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Abstract

Intemalspurgear teethare normally

strongerthan pinionteeth ofthe same pitch
and face width sinceexternalteethare

smalleratthe base. However, ringgears

which are narrower,have an unequal
addendum or are made ofa materialwitha

lower strengththan thatof the meshing pinion

may be loaded more criticallyinbending. In

thisstudy,a model forthe bending strengthof

an internalgear toothas a functionofthe

applied load pressureangle ispresented
which isbased on the inscribedLewisconstant

strengthparabolicbeam. The bending model
includesa stressconcentration factorand an

axialcompression term which are extensionsof

the model foran externalgear tooth.The

geometry ofthe Lewisfactordeterminationis

presented, the iterationto determine the

factorisdescribed and the bending slrengthJ

factoriscompared tothatof an externalgear

tooth.Thisstrengthmodel willassistoptimal

design effortsforunequal addendum gears

and gears of mixed materials.

Nomenclature

Symbols

B gear dedendum {ram,in)

c center distance (mm,in)
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permission.

f face width (mm,in)

h heightof Lewisparabola (mm,in)

H height,y distance (mm,in)orstress

concentration constant

J AGMA bending strengthfactor

Kf stressconcentration factor
m module (mm)
N number of teeth

Pd diametral pitch (1 .O/inch)
R pitch radius (ram,in)

RC radial distance to the parabola apex
(mm,in)

RF cutter tip radius {ram,in)

RFF radius to trochoid point {mm,in)

R0 cutter radius to center of cutter tip
(mm,in)

RT gear radius to the center of the cutter tip
fillet (ram,in)

RA distance from the cutting pitch point to

the cut point (mm,in)
RD distance from the cutting pitch point to

the center of the cutter tip fillet (ram,in)

t Lewis parabola tooth thickness {mm,in}c
t pitch circle tooth thickness (ram,in)

_J_t tangential (kN,Ibs)load

x Lewis form factor distance (mm,in)
X abscissa coordinate (mm,in)

Y ordinate coordinate (ram,in) or Lewis form

factor

a angle between the tangent to the
trochoid and the tooth centerline

(radians)

13 central gear angle {radians)



V angle on the gear from the cutting pitch

point to the trochoid cutting point

(radians)

61 angle on the cutter from the pitch point
on the tooth surface to the center of the

tip circle (radians)

5 2 angle on the gear from the pitch point on
the tooth surface to the center of the tip

circle (radians)

A internal tooth half bottom land angle

(radians)

rl angle at the cutting point between the

line of centers and the normal through the

tip fillet center (radians)

B roll angle (radians)

ef central angle on the gear from the center
of the tip of the trochoid to the trochoid

point (radians)

eft central angle on the gear from the center
of the gear tooth to the trochoid point

{radians)

A supplement of the angle a (radians)

p radius of curvature (ram,in)

o bending stress (Pa, psi)

pressure angle (radians)

slope of the trochoid at the contact point

Subscripts

A point of contact

b base cErcle

C apex of parabola

E involute point

f . fillet

F trochoid point

z of the involute at the cutter tip fillet center

I cutter

2 internal gear

Suoerscriots

L stress concentration equation constant

M stress concentration equation constant

lnfroduc:tiorl

In the design of spur gear teeth, bending

strength is a significant concern ''z_. Gear
teeth which break off at the root become free

debris in a gear box to cause secondary

failures. In a very short time, a tooth bending

fatigue failure will cause a complete
breakdown of the transmission in which it

occurs. So tooth bending fatigue limits in a

transmission are a primary concern in all stages

of design.

For equal addenda gears made of the
same material and the same width, the pinion

teeth have the lowest bending fatigue limit
since their bases are smaller and the loads on

the pinion and gear teeth are equal. Thus

most of the gear tooth bending stress models

are for external gear teeth 4"s. However, there

are situations in which an internal gear tooth

may have a higher chance of failure than its

meshing external pinion tooth. It may be
made of a weaker material or its tooth

thickness may be reduced to enlarge the

pinion's tooth thickness and balance the

bending strengths in the mesh.

Present models for the bending strength

of internal gear teeth _'7use the straight line

tangent model of Hofer with a slope relative to

the tooth centerline of forty-two to fifty-nine

degrees. Both studies recommend forty-five

degrees for thick rimmed gears with larger

angles for thin rimmed gears. The AGMA

Aerospace Gearing Design Guideline Annex 8,

gives a procedure for finding the inscribed

parabola which yields the highest stress

estimate for a given tooth and loading. This

procedure assumes a solid body gear and a

circular fillet tangent to the tooth involute.

In this work, the classic method of

inscribing a constant strength parabola inside

the tooth is used to estimate the tooth

strength 9. This is the method of Wilfred Lewis I°

which has been used for many years by the

AGMA as the basis of the external gear tooth

strength model s. A stress concentration factor
has been added to the calculation as an

extension of the Dolan and Broghamer



factor". The model also includes axial

compression to match the AGMA bending

strength J factorS. Required information to

specify the internalgear J factor are: I)the

dedendum ratioof the tooth, 2} the nominal

pressure angle, 3) the pitch circletooth

thickness,4) the number of teeth on the

internalgear, 5J the number of teeth on the

meshing pinion to find the highest point of

single tooth loading, 6)the number of teeth on

the pinion shaper cutter,and 7} the tipradius

of the cutter.

Tooth Slrenqth Model

Wilfred Lewis developed the basic model

for bending stress in gear teeth in 1892 _°. In his

analysis, Lewis considered a gear tooth to be a
loaded cantilever beam with a force applied

to the tip of the gear. He made the following

assumptions:

I. the load is applied to the tip of a gear

tooth;

2. only the tangential component of the

force will be a factor {the radial

component is neglected);
3. the load is distributed uniformly across the

entire face width of the gear;,

4. forces due to tooth sliding friction are

negligible; and

5. no sJTessconcentration is present in the
tooth fillet.

Lewis took into account the geomeJry of the

gear tooth by inscribing a constant strength

parabola within the tooth form. The vertex of

the parabola is located at the intersection of

the tooth centerline and the applied load's

line of action. At the location on the profile of

the tooth where the inscribed parabola is

tangent, the Lewis equation for the tooth

bending stress is expressed as:

Wt" Pd
o - (1)

f-Y

where W t is the tangential load on the tooth,

Pd is the diameJTal pitch, f is the gear face
wl_th, and Y is the Lewis form factor based on

the geomeJry of the tooth. The point of

application of the load is described by the

pressure angle of the applied load at the

tooth surface, (I)A.

For the stress analysis of internal gears,

both involute and trochoid geometry are used

in checking for the smallest inscribed parabola

in the tooth.

Involute Geometry

The involute is the locus of a point on a

line unrolling from its base circle. The involute

profile is described in terms of a coordinate
frame with its center at the gear center and

the y axis through the center of the tooth. The

coordinates of the profile are obtained as

projections of the base radius R. _, and the• o
radius of curvature, p_, of the involute point

onto this x,y coordinate frame.

The involute function of a pressure angle,

(I), depicted in Figure I, is the difference

between the roll angle and the pressure angle

at that point. Mathematically, the involute of

an angle is expressed as:

INV(_) = e-_ = tan(_) -_ (2)

The pitch radius of the internal gear is

expressed by the equation:

N 2

R2 - (3}

2"P d

or

m

R2 = N2.-- (4}
2

for metric units, where N_ is the number of

internal gear teeth, Pt.l isZ'the diamefral pitch
and m is the module.-The base radius is:

Rb2 = R2 - cos((1)) (5)

Delta, A, isone half of the bottom land angle

of the tooth involute. InFigure I,A can be

seen as the angle from the center of the tooth

to the involute at the base circle,which is:

3



t

- P INV(¢) (6}

2- R2

where t
circle, p

is the tooth thickness at the pitch

As shown inFigure 2,the radius to the

loaded lineof action at the centerline of the

loaded tooth isR_. Thisisalso the radial

distance to the parabola apex. The pressure

angle at RC isequal to the sum of the tangent

of _)A'the pressure angle at the tooth surface,

and A. So RC can be expressed as:

Rb2 Rb2

RC - - (7}

cos((I)c} cos(tan((I)A) + A)

In Figure 3, 8 is the roll angle to the point

on the involute which is tangent to the

inscribed parabola with its apex at RE. Since
we must iterate to find e, an initial estimate for

8 can be expressed as:

8 = 1.5- tan(cl)A) {8)

X_ and Y, are the coordinates of the involute

point which is cut at the roll angle e. These
coordinates are measured with respect to the

center of the loaded tooth. From the

geometry of Figure 3, XE and YE are:

XE = PE" Cos(A + 8) - Rb2" sin{A + 8) {9)

YE = PE" sin(A + 8) + Rb2- cos{Z_ + e) (10)

In Figure 3, H 1 is the y distance from the
tangent point on the involute to the

intersection of the involute's tangent with the
tooth centerline.

X E

H I = (11)
tan(A + 8)

H 2 isthe distance from that same point on the
parabola to the intersectionof the parabola's

tangent with the tooth centedlne. Since the y

distance to the apex of a parabola is one half

the distance to the intersection of the tangent

with the centedine, H2 can be expressed as:

H 2 = 2- (YE- RC) (12)

An interval halving iterafive process is
used to find the location on the tooth surface

at which the largest parabola is tangent to the
involute. 8 X_ Y_ H., and HA are calculated

• ' I-' I Z
each time in _is process. The angle 8 is

increased by a r0(ed step• Ae, in each iteration,

with A8 set to 0.01 radians initially. When the

difference in H. and H_ changes sign AE} is set
I

to -A8/2 to close in on _e solution. When the

values of H I and H_ ore equal• the location on
the tooth surface a_ which the largest

parabola is tangent to the involute has been
determined.

Trochoid Geometry

For an internal tooth, the largest inscribed

parabola may be tangent to the involute or it

may be tangent to the trochoid at the base of

the tooth. Therefore, Jrochoid geometry is also

used to find the point of maximum sITess. In

the following analysis, the cutter is gear I and

the internal gear is gear 2 with R I being the

pitch radius of the cutter and R2"being the
pitch radius of the internal gear.

As shown in Figure 4, R0 is the cutter
radius to the center of the cutter tip fillet:

R0 = R I+B-R F (13)

where B is the dedendum of the internal gear

and RF is the cutter tip radius. The pressure
angle on the cutter to the involute of the

cutter tip fillet center is denoted by (l)Z and is:

{14)

The radius of curvature of the involute at the

cutter tip fillet center is P7 which can be

determined from R0 ancT(J)Z by:

4



PZ = RO" sin((I)zJ (15)

81 is the angle on the cutter from the
pitch I_oint on the tooth surface to the center

of the cutter tip fillet and 69 is the conjugate
rotation of the gear from the pitch point on the
tooth surface to the center of the curler tip

fillet on the cutting frochoid. The angles 61
and 62 can be calculated as:

PZ + RF
61 - q_Z - INV(_) (16)

Rbl

R1
(52 = (31._

R2

{17)

Figure 5 shows the paths of the frochoids
on the internal gear tooth and also displays
the locations of point C on the trochoid of the
tip center and its corresponding pitch point, D.
The inner frochoid is for the point at the center
of the cutter tip fillet. The outer trochoid is for
the envelope of the cutter tip positions which
is the cut shape on the tooth root. The line

O2C L locates the tooth centerline in these
figures.

In Figure 5 8. is the rotation of the cutter
• /

and egis the corresponding rotation of the
gear. -While the cutter rotates the center of
the tip fillet from point F to point C, the gear
rotates the apex of the trochoid, which is a
fillet radius above point F, to point G. The line
O^G then is the centerline of the lrochoid on
the gear. The angular rotation of the gear can
by expressed in terms of the rotation of the
cu_er as:

R1
e2 = e 1 -_ (181

R2

R_ isthe radius from the gear center to the
centet[ of the cutter tip fillet. From triangle ABC

in Figure 6 and the law of cosines, RT can be
defined as:

RT = [ c2 + R02 + 2.C.Ro.COS(8 I) ] I 12 (19)

where c is the gear to cutter center distance

which isequal to R2 minus RI . The angle 13is
the central angle on the gear from the cutting
pitch point, D, to the center of the cutter tip
fillet. In Figure 6, the perpendicular distance
from point C to the gear-to-cutter line of
centers is:

RT •sin(13) : R0 • sin(e1)

therefore,

13= sin-l( Ro'sin{el)

Rr

(2o)

(21)

RD is the distance from the cuffing pitch point
to the center of the cutter tip fillet. Applying
the law of cosines to triangle ADC, yields:

RD = [ R22 + RT2 - 2"R2"RT'COS(13)]1/2 {22)

The angle at the cuffing pitch point between
the line of centers and the cuffing normal
through the tip fillet center• rl, isfound from the
law of cosines in triangle ADC:

2

-I ) (23)rl = cos ( R22+RD2-RT

2-R2-RD

R__is the radius from the gear center to the
t-_.

actual trochoid point:

RFF =_ [ R22.÷ RA2 _2.R2.RA.cos{rl } ] 1/2 (24)

where RA equals RD plus RF. Gamma, y, is the
angle on the gear from the cuffing pitch point
to the trochoid cuffing point:

-1 R22 + RFF2 - RA2
y=cos ( ) (25)

2"R2"RFF

An expression for el, the central angle on the
gear from the cenfer of the tip of the frochoid
to the trochoid paint, is:

ef = y- e2 (26)



InFigure6,Offisthe centralangle on the gear
from the ceriferofthe gear toothto the

trochoidpoint.Itcan be expressed as the arc

from the tooth centerlinetothe pitchpointon

the involuteplusthe arc from the pitchpoint

to the center ofthe tiptrochoidminus the arc

to the frochoidpoint:

t

eft - P + 62- of (27)

2-R2

The coordinatesofthe filletdeveloped on

the internal gear are XF and YF:

XF = RFF.sin(Oft) (28I

and

YF = RFF"cos(eft} (29)

Psi,_,isthe slopeof the trochoidat the

contact pointmeasured relativetoa line

perpendicular tothe centedine of the tooth.
The frochoidsurfaceisnormal tothe lineDE in

Figure5 sinceD isthe instantcenterforthe

relativemotion of the cutterwithrespectto

the gear. InRgure 7,the angle at E between

the tangent to the trochoidand the radialline

to O_ isn12 -(n-y-rl}ory+rl-nl2.Thismakes the
angl'@between the tangent to the Irochoid
and the toothcenterline:

a = n - Off - (y + rl - n/2}

or

(3o)

a = 3n/2 - eft - y - rl

its supplement is

[31)

X = n-a = Ofl+y+rl-n/2 (32)

This angle is the complement of u_,therefore:

= n/2 - (-n/2 + Off + y + rl)

of

(33)

= n - n - y - Oft (34)

InFigure7,H. isthe radialdistance on the
I

toothcenterlinefrom the pointofinterestto

where the trochoidtangent crossesthe center
ofthe tooth:

H I = XF •tan(_) (35)

H^ isdefined as the radialdistance on the
z

toothcenterlinefrom the pointofinterestto

where the parabola tangent crossesthe

centerof the tooth.Since one-halfH2 equals

YF minus RC:

H2 = 2- {YF-Rc) {361

A similar interval halving iterative process
isused to findthe locationofthe fillet

developed on the internalgear which is

tangent to a pointon the inscribedparabola.

When the valuesof H. and H_ are equal the
I _' '

locationof the tangent pointon the internal

gear isdetermined.

The resultsobtained from the involuteand

trochoidgeometries are then compared. The
smallerx coordinate identifiesthe weaker

inscribedparabola forthe internaltooth.Thisx

coordinate and itscorresponding ycoordinate
are used to calculatethe Lewisform factor,

and the AGMA bending strengthJfactor
which includesa stressconcentration factor

and a term foraxialcompression inthe tooth.

Bendina StrenathFactor

The Lewisform factor,Y,originallydefined
forextemal teeth,is:

2

y = ---Pd-X
3

(37)

where

XE2 tc 2
x - - (38)

Rc-Y E 4"(Rc-Y E}

One of the most importantfactorswhich

Lewisoverlooked inhisanalysiswas the effect

ofstressconcentrations.Large localized



stresses occur in the fillets of gear teeth due to

the sudden change in the cross-section of the

tooth. By examining these factors and

determining their exact effect on the bending

stress in a gear tooth, Lewis' work was
extended.

In 1940, professors TJ. Dolan and E.L.

Broghamer of the University of Illinois used the

photoelastic method of stress analysis to do

this 11, They examined various types of gear

teeth and determined the location and the

magnitude of the maximum stresses which
occur in the tooth fillets. Their research

showed that the maximum stress is located

closer to the root circle than Lewis had

predicted. However, the distance between

Lewis' location and Dolan's and BroghameKs

location of the maximum stress is relatively

small. Thus, the use of Lewis' model to

determine the bending stress location in gear

teeth was confirmed by Dolan and

Broghamer. They also determined that the

primary factors affecting the stress
concentration at the tooth fillet are the fillet

radius, the tooth thickness, the height of the

load position on the tooth, and the tooth

pressure angle. They developed the following
stress concentration factor curve fit relationZn:

L M

(tc tc

Pf

where, t is the tooth thickness at the critical
. C

sechon, pf is the minimum radius of curvature
of the fillet curve, and h is the height of the

Lewis parabola.

From a curve fit of the experimental data

of Dolan and Broghamer, AGMA s gives the

following values for the constants H, L, and M

in terms of the pitch circle pressure angle, (J):

H = 0.331 -0.436-(J) {40)

L = 0.324 - 0.492-_b 141)

M = 0.261 + 0.545-(I) {42)

The modified Lewis model for determining the

bending stress in gear teeth, which includes
this stress concentration factor and a term for

the axial compression in the tooth from the

radial component of the tooth load, is:

Wt'P d
a- {43)

f.J

where the AGMA J factor, in terms of e_, the

pressure angle at the apex of the paraJSola on

the tooth centerline, is:

I

J =

Kfc°SI*c)( 6-2h tanl,c))
cos(C) tc tc

Since the bending strength factor isa

function of the tooth shape, itisdependent on

the number of teeth on the gear. Thisisshown

inFigure 8,which isa plot of the J factor versus

the number of gear teeth for both an external

gear and for an internalgear. As the number

of external gear teeth increases, the Lewis

form factor increases at a decreasing rate;

while as the number of internalgear teeth

increases, the Lewis form factor decreases at a

decreasing rate. Since the tooth shape on the

two gears approach each other as the

number of teeth increase, the form factor

values for the internaland external gears

approach each other as well.

Conclusions

An estimate for the bending strength of

an internal spur gear tooth has been

developed. This model uses the inscribed

parabola approach of Wilfred Lewis in

combination with an extrapolation of the

Dolan and Broghamer stress concentration

factor and the addition of an axial

compression term.

The estimate is obtained considering both
the involute surface of the tooth and the

trochoid fillet at the base of the tooth as

produced by a pinion shaper cutter.



produced bya pinionshapercutter.
Generationequationsarederivedfor both the
involuteand the trochoid. Dueto the general

nature of the model, the bending strength

prediction is valid for a load applied at any

point on the tooth. The load location is

identified by the tooth surface pressure angle

at the point of application of the load.

A direct and stable iteration procedure is

used to determine the size of the largest

inscribed parabola in the internal gear tooth.

Based on the size of this parabola, the Lewis
form factor is established.

To complement the base stress estimate,
a stress concentration factor and an axial

compression component are added to the

strength model. This stress concentration

factor is an extrapolation of the Dolan and

Broghamer factor and is consistent with the

AGMA J factor for external gears. A

comparison of the bending strength model for

an external gear and for an internal gear is

given for gears of increasing size meshing with

a twenty-five tooth pinion. Both gears have

twenh/-degree pressure angles and are cut

with a twenty-tooth pinion shaper.

By improving the estimate of the bending

strength of an internal gear tooth, this model

will allow designers to vary the material of a

Hng gear from that of its meshing external

gear. A long and shorf paddendum design

system may also be evaluated to balance

the bending strengths of the external and

internal gears.
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