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Nomenclature

3-13 turbulent reacting CFD analyses were performed on f Mixture Fraction

transverse jets injected into annular and cylindrical (can) h Enthalpy

confined crossflows.	 The goal of this study was to k — Turbulent Kinetic Energy of Mainstream

identify and assess mixing differences between annular
m i :Mass Flow of Jets
m_ Mass Flow of Mainstream

and can geometries. The approach was to optimize both x Axial Coordinate, x=0 at leading edge of the
annular and can configurations by systematically orifice
varying orifice spacing until lowest emissions were x/H Axial Distance-to-Duct Height Ratio

achieved, and then compare the results. Numerical test y Vertical Coordinate

conditions consisted of a jet-to-mainstream mass-flow z Lateral Coordinate

ratio of 3.2 and a jet-to-mainstream momentum-flux C (S/H) J	 (see Eq. 1)

ratio (J) of 30. H Duct Height

J Momentum-Flux Ratio	 (Pi V 
2 l

i l /(P_ U2)
The computational results showed that the optimized MR Mass-Flow Ratio	 mi/m,
geometries had similar emission levels at the exit of the P Static Pressure (N/m2)
mixing section although the annular configuration did Pjet Static Pressure of Jet
mix-out faster. 	 For lowest emissions, the design P p Static Pressure of Mainstream

correlation parameter (C=(SA-1)N/J)	 was 2.35 for the S Orifice Spacing

annular geometry and 3.5 for the can geometry. For the S/H Orifice Spacing-to-Duct Height Ratio
T Temperature (K)

annular geometry, the constant was about twice the
Teat Exit Temperature

value seen for jet mixing at low mass-flow ratios (i.e.
Tjet Temperature of Jet

MR < 0.5).	 For the can geometry, the constant was T„ Temperature of Mainstream
about 1 1/2 times the value seen for low mass-flow U_ Mainstream Flow Velocity (m/s)

ratios. Vi Jet Velocity (m/s)
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F_	 Turbulent Energy Dissipation of Mainstream
Orb Rich-Burn Equivalence Ratio

Olb	 Lean-Burn Equivalence Ratio
pi	Density of Jet
p_ Density of Mainstream

1. Introduction

In recent years, the concern over the environmental
impact of aircraft gas turbine technology has steadily
increased. The need for the reduction of both carbon

monoxide (CO) and oxides of nitrogen (NO,) is quickly
becoming a very sensitive issue. Past advancements to

aircraft gas turbine engines have focused on increasing
the overall thermodynamic cycle efficiency by
implementing increases in pressure and temperatures.

The increases tend to have an adverse effect on NO,,
emission levels, necessitating the development of new

ways of controlling NOV

In order to improve the emission signatures of

combustors, the industry has departed from the standard

single axial staged combustion to pursue staged

burning. One such concept being evaluated both
experimentally and numerically is the Rich-bum./Quick-
mix/Lean-burn (RQL) combustor s . This combustor

utilizes the staged burning concept in which the primary
zone is designed to operate fuel rich. 2 The combustion

products high in carbon monoxide concentration enter
the quick-mix section where mixing is initiated with
bypass air. The combustion process is then completed

in the lean-bum region.

To achieve the low emission goals set for RQL
combustors, high importance must be placed on
attaining rapid and uniform mixing in the quick-mix

section. Recent experimental and numerical studies

have been completed that investigated and assessed

improved mixing concepts3 -I8

2. Background

For quite some time the importance of research on jet

mixing in a confined crossflow has been recognized as
having a significant impact on a variety of practical
applications. Within gas turbine technology, jet

mixing plays a particularly important role in the
dilution zone of the combustor. The dilution zone is

the aft zone where the products of combustion are mixed
with air to produce a temperature profile acceptable to
the turbine. 19-21

As of late, many studies have been conducted relative to

jet mixing in gas turbine applications 22 -27 . These

studies have concentrated on both rectaneular and
cylindrical geometric configurations. The results of

these studies have identified two significant design
parameters that influence the mixing pattern: 1) jet-to-

mainstream momentum-flux ratio (J) and 2) orifice

spacing-to-duct height ratio (SiH). Optimum mixing

relationships were determined to be a function of the

product of S/H and square root of J for the range of

conditions tested and analyzed 19:

C = (S/H)JJ 	 (1)

These studies summarized in Ref. 19 examined both
two-sided and single-sided injection in rectangular

geometries. Table 1 shows the constants derived from
these studies. The optimum C value was shown to be

1.25 for inline. two-sided injection, while single-sided

injection produced a C value of 2.5. It was determined
that the best mixing occurred when the dilution jet

reached a penetration level of 1/4 duct height for two-
sided injection. Previous dilution jet work focused on
conditions where the jet-to-mainstream mass-flow levels

were less than 0.50. More recent numerical and
experimental research has examined the effect of

increased mass-flow ratios, more typical of RQL
combustors (i.e. \TR > 2.0). The results for MR > 2.0
have concluded that the C value is about twice (2.5 vs.
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1.25) that of the lower mass-flow ratio cases for two-
sided, rectangular configurations.
Presently, the design of the mixing section is pursuing

two options. The first employs a full annular

geometry, while the second consists of a can mixing
section. The basic questions that needed to be addressed

were: 1) is there an inherent difference between the way
can and annular configurations mix, 2) does one of

these produce higher NO, than the other, and 3) can one
be optimized based on knowledge of the other?
Although many factors (i.e. liner cooling

considerations, structural requirements, etc.,) will play a
role in the decision making process, the input of

geometry on emission signature is an equally important
factor. This study sought to address these issues by a

systematic computational analysis. A complete

description of the work follows.

3. CFD Code

The approach in this study was to perform 3-D

numerical calculations on generic geometry sections.
The CFD code named CFD-ACE 28 was used to perform

the computations. The basic capabilities/methodologies
in CFD-ACE include:

(1) co-located, fully implicit and strongly
conservative finite volume formulation:

(2) solution of two- and three-dimensional Navier-
Stokes equations for incompressible and
compressible flows;

(3) non-orthogonal curvilinear coordinates;
(4) multi-block grid topology;

(5) upwind, central (with damping), second order
upwind and Osher-Chakravarthy differencing

schemes;

(6) standard29 , extended30 , RNG and low Reynolds
number31 k -E turbulence models;

(7) instantaneous, one-step, two-step, and four-
step heat release and emission combustion
models;

(8) spray	 models including trajectory,
vaporization, etc., and

(9) pressure-based solution algorithms including

SIMPLE and a variant of SIMPLEC.

4. Details of Numerical Calculations

The analysis was divided up into two parametric studies.

The first parametric study focused on the annular
geometries, while the second concentrated on the can
geometries. A schematic of the annular geometry is

shown in Figure 1. The inner radius of the annulus
measured 0.3896m with the outer radius measuring

0.4404m. The height of the mixing section was
0.0508m. The computation domain extended 0.152m

from the leading edge of the orifice (x/H=3.0). The

walls were modeled as being 0.0064m thick. Above
each orifice a plenum 0.076m long was constructed.

The annular model consisted of two-sided injection from
the top and bottom orifices into the mainstream
crossflow.

.-% constant shape orifice was selected for use in both of

the parametric studies. The orifice was a slot with
rounded ends and had a 2:1 length-to-width aspect ratio.
The selection of the 2:1 rounded slot was made to

ensure enough orifices would be able to fit on the ID of
the annular configuration for an underpenetrated jet

configuration. The 2:1 rounded slots were aligned with
the long dimension in the direction of the mainstream
flow.

The can cont i gurations were made comparable to the

annular configuration by making the can cross-sectional
area equal to a one-nozzle sector of the annular
geometry. Thus for a 24-nozzle annular combustor, the

diameter for the equivalent-area can geometry was
0.084m. A schematic of the can geometry is presented

in Figure 2.

To enhance the computational efficienc y of the

numerical calculations, only one set of orifices (top and
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bottom) was modeled. Similarly, only one orifice was
modeled for the can geometry. For the annular
geometry, the orifices were located on the inner and

outer diameter in the same axial plane, and inline in the
transverse direction. The transverse calculation domain
extended from midplane to midplane between the jets'

centerlines. Periodic boundary conditions were assurned
on the transverse boundaries. For the can geometry, a

single orifice was located on the outer liner with
periodic boundary conditions being specified on the
transverse boundaries.

Four parametric cases were analyzed for the annular

geometry, while six cases were performed for the can
geometry. For each case, the orifice spacing, S/H, was
varied parametrically while maintaining all other design

variables constant. Note that as the orifice spacing was
varied, the size of the orifice was changed to maintain

constant flow area. The intent of this method was to
optimize each geometry based on the lowest emission
signature. A full range of jet penetration levels was

studied, includin g under, optimum, and over-penetrating

cases.

Tables 2 and 3 show the geometry specifics for the can
and annular cases, respectively. The six can cases are

designated C 1-C6. These cases correspond to 5, 6, 7, 8,
10, and 12 holes on the can liner. For the annular

analysis, the cases are labeled as AN1-AN4. Test case
AN 1 corresponds to 3 orifices on the inner and outer
diameter (6 orifices in a one-nozzle sector) and continues

to 6 orifices on ID&OD (12 orifices in the nozzle

sector). Since the areas of the annular 15 degree sector

and the can are set equal, the orifices are identical when
there are the same number of orifices in the can and
annular configurations (e.g. AN 1 & C2 have identical

orifices).

To determine the jet-to-mainstream momentum-llux
ratio (J), the jet velocity had to be calculated. The
pressure drop across the orifice was determined by using

the total pressure at the plenum inlet and the mass-

averaged static pressure across the orifice exit. It should
be mentioned that the static pressure and radial velocity

at the orifice exit were highly non-uniform in the axial

direction. From this pressure drop, the velocity of the
jet at the orifice exit was calculated, as well as the
orifice discharge coefficient (C d). The C d for the orifice

was calculated to be 0.685. Using the jet velocity based
on the pressure drop, the momentum-flux ratio was

calculated to be 30.

The turbulence boundary conditions, k & E, were
determined in the following manner. For the
mainstream (rich-burn) flow, the turbulence parameters

were determined from unreported CFD calculations of
the rich-burn section. For the jets, the turbulence levels
were determined by the CFD analysis as the flow

proceeded from the plenums into the orifices. The inlet
turbulence into the plenum had no effect on the

turbulence through the orifices; hence the inlet
turbulence to the plenums were set at nominal values.

The flow conditions of the mainstream and jets were:

Mainstream	 Jett

U_ = 43.5 m/s	 Piet = 9.72 x 10' N/m-'

T_ = 2035 K	 Tjet = 777 K
P_ = 9.72 x 10' N/m-1

k— 	= 118.0 m2/sec2

= 5.4 x 101 m2/sec3

J=30
m i/m_ =3.20

Teat = 1755 K

Orb = 2.0

mlb = 0.425

Grids

The computational mesh was created using CFD-
GEOM 32 , an interactive three-dimensional geometry
modeling and mesh generation software. A typical
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annular case consisted of' approximately 63,000 cells.
The breakdown of the cell distribution was as follows:

Top and Bottom Plenums 42x 10x28 (x,y,z direction
Mixing Region	 77x20x28

Convergence

All error residuals were reduced at least 4 orders of
magnitude, and continuity was conserved in each axial

plane to the fifth decimal. A converged solution
required approximately 8-12 CPU hours on a CRAY C-
90 computer.

The can grid was separated into:

Top Plenum	 42x10x28

Mixing Region	 77x20x28

The orifices were composed of 28 x 14 uniformly

distributed cells. The orifice was modeled with 5 cells

in the vertical direction to represent the wall thickness
of 0.0064m. A t ypical annular grid is shown in Figure

3. The grid upstream and downstream of the orifice

region was expanded/contracted so that each cell adjacent
to the orifice reeion matched the cell size in the slot

re g ion. The cells in the vertical direction were
compressed in the vicinity of the wall to more
accurately capture any wall effects.

Numerics & Models

The following conservation equations were solved: u
momentum, v momentum, w momentum, mass
(pressure correction), turbulent kinetic energy (k),

turbulent energy dissipation (F), enthalpy (h), and
mixture fraction (f). The convective fluxes were

calculated using upwind differencing, and the diffusive
fluxes were calculated using central differencing. The
standard k-e turbulence model was employed and

conventional wall functions were used. The walls were
assumed to be adiabatic. The turbulent Schmidt and

Prandtl numbers were set to 0.5. A fast chemistry
(instantaneous) model was assumed. Equilibrium
products were also assumed. The use of a fast

chemistry model was based on LSENS 33 calculations
using a 63-step, 33 species reaction model; the

chemical reaction Limes were small compared to flow
times at the conditions being studied.

Rich-Bum Inlet Conditions

The inlet to the rich-burn section was assumed to be
premixed fuel and air. The fuel used in this analysis

was C 10H 191 representative of Jet A fuel. The inlet

premixed equivalence ratio (Orb) was specified to 2.0.
As the inlet flow entered the first cell of the

computational domain, it burned immediately to
equilibrium products. The resulting downstream flow

was representative of rich-bran conditions entering the

quench zone.

5. Data Postprocessing

Graphics postprocessing was performed using CFD-

VIEW 34 -35 an interactive graphical visualization tool.
The NO, results were calculated using a post-processing

tool named CFD-POST. 36 Using the equilibrium
species calculated in the CFD-ACE solution, NO,, was
calculated using an extended Zeldovich thermal NO,

model shown below in equation (2). 3738 The effect of

turbulent fluctuations was included by using a

prescribed, beta function pdf.

I - (NO)

d(NO) = 2k. (O a )	
K(0)N)	

(2)
I
	 I +	

k 1(NO)

lkz(Oz)+ k3(OH)I

where, K=(kt/k_t)(k2/k_2) is the equilibrium constant for

the reaction between N, and O-,.
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6. Results and Discussion

The results for the parametric cases are presented using

three variables: equivalence ratio, temperature, and NO,
production.

Annular Geometry
The effect of orifice spacing on jet penetration is

presented in Figures 4 and 5. Plotted in Figure 4 are
the temperature contours in a lateral plane through the
orifice centerline. Similarly, the equivalence ratios are

shown in Figure 5. The 6ID/60D configuration (case
AN4 in Table 3) is clearly under-penetrated, represented

by a core of mainstream fluid passing through the center
of the duct. In contrast, the 3ID/30D case (AN1 in
Table 3) exhibits overpenetration of the jet; the

mainstream flow is deflected to the outer wall. This is
seen by the higher temperature along the OD and ID

wall for the 3ID/30D (AN1) case. The 4ID/40D (AN2
in Table 3) and 5ID/50D (AN3 in Table 3)
configurations exhibit near-optimum characteristics.

The jet penetrates to approximately 1/4 duct height for
these cases. From the equivalence ratio contours shown

in Figure 5, the 5ID/50D (AN3) appears to show the
most uniform downstream mixing characteristics at the

exit.

Shown in Figure 6 are axial planes at x/H=1.0 for

temperature and equivalence ratios. The high
temperatures along the wall in the 3ID/3OD (AN1) case
indicate the over-penetrating jets, while the 6ID/60D

(AN4) case shows the hot mainstream flow in the duct

center typical of under-penetrating jets. Note that the

OD near-wall temperature is hotter than the ID near-wall

temperature for each case. This occurs because the
orifice spacing is greater for the OD liner, resulting in

more mainstream (rich-burn) flow passing between the

jets.

Figure 7 shows the NO, production for the annular
parametric cases. NO, is mainly produced in regions

where there is near-stoichiometric temperature and

oxygen available. The high NO, production along the
OD wall in the 3ID/30D (AN1) case results from
excessive mainstream flow passing between the jets and

then mixing with the jet airflow. When the jets
underpenetrate, as in the 6ID/60D (AN4) case,
excessive NO t is produced along the center of the duct.

The lowest amount of NO, production occurs when the
jets have optimum penetration, i.e., 4ID/40D (AN2)

case and the 51D/50D (AN3) case.

Can Geometry

Figures 8 and 9 show the corresponding temperature and
equivalence ratio contour plots for the can parametric.

Note, only a single jet is shown for the can
configurations; the bottom of the plot represents the can
centerline. As seen in the previous annular results. an

increase in the number of orifices translates into a
corresponding decrease in jet penetration levels. It can

be seen in Figures 8 and 9 that the jets are
overpenetrated for the 5 orifice case (Cl in Table 2),
underpenetrated for the 8 orifice case (C4 in Table 2),

and near optimally penetrated for the 6 (C2 in Table 2)
and 7 (C3 in Table 2) orifice cases.

Figure 10 shows the axial planes at x/R=1.0 for
temperature and equivalence ratios. It can be seen that

stoichiometric burning occurs near the liner for the 5
orifice case (Cl), near the centerline for the 8 orifice

case (C4), and near both the liner and centerline for the
6 (C2) and 7 orifice (0) cases. Once again, the 6 (C2)
and 7 orifice (0) cases appear to be near optimum in

terms of jet penetration and mixing.

Figure I1 presents the NO S production for the can

cases. By comparing Figure 11 with Figure 8, it can be
seen that the highest NO, production locations

correspond to areas of near stoichiometric flame
temperatures. For the overpenetrating, 5 orifice case

(C1), most of the NO, is produced next to the liner.

For the underpenetrating, 8 orifice case (C4), there is
almost no NO, being formed on the liner; all of the

NO z is formed on the centerline.
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Emissions
To effectively quantify the emissions results, both the

NO, and CO signature must be considered in the

analysis. In some cases low NO, levels can be
predicted. but significant concentrations of CO can still
be present in the gas flow. High levels of CO

translates into combustion inefficiency, and is
undesirable. Low NO, that is achieved due to

combustion inefficiency is not an acceptable design.

Figure 12 presents normalized NO,, as a function of

x/H for the annular cases. Up to x/H=0.5, all

configurations produce a comparable amount of NO,.

NO, continues to be produced all the way to x/H of 3.0
for the 3ID/30D (AN 1) and 6ID/60D (AN4) cases, and

will continue being produced downstream of x/H of 3.0

due to lack of mixin g . Both the 4ID/40D (AN2) and
5ID/50D (AN3) cases show the NO, leveling off by

x/H of 3.0. This "leveling off" is an indication of good
mixing. At the mixed-out temperature of these cases
(1755 K), no additional NO, should be formed once

near-complete mixing has occurred. If there are pockets
of higher equivalence ratio (and thus higher

temperatures), NO,, will continue to be formed, as
shown by the 3ID/30D (AN1) and 6ID/60D (AN4)
cases. Figure 13 shows contour plots of both the

equivalence ratios and temperatures for the annular
parametric at x/H=3.0. These contour plots show that

the 4ID/40D (AN2) and 5ID/50D (A.N3) cases have the
most complete mixing, while the 3ID/3OD (AN1) and
6I13/601D (AN4) cases still exhibit significant radial

variations.

Figure 14 presents a plot of CO emissions index (EI)
versus x/H for each of the annular cases. Note that the

CFD analysis assumes a fast chemistry approximation,

and any CO that is present in the flowfield is a direct
result of lack of mixing. Each CO EI figure is divided

into two graphs. The first graph shows the overall CO
EI levels for the parametric cases. The inserted graph
shows an enlarged view of the lower end of the CO EI

scale. Equilibrium CO EI for olb=0.425 is 2, and a

combustion efficiency of 99.5% corresponds to a CO EI
of 20. A horizontal line is shown on the graphs to

represent the 99.5% combustion efficiency level. All

the cases reach a CO EI of 20 well before reaching the

exit (x/H > 3.0). Of the four cases, the 3ID/30D
(AN1) has the highest CO, not falling below 20 until

x/H of 1.8.

Figures 15 and 16 show the normalized NO x and CO
EI as a function of x/R for the can parametric. The NO,
curves all have positive slopes at x/R > 3.0 indicating

ongoing NO, production. Only the 6 (C2) and 7 (0)

orifice cases are starting to level off. The CO curves

shown in Figure 16 take a much longer axial distance to
reach the 99.5% combustion efficiency level than the

annular cases (x/R=2.0- 2.5-can vs. x/H=1.5-annular),

and even then only the 5 (Cl), 6 (C2), and 7 (0)

orifice cases attain the 99.5% level. For the other cases

the positive slopes of the NO, curves and the presence
of CO remaining in the f7owfield suggest the need of a
longer lean-burn section to achieve the necessary

combustion efficiency.

Based on the emission curves, the optimum
configurations are the 5ID/50D (AN3) case for the
annular geometry, and the 7 orifice case (C3) for the can

geometry. These two configurations were selected as
being optimum because 1.) they showed the lowest

overall NOt at the exit plane, and 2.) reached a
combustion efficiency of 99.5% before the end of the
mixing section. A comparison of the two optimum

configurations is shown in Figure 17. Note the x/R,q
used for the annular geometry is based on the radius of

an equal area can. From Figure 17, both configurations
show similar trends of NO, production. The NO,
production in the first x/R=2.25 is approximately the

same. Towards x/R=4.0, the annular geometry shows a
slightly lower value of NO,. In addition, both curves

are "leveling off", indicating good overall mixing and
no NO, production (i.e. no significant NOx
contribution farther downstream). Therefore, from a

design standpoint, there is no significant emission

7



advantage gained by the selection of either the annular
or can geometry.

Design Correlation Constant for Annular and Can
Confiuuration
The last columns of Tables 2 & 3 show the optimum

mixing design correlation constants based on the
equation, C = (S/H)J.

For the can cases (Table 2), the constant were
determined using two different spacing methods:

1. Orifice spacing at the OD

2. Orifice spacing at a radius corresponding to
equal flow areas in the can

These methods are illustrated at the bottom of Table 2.
Similarly, these methods exist for the annular

geometry. For the annular cases, the constants were
calculated based on orifice spacing at the ID and OD
(Method 1), and equivalent area spacing (Method 2).

Method 2 has been reported to be the appropriate
method for both can and annular configurations. 19

Based on the emission results, the optimum
configuration for the annular geometry is the 5ID/50D

(AN3) case. The design constant for this case is 2.35.
This C value is consistent with results from previously

performed high jet-to-mainstream mass-flow ratio (MR
> 2.0) analyses. It is about twice the value reported for

low MR's (< 0.5).

The can emission results indicate that the 7 orifice case

(0) has the best emission signature. Using the equal

area approach, the C constant is 3.5, or 40% higher
than that reported for mixing at lower MR (< 0.5).

7. Conclusions

A CFD parametric analysis was performed on transverse
jets injected into both annular and can confined

crossflow. The slot spacing was systematically varied

while maintaining all other design variables constant.
Optimum configurations were determined based on jet
penetration, and NO ., and CO emissions. The

conclusions that can be drawn are as follows:

1. Optimum annular and can geometries have similar

emission characteristics at the end of a mixing
section and lean-burn section (x/H=3.0) as long as jet

penetration/mixing is optimized.
2. For the MR of 32 evaluated in this study, the design

correlation constant [C = (S/HWJ- ] was 2.35 for the

annulus and 3.5 for the can. The value for the
annulus is about twice the value for low MR's (<

0.5). The value for the can is about 40% higher than
that for the low MR.
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Table 1. Spacing and Momentum-Flux

Ratio Relationships

Confisuration C = (S 1H)(J )

Single-side injection:
Under-penetration < 1.25
Optimum 2.5
Over-penetration >5.0

Opposed rows of jets:
In-line optimum 1.25
Staggered optimum 5.0
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