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This paper presents a dynamic model of an internal 

combustion engine coupled to a variable pitch propeller. The 

low-order, nonlinear time-dependent model is useful for 

simulating the propulsion system of general aviation 

single-engine light aircraft. This model is suitable for 

investigating engine diagnostics and monitoring and for 

control design and development. Furthermore, the model may 

be extended to provide a tool for the study of engine 

emissions, fuel economy, component effects, alternative fuels, 

alternative engine cycles, flight simulators, sensors and 

actuators. Results presented in this paper show that the model 

provides a reasonable representation of the propulsion system 

dynamics from zero to 10 Hertz. 

Introduction 

This paper presents a General Aviation (GA) propulsion system model that is suitable for diagnostics 

and engine monitoring, for control and design studies, and for flight simulators. The model is developed 
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by adapting a low-order, nonlinear, dynamic model of an internal combustion (IC) engine produced for the 

automotive industryl, 2 to GA use. The GA engine system model is then coupled to a variable-pitch 

propeller model to obtain the full GA propulsion system model. 

The model presented in this paper is a first step toward advancing the state-of-the-art in GA engine 

systems. The GA industry has been producing light aircraft for many years. However, dynamic models of 

the relatively simple single-engine propulsion systems are still widely nonexistent. Aerospace research has 

tended to focus on the turbojet and turbofan engines used by the larger commercial airlines. This has 

allowed many improvements to be made in the engine systems of larger aircraft while almost totally 

ignoring the GA industry. 

The lighter GA planes typically have internal combustion engines similar to those used in automobiles. 

The automobile industry has made many advances in dynamic modeling of these engines, especially in the 

study of emissions, efficiency, advanced sensors and controls. However, none of these advances have 

made their way into the GA industry. The model presented in this paper is a first attempt to use the 

advances in automotive engine modeling to improve GA engine systems. 

This paper presents a low-order, nonlinear, dynamic model of an internal combustion engine coupled 

to a variable pitch propeller propulsion system for GA aircraft in the following manner. First, a model of 

the variable pitch propeller is obtained3. Next, an engine model is developed that is based on low order 

engine torque and speed models as applied to automobiles 1, 2. This model of the engine uses a steady-state 

engine performance map that contains the end result of the combustion, piston motion, engine cranking 

and exhaust rather than model these processes in detail for the simplicity of a preliminary model. Third, a 

model of the intake process is developed using low order models of the manifold, throttle and fuel flow 

rates1, 2, 4, 5. The intake process is also modeled with an intake map rather than in detail. Conservation of 
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mass equations are used to ensure that the simple model obeys conservation principles. One of the inputs 

for this propulsion system model is altitude. Therefore, a model of atmospheric variation with altitude is 

also presented 6, 7. These models are integrated into the overall GA propulsion system model that is then 

placed in state-variable form for implementation. 

The mathematical description of the model is followed by the results of simulations with varying model 

inputs (blade pitch, throttle angle and fuel to air mixture ratio -- separately and in different combinations). 

The first three cases show the result of varying each of the inputs individually. The fourth case presents 

results for simultaneous throttle and blade pitch commands to the engine. A final case investigates the 

result of combining all three inputs. These last two cases are examples of how a single lever power control 

(SPLC) system might be implemented. 

Variable Pitch Propeller Model 

The model begins with the GA aircraft's variable pitch propeller that moves air backwards to get the 

reaction force, the thrust, to move the plane forward. The propeller model assumes3 that the whole 

propeller acts as an airfoil, the total area of which is assumed concentrated at a certain distance, r gy' from 

the flight or propeller axis. The blade element is at an angle, /3, from the plane of rotation. The net motion 

is a combination of an axial translation with velocity, V, and a rotation with angular speed, (i) = 2 1r N / 

60. All the blades are thus replaced by one blade element at a distance, rgy from the shaft, (note that this 

representation made rgy the radius of gyration, rgy = rprop /"';2 and rprop = 3.5 ft), on which is based a 

propeller disk area, Aprop = 1r rgy2. This approach has been called the method of representative blade 

element3. This strictly theoretical method yields general information about propeller characteristics. It is 

chosen because of the lack of available data for particular propeller behavior -- besides, this propeller 
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model may be said to be more broad and generic this way. The chord line is used to represent the propeller 

section. The chord line forms an angle, /3, with the direction of rotational velocity, r x co. The resultant 

velocity, which tends an angle, 13 - a, with the chord line, making this angle the blade pitch, has the 

magnitude V I sin (13 - a) = rgy rol cos (13 - a). The propeller is then found to provide a thrust3 

1 [rOJ)2 r prop ( 13 - a, ro, P a' r) = [ C L COS ( 13 - a) - CD sin ( 13 - a) ] 2: P a A prop CoS( 13 _ a) 

(1) 

that is also dependent on altitude, H, through the ambient air density, Pa. The propeller torque is similarly 

found to be3 

1 [rOJ)2 
Q proi 13 - a, OJ, P a' r) = [C L sine 13 - a) + CD cos ( 13 - a) ] 2: P a A prop cos ( 13 _ a) r 

(2) 

where 

CL ( 13 - a) = 0.1 (13 - a) (3) 

and 

CD ( 13 - a) = 0.02 ( 13 - a) + 0.002 ( 13 - a)2 (4) 

are empirical lift and drag coefficients, respectively3. When the propeller torque is multiplied by the 

angular velocity, OJ, the propeller power, P prop' is obtained. 

P prop( 13 - a, co, Pa,r)= Q prop( 13 - a, ro, Pa' r) ro (5) 
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The propeller torque represents the propeller loading on the engine. The propeller power is the amount of 

power that the engine needs to be able to supply. Notice that the propeller torque and power both depend 

on propeller-engine shaft speed, pitch, and altitude through the air density. The engine torque and power 

needed to handle the propeller load will be discussed in the following section on the engine model. The 

model of the process by which air and fuel get delivered to the engine to generate the needed torque and 

power is also discussed. 

Engine Model 

In General Aviation, air-cooled, internal combustion, reciprocating piston engines are typically used to 

drive the propeller. The model of the engine presented in this paper is kept simple by looking at the engine 

as a whole and not looking in detail into the combustion process nor the link between the pistons and the 

crankshaft. What helps to keep the model simple and focused on the global behavior of the engine­

propeller system is that engine manufacturers have maps of engine performance characteristics8. This 

allows for a macroscopic level of engine modeling. Thus, in this model, the reciprocating engine's internal 

combustion cycle is assumed inherent in the engine maps allowing for a simple assumption of engine 

dynamic response. 

The map used in this work represents the model 10-470 engine made by Teledyne Continental 

Motors8. The map is the only engine-specific part of the model, all other terms in the equations that do not 

contain the map subscript are generic. The 10-470 engine has six horizontally opposed cylinders (Le., flat 

six arrangement) and can go up to 220 BHP at 2550 RPM. 
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Engine Torque and Power 

Engine characteristics for piston-engined aircraft are typically arranged in performance maps that relate 

important engine variables to parameters representing the environment within which the engine operates 8 , 

9. Therefore, many details of the torque and power process are not modeled. The maps provide a way of 

obtaining the torque and power produced by the engines for various air conditions, engine speeds, and 

injection system settings. The torque that the engine produces should then balance that which the propeller 

requires to move the plane. Thus, the engine can simply be modeled macroscopically as a supplier of a 

torque according to a given engine map. The particular engine map used here relates engine brake specific 

fuel consumption, engine power, and speed. Using the definition of the brake specific fuel consumption, 

torque, engine speed, fuel flow, and engine torque, the torque that the engine can produce according to the 

map is 

550 WI 
Qe. map ( wI' N, Qe ) = --:-\---------=Q---:-\--tc-..:..-

BSFC (N ,N 3~ 55~) map 30 N 
(6) 

The engine cannot instantaneously produce Qe. map' as given above. A finite response time is 

assumedl,2 for the engine to produce a torque, Qe, to satisfy the propeller needs via Qprop. This response 

time may be assumed l , 2 to be related to the cycle as 'Ie = 60/ N. That is to say that the engine cycle, with 

its intake, combustion and exhaust processes inherent in the map, may then have a simple first order 

response 

Qe = + [ Qe. map ( wI' N, Qe) - Qe ]. 
e 

(7) 
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Engine Speed 

A torque balance on the short crankshaft, on which the propeller is assumed to be mounted, can supply 

the engine speed equation. The dynamics of the crankshaft itself are not significant compared to larger 

components like the propeller (lprop = 1C rprop4 12 ). The equation for this balance is 

(8) 

Fuel Flow 

Because controlling fuel flow is important in controlling the engine, the induction process is modeled. 

The modeling of this process begins with the fuel injection system. The fuel injection system may be 

designed to have the flow rate proportional to an injection pulse width commandl, 2. To maintain the 

simplicity of the system, the actual flow rate is assumed to have a first order relation to the commanded 

fuel flow rate1, 2. 

(9) 

The fuel flow time constant is arbitrarily taken to be 'rj = 0.5 sec, a typical value 1,2. The commanded fuel 

flow rate on the right hand side of (9) is taken to be the weight flow past the throttle plate multiplied by the 

fuel-air mixture ratio commanded by the pilot, (FIA)c, as in 

where 

(10) 

This equation contains the conversion factor, g, to convert mass units from slugs to Ibm. This term also 

contains the discharge coefficient, Cdchrg, estimated conservatively to be a low 0.6 although it could be 

dependent on other flow parameters (complications not yet of interest). The throttle area through which the 
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flow passes the throttle plate depends on the throttle plate angle commanded by the pilot, 9c and is given 

by 6,7 

(11) 

D2 cos ( 9c + 9s ) • -1 ~ (d ___ C....,....O_S _9s--,-_]2 
-- sm 1--
2 cos 9 s D cos ( 9 c + 9 s ) 

This equation shows how throttle flow cross-section varies with throttle angle (and so, shows how the 

flow past the throttle plate varies with throttle plate angle). The commanded throttle angle, 90 can range 

from a set reference angle taken here as, 9s = 0, up to 70° for the model 10-470 series engine. The 

dynamics of the throttle plate are ignored as they are assumed of a higher frequency than the more massive 

components whose dynamics are of greater interest. The mass flux through the throttle area is given by 6,7 

Pa ( :. r ~ 2r 
[ 1 _ --L ]-7 , --L > ( 2 

) T~I 
,J RTa r- 1 Pa Pa r+1 

c:p ( P man' P a' T a ) = 

~r( )~ ~ ( 2 
) Y~I Pa 2 y-I --L 

~ RTa r+1 Pa r+1 
(12) 

This term shows the dependency on altitude given that Pa and Ta both depend on altitude. If P > P (b then 

the flow past the throttle plate is subsonic otherwise that flow is choked. Given (10), (9) may be written as 

(13) 
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Intake Manifold Pressure 

The manifold pressure is assumed to respond in a first order fashion when changes in torque and 

power get requested from the engine, as with other subsystems modeled here. The pressure that the intake 

manifold would respond to in this manner is a characteristic of the engine specified by the intake manifold 

pressure map for the engine, 

Pman. map( Qe , N ) = Pman. map ( Qe * N * 7r / ( 30 * 550 ) , N ) (14) 

giving 

. 1 
P man ( Qe ' N ) = -'t'- [ P man, map ( Qe , N ) - P man ]. 

man 
(15) 

Intake Manifold Flow 

Conservation of the mass within the intake manifold is insured with an equation obtained for a balance 

of the mass flowing across a control volume around the manifold. Accumulation of mass in the manifold 

is assumed of first order, therefore 

1 
W man = -- {w f - W man + W th ( e c' P man' P a' Ta) }. 

't'man 
(16) 

This equation balances any accumulation of air and fuel in the manifold with the net weight flow rates of 

fuel, of the intake manifold and of air past the throttle plate, respectively. In this equation, the time 

constant for the intake process is taken to be half the engine time constant, 't'man = 't'e /2 = 60/2 N. This is 

because for this macroscopic level of modeling, the complete intake and exhaust are assumed to occur 

sequentially, with similar amounts of mass, within the cycle and so share the cycle time. The exhaust 

manifold flow is not modeled here because it is assumed to have negligible effects in the simple model. 
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Altitude Effects 

The engine model naturally depends on the atmospheric conditions (Pa> Ta and Pa ). Standard air 

conditions are assumed for this analysis. Parkinson6, 7 lists the equations that approximate the 

characteristics of the U. S. Standard Atmosphere (1962) model in the troposphere. 

; = 1 - 6.8729(10-6) H (17) 

~ = ;5.25581 (18) 

(J'= Pa I Pa, SeaLevel = ~/; (19) 

Ta = 530; (R) (20) 

Pa = 29.92 ~ (in Hg) (21) 

Next, the altitude model is incorporated into the whole GA propulsion system model in state variable 

form. This form is one that is merely convenient for this effort. 

State Variable Form 

The propulsion system model is made easier to implement by putting it in state variable form, a form 

useful for control design. The coupling of the various engine and propeller components also becomes 

more obvious in this form. By defining 

Xl =N 

X2= Qe 

X3 = Pman 

X4 = Wman 

X5 = WI 
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equations (7), (8), (14) and (16) can be rewritten as 

30 
X j = 7r I [ X 2 - Qprop ( X j , f3 - a, P a ) ] 

prop 

1 

[Pman,map(X j , X 2 ) -X 3 ] 

(22) 

(23) 

(24) 

(25) 

(26) 

Figures 1 and 2 show the model in block diagram form. Here, the inputs are blade pitch, in f3 - a, 

throttle angle command, Be, fuel to air mixture ratio, (F / A)e, and altitude. The outputs are propeller and 

engine power; speed; manifold pressure; mixture ratio; and fuel flow. Using these forms, several cases 

are simulated and the results are discussed next. 

Simulation Results 

The simulation results that follow are from a set of inputs and initial conditions typical of a cruising 

GA plane like the T34B equipped with the IO 470 engine modeled here. These simulations follow a 

transient to settle to a steady state cruise condition. After reaching a the steady-state condition, some 

variations are imposed -- variations in blade pitch, mixture ratio, throttle opening, each separately; then 
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blade pitch and throttle opening together; and finally, all three simultaneously. This is to investigate the 

system response to each input and combinations of inputs. Linear analyses of the simulations show a 

bandwidth of 0 to 10 Hertz. 

A low altitude cruise condition is first simulated. The initial conditions are: X](O) = N(O) = 2000 

RPM, X2(0) = QlO) = 304.6 lb-ft, X3(0) = Pman(O) = 24 in Hg, X4(0) = w'man(O) = 913.5 lbmlhr and 

Xs(O) = wiO) = 60.9 lbmlhr. The inputs are: f3 - a = 00, Be = 33°, F / A = 1/15 = 0.0667, andH = 

6000 ft. The outputs are propeller horsepower, engine horsepower, engine speed, manifold pressure, 

mixture ratio, and fuel weight flow rate. The output mixture ratio is calculated as 

or 

F 
A 

F 
A 

Varying Cruise Inputs 

(27) 

(28) 

Once reaching a steady state cruise condition with the cruise inputs and initial conditions, a step change 

in one of the inputs is imposed. A blade pitch step change is the first case simulated. 

Blade Pitch 

The blade pitch is given a step increase from O· to 2° and a step increase from O· to 4· each starting 

from steady cruise. The results of each blade pitch step increase are plotted together in Fig. 3. The dashed 

curve shows the 4· case. In this case, the propeller horsepower goes quickly to a steady-state after the step 

change (Fig. 3(a». Since the engine is not being supplied any fuel to provide the power required, the 

propeller-engine speed decreases (Fig. 3(b)). The manifold pressure decreases slightly until it reaches 
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steady state but it is not influenced by the blade pitch (Fig. 3(c)). Meanwhile, the resultant mixture ratio 

hardly changes from the steady-state cruise condition (Fig. 3(d», since the other flow rates show little 

change. Fuel flow decreases because, as the engine speed decreases, so do the flow requirements (as the 

manifold pressure show, Fig. 3(c», it takes longer to change from steady-state cruise and reach a new 

steady state (Fig. 3(e». 

In the 4° blade pitch case, the same behavior happens but more pronounced since this is a higher blade 

pitch. However, since the step is larger, the engine speed takes longer to reach steady state due to the 

inertia of the propeller. Again, the other engine parameters simply go to steady state without any influence 

of blade pitch. The propeller relationships are mostly quadratic in blade pitch but this case shows the 

greater influence of the linear part of these relationships (the coefficient of the quadratic part being very 

small). 

Fuel to Air Mixture Ratio 

The fuel to air mixture ratio is given a step increase from stoichiometric to 0.07667 in this case and a 

step increase from stoichiometric to 0.8667, again each starting from steady cruise. Everything increases 

in this case except the air flow (Fig. 4). The fuel flow increases before the other flow rates (Fig. 4(e» 

since fuel flow has a shorter response time. This causes the resulting mixture ratio to increase (Fig. 4(d». 

Increases in fuel cause increases in engine power (Fig. 4(a», consequently, engine speed increases (Fig. 

4(b». As a further consequence, manifold pressure increases with engine power and speed (Fig. 4(c». 

Throttle Angle 

The throttle is opened by stepping the throttle plate angle from 33° to 43° in one subset of this case and 

33° to 53° in another subset of this case. The response to the throttle being opened is a higher fuel and air 

flow rate into the engine (pressure inside the manifold being lower than outside). As a result, the engine 

generates more power (Fig. 5(a». The fact that the 53° case power curve shows a slope different from the 
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43° case implies a nonlinearity in response time. Engine power increases faster than the previous cases. 

Engine speed increases (Fig. 5(b)). Manifold pressure increases faster than other cases because it depends 

on engine power and speed (Fig. 5(c)). Opening the throttle allows more air and fuel into the engine and 

so engine power increases faster with increased fuel flow. However, propeller-engine speed does not 

increase that fast because of the propeller inertia. Unlike the others, fuel to air mixture ratio shows a step 

(Fig. 5(d)) due to the difference in the response time of the fuel and the manifold flow rates. But the 

mixture ratio does eventually return to its initial value, apparently at the slower rate of manifold flow than 

that of the fuel flow (Fig. 5(e)). This occurs with the fuel and air flow rates seeming to eventually negate 

each other's effects on mixture ratio as mixture ratio reaches the same steady state for both cases. This 

implies a nonlinear response in flow rates to throttle changes. 

Blade Pitch and Throttle Angle 

The previous variations in each of the blade pitch and throttle opening cases are coupled in this case. 

The shape of the curves in Fig. 6 shows shapes from the increasing blade pitch curves (Fig. 3) and the 

increasing throttle angle curves (Fig. 5). Elements of the individual cases show up in this combined input 

case. Propeller and engine power increase due to the increase in blade pitch and throttle angle, respectively 

(Fig. 6(a)). Engine speed increases with 43° throttle opening since the increased fuel into the engine is 

enough to allow the engine to handle the increased loading of the 2° blade pitch case (Fig. 6(b)). But the 

increased fuel that comes with the 53° throttle opening is not enough for the 4° blade pitch case. Manifold 

pressure increases as in the previous throttle angle case (Fig. 6( c)) -- not effected by the other input 

changes. Fuel to air mixture ratio does not change with blade pitch before but shows some of the dynamic 

behavior of the increased throttle angle case in this case with the coupled inputs (Fig. 6(d)). Fuel flow 

increases quickly due to the throttle angle increase (Fig. 6(e)). 
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Blade Pitch, Throttle Angle and Fuel to Air Mixture Ratio 

A similar type of coupled output from coupled input results here (Fig. 7) as in the previous case but 

more pronounced when the effects of mixture ratio are included. This is good since a lot of engine power 

is needed to handle the propeller loads via the blade pitch changes -- but even that is not enough for the 4 0 

blade pitch load. In the results of the coupled inputs, propeller and engine power increase (Fig. 7(a». 

However, engine. speed decreases with the higher throttle opening and mixture ratio because the increased 

loading of the higher blade pitch was still too great (Fig. 7(b». Similarly, manifold pressure increases with 

the coupled blade pitch, throttle angle and mixture ratio increases (Fig. 7(c». The resulting mixture ratio 

increases since it is set to increase and because of opening the throttle (Fig. 7(d». Fuel flow increases with 

mostly the rates associated with opening the throttle dominant (Fig. 7(e». 

The coupled blade pitch, throttle angle and mixture ratio case shows how engine and propeller power 

can increase with simultaneous increases of all three inputs. These last two cases demonstrate that the 

model could be used to develop a single lever power control system for GA airplanes. The way they 

would be varied depends on the particular aircraft, propulsion system and control design. 

Concluding Remarks 

A low-order, nonlinear, dynamic model of an internal combustion engine coupled to a variable pitch 

propeller is constructed for general aviation (GA) single-engined light aircrafts. The results show that the 

model captures internal combustion engine and variable-pitch propeller dynamic behavior as in other 

research on automotive reciprocating engines. Linear analyses of the simulations show a bandwidth of 0 to 

10 Hertz. The model is suitable for control and design studies. Furthermore, the results show how the 

GA airplane propulsion system may respond with a single lever power control system. 

The model however is limited to global, low-order dynamic Ie engine-variable pitch propeller system 

behavior since that is a major assumption. General Aviation aircraft propulsion system data is limited and 
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therefore a flight-test is needed to validate the model. Aspects of the model requiring validation include the 

maps, the propeller relationship, and the response times. More detailed modeling of individual components 

and processes should also provide refinements of the maps, propeller relationship, and assumed response 

times . Details of the combustion process, intake and exhaust throughout the cycle could provide more 

elaborate data on the timing effects as well as on emissions and fuel economy, the effects of various 

alternative fuels and even other engine cycles. Such details could also provide a better understanding of the 

coupling of power, speed, manifold pressure and flow rates. Details of actuator dynamics, additional 

sensor and control mechanisms could also be included in the model. 
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Nomenclature 

A Area (sq. ft. or sq. in., specified for appropriate equation). 

BHP Brake horsepower from engine maps (hp). 

BSFC Brake specific fuel consumption (BSFC = Fuel Flow / BHP , IblBHP hr). Also SFC. 

C Coefficient. 

D Throttle bore diameter of3.25 in. 

d Throttle rod diameter 0.38 in. 

F / A Fuel to air mixture ratio. 

g Conversion factor for converting slugs to Ibm. 

H Altitude (ft). 

I Moment of inertia (in4). 

N Engine speed (RPM for revolutions per minute). 

P Power (lb-ftls). 

p Pressure (in Hg). 

Q Torque (lb-ft), e.g., Qe, map = BHP * 550/( RPM * 1! /30) = P e, map * 550/( Ne, map * 1C /30 ) . 

R Gas constant (ft2 / s2). 

RPM Engine speed from engine maps (Revolutions Per Minute). 

r Radius (ft). 

SFC Specific fuel consumption from engine maps (lbIBHP hr). Also BSFC 

T Thrust (lbs). 

Ta Ambient air temperature (R). 

V Propeller resultant velocity (ftls). 

w Weight (lb). 

X State variable for a which a subscript specifies a state. 

17 



Greek characters 

a Propeller angle of attack (degrees). 

f3 Propeller angle with plane of rotation (degrees). 

r Ratio of specific heats of air. 

¢> Mass flux (lb/hr/in2). 

f) Throttle angle (degrees). 

p Density (slugs/ft3). 

(J Term used in showing atmospheric variation with altitude. 

Time constant (sec). 

Angular velocity (rad/s). 

~ Term used in showing atmospheric variation with altitude. 

, Term used in showing atmospheric variation with altitude. 
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Subscripts 

a Ambient air conditions. 

c Command as in commanded value. 

D Drag. 

dchrg Discharge as in discharge coefficient. 

e Pertaining to the engine. 

f Pertaining to the fuel. 

gy Gyration as in radius of gyration. 

L Lift. 

man Pertaining to the intake manifold. 

map Pertaining to the engine maps. 

prop Pertaining to the propeller. 

th Pertaining to the throttle. 

s Set as in set throttle angle. 
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30 



:E 
2010 r-

~ ~ 2 degrees pitch & 43 degrees throttle 

'ti 2005 I-
- 4 degrees pitch & 53 degrees throttle 

Q) 
Q) 

~ 0.. 
en 
Q) 

2000 s:: ........ .... 
0.0 s:: '-Q) 

~ """'-. I 
~ 

1995 --Q) 
I- ---- ~ Q) 

e ~ 
~ 

p., 1990 .. i I I I • I I I I 

0 0.2 0.4 0.6 0.8 1 
Time, sec 

(b) Propeller-engine speed. 

30 

0.0 --- 2 degrees pitch & 43 degrees throttle 
- 4 degrees pitch & 53 degrees throttle r= 28 

e-
o 26 en 
en 
2 
0.. 

"t:l 24 -..8 .... 
s:: 22 ~ 

:E 
20 

0 

(c) Manifold pressure. 

Fig. 6. Continued. 

--
0.2 0.4 0.6 0.8 1 

Time, sec 

31 



0.1 

0 .- 0.08 ..... 
~ 

--2 degrees pitch & 43 degrees throttle 
- 4 degrees pitch & 53 degrees throttle .. 

e 
:s 0.06 ..... x 
·S .. 0.04 .-~ 
.9 - 0.02 ~ 

&! 
0 

0 0.2 0.4 0.6 0.8 1 
Time, sec 

(d) Fuel to air ratio. 

120 

110 
--2 degrees pitch & 43 degrees throttle 

- 4 degrees pitch & 53 degrees throttle .. 
100 c:e -Vl ..c 
90 -"i 

0 80 t+=: -~ 70 tf 
60 

50 
0 0.2 0.4 0.6 0.8 1 

Time, sec 

(e) Fuel weight flow rate. 

Fig. 6. Continued. 

32 



-- Propeller, 2 degrees pitch, 43 degrees throttle & F/A=.07667 
- - Propeller, 4 degrees pitch, 53 degrees throttle & FI A=.08667 
- - - Engine, 2 degrees pitch, 43 degrees throttle & F/A=.07667 
- - - - - Engine, 4 degrees pitch, 53 degrees throttle & FI A=.08667 

;- - - -- --240 :-

I -
220 -- .. ---" 
200 :- .. -

0.. I .. . 
:I: - ,. 

180 - f' 

" .... - , 
11,) 160 - I 

, 
~ - -, -0 I --~ 140 ;;.. • oi-

I 
, 

120 .... ./ 
~----- ". 

100 i-
• I • I I 

0 0.2 0.4 0.6 0.8 1 

Time, sec 

(a) Propeller and engine power. 

2 degrees pitch, 43 degrees throttle & F/A=.07667 
- 4 degrees pitch, 53 degrees throttle & F/A=.08667 

~ 
2010 

~ 
-d' 2005 

11,) 
11,) 
0.. 
Vl 

11,) 

2000 s= ""-.-co --s= 
11,) -I -- -1-0 
11,) 1995 --11,) 
0.. 
8 
~ 1990 

0 . 0.2 0.4 0.6 0.8 1 
Time, sec 

(b) Propeller-engine speed. 
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