
N95-32238

TDA ProgressReport 42-121
May 15, 1995

A Seismic Data Compression System

Using Subband Coding

A. B. Kiely and E Pollara

Communications Systems Research Section

This article presents a study of seismic data compression techniques and a com-

pression algorithm based on subband coding. The algorithm includes three stages:
a decorrelation stage, a quantization stage that introduces a controlled amount of

distortion to allow for high compression ratios, and a Iossless entropy coding stage
based on a simple but efficient arithmetic coding method. Subband coding methods

are particularly suited to the decorrelation of nonstationary processes such as seis-
mic events. Adaptivity to the nonstationary behavior of the waveform is achieved

by dividing the data into separate blocks that are encoded separately with an adap-
tive arithmetic encoder. This is done with high efficiency due to the low overhead

introduced by the arithmetic encoder in specifying its parameters. The technique
could be used as a progressive transmission system, where successive refinements of

the data can be requested by the user. This allows seismologists to first examine
a coarse version of waveforms with minimal usage of the channel and then decide

where refinements are required. Rate-distortion performance results are presented
and comparisons are made with two block transform methods.

I. Introduction

A typical seismic analysis scenario involves collection of data by an array of seismometers, transmission

over a channel offering limited data rate, and storage of data for analysis. Seismic data analysis is

performed for monitoring earthquakes and for planetary exploration, as in the planned study of seismic
events on Mars. Seismic data compression systems are required to cope with the transmission of vast

amounts of data over constrained channels and must be able to accurately reproduce both low-energy
seismic signals and occasional high-energy seismic events.

We describe a compression algorithm that includes three stages: a decorrelation stage based on subband

coding, a uniform quantization stage, and a lossless entropy coding stage based on arithmetic coding.
Rate-distortion performance results are presented and comparisons are made with two block transform

methods: the discrete cosine transform (DCT) and the Walsh-Hadamard transform (WHT).

Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as

seismic events. For most seismic data, signal energy is more concentrated in the low-frequency subbands,
which suggests the use of nonuniform subband decomposition. The decorrelation stage is implemented

by quadrature mirror filters using a lattice structure. Adaptivity to the nonstationary behavior of the
waveform is achieved by dividing the data into blocks that are separately encoded.

242



Appendix B

Performance of the CSC Correlator

The method of estimating the relative signal phases for complex-symbol combining is analogous to

the full-spectrum combining algorithm; using the extra correlation to compensate for the noise bias, the

complex correlation can be expressed as
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where N is the number of symbols averaged over, given by N = Tco,','/Tsum, and the noise term N has

zero mean. The statistics of this noise can be analyzed in the same manner as before; here, the effective

correlation bandwidth for both the lowpass and the bandpass correlation is Rsum/2. Using the definition

given by Eq. (32), the correlator SNR can be shown to be equal to

SNRcorr,csc = No, C2sc C 2 +C2c, C2sm(1/Ti)+(No,/PD,)2Rsv m
t 8yi

(B-2)

The density function for the phase estimation error can be found in a manner analogous to that applied

in Appendix A. The only difference is in the expression for the correlator SNR; otherwise, both problems

are inherently governed by the same mathematics. The density function for the phase estimation error

A_li is thus given by Eq. (A-15), with SNRcor,-jsc replaced by SNRcorr,csc.
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The compression technique described in this article can be used as a progressive transmission system,
where successive refinements of the data can be requested by the user. This allows reconstruction of a

low-resolution version of the waveform after receiving only a small portion of the compressed data. This

could allow seismologists to make a preliminary examination of the waveform with minimal usage of the
channel and then decide where high-resolution refinements are desired.

In general, given a fixed transmission rate, lossy compression algorithms applied to high-accuracy

instruments deliver higher scientific content than lossless compression methods applied to lower accuracy
instruments.

II. Subband Decomposition

In the analysis stage of subband coding, a signal is filtered to produce a set of subband components, each

having smaller bandwidth than the original signal. Because of this limited bandwidth, each component is

downsampled, so that the subband transformed data contain as many data points as the original signal.
The subband components are then quantized and compressed. In the synthesis stage, the reconstructed

signal is formed by adding together the subbands obtained by applying the inverse filters to upsampled
versions of the subband components.

The analysis and synthesis filters used here are finite impulse response (FIR) quadrature mirror filters

(QMF) implemented using the lattice structures shown in Figs. 1 and 2, which are described in [7,1].
Analysis and synthesis quadrature mirror filters of order 2M are implemented using an M-stage lattice

structure. Suitable lattice filters can be found in [1, p. 267] and [7, p. 310].

L... I

Fig. 1. Analysis filter structure. (The stage inside the box is repeated.)
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Fig. 2. Synthesis filter structure.
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For most seismicdata samples,signalenergy isconcentratedprimarilyinthe low subbands.I Figures3

and 4 give two periodograrns(power spectraldensityestimates [4])forseismicdata. The uneven dis-

tributionof spectralenergy inseismicsignalsprovidesthe basisforsubband coding source-compression

techniques. For effectivesignalcoding, subspectra containingmore energy deserve higher priorityfor

furtherprocessing.

A subband decomposition that tends to work well for seismic data is the dyadic tree decomposition

shown in Fig. 5. The signal is first split into low- and high-frequency components in the first level. A
two-band subband decomposition uses high-pass and low-pass digital filters to decompose a data sequence

into high (H) and low (L) subbands, each containing half as many points as the original sequence. The

filter is repeated to further decompose the low subband. This process may be repeated several levels.
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Fig. 3. Periodogram of 1024-point EHZ (100 samples/s) data sample
containing seismic event.
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Fig. 4, Periodogram of 1024-point BHZ (20 samples/s) data sample
containing seismic event.

1 This generally applies to the event (EHZ) and broadband (BHZ) seismic data components, which have sample rates of

100 and 20 samples/s, respectively. Energy in long-period (LHZ) data, which has a sample rate of only 1 sample/s, is

typically not as concentrated in the low frequencies. However, because of the much lower sample rate, compression of this

component is not as important as the others. A different subband decomposition could be implemented to accommodate

this type of data.
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Fig. 5. Subbsnd decompositions.

Increasing the number of subbands produces diminishing rate-distortion returns, with gains often

observable only at very high compression ratios. One reason for this is that, after several decompositions,
the energy is no longer so highly concentrated in the lowest subband.

So that a filtered block has the same length as the original, each block is periodically extended (i.e.,
repeated in time) before filtering, and the components corresponding to a single period of the filtered

extended signal are taken as the filtered signal. If this operation were not performed, the length of the
filtered signal would exceed the original block length. An unfortunate side effect of periodic extension

is that it often produces high-frequency components at the edges of data blocks, an effect whose impact
increases with filter length. These components are not as easily compressed as the rest of the subband data

and are separated for compression purposes. Longer filters are also more likely to introduce noticeable

spurious effects at the onset of a high-energy seismic event, as we shall see in Section VI. It is also worth

noting that longer filters generally do not dramatically outperform shorter filters, as we will see in the
following section.

III. Comparing Subband Coding to Block Transforms

For comparison purposes, we also examined the discrete cosine transform (DCT), a popular technique
used in the compression of two-dimensional data (e.g., images). A general description of the DCT as used

in the Joint Photographic Experts Group (JPEG) compression algorithm can be found in [5, pp. 113-128].
The DCT can also be applied to one-dimensional data, as is done here.

The data are partitioned into blocks of length 8, the DCT of each block is computed using the 8 x 8

DCT matrix, and these transformed values are uniformly quantized. A different quantizer step size could

be used for each coefficient, but in practice, for most seismic data samples, near-optimum performance

is obtained when all quantizers use the same step size. The quantized coefficients are arranged in groups

of 8 blocks for subsequent coding, so that 64 transformed coefficients are encoded at a time. In this way,

the procedure is similar to a one-dimensional version of the JPEG algorithm. The lowest frequency (dc)

quantized coefficients are encoded using differential pulse-code modulation (DPCM) and Huffman coding,

except at very low rates, when a run-length code is used. The remaining (ac) coefficients are run-length
encoded, in order of increasing frequency. The run-length encoding used is the same as that described in
[5, pp. 114-115].

We also used the same algorithm with an 8 x 8 WHT in place of the DCT, separately encoding
each coefficient. The WriT performed uniformly worse (see Fig. 6). To make a fair comparison with

subband coding, we compared the block transform compression methods to subband coding combined
with Huffman coding of the quantizer output, rather than the arithmetic coding procedure to be described
in the next section.
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Fig. 6. Rate-distortion performance for various compression techniques applied to e seismic data sample:
(i) comparison with block transform methods and (b) comparison of different subband decompositions.

Rate-distortion curves for a seismic data sample using these different techniques are shown in Fig. 6.

The labels on the curves corresponding to subband coding identify the number of subbands and the

particular filters used. For example, "3B8L" refers to a three-band decomposition using an order-8 FIR
filter. In terms of root-mean-square error (RMSE), subband coding is able to outperform the DCT and

Writ with only moderate complexity.

IV. Entropy Coding Stage: Arithmetic Coding

Anyone who has experienced an earthquake knows that the energy present in a seismic signal can vary

tremendously over time. Consequently, seismometers have a large dynamic range, and it is desirable to

have an adaptive compression system capable of transmitting low-energy and high-energy signals reliably.

A block of m data samples produces m subband coded samples. Because of the downsampling oper-

ation, half of these are high-subband samples, one-fourth are low-high-subband samples, etc. All of the

samples from a particular subband are quantized and encoded together block adaptively. Because this is
a block-to-block encoding procedure, the effects of a channel error are confined to the block during which

that error occurs. The block encoding provides the additional benefit of adaptivity.

The output of the subband coding stage is a sequence of real numbers that are quantized and then

compressed. For seismic data, as with many other types of data, these components are generally zero-
mean, roughly symmetric, and have a probability density that is decreasing as we move away from the

origin. This is illustrated in Fig. 7, which gives an empirical probability density function (pdf) of signal

amplitude from a low-pass-filtered seismic data sample.

The compression scheme we use is bit-wise arithmetic coding {2]. A high-resolution quantizer is used,

and the quantized values are mapped into fixed-length binary codewords. Figure 8 illustrates the bit

assignment for a four-bit quantizer: The first bit indicates the sign of the quantizer reconstruction point,
and each successive bit gives progressively higher resolution information. Because the pdf is zero mean

and decreasing as we move away from the origin, a zero will be more likely than a one in every bit position.

This redundancy is exploited using a binary arithmetic encoder to achieve compression.
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Fig. 7. Empirical pdf for low-pass subband filtered data.
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Fig. 8. Codeword assignment for the four-bit quantizer.

Codewords corresponding to each subband are grouped together. The sign bits of the codeword se-

quence are encoded using a block-adaptive binary-input binary-output arithmetic encoder described in

[2]. The next most significant bits are similarly encoded, and so on. Each bit sequence (or layer) is en-

coded independently-- at the ith stage the arithmetic coder calculates (approximately) the unconditional

probability that the ith codeword bit is a zero.

The obvious loss is that we lose the benefit of interbit dependency. For example, the probability that

the second bit is a zero is not in general independent of the value of the first bit, though the encoding

procedure acts as if it were. Traditional Huffman coding of the quantized samples does not suffer from

this loss. However, for many sources, such as Gaussian and Laplacian sources, this loss is quite small [2].

In fact, for many practical sources with low entropy, this technique has lower redundancy than Huffman

coding, because the arithmetic coder is not required to produce an output symbol for every input symbol.

Because the interbit dependencies are ignored, very little overhead information is required (i.e., long

tables of Huffman codewords are unnecessary). The overhead required for bit-wise arithmetic encoding

increases linearly in the number of codeword bits. By contrast, the overhead of block-adaptive Huffman

coding increases exponentially in the number of codeword bits unless we are able to cleverly exploit

additional information about the source [3].

Another advantage is that, as we will see in the next section, this technique is naturally progressive. In

a progressive transmission system, each successive data segment transmitted provides higher-resolution

information about the signal. Using a buffer, we can choose to transmit only some of the data segments.

This provides a convenient method for trading rates between blocks, so that more resources can be devoted

to reproducing the high-energy signal blocks.

247



V. Progressive Transmlsalon Behavior

In designing a compression system to be used in progressive transmission or in situations where rate

constraints may result in the loss of data, it is important to consider the rate-distortion behavior of the

system when only portions of the compressed data have been received. Such performance can be improved

simply by careful choice of the order in which the compressed data are transmitted.

The typical characteristics of subband-filtered seismic data motivate our transmission strategy. Be-

cause the probability density for subband-filtered seismic data' is generally zero mean (see Fig. 7), the

sign bit layers of each subband usually have high entropy. Because the energy in seismic waveforms is

often quite small, the high-order bit layers (excluding the sign bit) often consist entirely of zeros or can be

readily compressed using the block-adaptive arithmetic encoder. Finally, as mentioned in Section II, peri-
odic extension of the data is required in the subband filtering stage, which often produces high-frequency

components at the start of data segments. These initial values, which we call transients, are encoded

separately from the rest of the data. All but the lowest subband contain these transients.

Generally speaking, we transmit compressed data ordered from the most significant bit layer to the

least significant bit (LSB) layer, and within this order, proceeding from the lowest frequency to the highest

frequency subband. Initially, we skip the sign bit layer and begin with the next most significant bit layer.

If this layer consists entirely of zeros (which is usually the case), a single "0" is transmitted and we move
on to the same layer in the next higher subband. For every subband, a "0" is transmitted for each layer

consisting entirely of zeros until a "1" is transmitted at some layer/?, denoting that the tth layer is not
all zeros. At this point, we transmit the sign bits (using the block-adaptive arithmetic coding procedure

already described). Then the transients for the subband are transmitted using run-length encoding of the

leading zeros, and then the (compressed) gth bit layer is transmitted. Then we proceed to the gth layer

for the next higher subband. Each subsequent bit layer of the subband is sent, compressed by arithmetic

coding.

Because the order of transmission is determined using a rather simple decision procedure, the additional

overhead required to describe the transmission order is quite small--it consists only of occasional one-bit

flags. As an example, Fig. 9 shows a seismic data sample along with waveforms reconstructed from only

small portions of compressed data for a 51.2-s (1024-point) block.

The rate-distortion progressive transmission performance of this system for one seismic data sample

can be seen in Fig. 10. The highest rate point of each curve is the final design goal, and the rest of
the curve shows the rate-distortion performance when the signal is reconstructed using only portions of

the data. It is remarkable that the curves are nearly indistinguishable. Note that a system designed to

transmit at a rate of 5 bits per sample (bps) but cut off at only 2.5 bps performs almost as well as a

system designed to operate at 2.5 bps.

VI. Distortion Measures and Artifacts

In the previous sections, we have been mostly concerned with the mean-square error (MSE) distortion
measure. However, mean-square distortion may not be a sufficient indicator of fidelity for seismic analysis

purposes. For example, Spanias et al. [6] examined the effect of transform data compression methods on
estimation of the body wave magnitude, which they call "the key parameter used in seismic analysis."

Other distortion measures may be more relevant, depending on the interests of the seismologists who will

ultimately analyze the data. Unfortunately, we do not know of a distortion measure that seismologists

will widely accept as the most useful.

Artifacts are erroneous features that may appear in the reconstructed waveform. Different algorithms

create different artifacts depending on their modes of operation. For example, "blockiness" is an arti-

fact commonly associated with block transforms such as the DCT, while "ringing" may be produced by
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subband coding using a filter with a too sharp response. Even a given algorithm may exhibit different

artifacts depending on the bit rate at which it is operated. Some artifacts may be more objectionable

than others for correct waveform interpretation.

In this section, we illustrate two artifacts that may be observable in subband coding depending on

the mode of operation and the compression ratio. Understanding the causes and cures for such artifacts
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allows seismologists to give meaningful feedback to engineers in deciding what features of a compression

system are most important.

We are actively trying to engage the seismology community to characterize any essential artifacts pro-

duced by the proposed method [8]. One of the results of this interaction was the objection of seismologists

to the precursor artifact created by a particular subband filter, as shown in Fig. 11(b). After determining
that such an artifact was due to a filter with a too sharp response, we experimented with different, shorter

filters, producing the result shown in Fig. 11(c), which reduces the precursor problem while preserving

essentially the same compression ratio.

A different artifact is introduced when the quantizer step size is quite large (this equivalent effect may

occur if the waveform is reconstructed using only a portion of the data). In this case, each subband

will have low resolution, and because most of the energy is contained in the low frequencies, the high-

frequency subbands may all be zeroed out. This may produce the interesting smoothing effect that can
be observed in the periodogram of the reconstructed waveform shown in Fig. 12. If this frequency range

has more significance than the others, the corresponding subbands could be assigned higher priority in

the transmission and quantization stages.
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The JPL DSN Microwave Antenna Holography System (MAHST) was applied to

the newly constructed DSS-24 34-m beam-waveguide antenna at Goldstone, Califor-

nia. The application of MAHST measurements and corrections at DSS 24 provided

the critical RF performance necessary to not only meet the project requirements

and goals, but to surpass them. A performance increase of 0.35 dB at X-band

(8.45 GHz) and 4.9 dB at Ka-band (32 GHz) was provided by MAHST, resulting in

peak efficiencies of 75.25 percent at X-band and 60.6 percent at Ka-band (measured
from the Cassegrain focus at fl). The MAHST enabled setting the main reflector

panels of DSS 24 to 0.25-ram rms, making DSS 24 the highest precision antenna
in the NASA/JPL DSN. The precision of the DSS-24 antenna (diameter/tins) is

1.36 x 10 5, and its gain limit is at 95 GHz.

I. Introduction

The JPL Microwave Antenna Holography System (MAHST) (Fig. 1) [1] has become the leading tech-

nique for increasing the performance of the large NASA/JPL DSN antennas, especially at the shorter

wavelengths (X-band (8.45 GHz) and Ka-band (32 GHz)). The MAHST provides an efficient and low-

cost technique to optimize and maintain the performance and operation of the large DSN antennas,

providing far-field amplitude and phase pattern measurement with a 90-dB dynamic range, and enabling

high-resolution and high-precision antenna imaging with a standard deviation of 100 #m. The panel set-

ting/unbending screw adjustment is provided with an accuracy of 10 to 20 pm. Fast subreflector position

optimization is provided, which increases the antenna performance capacity and pointing accuracy. The
MAHST is a portable system that can be shipped to any DSN antenna around the world and can be

easily interfaced with its encoders and antenna drive systems. The MAHST was designed utilizing many
off-the-shelf commercially available components. The remaining parts were designed and built at JPL.

The MAHST has been successfully tested and demonstrated at the NASA/JPL DSN [1,2].

The microwave holography technique utilizes the Fourier transform relationship between the complex

far-field radiation pattern of an antenna and the complex aperture field distribution. Resulting aper-

ture phase and amplitude distribution data are used to derive various crucial performance parameters,

including panel alignment, subreflector position, antenna aperture illumination, directivity at various

frequencies, and gravity deformation effects [3,4]. Strong continuous wave (CW) signals obtained from

geostationary satellite beacons are utilized as far-field sources. Strong CW beacon signals are avail-
able on nearly all satellites at Ku-band (10.7 to 12.7 GHz), X-band (7.0 to 7.8 GHz), and C-band (3.7

to 4.2 GHz). A portable 2.8-m reference antenna (Fig. 1) is used as a phase reference and provides

the signal to the receiver phase-lock-loop (PLL) channel. The intermediate-frequency (IF) section of a
Hewlett Packard Microwave Receiver (HP8530A) and an external JPL-designed and -built PLL enable
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