Parameterized Spectral Distributions for Meson Production in Proton-Proton Collisions

John P. Schneider, John W. Norbury, and Francis A. Cucinotta

June 1995
Parameterized Spectral Distributions for Meson Production in Proton-Proton Collisions

John P. Schneider and John W. Norbury
University of Wisconsin • La Crosse, Wisconsin

Francis A. Cucinotta
Langley Research Center • Hampton, Virginia

June 1995
Acknowledgment

John P. Schneider would like to thank R. T. Wheeler of the University of Wisconsin for his assistance in implementing Gaussian quadrature. This work was supported by NASA grant NAG1-1154, the University of Wisconsin, La Crosse, Wisconsin, and the Wisconsin Space Grant Consortium.
Abstract

Accurate semiempirical parameterizations of the energy-differential cross sections for charged pion and kaon production from proton-proton collisions are presented at energies relevant to cosmic rays. The parameterizations, which depend on both the outgoing meson parallel momentum and the incident proton kinetic energy, are able to be reduced to very simple analytical formulas suitable for cosmic-ray transport through spacecraft walls, interstellar space, the atmosphere, and meteorites.

Introduction

In order to solve cosmic-ray transport problems, a detailed understanding of the proton-proton interaction is needed. Galactic cosmic rays consist of approximately 85-percent protons (ref. 1) and solar cosmic rays consist almost entirely of protons and α-particles, whereas geomagnetically trapped particles in the Van Allen belts consist of protons and electrons (ref. 2). The interstellar medium itself consists primarily of hydrogen (protons) and helium (ref. 3). Hence, the proton-proton collision is the most common and most numerous interaction between cosmic rays and the interstellar medium, as well as within the solar system and the Earth’s atmosphere.

Proton transport can be adequately modeled by using the Boltzmann equation in the straight-ahead approximation (ref. 2), which is given as

\[
\frac{d}{dx} \frac{d}{dE} \phi(x, E) + \sigma \phi(x, E) = \int \sigma(E', E) \phi(x, E') dE'
\]

(1)

where \(S(E) \) is the proton stopping power, \(\sigma \) is the media macroscopic cross section, \(\phi(x, E) \) is the particle flux density, \(f(E, E') \) is the secondary-particle differential cross section in terms of secondary-particle energy \(E \) and proton energy \(E' \), and \(x \) is a scaling variable. This straight-ahead approach is used in current transport codes for particle propagation through various media (refs. 4–7).

One major shortcoming of the work done to date is that although the secondary-particle-production cross section \(f(E, E') \) in equation (1) is taken to include all possible secondary particles, codes have not yet been run using meson cross sections (ref. 2). In this paper, parameterizations of cross sections for charged pions and kaons suitable for use in equation (1) will be provided.

The numerical approach currently used in solving equation (1) implements the cumulative energy spectrum, which is related to \(f(E, E') \) above as follows (ref. 2):

\[
F(r, r') = \int_0^{E'} f(E, E') dE
\]

(2)

where the residual range \(r \) is given by \(r = \int dE'/S(E') \).

For a very thorough analysis of proton transport and a detailed explanation of the numerical procedure for solving equation (1), the reader is referred to Wilson et al. (ref. 2). Such an approach requires that the spectral distribution \(f(E, E') \) be calculated a large number of times, thus making it impractical to utilize complicated analytical formulas for \(f(E, E') \). Hence, the parameterizations derived herein will be presented in the simplest possible terms (without losing accuracy, of course).

An interaction cross section can be written in various forms, and high-energy physicists are interested in the Lorentz-invariant form \(E d^3\sigma/d^3p \) (where \(\sigma \) is the total cross section and \(p \) is an energy momentum), which can be calculated from first principles using quantum field theory and is thus a convenient way to check theory with experiment. In this light, all early theoretical and experimental work done with mesons is presented in Lorentz-invariant form (refs. 8–10).

However, \(f(E, E') \) from equation (1) is the energy-differential cross section \(d\sigma/dE \) (or spectral distribution). The Lorentz-invariant cross section can still be used as it contains all the information one might need (including angular and spectral distributions as well as the total cross section). It now becomes a matter of retrieving this information.

In one of the early papers (ref. 11), all then-available accelerator data were gathered, and a very accurate parameterization of the Lorentz-invariant cross section was fit to the data. The aim of the current work is to utilize this representation of the Lorentz-invariant cross section in order to generate a representation of the spectral distribution that will then be parameterized as a simple function of incident proton energy and secondary meson momentum. The final result will provide the proper differential cross section for equation (1).

Symbols

\(A_1 \) parameter from table 1, \(\text{mb/(GeV}^2/c^3) \)
\(A_2, C, C_2 \) parameters from table 1, \(\text{(GeV}c)^{-1} \)
\(C_1, \gamma \) parameters from table 1, dimensionless
The Lorentz-invariant cross section is given in terms of the following scaling variable (refs. 11 and 12):

\[\bar{x} = \left[x_{\parallel}^* - 2 + \frac{4}{s} \left(p_{\perp}^2 + m_{s}^2 \right) \right]^{1/2} \]

(3)

where \(x_{\parallel}^* \) is the ratio of the parallel component of the center-of-mass (c.m.) momentum to the maximum transferable momentum, \(p_{\perp} \) and \(p_{\parallel} \) are the perpendicular and parallel components of the c.m. momentum, respectively, \(s \) is the Mandelstam energy of the system, and \(m_{s} \) is the secondary-particle rest mass.

In terms of this variable, the following parameterizations are then given (ref. 11) for pions:

\[\frac{E \, d^3 \sigma}{d^3 p} = \frac{A_1}{1 + (4m_{p}^2/s)^{3/2}} \left[1 - \bar{x} \right]^{\frac{3}{2}} \exp \left[\frac{-A_2 p_{\perp}}{1 + (4m_{p}^2/s)} \right] \]

(4)

and for kaons:

\[\frac{E \, d^3 \sigma}{d^3 p} = \frac{C_1 + C_2 p_{\perp} + C_3 p_{\perp}^2}{1 + (4m_{p}^2/s)} \]

(5)

where the parameters \(A_1, A_2, C, C_1, C_2, C_3, \) and \(\gamma \) are given in table 1, and \(m_{p} \) is the proton rest mass.

Now, if the spectral distribution is to be written in simple terms (i.e., constants, mass, momenta, and energies of the interacting particles), then it will be desirable to first express the Lorentz-invariant cross section in such terms. Specifically, the Mandelstam energy variable \(s \) and the fractional momentum \((x_{\parallel}^*) \) must be simply represented.

The Mandelstam representation of the energy for any system \(A + B \rightarrow C + D \) is defined as

\[s = \frac{(p_A + p_B)^2}{c^2} \]

(7)

where \(p_A \) and \(p_B \) are energy-momentum four vectors, given by \(p_N = E_N c p_N \), where the bold-faced \(p_N \) represents the usual three-dimensional momentum vector. This can then be rewritten as (see appendix A)

\[s = m_A^2 + m_B^2 + (2E_A m_B/c^2) \]

(8)

For the current problem, \(A \) and \(B \) are protons and \(E_A \) is the total incident proton energy (given by the sum of the proton kinetic energy \((T_{lab}) \) and the rest mass \((m_p) \). Thus, the following representation is given:

\[s = 4m_p^2 + 2m_p T_{lab} \]

(9)

The fractional momentum \(x_{\parallel}^* \) is given by \(p_{\parallel}/p_{\text{c.m.\,max}} \) (ref. 11), where \(p_{\text{c.m.\,max}} \) is the maximum transferable momentum allowed by the kinematics in the center-of-mass frame. For the arbitrary system
Table 1. Parameters From Equations (4), (5), and (6) Used in Representation of Invariant Cross Section

[Data based on ref. 11]

<table>
<thead>
<tr>
<th>Particle</th>
<th>A_1, mb/(GeV2/c3)</th>
<th>A_2, (GeV/c)$^{-1}$</th>
<th>γ</th>
<th>C_1, (GeV2/c3)$^{-1}$</th>
<th>C_2, (GeV/c)$^{-1}$</th>
<th>C_3, (GeV/c)$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^+</td>
<td>153</td>
<td>5.55</td>
<td>1</td>
<td>5.3667</td>
<td>-3.5</td>
<td>0.8334</td>
</tr>
<tr>
<td>π^-</td>
<td>127</td>
<td>5.3</td>
<td>3</td>
<td>7.0334</td>
<td>-4.5</td>
<td>1.667</td>
</tr>
<tr>
<td>K^+</td>
<td>8.85</td>
<td>4.05</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K^-</td>
<td>9.3</td>
<td>3.8</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$A + B \rightarrow C + D$, $p_{c.m.\text{max}}$ is given by (ref. 13 and appendix A)

$$p_{c.m.\text{max}} = \left[\frac{(s - m_c^2 - m_C^2)^2 - 4m_c^2M_c^2}{4s}\right]^{1/2}$$

where

$$M_c^2 = (m_A + m_B)^2$$

Once again, for the current problem, this simplifies to

$$p_{c.m.\text{max}} = \left[\frac{(s - m_c^2 - m_C^2)^2 - 16m_c^2m_C^2}{4s}\right]^{1/2}$$

Hence, this allows the Lorentz-invariant cross sections from equations (4) and (6) to be expressed solely in terms of the masses, momenta, and energies of the particles (and the parameters given in table 1).

Spectral Distribution

The spectral distribution $d\sigma/dE$ is expressed in terms of the invariant cross section via (ref. 11 and appendix A)

$$\frac{d\sigma}{dE} = \frac{\pi}{p_{\parallel}} \int E \frac{dE}{d\Omega} \
\frac{d(p^2_{\perp})}{dE}$$

By inserting the invariant cross sections from equations (4) and (6) into equation (13) and integrating, a representation of $d\sigma/dE$ will be produced in terms of proton kinetic energy (T_{lab}) and meson parallel momentum (p_{\parallel}). Because of the nonlinear exponential form of equations (4) and (6) and the nonlinear integration in equation (13), the integrals cannot be performed analytically. A numerical procedure utilizing adaptive Gaussian 32-point quadrature was implemented (see the computer program in appendix B); this procedure produced the data points seen in figure 1, which shows the spectral distribution for both positively and negatively charged pions and kaons at a variety of proton energies.

By fitting a function of p_{\parallel} and T_{lab} to the data in figure 1, the parameterization will be solved. Clearly, the data are well represented by decreasing the exponentials, and the solid-line curves in the figures represent the best fits obtained by utilizing the following exponential function to represent $d\sigma/dE$:

$$\frac{d\sigma}{dE} = \frac{\pi}{p_{\parallel}} \alpha \exp \left(-\beta p_{\parallel} \chi \right)$$

where α, β, and χ vary with respect to the incident proton kinetic energy (T_{lab}) and must be parameterized as such. This procedure is accomplished by determining which values of α, β, and χ best match the various proton energies from equation (14) with the output from equation (13), and then by finding functions that accurately provide the same values if given simply the proton kinetic energy (T_{lab}). The following functions were found to be extremely accurate:

For α,

$$\alpha = \alpha_1 \ln (\alpha_2 + T_{\text{lab}}) + \alpha_3 \ln (\alpha_4 + T_{\text{lab}})^2 + \alpha_5$$

for β,

$$\beta = \beta_1 T_{\text{lab}}^{-\beta_2} \ln (\beta_3 + T_{\text{lab}})^{-\beta_4 - \beta_5 T_{\text{lab}}}$$

and for χ,

$$\chi = \chi_1 \frac{T_{\text{lab}}^{-\chi_2} + \chi_3}{T_{\text{lab}} + \chi_5}$$

where the subscripted parameters of equations (15), (16), and (17) are given in table 2. The accuracy of
Table 2. Parameters for Representations of α, β, and χ Used in Equations (15), (16), and (17)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>π^+</th>
<th>π^-</th>
<th>K^+</th>
<th>K^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>1.6209</td>
<td>2.0555</td>
<td>0.513</td>
<td>1.0023</td>
</tr>
<tr>
<td>α_2</td>
<td>-0.992</td>
<td>2.5949</td>
<td>3.1993</td>
<td>15.612</td>
</tr>
<tr>
<td>α_3</td>
<td>-0.958</td>
<td>-5.46</td>
<td>-0.0421</td>
<td>-0.0711</td>
</tr>
<tr>
<td>α_4</td>
<td>-0.0217</td>
<td>689.37</td>
<td>-0.8582</td>
<td>2.1746</td>
</tr>
<tr>
<td>α_5</td>
<td>2.5884</td>
<td>21.24</td>
<td>-0.6736</td>
<td>-2.7214</td>
</tr>
<tr>
<td>β_1</td>
<td>57.4728</td>
<td>72.1723</td>
<td>25.4335</td>
<td>66.5962</td>
</tr>
<tr>
<td>β_2</td>
<td>-6.054</td>
<td>-6.595</td>
<td>-0.5313</td>
<td>-0.5619</td>
</tr>
<tr>
<td>β_3</td>
<td>0.7049</td>
<td>0.7049</td>
<td>-0.1231</td>
<td>-0.122</td>
</tr>
<tr>
<td>β_4</td>
<td>-0.534</td>
<td>-0.5335</td>
<td>-0.9639</td>
<td>-0.9198</td>
</tr>
<tr>
<td>β_5</td>
<td>42.169</td>
<td>51.658</td>
<td>12.887</td>
<td>28.343</td>
</tr>
<tr>
<td>β_6</td>
<td>-7.979</td>
<td>-8.771</td>
<td>-0.8233</td>
<td>-0.8742</td>
</tr>
<tr>
<td>χ_1</td>
<td>1.9096</td>
<td>1.8773</td>
<td>2.3452</td>
<td>33.621</td>
</tr>
<tr>
<td>χ_2</td>
<td>1.6939</td>
<td>1.4223</td>
<td>1.1829</td>
<td>-0.0301</td>
</tr>
<tr>
<td>χ_3</td>
<td>0.5613</td>
<td>0.4237</td>
<td>0.5525</td>
<td>-0.5638</td>
</tr>
<tr>
<td>χ_4</td>
<td>1.7668</td>
<td>1.4898</td>
<td>1.2645</td>
<td>-0.5344</td>
</tr>
<tr>
<td>χ_5</td>
<td>0.6666</td>
<td>0.5082</td>
<td>0.7275</td>
<td>6.361</td>
</tr>
</tbody>
</table>

Equation (14) is evidenced by the very fine agreement between the data points and the solid-line curves seen in figure 1.

Results

The agreement between the fitted approximation using equation (14) and the output from the numerical quadrature used to evaluate the integral of equation (13) is found to be extremely accurate for a wide range of proton energies relevant to cosmic-ray interactions.

A final interesting point in regard to Nagamiya and Gyulassy's representation (ref. 13) of the maximum transferable momentum (eqs. (10) and (12)) is that the representation involves a square root that allows a lower bound to be set on T_{lab}, below which the root becomes imaginary. Because the only variables besides T_{lab} that are involved in the square root are the masses of the particles (ref. 14), the following lower limits on T_{lab} are obtained for meson production in proton-proton collisions. Thus, for pions,

$$T_{\text{lab}} > 0.29 \text{ GeV}$$

and for kaons,

$$T_{\text{lab}} > 1.12 \text{ GeV}$$

which are just the threshold energies.

Concluding Remarks

A parameterization of the energy-differential cross sections for charged pion and kaon production from proton-proton collisions has been derived that accurately reproduces results obtained by numerically integrating the Lorentz-invariant cross section. Because the parameterization is simply a function of incident proton kinetic energy and outgoing meson parallel momentum, the results can be easily reproduced and should be very useful in computer transport codes that have not yet been tested with meson cross sections.

NASA Langley Research Center
Hampton, VA 23681-0001
March 30, 1995
Appendix A

Proofs of Formulas Used in Text

Mandelstam Energy Variable
The Mandelstam energy variable \(s \) for the reaction \(A + B \rightarrow C + D \)
by definition, is given as
\[
s = (p_A + p_B)^2/c^2
\]
In lab frame, \(p_B = 0 \) and \(E_B = m_B c^2 \). Thus, \(s \) is expressed as
\[
s = \frac{(p_A^2 + p_B^2 + 2p_A p_B)}{c^2}
\]
\[
= \frac{m_A^2 + m_B^2 + (2/c^2) p_A p_B}{c^2}
\]
\[
= \frac{m_A^2 + m_B^2 + (2/c^2) (E_A/c, p_A) \cdot (E_B/c, p_B)}{c^2}
\]
\[
= \frac{m_A^2 + m_B^2 + (2/c^2) (E_A/c, p_A) \cdot (m_B/c, 0)}{c^2}
\]
\[
= \frac{m_A^2 + m_B^2 + (2E_A m_B/c^2)}{c^2}
\]

Maximum Transferable Momentum
The maximum transferable momentum for the reaction
\(A + B \rightarrow C + D \)
in the center-of-mass frame where \(p = p_A = -p_B \) and \(q = p_c = -p_D \), is given by
\[
q_{\text{max}} = \left[(s - m_C^2 c^4 - M^2 c^4)^2 - 4m_C^2 M^2 c^8 \right]^{1/2}/2cs^{1/2}
\]
where
\[
M = m_A + m_B
\]
Here, \(s \) is defined as
\[
s = (p_A + p_B)^2/c^2 = (p_C + p_D)^2/c^2
\]
\[
= \left[(E_C/c, q) + (E_D/c, -q) \right]^{2}/c^2
\]
\[
= \left[(E_C/c) + (E_D/c, 0) \right]^{2}/c^2
\]
\[
= (E_C + E_D)^2
\]

which yields
\[
E_C + E_D = s^{1/2}
\]

When relating energy and momentum via
\[
E_C^2 = q^2 c^2 + m_C^2 c^4
\]
\[
E_D^2 = (-q)^2 c^2 + m_D^2 c^4
\]
the difference between \(E_C^2 \) and \(E_D^2 \) is given as
\[
E_C^2 - E_D^2 = (m_C^2 - m_D^2) c^4
\]
Now, since
\[
E_C^2 - E_D^2 = (E_C + E_D) (E_C - E_D)
\]
we have
\[
E_C - E_D = (m_C^2 - m_D^2) c^4/(E_C + E_D)
\]
where \((E_C + E_D) \) is given by equation (A1). Hence,
\[
E_C - E_D = (m_C^2 - m_D^2) c^4/s^{1/2}
\]

Spectral Distribution
The spectral distribution is given as
\[
\frac{d\sigma}{dT} = \frac{\pi}{c^2 p_{\parallel}} \int \frac{E d^2 \sigma}{d^2 p} d(p_\perp)
\]
For proof, we let
\[
\frac{E d^2 \sigma}{d^2 p} = \frac{E d^3 \sigma}{dp_{\parallel} dp_{\perp} d\theta}
\]
Integrating with respect to \(\theta \) gives
\[
2\pi \frac{E d^2 \sigma}{d^2 p} = \frac{E d^2 \sigma}{dp_{\parallel} dp_{\perp}}
\]
We can simplify further via
\[
p_\perp^2 = p_{\parallel}^2 + p_{\parallel}^2
\]
\[
E = \left[(p_{\parallel}^2 + p_{\parallel}^2) c^2 + m_C^2 c^4 \right]^{1/2}
\]
\[
\frac{dE}{dp_{\parallel}} = \frac{p_{\parallel} c^2}{E}
\]
\[
dp_{\parallel} = \frac{E dE}{p_{\parallel} c^2}
\]
and

\[
\begin{align*}
\frac{d(p_\perp^2)}{dp_\perp} &= 2p_\perp dp_\perp \\
p_\perp dp_\perp &= \frac{d(p_\perp^2)}{2} \\
\end{align*}
\]

(A6)

Substituting equations (A5) and (A6) into the denominator on the left-hand side of equation (A4) gives

\[
2\tau E d^3\sigma = \frac{E d^2\sigma}{\frac{d(p_\perp^2)}{2}}
\]

and

\[
\frac{\pi}{c^2 p_{\parallel}} \frac{E d^3\sigma}{d^3p} = \frac{d^2\sigma}{dE} \frac{d(p_\perp^2)}{2}
\]

(A7)

Finally, integrating with respect to \(p_\perp^2\) yields the desired result

\[
\frac{d\sigma}{dE} = \frac{\pi}{c^2 p_{\parallel}} \int \frac{E d^3\sigma}{d^3p} d(p_\perp^2)
\]

(A8)

which allows us to isolate \(E_C\), \(E_D\), and \(q\) in terms of \(m_C\), \(m_D\), and \(s\) as

\[
E_C = \left[s + (m_C^2 - m_D^2) c^2 \right]^{1/2}
\]

\[
E_D = \left[s + (m_C^2 - m_D^2) c^2 \right]^{1/2}
\]

\[
q^2 = \left(\frac{E_C^2}{c^2} \right) - m_C^2 = \left(\left[s + \left(m_C^2 - m_D^2 \right) c^2 \right]^{1/2} \right) - m_C^2
\]

Note that \(q\) is the transferred momentum and that for given particles \(A\), \(B\), and \(C\) and given incident energy \(E_{\text{beam}}\), the only variable left in \(q\) is \(m_D\), which can be no larger than \(m_A + m_B\). Hence, the maximum transferable momentum is given as

\[
q_{\text{max}} = \left\{ s^2 - 2sc \left[m_C^2 + (m_A + m_B)^2 \right] \right. \\
+ \left. \left[m_C^2 - (m_A + m_B)^2 \right] c^8 \right\}^{1/2}
\]

(A9)

and if we let \(M = m_A + m_B\), the result is

\[
q_{\text{max}} = \left[s^2 - 2sc \left(m_C^2 + M^2 \right) + (m_C^2 - M^2)^2 c^8 \right]^{1/2}
\]

which is the desired result.
Appendix B

Computer Program of Spectral Parameterizations

The following computer program utilizes the parameterization given by Badhwar, Golden, and Stephens, (ref. 11) to plot a graph of the spectral distribution. The integration is performed by using adaptive Gaussian 32-point quadrature to find the integral.

The program is written in FORTRAN-77, which does not support the many fonts found in this paper; hence, naming the variables can become quite tedious. A complete list of the meaning of all the variables found in the main procedure is given as follows:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C, C1, C2, C3</td>
<td>parameterization constants (A_1, A_2, C, C_1,) (C_2,) and (C_3,) respectively \ from \ table \ 1</td>
</tr>
<tr>
<td>dppar</td>
<td>dummy variable used to vary (p_{\text{pcm}}) inside loop</td>
</tr>
<tr>
<td>dsdE</td>
<td>(d\sigma/dE,) energy-differential cross section</td>
</tr>
<tr>
<td>e</td>
<td>total energy of incoming proton</td>
</tr>
<tr>
<td>fac</td>
<td>represents one part of equation (1) that does not vary with respect to (p_\parallel) or (p_\perp)</td>
</tr>
<tr>
<td>intgrl</td>
<td>value of actual definite integral</td>
</tr>
<tr>
<td>invcs</td>
<td>value of invariant cross section, returned by function of same name</td>
</tr>
<tr>
<td>mkaon</td>
<td>mass of kaon</td>
</tr>
<tr>
<td>mp</td>
<td>mass of proton</td>
</tr>
<tr>
<td>mpion</td>
<td>mass of pion</td>
</tr>
<tr>
<td>particle</td>
<td>determines which particle the program will investigate</td>
</tr>
<tr>
<td>pcmmax</td>
<td>maximum transferable momentum</td>
</tr>
<tr>
<td>ppercm</td>
<td>(p_\perp,) perpendicular component of c.m. momentum</td>
</tr>
<tr>
<td>pparcm</td>
<td>(p_\parallel,) parallel component of c.m. momentum</td>
</tr>
<tr>
<td>q</td>
<td>(q,) from equation (5)</td>
</tr>
<tr>
<td>R</td>
<td>(\gamma,) parameterization constant \ from \ table \ 1</td>
</tr>
<tr>
<td>s</td>
<td>Mandelstam energy</td>
</tr>
<tr>
<td>Tlab</td>
<td>kinetic energy of incident proton</td>
</tr>
<tr>
<td>x</td>
<td>(1 - x_{\tilde{t}},) as seen in equations (3) and (4)</td>
</tr>
<tr>
<td>xparsq</td>
<td>(x_{\parallel}^2,) from equation (3)</td>
</tr>
<tr>
<td>xtilde</td>
<td>scaling variable found in equation (3)</td>
</tr>
</tbody>
</table>
IMPLICIT DOUBLE PRECISION (a-z)
INTEGER particle
COMMON mass,A,B,C1,C2,C3,R,q,s,particle,fac,xparsq

* mass of proton in GeV/c**2
mp = .93827231
* mass of pion in GeV/c**2
mpion = .1395679
* mass of kaon in GeV/c**2
mkaon = .493646

pi = 3.141592653589793238

do 2000 Tlab = 10.
do 1000 particle = 1,4,1

IF (particle.EQ.1) THEN
 for positive pion...
 A = 153.
 B = 5.55
 R = 1.
 C1 = 5.3667
 C2 = -3.5
 C3 = 0.8334

 mass = mpion
 open(50, file='intpp0010.dat')
ELSEIF (particle.EQ.2) THEN
 for negative pion...
 A = 127.
 B = 5.3
 R = 3.
 C1 = 7.0334
 C2 = -4.5
 C3 = 1.667

 mass = mpion
 open(50, file='intrp0010.dat')
ELSEIF (particle.EQ.3) THEN
 for positive kaon...
 A = 8.85
 B = 4.05
 C = 2.5

 mass = mkaon
 open(50, file='intpk0010.dat')
ELSEIF (particle.EQ.4) THEN
 for negative kaon...
 A = 9.3
 B = 3.8
 C = 8.3

 mass = mkaon
 open(50, file='intrnk0010.dat')
Mandelstam energy
\[e = \frac{T_{lab}}{m_p} \]
\[s = 2. \times (m_p^2) + 2. \times e \times m_p \]
maximum transferable momentum
\[p_{cmmax} = \sqrt{\left(s - m^2 - 4. \times (m^2)^2 - 16. \times (m^2)^2 \right)^2 - 16. 	imes m^2} \]
write(6,*)'particle,Tlab,e,s,' p_{cmmax} = ',p_{cmmax}

(neither perpendicular nor parallel component can be greater than p_{cmmax}.)
(lower limit on integral is 0. Upper limit is p_{cmmax}^2, since we're integrating with respect to the square of the perpendicular momentum, and changed variables)
'fac' is a COMMON variable, and is used in invcs:
\[fac = 1. + 4. \times (m^2)/s \]
\[dp_{percm} = p_{cmmax}/1000. \]
\[pp_{percm} = 0. \]
do 10 pp_{percm}=0.,p_{cmmax},dp_{percm}
\[xp_{arsq} = (pp_{percm}/p_{cmmax})^2 \]
\[\text{intgrl} = \text{AdaptiveGauss}(DFLOAT(0),p_{cmmax}^2) \]
IF (intgrl.GE.0.) THEN
\[dsdE = (pi/pp_{percm}) \times \text{intgrl} \]
write(50,*)pp_{percm}, dsdE
ELSE
write(6,*)'did not work: ',pp_{percm},intgrl
ENDIF
10 continue

close(50)

1000 continue
2000 continue

stop
end

Adaptive Gaussian Quadrature...

sent in: lower and upper integration limits (pp_{percm} limits)
returns the integral approximation 'Approx' of integral
of Lorentz invariant cross section (invcs).

DOUBLE PRECISION FUNCTION AdaptiveGauss(Q1lim,Q1lim)
INTEGER z, particle
COMMON mass, A, B, C, Cl, C2, C3, R, q, s, particle, fac, xparsq

DIMENSION low(1000)
DIMENSION mid(1000)
DIMENSION upp(1000)
DIMENSION sum(1000)
DIMENSION tol(1000)
DIMENSION sav(5)

Approx = 0.
z = 1
tol(z) = l./(10.**10)
low(z) = llim
mid(z) = (llim + ulim)/2.
upp(z) = ulim
sum(z) = Gauss32(low(z), upp(z))

100 IF (z.GT.0) THEN
 sl = Gauss32(low(z), mid(z))
 s2 = Gauss32(mid(z), upp(z))
 sav(1) = low(z)
 sav(2) = mid(z)
 sav(3) = upp(z)
 sav(4) = tol(z)
 sav(5) = sum(z)

 z = z - 1

IF (DABS(sl + s2 - sav(5)).LT.sav(4)) THEN
 Approx = Approx + (sl + s2)
ELSE
 IF (z.GE.999) THEN
 AdaptiveGauss = -1.
 goto 9999
 ELSE
 calculate for right-hand side subinterval:
 z = z + 1
 low(z) = sav(2)
 upp(z) = sav(3)
 mid(z) = (low(z) + upp(z))/2.
 tol(z) = sav(4)/2.
 sum(z) = Gauss32(low(z), upp(z))
 END IF

 calculate for left-hand side subinterval:
 z = z + 1
 low(z) = sav(1)
 upp(z) = sav(2)
 mid(z) = (low(z) + upp(z))/2.

tol(z) = tol(z-1)
sum(z) = Gauss32(low(z),upp(z))

ENDIF
ENDIF
GOTO 100
ENDIF
AdaptiveGauss = Approx

9999 return
end

* 32-point Gaussian Quadrature, used in conjunction w/ AdaptiveQuad above
*
DOUBLE PRECISION FUNCTION Gauss32(lllm,ulim)
Implicit Double Precision (a-z)
Integer i,degree
Dimension Wgt(32), Zero(32)

degree = 32
CALL LEGEND(Wgt, Zero)

sum = 0.0
DO 300 i=1,degree
 x = (Zero(i)*(ulim - llim) + llim + ulim)/2.
 NewWgt = Wgt(i)*(ulim - llim)/2.
 sum = sum + invcs(x)*NewWgt
CONTINUE

Gauss32 = sum
RETURN
END

* Lorentz-invariant cross section of DSQRT(temp)....
*
DOUBLE PRECISION FUNCTION invcs(temp)

IMPLICIT DOUBLE PRECISION (a-z)
INTEGER particle
COMMON mass, A, B, C, C1, C2, C3, R, q, s, particle, fac, xparsq
ppercm = DSQRT(temp)

xtilde = DSQRT(xparsq + 4.*(ppercm**2 + mass**2)/s)
x = 1. - xtilde
if (x.GE.0.) then
 if (particle.LT.3) then
 q = (C1 + C2*ppercm + C3*(ppercm**2))/DSQRT(fac)
 invcs = (A/(fac**R))*(x**q)*DEXP(-B*ppercm/fac)
 else
 invcs = A*(x**C)*DEXP(-B*ppercm)
 endif
else
 invcs = A*(x**C)*DEXP(-B*ppercm)
endif
```plaintext
invcs = 0.
endif
return
end

Legend: Set initial values for Laguerre Weights and Points....

SUBROUTINE LEGEND(WL, P)

Implicit Double Precision (A-H,M,O-Z)
Dimension WL(96), P(96)

Legend: Set initial values for Laguerre Weights and Points....

Laguerre weights are WL, Laguerre points are P

| WL(1) | 0.7018610094700121189081321403D-02 |
| WL(2) | 0.1627439473905608344079997153D-01 |
| WL(3) | 0.253920653092620713688065681168D-01 |
| WL(4) | 0.342738629130214167081702747453D-01 |
| WL(5) | 0.428358980222266422580035261092D-01 |
| WL(6) | 0.509980592623762328133256720138D-01 |
| WL(7) | 0.586840934785355676159279703086D-01 |
| WL(8) | 0.6582222776361790502572668855D-01 |
| WL(9) | 0.72345794108485479569358815866D-01 |
| WL(10) | 0.781938957870702434221899868758D-01 |
| WL(11) | 0.83311924226946767770267061670D-01 |
| WL(12) | 0.87652093004403934181634205913J3D-01 |
| WL(13) | 0.911738786957638977503926014379D-01 |
| WL(14) | 0.938443990808045247487001461195D-01 |
| WL(15) | 0.956387200797249008620985406992D-01 |
| WL(16) | 0.965400885147278502163015190263D-01 |
| WL(17) | 0.965400885147278103176615715597D-01 |
| WL(18) | 0.956387200792724919944056776441D-01 |
| WL(19) | 0.9384439908080464427099896512542D-01 |
| WL(20) | 0.91173878695763932444862120974D-01 |
| WL(21) | 0.876520930044039894871646863771D-01 |
| WL(22) | 0.833119242269467416561745665149D-01 |
| WL(23) | 0.781938957870701180152993618785D-01 |
| WL(24) | 0.7234579410848648282610160391869D-01 |
| WL(25) | 0.658222277636191711735758544670227D-01 |
| WL(26) | 0.586840934785356109840148697288D-01 |
| WL(27) | 0.5099805926237615735785446702227D-01 |
| WL(28) | 0.428358980222266422580035261092D-01 |
| WL(29) | 0.342738629130214167081702747453D-01 |
| WL(30) | 0.253920653092620713688065681168D-01 |
| WL(31) | 0.1627439473905608344079997153D-01 |
| WL(32) | 0.7018610094700121189081321403D-02 |

| P(1) | -0.99726368184948166702124439098D+00 |
| P(2) | -0.985611511545268423328813867101D+00 |
| P(3) | -0.964762255587505628664576421761D+00 |
| P(4) | -0.934906075937739761914713364557D+00 |
| P(5) | -0.896321155766052188318404603251D+00 |
```
P(6) = -0.849367613732570012063938236224D+00
P(7) = -0.7944837959679424401063058822692D+00
P(8) = -0.7321821187402897111111675091565D+00
P(9) = -0.663044266930215245303692483958D+00
P(10) = -0.587715757240762429192117972223D+00
P(11) = -0.50689990893222941492624051678D+00
P(12) = -0.421351276130635395145151989027D+00
P(13) = -0.331868602282127667102429313672D+00
P(14) = -0.23928736225213704391497535552D+00
P(15) = -0.144471961582796494527602959579D+00
P(16) = -0.483076656877383025720518183732D-01
P(17) = 0.48307665687738307772222463036D-01
P(18) = 0.144471961582796480649815151764D+00
P(19) = 0.239287362252137043860944487506D+00
P(20) = 0.33186860228212766285749601951D+00
P(21) = 0.42135127613063536045068246949D+00
P(22) = 0.50689990893222945655960387512D+00
P(23) = 0.587715757240762345925411125336D+00
P(24) = 0.663044266930215231425904676144D+00
P(25) = 0.73218211874028975294503851508D+00
P(26) = 0.7944837959679424278271014878D+00
P(27) = 0.849367613732570012063938236224D+00
P(28) = 0.896321155756650214668504117908D+00
P(29) = 0.934906075937739763914710345557D+00
P(30) = 0.964762255587506459275637382689D+00
P(31) = 0.98561151154526836717662635844D+00
P(32) = 0.99726386184981611510093159723D+00

return
end
References

Figure 1. Spectral distribution $d\sigma/dE$ plotted against parallel component of outgoing meson momentum. Data points denote actual values obtained by performing numerical quadrature on integral portion of equation (13); solid-line curves denote the fit approximation of equation (14).
(c) Positive kaon production.

(d) Negative kaon production.

Figure 1. Concluded.
Abstract

Accurate semiempirical parameterizations of the energy-differential cross sections for charged pion and kaon production from proton-proton collisions are presented at energies relevant to cosmic rays. The parameterizations, which depend on both the outgoing meson parallel momentum and the incident proton kinetic energy, are able to be reduced to very simple analytical formulas suitable for cosmic ray transport through spacecraft walls, interstellar space, the atmosphere, and meteorites.