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Introduction

Purpose

The purpose of this Developers' Guide is to assist developers of intelligent systems who work in the space
industry and related industries in their development of complete and reliable monitoring systems. In
preparing this guide, we have drawn from the experiences of 5 years of work in the evolution of the
DEcision Support SYstem (DESSY), a real-time application that supports monitoring and fault detection.
This guide documents our strategies and lessons learned so that other developers of other systems can
work more productively.

This guide is not intended to provide theoretical methodology discussions of various development issues
or to act as a complete documentary on the development process. It is, rather, intended to be a source of
hands-on experiences from which other developers can draw to gain a better understanding of the
problems they face. A cookbook approach is used, with step-by-step instructions and examples
clarifying the stages of developing the system. Because DESSY was developed using the G2
programming tool, the examples provided are in G2. However, we discuss all examples in a generic way
to allow developers using other development tools to find the guide useful.

The true value of this guide lies in examples provided from a real case study (DESSY), which developers
can tailor to their own projects. Our goal is to eliminate time wasted in reinventing the wheel, and to
make the development process as smooth and efficient as possible.

Scope

This guide is based solely on experiences in developing the DESSY expert system in the G2
programming environment offered by Gensym Corporation. To understand its scope, the reader must
understand the scope of DESSY itself, as well as have some understanding of G2 or a G2-like tool.
DESSY monitors Space Shuttle telemetry data in real time and uses the real-time capabilities offered by
the G2 package. DESSY also takes advantage of the object-oriented capabilities provided by the G2
software. In reading the guide, it will be helpful to be familiar with G2, but it is not required. The guide
is written with assumption that the user has a familiarity with object-oriented programming and rule-
based systems. Throughout this guide, the software system will be referred to as intelligent system or
expert system or knowledge base interchangeably. Although much of the discussion focuses on rule-
based systems, usually described by the term expert system, many of the principles could be applied to
any type of monitoring intelligent system.

It is also important to understand the boundaries of DESSY's monitoring capabilities. DESSY monitors
telemetry data and makes inferences about commands, state transitions, and simple failures. It is not a
failure analysis system capable of performing in-depth failure diagnostics. It is the authors' opinion that
real-time monitoring and failure analysis are separate functions that should remain separate. DESSY
does, however, identify simple failures detected from telemetry data. In short, DESSY performs failure
detection, rather than failure diagnostics.

The key phrases that summarize the characteristics of DESSY are expert system, real-time, data
monitoring, rule-based, object oriented, and failure detection.

Expected Use

This guide should be used by expert system developers who want to expedite the develepment process.
Although an initial scanning of the entire guide is recommended, it is primarily intended to be used
throughout the development process as a reference guide. We have outlined the steps in building DESSY
that worked well for that particular project, and we feel the sequence is general enough to be applied to
other expert systems development tasks. It may be that the organization of this manual does not suit
your specific development needs. In that case, we ask that you remain open to the specific task examples
found throughout the sections. The guide can be used in sequence or in a purely reference manner.
Although we recommend proceeding with your development in the sequenced steps, the examples that
are provided will usually stand alone and should be helpful at any point in your development.



Organization

The organization of this guide has been set up to reflect what the authors believe to be the organization
of the complete development process. The guide begins with a philosophical discussion of preliminary
issues related to development and various development approaches. The first section, entitled "Real Time
Monitoring Systems,” should be read first to enable the reader to understand the attitudes and orientations
of the authors.

The remaining sections deal with the process of producing the expert system. Section 2, "Determining
the System Requirements," deals with initial project tasks such as the development of the project planas
well as the process of understanding the existing tasks of the people involved with the system to be
supported, i.e., the expert systems domain. Also involved in these preliminary activities is the definition
of the project scope and the identification of requirements.

Once the developer has the preliminary tasks of section 2 underway, he can move on to section 3,
"Building the System.” In this section, design and development phases have been merged. This approach
was used primarily because of the nature of the development tool. The G2 tool and others that have a
graphical development environment support the combination of design and development rather well
because design requirements can be quickly captured within the tool. Once the design is encoded, the
development process is greatly simplified. In fact, at times encoding the design actually accomplishes
parts of the development as well. In any case, these concepts have been combined as a single (but
iterative) phase and are presented in section 3.

Another area of great concemn in developing intelligent monitoring systems is understanding the data
source. Section 4, "Working with Real-Time Data," addresses issues software developers face when tying
monitoring systems to real data sources. These issues center on noisy and unreliable real-time data. The
problems are discussed in this section, along with a methodology used to overcome them.

Section 5, "Evolving the System through the User Interface,” relates the close tie of operational
prototyping and software evolution with the user interface of the intelligent system. The user interface is
the window into the intelligent system during design and development as well as during use. This section
provides insight in using the intelligent system interface, beginning with a storyboard, to guide software
evolution to its final state.

Section 6, "Testing the System," covers a crucial phase in the life of the project. Although testing is
among the iterative steps of design and development, we chose to treat it separately because it differs
somewhat from the other steps in that the end users (flight controllers in the case of DESSY) must be
highly involved in the testing phase. This contrasts with the design and development phase, which is
more a programmer's task. (although the end user certainly must be involved in all project phases.)
Section 6 discusses verification and validation, and covers various types of testing that are necessary
throughout the system development.

Documentation and training are also important parts of an intelligent system project, particularly since
the system will almost certainly evolve as new information is learned or as the physical system being
monitored changes. Thus we have included Section 7, "Documentation and User Training," which
discusses the types of documentation and training we felt were necessary during DESSY development.

Finally several appendices are included which contain specific DESSY documentation. Appendix A,
"DESSY End Effector Failures,"” includes listing of rules from DESSY, and Appendix B, "DESSY Cue
Cards," contains the cue cards from both DESSY subsystems. These appendices are intended to provide
software developers with further detailed information about DESSY.

Additional Information

This Developer's Guide is actually only part of a larger body of information designed to assist intelligent
systems developers. Also available are an electronic library, software demonstrations, and additional
documentation. The Control Center Library For Application Reuse and Exchange (CLARE) is an
electronic library containing sample applications or their documentation and on-line literature, including



this Developer's Guide, to support control center software developers. CLARE has been developed in the
hypertext mark-up language (html) for Mosaic browsing. The goal of CLARE is to provide interactive,
on-line support for requirements definition, concurrent development and improvement of advanced
software. CLARE is available at the following URL: http://tommy.jsc.nasa.gov/~clare.

Demonstrations of DESSY and other intelligent systems software are also available currently through the
Intelligent Systems Branch at Johnson Space Center, and eventually will be through CLARE. For
information about obtaining a demonstration or for further information about CLARE or other related
software, contact the authors of this document.

Finally, additional literature is available to support software developers. The ‘“Making Intelligent
Systems Team Players” (Malin and Schreckenghost, 1991) document set provides case studies and

software design information related to DESSY. This document is available electronically through
CLARE.



Section 1
Real-Time Monitoring Systems

Because the definition of real-time monitoring systems may vary from source to source, the definition as
applied to the DESSY project is provided. DESSY monitors a set of Shuttle telemetry data which has an
update rate of once per second. Any reasoning done in DESSY involving time uses the second as the
unit. Because G2, and therefore DESSY, runs on the UNIX operating system, which is not a true real-
time operating system, real-time processing is limited. Thus for DESSY, real-time monitoring means
monitoring data which is periodically updated once a second, processing that data in the allotted time,
and reasoning over that data in that same second. It is recommended that the reader gain a thorough
understanding of real-time processing; however, that discussion is beyond the scope of this document.

The following sections cover topics germane to understanding real-time monitoring systems. Section 1.1,
"Types of Monitoring Systems," addresses different system classifications. Section 1.2, "Scope of
Monitoring Systems," covers trade-offs associated with limiting an expert system's scope. Finally,
"Supported Development Approach” (section 1.3) explains the operational prototyping approach used
throughout this guide.

1.1 Types of Monitoring Systems

Monitoring systems can be broken into categories by their logical structures and the classification of their
domains. Logically, a system may contain rules, procedures, or both, depending upon the nature of the
monitored activities. Likewise, the system may be used for monitoring passive or inactive systems in
which the goal is to observe fairly static sensor readings and flag anomalies, or the software may monitor
very active systems in which changes are expected and normal. Challenges of working with real-time
data apply in any case.

1.1.1 Rule-based vs. Procedural Systems

DESSY is primarily a rule-based system, but does contain procedures. Although the focus of this guide
is on rule-based systems, there are similarities in the ways in which rules and procedures are used, and
there are many systems, like DESSY, that use a mix of rules and procedures.

When should rules be chosen over procedures and vice versa? Procedures are lines of code that are
sequentially executed. When activities take place that are known to be sequential, procedures are the
more appropriate model. It is often the case in monitoring data and anomalies, however, that there are
many paths that may occur in a given set of data over a specified time period or activity sequence. In
these situations, rules are the more appropriate model. It will be up to the developer to use the
appropriate tool for a particular scenario. In any case, both techniques are available and can be used
separately or together. (Bachant and Soloway, 1989)

This guide focuses primarily on developing rules since DESSY contains mostly rules. However many of
the steps presented apply to writing either rules or procedures, and many of the issues dealing with
handling real-time data may be applicable to both rules and procedures alike.

1.1.2 Passive vs. Active Systems

Another distinction between types of monitoring expert systems is whether a system is passive or active.
If a system monitors operations in which little or no change in the data is expected, the system is passive.
The goal of a passive system is to remain in its current state. Any change from this state indicates an
error. The original Bus Loss Smart System (BLSS) is an example of an expert system that is normally
passive. This G2 system monitors Shuttle power buses, which normally remain in a static configuration.

In contrast, an active system expects frequent data changes, and therefore configuration changes, as a part
of normal activities. These expected changes cause monitoring to be more complex, due in part to the
multiple configurations that are expected to occur. Additionally, it can be challenging to monitor a state
transition in which multiple data values change simultaneously or over a period of time. (Gabrielian and
Franklin, 1988)



DESSY is an example of an active system, aithough DESSY operates passively for long periods of time.
Most systems have both passive and active stages during the monitoring process. The software developer
should become aware of all system configurations and transitions when planning the expert system. Only
when these have been identified and thoroughly understood can development begin.

1.2 Scope of Monitoring Systems

Another factor in planning a real-time monitoring system is the scope of the system. Real-time systems
have the specific job of keeping up with a data stream in real time. Any further analysis of the data uses
valuable CPU resources. Thus it is important to realize that there is a significant trade-off between strict
data monitoring and data analysis. This trade-off is due to limited performance and will always exist
given a real-world situation. Although by necessity any monitoring system performs some analysis, the
authors believe it is necessary to limit the analysis functionality of a real-time monitoring system. In an
ideal scenario, a monitoring system and an analysis (or diagnostic) system are working side by side. The
monitoring system watches the data, makes basic state and status conclusions, and then feeds those
conclusions into the diagnostic system. The diagnostic system, which might serve as a database or also
include recommended actions, is run off-line, i.e., not real-time. This is necessary because this type of
system will have many information sources, including human inputs and other data parameters, that are
not part of the telemetry stream. Figure 1 depicts the scenario the authors feel will most adequately meet
the needs of the complete monitoring and diagnostic system.
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Figure 1. Complete monitoring and diagnostic system.

1.3 Supported Development Approach

This developer's guide supports operational prototyping, a software development approach that
originated from observations of successful intelligent system projects at Johnson Space Center, although
similar approaches have been employed by other organizations. (Jordan, et. al., 1989) The approach is
called operational because the mature products are capable of functioning in an operational
environment—receiving data from operational sources and providing conclusions in a timely fashion in
conjunction with human operators. The approach is called prototyping because it is informal and
iterative. The key features of operational prototyping are participatory design, iterative development, and
refinement through team interaction with the prototype.

1.3.1 Participatory Design

Participatory design refers to the practice of including users on the software development team. Users
have an intimate understanding of the human task being supported by the software system. While
systems analysts and programmers could usually learn to perform the users' tasks, the training time would
often be considerable and their competency of task performance would still be lower than that of a
highly experienced user. Consequently, including a user on the design team is usually more efficient and
allows a more thorough consideration of the supported human task. These advantages become stronger
as the human task becomes more complex.



For example, DESSY is an intelligent system designed to support monitoring of the Space Shuttle
payload bay arm by ground-based flight controllers. The monitoring task is difficult, complex, and
dependent on extensive engineering knowledge of the Shuttle arm. By including a flight controller, the
development team avoids the need to perform an exhaustive and expensive task analysis. The risks of
overlooking some of the users' needs, or of making the system unusable within the context of the users'
other ongoing tasks, are also avoided.

The value of participatory design can be summarized by the following statement taken from Space
Operations Seminar held October 20, 1992, at the University of Houston at Clear Lake. "The users know
what they don't want, but not necessarily what they do want." Having a user play an active role in
development greatly increases the chances of producing a system that the user both wants and can use.

1.3.2 Iterative Development

Iterative development is an approach whereby the software system is developed as a series of successive
approximations to the final product rather than as a single, monolithic, integrated system. Iterative
development is especially good for projects with unstable requirements. Examples are software systems
that provide innovative support of user tasks and those that include innovative applications of new
technology. Because these projects are innovative, developers are likely to make discoveries of new
requirements after they have begun the project. If they have adopted an iterative approach, it will be
easier to respond to those discoveries by revising the current system and revising plans for future
enhancements. If, on the other hand, they have adopted a monolithic approach, these discoveries will
probably come too late to be of any value to the current system.

For example, if the first iteration of development involves the core of the basic architecture, the
developers can verify whether that architecture has the desired properties before designing the remainder
of the system in detail. If the architecture proves to have unanticipated problems, it is much easier to
change the architecture and redirect the remainder of the project with a minimal cost in development
resources. Because developers have the least amount of experience with innovative projects, they are
more likely to need redirecting, thereby making iterative development especially valuable in these cases.

1.3.3 Refinement Through Team Interaction with Prototype

The third key feature of operational prototyping is refinement through team interaction with the
prototype. Because the team interacts with a prototype, each person is able to see the implications of
design decisions. What You See Is What You Get, or WYSIWYG, is a descriptor for applications that
immediately show the full implications of user input. Prototyping is the WYSIWYG of analysis and
design. Also, because all team members interact with the prototype, several viewpoints can be considered
simultaneously. If the team has expertise in intelligent systems development, Space Shuttle subsystem
engineering, user task performance, and human factors engineering, then the implications of a proposed
change can be evaluated from each of those perspectives. Because these viewpoints can be considered
simultaneously, the team is able to make dynamic trade-offs. For example, if a proposed change seems
ideal except for implementation feasibility, the intelligent system developer can voice an objection along
with the reason behind it. At that point, a brainstorming session can ensue in which potential alternatives
are proposed by all participants. In this situation, with all experts present, a solution that satisfies all
participants is much more likely to be found. This is the impetus behind concurrent engineering in
systems development.

1.3.4 Evolution of the System (Adaptation of Boehm's Spiral)

A common problem with rapid prototyping is a type of wandering project development, in which the
project has no defined goals and tends to follow the interests of the developer. The objective is to
balance goal-directed development with the ability to respond to unexpected discoveries during
development. An adaptation of Boehm's spiral model is the best way to achieve that balance. This
adaptation is illustrated in figure 2. As a spiral, this approach has two types of components, a cyclic
component and an outward progression component.

The component illustrated in panel A of figure 2 is the cyclic component. Starting with the upper left
quadrant, each development iteration begins with a consideration of objectives, alternatives, and



constraints. This is followed by a risk analysis in which alternatives are evaluated and a strategy for
resolving those risks is formulated. The third step is to plan the next prototype iteration. The final step is
to develop and evaluate the next prototype iteration. Each prototype iteration is expected to be an
enhancement of the previous iteration.

The second component of the spiral is an outward progression, across cycles. It is illustrated in panel B
of figure 2. According to Boehm's spiral model, the issues posing the greatest risk to the project are to be
addressed first. If there is an aspect of that application that cannot be accomplished as planned, it is
important to discover that fact early. If the project must be scrapped, it can be scrapped before many
resources have been expended. If the application must be redesigned as the result of unanticipated
discoveries, it is better to make those discoveries before the remainder of the application has been built.
As a rule of thumb, the risky aspects of the project are addressed early, reserving the better understood
portions of the project for subsequent development iterations.

In the DESSY project, Boehm's spiral has been adapted for rule-based systems to support real-time
monitoring of space systems by flight controllers via telemetry downlinks. The sequencing of system
development is based on a combination of perceived risk and a need to develop a useful software
architecture and object structure. The progression of development for DESSY modules is presented as an
example. These recommendations are not presented so that developers will follow them without
deviation. Instead, active consideration is recommended based on the specific risks of the project at
hand—and active reconsideration as the project continues. The reasoning behind recommendations is
shown as an example of how to make the sequencing decisions rather than as a justification for
sequencing all projects in exactly this manner.

The objectives addressed by successive DESSY iterations are:
1. Displaying relevant telemetry values in a readily understood fashion

2. Inferring (from telemetry data) and displaying the current state (usually the physical
position) of the subsystem being monitored

3. Making the rules resilient to noisy and occasionally missing telemetry data values

4. Making inferences about the status (health, failure configurations) of the monitored
subsystem

This sequence of development is based primarily on risk. The displays currently in use by flight
controllers show telemetry values. The worst way in which the replacement systems could fail would be
to prevent the display of telemetry in a reliable, understandable manner. If the telemetry can still be seen
even if the state and status inferencing fails, the software can still be used. Furthermore, since the state
and status inferences also use telemetry values, it is desirable to develop the telemetry software objects
before writing state and status rules. Consequently, the objective of displaying relevant telemetry values
in readily understood fashion must be addressed before anything else.

Next, the state (position or orientation) inferences need to be developed. Once the state rules have been
written, enough complexity has been incorporated that testing with real, noisy data streams is challenging.
If the noisy data can be accommodated, then the status rules have a stable foundation. Otherwise, status
inferences based on faulty state conclusions are useless. Status rules are developed last because they are
based on expectations established by the state conclusions. Thus, the sequencing of development should
be driven by a consideration of risks to the project.
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Figure 2. Adaptation of Boehm's spiral model to operational prototyping.



Section 2
Understanding the System and Determining Requirements

The first step in building any successful software application is to understand the system and determine
the software requirements. To ensure this step is achieved, several steps must take place. First, a
preliminary project plan should be developed and agreed upon by all team members. Section 2.1,
"Project Plan," provides some suggestions for activities in developing the plan. Next, the developer(s)
should understand the human tasks in order to produce a correct and useful representation of those tasks.
This includes understanding existing tasks, how these tasks relate to the supported operations, and how
the tasks will be changed after the new system is in place. These issues are discussed in Section 2.2,
"Understanding the Human Task,"” and Section 2.3, "Understanding Supported Operations.” Once these
initial steps are taken, the project scope and definition can be determined and included in the project
plan. Finally, information requirements, discussed in section 3.4, should be well understood before
programming takes place. Meeting each of the subtasks will provide order to the project and increase the
chances of success.

2.1 Project Plan

The project plan begins during the first development iteration, shown in figure 2, panel A. in the
"Determine Objectives, Alternatives, and Constraints” quadrant, and should be reconsidered with each
development cycle. During each cycle, project team members decide whether the plan should be
updated, depending on the formality of the plan, the importance of changes, and the resources available.
The formality of the plan depends on the project team. Some managers will require a formal document.
Others will request a briefing of the project plan. At any rate, the following information should be
included in the project plan so it can assist in guiding the project and building consensus about project
objectives.

2.1.1 Goals and Objectives

One of the most important measures to prevent "wandering project development” is to build consensus
among managers and the development team on project goals and objectives and to clearly document
these goals and objectives. An important consideration for truly innovative projects is that the project
direction should occasionally change, based on new discoveries. Consequently, it is important to
distinguish goals that will define project success from those which are secondary and concern
implementation.

2.1.2 Risks

The explicit identification of risks and constraints helps to identify the best development sequence, the
people to include on the development team, and the amount of effort to spend in avoiding the risks.
Knowing up front the types of risks likely to occur can prevent common pitfalls and greatly enhance the
development process.

2.1.3 Roles of Team Members

In operational prototyping, people with critical expertise interact with a prototype to improve its design.
To achieve a successful software product, it is helpful to have a development team composed of the right
mix of individuals, each having a key role throughout the project. The determination of critical expertise
will depend on project objectives and project risks, but it will usually include user task expertise,
softwaredevelopment expertise, and human factors expertise. While the number of people on an
operational prototyping team should probably be between two and six, the specific number is less
important than the following:

e Al needed critical expertise must be represented.
e Every viewpoint must be discussed openly when interacting with the prototype.

e The whole team must meet regularly around the current prototype.



e Team discussions should usually be directed toward improvements, rather than acceptance or
rejection.

e Each proposed improvement must be evaluated interactively by the team so that solutions can be
negotiated which are reasonably optimal for each viewpoint.

Throughout the development process, each team member should be aware of the roles he or she needs to
play. Specifically, there is the role played in software design and development, and later in construction
of software test cases. This role is filled primarily by a software engineer. In addition, technical expertise
is needed about the physical system that is to be monitored and the human tasks involved in monitoring
that system. Development, user evaluation, and system testing are all important parts of the technical
expert roles. Finally, a human factors engineer must oversee usability issues, ensuring that the final
product meets the user requirements and improves the overall process. The following discussion
highlights the roles of each team member and provides some insight obtained during the DESSY project.

2.1.3.1 Software Engineer

The software engineer (SE) should be knowledgeable about the development software and environment.
He or she is both the designer and developer of the complete software system and will be responsible for
ensuring that adequate testing is performed throughout the project life cycle. In the DESSY case, this
role was shared by various individuals throughout the project.

Although it is useful for the SE be familiar with the development tool, in reality this person may be
learning the tool during the development process. If this is the case for your project, exploit help
provided from your tool's vendor. A willingness to aggressively pursue vendor help can be a great
payoff to the project, while providing good feedback to the vendor on the usability of their product.

Also of particular importance for the software engineer is understanding performance constraints of the
tool. Because the final application will be working in real time, it is important to know how to maximize
performance. This is not a strength of DESSY, and in retrospect the developers feel a greater emphasis
should have placed on performance.

2.1.3.2 Technical or Task Expert

The technical expert (TE) provides knowledge about the physical system being monitored, as well as the
monitoring process. This person, who is usually an end user of the software system as well, must fully
understand both the system hardware and the human monitoring process. Because other members of the
team are unlikely to understand these aspects, it is crucial to have an experienced expert who is willing to
be an active participant in the project. A predetermined number of hours per week should be set aside
for the TE and SE to work jointly on the project and exchange ideas.

Besides providing technical knowledge and possibly filling the role of user-evaluator, the TE also has
responsibilities in software testing. Although the software engineer can create the tests to check the
program logic (verification), the technical expert must verify that the system correctly reflects the real
process; i.e., the technical expert must check the model and associated rules and procedures that the
programmer has constructed. Thus the TE is responsible for the validation part of the testing process.

2.1.3.3 Human Factors Engineer

The third major player in the software development team is the human factors engineer (HFE). The HFE
is responsible for ensuring that the system meets usability requirements including not only the graphical
interface, but the usability of the system as a whole. The HFE would likely present an initial interface
design from which other team members can work, and would be responsible for overseeing the interface
design throughout the development process.
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Additionally, this team member must interface between the software engineer and the technical expert/end
user, both (or all) of whom may not be trained in human computer interaction issues. The HFE must
work with the SE in developing an interface that the software will support, while working with the TE to
develop a meaningful interface. It is the HFE's responsibility to make sure the final software interface
satisfies all team members.

2.1.4 Schedule and Resources

A schedule with resource allocations is a necessary part of any project. The schedule sets expectations
about the project duration and the amount of effort that will probably be expended. Lack of resources
and other responsibilities of team members, however, can lead to schedule slips. If your development
team is similar to that of DESSY, it will be composed of dedicated people, but people who have other
important responsibilities that by necessity often take precedence over software development. Be
prepared to adjust the project schedule to meet the needs of the entire team.

Schedules for operational programming have some special features because of the exploratory nature of
the approach. First, if some milestones are not negotiable, they should be specifically identified. This
will allow contingency planning when surprises are encountered during development. Second, while
major events and expected completion dates should be identified through the completion of the project, it
is probably not reasonable to plan a detailed schedule throughout the project. Detailed scheduling
should go through the next development cycle. After that, the project may need to respond to new
discoveries by changing directions, thus rendering obsolete any detailed plans for subsequent iterations.
Developers must strike a balance, sticking to the important objectives without unnecessanly restricting
their explorations of ways to accomplish them efficiently and effectively.

2.2 Understanding the Human Task

Once a preliminary project plan has been developed, some effort to understand the human task(s) should
be put forth to ensure that the intelligent system will accurately automate or supplement these tasks.
(Malin and Schreckenghost, 1991) This includes both existing tasks that the potential users perform and
new or altered tasks after the system has been implemented. The following sections provide helpful hints
on accomplishing this understanding and outlines some specific tools that can be helpful.

2.2.1 Existing Task(s)

Understanding the existing tasks of the user (flight controller) can be very challenging, especially when
you must attempt to emulate those tasks. The need to have a team member who understands the user
tasks emphasizes the strength of participatory design in operational prototyping. In ideal circumstances,
the end user is always available to assist the programmer in developing software that precisely fits in the
user's workplace. Because circumstances are rarely ideal, however, the following recommendations are
made to assist the developer in understanding the tasks.

Regular meetings should be held with the end user (technical expert) to discuss the tasks. Initial
discussion will cover existing tasks; eventually the development team will need feedback from the user on
the software's model of existing tasks; finally, the team will need to evaluate the impact of the software on
the tasks.

Work should be done in the end user's work environment when possible. This will allow all team
members to objectively observe the user performing the task, and the user is likely to do a better job at
evaluating the software if software inspection is done within the user's own environment. Finally, the
system will eventually need to be integrated into the user's work environment. Occasional developments
in this area will greatly expedite the ultimate integration process.

In addition to working closely with the end user, the development team may wish to map out the existing
tasks. Section 2.2.3 discusses common tools available for understanding the user's tasks. This is
particularly important if the end user in unavailable throughout much of the development process.
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2.2.2 The Impact of the New System

Once the existing human tasks are well understood, the development team should evaluate how the new
intelligent system will effect those tasks. This is important to ensure that the right problems are being
solved and the new software will provide a true enhancement over the existing system. It is also important
to provide some up front insight to the end user on upcoming changes to existing tasks.

Because the applications covered in this guide are of the automated monitoring type, a key element of the
new task is that of human supervision of the new system. It must be understood how this supervisory task
impacts other responsibilities of the user. For example, will the intelligent system display replace existing
displays or will the user have an additional screen to monitor? Will the user be required to interact with
the intelligent system or will it require only monitoring? In any case, the impact of the system should be
analyzed up front and the user should be made aware of this impact as soon as possible.

2.2.3 Tools for Understanding the Task

Understanding the human monitoring task may be difficult for members of the development team not
familiar with the users’ work environment. Interviews with end users, both those on the development team
and other users, are recommended. If possible, it is also helpful for the software developers to sit in with
users during operations. This allows objective observations of the work environment and determination
of how the software system will fit in.

Other tools available that might help the team understand the users' tasks are data flow diagrams and state
diagrams. A data-flow diagram reflects changes in data as the system changes. A state diagram reflects
changes in system state due to data changes. Both these tools might be used as a communications
medium when communicating with the user. In any case, building a good relationship with the end user,
whether or not the user is a member of the development team, will help the team better understand the
task at hand and lead to a better end product.

2.3 Understanding Supported Operations

To successfully establish the project scope and definition, the supported operations must first be
understood by the development team. This includes familiarity with both the hardware system and the
telemetry downlink parameters. Elements of the operations are composed of system components,
telemetry data, system configurations, failure space, and relationships between the system being modeled
and other systems. Outlining these elements will prevent wandering of the project and keep the
development team focused.

2.3.1 System Components

The first step in understanding supported operations is the identification of the pieces and subpieces of
the hardware systems that are being monitored. Identification of the hardware to be supported will help
in establishing preliminary boundaries for the software system. As with other steps in building the
system, even hardware identification may be iterative. As the system evolves, the scope of the hardware
may change to reflect interfaces with other systems or lack of available telemetry data.

A goal of DESSY is to eventually monitor telemetry associated with all parts of the Shuttle arm. To
manage such a large set of data, the original DESSY designers divided the arm into several functional
subsystems, two of which are covered in the existing DESSY and thus used throughout this guide. The
first subsystem to be modeled was the MPM/MRL subsystem. The MPMs, or manipulator positioning
mechanisms, are the pedestals the arm rests on when it is cradled in the payload bay. MPMs can be
stowed or deployed, respectively indicating whether the arm is in the rolled in or rolled out position in the
payload bay. The MRLs, or manipulator retention latches, are the latches that latch the arm down when it
is cradled in the payload bay. The MRLs can be latched or released. There are four MPMs and three
MRLs. They are depicted in figure 3. (Collins, 1988)

12



MPM (arm)

Figure 3. Remote manipulator system (Shuttle arm).

Hardware components are hierarchial in nature, and once the primary hardware is identified, the team
must delve deeper into the system to find additional hardware components. For example, each MRL and
the shoulder MPM (where the arm is attached) contain two motors. Because there is telemetry available
for each of these components, they were modeled as separate objects within DESSY. Other hardware
components identified were various switches and power sources or paths. Not all hardware components
have sensors, and although they might be modeled within the software system, they cannot be directly
monitored.

The end effector system, the second RMS subsystem to be modeled, was also broken down into its
hardware components. At the highest level, the system has two functional subpieces: the snare
mechanism and the rigidizing mechanism. The snare mechanism can be in an open or closed position.
The rigidizing mechanism can be rigid, derigid, or extended. The end effector also has two motors that
drive both these mechanisms. Other hardware includes switches and several external systems. The
location of the end effector on the Shuttle arm is also depicted in figure 3.

Identification of system hardware is crucial because not only does it allow the developer to understand
the functional system, it provides the initial template for the expert system model. The next section, Data,
will further refine that template. Identification of data may be thought of as the hardware model at the
sensor level for which telemetry is available. How to choose the appropriate data to include in the model
is discussed below.

2.3.2 Data

2.3.2.1 Finding the Data

Once you have an idea of what hardware will be monitored, finding the data associated with that hardware
should be straightforward. As with other steps, finding data will probably be an iterative process.
Telemetry that is flagged for use may drive additional hardware to be included in the design and vice
versa. For the mission control environment, most existing data is displayed on the console displays.
Obtaining a copy of all the associated console displays for the subsystem being modeled is a good place
to start.

Other important sources for gaining information about data include drawings of the Space Shuttle panels,
schematics, and the SDRS DTE Display Description Report (SDRS, 1992). The technical expert or end
user will need to assist the developer with data identification. Obtaining a copy of SDRS is of particular
importance because this document contains the MSID numbers needed by the application to get the
individual pieces of data. Schematics will also have specific telemetry information in them and are
important to use in understanding the data flow. Beware of questionable information, however.
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Documentation can contain mistakes, particularly when it includes much numeric data. As a rule of
thumb, when in doubt ask the expert.

2.3.2.2 Understanding the Data

Once the data sources have been located, the challenge of working with data just begins. The next
important step is to understand the data and how changes in system hardware configuration lead to data
changes. A good place to start is with the schematics. All team members should learn to read schematics.
This is a crucial step in thoroughly understanding the system and related data. Determine the data set to
be used and be prepared to stay within the monitoring/diagnostic bounds that it provides, at least initially.
You may want to identify other data that would be good candidates for expansion of the knowledge base,
or perhaps will be needed when the existing set just can't to the monitoring job.

Other considerations necessary in DESSY involved working with binary telemetry data. The data state (1
or 0) must be understood; i.e., it must be determined which state implies active and which inactive. For
example, in DESSY there were several key types of data available. Depending on the type, some data had
an active state of 1 and others had an active state of 0. Table 1 displays some types of DESSY data and
their states. This information can be obtained from system schematics or from the expert.

Table 1. Active And Inactive States Of Binary DESSY Telemetry

Data Active Inactive
microswitches 1 0
opstats 0 1
enables 0 1
command 1 0
mech pwr 1 0

2.3.2.3 Subtleties in Working with Data

Finally, there are some subtleties in working with telemetry data of which the development team should
be aware. Below are some specific questions and issues to keep in mind when looking for telemetry data
and understanding how it works. With these are included experiences with the MPM/MRL and end
effector subsystems.

Telemetry Overlap Within the System—TIs there any telemetry used in more than one operation, providing
different indications at different times?

Some opstats (motor data) are used in both MRL and MPM operations. This same data indicates
either MRL or MPM motor activity, depending on the operation. (Operation must be determined
by context.)

Data Overlap with Outside Systems—Is there any telemetry used also in other systems?

Some DESSY opstats are also used for the KU band antenna. This same data indicates either
DESSY activity or KU band activity, depending on the operation. (Operation must be determined
by context.)
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Lack of Data for Symmetric Operations—What are the cases where there is telemetry for one operation,
but no telemetry for the reverse (symmetric) operation? Data will not always be symmetric for symmetric
operations.

In the MPM system, there is a stow command indicator, but no deploy command indicator.
Likewise for MRLs, there is a latch command indicator, but no release command indicator.
Additional data had to be used to determine command.

Single Telemetry Point—What are the cases where there is only a single piece of telemetry on which a
conclusion can be based?

Even though we have an MPM stow command indicator, that single data point might fail.
Therefore we look at additional data related to stowing to make the conclusion. Whenever
possible, we want to look at multiple data when making a conclusion.

2.3.3 System Configurations

The process of understanding system configurations involves knowing both the hardware and related data
that are used in each configuration, and understanding the relationship between changes in the hardware
and changes in its corresponding data. Not only does the developer need to identify system states, which
identify configurations, but he or she also needs to understand the procedural operations involved in
making a transition from one state to another. Two tools are particularly useful in understanding system
configurations and procedures. Each is discussed in the following subsections.

2.3.3.1 State Diagrams

An excellent tool for mapping changes in state of the hardware system is the state diagram, where the
states and transitions are represented as a directed graph. Each system state, or configuration, is
illustrated as a state node, and the transitions between them are illustrated as edges. For the purposes of
modeling the system based on telemetry, transitions between nodes are driven by changes in the
telemetry.

The example below illustrates MPM system states and transitions during the MPM stow procedure. Table
2 identifies each MPM state involved in a stow and shows the related data states (active/inactive) during
each phase. Note that the transition state is identified as a valid state. This is appropriate because data
changes are involved both entering and leaving this state. Furthermore, even though it is a transition, i.e.,
a change from one static state to another, there is a finite time period that the physical system remains in
this state. Thus, in the example a deployed state, an in-transit state, and a stowed state are identified.
Explanations of the data presented in this example are as follows. Table 2 provides the data values of the
steps of the MPM stow procedure.

When identifying state changes for your system, we recommend constructing a table similar to that shown
above. To construct the table follow these steps:

Identify the valid states, including transition states.

Identify all data associated with these states.

Identify data values for each state.

Include new states if data changes indicate you should do so.

After a table like that shown in table 2 is constructed, you should be prepared to construct the state
diagram. Developing the state diagram will lead to better understanding of the monitored process.
Figure 4 shows a first pass for a state diagram for the MPM stow procedure. (It did not include the State
2 of table 2.) All stable (or static) states, the beginning (deployed) state and the ending (stowed) state
were identified. The transition state was initially represented as an edge. Since the stowing process takes
32 seconds, the edge was labeled accordingly.
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Table 2. Data Changes During the MPM Stow Procedure

MPM Stow Procedure

State 1 MPM deployed

deploy microswitches
stow microswitches
stow opstats

stow command

active
inactive
inactive

inactive

State 2 MPM stow-in-transit

deploy microswitches
stow microswitches
stow opstats

stow command

inactive
inactive
active

active

State 3 MPM stowed

deploy microswitches
stow microswitches
stow opstats

stow command

inactive
active
inactive

inactive

Key:  deploy microswitches: indicates a deployed state
stow microswitches: indicates a stowed state

Stow opstats: indicates motors are stowing
stow command: indicates a stow command is being given
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Standard State Diagram

transit
(32 seconds)

State-2
(stowed)

Figure 4. State diagram with transit edge between static states.

However, the "transit" state concept is important. After the initial diagram was complete, it was then
revised to include the transition state as a valid state in the diagram. Note that both state diagrams are
equivalent representations of the same process. The transition edge of figure 4 became a new state with
“epsilon” edges going between it and the states it previously connected. The epsilon notation, commonly
found in state diagrams, simply means there is an instantaneous transition between states with no time
delay involved. Figure 6 illustrates the revised state diagram used throughout DESSY development.
Although either diagram could be used, the one depicted in figure 5 represents the states and transitions
more precisely. (Hopcroft, 1979)

Revised (epsilon) State Diagram

State-2
Transit
(32 sec)

State-1
(deployed)

State-3
(stowed)

Figure 5. State diagram with transit state between static states.

Once the procedural data changes have been identified and the state diagram developed, the developer
will have a fairly complete view of the operation. At this point, the developer should construct a state
diagram covering all procedures, with data changes labeled directly on it. Figure 6 provides a more
complete state diagram, an example of the end effector snaring system. Six states have been identified,
along with the three microswitches that indicate state changes. In this example motor (opstat) and
commanding data that affect the changes are not shown. The procedures shown include the snare closing
with capture, closing without capture, and opening. The snare closing with capture procedure is
represented in the bolded states. The important information to note from this figure is the states and their
relationships to one another, the data values, and the timing information indicating how long the system
would nominally remain in the given transition state.

Note that there is no failure information represented in figure 6. State diagrams may be extended to
include non-nominal operations. Figure 7 shows a section of the snare state diagram from figure 6 with
an "aborted close" state added. The concept illustrates a simple extension to the state diagram as defined
above. It will be covered in more detail in section 3.3.4, where status rules are discussed.
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End Effector Snare System State Diagram

CLOSING CLOSED

open=0
close=0 open=0
capt=0 close =1

capt = 1
(1-2 sec)

CLOSED-
NO-CAP
open =0
close =1
capt=0

OPENING

open=0
close =0
capt=0

(1-2 sec)

Figure 6. State diagram for the end effector snare system.

Snare State Diagram with Aborted State

CLOSE
open =0
close =0

commanding
lost

OPEN CLOSING

open = 1 open =0 capt=0
close=0 close =0
capt=0 capt=0 commanding

regained

(1-2 sec)

Figure 7. Subsection of the snare state diagram depicting an aborted state.
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In summary, state diagrams are essential step to understanding the system configurations that the team
will need to model. They should be constructed as soon as the relevant data has been identified. In
addition to providing information to the developer, their graphical nature allows them to serve as an
effective communication tool between the developer and system expert or end user. State diagrams are a
classic computer science tool that should be fully exploited.

2.3.3.2 Procedural Timelines

A second tool that can be extremely helpful in understanding the system procedures and transitions is the
procedural timeline. Timelines give a chronological step-by-step description of the system transition
states. They may, in fact, contain the same information as the state diagram; however, they may be more
useful in some cases. They are most useful in modeling procedures with multiple transition phases.

The timeline shown in figure 8 shows the end effector snare capture sequence. This sequence is
illustrated within the state diagram in figure 6. The corresponding state nodes are shown in bold circles.
The snare system is initially in the static state of "open." The "closing" state lasts 1-2 seconds and the
"captured” state lasts about a second. The final static state is "closed.” The boundaries between the
timeline bars are equivalent to the epsilon edges of the state diagram.

Snare Capture Sequence

closing captured

NN
0123 45¢6 738

LLLiliattnty

Figure 8. Snare capture sequence timeline.

Figure 9 shows the complete end effector capture sequence of which the snare capture of figure 8 is the
first part. Also shown are the two rigidizing steps and the final state of "closed and rigid." The end states
of the timeline are static or steady states, while transition states are depicted within specific time intervals.

Complete End Effector
Capture Sequence
open ggzlrgg closed
and . rigidizing1 rigidizing2 and
derigid  Capure) rigid

012345678 910111213141516171819 20

NN NN NS

Figure 9. Complete end effector capture sequence timeline.

An extension of the timeline tool might include labeling of data changes at bar transitions. Basically, it is
up to the developer to get the most out of a tool like this or the state diagram tool. In DESSY, both were
used, as well as other means of representing the system to enable the team to gain a more thorough
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understanding of the system and its operations. As with state diagrams, this tool should be exploited to
the fullest extent to aid the developer in understanding the physical system.

2.3.4 Creating a Storyboard

A storyboard captures the types of information that the intelligent system will display and the types of
interaction between the intelligent system and the human user (Schreckenghost, 1990). It is also the
forerunner of the user interface. Once data has been identified and operations understood, work on
creating the storyboard can begin. This will include sketches of displays and information about how the
human would interact with and interpret these displays. A "story" can be constructed illustrating how the
human would interact with the intelligent system in a sample scenario. Initially, sample scenarios should
address normal operations, but can later be extended to include failures. These scenarios can also be
used when developing test cases (see section 6.3).

The storyboard is useful in working out information requirements with the user. This technique can be
used to distinguish requirements for functions needed to do the task, from requirements about
presentation. For example, two telemetry values may need to be compared over a specified time—a
functionality requirement. The means of comparison might be using overlaid plots—a presentation
requirement. Both types of requirements should be specified.

Once in place, the intelligent system will change operations. Another use for storyboards is in stepping
through typical operational situations to test how well the user can respond to these situations using the
new system. This approach helps in assessing operational changes and in preventing adverse changes
(e.g., changes that increase workload or cause loss of needed information). Adjustments can made to
intelligent system requirements or possibly to operational procedures.

Storyboards are often created using simple drawing and word processing programs, although they might
be sketched by hand or developed in the selected prototyping tool. The storyboard will serve as a
template for later design and development, but it is unlikely that the final design will closely reflect details
found in the initial storyboard. They are, however, very effective for conveying working ideas to other
members of the development team. Use this tool to capture early design ideas, but remain open to
change as the design evolves.

2.3.5 Failure Space

Understanding the failure space of the hardware system to be monitored may be the most difficult part of
the development tasks. Although, as stated in section 1, the authors believe a real-time monitoring system
is not usually a failure diagnostics system, there is still status monitoring that must be done and the overall
health of the system must be determined. In the DESSY project, the scope of failure detection was
limited to status information that could be determined from telemetry data. This would not include, for
example, information heard over voice loops. Even with this definition, mapping out the failure space
was challenging. It can be difficult to find all relevent data for failures you want to include and justify
the elimination of failures that are beyond the scope of the system.

There are, however, some standard types of failure that may be included in real-time monitoring systems.
Each of these types is presented in the following subsections.

2.3.5.1 Transition Timing

Once state diagrams and procedural timelines are complete, the developer will know the length of time

the system normally spends in each state. Thus a feature that should be implemented in the monitoring
system is a mechanism for timing the procedural operations. In the DESSY project, we implemented a

stopwatch-like timer. It can be started, stopped, paused, reset, and resumed. DESSY timers monitor all

significant procedural activities.

Once a procedure begins, the appropriate DESSY timer is started. If the procedure (or procedure
segment) completes within the allotted time, a nominal time will be reported by the timer. This nominal
time has been preset in the timer or is determined by expert system rules. It is usually a range rather than
a single number. If, however, the procedure spends more time in a transition state than is known to be

20



allowed, an anomaly can be flagged. In the MPM/MRL subsystem there were actually several times of
interest per procedure. Because two redundant motors drive both the MPMs and MRLs, there could be a
nominal ime if both motors worked properly, a "single-motor-drive" time if one motor failed, or a "two-
phase-motor-drive” time if one motor worked nominally and the other functioned in a degraded state.

In addition to obtaining transition times, the developer must consider how to flag a transition failing to
start or end. Both these actions involve using information available in the timer. When appropriate data,
often command or motor activity, indicates a transition is taking place, the timer is started. If after some
time period, however, the data reflecting positional indicators do not respond, a failure to begin the
transition has occurred and can be declared. Because sets of data do not always change simultaneously, it
is necessary to include a "subtransition” period from a static state to a transition state, i.e., a second or two
to allow the transition to take place. This was not modeled in the state diagrams, but in the real system
must be considered.

Finally, just as the monitoring system must watch for the failure of a transition to occur, it must also flag a
system being stuck in a transition state. This is not straightforward, because unlike a transition ending
marked by changing data, a transition that fails to end has no data indication, but rather a lack of
indication. In this case, the timer must flag that the transition did not end. Specifically, a timeout limit is
identified. If the timer should reach the timeout limit, a failure has occurred.

Figure 10 summarizes the type of events that should be timed. Each timing indication leads to a different
status result (including nominal). Note that each status actually corresponds to a time range, and the
labels show the maximum time for that status. Each timing space shown below is covered by a different
rule, and all possible time ranges are covered.

MPM Stowing Status Times

single-phase on one single motor .
motor stow time stow time stowing failed
to end

stowing tailed
{o begin nominal

|E stow time,

0 4 12 16 2024 283236404448 52 5660 64 68 72

LU T T,y

Figure 10. MPM stowing timeline with transition timing.

2.3.5.2 Data Questionable On/Off—Ramifications to the System

Another type of status a real-time expert system should detect is a data value known to be in an incorrect
state. DESSY flags a data value as "questionable-on" if it is active when it is expected to be inactive
(according to other system information). Likewise, a data value that is inactive when it is expected to be
active is flagged as "questionable-off.” The method of detecting the questionable-on/off data status varies
significantly depending on the type of data. Some parameters that are used to identify questionable data
are system state, other redundant sensors, and expected transition activities.

Note that the descriptor "questionable” is used to mark suspect data. This is because the data may or may
not represent a known failure, and the expert system (and human) may not have the necessary
information to conclude a failure. The flagging of data as questionable-on/off in fact is usually the first
step for any further DESSY status conclusions. The questionable flag allows DESSY to alert the user that
something in not nominal without making any uncertain failure conclusions.

Once the data has been marked as questionable, however, further rules may process this information to
make conclusions about the data and its ramifications on the hardware system. For example, it may be
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determined that the questionable-on value indicates a "stuck on” microswitch. If the appropriate
information is available, the status can be upgraded.

A second use for the questionable data status feeds into the diagnostic rules, giving them a less certain or
definitive nature. For example, in the MPM system a certain active deploy microswitch would inhibit one
of the redundant motors from stowing, causing a single-motor stow to occur, should stowing be
commanded. If the microswitch has been given a questionable-on status, a system status of expect-single-
motor-stow (as opposed to single-motor-stow) is provided. This strategy allows DESSY to present suspect
anomalies to the user without taking the risk of giving the user faulty conclusions. Once additional
information is available and the motor inhibit is confirmed by other data, the system message can be
upgraded to single-motor-stow.

2.3.5.3 Failure of Data to Change During an Expected Transition

A third type of failure the expert system should monitor is failures during transitions. Given an expected
operation, the human and expert system should know a priori the set of data that will change. If any
subset of this data does not change at the expected time, an anomaly is obvious. The expert system must
have status rules capable of identifying appropriate pieces or sets of data that do not change when
expected and flag that data at the time of transition. This includes, but is not limited to, failures detected
through transition timing.

When flagging suspect data, DESSY will usually mark the data as questionable. However, during a
transition the evidence may be strong enough to identify real failures rather than just questionable
situations. Depending on the specifics of the scenario, the developer may be able to conclude immediate
status information at this time.

An example of "failure of data to change"” may occur at the beginning of an MPM stowing operation. At
this time two stow opstats indicating motor activity will become active, and the two stow microswitches
indicating stow position will go inactive. A stow command indicator is also available. Thus for this
particular transition, there are five pieces of telemetry which directly and jointly indicate the operation
initiation. If any one (or more than one) of these five pieces of data does not act as expected, an
anomaly can be flagged.

To conclude, the system developer must identify the entire set of data that indicates a transition and
consider the possibility of each piece (or subset) of data in the set not responding. Each piece and subset
identified will likely require a separate status rule.

2.3.5.4 Multiple Data Values Active, Indicating Conflicting States

A final type of anomaly that the intelligent system should identify is that of data values indicating
conflicting states, i.e., an impossible configuration. These anomalies are flagged when the system is static
and no operational activity is expected to occur. They are discovered either by observing that two
conflicting data values are simultaneously active, in which case they might both be marked as
questionable-on; or for a more sophisticated approach, given that the system is in a known configuration,
the suspect data that conflicts with this configuration can be marked as questionable-on and possible
further diagnostics performed. This second approach is preferred when possible because it further
isolates the suspect telemetry.

An example of this type of failure occurs when the MPM system is in the stowed configuration, and a
single deploy microswitch turns active. This conflicting deploy microswitch would be marked as
questionable-on. Alternatively, a single stow microswitch becoming inactive would be marked as
questionable-off. Another example occurs when the end effector snare is known to be open, and with no
procedural operations the close microswitch becomes active. The close microswitch is marked as
questionable-on.

The developer and expert must outline all known nominal configurations of the system, and for each
configuration, determine data values from other sensors that would indicate conflicting conditions. Then
for each piece of data or subset of data, a separate diagnostic rule can be formed.
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Although this may not be an exhaustive set of failure types, they are the most common and easily
identified. DESSY detects all of these types, and in many cases passes on the information to further
failure detection rules. A complete listing of failures in the DESSY end effector example is given in
Appendix A.

2.3.6 Relationships with Other Systems

Finding the relationships between the system being modeled and the outside world can be elusive. The
expert must be thoroughly involved in this step. How the system affects its neighboring systems, both in
nominal and off-nominal operations, as well as how those systems affect it, should both be modeled.
System overlap and dependencies may occur during select normal operations or happen only during
failures. In either case these scenarios may add complexities to the monitoring the system.

Specific examples of overlap between systems include ambiguities of data that belong to multiple
systems. That is, a single piece of telemetry may represent different systems at different times. For
example some opstats that indicate MPM/MRL motor activity can also be active when the KU-band
antenna is being used and there is no current MPM/MRL activity. This is due to a change in
configuration outside the scope of the expert system. Additional data must be used to indicate true
MPM/MRL activity so that the KU-band activity does not falsely indicate this. As another example, if a
logic switch fails or is turned off, subsets of the MPM/MRL opstats will become active, depending upon
the particular switch. Again, it must be assured that this does not incorrectly suggest MPM/MRL activity.

Thus the developer must be aware that there may be overlaps in the use of certain subsets of telemetry
and design the system to account for them. If this is not done, the result is most likely to be false
conclusions of system activity.

Other issues in dealing with external systems include understanding how failures outside the scope of the
monitored system will affect system performance. An obvious example is a power related failure. If a
failure occurs in the power source to your system, the system will likely be reconfigured to allow for a
redundant power source. The developer must be aware of how this affects the system model. It must
then be determined if accounting for the situation is within the defined scope of the project.

Likewise, the effects that failures in the monitored system have on external systems should be determined.
Although this is stepping into diagnostics, the effects your system will have on the outside world may be
easy to determine in some cases. Again, it must be decided whether accounting for these situations is
within the project scope.

In conclusion, it is important to remember that the relationships between the monitored system and
external systems do exist and must be identified and understood. The expert will play a key role in
identifying this information for the developer. Once these interfaces and interactions have been
identified, the team can decide which are within scope of the expert system project.

2.4 Information Requirements

Information requirements should be well understood so that all necessary information is available to the
development team throughout the development process. Information sources should be identified and
the information sought out before application development begins. The first place from which
information can be extracted is the current user displays. The expert/user can identify additional
information sources used in his or her job. Finally there are some standard information sources in the
aerospace environment that the development team should acquire.

2.4.1 Information from Current Displays

The user's current displays are a crucial source of information because they contain the standard set of
data that the user has available. Understanding the displays and how they are used should be one of the
first joint tasks of the development team. Specifically, the user must identify which data is used for which
subtasks, which is displayed but not used, which is most crucial, and which is most frequently used.
Questions like this will help shape the user interface of the expert system display and will help define the
initial storyboard.
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As the team works to understand how the current displays are used, they must objectively identify both
positive and negative aspects of the displays. Factors might include screen layout and groupings of data,
text vs. graphical representations, and color. Other questions the team might ask are: How is the user
notified when data begins to change; where and how is status information displayed; and how and why
are subsets of data grouped? The human factors team member is responsible for assisting the expert/user
in deriving this information.

2.4.2 User-Requested Information

It is likely that the user makes use of information not found on existing displays. Any additional
information that the intelligent system can provide will further help the user do his or her job and add to
the usefulness of the software. Here the difficulty often lies in identifying this information. Again the
human factors team member has the responsibility to assist the user. Team members must go through the
user's monitoring process to identify the less obvious information on which the user relies. Examples
from DESSY include stopwatch timing and handwritten logs. Having this information available through
the intelligent system further increases the usefulness and credibility of the software.

2.4.3 Gathering of Information

Before the design and development phase of the project begins, all relevant sources of information
should be located. Finding these items ahead of time will make the process more efficient. Below is a list

and brief description of items used in DESSY. The expert/user should assist the team in locating this type
of information.

e Schematics and Drawings—Provide assistance in understanding the physical system and how failures
occur and propagate. Also may provide telemetry information.

e SDRS—Provides displays with listings of available telemetry including MSID number, label, type, and
location on display.

e Console Handbooks—Provide detailed descriptions of the system, its procedures, and the monitoring
process.

e Current Displays—Provides a graphic of what is currently used during the monitoring process.

¢ Failure Modes and Effects Analysis (FMEA) Documents-—Provides detailed information about
failures, their causes, and their effects.

e Malfunction Procedures—Provides information on malfunction procedures for failure diagnostics
and recovery.

Once this information is located, it should be made readily available to all team members. Keeping these
documents and all other information related to the expert system in an easy-to-access central location will
make the entire team's job easier.



Section 3
Building the System

Once you have completed the preliminary activities of understanding real-time monitoring systems and
determining the requirements for the system you wish to build, you will be ready to move on to the next
phase of the intelligent system project. Section 3 covers both the design and development phases of the
application. The authors have chosen to merge the design and development processes into a single step
because the high level nature of the G2 (or G2-like) programming tool supports, and in fact necessitates,
this concept. Object-oriented, graphical development tools support creating the software design within
the tool itself. This leads to development as an extension of existing templates rather than recreating
definitions and objects in a separate development step.

In the DESSY project, the authors found that the design and development phases went hand in hand,
forming an iterative process. 'The DESSY object structure was designed by creating a definitions class
hierarchy in G2. Once these definitions were created, they were immediately available for use, i.c.
development. It did not make sense to separate object design, definition, and implementation. The
definitions and their object instantiations did frequently change, thus leading to iterative development.

The key concept one must accept to use this section is that this approach is one of iterative refinements of
a single design-development process. This section presents six major steps in the design and
development process. Section 3.1, "Organization of the Knowledge Base," prepares you in the setup of
the architecture of the knowledge base, including grouping of objects, rules, and displays. Section 3.2,
"Object and Structure Design," provides insight into how the physical system should be modeled in
object-oriented programming. Section 3.3, "Rules," is essential reading for developers of real-time
monitoring rules. Rules have been broken into several key categories, and this section provides an
explanation of the use and development of each type. "User Interface Design” is discussed in section 3.4,
and section 3.5 covers issues involved in "Setting Up for Real Time." Finally section 3.6, "Setting Up for
End Users," provides a heads-up on subtle yet key issues involved in preparing the system for end users.

NOTE: Because section 3 covers the development of the knowledge base, it will be more closely related
to the G2 tool than other sections. Many of the examples will be G2 specific. When possible, examples
will be generic enough so that developers using other real-time expert system tools will find the
information useful. However, the focus is on providing help to developers using G2, and in fact
providing many G2-specific tips along the way.

3.1 Organization of the Knowledge Base

A well organized knowledge base will be easier for the development team to understand. The
organization will be iterative, and the developer's willingness to change the organization as the knowledge
base matures will lead to an application that all members of the team can use. This aspect of creating the
intelligent system parallels traditional programming, and the experienced programmer will be familiar
with these concepts. This section covers both module and workspace organization. A module in the G2
application corresponds to a file containing a subset of the knowledge base. A workspace is a work
window within a module on which objects and rules and all other G2 items are placed. It is important for
the knowledge base to be organized at both levels.

3.1.1 Module Organization

Modularization is an important part of knowledge base design, although there is not one right way to
modularize. As the system evolves, changes will be made to the module architecture.

G2 modules are files which contain pieces of the knowledge base. As with traditional programming,
these files dependend upon one another. For example, the lowest level modules contain definitions.
Once these are constructed, object modules can be built which use them. Rules and displays which use
those objects can then be built within higher level modules.
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If you are just beginning to construct the knowledge base, you will likely start out with all work in a
single module. Once the knowledge base grows, you will "modularize” by splitting it into the appropriate
files. The authors found this to be a tricky task and recommend that you consult the G2 manual
carefully.

Figure 11 shows a simplification of the module hierarchy for DESSY. At the top is dessy-main, which
contains the highest level information. It directly depends on three modules. Interface contains data-
connection information, dessy-top-level contains rule and object definitions, and dessy-sims contain test
cases. Note that dessy-main is indirectly dependent upon all other modules as well.

The dessy-top-level module uses the MPM and MRL definitions supplied by mpm-mri-defs. This module
in turn uses class definitions in dessy-defs. For example, an MPM object definition is found in mpm-mrl-
defs. An MPM class is a child or subclass of the class RMS. The definition for RMS is found in the
dessy-defs module. Therefore the mpm-mrl-defs module depends on the dessy-defs module.

dessy-main

dessy-top-level
I
mpm-mrl-defs
]
dessy-defs
|

buttons

interface dessy-sims

Figure 11. Simplified DESSY module hierarchy.

Why is it so important to modularize? The primary reasons are tractability and reuse. If the knowledge
base is divided into smaller manageable parts, it will be much easier to add and document changes. The
biggest win in this modular architecture, however, is reuse. Because work has been separated into smaller
parts, the parts have good potential to be reused within the knowledge base or in other applications. The
buttons module was a standard G2-provided module containing button definitions and corresponding
rules that was easily merged into DESSY. Once this module is merged into the low-level dessy-defs,
buttons may be used throughout DESSY.

Modularity also provides an option of software integration or segregation. Figure 12 illustrates how both
DESSY modules can be loaded and run together or how each module can be used separately. A top level
module is created that contains information about which system(s) to load. In the user environment,
there were times when only one DESSY module was needed, and times when both were needed. This
design satisfies both requirements.
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Figure 12. Multiple system configurations for DESSY.

Another module reuse win for DESSY was in the creation of a separate DESSY training application. The
DESSY wtorial used existing DESSY modules with an additional module layer built around them to

replace the normal interface. Because of the design, the definition and rule modules were easily plugged
in to the tutorial. This provided the benefit that when the rule module was edited for DESSY, the tutorial
automatically received those changes. Modularization was a big time saver in this aspect of the problem.

The only disadvantage that arose due to modularity in DESSY was that it impacted software loading time.
Many small G2 files take longer to load than a single file containing the entire knowledge base. For the
mission control environment, these loading minutes can be crucial. G2 provides a capability for saving
the knowledge base as a single file. Thus modularity may be kept in the development version of your
intelligent system, and the delivered product can be merged into a single file.

3.1.2 Organization within Modules

Workspace organization parallels modular design. The developer should establish a convention for
organizing workspaces within the modules. G2 provides the capability for setting up knowledge base
organization, but does not enforce or even encourage the developer to proceed in this manner. G2 is
global, giving the developer the capability to program with no organizational structure whatsoever.
Because of this lenience, we stress the importance of the developer maintaining self discipline and
developing the knowledge base in a structured, well organized manner.

Because each workspace is assigned to a G2 module, workspace organization occurs within a module. A
parallel organization should be maintained for all modules. First, set up a root workspace with pointers to
all other workspaces—a top-level workspace that allows movement to any other workspace, either directly
or through other workspaces. Figure 13 illustrates this concept.

To implement this concept in G2, create a workspace and name it something like module-name-root.
Then create a definition called "workspace (ws) holder” or something similar. The icon should be
something simple, like a small box. For each new high-level workspace needed, create a ws-holder object
and give it the name of the workspace you want to create. Create a subworkspace for the ws-holder. That
will be your new workspace. These subworkspaces can either be work areas or can hold workspace
holders to other lower level workspaces.

For purposes of best navigating through the system, assign names to only high-level workspaces. This is
due to the way G2 presents workspace names through the Get Workspace* command. Using the G2
"Free Text" works nicely to indicate the name of a workspace. When searching directly for a workspace
using the G2 Inspect, you may search for the ws-holder with the appropriate name, and then go to its
subworkspace. This method provides for well organized tracking and an easy path to workspaces,

