

Figure 8. Coarse grid solution 3 (6 x 6 grid). 



APPLICATION OF A NEW FINITE DIFFERENCE ALGORITHM 
FOR COMPUTATIONAL AEROACOUSTICS 

John W. Goodrich 
NASA Lewis Research Center 

Cleveland, Ohio 

INTRODUCTION 

Accoustic problems have become extremely important in recent years because of research 
efforts such as the High Speed Civil Transport program (see [5]). Computational aeroacoustics 
(CAA) requires a faithful representation of wave propagation over long distances, and needs 

is paper algorithms that are accurate and boundary conditions that are unobtrusive (see (41). Th' 
appliea a new finite difference method and boundary algorithm to the Linearized Euler Equations 
(LEE) for acoustic propagation in two space dimensions. 

THE ALGORITHM 

We will consider the LEE in two space dimensions in the form of the system 

for the pressure p, the z velocity u, and the y velocity v .  System (1) is in nondimensional form, 
and M, and Mu are the constant mean convection Mach numbers in the the z and y directions. 
The density is not included in (1) since it affects neither the pressure nor the velocities. 

The new algorithm uses a twenty one point symmetric stencil obtained from the twenty five 
point 5 x 5 square stencil by deleting the four corner points. This algorithm can be written 
most efficiently as an explicit finite difference method, with each new solution value obtained as a 
particular linear combination of the known data on the twenty one point stencil. The algorithm 
can be written in this form as 



where IS is the appropriate index set for the stencil. The one hundred and eighty nine constants 
will not be given here because of space limitations. Method (2) is a single step explicit finite 
difference algorithm with a symmetric central stencil, it is fourth order accurate in both space 
and time, it is isotropic in the sense that the computational error is not significantly affected 
by the angle between the grid and either the mean convection velocity or the propagating wave 
front, and it is stable if the ratio of the time to space step sizes is less than one over one plus the 
mean convection speed. For subsonic flows, grid ratios up to at least + may be used. Details are 
provided in Goodrich [I]. 

Hagstrom [3] has developed a new outflow boundary condition that we will use. At the +x or 
downstream outflow boundary, the outflow boundary condition is most easily presented in terms 
of the diagonalization of system (1) in the z variable, replacing (1) with equivalent equations for 

- = u - p, wa = v ,  and w, = u + p. The partial differential equation for w, is 

. . . . . . . . . . .  - -- - - - -  - -  . -  - 
-- - 

-- 

For'kubs6ni= flows M, - 1 5 0, and w; is co~ventionally described as incoming at the outflow 
boundary. Hagstrom's new boundary condition replaces equation (3) for w1 by the system 

- - ~  . . ~ . ~ - .  . 87. . . . . . . . . . . . . .  -. - + (M, +a,)(l -M:)$ 
at 

agj - + (M, - a,)(l-- M:)$- afj - - - M:)- asp 
at a~ 2 au2 ' 

where the j, and gj are auxiliary variables. Notice that all of the spatial derivatives in (4) are 
parallel to the outflow boundary. Condition (4) uses no - assumptions about the data, and no 
geometric information about the solution. Details are provided in ~ a g s t r o m  (31. In this paper we - - - . . - - 

2 2n use (4) .K j = - 2,~ = . - ~ with = - a, = Cos( l )  a =  ) _ ?  u . = Cos(F) ,  PI = 2Sin2( i ) ,  15 and A = :Sin ( , ). Co~$itigf 
as been -= - - ~- implemknted - * =  . =  as a local single .*ti$ %xplicit iTibriihin, similar to m e t h o v q ,  w ~ $  a 

- - ---.=a =+ =---= -= -=.--.- -.----=--,, ,;,. ,-, . = =  =.-. --.z= 
central stencil - -  .A:. - and - ; fourth -;=- order ----. ;tci<iacy in both space ahd t h e .  Details are provi$ed in GciGdijc$ 
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Data for the category four ICASE CAA workshop problem win 6 & & h . - k & & ~ t % & ~ ~ -  
tations the mesh is Ax = 1, Ay = 1, for (x,y) in the domain [-100,100] x [0,200], representing 
40401 grid points. The mean convection velocity is M, = 0.5 'hd Mu = 0. -The initial data is the - 
Gaussian 

with u = 0 and v = 0. The boundary conditions along the wqll at y = 0 are v = 0 and * = 0, 
with u obtained from rneihod (2) with intiri6r differencing. The .- outflow - I  t P i  boundary eond%on at 



z = +I00 is to solve for wl with condition (41, imd for wz and w3 with method (2) using interior 
differencing. The boundaries at x = -100 and y = 200 are never reached by the evolving wave 
dynamics within the workshop simulation time limit of t = 150, so they are 'handled by a simple 
characteristic type of condition. We will use the grid ratio = I 4 9 so that data at t = 150 
requires 600 time steps. In figure (1) at t = 15, the pressure wave has expanded until the outer 
pressure contours are just touching the wall. In figure (2) at t = 45, the pressure wave front has 
a substantial reflection from the wall, with details near the wall of the interference between the 
expanding and the reflecting wave fronts. The data at t = 15 and t = 45 show complete and 
undistorted circular wave fronts except for near the wall where the wall boundary comes into 
play, with the expected spatial symmetry in z. In figure (3) at t = 75, a significant amount of 
the pressure structure has already passed through the outflow boundary, and the angle between 
the wave fronts and the artificial boundary has increased from the initial parallel contact to 
appraximately forty five degrees. In figure (4) at t = 150, the pressure structure is approximately 
halfway out of the downstream boundary. The incomplete pressure structures at t = 75 and 150 
show wavefronts that are still perfectly circular, with no visible distortion because of the outflow 
boundary, even at t = 150 when the wave frolit is nearly perpendicular to the artifical boundary. 
The mean convection speed is subsonic, so & e k e  dynamic will have a significant upstream 
effect that continues from the moment that any part of the pressure structure passes through 
the artifical boundary. There is no apparaat TisZption of this upstream propagation from the 
pressure stucture that is downstream of the outfiow bouondary, even as a cumulative - error from 
the moment of contact between the pressure front and the outflow boundary at t k: 60 until the 
final simulation time at t = 150. During theG&all feGiew of all of the data submitted for this 
problem at the workshop, the workshop organizers said that this solution was correct. 

-- ..- - - - -  -- -- 

SUMMARY AND CONCLUSIONS 

The results in this paper have demonstrated the abiliv of a new fourth order propaga- 
tion algorithm to accurately simulate the genuinely multidimensional wave dynamics of acoustic 
propagation in two space dimensions with the linearized Euler equations. The results have also 
shown the ability of a new outflow boundary condition and fourth order algorithm to pass the 
evolving solution from the computational domain with no perceptible degradation of the solution 
remaining within the domain. 
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Figure 1: Pressure Contours at t = 15. 

Figure 2: Pressure Contouts at t = 45. 
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Figum 4: Pressure Contours at t = 150. 
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A computational fluid dynamics CFD) technique is employed to solve aeroacd~~tics  problems 

f I on massively araIlel computers. T e algorithm is based on a 4th order accurate central finite 
difference an 4th order accurate +stage Runge-Kutta time integration method that solves the 
3-D full Na'vier-Stokes/Euler equations on a curvilinear coordinate system. The code has been 
developed to predict noise radiation from ducted fans [I]. A specific application of this code 
is-made hem to the oscillating circular piston problem (workshop Category IV, Problem 2) by 
solving the full Euler equations with nonreflecting boundary conditions in the axisymmetric mode. 
The features of the code that apply to this particular problem are described in this paper. 

- - - - -  

There is a large variety of algorithms for integrating the time dependent system of equations 
of fluid dynamics for aeroacoustics applications. Among these the most commonly used are 
the classical leapfrog, MacCormack, central finite difference [2] , and compact finite difference 

introduced dispersion relation preserving (DRP) scheme (41. 
of the aeroaqouetics roblems are usually very high; long run 

of memory are required. One f~ as to consider two things in the choice of 
for it to be a useful design tool: accuracy and speed (effectiveness). 

- - . I . I  _ I C C  
. ,_ , 

Massively parallel computers' offer the com the cl$sical explicit finite I 

difference algorithms offer the effectiveness on these machi dl , a  stage, noncompact / Runge-Kutta time stepping scheme with a fourth-order-a $ nite difference stencil is 
used. This algorithm is briefly described below, and results for the current problem are djscussed. 

The Euler equations are integrated in the interior of the hysical domain, together with the 
nonreflecting boundary conditions on t he-outer boundxies. &curate and effective nonreflecting 
boundary conditions are essential for a successful aeroacoustjc simulation. In cases of a mean flow, 
the far-field boundaries may be composed of inflow and outflow boundaries, which then require 
different conditions depending on the characteristics. At a subsonic inflow boundary, the only 
out oing information is associated, with the.ac~qstic waves, and therefore, the radiation boundary 5 con itions are appried. At a subsonic outflow boundary, the outgoing information is associated 

-.< *=* .  , -- -- .--* - -  .... 
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with acoustic waves, entropy waves, and vorticity waves. Therefore, at such boundaries outflow 
boundary conditions are solved. Specifically, the B1 operator of Bayliss and Turkel [5] is applied 
to all perturbation variables (deviations to density, three velocity components, and pressure from 
their respective undisturbed values) at an inflow boundary. In the absence of vorticity each of 
these variables satisfies the convective wave equation, which is the basis of this boundary condition 
o erator. At an outflow boundar this operator is a plied only to the pressure perturbation and 
t < e other variables are obtained l rom the linearized k uler equations. 

The current algorithm is essentially a cell-centered finite difference method. That is, the state 
variables are stored at the cell centers, and flwes are differenced using the cell centered fluxes, as 
opposed to cell-face-based flwes of a finite volume technique. In this a proach grid singularities S are avoided, and the solid surface boundary conditions are implemente in a convenient manner. 
Ghost cells are introduced at the solid wall. The normal velocity at the wall is prescribed, and the 
$host normal velocity is then obtained via interpolation. The tangential velocity for the ghost cell 
is extra olated from the interior. The continuity equation is used to solve for the density at the 
wall. T g e ghost cell density is then obtained via inter olation, and the pressure is calculated using B the isentropic relation pg = p,(pg/p,)7, where p an p are the pressure and density, respectively, 
7 is the ratio of specific heats, and the index g indicates the ghost cell, and m the undisturbed 
quantity.- 

Time integration is performed using the well-known four-stage Runge-Kutta (R-K) technique 
which yields a fourth-order-accurate algorithm. Spatial derivatives are computed using fourth 
order accurate central differencing in the interior, which requires a 5-poiat stencil. Biased dif- 
ferencing is used at or near the boundaries. Von Neumann analysis of this R-K finite difference 
algorithm applied to a 1-D advection equation indicates that the scheme is stable for a Courant 
number (CFL) less than approximately 2.06. The four stage Runge-Kutta method is known to be 
stable up to a CFL of 2 f i  if the spatial discretization is ignored. Figure l a  resents the ampli- 
fication factor as a function of kAx, where k is the wave number and Ax is t K e grid spacing for 
various CFL numbers. The correspondin phase error is illustrated in Figure lb.  Waves at  high 

these waves. 
f frequencies propagate at the wrong spee . Therefore, one uses artificial dissipation to suppress 

The current a1 orithm em loys a blend of second order and fourth order dissipation, or a d K blend of second or er and sixt order dissipation, similar to that of Jameson et  al. [6]. Figure l c  
shows the effect of adding a fourth order dissipation term and a sixth order dissipation term alone 
on the stability characteristics of the 1-D scalar advection equation. These terms are given by 
D(~).(u) .= -(el/& A x 4 ~ u / 8 x 4 ,  and D ( ~ )  u) = ~ ~ / A t ) h z ~ a ~ u / a x ~ ,  respectively, where D is the d dissipation flux ad ed to the right-hand si 6 e of t h e governing equation, u is the solution variable 
r is a constant coefficient, and At is the time increment. As seen in Fi ure lc, in the absence 01 

g d these terms the high frequency waves are ropagated, and they will be iffused as they propagate 
with artificial dissipation. The addition o these terms alters the wave speed only slightly due to 
the coupling of the R-K stages (Figure Id). 

Since the current algorithm has been programmed to run on massively parallel computers 
using Fortran 90, one tries to avoid performin computations in portions of the computational 
domain sequentially. This normally occurs w % en one has to solve different sets of governin ! equations for the interior points and the far-field boundary points. In this case the definitions o 
the fluxes, and the solution variables differ. The most time consuming process on data parallel 
computers is the communication among its processors. In the current computer program, the 
spatial derivatives of the far-field and the interior points are evaluated simultaneously, cuttin 
down the communication time significantly. The artificial dissipation is computed for every gri 8 

- - - 



oint in the computational domain for the full solution variables, and then the artificial dissipation 
for the perturbation variables at the far-field boundary points are obtained via linearization, 
reducing the communication time by half. 

RESULTS 

In this section results for the Workshop Category IV, Problem 2 are presented. This problem 
has been solved using the Euler equations in axisymmetric coordinates, with radiation boundary 
conditions on the outer boundaries of the computational domain. The size of the computational 
domain is 100Az x lOOAr with Ax = Ar, where x and r are the axial and radial coordinates, 
respectively. The radius of the piston is 10Ar, and its axial velocity is u(t) = sin(?) in 
nondimensional coordinates. 

First a grid refinement study was performed using only a 4th order filter. Fi ures 2a-c show 
the normalized acoustic pressure along the r = 0.5Ar constant line (half cell size o 8 the centerline 
for an increasing number of cells per wavelength, res ectively. The solid line indicates the exac P 1 
solution and the dashed line indicates the Euler so ution. The improvement in the numerical 
solution is such that the root mean square error between the numerical and the exact solutions 
decreases proportional to O(Ax4) as the number of the cells per wavelength is increased, as shown 
in Figure 2d. This is in fact the spatial order of accuracy of the algorithm. Figures 3a and 3b 
illustrate the acoustic pressures along the wall and the 45-degree line from the wall, respectively. 
These figures corres ond to the same number of cells per wavelength as Figure 2b, whlch is the 
specified number o ? cells for the test problem. Due to the piston velocity discontinuity, some 
s urious waves occur in the vicinity of the piston. Other than this, the overall agreement between 
t f-~ e exact solution and the current solution is excellent for the specified number of cells. These 
results were obtained using a CFL number of 0.1. When the CFL number is increased to 0.5, the 
phase error starts to show up near the source (piston), but the accumulation of this phase error 
over space remains about the same. Also it was observed that usin a sixth order filter sli htly 
improved the dissipation characteristics of the algorithm on this prob k em over a fourth order i! lter. 

CONCLUSIONS 

A spatially and temporarily fourth order accurate Runge-Kutt a finite difference a1 orit hm has 
been ap lied to an oscillatin circular iston problem on the Connection Machine. t has been E fl a P 
shown t at the numerical sc eme nee s about 10 cells per wavelength to give results without 
significant phase error. A comparison of a fourth order filter and a sixth order filter indicated 
that the amplitude error properties of the algorithm are improved usin the sixth order filter. 
Increasing the CFL number causes an early but negligible development o the phase error at the 
wall. 

f 
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Figure 1: Von Neumann stability analysis: Amplification factor and phase error. (a),(b) with no 
dissipation; and (c),(d) with dissipation. 
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CATEGORY 5 PROBLEM 
SOLUTION USING AN UNSTRUCTURED FINITE VOLUME ALGORITHM 

Trong T. Bui and Reda R. Mankbadi 
NASA Lewis Research Center 

Cleveland, Ohio 

INTRODUCTION 

For the simulation of flows with complex geometries, unstructured finite volume methods 
have proven to be very popular, and simulations of a large number of flows have been done with 
good results using this approach. Since most of the simulations to date were done for steady 
flows, it is not clear that present unstructured finite volume algorithms can accurately track the 
unsteady propagation of acoustic waves in a computation. Therefore, there is a need to assess the 
accuracy of these methods for acoustic calculations. 

In this paper, we perform the numerical simulation of a very small amplitude acoustic wave 
incident on the non-uniform steady flow in a quasi-1D convergent-divergent nozzle using an 
unstructured finite volume algorithm with piece-wise linear, least square reconstruction, Roe flux 
difference splitting, and second-order MacCormack time marching. First, the spatial accuracy of 
the algorithm is evaluated for the steady flow by running the simulation with a sequence of suc- 
cessively finer meshes. Then the unsteady numerical solution with the acoustic perturbation is 
presented. 

NUMERICAL PROCEDURE 

The governing equation used for this study is the quasi-1D Euler equation in the following 
form: 

Where 



The above equation is discretized using the finite volume approach. In this approach, eq. (1) 
is integrated over a finite volume which reduces to a single strip of length Ax for the one-dimen- 
sional case. The major steps in the solution procedure are: (1) reconstruction, (2) flux computa- 
tion, and (3) evolution. This is a standard finite volume solution procedure that has been used in 
previous works, and it is described in detail in ref. 1. 

Step 1: Reconstruction - A cell-centered scheme is used in the current work. A piece-wise 
linear, least square reconstruction procedure similar to those described in refs. 1 and 2 is used. 
Each of the three conservation variables is assumed to vary linearly within a finite volume as: 

The overbar denotes cell-averaged values, and cp is a gradient limiter. The gradient limiter is 
needed so that eq. (3) does not produce new extrema that - are outside - the range of the cell-aver- 
aged data used in the reconstru~tion~~ocess. A diffe~es  gradient limitefis used for each conser- 
vation variable. Note that the cell-averaged value of the unknown is recovered when eq. (3) is 
integrated over the finite volume. 

v is updated in step 3 below. Following ref. 2, U, is computed using a least square procedure 
that minimizes the differences between the cell averages of the reconstructed polynomial and the 
cell averages of the support set. For this 1 -D problem, the support set consists of the immediate 
left and right neighboring cells, and U, can be computed as: 

Where the i index denotes the left and right neighboring cells used in the support set. 

Step 2: Flux computation - With a piece-wise linear reconstruction of the solution 
unknowns, the conservation variables are continuous and assumed to vary linearly within a con- 
trol volume. However, there is no guarantee that they will be continuous across adjacent volumes, 
since a different linear function is used in each volume. AS the result, a flux formula is needed to 
compute a single flux at a control volume boundary given fluxes from the adjacent volumes. A 
popular flux formula used in finite volume codes is the Roe flux difference splitting, and it is used 
here. 

Step 3: Evolution - A large number of time marching algorithms is available to advance the 
solution unknowns in time. Since the problem is unsteady, an accurate time marching algorithm is 
desired. In the current work, the two-stage, second-order MacCormack time marching algorithm 
is used because of its simplicity. A CFL number of 0.9 based on the minimum Ax and maximum 
(u + a) is used in all computations, where u and a are the local flow speed and speed of sound, 
respectively. 



BOUNDARY CONDITIONS 

Boundary conditions are needed to provide the incoming flux that is going into the first con- 
trol volume at the nozzle inlet and the outgoing flux that is passing out of the last volume at the 
exit. A number of different boundary condition implementations were tried, and an irnplementa- 
tion that gives the best results is described below. 

Inflow - The incoming flow is always subsonic for this benchmark case, so the boundary con- 
ditions used are: 

1. Specified Pbt 
2. Specified Ttot 

aP au The outgoing compatibility relation 3 is solved with - and - discretized using information ax ax 
from the computational domain. 

For the acoustic computations, the inlet values of P,, and T,, are specified as functions of 
time. 

Outflow - The outgoing flow is supersonic. The applicable compatibility relations are: 

RESULTS AND DISCUSSIONS 

Computations were done on an IBM RS 6000 workstation using double precision floating 
point arithmetic (64 bit). Converged steady state solutions were obtained to machine precision. At 
convergence, the residual values typically have decreased by about 14 orders of magnitude. The 
steady state computations were started from zero flow velocity everywhere in the nozzle, and the 
acoustic computations were started from the converged steady state solutions. To assess the spa- 
tial accuracy of the method for the steady flow, computations were performed using a sequence of 
successively finer meshes. From the log-log plot of the L1 norm of the error versus the number of 
mesh points, the spatial order of accuracy of the method was found to be better than two. 

Fig. 1 shows the results of the acoustic calculations for a series of successively finer meshes. 
For the case with 280 cells, it can be seen that there are some spurious pressure oscillations near 



the nozzle inlet. In ref. 3, it was found that the piece-wise linear reconstruction with the Barth's 
limiter can produce spurious pressure oscillations in the numerical simulation of the supersonic 
vortex, and a similar thing might be happening here. These oscillations are visibly reduced when a 
finer mesh of 600 cells was used, and they are essentially gone for a mesh of 1200 cells. 

Fig. 2 plots the time history of the pressure at the nozzle exit. It can be seen that the coarse 
mesh solutions have a small phase error as compared with the fine mesh solution. However, as the 
mesh is refined, the phase error is significantly reduced, and the coarse mesh solutions are seen to 
converge to the fine mesh solution. 

CONCLUSIONS 

Numerical simulation of an acoustic wave incident on the steady flow inside a quasi- 1D con- 
vergent-divergent nozzle was performed using an unstructured finite volume algorithm with 
piece-wise linear least square reconstruction, Roe flux difference splitting, and second order Mac- 
Cormack time marching. For steady flow, the spatial order of accuracy of the above method was 
found to be better than two for this problem. The above method successfully tracked the propaga- 
tion of a very small amplitude acoustic wave in the nozzle. 
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Figure I .  Acoustic results with grid refinement 
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COMPARISON OF SPATIAL NUMERICAL OPERATORS FOR 
DUCT-NOZZLE ACOUSTICS 

A. B. Cain and W. W. Bower 
McDonnell Douglas Corporation 

St. Louis, MO 

SUMMARY 

A production Navier-StokesEuler CFD code, NASTD, developed for aircraft flowfield 
analysis has been modified to analyze acoustic fields associated with propulsion exhaust systems. 
The modified code has been applied to the Category 5 nozzle problem using six different spatial 
discretization schemes combined with a third-order, compact storage Runge-Kutta time integration. 
NASTD was found capable of tracking pressure disturbances normalized by the freestrearn value 
of order even with lower-order schemes, for the benchmark problem. 

INTRODUCTION 

In the past three years McDonnell Douglas Aerospace (MDA) has computed Navier-Stokes 
simulations of the noise generated by high-speed jet flows. Such simulations require a 
significantly greater accuracy than that required for standard computational fluid dynamics (CFD) 
calculations for the following primary reasons: 1) The wide range of frequencies and scales 
associated with turbulence-generated noise necessitates high-order temporal and spatial accuracy. 
2) The simulations are performed on a finite computational domain that must represent the infinite 
domains in which measurements are made, so the acoustic and turbulence energy must be allowed 
to exit the computational domain without generating spurious perturbations. 3) The numerical 
scheme must contain some dissipation to ensure stability and provide good shock capturing, but 
the dissipation should not be sufficiently large to alter the acoustic field. To assess current 
capability in these areas, both von Neumann modified wavenumber analysis on a variety numerical 
algorithms and direct numerical calculations are performed. 

To satisfy these requirements the NASTD code, which has been used extensively at MDA for 
CFD simulations of a variety of complete military aircraft flowfields, has been modified to permit 
high-resolution acoustics calculations applied primarily to propulsion exhaust systems. NASTD is 
a finite-volume Navier-StokesEuler solver with a multi-block structure and an overlapping (or 
Chimera) capability to address arbitrarily complex geometries. Higher-order temporal and spatial 
discretization schemes have been included in the code. In addition, specially developed boundary 
conditions to maintain irrotational freestrearn inflow and to eliminate acoustic-wave boundary 
reflections have also been incorporated. 

This paper summarizes the discretization schemes and boundary conditions contained in 
NASTD which are necessary for aeroacoustics calculations and presents solutions for a Category 5 
problem of the ICASE/LaRC Workshop "Benchmark Problems in Computational Aeroacoustics". 
This specific test case was constructed to test numerical scheme and boundary condition accuracy 
in analyzing a very small amplitude acoustic wave superimposed on the steady flow in a 
converging-diverging nozzle. 



NUMERICAL PROCEDURE 

In the point-wise discretization of a partial differential equation in space and time for the 
propagation of an acoustic wave, one of the most significant numerical problems is numerical 
dispersion. This occurs when the phase speed becomes a function of the spatial and/or temporal 
discretization interval. How this numerical artifact arises becomes apparent through discretization 
of the one-dimensional scalar wave equation. 

where the propagation speed is constant. The harmonic solution of this equation is f (x, t) = exp[i 
(kx - ot)] = exp[ik (x - ct)], where c = o/k. For a discretized point in space and time, (xm, tn> = 

(x0 + mAx, to + nAt), the discretized spatial derivative is represented by: 

where Equation (2) defines the so-called numerical "modified wave number" k'. 

The truncation error TE associated with numerical spatial difference approximations can be 
expressed in terms of the ratio of the modified to the actual wave number, 

TE = (k/ k') - 1. 

If (k'k) is real, then the only errors in the solution for f at a later time (due to errors in k') will be 
errors in the phase (no errors in amplitude). On the other hand, errors in the imaginary component 
of k' will produce amplitude e m ,  which will have an exponential impact with either unbounded 
artificial growth (unstable) or decay. A detailed von Neumann linear error analysis of various 
discretization schemes, including their application to stretched grids, is contained in Reference 1. 
An analogous study of "optimized" schemes relevant to aeroacoustics calculations for uniform 
grids is presented in Reference 2. 

- - 
- -- - - - - 

Figure l(a) depicts the real and imaginary components of k'/k versus kA for first-order 
upwind, second-order upwind, second-order central difference, third-order upwind bia-kd, fourth- 
order upwind biased and fifth-order upwind biased schemes. These cases are on a reference 
uniformly spaced grid (grid stretching ratio r = 1). It should be noted that M = le corresponds to 
two points per wavelength, -..- M = n/2 corresponds to four points per wavelength, etc. 

- 
-- - - 

The boundary conditions employed in NASTD are of the first-order charactdstic type 
(Reference 3). This standard scheme is augmented by the implementation of anh@non@ inflow 
condition and second- and/or fourth-order damping locally in the boundary region. The boundary 
damping is derived and imposed so that the highest wave number resolved is completely damped in 



one time step at the boundary and tapered to zero impact in the interior. In the present application, 
the characteristic boundary condition is applied downstream of the sampling point with no 
discernible error. 

RESULTS 

The category 5 test problem dealing with a small amplitude sound wave incident on a 
convergent-divergent nozzle is illustrated in Figure 2. The intent of this problem is to test the 
suitability of the numerical scheme for the direct simulation of very small amplitude acoustic waves 
superimposed on a non-uniform mean flow in a semi-infinite duct. The normalizing parameters, 
area distribution of the nozzle, and incoming acoustic wave are defined in Figure 2. The desired 
solution is the transmitted sound wave at the nozzie exit. 

Simulations were performed with NASTD in the Euler mode. A third-order, compact storage, 
Runge-Kutta time integration was implemented in combination with the following spatial schemes: 
1) first-order upwind, 2) second-order upwind, 3) second-order physical space upwind biased, 
4) third-order upwind biased, 5) fourth-order upwind biased, and 6 )  fifth-order upwind biased. 
The acoustic wave propagation problem was solved in two steps. First, a given spatial operator is 
chosen, and the numerical steady flow solution is computed to a residual level of 10-9. This 
converged solution is then used as an initial condition for an unsteady simulation with the imposed 
time harmonic inflow condition. 

The normalized perturbation pressure as a function of dimensionless time at the downstream 
nozzle station x = 80.0 is presented in Figure 3 for the various spatial schemes with 15 points per 
wavelength and in Figure 4 with 7.5 points per wavelength. The phase relations in the solutions 
are indeterminate since all were started from steady solutions that converged at differing times 
depending on the starting value and the algorithm used. A comparison of the results shows that the 
fourth- and fifth-order upwind schemes give the same solution when the finest resolution is used. 
The amplitude of the wave is diminished when the resolution is reduced, even for the highest-order 
scheme. It is interesting to note that even in the crudest case (the first-order upwind algorithm) the 
harmonic distribution is clearly identifiable even though the wave amplitude is significantly 
diminished due to the highly dissipative formulation. 

CONCLUSIONS 

NASTD, a production Navier-S tokes/Euler code for aircraft flowfield simulations, with use of 
appropriate discretization algorithms and boundary conditions was found to accurately track 
acoustic disturbances in the Category 5 duct-mode acoustics problem. A modified von Neurnann 
wave number analysis performed on the spatial operators determined the basic behavior of the fust- 
through fifth-order spatial algorithms used. Solutions were generated for these cases with 7.5 and 
15 points per wavelength (Ax=4 and Ax=2). It was found that with the fine resolution grid 
independence was achieved with the fourth-order algorithm. 
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HIGH-ORDER ESSENTIALLY NON-OSCILLATORY METHODS 
FOR COMPUTATIONAL AEROACOUSTICS* 

Jay Casper 
ViGYAN, Inc. 
Hampton, VA 

INTRODUCTION 

The desire to obtain acoustic information from the numerical solution of a nonlinear system of 
equations is a demanding proposition for a computational algorithm. High-order accuracy is 
required for the propagation of high-frequency, low-amplitude waves. In addition, it is desirable 
to highly resolve discontinuities that can develop in the solutions of the Euler or Navier-Stokes 
equations. The class of essentially non-oscillatory (ENO) shock-capturing schemes112 has been 
designed to have both of these properties. The dual capacity of EN0 schemes for high-order 
accuracy and non-oscillatory shock-capturing is achieved through the use of adaptive stenciling, 
which makes these schemes highly nonlinear. These schemes are briefly described and referenced 
herein. A fourth-order algorithm is then applied to the solution of an acoustic wave in a 
quasi-one-dimensional converging-diverging nozzle. 

NUMERICAL METHOD 

For the sake of brevity, the necessary details of the EN0 schemes to be used in this work are 
presented within the context of a one-dimensional scalar equation, 

A control-volume formulation is obtained by integrating Eq. 1 on an interval xi+1l2] with 
center xi and "volume" AX'. The one-dimensional scalar conservation law can then be written 

where 

a -1 -ei(t) = - [ f( 
at AX; 

is the cell average of u on the i-th interval at time t . Temporal integration of Eq. 2 can be 
accomplished by treating Eq. 2 as a system of ordinary differential equations, via a 
method-of-lines approach. In particular, the Runge-Kutta methods of Shu and Oshe? will be 
used. These methods are high-order accurate and total-variation diminishing (TVD) in the sense 
that the temporal operator does not increase the solution's total variation in time. The right-hand 

*Work done on contract at NASA ~ a n ~ l e y ~ e s e a r c h  Center, Hampton, VA, NAS1-19672. 



side of Eq. 2 is approximated in a manner similar to that introduced by Harten, et al.'; a brief 
description follows. 

To approximate the right-hand side of Eq. 2 to high-order accuracy, the spatial operator must 
include a high-order pointwise approximation to u(x ,  t )  . However, at a given time t , only the cell 
averages in Eq. 3 are available. Therefore, a pointwise "reconstruction" of the solution from its 
cell averages is required. To this end, let R be an operator which reconstructs the cell averages 
and yields a piecewise polynomial R(x ; ~ ( t ) )  of degree r - 1 which approximates u(x ,  t )  to high 
order, wherever u(x ,  t )  is sufficiently smooth. This operator R acts in a piecewise manner in that 
the solution is locally reconstructed within each cell. Let P; denote the polynomial of degree r - 1 
which approximates u(x ,  t )  in the i-th cell, at time t ,  i.e. 

The specific method used in this work is the "reconstruction by primitive" proposed by Harten et 
a1.l and is not detailed here. 

This piecewise reconstruction can cause jumps in the approximate solution at the cell interfaces 
that are O(hr )  in smooth regions and O(1) near discontinuities. The fluxes in Eq. 2 are then 
approximated by solving the local Riemann problems at the cell interfaces. Thus, the right-hand 
side of Eq. 2 is replaced by its high-order approximation, which yields 

where 
ji+1/2(t) = fRm( P i ( x i + ~ / ~ )  7 pi+l(xi+1/2) ) (5b) 

and f Rm(uL, uR) denotes the flux that is associated with the solution of the Riemann problem 
whose initial states are U L  and U R  . Upon temporal integration of Eq. 2 with an appropriately 
high-order Runge-Kutta method: the scheme in Eq. 5 is locally r-th-order accurate in the L1 
sense.' The extension of these schemes to hyperbolic systems that is used in this work can be 
found in Ref. 1. 

The most unique aspect of the reconstruction operator R is its use of adaptive stenciling. That 
is, the interpolation set used for the approximation of u(x ,  t )  within a given cell is allowed to shift 
in an attempt to use the smoothest possible information. In this way, EN0 schemes can 
approximate the smooth regions of a piecewise continuous function to high-order accuracy 
without the oscillatory behavior that is associated with interpolation across steep gradients. 
Furthermore, adaptive stenciling enables high-resolution shock-capturing. Previous research has 
shown that the accuracy of these schemes can degenerate when the stencils are allowed to freely 
adapt.3 Further research indicates that this accuracy problem can be remedied by biasing the 
stencils toward those that are linearly  table.^^^ For present purposes, the desired reconstruction 
stencils are centered if r is odd and one cell upwind if r is even. In this manner, the resulting 
schemes have an upwind biased flux, as shown for the cases r = 3 and r = 4 in Fig. 1. In the next 
section, the above methodology is applied to the direct simulation of the propagation of an 
acoustic wave in a converging-diverging nozzle. 



CATEGORY 5:  ACOUSTIC WAVE IN A QUASI-ONE-DIMENSIONAL NOZZLE 

The high-order EN0 methods discussed above are now applied to the solution of an acoustic 
wave in a quasi-one-dimensional converging-diverging nozzle. The governing equations are the 
quasi-one-dimensional Euler equations: 

where 
P u 

U = [ f ] ,  F = [  p u 2 + P  1 ,  H=[{%] (6b) 
(PE + P)u 

The variables p,  u, P, E,  and A are the density, velocity, pressure, total specific energy, and nozzle 
area, respectively. The equation of state is 

where 7 is the ratio of specific heats which is assumed to have a constant value of 1.4. The flow 
variables are normalized with respect to stagnation conditions as described in Category 5 of the 
Workshop Test Cases. The prescribed area distribution A ( x )  and its derivative are illustrated in 
Fig. 2. Note that A ( x )  has only one continuous derivative at x = -100 and x = 19. 

A steady-state solution (Fig. 3) is obtained by implementing a fourth-order (r = 4) EN0 
scheme with a biased stencil algorithm until residuals are driven to machine zero. It should be 
noted that this numerically converged initial condition cannot be obtained with a freely adaptive 
stencil algorithm. Fig. 4 illustrates the density error of the steady state solution on four 
successively refined meshes. The error is only second order near x = - 100 and x = 19, as 
expected, but is fourth order away from these points. I 

After the steady state is achieved, an acoustic disturbance is introduced at the inlet, x = -200: 

where the subscript i denotes the steady inlet state, w is the circular frequency, E is the amplitude, 
and c = ,/- is the local sound speed. The calculation is performed on a uniform mesh of 280 
cells, with w = 0 . 1 ~  and c = The time-dependent part of the calculation is computed with a 
fourth-order Runge-Kutta method2 with a Courant number of 0.8. Time-accurate, nonreflecting 
numerical boundary conditions6 are employed at inflow and outflow for both the initial steady 
solution and the time-dependent solution. The inflow is perturbed for 0 < t /Tx  _< 110, where 
Tx = 2 r / w  is one period of the incoming acoustic wave. 



The mean flow pressure p ( x )  is averaged at the nozzle exit for 20 5 t/TA 5 100. The 
averaging is done for t /Tx > 20 to avoid the initial transient. The pressure perturbation 6P is 

Fig. 5 depicts this pressure perturbation as a function of the nozzle length, at 10 equally spaced 
time intervals, during one period of the incoming acoustic wave. The required pressure 
perturbation at the nozzle exit is 

and is measured for 100 5 t/Tx 5 110. The data in Fig. 6 represent one period within this time 
interval. 

CONCLUDING REMARKS 

The modifications that have been suggested by other  author^^*^ in regard to the biasing of 
stencils toward those that are linearly stable have been demonstrated to serve their purpose in a 
smooth flow. Clearly, this particular Workshop problem does not require the adaptive stenciling 
feature of the EN0 methods described. However, the numerical methods discussed and applied 
herein have also been shown to work well when applied to shocked flows. For more discussion 
and numerical solutions of a similar problem in which an acoustic wave must interact with a 

- 
- - - shock in a nozzle, the interested reader is referred to Refs. 7 and 8. 
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SUMMARY 

Numerical simulations of the small amplitude acoustic wave propagation in a converging- 
diverging nozzle proposed in Category 5 are performed and presented here. The quasi 1-D un- 
steady flow equations in conservative form are discretized by the DRP scheme with the artificial 
damping developed by Tam and Webb [I . Characteristic boundary conditions are used at both 
the inlet and outlet of the nozzle. The e A ect of different numerical implementations of the sub- 
sonic inflow boundary conditions on the convergence of the solution to the steady state is studied. 
In the case of a subsonic outflow in which a shock is formed in the nozzle, the interaction between 
acoustics and the shock is also investigated. 

1. INTRODUCTION 

Category 5 problem is set to study the feasibility of capturing the acoustic waves with amplitude 
many orders of magnitude smaller than the mean flow and the local truncation error of the 
numerical scheme. It has been recognized that high order schemes, when properly formulated, 
can successfully resolve waves with wavelength equal to 8-10 mesh points even for long distance 
propagation problems due to the low numerical dispersion and dissipation associated with the 
schemes. This is demonstrated a ain by the results of the present paper. But there are also 
drawbacks in using high order sc % emes such as more spurious solutions, slow convergence to 
steady state and difficulty with the implementation of boundary conditions. These drawbacks 
are worth to be aware before using these schemes. In the present paper, the steady state solution 
is com uted as the first step. The acoustic source is turned on after the steady state is reached. 
The e 8 ect of different numerical implementations of the characteristic subsonic inflow boundary 
condition on the convergence of the solution to the steady state is also studied. The results of 
this study may help in explaining why some high order schemes have slow convergence or even 
no conver ence to the steady state. To study the capability of DRP scheme in sol* problems 
involving %oth shocks and acoustic waves, the proposed problem is modified by an Increase in 
exit pressure. A shock is, therefore, formed inside the nozzle. Both the mean flow with a shock 
and the acoustic waves which propagate through the shock are computed by DRP scheme with 
selective artificial damping and compared with the analytical results. 

2. INTERIOR SCHEME 

The numerical scheme used here to discretize the governing differential equations is the 7-point 
4-level Dispersion-Relation-Preserving finite difference scheme with selective artificial damping 
terms developed by Tam and Webb [I]. Assume that the governing equations are in the conser- 
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vative form 

where U = (PA, FA, eA)' and G and F contains p, u,  p and the area of the nozzle A(2) and its spatial 
derivative. The discretization of DRP scheme is formulated in the following way; 

and 

where I is the spatial index and n is the time index. The last term in equation (2 is the selective ar- 
tificial damping term and the R is the mesh Reynolds number. The coefficients or spatial and tem- 
poral discretisations and damping given in [ l  are Q = 0, ct = -c-1 = 0.770882380518225552 ct = 1 -c-3 = -0.166705904414580469 = -c-r = 0.0 08431427703117643 and bo = 2.3025580888383 = 
-2.4910075998482, br = 1.5743409331816, br = -0.38589142217163 and do = 0.287392842460216014, 
dl = = -0.22614695180872 da = d-3 = 0.10630357876989 dr = d-a = -0.023853048191278 

3. BOUNDARY AND INITIAL CONDITIONS 

The compatibility equations of the original governing equations are 

3.1. Subsonic Inflow (A, = 0) 

At the subsonic inflow, R2 and R3 are the incoming entropy and acoustic waves wbich must 
be specified by the known boundary conditions and R1 is the outgoing acoustic wave which must 
be computed kom the interior. To illustrate the effect of different numerical implementations, 
three different types of boundary treatments are tried. 

Linear Version (LV) This is considered the ideal version since the am litude of the acoustic 
wave is so small relative to the mean flow and the formulation of the c r, aracteristics is math- 
ematically sound. After linearization about the mean flow, the above compatibility equations 
become 

p - u =  F ( z - ( M o -  1)t) 
p - p =  G(2 - Mot) (4) 

p + u =  H ( z - ( M o + l ) t )  

With G = 0 and H provided by the analytical incoming acoustic solutions, the differential forms 
of these boundary equations become 



The derivatives, which represent the outgoing information, are computed with backward differ- 
encing. 

Non-linear Version NV) In this approach, the spatial derivatives along the incoming charac- 
teristics in the compati 6 ility equations are computed from analytical expressions of the incoming 
acoustic waves. The outgoing one is still computed from interior by the backward differencing. 
This is the Thompson's type implementation with the specification of the incoming waves, instead 
of no incoming waves [4]. The differential forms of the boundary equations become 

Finite Diference Version FV) In this version, the computation of the outgoing characteristic 
stays the same as LV and d V. The spatial derivatives along the incoming characteristics are 
computed with central differencing. The values of the flow variables outside the computation 
domain are provided by the given analytical expressions of the incoming acoustic waves. 

(4 @) 
Figure l a  Time history of loglo(moz,Jdp/dtl) for LV,FV and FV with R = 10 (t, = t /  A t ) .  lb .  Spatial 
distribution of dp/dt and u p  at t = 100000At where the solid h e  is for dp/dt and circled are for -up 

The time histories of residuals for all three versions are plotted in Figure la. The mesh 
Reynolds number is chosen to be 10 which hardly has any effect on the acoustic waves (see Tam, 
Webb and Dong [2]). The computations with FV and NV versions converge to steady state at 
different speeds, in which the FV version converges faster. But the solution with the ideal LV 
version does not converge anymore after the residual reaches about It is further found 
that an almost neutral solution of the form df/& = -af where a = 0.89442538 x 10-8 has appeared 
as shown in Figure lb. It will take extremely long time for this solution to decay to zero or in 
practice the computation does not converge. This solution must be one of those spurious solutions 
associated with the discretized system coupled with boundary equations. Because the amplitude 
of this spurious solution is very small, which is true in most cases, it shows up after all the other 
time dependent solutions have vanished. An increase of damping will only affect the speed of 



convergence of F V case. One wa to eliminate this solution is to slightly modify the boundary 
condition implementation so the C oundary equations do not support this solution anymore as it 
is done in the present paper. Another way to remove this solution is to subtract out this solution 
from the governing equations as it is described by Tam and Dong [3]. It is also noticed that both 
L V and NV versions require a smooth function to turn on the acoustic disturbance gradually or 
the mean will be distorted. The F V version is used in the present computations. Besides the 
advantage of having higher speed of convergence, the F V  version requires only the values of flow 
variables, instead of analytical ex ressions. The computed acoustic results are shown in Figure 
2a. One can see that with the c fl oice of DRP scheme and FV implementation, the numerical 
dissipation experienced by the acoustic waves is very small. To illustrate the advantage in using 
DRP scheme for solving acoustics problems, a case with w = 0.3~ is run and the results is lotted 
in Figure 2b. In this case, the acoustic wave length contains only 11 grid points (10 A Z ~ .  The 
results still agree well with the exact solutions. 

3.2. Supersonic Outflow Boundary Condition 

Because the flow is supersonic at the outflow, all the spatial derivatives are &=tized with 
the backward (interior) Cllfferencing and the compatibility equations are the same as the interior 
equations. 

3.3. Initial Condition 

The initial conditions are computed by integrating the steady state governing equations an- 
alytically. They are very good approximations to, but not exactly, the steady state solutions of 
the finite difference equations. 

Y Y 

(4 - 
Figure 2. Severel mapshots of the spatial distribution of the pressure disturbances (R = 

- 
- - -  dotted &es are 

the marimurn pressure disturbances fiom the analytical results. a. w = O.lpi (30 mesbes per wavelength).-b. w = 
0.3% (10 meshes per wavelength). 



4. SHOCK PROBLEM 

A shock is formed in the nozzle by increasing the exit pressure. The flow becomes subsonic at 
the outlet. Characteristics R2 and R3 are outgoing and R l  is incoming. Along R1, 

is assumed to suppress reflections. This approximation would generate some reflections due to 
the non-constant nozzle area at the outlet. Interior differencings are used on R2 and R3. Stronger 
damping with mesh Reynolds number equal to 0.2 is used at the shock to suppress the high 
frequency oscillations. A Gaussian function is used to smooth the transition between this strong 
damping and the weak dampin in the smooth region. A variable damping method can also be 
found in [5]. Both the mean if ow and acoustic waves are plotted in Figure 3. The frequency 
of the acoustic disturbance is still equal to 0.1%. The pressure ratios which are the ratios of the 
after-shock pressure to pre-shock pressure for both mean and acoustics are compared with the 
analytical results in Figure 4. The analytical acoustic result is obtained from the linear theory 
[6]. One could notice that some oscillations are visible on the envelope curve of the pressure 
disturbance due to the reflection from the outlet. 

03A.i A.0 ab.0. - 20.0 ' A . 60.0 ' . I 
1 x 

(4 ('4 
Figure 3. Spatial distribution ofpressure with a shock at x=40. a. Mean pressure. The dotted line is the analytical 
mean pressure. b. Pressure disturbance (w = 0.1~). The dotted line is the computed msr. pressure disturbance 

5. CONCLUSIONS 

By comparing the simulated acoustic solution with the exact solution (the envelope) in Figure 
2, It is concluded that the DRP scheme has captured the propagation of the small amplitude 
acoustic waves very well due to its low numerical dispersion and dissipation . But one should also 
be aware that low dissipation will usually slow down the convergence of the computation to steady 
state. Besides, high order finite difference system can also support spurious solutions which are 
almost neutral, namely will take extremely long time to vanish. Special techniques are needed 
in order to remove these die-hard spurious solutions. It is also found that with a good selective 
artificial damping technique, well-formulated high order schemes such as DRP schemes can also 
produce high quality solutions for problems involving shock and acoustics without introducing 
much complication. 
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THE PRESSURE FIELD OF A GUST INTERACTING WITH A FLAT PLATE 
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A semianalytical solution is presented for the unsteady pressure field of a vortical gust interacting 
with a flat-plate airfoil in subsonic flow. The solution will serve as a benchmark for evaluating the 
accuracy and efficiency of time dependent numerical schemes. The specific case considered 
corresponds to the ICASE benchmark problem number 6. The results are compared with those of 
asymptotic theories for high frequency and show excellent agreement. 

INTRODUCTION 

The treatment of a two-dimensional gust impinging on a flat plate airfoil at subsonic speed is a 
classical problem in unsteady aerodynamics. The assumption of a mean uniform flow uncouples the 
unsteady flow problem from the mean flow and leads to the linearized Euler equations with constant 
coefficients. The physical problem depends on two parameters, the reduced frequency kl which is a 
measure of the convective time scale to the gust period, and the Mach number M which is the ratio 
of the mean flow velocity U, to the speed of sound a,. Although, the mathematical problem may 
appear to be relatively simple, no exact solution exists for the general case. In the early treatments, 
the problem was often formulated in terms of Possio's integral equation and solutions were obtained 
by collocation techniques [I, 21. More recently, frequency-domain finite-difference solutions were 
obtained by Scott and Atassi [3]. Because of the widespread applications of unsteady airfoil theory 
to flutter and forced vibrations, asymptotic solutions were derived for the unsteady pressure jump 
along the plate surface for the low frequency [4,5] and the high frequency cases [6, 7). For more 
details, the reader is referred to a recent review article by Atassi [B]. 

Interest in the far-field acoustic radiation has motivated the development of methods to 
calculate the unsteady pressure field. Amiet [9] gave an expression for the far-field acoustic power 
produced by an airfoil in subsonic turbulent flow. However, he considered only the dipole 
contribution to the far-field sound. Martinez and Widnall [lo] gave an exact expression for the 
far-field acoustic pressure in the limit of high frequency. Atassi et al. [ll] derived an expression for 
the unsteady pressure everywhere in terms of the unsteady pressure jump along the plate surface for 
arbitrary values of the parameters kl and M. They calculated the unsteady pressure jump along the 
plate by solving Possio's integral equation. Their results show that as the frequency parameter 
Kl = wc/(2a,P2) becomes larger than 7rj2, quadrupole and noncompact source effects become 
significant. Here, w is the circular frequency, c is the plate chord length and p2 = 1 - M2. 

* Professor 
tFellow, Center for Applied Mathematics 



In the present paper, we use the method of Atassi et al. [ l l]  to calculate the unsteady pressure 
resulting from a gust interacting with a flat-plate airfoil. The specific case considered corresponds to 
ICASE problem 6 for which the Mach number is 0.5 and the sinusoidal transverse gust has a 
reduced frequency kl = wc/(2U,) = 15?r/4. Since our solution relies on a Possio solver and thus is 
semianalytical, the results for both the unsteady pressure jump along the plate surface and the 
acoustic pressure in the far-field are compared with high frequency asymptotic theories [7, 101. 

MATHEMATICAL FORMULATION 

Details of the mathematical derivation are given in [ll] .  The results can be summarized as 
follows. For an inviscid, non-heat conducting uniform mean flow, with an imposed upstream vortical 
disturbance, the linearized unsteady velocity field can be split into a convected vortical part and a 
potential part. Since the problem is linear, without loss of generality, we may consider a single 
Fourier component for the vortical part. Therefore, the velocity can be written as 

where ii = (al, a2, as) is the amplitude vector of the vortical disturbance, = (kl , k2, ks) is its wave 
number vector, and 64 is the potential part of the unsteady velocity. It is customary to normalize 
lengths with respect to half the chord, 4 2 ,  and velocities with respect to U,. The unsteady 
pressure p' is given by p' = - p ,  Do$/Dt. where Do/Dt a/& + U,d/bxl. The unsteady pressure 
p' is governed by the convective wave equation 

and a similar equation can be derived for 4. By introducing 

equation (2) reduces to the two-dimensional Helmholtz equation in the Prandtl-Glauert coordinate 
system 

where the Prandtl-Glauert coordinates are $1 = zl, 1 2  = Pz2, S3 = Px3, with Kl = klM/PZ, and 
K2 = K: - k:/P2. Traditionally the boundary value problem for P has been formulated in terms of 
a singular integral equation [I]. This equation is solved by direct collocation and gives the unsteady 
pressure along the plate, Ap'. 



The unsteady pressure field is then obtained using Green's theorem Ill], 

where Ap' = p'(yl , 0+) - pl(yl, 0-) is the pressure jump along the plate surface, and H?) is the 
Hankle function. This expression gives the unsteady pressure field everywhere in the plane. It 
accounts for both dipole and quadrupole effects. For large distance (r = 121 + oo) this expression 
can be simplified and the unsteady pressure can be cast in terms of the Fourier transform of Ap' [ll]. 

where 

ICASE BENCHMARK PROBLEM 6 

In this case we have a transverse gust defined as 

v = o.la,sin [E (A - t ) ]  
8 M, 

where the normalization for the velocity is with respect to a,; length, with respect to Ax = 1; and 
time, with respect to Azja,. The Mach number is given as 0.5, and the chord is 30 units. Using 
the usual normalization, we get kl = 1 5 ~ / 4  = 11.781, and a2 = 0.2. This corresponds to Kl = 7.85, 
a high frequency case. 

The unsteady pressure is to be calculated on a box surrounding the flat plate as shown in figure 
(1). The sides of the box are located at dimensional positions of x = f 95 and y = f 95. When 
nondimensionalized by the semichord the values are x = f 6.333, y = f 6.333. Thus, the box 
boundaries are not located in the far field and as a result, (5) must be used instead of its far-field 
expansion. 

The fact that Kl is relatively large allows us to compare our results for both Ap' and the 
far-field acoustic pressure with the high frequency asymptotic theories [7, 101. The results shown are 
for the normalized pressure 



Figure 1: ICASE benchmark problem 6 
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Figure 2: Unsteady pressure jump across airfoil 

Figure 2 shows plots of the real and imaginary parts of the pressure jump Ap using the present 
method and the asymptotic expression derived by Amiet [7] and Martinez and Widnall [lo]. The 
excellent agreement shows the high accuracy of our results. 

In order to compare our acoustic pressure with the far-field asymptotic expression of Martinez 
and Widnall [lo], we used the far field expansion of (5). Figure 3 shows a comparison between 
directivity plots of I p I f i ,  using the two methods. Again the agreement is excellent. 

- 
The mean square pressure, pa is now calculated at the ICASE box boundaries. Figure 4 shows 

the variation of on the top boundary of the box. Because the pressure is antisymmetric with 
respect to the y axis, the values at the bottom boundary are the same as on the top boundary. 
Figure 5 shows the variation of 7 along the left and right boundaries of the box, respectively. 

The authors would like to point out that the data for presented a the workshop were 
calculated for a gust of amplitude O.lU,, while the gust amplitude of the present data is 0. la, (see 
equation (7)). Therefore, the workshop data must be multiplied by 4.0 to conform with the present 
data. 

The authors would like to thank Professor S. I. Hariharan for presenting their results at the 
workshop. 
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Figure 3: Directivity of unsteady pressure 

Figure 4: Unsteady pressure on top of the box for t = 0 
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Figure 5: Unsteady pressure on left and right sides of the box for t = 0 
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ABSTRACT 

We apply second, fourth, and sixth order spatially accurate variations of the MacCormack 
scheme to calculate the noise radiated by the interaction of a flat plate with an oncoming gust. For 
the given gust wavelength and numerical discretization, the fourth and sixth order schemes each are 
effective in capturing the occurring acoustic waves. However, for the case of the sixth order scheme, 
the high order of extrapolation applied at the far field boundaries necessitates an extension of the 
computational boundaries from their prescribed location. 

1. INTRODUCTION 

For many aeroacoustic problems, simple adaptation of standard CFD schemes is unsuitable due 
to the additional challenges involved in computing the sound field. Hardin (1993) lists many of the 
additional challenges inherent in aeroacoustic computation. These include: (1) the small size of the 
quantities to be computed, (2) the high frequencies involved, (3) a sensitive dependence of the 
acoustic field upon phase, damping, and dispersion, and (4) the temporal dependence of the far field 
boundary conditions. Radiation boundary conditions which minimize reflections at the far field 
boundaries have been derived and successfully tested by Tam and Webb (1993). With their 
dispersion relation preserving schemes, Tam and Webb have furthermore developed numerical 
schemes which, unlike many finite difference schemes, maintain the dispersive qualities of the 
occurring acoustic waves. One aim of the present study is to test the effectiveness of a typical CFD 
scheme, which lacks the tailoring of the dispersion relation preserving schemes, on a given 
benchmark problem in computational aeroacoustics. In the present study, using the radiation 
boundary conditions derived by Tam and Webb, we investigate the ability of three variations of the 
MacCormack scheme to capture the occurring acoustic waves in the given flow field. 

As part of the Workshop on Benchmark Problems in Computational Aeroacoustics, the following 
problem was posed. Determine the intensity of radiated sound generated by the interaction of an 
infinitesimally thin, flat plate with an oncoming gust which contains a two component, mean 
velocity. The gust has uniform mean velocity in x with Mach number, M,, equal to 0.5. The gust's 
mean velocity in y is of smaller amplitude and is given by 

v = f(x - M,t) = 0.1 sin [i (& - 91. 



Hariharan et al. (1992) investigated a similar flow arrangement using a finite difference scheme with 
second order, spatial and temporal accuracy. 

In the present study, we concentrate on the effectiveness of the MacCormack scheme applied to 
the above problem. We focus on the fourth order spatially accurate variation of this scheme and 
compare our results with those we obtain using second and sixth order spatially accurate versions. 
The outline of this paper is as follows: in section 2, we will review the numerical approach we have 
applied to the given problem. In section 3, we will describe and discuss the results, and in section 4, 
we will give a short summary and conclusions. 

2. NUMERICAL APPROACH 

- For the calculation, a computational domain extending in x and in y from -100 to 100 is 
prescribed. The following scales are to be used: length scale, Ax; velocity scale, a,; density scale, 
p,; and pressure scale, p,a&. Here Ax is the computational grid spacing. p, and a, are, 

- 
- 

respectively, the ambient density and sound speed. Viscous effects are to be ignored. Therefore, we 
solve the problem using the non-dimensional, compressible Euler equations. After linearization 
about the mean flow, these equations have the following form: 

- 
2 

a M, u' + p' 
at (1) 

Mwpt + u' 
in which u', v' and p' are the disturbance streamwise velocity, transverse velocity, and pressure. 
Since the equations for the disturbance density and pressure are identical, we remove the equation 
for density from our system and correspondingly reduce the magnitude of the calculation. At the 
far field computational boundaries, we apply the radiation boundary conditions derived by Tam and 
Webb (1993). The only physical boundary is the plate located at y = 0 and -15.0 5 x 5 15.0. On 
the plate, we satisfy the no normal flow condition by specifying v' = - f (x - M,t). The transverse 
gust velocity will create discontinuities across the plate in the pressure and the streamwise velocity. 

- - We determine the pressure on each side of the plate using a one-sided Taylor expansion with 
dpt/ay = 0 at the plate. Off the plate, pressure must be continuous. Continuity of u' in x however, 
may lead to discontinuities in u' across y = 0 all along the centerline. For the results presented here, 
we perform all calculations over only the upper half domain (thus, only one value for each of the 
discontinuous variables along the centerline at y = 0 is monitored) and we utilize symmetry 
conditions of the pressure and the velocities about y = 0. 

When applied to waves of high frequency, the Fourier-Laplace transform of standard finite 
difference schemes begins to deviate from that of the derivatives they attempt to approximate. Tam 
and Webb's results indicate that for the given gust frequency and numerical discretization, using a 
standard finite difference scheme, minimal fourth order spatial accuracy is necessary to adequately 
represent the occurring acoustic waves. Thus, for the numerical integration of equation (I), we 
tested an unsplit, 2-4 variation of the MacCormack scheme (second order accurate in time, fourth 
order accurate in space) developed by Gottlieb and Turkel (1976). For an equation of the form 
Ut = F,, the two stages of this scheme have the following form: 



For comparison purposes, we have also implemented the standard 2-2 MacCormack scheme as well 
as the 2-6 variation alluded to by Bayliss et  al. (1985). For the MacCormack schemes, flow 
information is required at locations external to the computational domain. With each scheme 
implemented, to obtain information at these external locations we apply an extrapolation formula 
with accuracy which is one order less than the spatial accuracy of the numerical scheme. Below, we 
list the first, third, and fifth order extrapolation formulas used with the second, fourth, and sixth 
order spatially accurate schemes 

3. RESULTS 

Figure 1 contains contours of the disturbance pressure from the 2-4 MacCormack calculation at 
the time t = 500.0. By time 500.0, the flow is fully time periodic. The pattern of acoustic wave 
emission is visible, with five distinct waves radiating from each side of the plate. The strongest 
waves emit from the trailing edge, with intensity and wavelength decreasing for waves emitting 
closer to the leading edge. In figure 1 the jump in disturbance pressure which occurs across the 
plate can be seen. The directivity pattern for this calculation (figure 2(a)), measured by computing 
the product of the radius, r, and F(r) along the x = f 95 and y = f 95 coordinate lines, contains 
five lobes in each half domain. The lobes fan out in an approximate 90 degree sector. Each of the 
waves emitting from the plate increases in magnitude with increasing downstream direction, with 
the strongest waves leaving the trailing edge at an approximate 30 degree angle. 

Throughout the calculation, the wake remains silent. The radiation boundary conditions create 
no noticeable reflections of the waves back into the computational domain. As a test of the 
effectiveness of our solution near the far field boundaries, we perform a second calculation using a 
computational domain which extends in x and in y from -200 to 200. The directivity pattern, again 
computed along the x = f 95 and y = f 95 coordinate lines, matches the directivity pattern shown 
in figure 2(a), thus indicating the effectiveness of the far field boundary conditions used. As further 
validation of our solution, we find good agreement between our results using the prescribed grid and 
those we obtain using instead a grid with one half the prescribed grid spacing. 

We have also tested the second and sixth order spatially accurate variations of the MacCormack 
scheme on the given problem. The fifth order extrapolation used with the 2-6 scheme, proves too 



intrusive. The one-dimensional, unphysical extrapolation formulas (3)-(5), become more 
problematic as their stencil size increases and information closer to the sound source is utilized. As 
a result, very early in our calculation using the 2-6 scheme, contours of the disturbance pressure 
indicate significant reflections near the far field boundaries. This results in a more jagged directivity 
pattern (figure 2(b)) than that obtained using the 2-4 scheme. Using instead an extended 
computational domain, the 2-6 scheme again produces a solution in good qualitative agreement 
with that obtained using the 2-4 scheme (figure 2(c)). Finally, in figure 2(d), we show the 
directivity pattern obtained using the standard 2-2 MacCormack scheme. As predicted by the Tam 
and Webb findings, the second order spatially accurate scheme is u-nable to accurately represent the 
occurring acoustic waves in the given problem. 

4. CONCLUSIONS 

We have tested three variations of the MacCormack scheme, a scheme widely used for CFD 
calculations, on the given benchmark problem in computational aeroacoustics. For a Mach 0.5, 
sinusoidal gust mean flow field, our results reveal a pattern of sound wave emission with five 
dominant waves of different intensity and wavelength each emitting from the solid body source. 
When used with minimal fourth order spatial accuracy, the MacCormack scheme has proven 
effective at capturing the occurring acoustic waves. Third order extrapolation used in conjunction 
with the 2-4 MacCormack scheme yields an accurate solution. However, as we have shown with our 
sixth order accurate calculation, the arbitrariness of one-dimensional extrapolation may become 
problematic when larger extrapolation stencils are used with increased accuracy schemes. 
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Figure 1: Contours of the disturbance pressure at time t = 500.0. Note the discontinuity in pressure 
which occurs across the plate located at y = 0 and -15 5 x 5 15. We observe five dominant acoustic 
waves emerging off each side of the plate, with the strongest waves emitting from the trailing edge at 
an approximate 30 degree angle. 

Figure 2: Directivity patterns obtained using the following versions of the MacCormack scheme: (a) 
2-4 scheme, (b) 2-6 scheme, (c) 2-6 scheme with extended computational domain, and (d) 2-2 scheme. 
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Abstract 

In this investigation three different numerical algorithms have been utilized to compute the 
flow about a flat plate in the presence of a transverse gust described by a sinusoidal disturbance. 
The three schemes include the MacCormack explicit finite difference scheme which is second order 
accurate in both time and space, the Gottlieb and Turkel modification of MacCormack's scheme 
which is fourth order accurate in space and second order accurate in time, (referred to as the 2-4 
scheme), and a two step scheme developed by Bayliss et. d. which has second order temporal 
accuracy and sixth order spatial accuracy (a 2-6 scheme). The flow field results are obtained 
with these schemes by using the same code with the only difference being the implementation 
of the respective solution algorithms. The problem is set up so that the sinusoidal disturbance 
is imposed at the surface of the flat plate as a surface boundary condition. Thus the problem 
is treated as scattering problem. The computed results include the time average of the acoustic 
pressure squared along grid lines five points away from the boundaries. distribution throughout 
the computational domain is monitored at various times. The numerical results are compared 
with an exact solution obtained by Atassi, Dusey, and Davis. 

INTRODUCTION 

Unsteady flow associated with the interaction of a gust with a blade is encountered in all 
types of rotating machinery including compressors, turbines, fans, and helicopter rotors. This 
unsteady flow is a major contributor to the generation and propagation of acoustic disturbances. 
The use of computational methods in the andysis of such unsteady flow and the resultant far 
field acoustic radiation requires care in the application of any numerical scheme. In particular, 
the dissipation and dispersion characteristics of the numerical scheme are critical to the accuracy 
of the solution. Dissipative schemes tend to damp natural unsteady or osciIlatory disturbances 
while dispersive schemes generate non-physical oscillations. Either can degrade or contaminate 
the numerical solution of acoustic propagation to the point that it is unreliable. In general, 
there are three types of waves present in unsteady flows. These include acoustic waves which 
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are isotropic, non-dispersive, non-dissipative, and propagate at  the speed of sound, C, as well 
as entropy and vorticity waves which are non-dispersive, non-dissipative and highly directional 
and propagate at  the mean convection speed of the flow. Acoustic phenomena are generally 
considered to be governed by the linearized Euler equations. 

A major effort in calculating solutions for unsteady linearized Euler equations has been 
pursued by Atassi and his coworkers. A nicely documented history of formulations from previous 
results to the state-of-the-art results are reported by Atassi [2]. firther,  the first computational 
effort for the sound radiation problem is due to Atassi et. al. [3]. In this work the near field 
calculations were performed using a numerical scheme developed by Scott and Atassi 181. For 
the current problem involving a flat plate airfoil, the first numerical solution in the frequency 
domain was obtained by Scott and Atassi (91 and in the time domain by Hariharan et. al. [5]. 
In these works the focus was the near field calculations. For the far field calculations, again the 
work in [3] appears to be the first in the literature. Despite the nature of this classid problem, 
computational efforts dearly are rather new. In fact, for the flat plate - gust interaction eolution 
of Atassi et. d. [4], semi-analytical results have been presented with the aid of numerical and 
asymptotic approximations. The current results are compared with these results. 

The present results are obtained in the search for an efficient scheme that will not only 
predict the near field behavior, but also the far field acoustic radiation simultaneously. The 
numerical schemes that are used to simulate the results are simple to handle. Moreover, the 
boundary treatment on the artificial boundary is simple and does not involve specialized treat- 
ments, such as a nontrivial differencing or adding terms to stabilize the results. The conditions 
are derived using progressive wave solutions implemented in the ongoing work by Hagstrom and 
Hariharan[l]. They have the asymptotic behavior of the solution built in. In this case, the 
results can be improved if necessary, by enlarging the computational domain. In fact a sample 
result is presented in later sections to demonstrate the asymptotic behavior of the boundary 
conditions. The numerical solution schemes we choose belong to the same family as the classical 
McCormack scheme. In addition to this scheme we use one proposed by Gottlieb and Turkel [6] 
which is a fourth order scheme in space and an extension proposed by Bayliss et. al. (71 which 
is sixth order accurate in space. The assessment of these results are presented in light of the 
semi- analytical (numerical) results of [4]. 

TEST PROBLEM 

The linearized Euler equations yield the following non-dimensional linear equations: 

where u = (u, v )  is the acoustic propagation velocity and p is the acoustic pressure. In this 
linearization the isentropic relation is used so that p = p at this order. Therefore, the current 
problem is to solve the above equation subject to an incident gust a t  z = -00 and in the presence 
of a %at plate centered a t  the origin. This problem is then reformulated as a scattering problem 
in the following sense: let the total disturbed velocity field be 

where u; is the incident gust disturbance velocity and u, is the scattered field velocity. We note 
that that the following properties are satisfied by the incident gust velocity: 



Gust disturbance is solenoidal, i.e., dim, = 0. One such form is u; = (0, g(x, t)). 

Gust disturbances are convected with the flow, i.e., (& + M & ) u ~  = 0. This property 
imposes the further restriction that ui = (0, f(& - t)) where f is an arbitrary function 
of the indicated argument. For the specific test problem under consideration f (& - 1)) = 
-1 Sin(3(* - t)). 

Now substituting the decomposition (3) into equations (1) and (2), we have 

a a 
(, + M~J-)u, + V p  p= 0. ( 5 )  

Note that with u, = (u, v) the governing equations are identical to those for the total velocity 
field and they are: 

a a au av 
av - 0 ( ~ + M G ) P + ~ + - -  @I 

A major advantage to this formulation is that the far field conditions become homogeneous, 
since u -, ui as x -, -oo, u, -+ 0 as x -+ -m. The scattering formulation now originates from 
the boundary condition on the flat plate airfoil. On the flat plate the total velocity is given by 
v =  M i + u i + u , = ( M +  u, v + f (fi - t). Since the boundary condition on the plate is v j = 0 
( i.e., the normal component of the total velocity is zero), we have 

Z 
v = - f(- - t ) .  

M 

Again for the specific problem in hand v = -.lsin($(& - t)). The problem then is to solve 
equations (6),(7),(8) together with the boundary condition on the surface of the plate prescribed 
by equation (9) and appropriate radiation conditions which will be discussed next. 

The radiation boundary conditions used for this problem are based on the work of Hagstrom 
and Hariharan [I]. The conditions are derived from the progressive wave solutions for the acoustic 
part. For this purpose equations (6),(7) and (8) are recast in cylindrical coordinates. They have 
the form 

1 
u t + A u , +  ;Bur=O (10) 

where 

For these transformed equations, solutions are sought in the form: 

Substitution of (11) into (10) yields o(*) terms: 



Therefore, nontrivial solutions of equation (12) at O(f) are restricted by a,n 'eikonal function' 
g(9) corresponding to the wave propagation given by the .ystern of equations (6)-(9). Calculation 
of this function yields: 

dl - ~ Z s i n ~ 6  - M COSO 
s(e) = 1-Mz 

This function plays the role in constructing higher order boundary conditions for the convective 
wave equation in two dimensions as discussed in [ll]. Wlth this g(6) equation (12) determines 
the dgenvector ao(8). Solutions of equation (12) are given by 

where 

Substituting this solution into the progressive wave solution, we obtain the following rela 
tionship for the acoustic variables: 

From this it follows two relations 
u = r2p 

The above two relations were prescribed as two boundary conditions at the inflow boundaries 
and (15) at the outflow boundary in the x direction and (16) at the outflow boundary in y 
direction. 

NUMERICAL SCHEMES 
- 

The numerical schemes that are used here are explicit, twelevel, second order time accurate 
schemes. In all cases un-split versions of these schemes are used to maintain the accuracy. The 
description of the schemes will use the following notation for the system (6)-(8): 

We denote the solutions u(r(i), y(j), nAt) by uy', where z(i) = -100 + ( i  - l ) , i  = 1, ..., 201 m d  
y(j )  = - 100 + ( j  - 1), j = 1, .., 201. 

- 
McCormack Scheme 

The first scheme for the above equations utilizes the original predictor - corrector formulation 
as follows: 



This equation has second order spatial accuracy and the scheme is implemented on the entire 
grid in the computational domain. As such the flues are undefined a row ahead (and behind). 
The scheme is supplanted by a first order flu extrapolations given by 

at the right termination point in the x direction and 

at the left termination point respectively. Here N = 201 is the number of grid points in the z 
direction. A similar extrapolation is used in the y direction for the g fluxes. Clearly solutions 
are defined up to the boundary. 

Gottlieb-Turkel Scheme 

This scheme developed by Gottlieb and Turkel is described in [6] and is similar to the the 
McCormack scheme but has fourth order spatial accuracy. The scheme is as follows: 

At - - At 
u?" t J = -5(iii,j +uF' - -(7(fij-f,-lj)-($-l,j -$-zi))- -(7(Rij-g. '- )-(&,j-l 6Ax GAY IJ 1 

(23) 
Clearly, fluxes need to be defined at two points ahead and behind the termination points. The 
flux extrapolations used here as suggested in [6] ahead the termination point in the z direction 
are third order ones given by 

and 
fN+2 j = 4 f ~ + l  j - 6 f ~ j  + 4 f ~ - l  ,j - fN-l ,j 

A similar treatment is given behind the left termination point. 

Bayliis et. al. sixth order scheme 

This scheme has sixth order spatial accuracy (see [7]). It is constructed as an extension of 
the fourth order scheme described above, The scheme proposed in (71 is described for a one 
dimensional analysis. However, it is used here as an extension to two dimensional equations and 
the analysis remains to be shown in the future. The scheme is as  follows: 

where Df$, = 
(27) 

fir;, - and Dgi"j+, = g;nj+l - g&. Similar definitions are deduced for the 
other terms involving these operators. As in the above two numerical schemes flux extrapolations 
are required at the end points of the computational domain. A fifth order extrapolation is 



proposed [lo) at these points. Again we list one set of such extrapolations and others follow in 
a similar manner. At the right boundary the sequence of extrapolations are: 

NUMERICAL RESULTS 

The numerical results for each of the three numerical schemes are presented for the unsteady 
pressure field in relatively close proximity to the boundary on each of the four sides of the 
computational domain. Specifically the computed pressures along Iines at  z = f 95 and y = f 95 
are plotted for each of the three numerical schemes. These results are compared with each other 
as well as the analytical result of Atassi, et.al. 

Initially the numerical results were examined for a grid of 200 x 200 points and a time of 10 
periods of the scheme. These results were compared with the analytical results of Atassi and 
found to  be in poor agreement. This was attributed to the reflections that accumulate from 
the boundary conditions used. Thus, solutions were obtained for a larger domain consisting of 
600 points in each direction equally spaced. These results dearly revealed the benefits of much 
longer run times improving the accuracy of the numerid prediction of c r i t i d  flow features. 
These results are shown a t  locations of x = f 9 5  in figures 1 and 2 and at y = f95 in figures 
3 and 4. As noted previously these lines are in close proximity to each of the boundaries. 
These figures show the far field acoustic pressure computed with each of the three schemes as 
well as the analytical results of Atassi, et.al. In each case the numerical results show the time 
average of the osda tory  behavior of the pressure wave5 near each of the boundaries. Along 
the inflow and outflow boundaries the symmetry of the incoming and outgoing waves is in good 
agreement with the exact solution with agreement improving with order of accuracy. Similarly 
the numerical solutions near the side boundaries dearly show the presence of four peaks giving 
a good representation of the trends shown by the exact solution. 

It is particularly important to note that solutions should start from a state of rest to avoid 
propagation of discontinuities. Moreover the waves impinge on the plate from the left. To 
simulate these considerations the boundary condition on the plate is modified as follows 

where H ( z )  is the Heaviside function. In addition to the pressure data described above, the 
time variation of the pressure field for the entire computational domain was monitored with 
time. The computed pressure values are shown as surface plots a t  times corresponding to time 
step levels 720 and 1440 in figures 5 and 6 respectively. These results are obtained using the 
6th order scheme of Bayliss and his associates. In these figures, the time evolution of the waves 
is seen as they propagate outward from the plate. These results clearly show that the waves 
pass out through the boundaries of the computational domain in a stable manner and that there 
are no reflections or non-physical disturbances produced at the boundaries as the waves pass 
through them. 

Another feature that is observed in these figures is the development of the wake at the trailing 
edge of the plate and its subsequent growth downstream. This behavior is a good representation 
of the results anticipated from classical theory and experimental observations and is achieved in 
this case with no special treatment along the wake line. 



CONCLUSIONS 

The objective of this effort was to investigate the application of numerical schemes to the analysis 
of unsteady flow characteristics produced by the interaction of a transverse gust impinging 
on a flat plate and to assess the prediction of the acoustic far field which results from the 
unsteady flow. In this study three different numerical schemes were utilized to solve the linearized 
Euler equations as prescribed in the ICASE CAA Benchmark Problem description designated as 
Category 6. As noted in previous sections the three different numerical schemes utilized are of 
the same predictor-corrector explicit differencing family of algorithms. These are the well known 
MacCormack scheme which is second order accurate in both time and space, the Gottlieb- Turkel 
extension to fourth order spatial accuracy while maintaining second order temporal accuracy 
and an extension to sixth order spatial accuracy developed by Bayliss and his associates. The 
numerical results are compared with the analytical results obtained by Atassi, et.d. Clearly the 
agreement of the numerical results with the exact solution improves d r a m a t i d y  with increasing 
order of accuracy of the numerical scheme. The prediction of the far field acoustic pressure 
shown in figures 1-4 shows that the use of these type of schemes haa promise for computing the 
acoustic radiation produced by unsteady flow effects. Further, the results obtained with these 
methods generally compare quite favorably with other methods presented for the solution of 
CAA Benchmark Problem category 6. 
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Comparisons with 'Exact Solution' 

Figure 1: Comparison of numerical results with exact solution at  x = +95 
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Figure 2: Comparison of numerical results with exact solution at x = -95 
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Figure 3: Comparison of numericd results with exact solution at y = +95 

Comparisons with 'Exact Solution' 

-100.0 -50.0 
I 

0.0 50.0 100.0 
distance x 

Figure 4: Comparison of numerical results with exact solution at y = -95 



Figure 5: Solution at time step 720 

Figure 6: Solution at time step 1440 



OVERVIEW OF COMPUTED RESULTS 

Christopher K.W. Tam 

As a requirement for making a presentation in the workshop, each participant was asked to 

submit a set of the computed results, in a standard format, to the Scientific Committee. In the 

pages to follow, a part of the submitted data are shown together with the exact or approximate 

analytical solutions (except the Category 6 problem). The data requested by the Scientific Com- 

mittee are quite extensive. Only a selected portion, which is deemed to provide critical tests of 

accuracy or other important aspects of the computations, are shown below. 

Numerical solutions are subjected to inany types of errors. The dominant type of error may 

vary from one class of problems to another. Thus, a numerical scheme, designed specifically for 

one type of problem, may do poorly when used for solving problems unanticipated by the original 

developer. Sometimes, compromises are made so that a numerical scheme may work reasonably 

well for a larger class of problem. Such a scheme may be fine-tuned to perform better if only a 

smaller restricted class of problems is considered. For the above reasons, the Scientific Commit- 

tee has left it to the readers to form their own opinion as to the accuracy, limitations, advantages 

and disadvantages of each method presented in the workshop. 

In formulating the benchmark problems, emphasis was placed on spatial resolution. It has 

not been found feasible to test spatial resolution and temporal resolution simultaneously. It was 

felt that the CPU time needed for each benchmark problem was too short for meaningful com- 

parison of computation efficiency. As a result, the choice of time step was left open to the partic- 

ipants. 

Overall, the workshop has been very successful as evidenced not only by the number of par- 

ticipants but also by the quality of the computation methods presented. Upon reviewing the sub- 

mitted data and presentations, it is possible to report the following observations. 

1. A number of computational schemes presented in the worltshop appear to have low dis- 

persion and low dissipation errors (over a distance of 400 mesh points) even for waves 

with wave lengths of only 6 to 8 mesh spacings. These schemes are obviously suitable for 

use in CAA applications. 

2. High-quality numerical radiation and outflow boundary conditions are presently available. 

These boundary conditions seem to work well even for cases where the sound waves are inci- 

dent at an oblique angle to the boundary of the computation domain and in the presence of 



a mean outflow with a significant tangential component. 

3. Many of the schemes presented have low numerical noise levels. For these schemes, direct 

computation of acoustic waves and mean flow simultaneously is feasible. This is so even 

when the amplitude of the acoustic waves is several orders of magnitude smaller than that 
of the mean flow. 

Christopher K.W. Tam 
Department of Mathematics 

- Florida State University 
1 
- Tallahassee, FL 32306-3027 
- 
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INDUSTRY PANEL PRESENTATIONS AND DISCUSSIONS 

N.N. Reddy 
Lockheed Aeronautical Systems Company 

Marietta, GA 30063 

The workshop organizers invited representatives from the aircraft industry to organize an 
industry panel and participate in the workshop. The primary purpose of the panel was to 
present and discuss the industry needs in acoustic technology in general and in computational 
aeroacoustics in particular. Also to provide guidance to the researchers and scientists by 
identifying the current and future issues related to acoustic technology. 

The panel presentations and discussions were moderated by Jay Hardin of NASA-LaRC. 
The following representatives attended the workshop and participated in the presentations and 
discussions. 

Thomas Barber United Technologies Research Center 
Leo Dadona Boeing DISG Helicopter Division 
Wen-Hue1 Jou Boeing Commercial Airplane Group 
N.N. Reddy Lockheed Aeronautical Systems Co. 

Philip Gliebe of GE Aircraft Engines and Mahendra Joshi of McDonnell Douglas were 
also invited but unable to attend the workshop. They provided, however, the information that 
was presented and discussed. This section presents the views of GE and McDonnell Douglas 
in addition to those presented at the workshop panel. The following paragraph summarizes the 
panels' view of noise sources, critical noise issues and current engineering practices. 

NOISE SOURCES 

The aircraft acoustic sources contributing to the community noise are illustrated in 
Figures 1 to 3. Gas turbine engine noise sources are shown in Figure 1. Fan and compressor 
noise sources have similar characteristics. However, their propagating properties are different 
and depend on the nacelle geometry (inlet and exhaust). The typical characteristics of the 
sources as a function of time are shown in Figure lb. The compressor noise levels are 
relatively small compared to other sources. The turbine and combustion noise generally 
propagate through the primary exit nozzle. The jet noise is generated by the process of jet 
exhaust mixing with the entrained ambient flow. The relative importance of the various noise 
sources of a turbofan engine is shown in Figure lc as a function of engine bypass ratio. It is 
evident from this figure that at low bypass ratio, the jet noise dominates, and as the bypass 
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noise levels, it is necessary to recognize the critical sources and understand their generating 
mechanisms. 

Airframe noise sources are shown in Figure 2. The airframe noise is defined as the noise 
generated by the aerodynamic flow interacting with the aircraft surfaces during flight. The 
important airframe noise sources are identified in this figure. In addition, the interaction of the 
jet stream with winglflap components and the wakes from wing, landing gear and other 
components interacting with the flap components also contribute to the airframe noise. 

vertical tail 

H m h ~ c  
tail 

landing gear 

Figure 2. Airframe Noise Sources 

In the case of propeller aircraft, the important sources are free-propeller noise, engine 
noise, propeller/engine/airframe installation effects. Inflow angle has a significant effect on 
propeller noise. Amongst several rotorcraft noise sources, the Blade Vortex Interaction 
(BVI)is dominant. This source is illustrated in Figure 3. 

CRITICAL NOISE ISSUES 

There are several noise issues which require new and innovative technology development. 



Low Frequano I  MI^ Fraquonoy tiigh Fto a uency 
(0 to Pnd Harmon o) (3rd to 10th Humonlc) (Ovrr 10th armonic) 

PERFORMANCE VIBRATION NOISE 

Figure 3. Rotor Performance, Vibration and Noise 

The following are a few of the critical issues. I) It is anticipated that the aircraft noise 
regulations will be more stringent than the existing ones. Therefore, the community noise 
levels in the vicinity of airports need to be reduced. 2) The interior noise levels need to be 
reduced to make the noise environment acceptable to the passengers. 3) It is necessary to 
accurately predict the noiselvibration environment on the aircraft structural components and 
sensitive avionic equipment. The following paragraphs discuss the particular issues which 
require immediate attention. 



Current Engines 

It is necessary to improve the modeling capability for fan-core internal mixing. This will 
provide better understanding of noise characteristics which will help in developing noise 
reduction concepts. Liner technology must be improved, to develop a low noise nacelle with 
minimum performance penalty. This involves understanding fan noise generation and 
propagation through the ducts, and acoustic properties of liner materials and optimization 
techniques. 

Advanced Subsonic Engines 

The present empirical models for jet noise are not adequate. Analytical models based on 
sound theoretical models need to be developed for fan noise and liner technology. 

Advanced Supersonic Jet Engines 

New and innovative jet noise suppressors with minimum performance losses are urgently 
needed. Understanding of fantinlet interactions and inlet noise suppression techniques need to 
be developed. 

Airframe Noise 

As the propulsion noise levels reduce with improved technology, airframe noise will 
become the dominant source, particularly during approach. The noise mechanisms 
contributing to the total airframe noise need to be identified. It is essential to quantify the 
flow and geometrical parameters that influence these sources. Noise/flow and propagation 
models and prediction methods for these sources need to be developed. Flap side edge noise 
source is one of the critical airframe components to be modeled and evaluated. It is also 
necessary to determine the effect of flow and geometrical variations on the total airframe 
noise. 

Helicopterflilt Rotor Noise 

In addition to the various rotor noise sources, Blade Vortex Interaction (BVI) noise is an 
important source. To control the noise, it is important to understand the flow characteristics 
responsible for this noise component. Models must be developed to determine the magnitude, 



spectra and directivity of this source. 

Propeller Noise 

Major issues in the propeller noise are the installation effects. These include the inflow 
angles and the presence of wing/fuselage. Improved models for advanced propellers and 
methods to evaluate the installation effects on noise generation are needed. 

FlowfSurface Interaction Noise 

This noise is generated when the jet flow and propellerfrotor wake flow interact with 
the aircraft surfaces. It is necessary to understand the source mechanism and develop 
analytical/cornputational models. 

CURRENT ENGINEERING PRACTICES 

At the present time the noise prediction methods for different sources are primarily 
semi-empirical. The following paragraphs discuss the present methods. 

Jet Mixing Noise 

There are several methods available to predict jet mixing noise. The application of each 
of the methods depends on the nozzle configuration. All the methods were developed using 
test data and known theoretical understanding. For single stream circular nozzles, SAE ARP 
876 method is used. This method appears to be quite reasonable for subsonic jets. However, 
this method is not adequately validated for supersonic jets. For co-axial circular nozzles, two 
methods, SAE ARP 876 and Boeing E N 6  are used. For coaxial circular nozzles with inverted 
velocity profiles (IVP), the Pao method is used. This method is incorporated in NASA 
Aircraft Noise Prediction Program (ANOPP). Pratt & Whitney uses their own inhouse semi- 
empirical method known as Larson's method for IVP jet noise. A prediction code known as 
MGB Method was developed at GE several years ago under the sponsorship of NASA Lewis 
Research Center. Recently NASA has undertaken to improve the MGB Method by using CFD 
calculated flow parameters as input. 



Jet Shock Noise 

There are two methods available to predict shock associated noise from supersonic jets. 
A prediction method was developed in late 70's by Harper-Bourne and Fisher. This is an 
empirical method based on experimental data. This method was adapted in SAE ARP 876 
and in NASA ANOPP. Lockheed and Tam recently developed a procedure to predict the 
shock associated broad band noise for imperfectly expanded supersonic jets. This method is 
based on the shock noise theory developed by Tam. The method is validated using laboratory 
data and has been incorporated in NASA ANOPP as a moduie. In addition to the laboratory 
data, this method is being validated using F/16 flyover test data. 

Fan Noise 

Tyler/Sofrin cutoff model is used for blade-wake interaction effects. Broadband noise is 
predicted empirically using test data. Semi-empirical methods are used to predict noise 
propagation through inlet and exhaust. For example, for forward radiated (inlet) noise, the 
method developed by Rice at NASA Lewis Research Center, and for aft radiated noise, a 
method developed by Dean of Pratt and Whitney are used. These methods are calibrated 
using simulated laboratory and engine data. 

Propeller Noise 

SAE AIR 1407 is a simple empirical method based on correlation of the laboratory and 
flight test data. This method is primarily used during the preliminary design. The method is 
applicable for tractor installations with level flyovers and flight speed greater than 35 knots. 

Hamilton Standard under FAA sponsorship, has developed a prediction method, "V/STOL 
Rotary Propulsion System Noise Prediction. " This method is capable of predicting tone noise 
levels ( steady loading, unsteady loading and thickness) and broadband noise for free-air 
propellers. 

Farassat of NASA-LaRC has developed a time domain theoretical method to predict 
propeller noise. Hanson of Hamilton Standard has also developed a frequency domain 
theoretical method. These methods require the blade geometry and aerodynamic loads as 
input. These methods are used in understanding the noise source characteristics and propeller 
design. Based on Hanson's theory, Hamilton Standard developed a prediction method which 
consists of modules for tone noise, broadband noise, propagation effects, and calculations of 
noise metrics. This method predicts both near- and far-field noise. 



A computer module, Propeller Analysis System (PAS) was developed by NASA-LaRC 
and incorporated in NASA ANOPP. This program predicts both performance and noise. This 
is based on Farassat's solution to the Ffowcs Williams and Hawkings equation and is 
primarily used for small propellers (general aviation). 

NASA-LeRC, Georgia Institute of Technology, Allison engine company and others are 
developing prediction methods using computational techniques. 

In addition to these methods, Rolls Royce of U.K., ONERA of France, DLR of Germany 
and FFA of Sweden have prediction capabilities and are developing theoretically based 
methods. 

HelicopterRotor Noise 

ROTONET as a part of NASA ANOPP is the prediction method widely used by 
industry to predict the rotorcraft noise levels. This method is based on test data correlations. 
The rotorcraft industry relies extensively on test data and 'engineering' methods using 
acoustic analogy to reduce noise levels. 

Airframe Noise 

Airframe noise prediction method developed by Fink of United Technologies is used by 
industry. This method is incorporated in the NASA ANOPP prediction method as a module. 
This is a semi-empirical method based on some theoretical developments for flowlsurface 
interaction noise and test data. Several important noise sources (e.g., flap side edge) are not 
included in this method. 

FlowISurface Interaction Noise 

There is no industry standard for predicting flowlsurface interaction noise. Each company 
uses their own method based on the proprietary data. 



COMPUTATIONAL AEROACOUSTICS (CAA) ROLE 

Jet Noise 

Properly developed numerical simulation of the jet noise, (small scale turbulence for 
subsonic jets and large scale turbulence for supersonic jets) is necessary. In the case of 
supersonic jets, it is also necessary to develop models for interaction of large scale turbulence 
with shock cells and discrete tone noise. This not only will improve the prediction 
capability, but also will help in the development of viable noise control techniques. Extending 
the CFD methods by reducing the grid size and time increments for unsteady flow will 
require the computer capabilities which are not available at the present time. Therefore it is 
necessary to develop the new and innovative computational techniques to solve these acoustic 
problems. 

Turbomachinery Noise 

Turbomachinery noise generation process is very complex, because of the interaction of 
statorlrotors. The available CFD formulations may be utilized to understand the upstream 
wakes, inflow distortions and turbulence, flow downstream of the blade, and fluctuating 
lift/drag on rotorlstator of fan/compressor. Properly developed CAA by using the acoustic 
wave energy principle to determine acoustic wave mode number and frequency as a function 
of number of blades and unsteady flow structure will help designing noise reduction 
techniques. CAA can also be used to simulate the spinning and radial modal patterns of 
propagation through ducts (inlet and exhaust). It is necessary to extend this simulation to 
provide directivity and spectra of radiated sound field. 

HelicopterlRotor Noise 

The biggest challenge in rotorcraft noise is the understanding, prediction and reduction of 
Blade-Vortex Interaction (BVI) noise. Figure 4 illustrates complexity of the instantaneous 
blade loading and wake rollup mechanism. Development of CAA models to simulate the rotor 
wake flow and noise characteristics (directivity and spectra) is essential for industry. 

Airframe Noise 

Modification of CFD programs within the constraints of present computer technology 



will not bc adequate to understand the airframe noise source mechanisms and to predict the 
radiated sound field. It is necessary to model the airframe noise sources with appropriate 
simplifications to suit the modern computers and to capture the essential physics related to 
noise generation. The primary interest is to model the sources of flap side edge noise, 
wingtflap leadingitrailing edges, and landing gears. 

LESSONS LEARNED FROM CFD 

It is obvious that CFD has made impressive progress during the last twenty years. CFD 
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Figure 4. Schematic of Rotor Wake 



has been used extensively as an aircraft design tool in airframe, engine, and aircraft 
integration design procedures. It is essential, however, to realize that aeroacoustic problems 
are distinctly different from those encountered in aerodynamics. One may think that at the 
present time CAA is in the same status as CFD twenty years ago. Since aeroacoustics 
involves the flow, it is possible to learn some of the flow properties required in acoustics 
from CFD. However, modification of CFD methods without understanding the acoustic 
requirements will not yield a noise design tool with the existing (modern) computers. 
Therefore it is necessary to recognize the differences between aeroacoustics and aerodynamics 
and the limitations of computer capability and develop numerical techniques to be used as a 
noise design tool. 
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