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Summary

An object-oriented gas turbine engine simulation program was developed. This program is

a prototype for a more complete, commercial grade engine performance program now

being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report

discusses architectural issues of this complex software system and the lessons learned

from developing the prototype code. The prototype code is a fully functional, general pur-

pose engine simulation program, however, only the component models necessary to model

a transient compressor test rig have been written. The production system will be capable

of steady state and transient modeling of almost any turbine engine configuration.

Chief among the architectural considerations for this code was the framework in which the

various software modules will interact. These modules include the equation solver, simu-

lation code, data model, event handler, and user interface. Also documented in this report

is the component based design of the simulation module and the inter-component commu-

nication paradigm. Object class hierarchies for some of the code modules are given.

1.0 Introduction

The aerothermodynamic simulation of the engine plays a pivotal role in the entire life cycle of tur-

bine engines. It is the first tool engineers use to evaluate new engine concepts. It is very heavily

used during development, testing and certification. As a generator of customer decks, it calculates

the performance levels guaranteed to the customer on which a company stakes its reputation and

capital. Finally, it is used to provide diagnostics for engines in service.

p-

The engine simulation program calculates not only engine performance, it also is the nexus for

most multidisiplinary studies. It provides: 1) key dimensions for fiowpath design, 2) tempera-

tures, pressures and rotational speeds needed for structural analysis, 3) thrust levels and fuel con-

sumptions for mission analysis, and 4) transient information needed to build and test control

systems. In fact, the aerothermodynamic simulation provides critical information for every type

of study from cost, to environmental impact, to reliability.

The engine simulation computer code is so important to every aspect of the aircraft engine design,

development, and maintenance, it is imperative that the US aircraft engine manufactures have the

best simulation tool possible to help maintain their leadership in the world market place. To this

end, NASA Lewis has started an effort to develop a new engine simulation program, called
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STEPE This new software will support the aerothermodynamic system simulation process for

the full life cycle of an engine. It will be designed to do system simulation from conceptual design

through development and testing as well as support engines in the field. To provide this capability,

STEPP will be designed to perform steady state and transient performance prediction, test data

reduction, cycle optimization, customer deck generation, detailed parasitic flow analysis, and

many other tasks. New standards for interfacing with other disciplines will also be established.

This code will have the capability to "zoom" to models of greater fidelity and it will "couple"

more directly to modeling tools for other disciplines. Furthermore, this new program will take

advantage of modern computational techniques and programming languages. It will have an easy

to use graphical user interface and distributed processing capabilities for fast turnaround times.

A software project of this size requires a well thought out plan, lots of input from end users, and

proven methodologies to succeed. Much like what is done in the development of a new aircraft or

engine, we determined that a functioning prototype was needed to insure a full understanding of

the problem and to reduce the technology risks in the development of STEPP. This report covers

the prototyping efforts that helped uncover many of the potential pitfalls of this project and the

solutions applied to overcome these problems. This prototyping effort was extremely valuable in

terms of gathering requirements, testing ideas, and scoping out the size of the final software

development task.

The prototype system consists of four main modules and some utility classes. The main modules

are the simulation (or analysis), the data model, the user interface, and the solver. The latter three

are documented in references 1, 2, and 3, respectively. This report covers the simulation module

and the framework it uses in cooperation with the other modules. A synopsis of the data model,

the solver module, and some of the engineering related utility classes is included in this report.

The simulation code completed thus far is functional and general purpose. A transient compressor

test rig model exercises most of the codes capabilities and is adequate for testing the system archi-

tecture. For these reasons only the code for the components necessary to model the compressor

rig were written. The code architecture is complete enough to model other engine configurations

if other component models are added. The components written include: inlet, duct, compressor,

nozzle, shaft, load, and motor.

This report first gives background information on some related engine performance modeling

activities. Next the system requirements and design for the prototype simulation code are pre-

sented. Then the framework, data model, and class structure are discussed. A method for inter-

component communications is then presented along with the rational for this selection. Next the

report elaborates on the components and other engineering modules. Finally, the compile/link

events during the model building process are discussed. We assume the reader has a basic under-

standing of turbine engine simulation (ref. 4), object-oriented programming terminology and the

C++ programming language (ref. 5).

2.0 Background

This research was conducted as part of a larger effort that involves the complete multidisiplinary

analysis of airbreathing propulsion systems. This larger effort is call the Numerical Propulsion

System Simulator (NPSS) (ref. 6). The NPSS project has been involved with overall engine cycle

performance modeling from its inception. This section reports some of the previous efforts to do
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cycle simulation as part of the NPSS project. This information is important in understandilqg our

decision to develop an all new, object-orient engine simulation program.

There have been both in-house and contracted study efforts for engine cycle simulation as part of

NPSS. Most of the early focus has centered around the transient simulation code DIGTEM and

using it to demonstrate different analytical frameworks for zooming. Zooming is the process of

going from a low fidelity model (one-dimensional analysis) to a high fidelity model (two or three-

dimensional analysis) and back again transparently. Zooming is considered one of the key new

technologies that is part of NPSS. An example of zooming is an engine cycle simulation program

invoking a streamline code for calculating compressor performance instead of using a table

lookup. Current engine cycle programs with FORTRAN common block architectures would make

this type of code addition difficult or impossible. Object-oriented architectures offer the greatest

chance to successfully implement zooming.

Under contract no. NAS3-25951, General Electric Aircraft Engines developed an object-oriented

framework in Lisp with component models based on the DIGTEM code (ref. 7). Although this

effort was not focused on developing production software, we did learn much about how to (and

how not to) develop object-oriented system simulations. One major conclusion from this work is

that it is often better to write new code from scratch than to try to re-engineer an old FORTRAN

code, like DIGTEM, and force it into an object-oriented framework. This is particularly true when

the FORTRAN subroutines make extensive use of global common blocks. If the FORTRAN code

had been written more modular (without common blocks) it could have been more easily called

from an object-oriented wrapper, however, this is not the case with most code currently in use.

Another object-oriented implementation of DIGTEM was done by John Reed, et. al. in the AVS

framework (ref. 8). This code was delivered to industry as NPSS Mod0. The AVS framework was

useful as an experimental tool for distributed object-orient programs, however, industries feed-

back was that this is not a suitable environment for a production system. The two limiting factors

were the high licence fees for the commercial software and the inability to modify the AVS frame-
work.

The NASA Engine Performance Program (NEPP, a.k.a. NNEP89) was evaluated as the NPSS

one-dimensional steady state code, referred to as a level 1 code in NPSS nomenclature (ref. 9).

Although NEPP does a good job of the aerothermodynamic simulation of an engine cycle, it lacks

some of the major capabilities that industry needs in a full featured simulation system. The short-

comings are; (1) no transient modeling, (2) no data reduction capability, (3) no multipoint design

capability (not to be confused with multimode capability in NEPP), (4) an inflexible structure that

limits its expandability, and (5) an unsuitable framework to support zooming.

It would be possible to modify the program structure of NEPP such that it could evolve into a

more full featured system. However, it has been our experience that this would be a more difficult

task, and would produce less desirable results than to write a new program from scratch. There are

several reasons for this. One is that a large percentage of the NEPP program deals with moving

data into and out of common blocks. Changing this common block structure would result in an

almost complete reworking of the code. Secondly, a clean start allows us to implement the pro-

gram in an object-oriented language. Lastly, doing a complete rewrite allows us to apply more rig-

orous software quality control procedures, hence reducing future maintenance efforts.
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The same concerns about the NEPP code apply to other engine performance programs in the pub-

lic domain. Thus there is no adequate engine performance prediction program that is suitable to

the needs of NASA and industry in the public domain. Higher level modeling needs, modem

computer technology, and new uses for system simulations all lead to the decision to develop a
new code.

3.0 Requirements

This section describes some of the high level requirements imposed of the prototyping effort.

These requirements come from the project office, our industry partners, and/or are self-imposed

by the development team based on our own experiences from developing similar simulation pro-

grams. These requirements will most likely carry forward to the production effort but are still sub-

ject to approval by our industry partners.

The basic requirement of this code was to perform a one-dimensional steady state and transient

performance prediction of a gas turbine engine. The focus of this effort was to prototype a possi-

ble object-oriented framework and not produce an end product, the component and solver algo-

rithms were taken from available sources and not re-engineered (ref. 10, 11).

The most important design criterion for the simulation framework is that the class structure must

have physical meaning. That is, physical components of an engine must be modeled as computa-

tional components (henceforth just components) in the simulation. This lead to the decision to

adhere to a control volume approach for component models. The component will have control

surfaces through which all mass and energy flux must pass. All the significant processes present in

the physical component must be performed inside the computational component.

A second requirement is that there must be no restrictions on the types or numbers of components

in the simulation. At least not in the highest levels of the class structure. The structure needs to be

extendable for new component types and other disciplines without requiring modification to the

basic architecture. The effect of this criterion leads to the selection of C++. The object-oriented

nature of this language allowed us to construct an open framework from which new component

types and variations can be derived. The dynamic memory capability allows any number of com-

ponents and any given type to appear in the simulation.

Third, this software must facilitate zooming. That is, it must be able to dynamically swap out sim-

ple one-dimensional, empirical computational models for higher ordered (two or three-dimen-

sional) computational models. This adds the requirement to support distributed processing

because it cannot be assumed that the higher ordered component models will run on the same

computer platform as the rest of the system. Separate hardware can be required for computation

efficiency of the high ordered models.

Fourth, the code must be able to run in both graphical and batch modes. For batch mode operation

an easy to edit file format was required for program inputs. This requirement a human readable

storage format eliminated the consideration of the use of persistent object storage.

Fifth, we were enjoined to not base the code on any commercial software. As a result of this we

developed some general utility type routines, such as list management. The time spent developing

these low level classes detracted from that available to creating higher level engineering classes
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unique to this problem domain. We did make use of some third party software for dis.tributed pro-

cessing and for the graphical user interface. In these cases we required the design to minimize the

impact of future changes to other software packages.

Sixth, this code must be structured so as to fully support system analysis needs for the entire life

cycle of the engine. This includes conceptual design, preliminary design, development and test-

ing, certification, derivative or growth analysis, and field support. Full life cycle support also

mandated that this code be able to perform transient analysis.

4.0 Design

The system design meets the requirements outlined in section 3.0 as well as all the detailed

requirements intrinsic to any engine simulation program. The design is composed of several lay-

ers. At the top is the system framework. The framework specifies how the major modules of the

program (simulation code, user interface, solver, and data model) work together. The system

framework is the topic of section 5.0. An effort has been made to make each of these major mod-

ules of the framework as independent as possible. Independent, although somewhat parallel, class

structures were designed for each of these major modules.

The design of the simulation module is based on component models and,their interconnections.

Our design for the simulation module has three basic concepts; components, ports, and connec-

tors. The idea is that any system can be composed of interconnected components. Each compo-

nent includes a set of ports to which other components can be connected. The ports are of

standard types and contain standard information of interest to other components; for example, a

port may be an object representing the flux of gas out of a turbine. There are no limits on the num-

ber or types of ports a component can have.

An assembly of components is made by using connectors to "wire" together ports of different

components. The connector carries data directly between the ports on the connected components.

This greatly reduces the global name space. It also eliminates routines otherwise required to man-

age global data. These connectors are not hard coded into the components. Rather the connections

between components are specified in the engine model and are constructed from an input file or at

run time with the graphical user interface.

Having assemblies and subassemblies of components is vary important to our design. Making an

assembly a type of component allows the engine model to be organized into nested subassemblies

and subsystems. The depth of the hierarchy is arbitrary. A subassembly is treated as any other

component with input and output ports. Assemblies are explained more in section 7.0.

This design of components, ports, and connectors is totally free of global data and is infinitely

extensible (within the available hardware resources). This design separates the data communica-

tion and engineering models as much as possible. Inter-component communication is discussed
more in section 8.0.
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5.0 System Framework

The system framework is based on what we call the Model-Data-View architecture. That is, the

Model, or simulation, portion of the code is separated from the View, or graphical, portion of the

code by a data model. In this way the data used by both the user interface and the simulation por-

tions of the code only needs to be described once. The user interface is adaptive. If the simulation

adds data to or modifies a datum in the data model the user interface will automatically adapt to

these changes and update the display. Figure 1 is a high level view of this architecture. Notice that
the simulation and user interface have no direct communication. The flow of information is

through the data model and the event handler. The data model, user interface, solver, and event

handler are documented in references 1, 2, and 3, respectively. The event handler portion of this

architecture is documentation in a internal memo [Visual Environment for Distributed Program

Chaining, Curlett, B.P.]. This report focuses on the simulation module and how it works with

these other modules.

MODEL DATA VIEW
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FIGURE 1. System Framework: The Model-Data-View Architecture

When a component, port, or connector is created the framework first constructs a simulation

object and, if applicable, a GUI object. The simulation object does the "engineering" work and is

responsible for loading its data model. The same data model is shared by the simulation and GUI

objects. Almost all communication between the simulation and the GUI is handled through the

data model and event handler. In this way the simulation code can be developed completely indg_-

pendent from the user interface and with little regard for the interface itself. This is a most desir-

able feature for the engineers who are typically assigned the task of writing simulation models

without the aid of a professional programmer. The engineer must understand the use of the data

model but is not required to actually perform any graphics programming in this framework.

The solver is also programmed to communicate with component models through the data model.

The data model allows the solver to have safe, easy access to all system parameters by name.

The simulation code provides at least three methods of integration with the user interface.
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1. It can be loosely integrated; that is, the user interface can create a file from the data model

which can be used to invoke a simulation code. This is the simplest solution and it provides the

most separation of the engineering and GUI development task.

2. It can be tightly integrated; that is, the simulation code is compiled along with the GUI and

shares the same data model. This solution provides the user with the quickest interaction

between the GUI and simulation. This allows the user to perform rapid "what if' scenarios.

3. It can be remotely connected; that is, the simulation code communicates with the GUI through

a remote connection. This gives the user several advantages; 1) multiple simulations can be run

in parallel from a single user interface, 2) simulations can be executed on compute servers

while the GUI runs as a local process, and 3) other codes can be integrated with the cycle sim-

ulation, i.e. program chaining and program zooming can be preformed using this method.

Support for all three of these methods is built into the simulation, user interface and data model

modules. The best method for integrating the user interface with the simulation code will depend

on how the simulation is built (see sec. 12.0). The prototype simulation code is loosely integrated

with the prototype graphical user interface. The architectures of both of these pieces permit

tighter integration. The production versions of these codes will be more tightly integrated using

methods 2 and/or 3 while still providing for loose integration.

6.0 Data Model

The internal data model is responsible for the description of the data, organization of the data, and

all data input/output (I/O). It is also the mechanism used to communicate information among the

major modules in the framework. This section explains some of the basic concepts of the data

model which is necessary to the understanding of remained of this report.

This simulation framework uses a simple data model based on variable tables. Tables like these

are sometimes called "data dictionaries". Variable tables are hierarchal in nature; similar to direc-

tories in a DOS or UNIX file system. We use one table, possibly with subtables, for each compo-

nent in the simulation. Each variable in a table represents an attribute in the simulation. In

addition to the value of the attribute, the variable class provides storage for other relevant infor-

mation, such as: a description of the attribute, a default value, and limits.

We found these variable tables to be a good mechanism for: defining and cataloging our data, user

friendly i/o, standardizing access functions, and insuring integrity of data that would otherwise

have to be made global. We also added methods to the variable classes for interprocessor data

transfer and an interpretive language for programming relationships between numerical variables.

There are six basic variable classes that are used for six different data types, these include: string,

file, numerical, boolean, map, and enumeration data types. There are also a couple of special

types. The VarLink class is a template class to link variable information to data stored elsewhere.

The VarTable class holds other variables and tables and provides search routines for locating vari-

ables. All variable classes are derived from the Var class which stores information common to all

types, such as name and label string.

In addition to cataloging data and performing data I/O, the variable tables provide an excellent

mechanism for moving data. Ports (boundary objects on components) can use the variable data
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types listed above to build a VarTable of all their important attributes. Data can then be copied

from one components port to another components ports simply by calling the VarTable copy func-

tion. This is how the send() method of the connector class is implemented. Connectors are

explained more in section 8.0. Furthermore, the variable classes have built-in methods for reading

and writing themselves to and from Parallel V'mual Machine (PVM) message buffers. This per-

mits an easy extension to the connector class to send data to remote processes.

If component and port attributes could not be placed in a VarTable, or similar structure, each type

of component and port would have to have its own methods for I/O, copying, remote distribution,

and user interface display. Furthermore, data access methods would have to be added for the sys-

tem solver to get at component and port data and calls to these methods would have to be hard

coded because attributes could not be located by name at run time. At the surface the data model

used here may look like a breakdown of the object-oriented paradigm. However, if you view the

variable classes as a means of making "smart attributes", and the VarTable class as a means of

providing standard interfaces for organizing and locating these attributes, you will see how this

model is an enhancement to the object-oriented message passing paradigm.

7.0 Simulation Class Structure

This section covers the high level class structure for the simulation code. This class structure

embeds some of our fundamental design decisions. However, this is not necessarily the final class

structure of the production system. This is the structure of the prototype to be tested and evalu-

ated. Other variations will be explored. Figure 2 shows the class structure of the engine simulation
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FIGURE 2. High Level Class Structure with Associations and Aggregations
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module. In our design inheritance plays a more important role in achieving the correct polymor-

phic behavior rather than code reuse. The use of utility classes and functions for achieving code

reuse is emphasized in our design (see section 11.0).

There are three major parts to building a simulation, these are: components, ports and, connectors.

All three of these are derived from the PsPart class. The PsPart class does not have physical

meaning but is necessary to hold common information and methods that all parts need, such as a

relationship with a corresponding VarTable.

The PsComponent class usually represents a physical piece of hardware. However, no assumption

of what the component does is made by this class. For example, a component could be a compres-

sor, burner, or turbine in a jet engine simulation, or a boiler, generator, or condenser in a power

plant simulation. This permits the simulation framework to be reused for other types of simula-

tions. The PsComponent class handles things that are common to all components from any type of

simulation. For example, all components must have ports to handle information flow into or out of

the component. The management of these ports is handled by the PsComponent class.

The PsPort class is a base level class that provides for information flow into and out of compo-

nents. Each component will have one or more ports; there is no upper limit to the number of ports

on a component. Components can be thought of as control volumes and ports as the control sur-

faces on that volume. An example of a port is the PsGasFlux class which represents the flux of gas

across a control surface. The PsGasFlux class is derived directly from the PsPort class and is dis-

cussed in more detail in section 11.2.

The PsConnector class permits two components to communicate with one another by passing

information from one component's port to another component's port. The connector checks to

make sure the ports are of compatible types. If the ports are incompatible an error would be

reported and a component that translates from one port type to the other must be inserted by the

user. The PsRemoteConnector is functionally the same as the PsConnector but it allows data to be

transmitted between ports on different processors using the PVM message passing protocol.

Derived from the PsComponent class, the PsEngComp (Engine Component) class holds attributes

and methods that are associated with gas turbine engine components. This intermediate class is

used mostly as a way to distinguish between physical components and logical components. This

can be done using the isA () function, which tests class type. A number of specific component

classes were written. The seven class derived from the PsEngComp are the seven engine compo-

nent models developed for testing the system architecture. Having working code applied to a real

problem greatly helped in validating this architecture.

The PsAssembly class is a type of component that holds other components. No assumptions are

made on the types of components contained in the assembly. Because a PsAssembly is a type of

PsComponent, an assembly may be part of another assembly. This permits subassemblies to be

made to any level.

The PsEngAssembly class is derived from the PsAssembly class. The PsEngAssembly holds

attributes and methods associated with an assembly of engine components. This class also con-

tains an association with engine cycle solver, methods for calculating the computational path

through a series of engine component, and a method for executing the components in this prede-

termined order. If a PsEngAssembly is used to make a subassembly then this subassembly would

have its own solver. This may be useful if an engine's high spool had a much different response
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time than its low spool. The time constants for the high spool subassembly could be differen_ then

those of the rest of the system. If a subassembly is made using the PsAssembly class then it would

use the same solver as the parent PsEngAssembly. Thus the PsAssembly is only used for encapsu-

lating some of the models complexities, it otherwise does not effect the solution of the problem.

The PsEngine class is an assembly of engine components plus the methods for calculating the

overall engine performance. These attributes include: gross thrust, net thrust, SFC, etc. Multiple

PsEngine objects may coexist. This would permit multimode engine modelling as well as being a

useful feature if this simulation was used as a subprogram for an aircraft synthesis code modelling

a multi-engine aircraft.

Several other class structures were considered. One idea was to derive PsAssembly from PsEng-

Comp, therefore, an assembly of engine components could be an engine component. The problem

with this is we could not have an assembly of non-engine components. Another idea was to

inherit PsEngAssembly from both PsAssembly and PsEngComp. This would be ideal but we

would not be able to cast down from PsComponent because it would have to be made a virtual
base class.

8.0 Inter-component Communications

One of the major design decisions for the simulation architecture of STEPP was to determine

what constitutes a component and how components are connected. A component is defined as a

code module (or object) that takes inputs and produces outputs and has little other interaction with

the system. A component is an object that usually represents a physical piece of hardware such as

a compressor, burner, or nozzle. A component has or is associated with boundaries.

All the communications concepts evaluated share the basic idea that components transmit infor-

mation at their physical and/or logical boundaries by providing a port to which a port of another

component may be connected. The connection process could be the sharing of the same port

(boundary data) or the transmission of data between two different logical ports that represent the

same physical boundary. As a matter of record the different connection concepts evaluated are

presented in Appendix A with pros and cons. The two port/connector model was chosen for the

initial version of STEPP because the new architecture must demonstrate zooming and distributed

processing and this concept lent well to these goals.

The two port/connector model assumes that there are two copies of the "station" data, one in each

component object. Each component is responsible for creating and destroying its own copy of tl_

station data. The data is moved (copied) from one component to the next by a PsConnector object.

In this model the connector class has no built-in logic other than that to transfer data. The connec-

tor does not calculate any flow error or preform any other type of data transformation.

Figure 3 shows a two port/connector model. The large boxes in the figure represent components,

the smaller boxes contained in these are ports, and the arrows are connectors. Three types of ports

are shown in the figure, they are: flow-in (fi), flow-out (fo), and mechanical (m).

The connector class (PsConnector) works in a push or pull mode. That is, the compressor compo-

nent C 1 can tell the connector to send its flow-out (fo) data to the burner component B 1, or B 1 can
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FIGURE 3. Sample Two Port/Connector Schematic

request the connector to send the upstream data when it needs it. Data can flow in the other direc-

tion as well. Our cycle program is implemented mostly as a pull system.

Because each component has its own copy of the boundary data, the two port model can be easily

extended for distributed processing. The PsConnector is simply replaced by a PsRemoteConnec-

tor. The system behavior is unchanged. The problem with using a single copy of the port's data

between two components is that there is never a call to the connector to transmit data and hence

the extension of this method for distributed processing would require considerable changes to the

component's algorithms.

The connector moves data from one port to the other simply by invoking the copy method on the

port's VarTable. This copies all the variables in one port's table to the other's. Note that both ports

need not contain exactly the same data, because the VarTable copy command only copies data

between variables of the same name. This is why the connector class does not enforce a strict port

type match between ports in the connection; instead it validates the connection based on informa-

tion supplied in the port's VarTable.

Although the normal send and receive operations on the connector copy all similar data, it is

sometimes desirable to send or receive just a single value. Recall port data is stored in or linked to

a VarTable class. Because any variable in the VarTable may be accessed by name, the send and

receive methods on the connector where modified to take this name as an argument and pass just

this one parameter. Without this feature it would not be possible to implement ports which require

simultaneous, bidirectional transmission of data because of data overwrites.

One advantage of this system is that components are more self contained units and the connection

of components is simply a system level problem that has nothing to do with the engineering prob-

lem. Because the engineering and system problems are decoupled the two port/connector model

will result in the most extendable architecture.

Some disadvantages of this architecture have been identified. It requires twice the storage for the

port data as the single port model, and it will slow execution speed over the single station model.

However, it was felt on today's hardware these concerns are minimal and out weighted by the

benefits this model provides.
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9.0 Component Models

We can now discuss what is inside of a component model. The answer is basically what ever you

want. This framework assumes very little about the internal structure of components. A compo-

nent may be as simple as multiplying a number on an input port by two and writing it to an output

port; or it may be as complex as a 3D Navier-Stokes code with ports containing large grids of
data.

We mandated that components derived from PsEngComp (Engine Component) class must follow

a control volume approach to encapsulating the physical process being model. However, our class

structure does not enforce this as strictly as some of the other proposed class structures. Our ratio-

nale for this design is similar to the rational for the design of the C and C++ programming lan-

guages; which is to provide flexibility and trust the programmer to use it wisely.

We developed components to model the aerothermodynamics of gas turbine engine components.

They are specifically designed to function in the framework and to take advantage of the engi-

neering utilities. Only enough types of components to model a compressor test rig were devel-

oped for the prototype code. These include an inlet, compressor, duct, nozzle, shaft, load, and

motor. The engineering specification for the compressor component is included in appendix B;

the corresponding source code is included in appendix C as an example.

All of our components are derived from the base class PsEngComp, which is derived from

PsComponent, which in turn is derived from PsPart. The PsPart class will construct a VarTable

with the name given to the component. The constructor of the component must load its data deft-

nition file and make VarLinks for any internal data it wishes to share with the rest of the system.

The data definition file contains information to be loaded into the data model, such as: labels,

default values, and limits. The constructor will usually lookup the addresses of any variables cre-

ated when the data definition file was loaded. The component's destructor must delete any ports

created by the constructor. Any connectors to these ports will automatically be deleted. The base

class PsPart will clean up the variable tables.

Other than the constructor and destructor every component must have a run () method. This

method is called by the system solver to execute the component. The run method should initialize

any data that could not be initialized during the construction process. It will then request the

incoming ports to update themselves, perform any calculations the component must do, and write

the results to the outgoing ports. Data in the variable table not implemented as VarLinks, must be

updated before exiting the run() method.

Components with complex calculations in the run () method are broken down into smaller meth--

ods. This is done to aid understanding of the algorithm and to make creating a new class by deriv-

ing off an existing class easier. This is especially true if the difference between the different

classes is entirely contained within one of these smaller methods. For example, suppose a new

compressor component was needed with a different surge margin calculation. The class PsNew-

Compressor could be derived from the PsCompressor class (see Appendix C). Only the surge-

._argira () method would need to be re-implemented in PsNewCompressor; everything else

would be inherited from PsCompressor.
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10.0 Solver

The system solver is a cooperative set of several classes. The class structure is shown in Figure 4.

These consist of an equation solver class (PsSolver) that uses a Newton-Raphson matrix method

to solve a set of n linear partial differential equations with n unknowns. The coefficients of the

equations are gathered into a square matrix referred to as the Jacobian matrix. In this solver, the

coefficients are approximated by measuring the change in residual error terms to a small change

in a given independent parameter. The methods to generate a jacobian matrix and those required

to use that matrix to drive a system to solution are quite independent. Therefore, all functions

related to generating and using the Jacobian matrix are encapsulated in a separate class (PsJaco-

bian). The PsSolver class contains only those methods required to iterate a system to solution

using a known Jacobian matrix. If the PsSolver determines that a new Jacobian is required, it then

simply "asks" the Jacobian matrix to regenerate itself. When the generate method on the PsJaco-

bian object returns, a new conditioned and inverted Jacobian matrix is available to start predicting

changes to the independents required to solve the system.

[ PsGuess ] t PsBalState _ I PsSolver ] { PsJacobian J

A
I I

I PsBalanceI I PsState [
/

I + I I

I PslstGear I I Ps2ndGear I [PsTrapezoid] [ PsEuler

FIGURE 4. Solver Class Diagram

Key

Inheritance [

(one to man_

The PsSolver and PsJacobian classes only deal with error terms and independent parameters. As

such they make up a very general equation solver. How the error terms are calculated and how

new values of the independent parameters are set back into the simulation are handled by a set of

classes that we will collectively refer to as equation classes. The base class for all the equation

classes is PsBalState. Virtual functions defined in this class set the public interface of the_

objects. How these functions are implemented in the derived classes defines what is unique about

each equation class. Each equation object instantiated from these classes handles one independent

and calculates one error term. A system with n independent and n dependent terms will require n

equation objects. A list of pointers to these objects is maintained in the PsSolver classes.

Separating how equations are solved from how the terms of the equations are calculated allows

the equation solver to solve a set of equations without regard to how the error term is calculated. It

could be 1) a corrector equation calculating the change in a state value over a time step, or 2)

between two dependent parameters to be algebraically driven to be equal independent of time, or

3) a mix of the two. The solver algorithm and class structure is discussed in detail in reference 3.
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11.0 Engineering Utilities

Engineering utilities are classes and functions that simplify the construction of higher level mod-

els. Examples of utilities are: equation solvers, table interpolation/extrapolation class, and gas

properties classes. Three noteworthy utilities are presented in this section, the gas state class, the

gas flux class, and the table interpolation classes.

11.1 Gas State Class

Many computer programs for aerothermodynamic simulation contain numerous lines of codes for

tracking the state of a gas at different points in space and time. State information consists of

chemical composition, phase, temperature, pressure, enthalpy, ratio of specific heats, gas constant,

etc. The programmer often struggles with organizing this information, determining what is known

and when to call the appropriate calculation routine to determine unknowns. In our code an object

of type PsGasState is used to store the state information at a given location in space and time. This

object tracks what information is known about the state and has methods for calculating the

unknowns.

The PsGasState class is simple to use. The programmer enters the knowns about a state. When

values are later needed, the programmer just calls the appropriate state method. If the value was a

given it is simply returned, else the value is calculated from the knowns. An error message will

result if the problem is underspecifed. This type of data encapsulation reduces errors, simplifies

the programming task, and decreases maintenance efforts.

11.2 Gas Flux Class

The program will need to know more about the fluid then just its state. It will also need to know

the flow rate, velocity, roach number, and stagnation conditions of the gas at each point in time

and space. The PsGasFlux works much like the PsGasState in calculating these additional proper-

ties. The simplest PsGasFlux will contain two PsGasStates; one for static conditions and one for

stagnation (or total) conditions. The PsGasFlux class tracks knowns much like the PsGasState

class and has methods for calculating unknowns. Flow rate and area can be used to calculate

Mach number, or flow rate and Mach number can be used to calculate area. The programmer can

specify what parameters are to remain fixed and what parameter change as the flow rate varies.

For example, at the design point the Mach number is usually given and the area calculated. The

area can then be frozen for the off-design calculation and the Mach number is calculated.

Most cycle simulation programs use lumped parameters at each flow station in the engine. How-

ever, planned additions to the gas flux class will allow multiple gas states to be combined to make

up a single gas flux. This will allow streamline and even more complex codes to be used in place

of simple empirical component modules. Lumped parameters can still be obtained from the gas

flux class by "asking" it to integrate itself. This is a great example of how object-oriented archi-

tectures can be very accommodating when designed correctly.
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11.3 Table Interpolation Classes

A set of classes was developed that makes handling of component maps and other tabular data

much easier. These classes decouple the data, file parser, interpolation routines, and scaling rela-

tions for flexibility and efficiency while maintaining a single, simple, consistent interface.

PsMapList [ [PsMapReader [ Var [

I

I PsM_ata _

,,1 PsMap7

IPsUnivariateMap]

FIGURE 5. Map class structure

Key

Inheritance 7

(one to man_

These classes make no assumption about the number of independent parameters in the table or

about the storage format of the data. A parser for NEPP input file format is provided and is used

by default. In addition, the code is capable of using user supplied interpolation routines. Extrapo-
lation can be turned on or off.

A PsMap object is created for each table (or map). As the maps are read in from disk each PsMap

that is created is stored in the PsMapList. The user does not work directly with the PsMap class.

Instead the PsMapReader class provides the interface between the PsMap object and the user.

This allows the same map to be used by more then one component at a time. The PsMapReader

class stores an association with the PsMap and the map scaling factors for a specific component.

The VarMap class is derived from the Var class and the PsMapReader class allowing maps to be

handled as any other data type in the data model as discussed in section 6.0. This simplifies the

map declaration process. The file name in which the map is stored and the map identifier can be

entered in the data model input file with the rest of the components data by using the VarMap

class.

12.0 Compile/Link Events

Currently, there are two predominate ways in which cycle programs are produced. The first way is

to build a single executable computer code that has the flexibility of modeling all engine configu-

rations. The second method is to build an executable computer code out of standard parts and cus-

tom code for each engine configuration. There are advantages and disadvantages to both of these

methods and this point can be debated at length. Table 1 summarizes some of the arguments made

for each approach. The choice of method considerably influences the architecture of the program
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and, therefore, the project plan and development time. Hence, this will be one of the first issues

addressed for the production version of STEPP.

One general executable Configuration specific executable

more dynamic (configuration can be more flexible

changed on-the-fly from user interface)

better suited for conceptual/preliminary

design (configuration changing)

easier to maintain

better suited for final design (configuration

not changing)

user can add their own code

easier to setup slightly better performance

simplifies configuration management closer to customer deck representation

optimizer (AI) can modify configuration smaller executables

better suited for a GUI

Table 1: Pros and cons of build processes

Figure 6 shows the proposed source code compile/link event procedure. The boxes in the middle

represent executable codes. On the left are the input sources to those executable. On the right are

the models that function with those executables. The top box in the diagram is the "standard"

NASA release of the program. It is recognized that each company will add site specific source

code to the standard version and develop a site specific executable. It is the goal of this develop-

ment effort that this executable, with its capability of running interpretive code, will be general

enough to handle most all the modeling needs at the companies. However, we recognize at times

there will be a need to build fast production engine specific models. As shown in the diagram,

there will be a mechanism to allow this. Finally, the source, model data, and the customer deck

API can be compiled into a customer deck for distribution. It is our intent to automate, as much as

possible, the process of moving from the generalized NASA model to the customer model.

13.0 Concluding Remarks

The development of an industry standard simulation program of this size and complexity is a

daunting task - many such projects fail. Although far from the final solution to this problem, we

feel that this prototyping provided much useful information. It surfaced many issues that may

have been glossed over in the requirements gathering and design phases of the commercial soft-

ware system. Among these are the high level class structure, the communications paradigm, and

the equation solver design. It also provided a training ground for object-oriented design and C++

programming. Hence, we are now much better prepared to effectively address the task of develop-

ing a commercial grade program.

Much was learned from this prototyping effort. A system framework was designed, tested and

proved to be very effective. Although somewhat complex in implementation, the framework's

design is straightforward and very extensible. Class structures for all the major modules of this

program have also been designed, tested, and evaluated. The design of the solver, gas properties,

and map classes presented in this report provide an excellent starting point for the final models.
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FIGURE 6. Source Code Compile/Link Event Summary
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Some work will continue on this prototype. It provides a quick and dirty method for testing ideas

and validating concepts. However, it is now the time to start a more formal approach to engineer-

ing this software. NASA Lewis in cooperation with the US gas turbine engine manufactures and

the Department of Defense have now initiated an effort to develop an all new, commercial grade,

industry standard engine performance program.
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Appendix A: Data Communications Models

This appendix explains some of the alternative approaches to data communication between com-

ponents.

A.1 Single Station Model

The single station model is the simplest architecture and the one used in most existing engine sim-

ulation programs. The concept is to create components and their boundary data separately. Exam-

pies of boundary data are PsGasFlux or PsMechPort classes. Boundaries here are called stations

and are each uniquely named. Each component is constructed then the stations are constructed

and finally the components and stations are told how they are connected. Each component stores a

pointer to its stations.

FIGURE 7. Single Station Mode

Figure 7 shows a single station model. Component A shares a single data set with component T.

Component T is a data transfer function for going from 1D to 2D data, and is modelled as any

other component. Component B shares the same 2D data station with component T.
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It is important to note that the stations in this model contains only one set of parameters. For

example, the PsGasFlux class would hold flow rate, temperature, and pressure. This class contains

no storage for flow error terms. If component T expects a different weight flow rate then provided

from component A, than component T would have to store a flow error term within itself for the

solver to use. The reason for this decision is it is not possible to determine in general what error

terms need to be saved. For example, the transient PsDuct class has a pressure discontinuity to be

solved for. Anyhow, we prefer that the system not make assumptions about the error terms to

store.

A remotely connected object would require one station on each computer and a PsRemoteCon-

nector object to keep the two copies in sync. The problem with this is that there is no correspond-

ing connector concept for local connections and hence is an awkward addition to the system.

The advantage of a single station system is that it is simple and applicable to most (not all) prob-

lems. It uses the least memory and would result in the fastest execution speed because of the

shared memory.

In this approach the system (or PsEngine component) determines the type of station to be con-

structed not the component. This is advantageous in a simple system where the engine would

know if it needed to construct a simple PsGasFlux class or a PsGasFlux with chemical equilib-

rium. However, the PsEngine class cannot know how to construct the station when more complex

data are involved. Only the component can know how to construct these objects. Therefore, it is

felt that a major limitation of this approach is that it is not as pure object-oriented as the two port/

connector model, in which the component owns, creates and destroys its boundaries.

A.2 Double Data/Single Station

The double data/single station model is a combination of the double port and the single station

model. This model has one named station between each component but that station holds two sets

of data. One for the upstream component and one for the downstream component.

FIGURE 8. Double Data/Single Station

The advantage of this system is that error terms can be calculated in the station. For distributed

processing the station can have one set of data on one machine and another set of data on another
machine. The station acts as a remote connector between the two data sets.

The station in this model is not "smart", i.e. the station can not preform any type of data transfor-

mation between the two sets of data. For example, a PsGasFluxSwirl cannot be converted into a

PsGasFlux. A translation component would have to be entered between the two gas flux classes in

this case.
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The problem with this architecture is that it is not as pure object-oriented as the two port/connec-

tor architecture because the components have no ownership over their boundaries.

A.3 Smart Connector with Double Data

This variation has a smart connector between two components. The connector is referred to as

"smart" because it can connect two different types of data if it has a suitable translation function

to go from one type to the other. This only differs from the single station architecture in that the

transfer function from one data type to another is part of the connector class and not a separate

component. Although, this can seem like a small difference it does significantly change much of

the system.

r/A B
FIGURE 9. Smart Connector with Double Data

This reduces to the single station architecture if no translation function is needed. This can be a

source of confusion when developing the system. The single station model does not require any

type of execution call to be made to the station. However, in this model the system must know
when to and when not to call the translation function in the station.

The advantage of this method is that it appears to simplify the system from the users point of

view. The disadvantage of this method is that it puts engineering in the connector. The connector

is no longer simply a data transfer mechanism.

A.4 Two Port with Smart Connector

In the two port/smart connector architecture the components hold their own boundary data as in

the two port/connector architecture. The difference is that if a translation function from one port

type to another had to occur the connector would create an instance of that translation function

within itself. The connector and translation function holds no data, only pointers.

FIGURE 10. Double Port with Smart Connector

This "smart" connector would handle distributed processing itself. In this case a local copy of the

data on each side of the transfer function would exist on both machines and a remote connector, as

part of this connector, would make sure both copies of each data set are in sync.
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The advantage of this system is the components once again hold their own boundary data. Again

the concern with this architecture is putting "smarts" in the connector can complicate the system.

One object is trying to do to many jobs.

A.5 Conclusion about Connectors

The team has decided the two port/connector architecture offers the best hope for an expandable

system. Although this architecture can appear overly complex for a simple engine cycle model it

does decouple the data handling and component models which in theory should result in a more

extensible system.

Appendix B: Sample Component Engineering Specification

This appendix contains the engineering specification of the compressor component. This is pro-

vided as an example along with the corresponding source code in appendix C.

The PsCompressor class computes the thermodynamic performance of compressors. The com-

pression process is divided into entry conditions, surge margin, work and bleed flow calculations.

B.1 Assumptions

• Gas flows are adiabatic.

• As is customary in aircraft applications, no working gas corrections are made when scaling

compressor performance maps. Thus it is assumed that variations in )' from temperature

change have a negligible effect on compressor performance.

• There is only one compressor bleed. Bleed work is given by the user specifying the fraction of

total compressor power saved because of the interstage bleed.

B.2 Symbols

h enthalpy

J 778.16ft-lbf/BTU

N rotational speed

P horse power

r pressure ratio

R ray line on compressor map

S surge margin

W mass flow rate

rl efficiency

0 corrected temperature (Tt/Tstd)

Subscripts

corr Corrected

1 incoming flow condition
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2 exit flow condition

B bleed flow condition

i ideal

S condition at surge

B.3 Method of Calculation

B.3.1 Entry Conditions

The rotational speed (N) of the compressor is determined from the connected shaft. The corrected

speed is then determined by

N

N corr = "_

At design, the corrected mass flow rate is determined from the incoming flow stream. Design val-

ues for corrected speed, pressure ratio, compressor efficiency, R and stator angle are input. These

are used to set scale factors in the corresponding map objects.

At off-design the given R, corrected speed and stator angle are used to determine the compressor

flow rate, pressure ratio, and efficiency

Wcorr = fn(R, Ncorr, O0

r = fn(R, Ncorr, O¢)

1"1= fn(R, Ncorr,_)

Note that the corrected weight flow rate from the map will not match the entering corrected flow

rate from the upstream component at off-design conditions. A system balance will have to be

added to balance this two flow rate. For example, vary the R value of the compressor until the

flow rate out of the upstream component equals the updated flow rate into the compressor.

B.3.2 Surge Margin

The surge margin is calculated from

(Wcorr) 1 / (Wc°rr) S 1
S = 100 r/rs
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The subscript S means the value at surge. This occurs when R= 1.0, that is

r s = fn ( 1.0, Ncorr, O0

( Wcorr) S = fn (1.O, gcorr, O0

B.3.3 Conservation of Mass

The compressor class allows for only one bleed flow. The amount of bleed flow is input as a ratio

to total incoming flow. The exit mass flow rate is then the incoming flow rate minus the bleed flow

rate.

W2= W1- W B

B.3.4 Compressor Work

The exit pressure of the compressor is found by

Pt2 = rPtl

The exit temperature of the compressor is found by multiplying the entrance relative pressure by

the pressure ratio to obtain the exit relative pressure. The exit temperature is then determined

from the exit relative pressure using the thermo function in the PsGasState class.

With the exit temperature and pressure known, the ideal exit enthalpy is determined by the gas

state class. The ideal work is then the difference between the exit and incoming enthalpies

Ah i = h2, i-h 1

The required work or enthalpy rise is then evaluated from

Ah = Ahi/T !

The actual exit enthalpy is

h 2 = h 1 + Ah

B.3.5 Bleed Flow

The fraction of work (FB) on the bleed flow not required do to interstage bleed is input. This value

is 0.0 if the bleed is at the compressor exit, and 1.0 if the bleed is at the compressor entrance. An

iteration is necessary to solve for the bleed outlet total pressure which matches the value F B. The

convergence condition is

PtB/PIB- 1 < 10 .6
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When this condition is satisfied, the assigned value of F B is equaled to four decimal places. Con-

vergence is rapid and does not require an iteration counter. The initial guess of the bleed pressure

ratio is the compressor pressure ratio itself

PtB = rPtl

The enthalpy of the bleed flow is then

hB, i = Ahi(1-FB) +h 1

This is used to find the relative pressure at the bleed flow exit. From this a new pressure ratio is

determined and hence a new bleed exit pressure. If the convergence criterion is not satisfied, the

new value of bleed total pressure replaces the former value and the iteration continues.

B.3.6 Power

The horse power required to pump bleed stream is

PB = -JWBAhB/550

where J is the conversion from BTUs to ft-lbf and 550 is the conversion from ft-lbf/s to horse

power.

The total horse power required for the compressor is then

P = -JW3Ah/550 + PB

Appendix C: Sample Component Model Code

This appendix contains an annotated piece of code for a simple compressor component as it

would be written to work in the simulation framework discussed in this report. Appendix B con-

tains the corresponding engineering specification for this code.

//
II
II
II
II
II
II
II
II
II
II

II
II
II
II
II
II
II

PROJECT:NPSS, Object-Oriented Engine Simulation Framework

FILE:PsCompressor. H

CONTENTS:

PsCompressor is intended to demonstrate the construction of a specific

component using the basic building blocks of the simulation framework.

This class will be given four explicit boundaries:

in - fluid boundary with upstream component

out - fluid boundary with downstream component

bleed - fluid boundary with bleed system

mport - mechanical boundary with shaft

AUTHOR:Brian Curlett

NASA Lewis Research Center

Cleveland, Ohio
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II

II

II

II

DATE:6194

#ifndef _PSCOMPRESSOR_H

#define _PSCOMPRESSOR_H

#include _PsEngComp.H"

#include _PsGasFlux.H"

#include "PsMechPort.H"

// include base class header

// include port classes

//

class PsCompressor: public PsEngComp

{

// ATTRIBUTES

private:

protected:

II mode switches

VarBoolean *design; // parent design flag TRUE if running a design case

VarBoolean *redesign;// TRUE if doing a component redesign

II maps used by compressor

Boolean maps_init;

VarMap *map_Wcorr;

VarMap *map_PR;

VarMap *map_Eff;

II dependent parameters from maps

double v_Wcorr;

double v_PR;

double v_Eff;

II independent parameters on maps

double v_mapR;

double v_Ncorr;

double v_alpha;

II design point input parameters for scaling

double v_PR_design;

double v_Eff_design;

double v_Ncorr_design;

// bleed conditions

double v_bleed_ratio;

double v_bleed_work_charged;

II other inputs

double v_surge_margin;

// these temporary variables are use in more then one function

// but not input or output to/from this class

double PR_mapdp; // pressor ratio at map design point

double delta_h; // enthapy rise across the compressor

double delta_h_ideal; // ideal enthapy rise across the comp.

double Win; // incoming flow rate before map lookup
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// output parameters

double v_PW;

double v_PWb;

double v_Werror;

// req. power for compressor

// req. power to pump bleed flow

// flow rate error

// connections

PsGasFlux *in;

PsGasFlux *out;

PsGasFlux *bleed;

PsMechPort *mport;

// METHODS

// upstream flow port

// downstream flow port

// bleed flow port

// shaft port

private:

void makeLinks();

protected:

// Calculation Methods

void InitPorts();

void InitMaps();

void EntryConditions();

void SurgeMargin();

void Work();

void BleedFlow();

public:

// Constructors and Destructor

PsCompressor (const char *name, PsEngAssembly *parent,

const char *file=NULL);

virtual ~PsCompressor();

// Access Methods

virtual void run();

};

// Class Identification Methods

virtual PsClassType classType( ) const { return PsCompressorClass; }

virtual int isA (PsClassType type) const {

return (type == PsCompressorClass II PsEngComp::isA(type) );

}

#endif // _PSCOMPRESSOR_H

//

//

// PURPOSE: calculates the thermodynamic performance of compressors.

//

// Note that this file has verbose comments because it servers as an

// example for other component classes.

//

// Programmed By:

// Brian Curlett

// NASA Lewis Research Center

// 6/94

//
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#include <math.h>

#include <PsMapReader.H>

#include _PsEngine. H"

#include _PsCompressor.H"

// include the standard C math functions

// include the map handling classes

// include the engine assembly classes

// include the header for this class

//

// Constructor

// This function creates a PsCompressor object given the name of the object,

// a parent engine assembly, and the name of the definition file. The base

// class for this component will construct a variable table named "tab'

//

PsCompressor::PsCompressor (const char *name, PsEngAssembly *parent,

const char *file)

: PsEngComp(name, parent)

{

// initialize some values

maps_init = FALSE;

v_Wcorr = 0.0;

v_Werror = 0.0;

v_PR = 0.0;

v_Eff = 0.0;

v_mapR = 1.4;

v_Ncorr = 0.0;

v_alpha = 0.0;

v PR design = 0.0;

v_Eff_design = 0.0;

v_Ncorr_design = 0.0;

v_bleed_ratio = 0.0;

v_bleed_work_charged = 0.0;

v_surge_margin = 0.0;

delta_h = 0.0;

delta_h_ideal = 0.0;

v_PW = 0.0;

v_PWb = 0.0;

// if a definition input file name is given it is loaded

if (file) {

tab->load(file,FALSE,TRUE);

// set type information in VarTable for use in checking

// valid connection types, etc.

tab->setTemplateName(_PsCompressor");

// this call will link in definition information from the data model

makeLinks();

}

// construct the ports for this compressor

in = new PsGasFlux (_FI", this, _PsGasFlux.def");

out = new PsGasFlux (_FO", this, _PsGasFlux.def");

bleed = new PsGasFlux (_FB", this, _PsGasFlux.def");

mport = new PsMechPort(_MP ", this, _PsMechPort.def");

//

// Destructor
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// This method is called to do cleanup work when this compressor is

// no longer needed in this simulation.

//

PsCompressor::-PsCompressor ()

{

// delete all ports

delete in;

delete out;

delete bleed;

delete mport;

}

//

// Lookup variable addresses

// Some data used by this object is located directly in the variable

// table. These data are stored in Var objects that were created when

// the definition file was read from the constructor. This method locates

// that data by name and stores a pointer to that data in this object. This

// will save us the time and trouble of having to locate this data each time

// it is used.

//

void PsCompressor::makeLinks()

{

// This type of access will _link" a local double precision number to

// a variable in the variable table thus permitting other class such as the

// solver class to access this variable by name.

// link inputs

in_tab->lookupDouble(_alpha")->link(&v_alpha);

in_tab->lookupDouble(_PR_design")->link(&v_PR_design);

in_tab->lookupDouble(_Eff_design")->link(&v_Eff_design);

in_tab->lookupDouble(_Ncorr_design")->link(&v_Ncorr_design);

in_tab->lookupDouble(_bleed_ratio")->link(&v_bleed_ratio);

in_tab->lookupDouble(_work_charged")->link(&v_bleed_work_charged);

in_tab->lookupDouble(_mapR")->link(&v_mapR);

// link outputs

out_tab->lookupDouble(_PW")->link(&v_PW);

out_tab->lookupDouble(_PWb")->link(&v_PWb);

out_tab->lookupDouble(_Wcorr")->link(&v_Wcorr);

out_tab->lookupDouble(_PR")->link(&v_PR);

out_tab->lookupDouble(_Eff")->link(&v_Eff);

out_tab->lookupDouble(_Ncorr")->link(&v_Ncorr);

out_tab->lookupDouble(_surge_margin")->link(&v_surge_margin);

out_tab->lookupDouble(_Werror")->link(&v_Werror, VarReadOnlyAccess);

// This type of variable table link stores a pointer locally to data

// data stored in the variable table.

map_Wcorr = in_tab->lookupMap (_map_Wcorr");

map_PR = in_tab->lookupMap ("map_PR");

map_Eff = in_tab->lookupMap (_map_Eff");

redesign = in_tab->lookupBoolean(_Redesign");

design = tab->lookupBoolean(_..\\In\\DesignPoint");
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// ,

// Executes the module

// This method is called from the parent PsEngAssembly object.

//

void PsCompressor::run()

{

// on the first call to this method initialize the map data

if (!maps_init)

InitMaps();

// ask connectors to update the incoming flow stream ports.

InitPorts();

// save incoming mass flow to calculate mass flow error in EntryConditions

Win = in->W();

// calculate the entrance flow conditions

EntryConditions();

// calculate the surge margin of this compressor

SurgeMargin();

// set exit flow rates - conservation of mass

out->copyTotal(*in);

bleed->copyTotal(*in);

bleed->W(in->W() * v_bleed_ratio );

out->W(in->w() - bleed->W() );

// calculate the work done by the compressor

Work();

// adjust work requirements do to bleed

BleedFlow();

// calculate required horse power

v_PW = -1.415 * out->W() * delta_h + v_PWb;

// set power in the port connected to the shaft

// so that the shaft may calculate delta N

mport->PW(v_PW);

//

// Setup maps - called only once to initialize maps readers and

// set the map design parameters.

//

void PsCompressor::InitMaps()

{

map_Wcorr->Init();

map_Eff->Init();

map_PR->Init();

map_Wcorr->setMapDesVals (v_mapR, v_Ncorr_design, v_alpha);

map_PR->setMapDesVals (v_mapR, v_Ncorr_design, v_alpha);

map_Eff->setMapDesVals (v_mapR, v_Ncorr_design, v_alpha);
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PR_mapdp = map_PR->lookup(v_mapR, v_Ncorr_design, v_alpha);

maps_init = TRUE;

//

// This function request connector to send data to input ports

//

void PsCompressor::InitPorts()

{

// get input gas flux from upstream component

in->Recv();

// get mechanical data from shaft

mport->Recv();

//

// Entry condition are calculated by the incoming gas flux object

//

void PsCompressor::EntryConditions()

{

// get rotational speed from shaft and correct for temperature

double N = mport->N();

double theta = in->Tt()/Tstd;

v_Ncorr = N/sqrt(theta);

if ( *design==TRUE II *redesign==TRUE) {

// Design Point Case

// get flow rate from upstream component

v_Wcorr = in->Wcorr();

// set pressure ratio and efficiency to input design values

v_PR = v_PR_design;

v_Eff = v_Eff_design;

// the map design values are already set in the map reader object

// these calls set the components design values in the map reader

// which are used to calculate scaling values

map_Wcorr->setCompDesVals (v_mapR, v_Ncorr, v_alpha, v_Wcorr);

map_PR->setCompDesVals (v_mapR, v_Ncorr, v_alpha, v_PR);

map_Eff->setCompDesVals (v_mapR, v_Ncorr, v_alpha, v_Eff);

// PR scales as (PR-I)/(PRmap-I), not PR/PRmap, so need to

// override default scaling relationship

double PRscaler = (v_PR - 1.0) / (PR_mapdp - 1.0);

map_PR->setScaler(3,PRscaler);

// tell fluxes to calculate area from mach number and flow rate

// during the design phase

in->FloatArea();

out->FloatArea();

bleed->FloatArea();

v_Werror = 0.0;

} else {
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// Off-design Point Case

// flow rate, efficiency and pressure ratio are calculated from

// maps given the mapR, rotational speed and stator angle.

// note that mapR is varied by the solver to balance incoming flow

// rate

v_Wcorr = map_Wcorr->lookup (v_mapR, v_Ncorr, v_alpha);

v_Eff = map_Eff->lookup (v_mapR, v_Ncorr, v_alpha);

v PR = map_PR->lookup (v_mapR, v_Ncorr, v_alpha);

// tell fluxes to calculate new mach number due to change in

// flow rate during off-design execution

in->LockArea();

out->LockArea();

bleed->LockArea();

// set new flow rate in incoming gas stream, the solver will need

// to balance this with the flow rate on the connected port

in->Wcorr(v_Wcorr);

v_Werror = 2.0 * (Win - in->W()) / (Win + in->W());

//

// Calculate Surge Margin

// Surge line is define where mapR = 1.0

// This is not the only possible way to define surge margin

//

void PsCompressor::SurgeMargin()

{

double Wratio = v_Wcorr / map_Wcorr->lookup(l.0, v_Ncorr, v_alpha);

double PRratio = v_PR / map_PR->lookup (i.0, v_Ncorr, v_alpha);

v_surge_margin = i00.0 * (Wratio/PRratio-l.0);

}

//

// Calculates the work required by this compressor

//

void PsCompressor::Work()

{

// set exit total pressure

out->Pt(in->Pt() * v_PR );

// set ideal exit temp. from relative pressure and pressure ratio

out->Prel_t(in->Prel_t() * v_PR);

// find ideal work

double h2 = in->ht();

double h3_ideal = out->ht();

delta_h_ideal = h3_ideal - h2;

// find work given efficiency

delta_h = delta_h_ideal / v_Eff;

out->ht(h2+delta_h);
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//

// Bleed flow calculation

//

void PsCompressor::BleedFlow()

{

if (bleed->W() <= 0.0) {

// no bleed flow

bleed->Tt(0.0);

bleed->Pt(0.0);

return;

}

// fraction of power saved do to interstage bleed

double Fb = 1.0 - v_bleed_work_charged;

if (Fb >= 1.0) {

// bleed is at exit

bleed->Tt(out->Tt() );

bleed->Pt(out->Pt() );

return;

}

// set enthapy rise

double hb_ideal = delta_h_ideal * Fb + in->ht();

bleed->ht( b_b_ideal );

double Prel2 = in->Prel_t();

double Pt2 = in->Pt();

// guess pressure

double Ptb = in->Pt() * v_PR;

bleed->Pt (Ptb) ;

// find pressure of bleed stream - loop on total pressure

double Prelb, PRb, Ptb_last, hb;

do (

Prelb = bleed->Prel_t();

PRb = Prelb/Prel2;

Ptb_last = Ptb;

Ptb = Pt2*PRb;

bleed->Pt(Ptb);

} while (ABS(Ptb_last-Ptb) > Ptb*0.00001);

// set actual enthapy of bleed stream

double delta_hb = delta_h * Fb;

hb = delta_hb + in->ht();

bleed->ht( hb );

// calculate horse power req. to pump bleed stream

v_PWb = -1.415 * bleed->W() * delta_hb;
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