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Abstract

The Aircraft Production Division at San Antonio Air Logistics Center has conducted extensive

investigation into the replacement of hazardous chemicals in aircraft component cleaning, degreasing,

and depainting. One of the most viable solutions is process substitution utilizing abrasive techniques.

SA-ALC has incorporated the use of Bicarbonate of Soda Blasting as one such substitution.

Previous utilization of methylene chloride based chemical strippers and carbon removal agents

has been replaced by a walk-in blast booth in which we remove carbon from engine nozzles and various

gas turbine engine parts, depaint cowlings, and perform various other functions on a variety of parts.

Prior to implementation of this new process, validation of the process was performed, and
materials and waste stream characterization studies were conducted. These characterization studies

examined the effects of the blasting process on the integrity of the thin-skinned aluminum substrates, the

effects of the process on both air emissions and effluent disposal, and the effects on the personnel exposed

to the process.

Paper Content

San Antonio Air Logistics Center is responsible for the maintenance of the C-5 fleet. This
maintenance involves among other things, corrosion control which includes depainting. In the past, we

have always relied on the use of methylene chloride based chemical strippers for both aircraft and

components. This method generated great quantities of waste which had to be drummed and disposed of

as hazardous waste. The effluent itself was sent down the industrial waste lines to dedicated phenolic

basins in our industrial waste treatment plant.

We began exploring various alternatives to chemical strippers in 1986. Many substitute

processes emerged and two seemed viable for our requirements. Plastic Media Blasting (PMB) developed

as an alternate method for depainting aircraft. We have since incorporated PMB in our aircraft

depainting facility. The second alternative to chemicals which we considered viable was a similar

abrasive process, bicarbonate of soda paint stripping. Having met various requirements for a paint

removal process, we subjected the process to a series of vigorous tests. Proving successful through all the

initial testing, we initiated a formal testing program to optimize the bicarbonate of soda blasting process

parameters and characterize the effects of the blast stream on the substrate materials commonly used as
aircraft skins. A separate test program was initiated to determine the environmental effects of the process

on the worker, our existing industrial waste treatment system, and the ambient air quality.

The optimization and material characterization effort was contracted to Battelle out of Columbus,

Ohio. The objective of the program was to determine ifthis particular p_ could meet or exceed Air

Force criteria for productivity versus possible blast-imparted substrate damage. The process was tested in

a fourteen foot wide by fourteen foot high by thirty-four foot long walk in blast booth installed in an

existing chemical stripping room. The booth itself is basically a modified water wash paint booth. The



booth has a cross draft ventilation pulling the exhaust air through a water curtain and into the exhaust

chamber, where it passes through a series of sheet baffles prior to exiting the stack. Used media and

material removed from aircraft parts fall through a grated floor into a sloped trough filled with water. A

series of pipes traverse the trough, each with 10 nozzles directed to maximize the agitation and mixing
effect of the used media and water. The water is pumped through the agitation pipes and the exhaust

chamber and recirculated throughout the system. A gravity drain weir accommodates the effluent

discharge. The effluent travels through a wire mesh trash screen, over the weir, and finally out through a
five micron sock filter. From there, the effluent mixes with the chemical waste from our component

cleaning room and enters a sump outside the facility. A motorized trash screen and a rotary drum remove

solids from the liquid. The liquid is then pumped through a force main to the industrial waste treatment

plant. The blasting system utilizes a twenty cubic foot, two nozzle blast pot and is loaded via a two

thousand pound super sack loading system.

In order to conduct the materials characterization testing, an optimum set of operating

parameters had to be established. To accomplish the optimization we utilized an x-y positioning system to
control the traverse rate, angle of impingement, and stand off distance. Additional parameters which
were varied in a matrix format were: nozzle pressure, water pressure, and media flow rate. Almen arc

height data was established for each combination of blasting parameters. The material used for

optimization testing was 0.032 inch 2024 T3 Bare Aluminum. The optimum set of operating parameters

evaluated and subsequently used in conditioning of all specimens in the materials characterization portion

are:
Blast Medium: Annex Maintenance Grade XL

Stand off Distance: 18 inches

Impingement Angle: 30 degrees
Nozzle Pressure: 60 psi

Water Pressure: 150 psi
Traverse Rate: 0.8 inch/second

Media Flow Rate: 3.0 lb/min

The combination of these optimized parameters yielded a paint removal rate of 0.29 sf/min and

5.11 +/- 0.61 mils of almen arc height deflection. Conditioning of the specimens was conducted in

preparation for tests to assess the effects of the blasting process on clad erosion, surface roughness,

residual stress, fatigue crack growth rate, and fatigue life (notched). The materials characterization tests

were performed on 0.032 inch specimens of 2024 T3 and 7075 T6 bare and clad aluminum.

Cladding erosion evaluations were made by s determination of cladding loss by weight per blast

cycle. Six cycles of blasting on unpainted clad surfaces yielded a high rate of clad erosion for both alloys.
The erosion percentage data were calculated on the basis of a nominal cladding thickness of five (5)

percent per side of the total sheet thickness. Since the densities of the alloy and the cladding were nearly
the same, weight loss was correlated to volumetric loss by assuming the nominal thickness was 5 percent
of the 0.032 inch sheet thickness. Three sample sets of each material were subjected to the blasting

process and measured for weight loss after each blast cycle. The mean percent cladding loss for 2024 T3

clad material ranged from 1.54 % for one cycle to 4.03 % for 6 cycles and the loss on the 7075 T6 clad

material loss ranged from 1.44 % for one cycle to 3.48 % for 6 cycles.

Surface roughness measurements were made on unpainted Almen specimens of both alloys, bare

and clad. These specimens were grouped by alloy type and each of 6 specimens per set were blasted from

one to six cycles to determine cumulative changes to surface roughness. As expected, the bare surfaces

after one blast cycle were much smoother than the clad surfaces. Subsequent blast cycles increased the

roughness on the bare alloys, while the clad alloys tended to become smoother.
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Residual stress was measured by two different means. The saturation response of the substrate to
the bicarbonate of soda blasting process by the system used in the study was determined as the delta almen

arc height as a function of elapsed blast time for unpainted 2024 T3 and 7075 "1"6bare specimens. The
delta almen arc height is not a direct measure of blast induced cold work strains, but a change in the
bending moment of the unrestrained specimen produced by the residual stresses associated with the cold

work process. The overall response for 2024 T3 bare was higher than the 7075 T6 bare response by a
factor of 2 or more. However the point at which saturation occurs is about the same for both materials.

Residual stress was also measured by XP.ay diffraction testing on 5 specimens each of 2024 T3

and 7075 T6 bare almen strips sheared from painted panels, measured for baseline, and constrained by

epoxy to a 1/4 inch steel backing plate. They were then conditioned by one blast cycle of paint stripping,
plus three additional blast cycles at the same rate to simulate a total of four blast cycles. Each of two sets
of specimens included two Almen specimens which were unrestrained at the time of baseline strain

measurements. All strain measurements were made after the conditioning was conducted with the Almen

specimens in the constrained state. Both alloys exhibited an increase in surface compressive stress

decreasing to a depth of 0.003 inch. Beyond the 0.003 inch depth, the distributions remained fairly

constant. The 311 peak width distributions for both alloys indicated a surface maximum which may be a
result of a more cold worked surface and near surface material.

Fatigue specimens were initially sheared from as received panels and from painted panels after
bicarbonate of soda stripping. The individual specimens were then machined to final dimensions. A 60

degree angular notch was pressed 7 thousandths of an inch deep in the center of the specimen over 1/4

inch length. The notch was used to simulate surface flaws on the substrate (both front and back). The

fatigue specimens were then tested following guidelines of ASTM E466 (with the exception of the notch).
All specimens were cycled under load control with a sinusoidal waveform at 10 hertz. Tests were constant

amplitude with a +0.1 stress ratio. The nominal maximum stress for the 0.032 inch material was 33 ksi.

Results indicated no appreciable change in fatigue characteristics and in fact the front notched specimens
showed an improvement in fatigue life.

Fatigue crack growth rate specimens were 2024 T3 bare aluminum material sheared from as

received panels and from painted panels after bicarbonate of soda blasting. These specimens were

machine finished to final dimensions. An 1/8 inch hole was drilled through the center of the specimen

and an initial 0.040 inch starter notch was machined by electrical discharge machining using a 6 rail
traveling wire cut. The test followed guidelines of ASTM E647 and cycled under load control with a

sinusoidal waveform at 10 hertz. Test loads were constantamplitude with a +0.1 stress ratio and a

maximum load of 1120 pounds. The nominal maximum stress for the 0.032 inch material was 8,750 psi.

Crack growth measurements were made with cast epoxy Krak gages and showed no appreciable change in
crackgrowth characteristics.

The second portion of the testing performed at SA-ALC was to verify that the bicarbonate of soda

blasting process conformed with the Pollution Prevention Act of 1990. The Act emphasizes that the

preferred method of preventing pollution is to reduce, at the source, the volume of generated wastes and

that reuse should be performed whenever possible. Air Force Directive 19-4 went a little farther by

making a commitment to "... prevent at the source, to the greatest extent possible, environmentally
harmful discharges to the air, land, surface water, and ground water."

This portionof the testing was contracted to Pacific Environmental Services in Mason, Ohio.

They were tasked to evaluate effluent samples, air emissions for total particulates and metals, analyze
stack gases and determine worker exposure effects.
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During the testing phase, a variety of aircraft parts were used and tasks were performed. Tasking

involved depainting, parts cleaning, and a combination of paint stripping and parts cleaning. One

operator was used in the booth for the purposes of the report.

Average stack gas velocity for the sampling runs was 52 feet per second with an average

temperature of 60 degrees F. The average flow rate was 30,831 dry standard cubic feet per minute. The

stack gas averaged s particulate mass emission rate of 1.855 lbrnr. Particle size analysis of the air
emissions showed that more than 98% of the particulate mass emitted was comprised of particles smaller

than 10 microns. The absence of large particles suggests that the larger particles settled out or were

captured in the water curtain. Analysis of the metals present in the emissions were also conducted during
the runs. Sodium accounted for 99+% of the total mass of all metals detected. Other metals detected

included: iron (0.0033 lb/hr), zinc (0.0020 lb/hr), total chromium (0.00093 lb/hr), and cadmium (0.00080

lb/hr).

Workspace air samples were collected and analyzed for alkaline dusts, nuisance dusts, and

multiple metals. Dust samples were collected between the blast stream and the exhaust chamber, to
simulate worst case of one operator working directly downstream of the other. Workspace air sampling

resulted in measurable quantities of total nuisance dusts, alkaline dusts, and elemental sodium, and

detectable quantities of calcium, zinc, aluminum, and chromium.

Measured concentrations of total dust were in excess of OSHA's Permissible Exposure Limit of

15 mg/cubic meter. The American Conference of Governmental Hygienists have a Threshold Limit Value

of l0 mg/cubic meter for exposure to total particulate matter. The concentrations of detectable metals did

not exceed any TLV or PEL standards. With these concentrations in mind, worker exposure limits are

negligible..As a comparison, air-supplied hoods can be usedin nuisance dust concentrations up to 375

rag/cubic meter. The half faced respirator with a protection factor of 10 can be used in an environment up

to 150 rag/cubic meter.

Analysis of the effluent included samples of the rinse water, sump suspension, filtered solids, and
filtered effluent. The Total Suspended Solids (TSS) in the sump suspension was 4,850 mg/I. This is

0.00485 kg of solids per liter. The liquid effluent from the process has a pH of about 8.9 and is high in

both alkalinity and total dissolved solids, indicating that the effluent contains primarily dissolved
NaHCO3. Results indicated that the NaHCO3 concentration in the effluent was no higher than 15 g/l,

well below its solubility limit of 96 g/l. The effluent contained, on the average, 50 mg/I suspended solids

and had a low content of metals and other contaminants.

The solid material collected in the filter sock had a high oil and grease content as well as a high

metals content. The concentrations of antimony, cadmium, chromium, lead, and zinc were sufficiently

high that the waster would be classified as hazardous. Less than 1% of the solids in the sock was spent

blast material.

To summarize the results of the effects of the bicarbonate of soda stripping process as an

alternative paint removal process, utilizing the process parameters developed by this program; it exhibits

minimal blast imparted substrate damage. The major exception being that this process tended to erode

cladding on the aluminum at higher than preferred rates. The production stripping rate associated with

the test panels was only 0.3 sf/min however, in normal production coating removal, rates in excess of I
sf/min are common. Bicarbonate of soda is s viable alternative for paint stripping as well as a great

carbon remover, degreaser, and overall cleaning agent.

We currently utilize the process to remove carbon from F100 engine nozzles and gas turbine

engine deswirlers, depainting of fiberglass and fiberglass/aluminum panels as off the T-38 aircraft or

TF39 engine, and depainting of fighter aircraft accessories, all resulting in considerable savings in time
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andmaterials. The bicarbonate of soda blasting process has successfully demonstrated that it cleans

surfaces in preparation for welding operation significantly better that previous nitric acid processes and

has proven to be very effective on cleaning and depainting aircraft wheels, struts, reverse thrusters, and

brakes. The process has performed very well for us and, depending upon the application, could work very

well as an alternative to chemicals in any industrial operation.
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