SeaWiFS Technical Report Series
Stanford B. Hooker, Editor
Goddard Space Flight Center
Greenbelt, Maryland

Elaine R. Firestone, Technical Editor
General Sciences Corporation
Laurel, Maryland

Volume 24, SeaWiFS Technical Report Series
Cumulative Index: Volumes 1–23

Elaine R. Firestone
General Sciences Corporation
Laurel, Maryland

Stanford B. Hooker
NASA Goddard Space Flight Center
Greenbelt, Maryland
E.R. Firestone and S.B. Hooker

ABSTRACT

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS is expected to be launched in 1995, on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC), has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the SeaWiFS Technical Report Series, is in the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 23 volumes and consists of 6 sections including: an errata, an addendum (summaries of various SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops, and other auxiliary information), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors' intention to publish a cumulative index of this type after every five volumes in the series. Each index covers the topics published in all previous editions, that is, each new index will include all of the information contained in the preceding indices.

1. INTRODUCTION

This is the fourth in a series of indices, published as a separate volume in the Sea-viewing Wide Field-of-view (SeaWiFS) Technical Report Series, and covers information found in the first 23 volumes of the series. The Report Series is written under the National Aeronautics and Space Administration's (NASA) Technical Memorandum (TM) Number 104566. The volume numbers, authors, and titles are as follows:

Vol. 7: M. Darzi, *Cloud Screening for Polar Orbiting Visible and IR Satellite Sensors*.

Vol. 21: Acker, J.G., *The Heritage of SeaWiFS: A Retrospective on the CZCS NIMBUS Experiment Team (NET) Program*.

This volume within the series serves as a reference, or guidebook, to the aforementioned volumes. It consists of the four main sections included with the first two indices published, Volumes 6 and 12, in the series: a cumulative index to key words and phrases, a glossary of acronyms, a list of symbols used, and a bibliography of all references cited in the series. In addition, as in Volumes 12 and 18, errata and addenda sections have been added to address issues and needed corrections that have come to the editors’ attention since the volumes were first published.

The nomenclature of the index is a familiar one, in the sense that it is a sequence of alphabetical entries, but it utilizes a unique format since multiple volumes are involved. Unless indicated otherwise, the index entries refer to some aspect of the SeaWiFS instrument or project, for example, the mission overview index entry refers to an overview of the SeaWiFS mission. An index entry is composed of a keyword or phrase followed by an entry field that directs the reader to the possible locations where a discussion of the keyword can be found. The entry field is normally made up of a volume identifier shown in bold face, followed by a pages identifier, which is always enclosed in parentheses:

keyword, volume(pages).

If an entry is the subject of an entire volume, the volume field is shown in slanted type without a page field:

keyword, Vol. #.

An entry can also be the subject of a complete chapter, as in Volumes 13 and 19 (to name a few). In this instance, both the volume number and chapter number appear without a page field:

keyword, Vol. # ch. #.

Figures or tables that provide particularly important summary information are also indicated as separate entries in the page field. In this case, the figure or table number is given with the page number on which it appears.

2. ERRATA

1. In Volume 23, Table 1, the headers entitled *Radiance* and *Counts* should be switched.

3. ADDENDA

This section presents a summary of the Fifth SeaWiFS Bio-optical Algorithm and Optical Protocols Workshop (BAOPW-5) held on 21 February 1995 at the Rosenstiel School of Marine and Atmospheric Sciences in Miami, Florida; submitted by C. McClain.

The primary workshop objectives were to:

1. finalize the initial operational SeaWiFS pigment, \(K(490) \), and chlorophyll \(a \) algorithms;
2. review the field programs and bio-optical data sets; and
3. discuss proposed changes in standard data products.

The team members and invited guests are listed in Table 1.

Table 1. Team members and invited guests to the BAOPW-5, held 21 February, 1995 at the Rosenstiel School of Marine and Atmospheric Sciences (RS-MAS) in Miami, Florida. The subgroup memberships are as listed in Hooker et al. (1993). Attendees are identified with a checkmark (✓).

<table>
<thead>
<tr>
<th>Team Members</th>
<th>Present</th>
<th>Team Members</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Aiken</td>
<td>✓</td>
<td>O. Kopelevich</td>
<td>✓</td>
</tr>
<tr>
<td>(G. Moore)</td>
<td></td>
<td>M. Lewis</td>
<td></td>
</tr>
<tr>
<td>W. Balch</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>K. Carder</td>
<td>✓</td>
<td>G. Mitchell</td>
<td>✓</td>
</tr>
<tr>
<td>D. Clark</td>
<td>✓</td>
<td>A. Morel</td>
<td>✓</td>
</tr>
<tr>
<td>G. Cota</td>
<td>✓</td>
<td>J. Mueller</td>
<td>✓</td>
</tr>
<tr>
<td>C. Davis</td>
<td>✓</td>
<td>F. Muller-</td>
<td>✓</td>
</tr>
<tr>
<td>R. Doerffer</td>
<td>✓</td>
<td>Karger</td>
<td>✓</td>
</tr>
<tr>
<td>W. Esaias</td>
<td>✓</td>
<td>D. Siegel</td>
<td>✓</td>
</tr>
<tr>
<td>H. Gordon</td>
<td>✓</td>
<td>R. Smith</td>
<td>✓</td>
</tr>
<tr>
<td>F. Hoge</td>
<td>✓</td>
<td>C. Trees</td>
<td>✓</td>
</tr>
<tr>
<td>S. Hooker</td>
<td>✓</td>
<td>C. Yentsch</td>
<td>✓</td>
</tr>
<tr>
<td>D. Kamykowski</td>
<td>✓</td>
<td>J. Yoder</td>
<td>✓</td>
</tr>
<tr>
<td>M. Kishino</td>
<td>✓</td>
<td>R. Zaneveld</td>
<td>✓</td>
</tr>
</tbody>
</table>

Other Attendees

- R. Arnone ✓
- J. Campbell ✓
- R. Evans ✓
- R. Frouin ✓
- H. Fukushima ✓

S. Gallegos ✓
S. Hawes ✓
N. Maynard ✓
J. Morrow ✓
3.1 BAOPW-5

1. Introduction (C. McClain):
 A. Workshop Objectives and Agenda
 B. Review of Action Items from the November Workshop
 C. SeaStar/SeaWiFS Update

2. Data Set Development for Algorithm Evaluation (J. Campbell): At the last bio-optical algorithm workshop in November, it was agreed that investigators would submit data for the verification of certain components of the operational chlorophyll algorithm, as well as evaluate the final chlorophyll retrievals. Campbell agreed to be the point of contact for the data submissions and will provide a status report. She gave a brief summary of what she personally has received others have sent data directly to the SeaWiFS Bio-Optical Archive and Storage System (SeaBASS). She received data from A. Bricaud, C. Yentsch, and M. Kishino. She will provide these data to the SeaWiFS Project after some editing and reformatting. Also, permission is being sought to release Bricaud’s data to the SeaBASS archive.

3. Operational Chlorophyll a Algorithm (K. Carder): Only minor modifications have been made to the algorithm since the November 1994 meeting. Preliminary analyses of Arabian Sea data and results from airborne oceanographic lidar (AOL) data obtained from the Mid-Atlantic Bight compare well with the algorithm. Initial analyses of California Cooperative Fisheries Institute (CalCoFI) data, by G. Mitchell, indicate that the algorithm underestimates chlorophyll by a factor of 2-5. Mitchell’s analysis, however, was based on the ratios of subsurface upwelling radiance to subsurface downwelling irradiance and not remote sensing reflectances. D. Siegel made a recommendation that should improve the chlorophyll retrieval at low concentrations and will provide the details to Carder later.

4. CZCS Pigment Algorithm (G. Moore): At the November workshop, G. Moore presented a draft document for the bio-optics group to review and made a recommendation on a radiance ratio algorithm. The group suggested that the algorithm should include a band ratio in the green. Moore has incorporated this suggestion and others and has submitted a revised version of the document to the SeaWiFS Project for publication in the SeaWiFS Technical Report Series.

5. K(490) Algorithm (J. Mueller): The results of Mueller’s analysis of the effect of the 5 nm shift in the 555 nm SeaWiFS band from the 550 nm CZCS band indicates the effect is small and that no change in the prelaunch algorithm [the Austin-Petzold CZCS K(490) algorithm] is required. The analysis was based on 44 optical profiles provided by C. Trees, D. Siegel, and G. Mitchell.

6. Final Results from the First Data Analysis Round-Robin (DARR-1) (D. Siegel): Siegel reviewed the results of the first data analysis round-robin, which had not changed since the November meeting. For Case-1 water, all the methods worked equally well below 600 nm, but diverged in the near-infrared. Turbid water cases were not considered. The summary document has also been submitted to the SeaWiFS Project for publication in the series.

7. Second Data Analysis Round-Robin (DARR-2) Planning (D. Siegel): Two topics of interest were discussed, turbid water and the extrapolation of values to the surface from observations at discrete levels only as is the case for moorings and drifters. C. Davis volunteered to hold a workshop to discuss measurement protocols for Case-2 waters, but thought it was premature to hold a data analysis round-robin. D. Clark volunteered to host DARR-2 to evaluate the analysis issue associated with moorings and drifters. The dates for these events will not be scheduled until the SeaWiFS launch schedule is clarified in April.

8. 18-Month Time Series of MER-2040/2041 Calibration (G. Mitchell): The time series of the Scripps Photobiology Group’s MER-2040/2041 instrument calibration for 18 months was presented. During this time, radiometric calibrations at Biospherical Instruments, Inc. (BSI) and the San Diego State University (SDSU) Center for Hydro-Optics and Remote Sensing (CHORS) have been completed with both integrating spheres and reflectance plaques at each facility (total of three separate spheres and three separate plaques). Immersion coefficients have been determined as well. The CHORS and BSI calibrations are in good agreement for most wavelengths. The calibrations are particularly consistent over the past three calibrations, the UV bands being a notable exception. These results are tangible evidence that the calibration round-robin analyses are helping to improve the reliability, consistency, and traceability of the ocean color community’s instrument calibrations.

9. Protocol for Determining Algorithm Accuracy (J. Campbell): In reporting the accuracy of a model or algorithm, it is important to distinguish between systematic errors and random errors. A statement such as “This algorithm is accurate to within 30%,” is very ambiguous. It says nothing about whether errors are random or systematic, and whether the range is 1 or 3σ. A protocol is presented here for determining the accuracy of an algorithm, and for testing and reporting both systematic and random errors. Campbell distributed a document describing the protocol and analysis based on the CZCS NET algorithm data set.

10. Band-to-Band Correlation Analysis (J. Mueller): The issue of instrumental band center wavelength differences was discussed at the May 1994 workshop (Firestone and Hooker 1995) and remains unresolved. Mueller has performed further empirical orthogonal function
(EOF) analyses on the NET data from D. Clark. The analysis showed that in order to obtain a meaningful result, the radiances had to be extrapolated to a common depth, e.g., the surface. For the irradiance fields, the variance was contained in the first few EOFs, but for upwelling radiances, a large number were required. His conclusion was that the data was too noisy for this analysis and that more recent data from higher quality spectrometers should be used. Such data exists from a number of sources and he will pursue this work further.

11. Field Program Reports: The intent of these reports is not to present results, but activities. Updates should review recent and future cruise plans, numbers of stations, data collected, status of analysis and data delivery to the SeaWiFS Project, etc. Each presentation should be no longer than 15 minutes.

A. Bermuda Bio-Optical Time Series (D. Siegel): The bio-optical data collection will continue until at least December 1995. After that time, Siegel is unclear how the time-series will be supported. It appears unlikely, at this time, that the National Science Foundation (NSF) will support the program in fiscal year (FY) 1996 and he is not optimistic about NSF support in FY97.

B. CalCoFI Bio-Optical Data Set (G. Mitchell): Mitchell has cruises planned in April, July, and October 1995. During each cruise, about 70 bio-optical stations will be taken.

C. Navy Field Program Update (C. Davis): The Navy, NASA, and NSF will support a total of eight cruises with optics in the Arabian Sea. During the last cruise, much of the time was spent towing an instrument array. Nonetheless, 20 bio-optical stations were collected. Their bio-optical measurement suite included radiometer profiles, remote sensing reflectance measurements, and Q measurements.

D. United Kingdom Field Program Update (G. Moore): The British have a fair number of cruises scheduled for 1995 and 1996. Of particular interest is the Antarctic Survey's transects of the Atlantic during May and September of each year. These cruises have many berths available and will stop daily for bio-optical casts (2 hours maximum station time). The Falkland Islands would be the point of departure for the September leg and the point of embarkation for the May leg.

E. Japanese Field Program Update (M. Kishino): The Japanese have an impressive manifest of bio-optical cruises scheduled in the Pacific (from the Bering Sea to Antarctica) during 1995 and 1996. (The manifest is too long to recite here.) The Yamato Bank Optical Mooring (YBOM) will be deployed during April–July 1996 [Ocean Color Temperature Sensor (OCTS) check-out] and again in September 1996 after refurbishment. YBOM will be in a year-long cycle whereby it will be in the water for nine months, and then out of the water for three months, for refurbishment.

F. German Field Program Update (R. Doerffer): The Germans will be in the Arabian Sea during July and will collect in-water bio-optical and remote sensing reflectance data. Doerffer described the Picasso Program proposal to put four optical platforms in place. Picasso participants include the Joint Research Center (JRC) and the British. The platform sites are the northern Adriatic, Baltic, and North Seas.

12. Proposed Scheme for Variable Quality Level-3 Products (R. Evans): Evans described his proposal for incorporating variable quality data into the level-3 products. The scheme allows for level-2 data, which is deemed less accurate or reliable, to be binned when no higher quality data is available for a particular binning cell. The scheme can be applied in either space or time binning. Before the scheme can be accepted, the Science Working Group (SWG) must approve it. The bio-optics group voice general support for the concept. A more detailed description will be circulated to the SWG for comment.

13. Proposed Revisions in the Level-3 Products (C. McClain): The present set of quality masks and flags used as exclusion criteria in the level-3 binning process are defined so as to yield high quality pigment and \(K(490)\) level-3 products; all other parameters binned in the level-3 product are subject to the same criteria. At the present time, there is only one level-3 product containing several binned quantities. As a result, the level-3 product eliminates useful information on some quantities of interest, e.g., coccolithophore blooms and high aerosol radiances. Defining additional level-3 products, using exclusion criteria appropriate to each product while eliminating parameters of limited utility from the present level-3 product, would extend the applications for SeaWiFS, but not substantially increase the number of data granules or volumes submitted to the Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC). Examples of this might be a pigment product, a coccolithophore product, or an aerosol product. The bio-optics group endorsed the idea of smaller, but more numerous level-3 products and McClain will circulate a strawman to the SWG for comment.

3.1.1 Action Items

The following are the action items, and people responsible for them, that arose from the meeting.
1. J. Campbell will submit the Bricaud and Morel absorption data and the Yentsch pigment data to the SeaWiFS Project for inclusion in the SeaBASS database.
2. K. Carder will submit the data set he is using for the chlorophyll algorithm.
3. D. Clark will organize and host DARR-2.
4. C. Davis will organize and host a workshop on turbid Case-2 data collection and analysis.
5. D. Siegel will work with K. Carder on a modification to the chlorophyll a algorithm to improve estimates at low values.
6. J. Mueller will pursue higher quality spectral data for the EOF analysis. Possible sources of this are D. Clark and C. Davis.
7. C. McClain and R. Evans will draft strawmen proposals for revisions in the level-3 products. These will be circulated together for comment by the SWG.
CUMULATIVE INDEX

Unless indicated otherwise, the index entries that follow refer to some aspect of the SeaWiFS instrument or project. For example, the mission overview index entry refers to an overview of the SeaWiFS mission.

- A -

absorption study:
 - pressure and oxygen, 13(ch. 3).

absorption correction, 13(19-20).

acceptance report:
 - prelaunch, see SeaWiFS instrument.

addenda, 12(3-8); 18(3-22).

Advanced Very High Resolution Radiometer, see AVHRR.

aerosol models, 8(17).

airborne spectral radiometry, 5(7-8).

aircraft calibration technique, 3(Fig. 19 p. 27).

algorithms, 1(3, 17); 4(2).

atmospheric correction, 1(19); 3(1, 4, 9, 27); 17(16); 18(11-12); 21(19-20).

bio-optical. Vol. 5; 12(3-5); 20(ch. 3).

data, 9(1), 12(3-4).

database development, 3(28).

derived products, 3(27-28); 13(1).

development, 1(5); 3(23, 27-35, Fig. 22 p. 33); 5(Table 4 p. 11); 8(4, 10).

field studies, 3(30-32, Fig. 22 p. 33, 34-35).

input values, 13(Table 16 p. 44).

linearity and stability, 5(12).

optical measurements, Vol. 5.

pigment, 3(28, 29); 8(24); 13(1, 12); 18(3, 4, 14).

validation of, 1(3); 8(16, Table 4 p. 21).

see also bio-optical, algorithm.

see also GAC.

see also Protocols Workshop.

along-track, 3(38).

see also propagation model.

ancillary:
 - data climatologies, 13(2, ch. 7, and Plates 16-18).

 - data sets, 8(7); 15(7); 19(ch. 6, ch. 7).

 - measurements, 5(8, 9, 20, 27-28, 30, 33).

 - see also data, ancillary.

animation:
 - meteorological data sets, 13(41-42).

 - ozone data sets, 13(41-42).

ascending node, Vol. 2.

 - computation methods, 2(1-2).

 - tilt strategy, 2(Table 1 p. 2).

atmospheric conditions, 9(6-7).

atmospheric contributions, 9(4-6).

atmospheric correction, 1(3, 5, 7); 3(1, 2, Fig. 4 p. 5, 8, 13, 23, 24, 27, 28-29, 31, 32-34); 4(1); 5(1, 3, 6, 7, 10, 13); 8(4, 6, 7, 26-27, 30-31, 36-37, 42); 14(1); 17(6, 16); 18(13); 19(ch. I, Fig. 1 p. 11); 21(19-20).

subgroup, 18(11-12).

atmospheric correction cont.

see also algorithms, atmospheric correction.

atmospheric measurements, 5(2, 28-29).

at-satellite radiances, 15(7-13, Table 10 p. 11).

AVHRR:
 - deriving vegetation index, 7(2).

 - GAC data, 7(3-4).

 - LAC data, 7(2-4).

 - LDTNLR test, 7(4).

 - nighttime IR data, 7(5).

 - thermal IR channels, 7(1).

azimuth:
 - angles at equinox, 2(2, 10, 16).

 - angles at solstice, 2(Fig. 5 p. 7, 10, 16).

 - satellite angle, 13(46).

 - solar angle, 2(2, 16); 7(1); 13(Table 11 p. 29, 46).

 - spacecraft angle, 2(2, Fig. 6 p. 8, 16); 13(Table 11 p. 29).

 - relative angle, 2(2, Fig. 7 p. 9, 10, Fig. 10 p. 13, 16).

- B -

baselines, 8(6-13).

 - algorithms, 8(6-7).

 - ancillary data, 8(7).

 - data archive and delivery, 8(9-10).

 - data for bio-optical algorithms, 8(10).

 - data for vicarious calibration, 8(10-11).

 - data processing and software, 8(8-9).

 - data products, 8(12-13).

 - data quality and acceptance, 8(7-8).

 - detector failure contingency, 8(11).

 - equator crossing contingency, 8(12).

 - ground station support, 8(11).

 - in situ data policy, 8(13).

 - launch slip contingency, 8(11).

 - level-2 masks and flags, 18(Table 9 p. 18).

 - level-2 products, 18(Table 7 p. 17).

 - level-3 binned products, 18(Table 8 p. 17).

 - level-3 binning, 8(8, 16).

 - loss of tilt contingency, 8(11).

 - navigation accuracy contingency, 8(11).

 - optical protocols, 8(12).

 - orbit contingency, 8(12).

 - orbital altitude contingency, 8(11).

 - power limitation contingency, 8(11).

 - products, 3(27-28); 5(1).

 - real-time data access, 8(12).

 - recommendations, 8(13-19).

 - revised product list, 18(16-18).

 - see also data.

basin-scale processes, 1(4, 6-7).

biogeochemical, 1(2, 19); 8(1).

 - properties, 5(6-7).

see also Science Team Meeting, Abstracts.

bio-optical:
 - algorithm working group members, 8(Table 1 p. 14); 12(Table 1 p. 3, 3); 18(Table 1 p. 3, Table 5 p. 12, Table 6 p. 14).
bio-optical cont.

Algorithm Workshop, 12(3-5, 6-8); 18(3-7, 12-16, 10).

algorithms, 1(19); 3(1-2, 6, 8, 11-12, 13, 16, 23, 28-29, Figs. 20 p. 29, 29, 30-31, 32, Fig. 22 p. 33, 34); 4(3); Vol. 5; 8(6, 10); 13(27).

data 12(Table 2 p. 4).
data set, 3(8, 13, 16, 29, 30); 18(4, Table 2 p. 5).
data system 20(ch. 2).

see also algorithm.

see also algorithm development.

bio-optics, 1(3, 5, 7, 19); 8(10).

algorithm, 13(1, ch. 1, 27).

bright target recovery, 15(Fig. 8 p. 15).

Brouwer-Lyddane model, 11(2-5, 11, 15-16, Figs. 5-8 pp. 8-9, Fig. 13 p. 12); 15(2-3).

see also models.

buoy:

see MOBY.

see optical buoy.

see optical mooring.

— C —

calibration, 5(2); 10(Tables 1-2 p. 4, Fig. 3 p. 6, Fig. 20 p. 23, Fig. 21 p. 24); Vol. 14; Vol. 16.

background on, 10(2-3).

equations, 23(8-14, 18).

experiment, 19(Fig. 14 p. 29; Table 16 p. 30, Figs. 15-17 pp. 31-32).

initialization, 5(4-6).

in situ instruments, 14(2).

lunar, 1(11, 18); 5(Fig. 15 p. 22); 10(1-3, 7, 10, Table 3 p. 10, Fig. 9 p. 11, Figs. 12-15 pp. 14-17, Fig. 16 p. 20, Fig. 19 p. 22, Table 4-5 p. 19, 25); 15(Fig. 2 p. 5, Table 5 p. 7, Figs. 22-23 pp. 34-35).

on board, 3(21); 5(2-3); 10(1-2).

pigment, 5(24).

preflight solar-based, 19(ch. 3).

quality control, 10(25).

round-robin, 8(4, 17, Table 4 p. 21); Vol. 14; Vol. 16; 18(3, 9, 13-14, 15).

sensor, 1(11); 5(2-3); 17(2, 3).

solar, 1(11, 18); 3(24); 10(1-7, Fig. 2 p. 5, Fig. 4 p. 6, Figs. 5-8 pp. 8-9, Figs. 10-11 pp. 12-13, 18); 15(Fig. 3 p. 6, Table 5 p. 7, Fig. 20 p. 32).

solar diffuser, 10(3-5, 7); 23(10).

spectral, 5(24).

sphere test, 14(Fig. B2 p. 48, Table B2 p. 49).

subgroup meeting, 18(11).

sun photometers, 5(24).

system test, 14(Fig. B1 p. 48).

trend analysis, 10(25).

vicarious, 5(2-4); 8(10-11).

working group members, 8(Table 1 p. 14).

see also calibration and validation.

see also round-robin.

see also SeaStar.

see also SIRREX.

calibration cont.

see also sphere.

calibration and validation, 1(3, 8, 14, 18-22); Vol. 3; 17(3, 5-6, 10-14, 15).

baselines, 3(17); 8(3).

cruises, 17(15-17).

field deployment, 8(17, Table 2 p. 18, Table 4 p. 20); 18(Fig. 1 p. 6).
on board, 3(21-23).

post-launch, 3(23-27).
prelaunch program, 3(17-21).

program milestones, 3(Fig. 12 p. 14).

program schematic, 3(Fig. 11 p. 14).
team (CVT), 13(1).

see also baselines.

see also calibration.

see also CVT.

see also initialization.

see also round-robins.

CDF, 13(35, Table 14 p. 36); 19(ch. 5).

characterization:

collector cosine response, 5(18-19).

immersion factors, 5(19-20).

pressure effects, 5(21).

radiance field-of-view, 5(18).

radiometric, 5(15-17).

spectral bandpass, 5(15).

temperature, 5(20-21).

temporal response, 5(17).

chlorophyll concentration, 1(4-5, 15); 3(27, 34); 4(2); 7(1); 8(14, 24, 30, 36); 9(1, 3, 9); 14(1); 15(7); 17(2, 5); 19

(Fig. 7 p. 17, Fig. 11 p. 20).

climatology generation, 13(40-41).

cloud detection, 7(1, 5).

MODIS, 7(1).

see also MODIS-N.

cloud screening, Vol. 7.
determining thresholds, 7(2-3).
direct thresholds, 7(1-4).
evaluating methods, 7(5-6).
more complex methods, 7(4-5).
spatial coherence, 7(3-4).

see also AVHRR GAC data.

COADS:

data, 13(Plates 16-18).
time series, 13(36-40).

Coastal Zone Color Scanner, see CZCS.

command:
schedules, 15(3-7, Table 3 p. 4, Table 4 p. 6).

sequence, 15(Tables 7-8 p. 11).
commercial applications, 1(7).

Common Data Format, see CDF.

Comprehensive Ocean-Atmosphere Data Set, see COADS.

contingencies:
detector failure, 8(11).
contingencies cont.
- equator crossing, 8(12).
- launch slip, 8(11).
- loss of tilt, 8(11).
- navigation accuracy, 8(11).
- orbit, 8(12).
- orbital altitude, 8(11).
- power limitation, 8(11).
- correction study:
 - pressure and oxygen, 13(ch. 4).
- cross-track, see propagation model.
- cross-track scan, see SeaWiFS instrument.
- cumulative:
 - index, 6(1–3); 12(9–13); 18(23–28).
 - CVT, 13(1).
 - CZCS, 1(1, 5, 6–7, 19); 3(1).
 - algorithms, 3(1–11, 23); 13(ch. 1); 19(ch. 1).
 - application of data, 9(7–9).
 - calibration and validation, 17(10–11).
 - channels, 7(1, 5).
 - data collection, 3(6, Fig. 5 p. 15, 21, 30), 7(1).
 - global sampling, 3(Fig. 9 p. 10).
 - level-2 products, 4(1).
 - level-2 processing parameters, 4(Table 2 p. 2).
 - modeling compared to SeaWiFS, 3(Fig. 4 p. 5).
 - orbit, 3(2).
 - overlapping scenes study, 13(ch. 5).
 - parameters and characteristics, 1(Table 2 p. 5), 3(Table 1 p. 1).
 - pigment algorithm, 13(Tables 1–13 p. 31).
 - pigment concentration, 1(5–6); 3(1–2, 8, 27); 13(1, 2, ch. 1, Figs. 1–5 pp. 5–8, 9, Figs. 8–9 p. 11, 15, Figs. 14–16 pp. 17–18, 22, Figs. 18–19 p. 26, Fig. 20 p. 28, Table 10 p. 29, ch. 5, Table 18 p. 45, and Plates: 1–14, and 19–20); 17(6–7).
 - quality control, 3(Fig. 7 p. 8, Fig. 8 p. 9, 32, 35).
 - ringing mask comparison, 13(2, ch. 8, and Plate 19).
 - sensor, 1(5); 3(8).
 - sensor degradation, 3(23).
 - time of launch, 2(1).
 - vicarious calibration, 3(Fig. 6 p. 7, 11, 23, 24–27); 5(3–4).
 - see also bio-optical, algorithms.
 - see also NET.

-D-

dark level, see SeaWiFS instrument.

-data:
 - access of, 8(12); 17(17).
 - acquisition, 19(21–22).
 - ancillary, 3(24, 35); 5(3); 7(5); 8(7); 13(2, Fig. 23 p. 36); 19(ch. 6, ch. 7).
 - archive and delivery, 5(2); 8(9–10).
 - collection, 3(24); 8(4).
 - distribution, 1(16); 8(2, 4, 16, 17).
 - format, 3(32); 8(43–44); 12(5); 15(16–20, Fig. 9 p. 17); 19(ch. 5).
 - interpolation, 13(22).

-data cont.
 - management, 1(3, 11–18); 3(32).
 - policy, 3(37–38); 8(13, Table 4 p. 21, 41–42).
 - processing, 1(3, Fig. 2 p. 4, 11–16, Fig. 10 p. 20, 22); 3(13, 32); 7(5); 8(4, 8–9); 13(16, 21, 35); 17(3); 20(17–18).
 - products, 4(20); 8(8, 12–13, 15–17, Table 4 pp. 20–21, 42–43); 15(2).
 - quality and acceptance, 8(7–8).
 - requirements, 5(4–6).
 - standard format, 19(ch. 5).
 - subsampling, 4(1).
 - system, 17(3–4, 12–14); 20(ch. 2).
 - using SEAPAK with, 4(1–2).

-data sets, 1(3); 5(3–4, 6, 8, 14, 33, 34, 35); 8(23, 33); Vol. 9; Vol. 15; 17(2, 5).

- E-

EOS-Color, 17(3, 9–10, 11, 13–17).
EOSDIS, 17(3, 13, 17).
equator crossing time, 2(10, 16); 9(Tables 6–7 p. 9).
equinox:
 - see azimuth.
 - see sun glint.
 - see zenith.
errata, 12(2); 18(2–3).

-F-

field deployment, see calibration and validation.
field-of-view, see SeaWiFS instrument.
field program, 18(5, 15).
field program cont.
 computing network, 3(Fig. 21 p. 31).
 instrumentation, 3(34–35).
filter radiometer, 14(Table B9 p. 56).
flags, 18(4–5).
 algorithm, 8(3, 4, 17).
 level-2, 18(Table 9 p. 18).
 level-2 processing, 8(7); 12(4, Table 3 p. 4).
format:
 conventions, 20(4–5).
 standard data, 8(15); 19(ch. 5).
-G-
GAC, 1(3, 16); 15(4); 17(5, 12).
 algorithms, Vol. 4.
AVHRR data, 7(3).
generation mechanisms, 4(Table 1 p. 1).
generation methods, Vol. 4.
resolution, 4(Plates 1–8).
sampling techniques, Vol. 4.
 see also AVHRR.
geometry, 2(1).
 derived parameters, 2(1).
 solar, 2(1, 10, 16).
 sun glint, 2(1).
 viewing, 2(1, 10, 16).
 see also azimuth.
 see also zenith.
glint correction, 3(23); 8(17); 19(ch. 1, Fig. 1 p. 11).
 see also sun glint.
global area coverage, see GAC.
global-scale processes, 1(6–7).
glossary:
 cumulative, 6(3–5); 12(14–17); 18(29–33).
ground coverage, 2(2, Fig. 1 p. 3).
ground station support, 8(11).
ground systems and support, 1(14–15).
-H-
Hierarchical Data Format, see HDF.
HDF, 8(7, 8, 9, 10, 11, 15); 13(ch. 7); 19(ch. 5).
HRPT:
 data, 1(14, 19); 8(8–9, 19); 15(2, 4, 27, Figs. 24–27 pp. 36–39,
 and Plates 4–6).
policies, 8(17, Table 4 p. 20).
-I-
index, Vol. 6; Vol. 12; Vol. 18.
infrared radiometers, 7(1).
initialization, 5(4–6, Table 1 p. 5).
sampling, 5(31–32).
tercalibration, Vol. 14; Vol. 16.
data archive 14(56–57, Tables C1 and C2 p. 57).
sources, 14(Table 1 p. 4).
-J, K-
joint commercial aspects, 1(8).
-L-
LAC, 1(3).
data, 1(8, 11); 15(2, 4, 27, Figs. 16–19 pp. 28–31, and Plate 3).
lamps, Vol. 14; Vol. 16.
apparent drift, 14(Fig. 6 p. 13).
calibration setup, 14(Fig. B7 p. 53).
GSFC reference, 14(Table 3 p. 12).
irradiance, 14(Fig. B4 p. 50, Table B5 p. 52, Fig. B8 p. 53,
 Table B7 p. 55).
operating currents, 14(Table 8 p. 28).
standards, 16(3–23).
 see also calibration.
 see also spectral irradiance.
 see also spectral radiances.
 see also sphere.
 see also transfer.
look-up tables, 8(4); 19(5–9).
lunar observations, Vol. 10.
lunar reflectance, 3(23); 10(2–3, 7–25); 19(ch. 2); 23(9).
-M-
marine optical buoy:
 see MOBY.
 see optical buoy.
mask, 18(4–5).
 algorithm, 8(3, 4, 17).
 level-2, 18(Table 9 p. 18).
 level-2 processing, 3(6); 8(7); 12(4, Table 3 p. 4).
 Miami edge, 13(29).
 see also sun glint.
measurement protocols, 5(26–33).
meeting agenda, see Science Team Meeting.
mesoscale processes, 1(6).
Miami edge mask, 13(29).
mission:
 operations, 1(14–18); 11(1–2, 15).
 overlap, 17(12).
 overview, Vol. 1; 8(1).
MOBY, 1(3); 8(3, 4).
 review attendees, 18(Table 4 p. 10).
 review summary, 18(9–11).
 system schematic, 3(Fig. 17 p. 25).
 see also optical buoy.
 see also optical mooring.
modeling, 10(1, 10, 18, 25).
models:
aerosol, 19(5–7, Tables 1–2 p. 6, Fig. 6 p. 17).
chlorophyll concentration, 19(Fig. 7 p. 17, Fig. 11 p. 20).
orbital prediction, 1(17).
 see also Brouwer-Lyddane models.
 see also modeling.
 see also perturbation models.
SeaWiFS Technical Report Series Cumulative Index: Volumes 1–23

models cont.
see also propagation models.
MODIS or MODIS-N, 1(19); 17(3, 5, 6–7, 8, 11, 13–15).
instrument characteristics, 3(Table 4 p. 12).
presentations, 8(3–5).
modulation transfer function, see SeaWiFS instrument, MTF.

— N —
navigation, 8(11); 9(4); 11(2); 15(3).
of pixels, 9(4).
NET, 3(2, Figs. 1–3 pp. 2–4, 23, 27, 28, 29–30); 8(16); 12(4);
Vol. 21.
areas of responsibility, 21(2–3).
atmospheric correction algorithm, 21(19–20).
chronology of events, 21(3–11).
pigment algorithm, 3(Fig. 3 p. 3, Fig. 20 p. 29).
research methods, 21(11, 16, 19).
sea-truth program, 21(11, Fig. 1 p. 12, Tables 2–6 pp. 13–14, Figs. 2–6 pp. 15–18).
teammembers, 21(Table 1 p. 3).

— O —
ocean color, 1(1–4, 8, 10); 8(1–3, 22–43); 13(1, ch. 4); Vol. 17.
future missions, 3(Fig. 10 p. 12).
requirements, 1(2).
see also algorithm development.
ocean optics protocols, Vol. 5; 8(12, 14–15, Table 4 p. 20).
see also Protocols Workshop.
OCTS, 1(2); 3(11); 17(4, 10, 13, 17).
instrument characteristics, 3(Table 3 p. 11).
operational applications, 1(7–8).
optical buoy, 3(Fig. 17 p. 25).
drifting, 5(9, 31).
mooring, 3(Fig. 18 p. 26); 5(8, 30–31).
see also MOBY.
optical instruments, Vol. 5; 10(Figs. 17–19 pp. 21–22).
optical measurements, 5(1).
accuracy specifications, 5(9–15).
analysis methods, 5(33–39).
science community, role of, 5(3).
sensor characterization, 5(15–25, Tables 2–4 pp. 10–11).
see also MOBY.
see also optical buoy.
optical thickness, 8(17); 19(5, 7, Tables 3–4 p. 7, Tables 8–11 p. 10).
Rayleigh, 3(34); 9(4–6, Table 4 p. 5); 13(ch. 3, ch. 4).
orbit, 3(23).
characteristics, 9(Table 2 p. 3).
contingency, 8(12).
distribution of local time, 2(Fig. 2 p. 4).
orbit cont.
downlink, 15(4, Table 3 p. 4).
parameters, 1(18); 2(2).
propagation, 15(3, Table 3 p. 3).
see also propagation model.
orbital:
altnitude contingency, 8(11).
characteristics, 9(1, Table 3 p. 3); 15(Table 1b p. 3).
elements, 11(2).
overview, Vol. 1.
see also index.
oxygen absorption band, 13(16, 19, Fig. 17 p. 19).

— P —
perturbations model:
general, 11(2–3).
special, 11(2).
photodetector measurements, 14(Table A1 p. 47).
pigment, 17(7).
algorithm, 3(28, 29); 8(24).
data, 9(2).
database, 20(ch. 3).
data sets, 20(18, Table 5 pp. 20–21, 21).
concentration, 1(Plates 1–5); 3(1, 2, 6, 8, 13, 23, 27, 28, 31–32, 35); 4(Table 1 p. 1, 2, Table 3 p. 3, Figs. 5–11 pp. 6–9, 20, and Plate 1–8); 5(2); 7(1); 8(4, 14, 24, 30, 36, 40); 13(ch. 2, ch. 3); 17(7, 11, 15–16).
mean, 13(Tabbes 1–2 p. 8).
values, 4(Fig. 26 p. 15, Figs. 31–33 pp. 18–19).
see also algorithm, pigment.
see also calibration.
see also CZCS, pigment concentration.

— P —
pixel size, 3(Fig. C1 p. 39).
Prelaunch Science Working Group, see SPSWG.
pressure:
surface, see surface pressure.
pressure and oxygen:
absorption study, 13(ch. 3).
correction study, 13(ch. 4, and Plates: 8, 10, and 12).
primary productivity, 1(1); 5(7); 8(1, 15, 22–41); 17(8–9).
working group members, 8(Table 1 p. 14).
proceedings:
Science Team Meeting, Vol. 8.
see also Science Team Meeting.
Project, 1(3); 3(1, 13, 16, 23–24, 32, 34, 38).
goals, 1(2–3).
s radiometric specifications, 3(36-37, Table A1)

radiometric profiles, 5(33-39).

radiometric calibration, 14(Table 9 pp. 29-30, Table 10 p. 31, Fig. 15 p. 32, Table 11 pp. 33-35, 44); 16(Table 6-7 pp. 37-44); 19(Figs. 2-6 pp. 14-15, 23).

calibration factors, 16(Fig. 18 p. 46).

output, 14(Table 12-14 pp. 38-41).

see also spectral radiance.
see also spectral radiance.

radiometer, see SeaWiFS instrument.

radiometric calibration, Vol. 23.

see also SeaWiFS instrument.

radiometric profiles, 5(33-39).

radiometric specifications, 3(36-37, Table A1 p. 36); 8(4).

references:
cumulative, 6(5-9); 12(21-28); 18(38-46).

CZCS data, 21(23-41).

reflectance:
gradients, 10(2-3); 19(Tables 6-7 p. 8, 8).

plaque, 5(15-17); 14(5, 31, 41); 16(111).

research:
applications, 1(3-5).

Cruises, 3(30-32).

round-robin, Vol. 14; Vol. 16.

calibration, 8(4, 17, Table 4 p. 21); 12(4).

protocols working group, 8(Table 1 p. 14); 18(Table 3 p. 7).

see also calibration, round-robin.
SeaWiFS instrument cont.
- MTF, 22(14, Tables 19–20 pp. 18–19).
- operations schedules, 1(17–18).
- out-of-band response, 22(8, Tables 8–11 pp. 10–11); 23(51, Table 14 p. 53).
- pointing knowledge, 22(24, 28).
- polarization, 22(12–14, Table 15 p. 13, Figs. 6–7 pp. 15–16).
- radiometric calibration, Vol. 23.
- scanner, 1(11, Fig. 7 p. 14).
- sensitivities, 1(5, Fig. 3 p. 6); 5(Table 4 p. 11, 14); 22(11–12, Table 14 p. 13).
- spectral bands, 1(11); 9(1, Table 1 p. 2).
- spectral characterization, Vol. 23.
- spectral differences, 22(8, 10).
- spectral response, 23(21–43).
- stability and repeatability, 22(28–29).
- stray light response, 23(2, 13).
- system level response, 23(43–51).
- telemetry parameters, 3(Table 8 p. 23).
- temperature factors, 23(18–21).
- testing and design, 22(1–2).
- test plan summary, 3(Table 6 pp. 19–20).
- vicarious calibration, 5(3–4, 33).
see also optical instruments.
see also solar diffuser.
sensor:
- calibration, 5(2–3).
- characterization, 5(15–25); 9(Table 2 p. 3); 15(13).
- CZCS, see CZCS.
- monitoring, 1(18).
- operations schedules, 1(17).
- ringing, 4(2).
- ringing mask, 13(2, 27, and Plate 19).
SeaWiFS, see SeaWiFS instrument.
- tilt, 15(Fig. 1 p. 5).
see also characterization.
see also CZCS, ring mask comparison.
see also SeaWiFS instrument.
see also solar diffuser.
ship shadow avoidance, 5(25–26).
shunt, 16(111–116).
s tests, 14(41–42).
SIRREX:
- database, 20(ch. 4).
- SBRC database, 20(ch. 5).
see also SIRREX-1.
see also SIRREX-2.
SIRREX-1, Vol. 14; 18(9).
- attendees, 14(57–58).
- equipment and tests, 14(Table B1 p. 49).
- participants, 14(Table 1 p. 4).
- validation process, 14(Fig. 1 p. 3).
SIRREX-2, Vol. 16; 18(9).
- attendees, 16(116–118).
SIRREX-2 cont.
- equipment and tests, 16(Table A1 p. 117).
- participants, 16(Table A1 p. 117).
SIRREX-3, 18(9, 13, 16).
solar diffuser, 3(11, 13, 21, 23, 24, 38); 5(2, 17, 19, 22); 8(13, 36); Vol. 10; 15(7, Table 8 p. 11, 27, Figs. 20–21 pp. 32–33; 17(13); 19(26–32, Figs. 11–12 p. 28); 23(9–10).
solar irradiance measurements, 3(Fig. 16 p. 22).
solar observations, Vol. 10.
see also calibration.
solstice:
see zenith.
spectral bands, 1(1–2); 5(Table 2 p. 10, 17); 9(1, Table 1 p. 2).
see also SeaWiFS instrument.
spectral characterization, Vol. 23.
see also SeaWiFS instrument.
spectral differences, see SeaWiFS instrument.
spectral irradiance, 5(13, 16, 25–27); 8(25); 14(Figs. 2–5 pp. 8–11, Figs. 7–14 pp. 20–27, Fig. 18 p. 43); 16(Figs. 2–5 pp. 6–9, Tables 1–5 pp. 10–23, Figs. 6–16 pp. 25–35); 19(7).
and radiance measurements, 3(2); 5(13, 16, 21–23, 25–27).
see calibration geometry, 14(Fig. B3 p. 50).
see also lamps.
spectral irradiance, 5(21–23, 25–27); 8(25); 14(Figs. 16–17 pp. 36–37, 45–47, Fig. A2 p. 46, 47, 52, 55–56); 19(ch. 4).
spectral reflectance, 5(37, 38); 8(27, 29, 30, 35, 49); 16(2–3, Table 20 pp. 112–113, Fig. 31 p. 114); 19(ch. 2).
BSI sphere, 16(62, Fig. 22 p. 73, Table 14 pp. 79–81).
CHORS sphere, 16(62, Figs. 23–27 pp. 74–78, Tables 15–16 pp. 82–90).
calibration, 14(Fig. A1 p. 46).
GSFC sphere, 16(36, Fig. 17 p. 45, Figs. 19–20 pp. 47–48, Tables 8–10 pp. 49–61, Fig. 21 p. 63, Tables 11–13 pp. 64–72, 118–119, Figs. C1 and C2 p. 119).
NOAA sphere, 16(81, Table 19 pp. 106–109, Fig. 30 p. 110).
UCSB sphere, 16(81, Table 17 pp. 91–95, Fig. 28 p. 96).
WPF sphere, 16(81, Table 18 pp. 97–103, Fig. 29 p. 104).
see also sphere sources.
spectral response, 23(21–43).
calibration setup, 14(Fig. B5 p. 51, Fig. B9 p. 54).
integrating, 5(15); 14(28–31, 45); 16(2); 19(ch. 4); 23(13).
measurements, 14(Table B8 p. 55).
radiances, 14(Table B3 p. 49, Fig. B6 p. 51, Table B4 p. 52, Table B6 p. 52).
source comparisons, 14(42–44).
sources, 16(23–111); 19(25, 33).
see also spectral reflectance.
SPSWG, 1(1); 3(Table 5 p. 16, 27–28).
stability tests, 14(42).
standard data format, see format, standard data.
storage:
data sets, 19(Table 19 p. 44, Figs. 19–20 pp. 44–45, Table 20 p. 48); 20(Table 1 p. 9).
stray light response, 15(Fig. 7 p. 14); 23(2, 13).
E.R. Firestone and S.B. Hooker

summary, see index.
sun glint, 1(18); 2(1, 10, 14); 3(6, 34); 9(2, 4-5, 6, 7, 9); 15(3, 4, 21, 27).
at equinox, 2(10).
at solstice, 2(10, 16).
flag sensitivity study, 13(ch. 9, and Plate 20).
radiance distribution, 2(Fig. 8 p. 11, Fig. 11 p. 14).
surface pressure, 8(4, 7); 13(Table 3 p. 16, Fig. 13 p. 17, 19–22, Tables 4–6 pp. 23–24, and Plates: 6–7, and 17).
surface wind products, 19(ch. 8).
symbols:
cumulative, 6(5); 12(18–20); 18(34–37).

- T, U -
telemetry, 1(10, 14); 8(11); 9(1, 2, 7, Fig. 1 p. 8, 9); 10(1, Figs. 20–21 pp. 23–24, 25); 15(2, 13–20, Figs. 9–10 pp. 17– 18, Tables 12–13 pp. 19–20, Table 14 p. 21).
irradiance scale, 14(Table 2 pp. 6–7, Tables 4–7 pp. 14–19, 28).

- V -
validation, 19(9–20).
algorithm, 8(16).
product, 8(10, 16).
sampling, 5(2, 31–33).
see also algorithms.

validation cont.
see also calibration.
see also calibration and validation.
viewing and solar geometries, 9(4–6); 13(3, 46).
visible radiometers, 7(1).
see also AVHRR.
see also CZCS.
see also MODIS.
see also SeaWiFS instrument.
voltmeter, 16(111–116).
tests, 14(41–42).

- W, X, Y -
wind:
see surface wind products.
see data sets, gridded wind.

- Z -
zenith, 2(10).
angles at equinox, 2(2, 16).
angles at solstice, 2(10, 16).
satellite angle, 13(15, 19, 46).
solar angle, 2(2, Fig. 3 p. 5, 10, Fig. 9 p. 12, Fig. 12 p. 15, Table 3 p. 16, 16); 3(2, 8, 23); 7(1, 4); 9(Table 6 p. 9); 13(Table 11 p. 29, 46).
spacecraft angle, 2(2, Fig. 4 p. 6, 10, 16); 13(Table 11 p. 29).
GLOSSARY

- A -

A/D Analog-to-Digital; also written as: AD
A&M (Texas) Agriculture and Mechanics (University)
AC Alternating Current
ACC Antarctic Circumpolar Current
ACRIM Active Cavity Radiometer Irradiance Monitor
ACS Attitude Control System
ADC Analog-to-Digital Converter
ADEOS Advanced Earth Observation Satellite (Japan)
AE Ångström Exponent
ALSCAT ALPHA and Scattering Meter (Note: the symbol α corresponds to c(λ), the beam attenuation coefficient, in present usage).
AM-1 Not an acronym, used to designate the morning platform of EOS.
AMC Angular Momentum Compensation
AOCl Airborne Ocean Color Imager
AOL Airborne Oceanographic Lidar
AOP Apparent Optical Property
AOS/LOS Acquisition of Signal/Loss of Signal
APL Applied Physics Laboratory
ARGOS Not an acronym, but the name given to the data collection and location system on the NOAA Operational Satellites.
ARI Accelerated Research Initiative
ASCII American Standard Code for Information Interchange
ASI Italian Space Agency
ASR Absolute Spectral Response
AT Along-Track
AU Astronomical Unit
AVHRR Advanced Very High Resolution Radiometer
AVIRIS Advanced Visible and Infrared Imaging Spectrometer
AXBt Airborne Expendable BathytIermograph

- B -

BAOPW-1 First Bio-optical Algorithm and Optical Protocols Workshop
BAOPW-2 Second Bio-optical Algorithm and Optical Protocols Workshop
BAOPW-3 Third Bio-optical Algorithm and Optical Protocols Workshop
BAOPW-4 Fourth Bio-optical Algorithm and Optical Protocols Workshop
BAOPW-5 Fifth Bio-optical Algorithm and Optical Protocols Workshop
BAS British Antarctic Survey
BATS Bermuda Atlantic Time-Series Station
BBOP Bermuda Bio-Optical Profiler
BBR Band-to-Band Registration
BCRS Dutch Remote Sensing Board
BEP Benguela Ecology Programme
BER Bit Error Rate
BMFT Minister for Research and Technology (Germany)
BOFS British Ocean Flux Study
BOMS Bio-Optical Moored Systems
bpi bits per inch
BRDF Bidirectional Reflectance Distribution Function
BSI Biospherical Instruments, Incorporated
BSIXR BSI’s Transfer Radiometer
BTR Bright Target Recovery
BUV Backscatter Ultraviolet Spectrometer
BWI Baltimore-Washington International (airport)

- C -

CalCoFi California Cooperative Fisheries Institute
Cal/Val Calibration and Validation
CALVAL Calibration and Validation
Case-1 Water whose reflectance is determined solely by absorption.
Case-2 Water whose reflectance is significantly influenced by scattering.
CCD Charge Coupled Device
CCPO Center for Coastal Physical Oceanography (Old Dominion University)
CDF (NASA) Common Data Format
CDOM Colored Dissolved Organic Material
CD-ROM Compact Disk-Read Only Memory
CDR Critical Design Review
CEC Commission of the European Communities
CENR Committee on Environment and Natural Resources
CHORS Center for Hydro-Optics and Remote Sensing (San Diego State University)
CICESE Centro de Investigación Científica y de Educación Superior de Ensenada (Mexico)
CIIRES Cooperative Institute for Research in Environmental Sciences
COADS Comprehensive Ocean-Atmosphere Data Set
COOP Coastal Ocean Optics Program
COTS Commercial Off-The-Shelf (software)
CRP Continuous Plankton Recorder
cpu Central Processing Unit
CRM Contrast Reduction Meter
CRN Italian Research Council
CRSEO Center for Remote Sensing and Environmental Optics (University of California at Santa Barbara)
CRT Calibrated Radiance Tapes; or Cathode Ray Tube.
CRTT CZCS Radiation and Temperature Tape
CSIRO Commonwealth Scientific and Industrial Research Organization (Australia)
CSC Computer Sciences Corporation
CSL Computer Systems Laboratory
CT Cross-Track
CTD Conductivity, Temperature, and Depth
CVT Calibration and Validation Team
CW Continuous Wave
CWR Clear Water Radiance
CZCS Coastal Zone Color Scanner

- D -

DAAC Distributed Active Archive Center
DAO Data Assimilation Office
DARR-1 First Data Analysis Round-Robin
DARR-2 Second Data Analysis Round-Robin
DAT Digital Audio Tape
DC Direct Current
DCF Data Capture Facility
DCOM Dissolved Colored Organic Material
DCP Data Collection Platform
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAM</td>
<td>JYACC Application Manager</td>
</tr>
<tr>
<td>JARE</td>
<td>Japanese Antarctic Research Expedition</td>
</tr>
<tr>
<td>JGOFJS</td>
<td>Joint Global Ocean Flux Study</td>
</tr>
<tr>
<td>JHU</td>
<td>Johns Hopkins University</td>
</tr>
<tr>
<td>JOI</td>
<td>Joint Oceanographic Institute</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>JRC</td>
<td>Joint Research Center</td>
</tr>
<tr>
<td>L&N</td>
<td>Leeds & Northrup</td>
</tr>
<tr>
<td>LAC</td>
<td>Local Area Coverage, fine resolution satellite data with a nominal ground resolution at nadir of approximately 1 km.</td>
</tr>
<tr>
<td>LANDSAT</td>
<td>Land Resources Satellite</td>
</tr>
<tr>
<td>LDEO</td>
<td>Lamont-Doherty Earth Observatory (Columbia University)</td>
</tr>
<tr>
<td>LDGO</td>
<td>Lamont-Doherty Geological Observatory (Columbia University)</td>
</tr>
<tr>
<td>LDTNL1R</td>
<td>Local Dynamic Threshold Nonlinear Raleigh Level 0 Raw data.</td>
</tr>
<tr>
<td>LDTNL2</td>
<td>Level-1 Calibrated radiances.</td>
</tr>
<tr>
<td>LDTNL3</td>
<td>Level-2 Derived products.</td>
</tr>
<tr>
<td>LDCLS</td>
<td>Level-3 Gridded and averaged derived products.</td>
</tr>
<tr>
<td>LMCE</td>
<td>Laboratoire de Modelisation du climat et de l'Environnement (France)</td>
</tr>
<tr>
<td>LOC</td>
<td>Local Time</td>
</tr>
<tr>
<td>LODYC</td>
<td>Laboratoire d'océanographie et de Dynamique du climat (France)</td>
</tr>
<tr>
<td>LOI</td>
<td>Land Ocean Interaction in the Coastal Zone</td>
</tr>
<tr>
<td>LPCM</td>
<td>Laboratoire de Physique et Chimie Marines (France)</td>
</tr>
<tr>
<td>LRER</td>
<td>Long-Range Ecological Research</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bits</td>
</tr>
<tr>
<td>LSF</td>
<td>Line Spread Function</td>
</tr>
<tr>
<td>MAREX</td>
<td>Marine Resources Experiment Program</td>
</tr>
<tr>
<td>MARS</td>
<td>Multispectral Airborne Radiometer System</td>
</tr>
<tr>
<td>MASSS</td>
<td>Multi-Agency Ship-Scheduling for SeaWiFS</td>
</tr>
<tr>
<td>MBARI</td>
<td>Monterey Bay Aquarium Research Institute</td>
</tr>
<tr>
<td>MEM</td>
<td>Maximum Entropy Method</td>
</tr>
<tr>
<td>MER</td>
<td>Marine Environmental Radiometer</td>
</tr>
<tr>
<td>MERIS</td>
<td>Medium Resolution Imaging Spectrometer</td>
</tr>
<tr>
<td>METEOSAT</td>
<td>Meteorological Satellite</td>
</tr>
<tr>
<td>MF</td>
<td>Major Frame</td>
</tr>
<tr>
<td>mF</td>
<td>Minor Frame</td>
</tr>
<tr>
<td>MIPS</td>
<td>Millions of Instructions Per Second</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MIZ</td>
<td>Marginal Ice Zone</td>
</tr>
<tr>
<td>MLF</td>
<td>Maximum Likelihood Estimator</td>
</tr>
<tr>
<td>MLML</td>
<td>Moss Landing Marine Laboratory (San Jose State University)</td>
</tr>
<tr>
<td>MO</td>
<td>Magneto-Optical</td>
</tr>
<tr>
<td>MOBY</td>
<td>Marine Optical Buoy</td>
</tr>
<tr>
<td>MOCE</td>
<td>Marine Optical Characterization Experiment</td>
</tr>
<tr>
<td>MODARCH</td>
<td>MODIS Document Archive</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MODIS-N</td>
<td>Nadir-viewing MODIS instrument</td>
</tr>
<tr>
<td>MODIS-L</td>
<td>Tilted MODIS instrument to minimize sun glint</td>
</tr>
<tr>
<td>MOS</td>
<td>Marine Optical Spectroradiometer</td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>MS/DOs</td>
<td>MicroSoft/Disk Operating System</td>
</tr>
<tr>
<td>MTF</td>
<td>Modulation Transfer Function</td>
</tr>
<tr>
<td>NABE</td>
<td>North Atlantic Bloom Experiment</td>
</tr>
<tr>
<td>NAS</td>
<td>National Academy of Science</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NASCOM</td>
<td>NASA Communications</td>
</tr>
<tr>
<td>NASAJ</td>
<td>National Space Development Agency (Japan)</td>
</tr>
<tr>
<td>NASIC</td>
<td>NASA Aircraft/Satellite Instrument Calibration</td>
</tr>
<tr>
<td>NAVSPASUR</td>
<td>Naval Space Surface Surveillance</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NCCOSC</td>
<td>Navy Command, Control, and Ocean Surveillance Center</td>
</tr>
<tr>
<td>NCDC</td>
<td>(NOAA) National Climatic Data Center</td>
</tr>
<tr>
<td>NCDS</td>
<td>NASA Climate Data System</td>
</tr>
<tr>
<td>NCSA</td>
<td>National Center for Supercomputing Applications</td>
</tr>
<tr>
<td>NCSU</td>
<td>North Carolina State University</td>
</tr>
<tr>
<td>NDBC</td>
<td>National Data Buoy Center</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>NE3L</td>
<td>Noise Equivalent Differential Spectral Radiance</td>
</tr>
<tr>
<td>NEAT</td>
<td>Noise Equivalent Delta Temperature</td>
</tr>
<tr>
<td>NE5L</td>
<td>Noise Equivalent Delta Radiance</td>
</tr>
<tr>
<td>NER</td>
<td>Noise Equivalent Radiance</td>
</tr>
<tr>
<td>NERC</td>
<td>Natural Environment Research Council</td>
</tr>
<tr>
<td>NESDIS</td>
<td>National Environmental Satellite Data Information Service</td>
</tr>
<tr>
<td>NESS</td>
<td>National Environmental Satellite Service</td>
</tr>
<tr>
<td>NET</td>
<td>NIMBUS Experiment Team</td>
</tr>
<tr>
<td>netCDF</td>
<td>(NASA) Network Common Data Format</td>
</tr>
<tr>
<td>NFS</td>
<td>Network File System</td>
</tr>
<tr>
<td>NGDC</td>
<td>National Geophysical Data Center</td>
</tr>
<tr>
<td>NIMBUS</td>
<td>Not an acronym. but a series of NASA experimental weather satellites containing a wide variety of atmosphere, ice, and ocean sensors.</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NMC</td>
<td>National Meteorological Center</td>
</tr>
<tr>
<td>NMFS</td>
<td>National Marine Fisheries Service</td>
</tr>
<tr>
<td>NOA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOARL</td>
<td>Naval Oceanographic and Atmospheric Research Laboratory</td>
</tr>
<tr>
<td>NODC</td>
<td>National Oceanographic Data Center</td>
</tr>
<tr>
<td>NORAD</td>
<td>North American Air Defense (Command)</td>
</tr>
<tr>
<td>NOPS</td>
<td>NIMBUS Observation Processing System</td>
</tr>
<tr>
<td>NOS</td>
<td>National Ocean Service</td>
</tr>
<tr>
<td>NRA</td>
<td>NASA Research Announcement</td>
</tr>
<tr>
<td>NRDC</td>
<td>National Research and Development</td>
</tr>
<tr>
<td>NROF</td>
<td>National Research Institute of Far Seas Fisheries (Japan)</td>
</tr>
<tr>
<td>NRL</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>NRT</td>
<td>Near-Real Time</td>
</tr>
<tr>
<td>NSCAT</td>
<td>NASA Scatterometer</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>NSSDC</td>
<td>National Space Science Data Center</td>
</tr>
<tr>
<td>OAM</td>
<td>Optically Active Materials</td>
</tr>
<tr>
<td>OCM</td>
<td>Ocean Color Data Mission</td>
</tr>
<tr>
<td>OCEAN</td>
<td>Ocean Colour European Archive Network</td>
</tr>
<tr>
<td>OCS</td>
<td>Ocean Color Scanner</td>
</tr>
<tr>
<td>OCTS</td>
<td>Ocean Color Temperature Sensor (Japan)</td>
</tr>
</tbody>
</table>
ODAS Ocean Data Acquisition System
ODEX Optical Dynamics Experiment
ODU Old Dominion University
OFFI Optical Free-Fall Instrument
OI Original Irradiance
OLIPAC Oligotrophy in the Pacific (Ocean)
OMEX Ocean Marine Exchange
ONR Office of Naval Research
OPT Ozone Processing Team
OS Operating System
OSC Orbital Sciences Corporation
OSFI Optical Surface Floating Instrument
OSSA Office of Space Science and Applications
OSU Oregon State University

- P -
PAR Photosynthetically Available Radiation
PC (IBM) Personal Computer
PDR Preliminary Design Review
PDT Pacific Daylight Time
PPF Programmable Frame Formatter
PI Principal Investigator
PIKE Phased Illuminated Knife Edge
PM-1 Not an acronym, used to designate the afternoon.
PMEL Pacific Marine Environmental Laboratory
PML Plymouth Marine Laboratory
POC Particulate Organic Carbon
POLDER Polarization Detecting Environmental Radiometer (France) or Polarization and Directionality of the Earth's Reflectances (depending on usage).
PON Particulate Organic Nitrogen
PR Photo Research
PRIME Plankton Reactivity in the Marine Environment
PST Pacific Standard Time
PSU Practical Salinity Units
PTFE Polytetrafluoroethylene
PUR Photosynthetically Usable Radiation

- Q -
QC Quality Control
QED Quantum Efficient Device

- R -
R&A Research and Applications
R&D Research and Development
R/V Research Vessel
RACER Research on Antarctic Coastal Ecosystem Rates
RDBMS Relational Database Management System
RDF Radio Direction Finder
RF Radio Frequency
RFP Request for Proposals
RISC Reduced Instruction Set Computer
rms root mean squared
ROSIS Remote Sensing Imaging Spectrometer, also known as the Reflective Optics System Imaging Spectrometer (Germany)
RR Round-Robin
RSMAS Rosenstiel School for Marine and Atmospheric Sciences (University of Miami)
RSS Remote Sensing Systems (Inc.)
RTOP Research and Technology Operation Plan

- S -
S/C Spacecraft
S/N Serial Number
SAC Satellite Applications Centre
SARSAT Search and Rescue Satellite
SBRC (Hughes) Santa Barbara Research Center
SBUV Solar Backscatter Ultraviolet Radiometer
SBUV-2 Solar Backscatter Ultraviolet Radiometer-2
SCADP SeaWiFS Calibration and Acceptance Data Package
SCOR Scientific Committee on Oceanographic Research
SDPS SeaWiFS Data Processing System
SDS Scientific Data Set
SDSU San Diego State University
SeaBASS SeaWiFS Bio-Optical Archive and Storage System
SEAPAK Not an acronym, but an image display and analysis package developed at GSFC.
SeaSCOPE SeaWiFS Study of Climate, Ocean Productivity, and Environmental Change
SeaWiFs Sea-viewing Wide Field-of-view Sensor
SES Shelf Edge Study
SGI Silicon Graphics, Incorporated
SI Système International d'Unités or International System of Units
SIG Special Interest Group
SIO Scripps Institution of Oceanography
SIO/MPL Scripps Institution of Oceanography/Marine Physical Laboratory
SIRREX SeaWiFS Intercalibration Round-Robin Experiment
SIRREX-1 The First SIRREX (July 1992)
SIRREX-2 The Second SIRREX (June 1993)
SIRREX-3 The Third SIRREX (September 1994)
SIS Spherical Integrating Source
SISSR Submerged In Situ Spectral Radiometer
SJSU San Jose State University
SMM Solar Maximum Mission
SNR Signal-to-Noise Ratio
SO Southern Ocean (algorithm)
SOC Simulation Operations Center
SOGS SeaStar Operations Ground Subsystem
SOH State of Health
SOW Statement of Work
SPM Suspended Particulate Material or Special Perturbations Model (depending on usage).
SPO SeaWiFS Project Office
SPOT Satellite Pour l'Observation de la Terre (France)
SPSWG SeaWiFS Prelaunch Science Working Group
SQL Sequential Query Language
SRC Satellite Receiving Station (NERC)
SRT Sigma Research Technology, Incorporated
SSM/1 Special Sensor for Microwave/Imaging
SST Sea Surface Temperature or SeaWiFS Science Team (depending on usage).
ST Science Team
STM Science Team Member
SUN Sun Microsystems
SWAP Sylter Wattenmeer Austausch-prozesse
SWG SeaWiFS Working Group
SXR SeaWiFS Transfer Radiometer
<table>
<thead>
<tr>
<th>- T -</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-S</td>
<td>Temperature-Salinity</td>
<td></td>
</tr>
<tr>
<td>TAE</td>
<td>Transportable Applications Executive</td>
<td></td>
</tr>
<tr>
<td>TAO</td>
<td>Thermal Array for the Ocean or more recently, Tropical Atmosphere-Ocean</td>
<td></td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
<td></td>
</tr>
<tr>
<td>TBUS</td>
<td>Not an acronym, but a NOAA orbit prediction</td>
<td></td>
</tr>
<tr>
<td>TDI</td>
<td>Time-Delay and Integration</td>
<td></td>
</tr>
<tr>
<td>TDRSS</td>
<td>Tracking and Data Relay Satellite System</td>
<td></td>
</tr>
<tr>
<td>TIROS</td>
<td>Television Infrared Observation Satellite</td>
<td></td>
</tr>
<tr>
<td>TLM</td>
<td>Telemetry</td>
<td></td>
</tr>
<tr>
<td>TOA</td>
<td>Top of the Atmosphere</td>
<td></td>
</tr>
<tr>
<td>TOGA</td>
<td>Tropical Ocean Global Atmosphere program</td>
<td></td>
</tr>
<tr>
<td>TOMS</td>
<td>Total Ozone Mapping Spectrometer</td>
<td></td>
</tr>
<tr>
<td>TOPEX</td>
<td>Topography Experiment</td>
<td></td>
</tr>
<tr>
<td>TOVS</td>
<td>TIROS Operational Vertical Sounder</td>
<td></td>
</tr>
<tr>
<td>TRMM</td>
<td>Tropical Rainfall Measuring Mission</td>
<td></td>
</tr>
<tr>
<td>TSM</td>
<td>Total Suspended Material</td>
<td></td>
</tr>
<tr>
<td>TV</td>
<td>Thermal Vacuum</td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>University of Arizona</td>
<td></td>
</tr>
<tr>
<td>UARS</td>
<td>Upper Atmosphere Research Satellite</td>
<td></td>
</tr>
<tr>
<td>UAXR</td>
<td>University of Arizona's Transfer Radiometer</td>
<td></td>
</tr>
<tr>
<td>UCAR</td>
<td>University Consortium for Atmospheric Research</td>
<td></td>
</tr>
<tr>
<td>UCMBO</td>
<td>University of California Marine Bio-Optics</td>
<td></td>
</tr>
<tr>
<td>UCSB</td>
<td>University of California at Santa Barbara</td>
<td></td>
</tr>
<tr>
<td>UCSD</td>
<td>University of California at San Diego</td>
<td></td>
</tr>
<tr>
<td>UH</td>
<td>University of Hawaii</td>
<td></td>
</tr>
<tr>
<td>UIM/X</td>
<td>User Interface Management/X-Windows</td>
<td></td>
</tr>
<tr>
<td>UM</td>
<td>University of Miami</td>
<td></td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific, and Cultural Organizations</td>
<td></td>
</tr>
<tr>
<td>UNIX</td>
<td>Not an acronym, a computer operating system.</td>
<td></td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptable Power System</td>
<td></td>
</tr>
<tr>
<td>URI</td>
<td>University of Rhode Island</td>
<td></td>
</tr>
<tr>
<td>USC</td>
<td>University of Southern California</td>
<td></td>
</tr>
<tr>
<td>USF</td>
<td>University of South Florida</td>
<td></td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator (projection)</td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
<td></td>
</tr>
<tr>
<td>UVT</td>
<td>Ultraviolet-B</td>
<td></td>
</tr>
<tr>
<td>UWG</td>
<td>User Working Group</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>- V -</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V0</td>
<td>Version 0</td>
</tr>
<tr>
<td>V1</td>
<td>Version 1</td>
</tr>
<tr>
<td>VAX</td>
<td>Virtual Address Extension</td>
</tr>
<tr>
<td>VCS</td>
<td>Version Control Software</td>
</tr>
<tr>
<td>VDC</td>
<td>Volts Direct Current</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>VI</td>
<td>Virtual Instrument</td>
</tr>
<tr>
<td>VISLAB</td>
<td>Visibility Laboratory (Scripps Institution of Oceanography)</td>
</tr>
<tr>
<td>VISNIR</td>
<td>Visible and Near Infrared</td>
</tr>
<tr>
<td>VMS</td>
<td>Virtual Memory System</td>
</tr>
<tr>
<td>VSF</td>
<td>Volume Scattering Function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>- W -</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WFF</td>
<td>Wallops Flight Facility</td>
</tr>
<tr>
<td>WHOI</td>
<td>Woods Hole Oceanographic Institute</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>WOCE</td>
<td>World Ocean Circulation Experiment</td>
</tr>
<tr>
<td>WORM</td>
<td>Write-Once Read-Many (times)</td>
</tr>
<tr>
<td>WVS</td>
<td>World Vector Shoreline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>- X -</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XDR</td>
<td>External Data Representation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>- Y, Z -</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>YBOM</td>
<td>Yamato Bank Optical Mooring</td>
</tr>
</tbody>
</table>
SYMBOLS

- **A** -
 - $a(z, \lambda)$ Spectral absorption coefficient.
 - a_{ox} Oxygen absorption coefficient.
 - a_{oz} Coefficient for ozone absorption.
 - a_{water} Coefficient for water vapor absorption.
 - A_0 Coefficient for the linear term in the scan modulation correction equation.
 - A_d The detector aperture.
 - A_f The foam reflectance.
 - A_{int} The intersection area.
 - $A(\lambda)$ Coefficient for calculating $b_2(\lambda)$.
 - $b(\lambda, \lambda)$ Formulation coefficient or a constant equal to 1/3 (depending on usage).
 - $b(\theta, z, \lambda_0)$ Volume scattering coefficient.
 - $b_2(z, \lambda)$ Spectral backscattering coefficient.
 - $b_2^{\text{phytoplankton}}(\lambda)$ Spectral backscattering coefficient for phytoplankton.
 - $b_2^{\text{seawater}}(\lambda)$ Total scattering coefficient.
 - $b_2^{\text{pure seawater}}(\lambda)$ Total scattering coefficient for pure seawater.
 - $b_1(k)$ Input data for polarization calculations for SeaWiFS band 1.
 - $b_7(k)$ Input data for polarization calculations for SeaWiFS band 7.
 - B Excess target radiance.
 - B_0 Coefficient for the power term in the scan modulation correction equation.
 - $B(\lambda)$ Coefficient for calculating $b_2(\lambda)$.

- **B** -
 - $c(z, \lambda)$ Spectral beam attenuation coefficient.
 - $c(z, \lambda_0)$ Red beam attenuation (at 660 nm).
 - $[\text{chl. a}]/K$ Concentration of chlorophyll a over K, the diffuse attenuation coefficient.
 - C Chlorophyll a pigment, or just pigment concentration.
 - C_1 Measured value for the flight diffuser on a given scan line, in counts.
 - C_{12} Pigment concentration derived using CZCS bands 1 and 3.
 - C_2 Measured value of the flight diffuser for the scan line immediately sequential to the first scan line used to measure the flight diffuser, i.e., S_1, in counts.
 - C_{23} Pigment concentration derived using CZCS bands 2 and 3.
 - C_{dark} Instrument dark restore value, in counts.
 - C_{ext} Average total extinction cross-section of a particle.
 - C_F The calibration factor.
 - C_{out} Instrument output, in counts.
 - C_{ref} Reference chlorophyll value (0.5).
 - C_{temp} Temperature sensor output, in counts, represented by an 8-bit digital word in the SeaStar telemetry.
 - $[C + P]$ Pigment concentration defined as mg chlorophyll a plus phaseopigments m$^{-3}$.

- **D** -
 - d The distance between source and detector apertures.
 - d_i Distance from the ith observation point to the point of interest.
 - d_j Distance from the jth observation point to the point of interest.
 - $d(I(\lambda))$ An increment in detector current.
 - $d\lambda$ An increment in wavelength.
 - d_α Detector configuration datum.
 - D Sequential day of the year.
 - D_α Orbit position difference vector.
 - $D_{\delta_{\text{t}}}$ Along-track position difference.
 - $D_{\varepsilon_{\text{t}}}$ Cross-track position difference.
 - $D_{\alpha_{\text{t}}}$ Radial position difference.
 - $D(C)$ Digital count (value) or direct current (depending on usage).
 - D_{10} Digital counts at 10-bit digitization.
 - D_{meas} The digital counts measured unshadowed.
 - D_{catt} The digital counts due to scattered sunlight.
 - $D(C)_{\text{TOA}}$ The digital counts measured at the top of the atmosphere.

- **E** -
 - e Orbit eccentricity of the Earth.
 - $E(\lambda)$ Spectral irradiance.
 - $E_\alpha(\lambda)$ Irradiance in air.
 - E_{beg} Beginning irradiance value.
 - E_{end} Calibration source irradiance.
 - E_{down} Incident downwelling irradiance.
 - $E_{\text{obs}}(0^-, \lambda)$ Incident spectral irradiance.
 - $E_{\text{d}}(z, \lambda)$ Downwelled spectral irradiance.
 - E_{end} Ending irradiance value.
 - $E_{\text{meas}}(\lambda)$ Measured radiance.
 - $E_{\text{ref}}(\lambda)$ Reference radiance.
 - $E_{\text{sun}}(\lambda)$ Surface irradiance.
 - E_{rem} Percentage of energy removed from a wavelength band.
 - $E_{\text{sky}}(\lambda)$ Spectral sky irradiance distribution.
 - $E_{\text{sun}}(\lambda)$ Spectral sun irradiance distribution.
 - $E_{\text{sky}}(\lambda)$ Upwelled spectral irradiance.
 - $E_{\text{w}}(z, \lambda)$ Irradiance in water.

- **F** -
 - f The fraction of the surface covered by foam.
 - f_i Filter number, $i=0-11$.
 - f_{ratio} The ratio of new to total production.
 - F Arithmetic average.
 - $\bar{F}(\lambda)$ A mean conversion factor.
 - $F(\lambda)$ Calibration factor.
 - $F(\lambda)$ A conversion factor to convert PR714 readings to the GSFC sphere radiance scale.
 - $F(\lambda)$ Average of calibration factors.
 - F_0 Extraterrestrial irradiance corrected for Earth-sun distance.
 - F_0 The scalar value of the solar spectral irradiance at the top of the atmosphere, multiplied by a columnar matrix of the four Stokes parameters $(1/2, 1/2, 0, 0)$.
 - \bar{F}_0 Mean solar irradiance.
 - F_0 Extraterrestrial irradiance corrected for the atmosphere.
 - $F_0(\lambda)$ Mean extraterrestrial spectral irradiance.
 - $F_0(\lambda)$ Mean extraterrestrial irradiance.
\(F_r \) Forward scattering probability of the aerosol.
\(F_d \) The total flux incident on the surface if it did not reflect light.
\(F_d' \) The total flux incident on the surface, corrected for surface reflection.
\(F_s' \) The scalar value of the total flux incident on the surface, corrected for surface reflection, multiplied by a columnar matrix of the four Stokes parameters.
\(F_1 \) A correction factor.

\[G \]
\(g_i \) A constant equal to 0.82.
\(g_s \) A constant equal to \(-0.55\).
\(g_s' \) Gain selection datum.
\(G \) Gain factor.
\(G_1 \) Gain setting 1.
\(G_2 \) Gain setting 2.
\(G_3 \) Gain setting 3.
\(G_4 \) Gain setting 4.
\(G_n \) Gain factor at gain setting \(n \).

\[h(k) \]
\(H_{GMT} \) GMT in hours.
\(H_M \) The measured moon irradiance.
\(H_s \) Altitude of the spacecraft (for SeaStar 705 km).

\[i \]
\(i \) Inclination angle or interval index (depending on usage).
\(i' \) Inclination angle minus 90°.
\(I \) Rayleigh intensity.
\(I_0 \) Surface downwelling irradiance.
\(I_1 \) Radiant intensity after traversing through an absorbing medium.
\(I_2 \) Reflected radiant energy received by the satellite sensor.
\(I_{max} \) Recorded maximum instrument output in response to linearly polarized light.
\(I_{min} \) Recorded minimum instrument output in response to linearly polarized light.
\(I(\lambda) \) Detector current.
\(ICS \) Current from the current source diode.

\[j \]
\(J \) Interval index.
\(J_2 \) The J2 gravity field term (0.0010863).
\(J_3 \) The J3 gravity field term (-0.0000234).
\(J_4 \) The J4 gravity field term (-0.0001616).
\(J_5 \) The J5 gravity field term.

\[k \]
\(k \) Wavenumber of light (1/\(\lambda \)).
\(k_1 \) Beginning wavenumber.
\(k_2 \) Ending wavenumber.
\(k_s(\lambda) \) Spectral fit coefficient weighted over the SeaWiFS bands; \(k_s'(\lambda) \) also used.
\(K(\lambda, \lambda) \) Diffuse attenuation coefficient.

\[K(490) \] Diffuse attenuation coefficient of seawater measured at 490 nm.
\(K_0(\lambda) \) Diffuse attenuation coefficient at \(z = 0 \).
\(K_1 \) Primary instrument sensitivity factor.
\(K_2 \) Gain factor.
\(K_3 \) Temperature dependence of detector output.
\(K_4 \) Scan modulation correction factor.
\(K_5 \) Spacecraft analog to digital conversion factor.
\(K_6 \) Analog-to-digital offset in spacecraft conversion.
\(K_7 \) Current from the diode at 20°C.
\(K_c(\lambda) \) Attenuation coefficients for phytoplankton.
\(K_E(\lambda) \) Attenuation coefficient downwelled irradiance.
\(K_G(\lambda) \) Attenuation coefficients for Gelbstoff.
\(K_L(\lambda) \) Attenuation coefficient upwelled irradiance.
\(K_w(\lambda) \) Attenuation coefficients for pure seawater.

\[L \]
\(L(\lambda) \) Spectral radiance.
\(L(\lambda_m) \) The radiance of a calibration sphere at the nominal peak wavelength of a filter.
\(L(z, \theta, \phi) \) Submerged upwelled radiance distribution.
\(L_0 \) The radiance of the atmosphere.
\(L_a \) Aerosol radiance.
\(L_c(\lambda) \) Cloud radiance threshold.
\(L_{cal} \) Calibration source radiance.
\(L_d \) A matrix of the four Stokes parameters for radiance incident on the sea surface.
\(L_{cloud} \) Maximum radiance from reflected light off of clouds.
\(L_{sfc} \) The radiance of the ocean-atmosphere system measured at a satellite.
\(L_m \) The radiance of the ocean-atmosphere system measured at nadir.
\(L_{max} \) Maximum saturation radiance.
\(L_{rad} \) Measured radiance at nadir.
\(L_{NEK} \) Noise equivalent radiance.
\(L_o(\lambda) \) Rayleigh radiance.
\(L_{ro}(\lambda) \) Rayleigh radiance at standard atmospheric pressure, \(P_0 \).
\(L_s(\lambda) \) Subsurface water radiance.
\(L_{sat} \) Saturation radiance for the sensor.
\(L_{scan} \) Measured radiance at any pixel in a scan.
\(L_{sfc} \) The radiance of the light reflected from the sea surface.
\(L_{sat} \) The columnar matrix of the four Stokes parameters (\(L_{sat,1}, L_{sat,2}, L_{sat,3}, L_{sat,4} \)).
\(L_{sky} \) Spectral sky radiance distribution.
\(L_t(\lambda) \) Total radiance at the sensor.
\(L_{typical} \) Expected radiance from the ocean measured on orbit.
\(L_u(\lambda) \) Upwelled spectral radiance.
\(L_{up} \) The columnar matrix of light leaving the surface containing the values \(L_{up,1}, L_{up,2}, L_{up,3}, L_{up,4} \).
\(L_{up,i} \) The \textsc{radtran} radiance parameters (for \(i = 1, 4 \)).
\(LW \) The water-leaving radiance of light scattered from beneath the surface and penetrating it.
\(LW(443) \) Water-leaving radiance at 443 nm.
\(L_W(520) \) Water-leaving radiance at 520 nm.
\(L_W(550) \) Water-leaving radiance at 550 nm.
\(L_W(670) \) Water-leaving radiance at 670 nm.
\(L_w \) The scalar value of the water-leaving radiance multiplied by a columnar matrix of the four Stokes parameters.
\(L_{WN}(\lambda) \) Normalized water-leaving radiance.
\(LS_1 \) Measured radiance for mirror side 1.
\(LS_2 \) Measured radiance for mirror side 2.

\[-M- \]
\(m \) Index of refraction.
\(M \) Path length through the atmosphere.
\(M'_m \) The corrected mean orbit anomaly of the Earth, which is a function of date, and refers to an imaginary moon in a circular orbit.
\(M_{oa} \) Path length for ozone transmittance.

\[-N- \]
\(n \) The index of refraction, the mean orbital motion in revolutions per day, or the gain setting (depending on usage).
\(n(\lambda) \) An exponent conceptually similar to the Ångström exponent.
\(n_w(\lambda) \) Index of refraction of water.
\(N \) The total number of something.
\(N_D \) The compensation factor for a 4 log neutral density filter.
\(N_t \) Total number density.
\(N_i \) Total number density of either the first or second aerosol model when \(i = 1 \) or 2, respectively.

\[-O- \]
\(\overrightarrow{\Phi} \overrightarrow{P} \times \overrightarrow{V} \).

\[-P- \]
\(p_a \) A factor to account for the probability of scattering to the spacecraft for three different paths from the sun.
\(p_w/(4\pi) \) Aerosol albedo of the scattering phase function.
\(p_w \) The probability of seeing sun glitter in the direction \(\theta, \Phi \) given the sun in position \(\theta_0, \Phi_0 \) as a function of wind speed (W).
\(P \) Nodal period, phaeopigment concentration or local surface pressure (depending on usage).
\(\overrightarrow{P} \) Orbit position vector.
\(P(\theta^+) \) Phase function for forward scattering.
\(P(\theta^-) \) Phase function for backward scattering.
\(P_0 \) Standard atmospheric pressure (1,013.25 mb).
\(P_a \) Probability of scattering to the spacecraft.
\(P_1 \) PR714 raw radiance.
\(P_w \) Phaeopigment concentration.
\(PF \) Polarization factor.
\(Pxd \) Pixel number, i.e., the numerical designation of a pixel in a scan line.

\[-Q- \]
\(q \) Water transmittance factor.
\(Q(\lambda) \) \(L_w(0^+, \lambda) \) to \(E_w(0^-, \lambda) \) relation factor (theoretically equal to \(\pi \)).

\[-R- \]
\(r \) Water-air reflectance for totally diffuse irradiance.
\(r_1 \) The radius of circle one or source aperture (depending on usage).
\(r_2 \) The radius of circle two or detector aperture (depending on usage).
\(r_t \) The geometric mean radii of either the first or second aerosol model when \(i = 1 \) or 2, respectively.
\(R \) Reflectance.
\(R \) The reflection matrix.
\(R^2 \) The square of the linear correlation coefficient.
\(R(0^-, \lambda) \) Irradiance reflectance just below the sea surface.
\(R_1 \) Multiplier for mirror side 1.
\(R_2 \) Multiplier for mirror side 2.
\(R_a \) Aerosol reflectance.
\(R_a R_w/(qT_{2r}) \).
\(R_e \) Mean Earth radius (6,378 137 km).
\(R_e \) Effective resistance for the thermistor-resistor pair.
\(R_L(z, \lambda) \) Spectral reflectance.
\(R_t \) Rayleigh reflectance.
\(R_{rs} \) Remote sensing reflectance.
\(R_s \) Subsurface reflectance.
\(R_{tot} \) Total reflectance at the sensor.
\(R_t \) (\(R_{tot} - R_s \))/(\(qT_{2r} \)).
\(R_T \) Resistance of the thermistor.
\(R_s \) Sunspot number.

\[-S- \]
\(s \) The reflectance of the atmosphere for isotropic radiation incident at its base.
\(s(\lambda) \) Slope for the range 0–1,023.
\(S \) Solar constant.
\(S_i \) Initial detector signal.
\(S_n \) Detector signal with gain.
\(S(\lambda) \) \(L_a(\lambda)/L_a(670) \).

\[-T, U- \]
\(t \) Time variable or the transmission of \(L_{tot} \) through the atmosphere (depending on usage).
\(t' \) The transmission of \(L_W \) through the atmosphere.
\(t(k) \) Spectral transmission as a function of wavenumber.
\(t(\lambda) \) Diffuse transmittance of the atmosphere.
\(t_0 \) The sum of the direct and diffuse transmission of sunlight through the atmosphere.
\(t_1 \) First observation time.
\(t_2 \) Second observation time.
\(t_0 \) Initial time.
\(t_{as} \) Aerosol transmittance after absorption.
\(t_{as} \) Aerosol transmittance after scattering.
\(t_{dt} \) Direct component of transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh.
\(t_{dt} \) Time difference in hours between present position and most recent equator crossing.
\(t_{EC} \) Equator crossing time.
\(t_{as} \) Transmittance after absorption by ozone.
\(t_r \) Transmittance after Rayleigh scattering.
\(t_s \) Diffuse component of transmittance after absorption by the gaseous components of the atmosphere, scattering and absorption by aerosols, and scattering by Rayleigh.
\(t{uv} \) Transmittance after absorption by water vapor.
T Tilt position.
$T(\lambda)$ The transmittance along the slant path to the sun.
$T_r(\lambda)$ Transmittance through the surface.
$T(\lambda, \theta)$ Total transmittance (direct plus diffuse) from the ocean through the atmosphere to the spacecraft along the path determined by the spacecraft zenith angle θ.
T_{2r} Two-way diffuse transmittance for Rayleigh attenuation.
$T_0(\lambda, \theta_0)$ Total downward transmittance of irradiance.
T_0 Equation of time.
$T_{o_{\text{ea}}}$ Transmittance of oxygen (O$_2$).
$T_{o_{\text{e}}}$ Transmittance of ozone (O$_3$).
$T_{o_{\text{w}}}$ Transmittance through the surface.
$T_{w_{\text{v}}}$ Transmittance through a water path.
$T_{w_{\text{o}}}$ Transmittance of water vapor (H$_2$O).

$-V-$

$V(t_j)$ The ith spatial location at observation time t_j.
V_M The radiance detector voltage while viewing the moon.
V_S The irradiance detector voltage while viewing the sun.
V_T Focal plane temperature sensor voltage output.

$-W-$

W Wind speed.
W_d Direct irradiance divided by the total irradiance at the surface.
W_s Diffuse irradiance divided by the total irradiance.

$-X-$

x Abscissa or longitudinal coordinate, or the pixel number within a scan line (depending on usage).
X ECEF x component of orbit position.
X ECEF X component of orbit velocity.

$-Y-$

y Ordinate or meridional coordinate.
Y ECEF y component of orbit position.
Y ECEF Y component of orbit velocity.

$-Z-$

Z ECEF z component of orbit position.
Z ECEF Z component of orbit velocity.

$-\text{GREEK}-$

α Percent albedo, tilt angle, formulation coefficient (intercept), the power constant in the Ångström formulation, or the exponential value in the expression relating the extinction coefficient to wavelength (depending on usage).
β A formulation coefficient (slope) or a constant in the Ångström formulation (depending on usage).
β, The extinction coefficient of either the first or second aerosol model when $i = 1 \text{ or } 2$, respectively.
$\beta(z, \lambda, \theta)$ Spectral volume scattering function.
γ The Ångström exponent.
$\gamma(\lambda)$ The ratio of the aerosol optical thickness at wavelength λ to the aerosol optical thickness at 670 nm.
δ The great circle distance from $\Psi_s(t_0)$ to $\Psi_s(t-t_0)$, the departure of each individual conversion factor from the mean, a relative difference, or the absorption coefficient (depending on usage).
$\Delta\lambda$ Equivalent bandwidth.
$\Delta L_{W_{\text{670}}}$ The error in the water-leaving radiance for the red channel.
Δp_{CO_2} Partial pressure difference of CO$_2$ between air and sea water.
ΔP The difference in successive pixels or the pressure deviation from standard pressure, P_0 (depending on usage).
Δt Time difference.
$\Delta T(\lambda)$ The error in transmittance.
$\Delta\theta_s$ The error (in radians) in the knowledge of θ_s.
$\Delta\lambda$ An interval in wavelength.
$\Delta\rho_{w_{\text{670}}}$ The error in the water-leaving reflectance for the red channel.
$\Delta\sigma(\lambda)$ The absolute error in spectral optical depth.
Δr_{a} The error in the aerosol optical thickness.
$\Delta\omega$ The longitude difference from the sub-satellite point to the pixel.
$\Delta\omega_s$ Longitude difference.

η Bearing from the sub-satellite point to the pixel along the direction of motion of the satellite.

θ Spacecraft zenith angle, spacecraft pitch, or polar angle of the line-of-sight at a spacecraft (depending on usage).
θ Pitch rate.
θ_0 Polar angle of the direct sunlight.
θ_1 The intersection angle of circle one.
θ_2 The intersection angle of circle two.
θ_s Solar zenith angle.
θ_n The zenith angle of the vector normal to the surface vector for which glint will be observed.
θ_N The angle with respect to nadir that the sea surface slopes to produce a reflection angle to the spacecraft.
θ_s Scan angle of sensor or the solar zenith angle (depending on usage).
θ_s' Scan angle of sensor adjusted for tilt.
κ An integration constant: $\kappa = A_d\pi r_1^2(r_1^2 + r_2^2 + d^2)^{-1}$.
λ Wavelength of light.
λ_1 Starting wavelength.
λ_2 Ending wavelength.
λ_m Nominal center wavelength.
μ Mean value or cosine of the satellite zenith angle (depending on usage).
μ_0 Cosine of the solar zenith angle.
$\Pi_{d}(0^+, \lambda)$ Spectral mean cosine for downwelling radiance at the sea surface.
μ_s The reciprocal of the effective optical length to the top of the atmosphere, along the line of sight to the sun.
ν_j The jth temporal weighting factor.
ξ_{EM} The distance between the Earth and the moon.
The Fresnel reflectivity, the weighted direct plus diffuse reflectance, or the average reflectance of the sea (depending on usage).

$\rho(\theta)$ Fresnel reflectance for viewing geometry.

$\rho(\theta_0)$ Fresnel reflectance for solar geometry.

$\rho_{c,i}$ Reflectance of clouds and ice.

ρ_i Sea surface reflectance for direct irradiance at normal incidence for a flat sea.

ρ_i The reflectance of the sea of either the first or second aerosol model when i = 1 or 2, respectively.

$\rho_i(\lambda)$ The reflectance where i may represent any of the following: m for measured; LU for look-up table; o for light scattered by the atmosphere; sfc for reflection from the sea surface; and w for water-leaving radiance.

ρ_N Reflectance for diffuse irradiance.

σ One standard deviation of a set of data values.

σ^2 The mean square surface slope distribution.

$\sigma(\lambda)$ The spectral optical depth.

$\sigma^2 = \frac{1}{N} \sum (\log r - \log \sigma_i)^2$.

$\tau(z, \lambda)$ Spectral optical depth.

τ_a Aerosol optical thickness.

τ_{ox} Oxygen optical thickness at 750 nm.

τ_{oa} The optical thickness of ozone.

τ_r Rayleigh optical thickness (due to scattering by the standard molecular atmosphere).

τ_r' Pressure corrected Rayleigh optical thickness.

τ_{r0} Rayleigh optical thickness at standard atmospheric pressure, P_0.

$\tau_s(\lambda)$ Spectral solar atmospheric transmission.

τ_{wv} The absorption optical thickness of water vapor.

ϕ Azimuth angle of the line-of-sight at a spacecraft.

ϕ_0 Azimuth angle of the direct sunlight.

Φ Spacecraft azimuth angle or roll (depending on usage).

ϕ_D Roll rate.

Φ_D The detector solid angle.

Φ_M The solid angle subtended by the moon at the measuring instrument.

ϕ_0 Solar azimuth angle.

Ψ Pixel latitude or yaw (depending on usage).

Ψ' Yaw rate.

Ψ_d Solar declination latitude.

$\Psi_s(t)$ Sub-satellite latitude as a function of time.

ω Longitude variable or the surface reflection angle (depending on usage).

ω_0 Old longitude value.

ω_a Single scattering albedo of the aerosol.

ω_e Equator crossing longitude.

ω_l Spatial weighting factor.

ω_s Longitude variable.

Ω Solar hour angle or the amount of ozone in Dobson units (depending on usage).
REFERENCES

A

Abel, P., G.R. Smith, R.H. Levin, and H. Jacobowitz, 1988: Results from aircraft measurements over White Sands, New Mexico, to calibrate the visible channels of spacecraft instruments. SPIE, 924, 208–214.

B

---, and ---, 1955: Some Problems in Optical Oceanography. Scripps Institution of Oceanography, La Jolla, California, 63–77.

Fraser, R.S., 1993: Optical thickness of atmospheric dust over Tadjjhistan. *Atmos. Envr.*, 27A, 2,533–2,538.

—

E.R. Firestone and S.B. Hooker

I

J

---, 1993: NCSA HDF Calling Interfaces and Utilities, Version 3.2. 121 pp.

THE SEAWIFS TECHNICAL REPORT SERIES

Vol. 1

Vol. 2

Vol. 3

Vol. 4

Vol. 5

Vol. 6

Vol. 7

Vol. 8

Vol. 9

Vol. 10

Vol. 11

Vol. 12

Vol. 13

Vol. 14

Vol. 15

Vol. 16

Vol. 17

Vol. 18
Vol. 19

Vol. 20

Vol. 21

Vol. 22

Vol. 23

Vol. 24
SeaWiFS Technical Report Series

Abstract

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS is expected to be launched in 1995, on the SeaStar satellite, being built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC), has undertaken the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. This documentation, entitled the *SeaWiFS Technical Report Series*, is in the form of NASA Technical Memorandum Number 104566. All reports published are volumes within the series. This particular volume serves as a reference, or guidebook, to the previous 23 volumes and consists of 6 sections including: an errata, an addendum (summaries of various SeaWiFS Working Group Bio-optical Algorithm and Protocols Subgroups Workshops, and other auxiliary information), an index to key words and phrases, a list of all references cited, and lists of acronyms and symbols used. It is the editors' intention to publish a cumulative index of this type after every five volumes in the series. Each index covers the topics published in all previous editions, that is, each new index will include all of the information contained in the preceding indices.

Subject Terms

SeaWiFS, Oceanography, Cumulative, Index, Summary, Overview, Errata, Addendum, Glossary, Symbols, References, Bio-optical, Algorithm Workshop, Protocols Subgroup Workshop

Security Classification

Unclassified

Number of Pages

36

Price Code

Unlimited

Distribution/Availability Statement

Unclassified—Unlimited

Subject Category 48

Report is available from the Center for AeroSpace Information (CASI), 800 Elkridge Landing Road, Linthicum Heights, MD 21090; (301)621-0390