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The Scientific Committee, after careful consideration, adopted six categories of benchmark 

problems for the workshop. These problems do not cover all the important co~putat ional  issues 

relevant to Computational Aeroacoustics (CAA). The deciding factor to limit ihr niimber of cat- 

egories to six was the amount of effort needed to solve these problems. For reference purpose, the 

benchmark problems are provided below. They are followed by the exact or approximate analyti- 

cal solutions. At present, an exact solution for the Category 6 problem is not available. 

BENCHMARK PROBLEMS 

Category 1 

Problems to test the numerical dispersion and dissipation properties of a computation 

scheme (linear waves). 

Use nondimensional variables with the following scales 

Ax = A r  = length scale 

a, (ambient sound speed) = velocity scale 
Ax - = time scale 
a m  

p, = density scale 
2 pooa, = pressure scale 

1. Solve the initial value problem 

Give numerical solution at t = 100, 200, 300 and 400 over -20 5 x 5 450. State the size of 

At used. 

2. Solve the spherical wave problem 
du u du - + - + - = o  
6t r ar 



over the domain 5 < r 5 450, with initial condition t = 0, u = 0. The boundary condition at 

T = 5 is: 

r = 5 ,  u=sinwt  

7r 
(a) w = , 

7r 
(b) w = - 

3 

Give the numerical solution at t = 100, 200, 300 and 400 for each case. (Do not recast the 

equation in a plane wave form.) State the size of At used. 

Category 2 

Problems to test the nonlinear wave propagation properties of a computational scheme. 

Use dimensionless variables with the following scales 

Ax = length scale 

a ,  (ambient sound speed) = velocity scale 
Ax - = time scale 
aco 

p, = density scale 

pooa2, = pressure scale 

In both problems, the one-dimensional Euler equations are to be solved. 

(You may use an equivalent form of the Euler equations.) 

1. Solve the initial value problem 



Use a computational domain -50 < x <_ 350. Give the spatial distribution of u ,  p, and p at 

t = 10, 20, 30, 40, 50, 100, 150, 200 and 300. 

2. Solve the one-dimensional shock tube problem using the following initial conditions 

Use a computational domain -100 5 x 5 100. Give the spatial distribution of p, p and u at 

t = 40, 50, 60 and 70. 

Category 3 

Problems to test the effectiveness of radiation boundary conditions, inflow and outflow 

boundary conditions and the isotropy property of the computation algorithm. 

Use dimensionless variables with the following scales 

Ax = length scale 

a ,  (ambient sound speed) = velocity scale 
Ax -- - time scale 
a00 

pm = density scale 

p,aL = pressure scale 

In both problems, the linearized two-dimensional Euler equations on a uniform mean flow are 

to be solved. 



where 

M, and My are constant mean flow Mach number in the x and y direction, respectively. 

(You may use an equivalent form of the above equations.) 

Use a computational domain -100 5 x 5 100, - 100 5 y 5 100 embedded in free space. 

1. Let M, = 0.5, My = 0. Solve the initial value problem, t = 0. 

P = exp [-(In 2) ( x2 + y2)l 
p = exp [-(In 2) 

(x2 
'l)] + 0.1exp [-(ln 2) 

25 (x - 67)2 + y21 
u = 0.04yexp -(ln 2) [ (x - 67)2 25 + y2 ]  

v = -0.04(x - 67) exp 
25 (x - 67)2 + y21 

Give the distributions of p, p, u and v at t = 30, 40, 50, 60, 70, 80, 100, 200 and 600. 

- 
- 7r 

2. Let M, = M y  = 0.5cos(-) Solve the initial value problem, t = 0. 
- - 

i 4 
1 
- - - - p = exp [-(ln 2) 

(x2 y2)] 
= - - - - 
- - - - 
- - - 
- - 

- - 

p = exp [-(I, 2) 
(x2 

'.)I + 0.1 exp [-(ln 2) (x - 67)2 25 + (y - 67)2 
- - - - - 
- 

- - 

(X - 67)2 + (y - 67)l - 
u = 0.04(y - 67)exp -(in 2) 

- 
= e [ 25 
- 

- 

I 
- 

- v = -0.04(x - 67)exp (x - 67)l + (y - 67)l 
- 25 

Note: The mean flow is in the direction of the diagonal of the computational domain. 

Give the distributions of p, p, u and v at t = 60, 70, 80, 90, 100, 200, 600 and 1000. 



Figure for Problem 1, Category 3 

c 
Figure for Problem 2, Category 3 

Category 4 

Problems to test the effectiveness of wall boundary conditions. 

Use dimensionless variables with the following scales 

Ax = AT = length scale 

a, (ambient sound speed) = velocity scale 
Ax - = time scale 
am 

p, = density scale 
2 pcoam = pressure scale 

1. Reflection of an acoustic pulse off a wall in the presence of a uniform flow in semi-infinite 

space. 



Figure for Problem 1, Category 4 

Use a computational domain -100 < - x 5 100, 0 < y 5 200. The wall is at y = 0. The 

linearized Euler equation in two dimensions are 

where M = 0.5. The initial condition is 

Give the pressure field at t = 15, 30, 45, 60, 75, 100 and 150. 

2. Acoustic radiation from an oscillating circular piston in a wall 

Piston ' 10 100 

Figure for Problem 2, Category 4 

nt 
Radius of piston = 10. Velocity of piston u = sin(-). Use a computational domain 

5 
0 5 x 5 100, 0 < r < 100. The wall and the piston are at x = 0. The cylindrical coordi- 

nate system is centered at the center of the piston. With axisymmetry, the linearized Euler 



equations are 

The initial conditions are: 
t = O  p = u = v = p = O  

1 1  3 
Give the time harmonic pressure distribution at the beginning, - - and - of a period of 

4 '  2 4 
piston oscillation. 

Category 5 

Problem to test the suitability of a numerical scheme for direct numerical simulation of very 

small amplitude acoustic waves superimposed on a non-uniform mean flows in a semi-infinite 

duct. 

Use nondimensional variables with the following scales 

Ax = length scale 

a, (sound speed far upstream) = velocity scale 
Ax 
- = time scale 
a00 

p, (density of gas upstream) = density scale 

,o,a2, = pressure scale 

A small amplitude sound wave is incident on a convergent-divergent nozzle as shown 

c 
M=0.5 Sound Wave Supersonic 

- W k  - 

Figure for Category 5 Problem 



Use a computational domain -200 < x < 80. The area of the nozzle is given by 

The quasi-one-dimensional unsteady flow equations are 

Far upstream x < -200, there is an incoming acoustic wave. Together with the steady inflow, the 

velocity, pressure and density are given by 

Take y = 1.4, M = 0.5, r = w = O.lrr, calculate the transmitted sound wave at the nozzle 

exit. Give p(t) - j5 over a time period; j5 is the time averaged pressure. 

Category 6 

Problems to test the ability of a numerical scheme to calculate aeroacoustic source. 

Use dimensionless variables with the following scales 

Ax = length scale 

a ,  (ambient sound speed) = velocity scale 
Ax - = time scale 
a w  

p, = density scale 

p,a2, = pressure scale 

1. Sound generation by gust-blade interaction (two-dimensional) 

8 



Figure for Category 6 Problem 

Use a computational domain -100 5 x  5 100, -100 < y < 100. The blade is a flat plate of 

length L (L = 30) lying along the x-axis centered at the origin. There is a Mach 0.5 uniform 

mean flow in the x-direction. The mean flow carries a gust with velocity component in the 

The linearized Euler equations are 

Determine the intensity of radiated sound, p2, along the coordinate lines x = f 95 and y = 

f 95. 

SOLUTIONS 

Category 1 

Problem 1. The solution is 

x - t  
u(x, t )  = 0.5exp [-(ln 2) (T) '1 

Problem 2. The solution is 



Category 2 

Problem 1. An approximate solution can be found by using the simple wave assumptions (Chap- 

ter 6, G.B. Whitham, "Linear and nonlinear waves"). These assumptions are 

1. The flow is isentropic 

2. The Riemann invariant % - u = A 7-1 ' which starts from the uniform region ahead of the 

pulse, is valid everywhere. 

With these assumptions, the Euler equations reduces to the nonlinear simple wave equation 

This quasi-linear first-order equation can be solved by the method of characteristics. For the 

given initial conditions, a shock will form at the front of the pulse as the disturbance propagates 

to the right. The location of the shock may be found approximately by the use of Whitham's 

equal area rule. 

Problem 2. The standard shock tube solution is a good approximate solution. The standard so- 

lution is available in most books on gas dynamics. 

Category 3 

(4n2) M = 0.5, 9 = [(s - Mt)2  + y2]!. Problem 1. Let cul = , as = 25 , 
The solution is 

where Jo( ) and J1 ( ) are Bessel functions of order 0 and I. 
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(Reference: C.K. W. Tam and J.C. Webb, (cDispersion-Relation-Preserving finite difference 

schemes for computational acoustics," J. Computational Phys., Vol. 107, pp. 262-281, 1993.) 

Problem 2. The solution can be obtained from that of problem 1 by a coordinate transformation. 

Category 4 

Problem 1. Let a = v, p = [(x - Mt)' + (y - 25)2] !, < = [(x - Mt)2 + (y + 25)2] 4 .  
The solution is 

00 

U = 
(X - Mt) 

e sin(&) J1 (Jp)t dJ + 
2 4  

J e - g  sin(&) J~ (E<)( d( 
0 0 

Problem 2. Let E = R = 10, w = i .  
The solution is 

J1(CR) 
Jo(tr)e 

1 - ( t2 - w 2 )  2 z - iwt  

( t2  - w2)5  

00 

1 
-ERJ J1(ER)lEJ~(Er)e - ( t 2 - w 2 )  2 Z- iwt  

((2 - w2)5 
0 

where Re[ ] = the real part of and Im[ ] = the imaginary part of. 

Note: ( t2  - w2)f = -ilC2 - w21f for ( < W. 



Category 5 

A fairly accurate solution of this problem can be found by first determining the governing 

equations for the amplitude functions of the t ime-periodic disturbances inside the nozzle. These 

equations are ordinary differential equations but with variable coefficients. They can be inte- 

grated numerically. 

Let the solution be separated into a mean and a time-periodic part in the form 

The physical quantities of the mean flow at the nozzle throat will be denoted by a subscript *. 
With the area ratio A./Al known, where A1 is the area.of the uniform duct, p, is first found by 

solving the equation 

The other variables at the nozzle throat are given by 

The mean flow solution is 

-2 
U 7 P*,-l--+-- 4 Y P* - + -- 

- f p  - 2 y - l p *  2 y - l p *  
A * 

The linearized governing equations for the amplitude functions p, u and p̂  are 



In the uniform region of the duct, the solution of (1) that matches the incoming acoustic 

wave is 

In (2), the second term represents the reflected acoustic wave. The unknown amplitude c is to be 

determined later. 

Equations (1) have a regular singular point at the nozzle throat (x = 0). Near the throat, 

there are two non-singular series solutions. The first two terms of these solutions are 

where uo and po are arbitrary constants. p l ,  u l  and pl are functions of uo and po. 

A numerical solution of (1) can be constructed by starting the solution slightly upstream of - 

the nozzle throat at x = -6 (6 << 1) using (3) as the starting solution. (For small 5, the terms 

of the series involving S and powers of 6 may be neglected.) The numerical integration proceeds 

upstream until the uniform duct region is reached. At this point, the numerical solution must 

match solution (2). This provides three algebraic equations for the three unknowns po, uo and c. 

Once these constants are found, the solution upstream of the nozzle throat is known. 

For the solution downstream of the nozzle throat one can start integrating (1) numerically at 

a point just downstream, say at x = 6. Again (3) is used as the starting solution. The numerical 

integration proceeds downstream until the nozzle exit is reached. With po, uo already found, the 

amplitude functions are now completely determined along the entire length of the nozzle. 
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