NASA Contractor Report 198375

SSME Post Test Diagnostic System
Systems Section

Timothy Bickmore
Aerojet Propulsion Systems
Sacramento, California

August 1995

Prepared for
Lewis Research Center
Under Contract NAS3-25883

National Aeronautics and
Space Administration

@ Intelligent Software Associates, Inc.

SSME Post Test Diagnostic System
Systems Section

Final Report

Task 11 of Contract NAS3-25883
Development of Life Prediction Capabilities for
Liquid Propulsion Rocket Engines

Prepared for: Aerojet Propulsion Systems
P.O. Box 13222
Sacramento, CA 95813-6000

Submitted by: Intelligent Software Associates, Inc.

P.O. Box 188825
Sacramento, CA 95818

May 6th, 1995

e

Contents

L INtrOQUCHON. . cvuivnitiiiiiriieiruteterteeneeteenneeneenerssrternesneensencasssesasensnnenses 1

L 1. The SSME Post-Test Diagnostic System Project.........oeuvvveernenneeneensens 1

I1.2. The SSME PTDS SyStems SeCLiON........ccceeveevsuveeersrueeeesrevesesrsnseeeas 2

L3 RESUIS .. euvtiiniiiiiiiiiiiiiaiititireeetenereteenerneneeneeeenescensncesessasesenss 5

I.4. Other PTDS EnhanCements.......cccccceeeeeersrerurereerereeeneessesesssssnsonnne 6

I.4.1 Further Enhancements to the HPOTP Module...........cueerereeee. 6

1.4.2. Porting the Anomaly Database from Ingres to TekBase............. 7

1.4.3. Integration of “Features” Signal Processing Routines................ 7

L.4.4. TKCLIPS Trainingcccceeviuiiierieiineeneiieereneenineenenencenns 7

IL Systems Section ATChItECtUIC .c..vvvuivuiiinireririoreniernerrernaernernersessnereorssrnesnes 8

II.1. Feature EXtractor MOUIE.cceeureninieereerieneenenienreeneeneneeeencncans 8
I1.2. Sensor Validation Module..........cceuninieiiiiiieneeniiiiiieicinineeenenenens 11
I1.3. Hardware Change Module.......cccccovvrrreeeeerrennrieinceserrrrnenessseecssns 11
I1.4. External Effects ModUlecocuiineeniiiininieiiirienieneieieenenneeenencenns 12
ILS. Case-Based Reasoner MOAUIEcuvuuiuvenruninenernencininriereeneneennses 12
ILS. Performance MoQUIE.......u.vueeerureueeineeneneierneeeieenenereenenneencncenns 14
1II. Anomalies Currently Detected by the Systems Section.........vuveuveverenenrereeenensns 15
IV. Conclusion................ eteaeeeeeriiecieteteret et teraeaetteetataeaeneeneretenaerentenans 19
IV.1. Future WOorK....oooiiiviiriiiiiinninernnnieeeneerneeennnnnnneseeseens crereeennee 19
Acknowledgements.........cuveuierniiiinninniineneernnnnne. PP PPN 21
G 0 1 T U T 22
User's Guide......ccoveviriiinnniinenincenirnennnnne. R Attachment #1
Programmer's GUideccivuiirieiiiiiiiniiieenieieneinreeeernenernenerreenens Attachment #2
Transcripts of Interviews with SSME Data Analysts.........c..ccccvvvnrvnnnnen. Attachment #3
GENERIC Features Description and TKCLIPS User's Guide Attachment #4

I. Introduction

An assessment of engine and component health is routinely made after each test firing or
flight firing of a Space Shuttle Main Engine (SSME). Currently, this health assessment is
done by teams of engineers who manually review sensor data, performance data, and
engine and component operating histories. Based on review of information from these
various sources, an evaluation is made as to the health of each component of the SSME and
the preparedness of the engine for another test or flight.

The objective of this project—the SSME Post-Test Diagnostic System (PTDS)l—is to
~ develop a computer program which automates the analysis of test data from the SSME in
order to detect and diagnose anomalies. This report primarily covers work on the Systems
Section of the PTDS, which automates the analyses performed by the systems/performance
group at the Propulsion Branch of NASA Marshall Space Flight Center (MSFC). This
group is responsible for assessing the overall health and performance of the engine, and
detecting and diagnosing anomalies which involve multiple components (othier groups are
responsible for analyzing the behavior of specific components).

The PTDS utilizes several advanced software technologies to perform its analyses. Raw
test data is analyzed using signal processing routines which detect features in the data, such
a spikes, shifts, peaks, and drifts. Component analyses are performed by expert systems,
which use “rules-of-thumb” obtained from interviews with the MSFC data analysts to
detect and diagnose anomalies. The systems analysis is performed using case-based
reasoning. Results of all analyses are stored in a relational database and displayed via an X-
window-based graphical user interface which provides ranked lists of anomalies and
observations by engine component, along with supporting data plots for each.

L1. The SSME Post-Test Diagnostic System Project

The post-test diagnostic system is a cooperative effort involving engineers and scientists at
NASA Marshall Space Flight Center (MSFC), NASA Lewis Research Center (LeRC),
Aerojet Propulsion Systems, Intelligent Software Associates, Inc. (ISAI), Science
Applications International Corporation (SAIC), and support contractors from NYMA,
Analex, Computer Sciences Corp., and Martin Marietta. Work on the PTDS began in
1990, and development of the Systems Section was started in 1992.

The PTDS is designed to automate post-test firing data reviews. The first application has
been to the space shuttle main engine. A modular, distributed architecture was selected
which enables the use of separate modules which analyze different aspects of an engine's
performance. The PTDS modules currently implemented or being developed include the
following (see Figure 1):

+ CAE Package — The Computer Aided Engineering package is used primarily to provide
a very flexible mechanism for displaying plots of engine data. The PV~Wave command
language was selected as a commercial off-the-shelf (COTS) package to fill this need.

* Relational Database Management System — A database is used to store information
about tests, engines configurations, anomalies, performance parameter histories, and all
PTDS analysis results (using the TekBase relational database system).

* Session Manager — The executive for the system which launches each of the modules
as needed once test data becomes available. Implemented in C.

« Feature Extractor — Performs the pattern recognition analyses on the raw data.
Implemented in C (routines can also be called from within CLIPS).

PTDS Systems Section Page 1

Systems Combustion :I'uHrggr;_\gchinery Transient

Section Devices . otc Analysis
Analysis Feature Sensor Grazrelifal
Software Extractor Validation Interface

Relational DB
Su.p po.rt CAE « Anomalies
Applications - Test Data

» Sun Workstations * DB: Tekbase
Platform - GUI: Motif + Expert System: CLIPS
* CAE: PV~Wave/Tekbase * Procedural Language: C

Figure 1. PTDS Architecture

< Sensor Validation — Detects instrumentation anomalies and failures so that analysis
modules do not reason over bad data.

* Systems Section — Analyzes the system-wide health and performance of the engine,
and detects anomalies which involve more than one component. Implemented in C and
CLIPS. :

* HPOTP Analysis Module — Analyzes the health and performance of the SSME
HPOTP. Implemented in CLIPS. ' -

* Combustion Devices Module — Detects anomalies in the main combustion chamber and
the two pre-burners. Implemented in CLIPS and scheduled for completion in 1995.

* Transient Module — Detects anomalies during start and shutdown transients.
Implemented in CLIPS and scheduled for completion in 1995,

 HPFTP, LPFTP, LPOTP Analysis Modules — Analyzes the health and performance of
the other three turbopumps on the SSME. To be implemented in CLIPS and scheduled
for completion in 1996,

« Graphical Browser — Allows analysts to view PTDS results using an X-windows-
based display (see Figure 2). Implemented in C.

1.2. The SSME PTDS Systems Section
Development of the Systems Section was begun in 1992 with a series of lengthy interviews

with data analysts from MSFC's propulsion branch systems/performance group. The
interviews were initially conducted via telephone, but a series of on-site visits were made in

PTDS Systems Section Page 2

- Main Combustion”
Chambier :

Figure 2. PTDS Graphical User Interface

April and May of 1992 during which the analysts were asked to walk-through their
analyses of earlier tests and describe the process and reasoning they used (transcripts from

these interviews are given in Attachment #3).

PTDS Systems Section Page 3

The strategy taken by the systems analysts was to first detect an anomaly, then to try and
explain it. Anomaly detection primarily consisted of comparing the current test to one or
more previous tests using plots with overlaid data (see Figure 3) and noting any significant
deviations in the current test data. To explain any detected discrepancies, analysts would
generally go through the following steps:

1. Determine if the anomaly is “real” — This is the problem of sensor validation. The first
thing analysts will typically do upon detection of an event on a plot is to cross-check it
with the plots of related engine parameters. If there is at least one other signal which
confirms that something changed at the point of the event, then the event is considered
real, otherwise a failed sensor is suspected.

2. Determine if the discrepancy is due to differences in hardware configuration between
the comparison tests and the current test — Each engine is unique, and has its own
performance characteristics (e.g., different pump efficiencies, line resistances, leak
rates, etc.), and since the SSME is built-up with Line-Replaceable Units (LRUs) which
are very frequently changed, even consecutive tests of the same engine can show
substantial differences in performance. In comparing a current test to a comparison test
these differences must be taken into account in order to “explain away” discrepancies
which are due to such hardware changes.

3. Determine if the anomaly is due to some influence which is external to the engine —
Differences in thrust profiles, vent profiles, mixture ratios, or repressurization flows
will all lead to significant differences in sensor data between two tests. These “external
effects” must be taken into account when determining if an anomaly represents a
problem or simply a change in operating conditions. '

4. If none of the above steps provides a valid explanation for a discrepancy, than the
discrepancy is labelled an anomaly, and a diagnostic investigation is made into its
possible causes. Most of the diagnostic reasoning used by the analysts utilize what they
call “gains models”, which are monotonic qualitative causal models of the form
“parameter X varies directly with Y and inversely with Z” (e.g., “HPFTP speed
increases with volumetric flow, decreases with efficiency, decreases with downstream
resistance, and decreases with pump inlet pressure.”). These models are used to isolate
a set of likely candidates which could have caused the anomaly.

This overall diagnostic strategy was taken as the blueprint for the design of the Systems

Section software.2 The process starts with the Sensor Validation module which attempts to
detect failed or anomalous sensors and remove them from further consideration by the
system. Next, the current test data is compared with data from a previously conducted test,
which has been adjusted for differences in hardware configuration and external effects. A
signal processing routine is then run on each of the difference signals to detect significant
shifts in behavior between the two tests. Finally, a “Case-Based Reasoner” is employed to
determine a set of candidate causes for the ovserved shifts, using quantitative gains values
derived from runs of the SSME Power Balance Model and heuristic information supplied
by the expert data analysts. This set of candidate failure causes is then written to the
database along with descriptions of supporting plots for later viewing by the analysts. Note
that analyses are performed during steady-state operation of the engine.

One element of the Systems Section does not follow the above strategy. The accurate

determination of pump and turbine efficiencies requires extensive calculations, so a separate
Performance Module was implemented specifically to detect subtle shifts in these

PTDS Systems Section Page 4

X TEST 9820556 233 HPOT DS TMP A

AATEST 8020556 234 HPOT DS TMP B
OO TEST 9020554 233 HPOT DS TMP A
4% TEST 9020554 234 HPOT DS TMP B
560
1 400 :q /ﬂ -‘-",Wd&h‘r“.w M\“&:ﬂ\
) : W
1 ; i %4
g 1300 : ﬂ BEane 1y Y A
T 3 q V
A 3
G 3
€ 3
P 1200
£ -
R 7
F e
o .
R 3
M 1100 W
A]
N .
¢ Z
SR B -\
1000 "\’
]
3
900 T T T 7T 7T T T L S ma | T T T T T 1
e S0 100 150 200 250 300 3se
. VER 4 000
ENGINE 2107 DATE ©84/23/92
SHUTDOUN 299 86 SEC TIME FROM START COMMAND - SECS TIME @6 48 21 [JAGA

Figure 3. Example Current-vs-Comparison Test Plot

performance characteristics. The Performance Module consists of a large portion of the
SSME Power Balance Model which computes performance characteristics at one-second
intervals during steady-state, and detects any significant shifts in these parameters over

time.

1.3. Results

The Systems Section was demonstrated to several systems analysts at MSFC on February
27th and 28th, 1995. During this demonstration the system correctly detected and
diagnosed a Piston Ring Seal Shift anomaly on SSME test A40019. During these
demonstrations the analysts provided feedback which will be used to guide future
refinements of the system.

PTDS Systems Section Page 5

I14. Other PTDS Enhancements

Several additional tasks were performed under this contractual effort which were not
directly part of the Systems Section.

1.4.1 Further Enhancements to the HPOTP Module

Several additional enhancements were made to the HPOTP module,3 including:

Extended analyses to cover the Pratt & Whitney Advanced Technology Development
(ATD) pumps. This involved the creation of a new database table to track performance
statistics for ATD pumps, classification of the ATD into hot or cold “ski slope™
categories, modification of 44 diagnostic rules, and the addition of 17 greenrun
specification checks.

Improved the accuracy of detecting nose seal leaks by implementing a new signal
processing routine in the feature extractor to identify them. These features are extremely
subtle and difficult to accurately detect, since they involve shifts whose magnitude is on
the order of the sensor's noise (i.e., two or three “bit-toggles™).

Added a sensor validation check for redundant sensors which drift apart during steady-
state. :

Fixed the greenrun specification check for duration of minimum and maximum LOX
inlet NPSP conditions by extending the analysis across power level transients.

Extended the HPOTP module so that it would run from a Unix command-line so that it
could be added to MSFC's “run-stream” and executed automatically following each test.
Added the capability for the HPOTP module to generate a textual report similar to the
one-page test summaries produced by the turbomachinery group (Figure 4. shows an
example).

SSME Post-Test Diagnostic System -- HPOTP Analysis
Test: Al0750 Duration: 710 HPOTP Type: P&W
Analysis Run 03/10/95 by rballard

Instrumentation

328, 2, 518, 521, 519, 522, 327 -- Do not exist in datafile.
1188 ~- Not at post-test ambient conditions.
211/212 -- Drift apart between 18.00 and 94.00.

GreenRun Specification Check (Note: This is NOT a green run.)

Failed HPOTP GreenRun 65/64/63% throttle criteria 3.5.1.2(4)

Anomalies

Seen between T=21.00 and 35.00. Possible rotor drag.

Observations

HOT ski-slope classification.

Figure 4. Sample HPOTP Text Report

PTDS Systems Section Page 6

L.4.2. Porting the Anomaly Database from Ingres to TekBase

The Anomaly Database is a graphical user interface to a set of database tables which allow
data analysts to store information about observed anomalies, and to search the database
using a variety of selection criteria. With assistance from personnel at NASA LeRC, this
database was ported from Ingres to TekBase (the relational database being used by the
MSFC SSME data analysts).

1.4.3. Integration of “Features” Signal Processing Routines

During the development of the Enhanced HPOTP Diagnostic Module, the signal processing
routines in the Features Module were copied and integrated into CLIPS so that the HPOTP
module could be run as a stand-alone system. In the year that followed, many changes
were made to both sets of routines resulting in a significant software maintenance problem.
The solution to this problem was to create a single source file of “generic” signal
processing routines which could be called either from CLIPS or from the Features Module.
This involved the integration of some 11,000 lines of C code. The result, described in
Attachment #4, is a set of routines which can be centrally maintained. In addition, these
routines can easily be integrated into any future health monitoring application which needs
to analyze time-varying data.

I.4.4. TKCLIPS Training

A training seminar was held at NASA MSFC, March 1st - 3rd, 1995, for NASA personnel
and support contractors working on the PTDS project. '

PTDS Systems Section Page 7

IL. Systems Section Architecture

This section describes the overall architecture of the Systems Section. Figure 5 shows a
high-level dataflow diagram for the PTDS, and Figure 6. shows the current execution

sequence of the modules in the system. Each of the modules in the Systems Section is
described next.

F‘"iﬂ* \ »| Perfo DB Load
iles {
4
FE TINFO
(Feature Ext) TEI%M
Tablks
A
y Used by All Modules
HW & '
Ext Effects RED_S_C
Tabk
FEAT_ -)
Tablkes -
N Sensor Val . POSTUL &
\ A PLOT_INFO |
Tabks
w y
Sy HPOTP
Combustion HPF
Devices P
LPOTP
LPFTP

Figure 5. PTDS Dataflow

IL.1. Feature Extractor Module

The Feature Extractor employs signal processing routines which analyze raw time-varying
data from an SSME test firing to detect features of interest for the rest of the PTDS, The
features currently detected by this module are shown in Table 1. The Feature Extractor
imports descriptions of the features to look for from database tables, and writes any
features found back out to the database for use by the other modules in the PTDS.

PTDS Systems Section Page 8

Y FE
User $ NewData » SMGR DB ?nd Pl (Featwre Ex) E— sv
y y
PERFORMNC HW
y
Ext Effects
4
System FE
y A y y
LPOTP
Systems HPOTP HPFTP LPFTP COMBUST

Figure 6. PTDS Execution Sequence

The following two versions of the feature extractor are used in each run of the PTDS:

FE — During the first invocation of the Feature Extractor, it looks at the raw data from
the current test and computes features for use by the Sensor Validation module and
the various component modules (i.e., the Turbomachinery and Combustion Devices
modules) which look for combinations of features as indicators of anomalies.

SYSTEM FE — The second run of the Feature Extractor is specifically for the Systems
Section. During this run, it looks exclusively at the normalized data for the current
test produced by the Hardware Change and External Effects modules along with data
from the comparison test, and computes Delta Level Shift features which are
indicative of anomalous changes in engine behavior in the current test relative to the
comparison test. This is performed in a separate run from FE1, because the External
Effects module uses the results of Sensor Validation to determine which sensors to
use in its normalization (see Figures 5 and 6).

PTDS Systems Section Page 9

Feature Applic- Description
ability

Bistability HPOTP | Used exclusively by the HPOTP module, this checks for
preburner boost pump bistability on Rocketdyne HPOTPs.

Constant Thrust Generic | Determines time intervals of constant power level. :

Different Than Generic | Determines if two signals are significantly “different” from
each other.

Delta Different Than | Generic | Given four signals—A1,A2,B1,B2—determines if A1-A2
is significantly different from B1-B2.

Drift Generic Det_e%ts a slow linear change in a signal over a large time
period.

Erratic Generic | Detects a non-smooth signal, by first fitting a first or
second-degree polynomial to it (whichever fits better), then
threshholding on the standard deviation of the fit.

Fit Line Generic | Fits a line to a signal over a specified interval of time.

Delta Fit Line Generic | Fits a line to the difference between two signals.

Flat Signal Generic | Determines if a signal is “flat” over a specified time
interval, Used primarily by sensor validation to detect
sensors which are not connected to the engine during a
test,

Level Shift Generic | Detects step shifts in a signal.

Delta Level Shift Generic | Detects step shifts in the difference between two signals.

Limit Check Generic | Detects excursions beyond a specified limit.

Delta Limit Check Generic | Detects when two signals vary from each other by more or
less than a specified limit, _

Noise Generic | Detects excessive noise, by computing standard deviations
during one-second intervals and comparing them against a
threshold. :

Nose Seal Leakage | HPOTP | Detects nose seal leaks on Rocketdyne HPOTPs, which are
indicated by very subtle shifts down and back up in
HPOTP intermediate seal purge pressure.

Peak Generic | Detects excursions and recovery over a relatively long time
interval which form the shape of a hill or peak in the
signal. ‘

Piece-wise Linear Generic | Creates a piece-wise linear model of a signal.

Delta Piece-wise Generic | Creates a piece-wise linear model of the difference between

Linear two signals.
Redundant Channel | Generic | Detects significant deviations between data from redundant
Check sensors by comparing the difference between N-point
averages against a threshhold.

Spike Generic | Detects rapid excursion and recovery (on the order of a few
data samples) indicative of a “spiking” signal.

Statistics Generic | Computes mean, standard deviation, minimum and
maximum values of a signal over a specified time interval.

Delta Statistics Generic | Computes statistics for the difference between two signals.

Zero Shift Check Generic | Computes an average over a specified time interval and

compares it to lower and upper limits. Used to detect failed
Sensors prior to engine start.

Table 1. Features Currently Detected by Feature Extractor Module

PTDS Systems Section

Page 10

I1.2. Sensor Validation Module

The Sensor Validation module is responsible for detecting instrumentation failures and
anomalies. The results are both for display to the data analysts and for use by other PTDS
modules which need to know which signals consist of valid data and which will yield
erroneous analysis results.

The Sensor Validation module employs several strategies to detect instrumentation

problems:

+ First, a determination is made to see if a sensor is even available in the data file (a sensor
will sometimes be dropped from a particular test). ,

» Checks are performed to see if a sensor is either flat for the duration of the test
(indicating it is not hooked up to the engine) or is excessively noisy (indicating a
potential electrical problem).

+ The value of a sensor just prior to engine start is compared against known ambient
conditions, and the sensor is failed if it is too far out of tolerance.

* Reasonableness checks are made on sensors during the firing to catch “hard” failures in
which the sensor suddenly goes off-scale high or low.

» For sensors with redundant channels, a check is made between all the channels to ensure
that they all stay within a tight tolerance of each other.

* Finally, an analysis is made of all features computed during the run of the feature
extractor (FE) to determine if a feature found in one signal is also present in related
signals. To do this, a map of related parameters is used which was derived through
interviews with the data analysts (see Table 2). The result of this step is a preference
ranking of the sensors which passed the first five screenings described above.

_ Related Parameters
MCC CL DS P, LPFT IN P, LPFP SP, HPFP DS P
LPFP SP, HPFP IN P, LPFT IN P, FL PR INT P
MCCCLDST,MCCCLDP, LPFP SP, HPFP DS T
FPB PC, FPOV POS, HPFT DS T, HPFP SP, PBP DS P
HPFP SP, HPFP DS P, HPFT DS T, FPB PC
MCCOINJT,PBPDST,ENGOINT
ENGFLINP,FACFLFMDS P
FPOV POS, PBP DS P, HPFT DS T, FPB PC, HPFP SP
FPB PC, HPFT DS T, FPOV POS
HPFP IN P, LPFP SP, ENG FL IN P
OPOV POS, PBP DS T, HPOT DS T, OPB PC
OPB PC, HPOT DS T, OPOV POS, PBP DS P, MCCHG IN P
HPFP IN T, ENG FL IN T, HPFP DS T, LPFP SP
HPOP IN P, LPOP SP, ENG O IN P
ENGOINT,FACOFMDS T, MCCOINJT,PBPDS T
ENGOINP,FACOFMDS P
ENGFLINT,FACFLFMDST
HPOP SP, LPOP SP, PBP DS P, HPOP DS P

Pt ek pemk b b ok ok ek E
ooqmmaww»-ag‘o“\”’“"#“’“"‘_g

Table 2. Related Parameter Maps Used in Sensor Validation
I1.3. Hardware Change Module

The Hardware Change module identifies changes in major SSME components between the
current and comparison tests and generates a table of corrections applicable to the current

PTDS Systems Section Page 11

test data to account for differences in component performance whenever possible. In all
cases, significant changes in hardware configuration are reported to the analysts along with
the conclusions reached by the Systems Section. Table 3. shows the changes in hardware
configurations which are recognized, and those which result in correction factors being
applied to the current test data.

Component Descriptive Parameters Correction
Applied?

Engine Serial Number _
Powerhead Serial Number
Main Injector : Serial Number
MCC -+ Serial Number
Nozzle Serial Number
Controller Serial Number
Flowmeter Serial Number
FPOV, OPOV, MOV, Serial Number
MFV, CCV
HPFD Serial Number, Type)
F7 Orifice Diameter)
HEX Oirifice Diameter v
HPOTP Serial Number, TEM,PEM, TFPM,PHCM v
HPFTP Serial Number, TEM, PEM, TFPM,PHCM v
LPFTP : Serial Number, TEM,PEM, TFPM,PHCM v
LPOTP Serial Number, TEM, PEM, PHCM v

Table 3. Hardware Changes Recognized

IL4. External Effects Module

The External Effects module normalizes a number of dependent sensors in the current
SSME test data with respect to a set of independent sensors describing engine-external
conditions. The independent variables are: MCC PC, LPFP inlet pressure, LPOP inlet
pressure, LPFP inlet temperature, LPOP inlet temperature, and facility mixture ratio. For
each of these parameters a curve has been developed (using runs of the SSME Power
Balance Model) which normalize all dependent parameters to the same inlet conditions
found on the comparison test. The dependent parameters currently normalized are shown in
Table 4. :

I1.5. Case-Based Reasoner Module

Level shift features found in the difference between the normalized data for the current test
and the comparison test data by the systems feature extractor represent true anomalies
which must be explained by the Case-Based Reasoner module. This module has three main
components: a “comparator” which partitions the current test up into time intervals to
diagnose; a “case base” or library of possible anomalies; and a case-indexing mechanism
which finds a ranked list of candidates in the case base which best explain each anomaly.

PTDS Systems Section Page 12

PIDs Parameter
2 HPOTP Speed
203,204 HPFP Inlet Temp
17 MCC Coolant Discharge Pressure
18 MCC Coolant Discharge Temp
21, 595 MCC Oxid Injection Temp
24, 367, 371 MCC Hot Gas Injection Pressure
30, 734 LPOTP Speed
38, 139 MOV Position
52, 459 HPFP Discharge Pressure
58, 410 FPB Pc
59, 341 PBP Discharge Pressure
203, 204 HPFP Inlet Pressure
90, 334 HPOP Discharge Pressure
93,94 PBP Discharge Temperature
40, 141 OPOV Position
42, 143 FPOV Position
209, 210 HPOP Inlet Pressure
231, 232 HPFT Discharge Temperature
233, 234 HPOTP Discharge Temperature
260, 261, 764 HPFTP Speed
436 LPFT Inlet Pressure
480 OPB Pc
659 HPFP Discharge Temperature
835 Fuel Press Interface Pressure

Table 4. Parameters Normalized by the External Effects Module

Each case represents the shifts, or gains, in a set of engine parameters expected to
accompany a specific anomaly, along with the magnitude of the anomaly. These gains can
be derived heuristically or from runs of the SSME Power Balance Model. The full set of
cases is present in Section III, but the following example is for Piston Ring Seal Shift:

Parameter Gain
LPFP SPD : 100
FLPRINTP -10
LPFT DeltaP 10

This case states that of the parameters given in Table 4, there are only significant changes in
three parameters for a piston ring seal shift (LPFT DeltaP = LPFT IN P - LPFT DS P, and
FL PR INT P = LPFT DS P), and that the relative direction and magnitude of the shifts
should be approximately proportional to the ones given in the above case.

The case-indexing mechanism compares each anomaly response pattern in the case base to
the normalized delta level shifts found by System FE in order to select a small set of most
probable cases. To perform this selection, the Case-Based Reasoner employs two indexing
techniques: a sign or direction comparison and a case magnitude evaluation.

The first technique compares the directions of the observed gains with the directions of the

gains expected for each hypothesis case in the case base. A score is generated for each
observed gain and accumulated for a total case score. Table 5 defines the types of results

PTDS Systems Section Page 13

currently available, along with the score for each type. The accumulated score is used to
rank the hypothesis cases for further evaluation. This provides an initial screening of the
hypothesis case base. This screening reduces the processing time, by reducing the number
of cases which undergo the computationally more intensive case magnitude evaluation.

Type Description
Match Case Gain 0
Matches Observed Gain

" Not Observed Gain 1
Covered Not In Case Fact
l Not Case Gain Not Observed 100/K
Observed
Opposite Case Gain Opposite In 1000/K
Direction to Observed Gain

Table 5. Direction Comparison Types
The variable K found in the Score column is equal to the number of
parameter shifts in the particular case being evaluated.

The case magnitude evaluation is performed on each hypothesis case selected by the sign
comparison technique. Given case i with anomaly magnitude Mj and gains Cj; (for each
engine parameter j) and an observed shift in engine parameters described by the gains O;,
scale factors are computed for each Gij#0:

Sij = 05/ Gjj

The mean (i) and standard deviation (6}) of the set of scale factors for each case is the
computed. The cases are ranked according to minimum standard deviation in scale factors
(those with lower standard deviations provide a better overall fit of the gains in the case to
the observed gains, taking a linear scaling of the magnitude of the anomaly into account).

Given the best case (the one with the minimum oY), the estimated magnitude of the anomaly

is given by pj * Mj. The set of best matches are then output to the database along with a
description of plots which support their selection.

IL.5. Performance Module

The Performance Module essentially runs part of the SSME Power Balance model at one-
second intervals during steady-state conditions to determine the following parameters:

LPFP Efficiency, LPFT Efficiency
HPFP Efficiency, HPFT Efficiency
LPOP Efficiency, LPOT Efficiency
HPOP Efficiency, HPOT Efficiency, PBP Efficiency

A simplified Level Shift routine is then run to detect significant shifts in any of these
parameters. Results are then posted to the database for later viewing by the analysts.

PTDS Systems Section Page 14

III. Anomalies Currently Detected by the Systems Section

In addition to detecting instrumentation failures (in the Sensor Validation module), pump
efficiency shifts (in the Performance module) and noting changes in hardware configuration
(in the Hardware Change module), the following cases have been developed for Case-
Based Reasoner by runs of the SSME Power Balance Model. At this time, however, only
the cases for positive and negative piston ring seal shift have been validated by analysts and
tested against SSME test datasets. Validation of the remaining cases and development of
new ones is currently being performed by personnel at LeRC and MSEC.

Case _ Parameter Gain
Primary Piston Ring Seal Shift (Close) LPEP SPD +100
_ FLPRINTP -10

LPFT DeltaP +10

Primary Piston Ring Seal Shift (Open) LPFP SPD -100
' FLPRINTP +10

LPFT DeltaP -10

MCC Pc Biased Hi 20 psi HPEFP DS P -15
HPOP SPD -99

HPOP DS P -18

OPOV -0.3

FPB Pc -14

OPB Pc -22

HPOT DS T -18.3

MCCPC Biased Low 20 psi HPFP DS P +15
HPOP SPD +100

HPOP DS P +18

OPOV +0.4

FPB Pc +14

OPB Pc +22

HPOTDS T +18.2

Eng Fuel Flowmeter Biased Hi 31bm/sec HPFP SPD =275
HPFP DS P -58

HPOP SPD +178

HPOP DS P +20

OPOV +1.1

FPOV -2.2

FPB Pc -41

HPOTDS T 102.9

Eng Fuel Flowmeter Biased Lo 3lbm/sec HPEP SPD +294
HPFP DS P +60

HPOP SPD - =162

HPOP DS P -19

OPOV -1

FPOV +2.8

FPB Pc +43

HPOTDS T -90.4

MCC Combustion Eff Decrease 1 sec ISP HPOP SPD +60
HPOTDS T +10.6

PTDS Systems Section Page 15

Case Parameter Gain
Fuel Leak 31b/s HPEFP IN P -42
HPFP DS P -26
HPFPDS T +23.1
HPOP IN P 2.3
HPOP SPD +176
HPOP DS P +17
OPOV +0.7
FPOV -0.5
HPOTDS T +57.7
Nozzle Coolant Leak 4m/s HPFP SPD -74
HPFP DS P =42
HPFP DS T +32.7
HPOP SPD +230
HPOP DS P +29
HPOTDS T +97.1
Ox Leak at PBP Discharge 91bmy/s HPOP IN P -4.3
HPFP In T Biased Hi 2deg HPFP SPD +294
HPFP DS P +60
HPOP SPD -162
HPOP DS P -19
OPOV -1
FPOV +2.8
FPB Pc +43
' HPOTDS T -90.4
HPFP In T Biased Lo 2 deg HPEP SPD -275
HPFP DS P -58
HPOP SPD +178
HPOP DS P +20
OPQOV +1.1
FPOV -2.2
FPB Pc -41
' HPOTDS T +102.9
LPFT Bearing Cool Inc 11bm/s HPEP IN P -8
HPFP SPD +820
HPFP DS P +41
HPFPDS T +48.1
HPOP SPD +51
FPOV +2.1
FPB Pc +45
OPB Pc +15
HPOTDS T -21.1
CCV Resistance Inc 10% HPFP IN P +26
HPFP SPD +422
HPFP DS P +235
HPFPDS T +80.8
FPOV +2.9
FPB P¢ +33
MEYV Resistance Inc 4% HPFP SPD +147
HPFP DS P +75
FPOV +0.9
HPOTDS T

PTDS Systems Section

-8.7

Page 16

Case ‘Parameter Gain
HPOP Disch Resistance Inc 15 posts HPOP SPD +208
HPOP DS P +46
FPOV -1.3
OPB Pc +25
- HPOTDS T +38.5
MOV Resistance Inc 98% HPOP IN P +6.4
HPOP SPD +88
HPOP DS P +53
FPOV -1
OPB Pc +12
HPOT DS T +20.2
HPEFP In P Inc 25psi HPFP IN P +24
HPFP DS P +26
HPFPDS T -23.1
HPOTDS T -22.1
HPFP In P Dec (LPEP Cause) 25psi HPFP IN P -24
HPFP SPD +67
HPFP In P Dec (LPFT Cause) 25psi HPFP IN P -24
_ HPFP DS P -18
HPFPDS T +18.3
HPOTDS T +16.4
Fuel In Temp Inc 3deg HPEP SPD +609
HPFP DS P +27
HPFPDST +37.5
FPOV +1.9
FPB Pc +34
~ HPOTDS T -24
LOX In Temp Inc 7deg HPOP SPD +415
HPOP DS P +14
OPOV +1.1
OPB Pc +26
HPOTDS T +38.5
LPOT Flow Inc 20lbs "HPOPIN P +32.3
HPOP SPD +162
OoPOV +0.5
FPOV -0.5
OPB Pc +17
_ HPOTDS T +26
LPOT Flow Dec 201bs HPOP IN P -35.5
OPOV -0.2
FPOV +0.4
HPOTDS T -14.4
HPFT Efficiency Dec 5% HPFP IN P +5
HPFP SPD +95
HPFP DS P +53
HPFPDS T +120.2
FPOV +7.2
FPB Pc +85
OPB Pc +18
HPOTDS T -61.5
PTDS Systems Section Page 17

Case Parameter Gain
HPFP Efficiency Decrease 5% - HPFP IN P +9
HPFP SPD +147
HPFP DS P +72
HPFP DS T +133.7
HPOP IN P -1.4
HPOP DS P -12
OPQV -0.2
FPOV +9.6
FPB Pc - +102
OPB Pc +23
HPOTDS T -71.2
HPOT Efficiency Decrease 5% HPFP IN P +3
HPFP SPD +45
HPFP DS P +25
HPFP DS T -25
OPOV +4.5
FPOV +0.4
OPB Pc +65
HPOTDS T +115.4
HPOP Efficiency Decrease 5% HPFP IN P +4
HPFP SPD +67
HPFP DS P +38
HPFPDS T -38.5
HPOP IN P +1.5
OPOV +7.9
FPOV +1
OPB Pc +97
HPOTDS T +167.3
PBP Efficiency Decrease 5% OPOV +0.3

PTDS Systems Section

Page 18

IV. Conclusion

The SSME Post-Test Diagnostic System is not intended to replace the human data analysts,
but rather is intended to be used as an additional cross-check for data obtained from each
test firing. The PTDS should provide a standardized set of analyses which always look at
each test in the same manner, and has the potential for detecting very subtle anomalies that
analystg might otherwise overlook (this has already been demonstrated on the HPOTP
module).

In addition to its immediate applicability to the SSME, the PTDS has been designed as a
generic system which could be applied to the analysis of test data from other rocket
engines. Elements of the PTDS have already been applied to the analysis of Atlas/Centaur
data, and an application for Titan data analysis is planned.

Automated checkout procedures such as those implemented in the PTDS are crucial
elements of integrated vehicle health management systems whose goals are to reduce
operations costs and turnaround times, and increase reliability. Health management tools
such as the PTDS are expected to be requisite elements of most future rocket propulsion
systems.

IV.1. Future Work

Although the PTDS now detects and diagnoses a broad range of SSME anomalies, there
are several areas in which it could be further enhanced, including:

+ Combustion Devices Analysis — The Combustion Devices group in the MSFC
Propulsion Branch looks specifically at the performance of and anomalies in the two
SSME preburners and the main combustion chamber. A PTDS module is currently
under development which encodes their procedures for detecting common anomalies in
these components.

* Turbomachinery Analysis — The HPOTP module only looks for anomalies in the
SSME HPOTP; there are three other pumps on the engine which are currently not
covered by the PTDS. Development of modules to cover the analysis of data from the
other three turbopumps (HPFTP, LPOTP, and LPFTP) is planned for 1995.

* Transient Analysis — The PTDS currently performs steady-state (constant power level)
analyses only. However, several significant anomalies occur during the startup and
shutdown transients. A module which specifically looks at SSME data during these
times is currently under development.

« Flight Data Analysis — The PTDS is currently configured to analyze ground test data
only. Several extensions to the system would need to be made to enable it to analyze
flight data, and new, flight-specific anomalies may need to be added to the various
diagnostic modules. This work is currently scheduled for early 1996.

* Integration with MSFC Plot Program — The PTDS graphical user interface currently
displays plots of engine data for the anomalies it has detected. The MSFC data analysts
have been using a PV~Wave-based plotting program for the last several years which
supports a wide range of scaling, zooming, and cross-plotting options. Ultimately, the
PTDS should utilize this program to display its plots, since the analysts are already
familiar with its functionality and it is more flexible than the PTDS plotting routine. This
integration task is scheduled for 1995.

PTDS Systems Section Page 19

* Dynamics Data Analysis — Several significant anomalies, such as bearing wear, can
only be detected through analysis of accelerometer data. Currently, this data is reviewed
by a separate group at MSFC, which is in the process of automating their data analysis
procedures. It should be possible in the future to automatically integrate the results of
this system with the PTDS to obtain an overall best picture of the health of the engine.

» Automated Case Entry — Anomaly cases for the Case-Based Reasoner must currently
be entered by hand via the TekBase database graphical user interface (KingFisher). A
more automated means should be provided for case entry, which ideally would take a
diagnosed and validated anomaly from a test dataset, extract the appropriate gains, and
make an entry into the case base at the push of a button.

+ Display and Modify Intermediate Results — Currently, the PTDS analyzes the data from
a test for several hours and then displays its results. Although some of the intermediate
decisions reached (e.g., detection of bad instrumentation, hardware changes, etc.) are
available for review by the analyst, there is no capability to modify any of these
decisions. Thus, if the system makes an incorrect decision at an early stage of its
reasoning (e.g., not disqualifying a failed sensor) then all results based on this decision
will be incorrect. The PTDS could be made more interactive by allowing analysts to
incrementally run each of the modules and then review and possible correct its results
before continuing on with the analysis.

* Analyst Entry of Diagnostic Rules — Many of the diagnostic rules used in the PTDS are
very simple in form (e.g., many of them just perform limit checks on signals). A
graphical template (or “form”) could be constructed for each of these rule types which
would allow analysts to enter or modify these classes of diagnostic rules. This would
give the analysts a better understanding of how the system works, and enable them to
take over some part of the maintenance of the system.

» Indexing of Similar Anomalies — When the PTDS is displaying an anomaly, provide a
button which will automatically show a list of all previous tests which had the same
anomaly and allow the analyst to quickly plot the data for comparison against the current
test.

* Extend the Classes of Events the Systems Section Detects — Currently, the Systems
Section only responds to level shifts in the difference between the current test and a
comparison test. Often, anomalies will present themselves as spikes, peaks, or drifts in
the difference signal. The Systems Section should be extended to detect and diagnose
these events (although, the Case-Based Reasoner may need additional cases to
accommodate the dynamic effects of rapid spikes or peaks).

* Hybrid Queries Across TekBase and SSME DataFile — MSFC data analysts spend a lot
of time looking for data from past tests which meet specific criteria, such as “find all
previous tests on stand A1 which had HPOTP #123 and ran for at least 30 seconds at
109% at minimum LOX NPSP”. Currently, information about the hardware
configuration (such as HPOTP serial numbers) and general test profile are stored in the
TekBase database, while more specific information about the test data (such as time at
109% and minimum LOX NPSP) must be computed from data stored in the test data
file. A hybrid query mechanism could be developed which could answer queries such as
the one above, by satisfying as much as the query as possible against the database, then
automatically going to the data files and computing the remaining information required.

PTDS Systems Section Page 20

Acknowledgements

The PTDS has been developed over the last five years by a large development team. The
members, past and present, include: .

Rick Ballard
Tim Bickmore
Jeff Cornelius
J. Allen Crider
Chris Fulton
Mark'Gage
Amy Jankovsky
Bill Maul
Catherine McLeod
Claudia Meyer
Pam Surko
Virginia Tickles
Luis Trevino
Jean Tucker
June Zakrasjek

Many data analysts at MSFC have contributed to the PTDS by answering our endless
stream of questions about SSME data analysis. These analysts inciude:

Glenn Doughty
Bill Foster
Dave Foust
Darrel Gaddy
Taylor Hooper
Randy Hurt
Mike Kynard
Larry Leopard
Lewis Maddux
Marc Neely -
Brian Piekarski
Eric Sanders
Chris Singer
Dave Vaughan
Glenn Wilmer

Finally, this work could obviously not have been completed without the support of the
project managers and supervisors:

June Zakrasjek NASA LeRC
Catherine McLeod = NASA MSFC
Dave Seymour NASA MSFC
Randy Bickford Aerojet

Roy Michel Aerojet

P’I'DS Systems Section Page 21

References

1Zakrasjek, June, The Development of a Post-Test Diagnostic System for Rocker
Engines, AIAA-91-2528, ATAA/SAE/ASME/ASEE 27th Joint Propulsion
Conference, June 1991,

2Bickmore, Timothy W., and Maul, William A., “A Qualitative Approach to
Systemic Diagnosis of the SSME,” AIAA Aerospace Sciences Conference and
Exhibition, Reno, Nevada, January 1993, _
3Bickmore, Timothy W., SSME HPOTP Post-Test Diagnostic System Enhancement
Project, NASA Contractor Report 4643, Contract NAS3-25883, January 1995.,

PTDS Systems Section Page 22

SSME Post-Test Diagnostic System
Systems Section

Final Report
Attachment #1

User's Guide

Post-Test
Diagnostic System
(PTDS)

User's Guide

Prepared by:
J. Allen Crider
Computer Sciences Corporation
16 February, 1995

Preceding Page Blank

Table of Contents

Table Of CONLENLS.....cvccverrrereercrncreererrerersrrersssessesseesessosssssssssessessesesnsseasssssiosssansens

s
seesecace ey

LISt OF FIBUIESooievrrrerreeneesnssassmnesnrrerernserssssensssesnesesens

Acknowledgments i

1 INOQUCHONceviirrevrecnrrisenssesensnersssrnseseseessaeesesenssessesassersrsssessssssessasssssssssoses
System Requirements

PLEIEQUISIES. ..vevirinviiniisiitiiisiirarennranrenssassnarioreserssssassrnsessessossrsesernones
Execution Modes.......

IL PTDS EXeCutionc.coreevveveecrerresneserennns crerenans . .-
Hardware Configuration Datd BRIVcveviirernenennnenerererensnereesesesssesssssssssesesssssssssssossssssesnsssnsssess
Test Data Analysis
Graphical Review of Results rteettebres sttt et rtasnessnesseesntasranans eeerestronnrereanenans ceeeeed
Anomaly Database Update and REVIEW...........ccecereeierrerireinesiereennsessessesssesessssessssssssssssssesssessssssessnsses 13

III. Maintaining the Historical Database.......................... crererrettestee st sesstestessttsanesssaesassranassanssaessasasers 1O
Updating the Historical Database............c..cceverererneeernoreeressessenes cetesssersaereeenrenees 19
Viewing the Historical Database.............. et ss b b ssbessesbssteestssesaasassassnssseseerssnantareaneas 1O

Preceding Page Blank

—to

List of Figures

Figure 1. Main panel for the program NEW_QALA........ccceweisirsnreneeensnsossessesssossassasssessessosssssossssssasosss 4
Figure 2. Options pull-down menu for the program NEW_AA LAecveerereerrnsenesrorssessesossssesasseosessoseas 4
Figure 3. PID Override panel for the program NEW_GQALtA.............c.ccvireeisrerrorsrorssassessssssessssossssssossacssens 5
Figure 4. Main panel for the program €RhIMS............covuerreerensensersssoressessssessossesses 1]
Figure 5. Panel for the “History” option from the “Analysis TOOIS” MEMU............oeveevvereesrereerensesrereocssene 7
Figure 6. “History” panel with “LRU’S” pull-down meni.................cuurveuns. ' w8
Figure 7. HPOTP WidOW.cuuvvverisirisiesssssssssossscssssonsssasessnssassssasnsesssssssessses . . 9
Figure 8. SYSIEMS WIlLAOW.cvoviirueisriscassosnserensessansassssessansaessssssssssersossassassns . 11
Figure 9. “Make Pids” wmdow Jor modifying PID buttons on plant diagrams. cevsssossessesassnsisanes 11
Figure 10. Explanations Window fOr QROMALIES.ceeevovererorevesernesasssissesessassresssssasasssosesssessesensseses 12
Figure 11. Plot panel fOr Program @HMS.iceeeeeeverueeseeesesiecssesssensessssssssesrssssssssesseosssosessonsssssossesses 13
Figure 12. Main panel for the PrOGram QIIOM.cevevveeirvecesrenesessossssessessessessesssssssosessssssssesssssssssses 14
Figure 13. “Fixed Fields” and “Anomaly Title” areas of the Anomaly Database query wmdow after
selecting “LRU” from the “LOCALION" MENU DUILON...........cuoveevererrsinreerererisesensossessssssssssssssseesssssnsens 15

Figure 14. “Anomaly Title” area of the Anomaly Database query window after selecting “System” from

TRE “LOCALON" MEHIU DUTION.oouoeoneenecnraroneecsrnrarserserossissssssssosseserssssesessessossosessensorsessssssasessssesen 15
Figure 15. Selection panel for anom displayed when more than one anomaly satisfies a query or the

“Read Selection” button on the main PANEL IS PIESSEd.............uereeerierireernrersesrssesssrossesssssssssnssssssans 16
Figure 16. Main panel for the program anom after a data retrieval................ rerresesresvennne 17
Figure 17. Main panel for the program anom when using the “Add” COMMANG.vceverirevencvvvrnnnns 18

i

Acknowledgments

This User’s Guide and Programmer’s Guide contains contributions from various members of the
Post-Test Diagnostic System (PTDS) development team. The members of the development team are

Rick Ballard

Tim Bickmore

J. Allen Crider
Chris Fulton

Bill Maul
Catherine McLeod
Claudia Meyer
Virginia Tickles
Luis Trevino

June Zakrajsek

iii

1. Introduction

This manual describes the operation of the Post-Test Diagnostic System (PTDS), which detects
and diagnoses anomalies in the Space Shuttle Main Engine (SSME) by analyzing data from ground tests
of the engine. '

The PTDS is an expert system which utilizes heuristics and case based reasoning techniques to
identify common anomalies and observations in the data. It operates by first running “feature extraction”
routines to scan the raw test data and identify any features of interest, such as spikes, shifts, peaks, or limit
violations. Expert system rules then analyze combinations of these features which are indicative of known
anomalies. Results from the system are stored in a relational database for future reference, and can be
viewed via a graphical user interface which displays observations and supporting plots of test data for a
selected test of interest.)

From the viewpoint of the average user, two primary programs comprise PTDS: new_data and
ehms (engine health management system). new_data allows a user to run the diagnostic system on a
new test and ehms allows the user to view the results of the diagnostics using graphical and textual
screens. -

The PTDS has been designed to validate sensors, required for the analysis, and to incrementally
add modules to diagnose Line Replaceable Units (LRUs) and the overall system. Currently, PTDS is
composed of a SYSTEMS module, which analyzes overall engine system conditions, and a HPOTP
module which identifies approximately 80 HPOTP anomalies.

System Requirements

The PTDS currently runs on Sun SPARCstations, and requires the following commercial
software packages:

¢ Sun Operating System SunOS 4.1.3

+ X Window System

+ Motf

+ TekBase Relational Database Management System
¢ PV~Wave Command Language

Full installation and setup of this system is beyond the scope of this manual. Please see your system
administrator for details.

Prerequisites

To use the Post-Test Diagnostic System, you should already be faniiliar with the following:
« Basic Unix commands (see SunOS User’s Guide: Getting Started or other Unix references)
* Use of a windows-based graphical user interface (see OSF/Motif User’s Guide)
* Ability to view and update tables in TekBase (see Kingfisher Users Guide)

In order to run the programs which make up the Post-Test Diagnostic System, you will need to
have the following environment variables defined (usually in your . cshre file):

» NASA_HOME must be set to the directory containing the PTDS executables (e.g., on the Propulsion
Lab network at MSFC use /hd4 /PTDS/bin)

~ Preceding Page Blank

e NASA_TEST_DATA must be set to a colon-separated list of the directories in which SSME tests data
is stored (eg, on the Propulsion Lab network at MSFC use
/hdl:/hd2:/hd3:/datal:/data2:.)

e SYSTEMS_KBDir must be set to the directory containing the CLIPS files for the SYSTEMS module
{(e.g., on the Propulsion Lab network at MSFC use /hd4/PTDS/bin/system_kb)

¢« INCLUDE_PIDS_FILE is requircd by FEATURES and db_load and must be set to the namc of
the file containing a list of all PIDs (Parameter IDs) for a test (e.g., on the Propulsion Lab network at
MSFC use include.pts)

e FL_RC_PATH must be set to the dircctory containing the resource file . £11ibrc if it is not located
in a default location (e.g., on the Propulsion Lab network at MSFC use /hd4/PTDS/data)

The NASA_HOME directory should be added to your search path. Normally this can be done by adding the
following line to your . cshrc file after the definition of NASA_HOME:

source SNASA_HOME/../data/.nasarc

This will also set all of the environment variables listed above other than NASA_HOME. Check with your
system administrator if your installation is set up differently.

Your environment must also be configured for proper use of TekBase and PV~Wave. (For the
Propulsion Lab network at MSFC, adding the following lines to your . cshrc file will be sufficient:

setenv TQL_SERVER_DIR /u/metricad.0/tglserver.SUN4
setenv TQL_CLIENT_DIR /u/metricad.0/tqglclients
setenv PATH “$TQL_CLIENT_DIR/bin:$PATH”

setenv WAVE_DEVICE X

setenv WAVE_DIR /hd3/vni/wave

setenv WAVE_PATH $WAVE_DIR/1lib

For those running PTDS on other systems, see your system administrator for the proper paths to use.)

Finally, the data files for the test you wish to analyze should be accessible from the machine you
are running on. Currently, both compressed and uncompressed MSFC datafile formats are supported.

Execution Modes

The PTDS is configured to run as a “batch” process (typically run overnight) which analyzes all
SSME components in parallel. In addition, each module can be run interactively. In interactive mode,
only the component specified will be analyzed and all results are simply displayed in textual form. See
“Test Data Analysis” in Section II for more information about running PTDS in either mode.

II. PTDS Execution

The full SSME Post-Test Diagnostic System is run in four steps: (1) hardware configuration data
entry; (2) test data analysis; (3) graphical review of results; and (4) anomaly database update and review.

Hardware Configuration Data Entry

The data necessary to run the Post Test Diagnostic System (PTDS) are supplicd by Rocketdyne,
Canoga Park, through jetson in a comma delimited file approximately onc day before the test firing. The
data can be found in the directory /home/gyork.

Any changes to the pretest information are sent in a post-test file and the files are updated. Pump
and turbine efficiency data is sent to NASA via jetson immediately after a test firing. However, in cases
where a pump has been changed out, efficiency data is usually delayed. The pretest, post-test and
efficiency data files are identified by test numbers and suffixes. (Examples are al0750.pre,
al0750.pos, and al0750.eff, respectively). This data has to be manipulated before transferring
into the database. To do so the user types:

hwconv infile outfile

where infile is the pretest and/or post-test file you want to access and outfile is the modified
hardware file you want to create. (Example: hwconv al0750.pre al0750.hmod, where hmod is
the suffix of the modified version of the hardware file.)

This procedure is also used to create the other files needed for PTDS access. Thus the user types:
infconv infile outfile

where infile is the pretest and /or post-test file you want to access and outfile is the modified test
information file you want to create. (Example: infconv al0750.pre al0750.imod, where imod
is the suffix of the modified version of the test-information data file.) And,

effconv infile outfile

where infile is the efficiency file you want to access and outfile is the modified efficiency file you
want to create. (Example: effconv al0750.eff al0750.emod, where emod is the suffix of the
modified version of the efficiency data file.)

Now that all the data has been modified, it is ready to be transferred into the TekBase SSME_DB
database (see Kingfisher Users Guide).

The .hmod files transfer into the TST_HW table. The . imod files transfer into the TST_INFO
table. The .emod files transfer into the TST_PERF table. (See Section 2.1 for Table Listings.)

This data is now ready to be accessed by the Post-Test Diagnostic System.

Test Data Analysis

To begin full PTDS analysis of a new SSME test, once the data files are on-line, run the program
new_data. This program is used to launch the PTDS. It allows the user to specify the tests which are to
be run by the system and to start the session manager on those tests, which in turn executes the other
components of the system in a batch mode. Normally, new_data is the only program the user will need
for the test data analysis step.

Usage:
new_data [&]

This command displays the main panel for the program as shown in Figure 1.

Figure 1. Main panel for the program new_data.

To launch PTDS from new_data, enter the Current Test ID in the text field labeled Current
Test and enter the Comparison Test ID in the text field labeled Previous Test. Selecting Go from the
menu bar will then queue the specified test(s) for the session manager, and if the session manager is not
already running, it will begin the session manager.

The Options pull-down menu is shown in Figure 2. The Clear option is used to clear the Current
Test and Previous Test text fields. The Exit option is used to exit the program. The PID (Parameter
Identification) Override option displays the PID Override panel.

i

..... o Y RIS e

Figure 2. Options pull-down menu for the program new_data.

The PID Override panel, shown in Figure 3, is used to substitute different PIDs for the default
PIDs during analysis of the test(s) currently indicated on the main panel. To override a PID, enter the
default PID name in the left text item and the substituted PID name in the right text item. Then press the
Add button. The substitution will be added to the scrolling list at the bottom of the panel. If a mistake is
made, the item may be selected in the scrolling list and the Delete button used to remove it. The Clear
button will delete all items from the list and the Close button closes the panel.

Figure 3. PID Override panel for the program new_data.

To use interactive mode to perform diagnosis on a Line Replaceable Unit of the SSME, simply
type component_interactive at the Unix command line, where component is the name of the
LRU that requires diagnosis, €.g., HPOTP_interactive. After a brief loading period, the program
will ask you to enter the test ID for the current test. The test ID should be specified as a six-character
string of the form A20551, A40134, etc. The program will than ask you to specify the test ID for a
comparison test. You can either enter a test ID or simply a carriage return if a good comparison test is not
available (most analyses can be run without the use of a comparison test). The program may also prompt
the user for other information. For example, The HPOTP module will ask you if this test uses a
Rocketdyne or Pratt & Whitney (ATD) pump, and finally, the program will ask you for the name of a log
file to store the analysis results in. You can either enter a valid filename, or simply a carriage return to
indicate that you do not want a log file created.

The program will then perform its analysis of the component, periodically printing results as they
are obtained. At the end of its execution, the program will ask if you want to update the historical
database with the parameters from the current test (just answer yes or no). Program execution varies
according to the component.

See Attachment #3 of SSME HPOTP Post-Test Diagnostic System Enhancement Project for a
sample session log for the HPOTP module.

Most of the other components of PTDS can also be run individually, either interactively or as
background processes, although this should rarely be done under normal circumstances. Information on
running the other programs individually is provided in Section 1 of the Programmer’s Guide.

Graphical Review of Results

To view the results of a PTDS analysis, or to check the progress of an analysis in progress, type
ehms at the Unix command line. This will bring up the window shown in Figure 4. The top scrolling
window is the test status board which displays the status of all analyses in progress in its top portion (with
a check mark showing which modules have completed; a clock icon denotes analysis still pending), and a
list of all completed analyses at the bottom. To select a test to review, simply click on the test ID with the
left mouse button. The system will then take a few minutes to load in the analysis results, and highlight
any components on the SSME plant diagram which were found to be anomalous. To view the results of a
component analysis, left-click on the desired component icon in the SSME plant diagram, to bring up a
more detailed component schematic. Examples of this window are shown in Figures 7 and 8, which

display the HPOTP schematic and diagnostic results and the Systems schematic and diagnostic results,
respectively.

HEAR054G s % R20551

Figure 4. Main panel for the program ehms.

The menu bar at the top of the main panel provides a means to start execution of other programs
useful in the analysis process. There is a pull-down menu under “Analysis Tools” with three options.
The first option, “What If”, is currently inactive. The second option, “History”, brings up the panel
shown in Figure 5. The last option, “Plot Pkg”, starts the program sunplot in a new terminal window.
“Ext. Software” starts other useful programs through another pull-down menu. The options on this menu
are “new_data”, which starts the program new_data (see “Test Data Analysis” above for usage

information), “Anomaly DB”, which starts the program anom (see “Anomaly Database Update and
Review” below for usage information), and “Kingfisher”, which starts the program kingfisher (see
Kingfisher Users Guide for more information). “Update Status™ may be uscd to updatc the status area in
the top scrolling window to show any modules which have completed since ehms was started. “Quit”

LRU’s Quit Help

Available Tests

A20561
A20534
A20533
A20555
A10750
A20564
A20551
A20543
A20548
A20547

Figure 5. Panel for the “History” option from the “Analysis Tools” menu.

Controller
HPFTP

. wpoTP

. LPFTP

£ LPOTP

HCC

Main Injector

Nozzle

 Pouerhead
selection

Figure 6. “History” panel with “LRU’s” pull-down menu.

}

Figure 7. HPOTP window.

The top portion of the component window shows the list of ranked anomalies found for the
selected test, broken down into three categories: anomalies, observations, and instrumentation. As shown
in Figure 7, the bottom portion of the HPOTP window shows a plant diagram of the HPOTP, with buttons
representing sensors used in analysis of the HPOTP (the buttons are labeled with the sensor’s PID name).
To view the raw data for any sensor, simply left-click on the corresponding button. To obtain plots of data
which support an anomaly or observation, left-click on the text of the description. Similarly, the bottom
portion of the Systems window contains the SSME plant diagram with buttons representing applicable
sensors as shown in Figure 8.

The “Close” button at the top of each component window is used to close the window. The
“Make Pids” button brings up the window shown in Figure 9, which may be used to update the buttons in
the plant diagram at the bottom of the window. The “Next” and “Prev” buttons can be used to move
through the list of PIDs for which buttons are included on the plant diagram. The current PID name will
be displayed in the text item labeled “Pid name:” and the position of the button will be displayed in the
text items labeled “x:” and “y:”.

The “Explanations” button brings up the window shown in Figure 10. If an anomaly has been
selected on the component window, this window will contain a list of the data which caused the anomaly
to be identified by PTDS. If no anomaly has been selected, the scrollable portion of the window will be
blank.

- The “Add to Anomaly DB” button is only active if an anomaly is sclected. Currently, no
information is available through the “Help” button.

10

Evplarations

b

Figure 9. “Make Pids” window for modifying PID buttons on plant diagrams.

11

Figure 10. Explanations window for anomalies.

Plots are displayed in a window such as the one shown in Figure 11. The buttons along the top
allow you to change the vertical or horizontal scales (range and time interval) of the display, or select
whether full-sample or one-second-averaged data is displayed. Note that none of these options take effect
until you left-click on the Replot button.

12

‘ HPOTP Balance Piston Presaures
E 3100 g5 0 %
P S N MNP LN e PP i I e BN P
.
i 2900 — =
a 2800 -]
E g Sl = T SRR o TP S RS - R x|
2800
e 10 12 14 16 18
Time (seconds)
20581
Thrust Profile
3400
— 3300 —
i, 3200 — —
§ 3100 (— —
3000 —
2900
] 10 12 14 16 18
Time (seconds)
A2DS81
Eng LOX Inlet Pressure
Time {seconds)
AZD581

Figure 11. Plot panel for program ehms.

Anomaly Database Update and Review

The Anomaly Database gives analysts a mechanism for tracking engine performance troubles.
The following tasks can be performed with the Anomaly Database:

- after a test and data review, log and categorize any anomalies in SSME test data, along with expert
assessments relating to the anomalies, actions taken, and the corroborating sensor data, if desired

e retrieve data describing previously observed anomalies for analyzing patterns in engine performance

< retrieve all examples of classes of anomalies along with experts’” determination of their causes for the
purpose of training new analysts.

To start execution of the Anomaly Database, type anom at the Unix command line. After several minutes
and a number of messages, the window shown in Figure 12 will be displayed. This window is the request
screen used to enter the facts about the anomalies to be retrieved. The “Go” button on the menu bar is
used to submit a request to the database to return all of the anomalies that match the fields filled in on the
request screen. The “Options” button provides access to a short pull-down menu with the options “Clear”
and “Quit”. The “Clear” option clears the window of all user-entered material, useful when a user has
finished looking at one record and is ready to request another, and the “Quit” option exits the Anomaly
Database.

13

Figure 12. Main panel for the program anom.

The “Edit Mode” menu button indicates the type of database access that is being requested. For
most users, this should always be set to “Read”. The remaining options (“Add”, “Delete”, and “Modify’")
are used for adding new anomalies and deleting or modifying existing ones and are limited to usage by
users with write permission for the database.

The remaining areas of the window are used to place restrictions on the list of anomalies to be
retrieved when the “Go” button is pressed. If no data is entered into these areas, the request would return
all anomalies in the database, potentially a long list. Otherwise, all anomalies which match the
information entered in the window will be retrieved when the “Go” button is pressed. In general, if the
user wishes to retrieve one particular anomaly, the simplest way to find it, without retrieving a large
number of other anomalies that must be browsed through as well, is to fill in the fields that will place the
most severe restriction on the list retrieved.

The “Fixed Fields” area includes three text fields: “Test Number”, “Test Date”, and “Engine
Number”. The test number must be entered as a six character string such as A20531 if used. The test
date, if used, must be entered as an eight character string composed of two month digits, a slash, two day
digits, another slash, and two year digits, e.g., 02/12/90. A question mark, ‘?’, may be used as a wildcard
for a digit anywhere in the date field. To retrieve anomalies by matching on the engine number, the
engine number must be entered as a four digit number, including leading zeros, e.g., 0213.

14

The “Anomaly Title” area is used to restrict the types of anomalies to be retrieved. The
“Location” menu button allows the user to specify whether the anomaly was in a particular LRU (option
“LRU”), a sensor (option “Sensor”), or a system problem (option “System”). The default option
“BLANK” means no restrictions will be made on the anomalies retrieved, based on this field. Selecting
another option, the query window will change to allow the user to specify more about the anomaly. For
example, if “I.RU” is selected, the “ILRU Unit #” field will be added to the “Fixed Fields” area of the
query window and the button menu for “Typc” will be displayed in the “Anomaly Title” area. The
changed areas for the “LLRU” and “System” options are shown in Figures 13 and 14, respectively. The
options on the other menu buttons in the “Anomaly Title” area, when displayed, will depend on the
selections already made at the time the menu button is displayed. For example, if “LRU” was selected for
the location, the options on the “Type” menu button will be a list of LRUs, or if “Sensor” was selected for
the location, the “Type” menu button will be used to specify which LRU the sensor was monitoring.

S s 5 SO R0

s RN RN D000 RO SRR

Figure 13. “Fixed Fields” and “Anomaly Title” areas of the Anomaly Database query window after
selecting “LRU” from the “Location” menu button.

OO 00

Figure 14. “Anomaly Title” area of the Anomaly Database query window after selecting “System” from
the “Location” menu button.

The “Misc. Fields” area of the query window provides for other miscellaneous restrictions on the
anomalies to be retrieved. The “Test Phase” menu button allows the selection of a test phase (prestart,
mainstage, etc.), the “Engine Fl/Dev”’ menu button allows restricting queries to flight engines or
development engines, and the “LRU Flt/Dev” menu button allows restricting queries to flight LRUs or
development LRUs.

The “Spec Violation” menu button in the “Spec Violation” area may be used to specify a
particular type of Spec Violation, such as Greenrun, ICD, ICC, Max Qual, etc.

15

The “Logged By” and “Logged Date” fields of the “User Info” area are used for the user ID of the
person entering the records and the date on which the anomaly was entered into the database. These
search fields are mainly for the convenience of users who are editing records in the database.

The remaining areas, “Free Form Text”, “Anomaly Time”, and “Data Stored” are not used in
preparing a query for a search of the anomaly database. They are filled in by the program when a query
has been completed or are used by the other “Edit Mode” options.

After a query is processed, the “Status” line will indicate the number of anomalies that satisfied
the query. If only one anomaly satisfied the query, the data for that anomaly will be displayed on the main
panel. If the query was satisfied by more than one anomaly, the selection window shown in Figure 15 will
also be displayed with a list of anomalies which satisfy the query. A particular anomaly can then be
selected from the scrolling list in the center of the window. When the “Load” button is pressed, this
window will close and the data for the selected anomaly will be displayed on the main panel. Figure 16
shows the main panel after a single anomaly has been selected.

Figure 15. Selection panel for anom displayed when more than one anomaly satisfies a query or the
“Read Selection” button on the main panel is pressed.

If there was more than one anomaly that satisfied the query, the “Read Selection” button in the
“Edit Mode” area of the main panel can be used to redisplay the selection window for selecting other
anomalies to display. The “Print” button in the selection window is used to print the data for the selected
anomaly and the “Print All” button is used to print the data for all anomalies that satisfied the query. If
there was only one anomaly that satisifed a query, the “Read Selection” button is used to display the
selection window to provide access to the print buttons.

16

i R R S B R R
Figure 16. Main panel for the program anom after a data retrieval.

The three buttons in the “Free Form Tex(” area (“Assessment”, “Analysis Results”, and “Actions
Taken”) are used (o pop up text windows containing additional textual material that is stored as part of the
anomaly record. If the “Data Stored” button in the “Data Stored” area says “YES”, clicking on the “PIDs
and Data” button will display an auxiliary window used for displaying the data graphically.

If any of the data filled in by the user in preparing a query does not match the expccted format for
that field, a dialog box will be displayed containing a suggestion for editing the field when the “Go”
button is pressed and the query will not be submitted to the database. The user should then close the
dialog box and modify the contents of the indicated field before attempting to rcsubmit the query.

The “Add” option from the “Edit Mode” menu button is used for adding new anomalies to the

database. Figure 17 shows the main panel with the “Add” option selected before any data for the anomaly
has been entered.

17

e

Figure 17. Main panel for the program anom when using the “Add” command.

18

TIL Maintaining the Historical Database

The HPOTP diagnostic system utilizes a historical database of parameters for use in statistical
analyses. This database is currently stored in the TekBase database named SSME_DB in the table named
HISTORY (for Rocketdyne pumps) and ATDHSTRY (for Pratt & Whitney pumps). Each row in these
tables contains information about a single paramcter value for a single test, and has the following four
columns: :

TESTID . The test ID. .
PARAM The name of the parameter (e.g., HPOTP_PRI_TRB_SIL_DR_P).
TYPE The type of the parameter (e.g., PEAK_WIDTH).

VALUE The value of the parameter (e.g., 3.27).

OK_TO_USE A Boolean (TRUE or FALSE) value which indicates if this value should be
used for future statistical analyses.

In addition, the ADTHSTRY table also contains a Boolean column IS_HOT which is used to classify the
pump as having either a hot or cold “ski slope”. This effectively defines three classes of pumps for which
statistics are gathered: Rocketdyne, “Hot” ATD, and “Cold” ATD.

By default, OK_TO_USE values are always TRUE. However, if a HPOTP experiences a
significant anomaly and you do not want some or all of its parameters used in future statistical analyses,
simply set the appropriate OK_TO_USE values to FALSE (via Kingfisher).

Updating the Historical Database

A utility program is available which will update the historical database with parameters from a
test without performing a full diagnostic analysis. To run this program, enter HFOTP_update testID
at the Unix command line, where testIDis a six-character string such as A20551 or A40123.

Viewing the Historical Database

A utility program is available which will provide a quick print out of the contents of the historical
database. To run it, enter HPOTP_history at the UNIX command line. The program will ask you for
the name of a log file to store the data in. You can either enter a valid filename, or simply a carriage
return to indicate that you do not want a log file created. The program will then ask whether you want
statistics for Rocketdyne, “IIot” ATD, or “Cold” ATD pumps. A printout similar to the following will be
output:

-------------------- A20571 (ENABLED) -==---==-=m-—=-momen

PEAK_HEIGHT HPOTP_SEC_TRB_SL_CAV_P 24.31
PEAK_WIDTH HPOTP_SEC_TRB_SL_CAV_P = 19.67
PEAK_TIME HPOTP_SEC_TRB_SL_CAV_P 9.00
PEAK_HEIGHT HPOTP_PRI_TRB_SL_DR_P 36.97
PEAK_WIDTH HPOTP_PRI_TRB_SL_DR_P 22.66
PEAK_TIME HPOTP_PRI_TRB_SL_DR_P 8.00
EQ_VAL HPOTP_SEC_TRB_SL_CAV_P 11.53
EQ_VAL HPOTP_PRI_TRB_SL_DR_P 7.75
START_VAL HPOTP_INT_SL_PRG_P 188.91
5_To_CUT HPOTP_PRI_PMP_SL_DR_P 0.25
MAX_AFTER_EQ HPOTP_PRI_PMP_SL_DR_T 427.52

104_MIN_NPSP . HPOTP_BAL_CAV_P_A 3141.81

19

104_MIN_NPSP
109_MAX_NPSP
109_MAX_NPSP
104_NOM_NPSP
104_NOM_NPSP

Y

hhkhhkhkdkdhhkhhhhhhrkhhkd

TYPE
109_MAX_NPSP
109_MAX_NPSP
104_MIN_NPSP
104_MIN_NPSP
PEAK_HEIGHT
PEAK_WIDTH
PEAK_TIME
EQ_VAL
EQ_VAL
MAX_AFTER_EQ
PEAK_HEIGHT
PEAK_WIDTH
PEAK_TIME
104_NOM_NPSP
104_NOM_NPSP
5_TO_CUT
START_VAL

HPOTP_BAL_CAV_P_B
HPOTP_BAL_CAV_P_A
HPOTP_BAL_CAV_P_B
HPOTP_BAL_CAV_P_A
HPOTP_BAL_CAV_P_B

.o'e

PARAMETER
HPOTP_BAL_CAV_P_A
HPOTP_BAL_CAV_P_B
HPOTP_BAL_CAV_P_A
HPOTP_BAL_CAV_P_B
HPOTP_SEC_TRB_SL_CAV_P
HPOTP_SEC_TRB_SL_CAV_P
HPOTP_SEC_TRB_SL_CAV_P
HPOTP_SEC_TRB_SL_CAV_P
HPOTP_PRI_TRB_SL_DR_P
HPOTP_PRI_PMP_SL_DR_T
HPOTP_PRI_TRB_SL_DR_P
HPOTP_PRI_TRB_SL_DR_P
HPOTP_PRI_TRB_SL _DR_P

HPOTP_BAL_CAV_P_A

HPOTP_BAL_CAV_P_B
HPOTP_PRI_PMP_SL_DR_P

HPOTP_INT_SL_PRG_P

3012.06
3380.77
3258.33
3187.00
3048.27

MEAN
3286.86
3076.68
3053.03
2863.38

24.15
23.32
10.41
12.64
8.99
416.55
33.47
25.14
8.83
3100.58
2899.31
-0.02
190.92

SUMMARY OF ENABLED TESTS ***dkkkkkhhhhhhhkdnak

STDDEV

77.40
178.48
75.97
143.00
2.48
4.14
2.24
1.21
1.21
20.73
2.91
5.41
1.32
76.04
143.76
0.23
4.29

N

11
11
22
22
32
32
32
34
34
34
36
36
36
37
37
37
38

SSME Post-Test Diagnostic System
Systems Section

Final Report
Attachment #2

Programmer's Guide

Post-Test
‘Diagnostic System
(PTDS)
Programmer's Guide
Prepared by:

J. Allen Crider

Computer Sciences Corporation
22 February, 1995

Table of Contents

Table of Contents......ceeeeveveerene teeterreerecessssnrresnasasessrsrreesessrssttaeessesssssrrasasassssanses |

ACKNOWISAZIMENLS ...covveerreeeecennrrasssvssseseirsaessaseeessosesssssssssassassosssossssossassssass ii

=ty

THHTOQUCLON «.vvevevvrererenrrreeriensreetiieeessessssssesssssssssssssssssssrensnnnssstasessssssnssrssesssssssssnsasesnessesssesssnssssnstossassosssssasas

1

1. Execution of Individual PTDS PrOSIams........cccccieriervessnsrsssrssesssssnssssssssssossssasssssstsssssorssssssssssansasssssssases |
1.1 Session Manager (smgr) ... SRR |

1.2 Feature EXtractor (£aLULES) . ivcciererreeccreereecserssreseesssessnsssasssessasssas .1

1.3 External Effects (external).. evreeesnteesereaesssesssseassansesstnesanacsrnenseseds

2. Database Tables . reresrrissnsssnrssnisbssstssssssesasnsernressasassnsesassansdh
2.1 Space Shuttle Main Engine Database (SSME_DB)......ccoccssesvrssscasssossassesssssssssossssesssesressossssssassssacdh
2.2 Session Manager Database (SESS_MGR) ..c.ccvveerrersnrcersnernes veveeseeerens 28
2.3 External Effects Database (EXTERNAL)...... ceerennen 29

3. New Data (new_dgata).. eereesreeesstreesratesttesenbeserbaessteanennsesresessasnatsssasrsrasersesess I
3.1. Source Files.......ccccecveeeneee eeveserasesrastteeteeteaastessaesanessasreraeeaaes - cerreneeeeneens 30
3.2 Header FIlesccccvveceerenenvsvuncnesonreesensens ereerreresseestestastentesstessassnaesatessaresssessesaresassnrsaressnsaraassreses 30
3.3 Functions vereeereaeeraans ceresveerenns .30
3.4 Cflow output SOTRTR. ()

4, Session Manager (SIATLY) ...cceveerecseeresecrerersessssesssesacsssscssesssesesstssasasassnssrsassnsssssssssssossssssssssssosssssssesssse d |
4.1 SOULCE FFHIES....ceeverereeererreressensrerensesssssessssassosesssnsassnsossasssansessrsassensassassssnsasossssssessosnen cresreesraesssnaes 31
4.2 Header File.................. . .32
4.3 Defined Constants............... eeeteeveeiaesneanaaaes rerernerseeeessesnens verenereeen 32
4.4 Defined Types............ veeesesssssatsssersensssnenesnes creereeereresessasnesnann reerrereesaeesreetesnesaarenesarassarsntnssnsssesee 3L
4.5 GIODAL VAMADIESccvovvirerrerirreirenreessressereersssesssssessassassssessessasesssssssesstossosssnssnsasesssssssssssssasssesaoss 33
.6 FUNCHONS ...vcvveverreveeaceriierseeesetissesssssesessessessosaessssessssessossassassesassassessessosssnesessasssaasacsosssssassesnssssns 39
4.7 CLIOW OULPULoovevreeveencssossssuesnsnnssessssssssssssssssassessssssssnsons vevorisrtrnrassassessins 30

5. Features (features).......ee.n.. rerrrereatestetersrsaeseerereeserseasatenan trererereterererestesessererseretsaesnasssarersensabesasne 3O
5.1 SOULCE FHIES...vecuverreereeeerrrssrrssesseseeseessessessesssssanestesssssesassssssanssossssstsssassassesssssssssssesasssssssansassssssssss 39
S.2HEAGEI FAIEScovoveereerenririreressnsessessesessisessesssessssessssessssnssnssssnassossassnsssssssasssssssasassessorsassessssasssess 39
5.3 Defined Constants........cccceeereeverernesseessecsens ; cereesearens 39
SADELINEA TYPES ..vcveverenrrressececeserantrsnsssnsesessesesescssosescsssnsssssasssassesesssssossossasssorsrssssssrssssnsssssossosssroidd
5.5 Global Variablescccceveeeveeverenanne eeetreresreeresenessansrsones rressresneesareseeessseiraesanesasssssnsssonarsasasnassseedO
SO TUNCHONSovveeeererieerriercrnnsstssessessesssessessesseesnassassostsssssssossassans ereerrens 46

5.7 Algorithm Comments..........ccceevuveerrveserraesense trersretessresssesesteossessessesanressestssenaeseraestossosnsrasseesresssOO
5.7.1 General COmMMENLSccceovreeererrecnneesrasorsaccaceeses eereteresreesnesrereeseessessesaessassassssssssssarensesressssOO
5.7.2 DifferentThan Module............. verrengeananeenens verereretseeseasbens s tsressnssensssessssasasssenssansess OO

5.8 Cflow outputc.eeeeeerreerveeneensunanens ereerassssssatrresssannessssssaaens reeetrerrasstessessssseenssnnsnssssostesansassassssess 10

6. External Effects Program (external).....c..eeeemecsceneens vrverersesenreerersesanes 14

6.1 S0ULCE FUlES...ccererreerrrerirssrecssosuensuncnssnessases
6.2 Header Files... . v

6.3 Defined Constants..........c.soo. cesmnrace . 75
6.4 Defined TYPES ...ccovererenrerecsicsesssrisesnmsssssssosssacsannsnnne reresrtostsansienasassasassess 19
B.5 TFUNCHONScoveereerveoreeeseesseasassesssssssssserssnssssessesssssssssosssasssnssssasosasssassassasssssssnssncssasssesssnassnsssasssss QU

6.6 ALZOTIIINcvovenrreecieciseineiniensissiosesssssssssassassonssassessssssesssssosssossssssssssssssssessnssssssorsosstassosanssosasss® |
6.6.1 Notation........c.ccceervevireccuonie rettsssiessssaesessnssesterensresesassasatssassaesses® T
6.6.2 Computationscoceevveens . ceroreees88

6.7 CLIOW QULPULeevreveereenssncsssssoseossoseossosssssosessssssssssasssossssesassssossossssssssasssssssssensantssassnssenssasseassssses@d

7. HPOTP Module. ceeresheeeeire e neresassas b e tanseraans 90

T L MOGUIES .oevrirmririnreriirneresnnnsirnesiestinssnsissssernsssssserassorassssessessossassssrsrsssnessssssasssasssesesassessssssssesss J0
7.1.1 Executive creenreens eeserrnesseestssntosnentasaserassarasns ervesvocsssnsossessassesess 90
7.1.2 Feature EXUACHON «..coveerrersirvinersaosssseesansnsresasssosasssasssassessissassassasssessssssssassasse cevssesrosasnaennes91
7.1.3 HPOTP Sensor Validationcceceeeveeereeerensses JRRRRURTRRPRRII) |
7.1.4 Redundancy Management.........oueecseecrvsonieesenss
7.1.5 Statistics MOAUIEcoovevieeeesinriniinreisnnecessennasseosceosssossossssssssssssarssnans veveenrsostessassesasnaneren .92

~7.1.6 Anomaly Detection & DIaNOSIScevreereerrrecessserrisenrenseessessesasssensasssessssessesasssossessssssassass 0
7.1.7 Green Run Specifications Checkcccceerevivconscriesceriosenencns creereeseaseeresessanase vesennnenns 93
7.1.8 Supporting Plot Generation........ cevonene “
7.1.9 Output of ReSultscovveveecciverinerenennrneesreeruaeseens cereeseressestaranns ctesnesesnnsstosssssnnssressasssesssed 3

7.2 Anomalies Currently Detected by the HPOTP Diagnostic Systemcceeeververeerencecereenes cevennnne93
7.2.1 General Anomalies cessesssussrssatesesrasessaresaestens cevosessntsteseesasaasssessanees cerrsssrsserssnasnennaannas 93
7.2.2 Green Run Specifications...........coceoeeeeeerececsmmvivesessesurncenens reesseseesestesiesesassaessrresaosaans ceeess09

----- --u-u.uu.oe....-----uuuuuuu..n...74

eeeccscane ee---loloo.coooo’S

8. Common Function Library for PTDS...........cooieiriirinrreecstentineecesaeessrsseesssnssssssesseces seeesseeeseeneneess 100
8.1 S0UICE FIES......cvcvnrcncrrrtererenst st issscssssssssssssassessarssssssnsissssnsssersasasssssossrssses OO
8.2 HEader FIIESccvcrerenreerenscnsesessesssrorsssassasssssessessasassessassssassssnoresseseassessessesassesnsssssssesnssassassassesens L0
8.3 Defined Constants.................... etsssteteenasetesesennasnnsastosstesaraseesnessaesrsassnasssasssanaressassassrasssasassassas JO1
8.4 DEfINEA TYPES c.veevievenrerescrsescessessensessessansesssessesssansasssassessassessassassassansssossorsassessessessessassessassosssasss 102
8.5 Global Variablescccveecvevenrenee rettets st ttsenreshes s stssatessnsassentesarsrnessatssrsssnnasaissseasassesesassonases LU
8.6 FUNCHONSccovenenrrrereecresrennnrcrcrensensenanas

0006000900000020000000000080000040000000000s0ssestse no-u-.-......u.nlo6

Acknowledgments

This User’s Guide and Programmer’s Guide contains contributions from various members of the
Post-Test Diagnostic System (PTDS) development team. The members of the development team are

Rick Ballard

Tim Bickmore

J. Allen Crider
Chris Fulton

Bill Maul
Catherine McLeod
Claudia Meyer
Virginia Tickles
Luis Trevino

June Zakrajsek

iii

Introduction

This portion of the manual provides information useful to the maintainers of the Post-Test
Diagnostic System (PTDS) and developers of new modules for the system. The first section contains
information on running individual programs that are normally not executed directly by the average user.
The following section includes descriptions of all of the TekBase databases utilized by PTDS. The
remaining sections include descriptions of all source files, header files, and functions for each module,
program, or library included in PTDS. In addition, a partial listing of the output from the Unix utility .
cf low is provided for each program. All references to PTDS functions and Metrica library functions are
included in these listings, but references to standard library functions and X Windows library functions
have been deleted.

1. Execution of Individual PTDS Programs

This section provides usage information on programs included in PTDS which are not normally
executed by the average user. All of these programs are run automatically as a result of running
new_data and should only be run standalone by developers and maintainers of the system.

1.1 Session Manager (smgr)

The session manager, smgr, runs all tests queued by the program new_data through a
predetermined set of PTDS modules. It is started automatically by new_data whenever a new test is
queued if it is not already running. It can also be started from the command line with no arguments,
although this is not normally done. '

1.2 Feature Extractor (features)

The feature extractor program, features, provides the basic information on engine behavior
necessary for operation of the expert modules. The expert modules use the sensor trace “features”
reported by the feature extractor to reason about the health of an SSME component or assembly.

" The feature extractor is currently capable of detecting the following generalized sensor trace
features:
¢ peaks (All peaks or only the primary peak, where primary peak is defined as the peak having the
greatest magnitude on the interval of interest)
e spikes
e erratic behavior
e level shifts
e redline violations

Sensor traces may also be statistically compared to determine the likelihood that they represent
the “same” (two samples of data from the same parent distribution) or a different measurement or differ by
a constant offset. This capability is provided by the feature extractor Dif ferentThan. In addition to
detecting the general features described above, the feature extractor is also capable of detecting more
specific behaviors of the SSME such as changes in the net force exerted on the balance piston, and
preburner pump bistability.

 When invoked, the feature extractor reads a general command table, F_COMM in the SSME_DB
database, that provides the program with basic information such as to what type of features to look for and
in what measurements (PIDs) to look for them. More specific information, such as the start and stop
times of the search, and in the case of peaks, what type of model to fit to, are determined by the program
at run time. By writing a set of general commands to the feature extractor, which are valid for all tests,
consistent behavior is assured. In light of the consistent manner in which features are collected, the results
may be used to accurately monitor the health of an SSME component.

Feature extraction is initiated by the session manager after the session manager has been notified
of the arrival of new data. It can also be started from the command line with a test ID as the only
argument. Both controller and facilities data for a test must be loaded prior to feature extraction. The
first operation performed by the feature extractor is an analysis of the thrust profile for the test of interest.
Periods of constant thrust are detected and classified by start time, stop time and percent thrust. This
information is then used to provide parameters for each feature extraction module. Only features
occluding (?) during times of constant thrust are extracted. This provides protection against expected
transients in the data which could manifest themselves as interesting features.

The feature extractor is designed to be run once for each analysis of an SSME test. ‘A general
command table, as referred to above, has been provided for the extraction of those features necessary for
HPOTP analysis. No changes to this command table, or test specific setup is required. To extract features
for the analysis of another module, appropriate commands must be appended to the command table. To
alter any aspect of the program or command table between tests, aside from additions to the command
table pertaining to additional modules, would make any further comparisons between tests invalid. The
program needs only to be called with a different test ID on the command line to provide features for
another test. v

1.3 External Effects (external)

The External Effects program, external, removes the effects of several independent PIDs from
the differences of dependent PIDs for two tests, resulting in normalized delta PIDs for the dependent
parameters. The independent PIDs for which effects are removed are power level, mixture ratio, low
pressure fuel pump (LPFP) inlet pressure, low pressure Ox pump (LPOP) inlet pressure, LPFP inlet
temperature, and LPOP inlet temperature. In addition, the module uses the results from the Hardware
Change Reporter to adjust the normalized delta PIDs for changes in the hardware used for the two tests.
The resulting data can then be examined for anomalies.

External effects is automatically run as part of the Systems module. The typical user will
normally not need to run this program separately. The remainder of this section describes what a user
needs to know to run external effects separately.

The external effects module depends on several TekBase database tables containing some
necessary information required by the program in order to get complete results. The GAINS table in the
EXTERNAL database is used to determine the dependent PIDs and the values required in computing the
effects of the independent PIDs. Further discussion of the EXTERNAL database may be found in the
Database Tables section below and in the algorithm description for this program below. Other database
tables referenced are in the SSME_DB database. The CMP_DESC table is referenced to determine the
comparison test to be used and the TST_HW table is used to determine the HPOT pump type used during
the current test. If the required data is not available from these tables, the program will output an error
message and terminate. The RED_S_C table is used to determine a valid PID to be used for each
independent PID except mixture ratio and for each dependent PID. If any independent PIDs are missing
for either the current test or comparison test, the program will output an error message and terminate. If

any dependent PIDs are missing for either test, no data for that PID will be included in the output file
generated by the program. This table is normally populated by the Sensor Validation module of PTDS.
The DELTAS table is used to determine the constants to be added to the normalized delta PIDs to account
for changes in the hardware. If there is no entry for a particular dependent PID for the current test, no
adjustment is made to the normalized delta PID for that parameter. . This table is normally populated by
the Hardware Change Reporter module of PTDS.

Two environment variables are checked by the program. The variable QYHOST is checked to
determine the machine to use as the TekBase server for database queries. If the environment variable is
not set, the program uses the default machine, jetson. The file location library used to determine the
directories containing data files uses the environment variable FL_RC_PATH to determine the location of
the resource file . £11ibre. (See the File Location library documentation for more information.)

The command line for running the external effects module is
external CurrentTest [normalizeFlg]

where

CurrentTest is the identifier for the current test. This may be either the name of a single test
data file or the name of a database directory file which contains a list of the data files containing
the test data. Currently, the program assumes that if the identifier contains a period, it is the
name of a single test data file; otherwise, it is assumed to be the name of a database directory file.
The program uses the File Location library and the file . £11ibrc to determine the locations of
any database directory files and test data files. The CMP_DESC table from the SSME_DB
database is searched to determine the appropnate comparison test corresponding to
CurrentTest to be used by the program.

normalizeFlg is an optional flag for indicating whether the user wishes to. calculate
normalized delta PIDs (i.e., delta PIDs with the external effects removed) or only delta PIDs (i.e.,
PIDs which are the result of subtracting the PIDs for the comparison test from the corresponding
PIDs for the current test with no adjustment made for external effects). If the first character of
normalizeFlgis D (must be upper case), then only delta PIDs are computed and written to the
output file. If normalizeFlg is omitted or if the first character of normalizeFlg is
anything other than D, then the external effects are removed after calculating the delta PIDs and
only the normalized PIDs are written to the output file.

If no arguments or more than two arguments are provided on the command line, the program
prints the message

Usage: external CurrentTest [D]
D - produce unnormalized deltas

and exits. The program will also print an appropriate error message and exit when some error conditions
are detected, such as a required test data file or database directory file missing or required data missing
from a referenced database table. A warning message will be printed if a test data file listed in a required
database directory file is missing, but the program will continue to execute if all of the independent PIDs
can be found in the existing test data files. A warning message is also printed if no entry can be found in
the RED_S_C table in the SSME_DB database for a dependent PID description for the current test or for
the comparison test. If no errors are encountered, the results are written to a binary data file in SSME
format. If the first character of normalizeFlg is D, the name of the output file will be
CurrentTest.DPID. Otherwise, the name of the output file will be CurrentTest NPID. In
addition, the following items are written to stdout: the cutoff time for the current test, a list of the

dependent PIDs for which deltas were computed, and a message including the name of the binary output
file.

Example: When external is run with the command line
external a20584 D
the following information is written to stdout:

Comparison test is a20583
cutoff = 299.869

86 52 17 835 209 20 59 58 480 24 15
659 18 93 21 231 233 32 260 30 2 142
140 1205 1212
Data is in file a20584.DPID

2. Database Tables
2.1 Space Shuttle Main Engine Database (SSME_DB)

Table ANOMDATA

ANOM#

PID#

REC#

vl

V2
V3

v4

V5

vé

v7

V8

V9

V1o

V1l

V12

V13

V14

V15

vl1e

V17

V18

V19

V20

Va1l

V22

V23

Va4

Va5

V26

V28

V29

V30

V31

V32

V33

V34

V35

V36

v3s

V39

V40

V41l

V42

V43

Va4

V45

V46

vas

V49

V50

Table ANOMDATO

ANOM#

PID#

DESC
RATE
START _TIME
END_TIME
Table ANOMINFO
ANOM# Unique number given to the anomaly
TEST# Test ID for test where anomaly occurred.

MONTH, DAY, YEAR

Month, day, and vear that the test was run.

TEST_PHASE

POWER_LEVEL

ANOM_ST_TIME Time that the anomaly started.
ANOM_DUR Duration of the anomaly.
ENGINE#

ANOM_LOC .

ANOM_TYPE

ANOM__PROBLEM

SENSOR_TYPE

LRU_UNIT#

FL_OR_DEV_EG

FL_OR_DV_LRU

SPEC_VIOLAT

SPEC_VIOLCR

ANOM_ANALYS

ANOM_ACTION

ANOM_ASSESS

START TIME

END_TIME

USER_NAME User that entered data into the database.

USER_MONTH, Month, day, and year that user entered data into the
USER_DAY, database.

USER_YEAR

Table ANOMPRDE

ANOM_LOC

ANOM_TYPE

ANOM_PROBLEM

Table ANOMTEXT
ANOM## Unique anomaly number
COMMENT# ID number specifying comment as action, analysis, or

: resolution.

COMMENT Text of comment.

Table ANOMTPH
PHASE

Table ANOM_SPV
VIOLATION Available anomaly.

Table ANOM_SST
SENSOR Available sensor types.

The ATD history table, ATDHSTRY, contains the historical database of parameters for Pratt &
Whitmey (ATD) pumps utilized by the HPOTP diagnostic system. It is updated automatically by the
HPOTP module or by the program HPOTP_update. (See Section III of the User’s Guide for more
information.)

Table ATDHSTRY

TESTID The test ID.

TYPE The type of the parameter.

PARAM The name of the parameter.

VALUE The value of the parameter.

IS_HOT Classifies the pump as having either a hot or cold “ski
slope”.

OK_TO_USE Whether the parameter is to be used in future statistical
analyses.

Table CFE_LIMS

MODULENAME

PID

REDLINE_NAME

REDLINE

The comparison description table, CMP_DESC, is used to store information about the comparison
test to be used for each test. It is normally updated by new_data, but it may be updated manually. All

columns are used by the Hardware Change Reporter. The first two columns are also used by the Case
Based Reasoner and external.

Table CMP_DESC

TEST_ID

Test ID for a current test.

COMP_TEST_ID

Test ID for the test to be used as a comparison test for the

current test.

CMP_START

CMP_STOP

DURATION

CMP_SHUTDOWN

POWER_LEVEL

The table DELTAS is populated by the Hardware Change Reporter, Comparator, and Sensor
Validation. The table is accessed by external during the process of modifying PIDs to account for

hardware changes.

Table DELTAS

TEST_ID

Test ID for the current test.

COMP_TEST_ID

Test ID for the comparison test used.

PRODUCER

Systems sub-module which produced the delta entry.

COMPONENT

PARAMETER

START TIME

END_TIME

START DELTA

END_DELTA

UNITS

The table D_BOOK is used by the Hardware Change Reporter and Case Based Reasoner. It is
updated manually as required.

Table D_BOOK

ENG_CHANGE

MAGNITUDE

UNITS

TYPE

PHASE

‘ENG_FL_IN_PR

ENG_FL_IN_T

LPFP_SP

HPFP_IN_PR

HPFP_IN_T

ENG_V_FU_FL

HPFP_SP

HPFP_DS_PR

HPFP_DS_T

MCC_CL_DS_PR

MCC_CL_DsS_T

LPFT_IN_PR

ENG_O_IN_PR

ENG_O_IN_T

LPOP_SP

HPOP_IN_PR

HPOP_SP

HPOP_DS_PR

MCC_O_INJ_PR

MCC_O_INJ_T

PBP_DS_PR

PBP_DS_T

MFV_POS

MOV_POS

CCV_POS

OPOV_POS

FPOV_POS

FL_PR_INT_PR

FU_PR_INT T

HEX_INT_ PR

HEX_INT_T

FPB_PC

HPFT_DS_T

OPB_PC

HPOT_DS_T

MCC_HG_IN_PR

VOL_LOX_FL

VOL_FUEL_FL

CBR

Table EXPECT_1

TEST_ID Test ID for the current test.
MODULE

NUMBER

TYPE

PID

START_TIME

STOP_TIME

SIGN

CHG_MAG !

The table EXPLANE is populated by the Hardware Change Reporter, Case Based Reasoner, and
Sensor Validation.

Table EXPLANE

TEST_ID

MODULE

NUMBER

TYPE

DEGREE

START_TIME

STOP_TIME

DESCRIPTION

COMP_1ID1

COMP_1ID2

10

DATA_PARAM

DATA_DELTA

Table FILTBIAC

TEST_ID

MODULE

PID

START TIME

END_TIME

SIGN

PID_VALUE

TEST_TYPE

The feature bistability table, F_BISTAB, is updated by the feature extractor whenever the

FindBistable module finds any bistability features.

Table F_BISTAB

The feature commands table, F_COMM, contains the commands processed by the feature extractor
for each test processed by PTDS. The table must be updated manually when new modules are added to

MODULE PTDS module which requested this feature.

TESTID Test ID for the current test.

FEAT _NUM Unique number for this test.

SENSOR PID where the feature was found.

FIT_START, Start and end times of the fit interval where this feature
FIT_END was found,

THRUST_LEVEL Thrust level on the interval where this feature was found.
SENSOR_LABEL PID description for this sensor.

the feature extractor or new commands are required for new or existing PTDS modules.

Table F_coMMm

EXPERT

This character string indicates the name of the expert
module which requests the feature. The feature extractor
runs only once per test so the features needed by all expert
modules are extracted at the same time. This field is saved
in the feature tables so that database queries may be issued
for all features requested for use by a certain expert
module.

1

SENSOR

This is a standardized string describing the measurement
to be searched for the given class of feature. This string is
used to look up the appropriate PID name which is an
index into the data tables. For example, PID 63 is
represented by the string “MCC Combustion Pressure,
Average”

SEN_POSTFIX

This indicates the use of either full sample data or one
second average. The former is indicated by entering an
“P” in this column while the latter is indicated by an “A”.
This field is used to qualify the contents of the SENSOR
field which indicates which PID to operate on but does not
specify whether to use sample rates of the raw data, or one-
second averages computed by the PTDS.

MODULENAME

This is a string representing the feature extraction module
to be called. The names of the available modules are as
follows: BalancePistonCompare,
DeltaLevelshift, DifferentThan,
FindBistable, FindErraticBehavior,
FindLevelshift, FindPeak, FindSpike, IsFlat,
RedlineCheck.

STARTTIME,
ENDTIME

These character fields contain strings indicating the time
at which feature extraction is to start and stop for this
measurement. The times can be specified as an integer
value or as one of the following generic strings which
represent times of interest common to all tests: bot -
beginning of test data; eot — end of test data; cutoff -
engine cutoff time; ts_eq - time at which turbine seal
equilibrium is reached; 1ox_eq - time at which LOX seal
equilibrium is reached. NOTE: Setting STARTTIME =
ENDTIME indicates the special case where all periods of |
constant thrust are examined for the requested feature.

PARAM1, PARAMZ,
PARAM3, PARAM4,
PARAMS

These character fields contain parameters specific to the
named extraction module. Depending on the module,
some, all or none of thesc fields may be used. In the event
that a field is unused, its contents are irrelevant. Unused
fields have been filled with an X for ease of inspection.

SENSOR_LABEL

PID description for this PID.

PARAM1_LABEL,
PARAM2_LABEL,
PARAM3_LABEL,
PARAM4_LABEL,
PARAMS5_ _LABEL

Archaic routine specific parameters.

The feature different than table, F_DIFTHA, is updated by the feature extractor whenever the
DifferentThan module or BalancePistonCompare modules find any features. The table is used
by Sensor Validation.

12

Table F_DIFTHA

MODULE PTDS module which requested this feature.

TESTID Test ID for the current test.

FEAT_NUM Unique number for this test.

SENSOR PID where the feature was found for DifferentThan

features or an indicator of the form PID#-PID# for the
composite 'data where the feature is found for
BalancePistonCompare features.

COMP_TESTID

Test ID for the comparison test.

COMP_SENSOR

Comparison test PID.

START_TIME, Start and end times of the fit interval where this feature
END_TIME was found.

CHI_SQUARE Comparison statistic.

PROB Comparison statistic.

COEF_W_ERR_B

Comparison statistic.

DIF_BY_OFFSE Offset Flag.
OFFSET Offset Flag.
OFFSET_SIGMA Offset Flag.

THRUST_ _LEVEL

Thrust level on the interval where this feature was found.

SENSOR_LABEL

PID description for this PID.

COMP_SEN_LAB

PID dcscﬁption for the comparison PID.

The table F_DRIFT is used by Sensor Validation.

Table F_DRIFT

MODULE PTDS module which requested this feature.
TESTID Test ID for the current test.

FEAT_NUM Unique number for this test.

SENSOR PID where the feature was found.
START_TIME, Start and stop times of the detected feature.
END_TIME

OFFSET

SLOPE

Average slope of the drift.

THRUST_LEVEL

Thrust level of the detected feature.

SENSOR_LABEL

PID description for this PID.

13

START_MAG,
END_MAG

Magnitudes of the PID at the beginning and end of the
drift.

The feature erratic table, F_ERRAT, is updated by the feature extractor whenever the
FindErraticBehaviour module finds any erratic behaviour features.

Table F_ERRAT

MODULE PTDS module which requested this feature.

TESTID Test ID for the current test.

FEAT_NUM Unique number for this test.

|SENSOR PID where the feature was found.

START_TIME, Start and end times of the fit interval where this feature
END_TIME was found.

THRUST_LEVEL Thrust level on the interval where this feature was found.
SENSOR_LABEL PID description for this PID.

The featuré is flat table, F_ISFLAT, is updated by the feature extractor whenever the IsFlat
module finds any is flat features. The table is used by Sensor Validation.

Table F_ISFLAT

MODULE PTDS module which requested this feature.
TESTID Test ID for the current test.

FEAT_NUM Unique number for this test.

SENSOR PID where the featurc was found.
START_TIME, Start and stop times of the detected feature.
END_TIME

OFFSET

SLOPE Average slope of the drift.

OFFSET_SIGMA Statistic from the feature routine.

SLOPE_SIGMA Statistic from the feature routine.

CHI_SQUARE Statistic from the feature routine.

THRUST_LEVEL Thrust level of the detected feature.

PID description for this PID.

SENSOR_LABEL

The feature level shift table, F_LEVSH, is updated by the feature extractor whenever the
FindLevelShift or DeltalLevelShift modules find any features. The table F_LEVSH is used by
the Comparator and Sensor Validation.

14

Table F_LEVSH

MODULE PTDS module which requested this feature.

TESTID Test ID for the current test.

FEAT_NUM . Unique number for this test.

SENSOR PID where the feature was found for FindLevelShift

features or an indicator of the form PID#-PID# for the
compositc data where the feature is found for
DeltaLevelsShift features.

START_TIME, Start and stop times of the detected feature,
END_TIME

LAST_MAG Magnitude of the PID at the end of the level shift
DELTA Size of the level shift.

THRUST_LEVEL Thrust level of the detected feature.
SENSOR_LABEL PID description for this PID.

The table F_NOISE is used by Sensor Validation.

Table F_NOISE

MODULE PTDS module which requested this feature.
TESTID Test ID for the current test.

FEAT_NUM Unique number for this test.

SENSOR PID where the feature was found.
START_TIME, Start and stop times of the detected feature.
END_TIME

THRUST_LEVEL Thrust level of the detected feature.
SENSOR_LABEL PID description for this PID.

PID ‘

The feature peak table, F_PEAK, is updated by the feature extractor whenever the FindPeak
module finds any peak features.

Table F_PEAK
MODULE PTDS module which requested this feature.
TESTID Test ID for the current test. '
FEAT_NUM Unigue number for this test.
SENSOR PID where the feature was found.
" PEAK_HT Magnitude of the peak.
TAPH Time at the maximum peak height.

15

FWHM Magnitude of the peak at half height.
TAFWHM1 Time of the half magnitude on the rising slope.
TAFWHM2 Time of the half magnitude on the falling slope.
FIT_TYPE Type of fit applied to the slope.

CHI_SQUARE

NUM_PARAMS

PARAMIF

PARAM2F

PARAM3F

PARAMAF

THRUST_LEVEL Thrust level of the detected feature.
SENSOR_LABEL PID description for this PID.

OFFSET

The table F_RD_CC is used by Sensor Validation.

Table F_RD cCC

EXPERT PTDS module which requested this feature.
TEST_ID Test ID for the current test.

FEAT_NUM Unique number for this test.

CHANNEL_A PID one.

CHANNEL_B PID two.

START_TIME, Start and stop times of the detected feature.
END_TIME

The feature redline violations table, F_RLVIOL, is updated by the feature extractor whenever the
RedlineCheck module finds any redline violations features. The table F_RLVIOL is used by Sensor
Validation.

Table F_RLVIOL

MODULE PTDS module which requested this feature.
TESTID Test ID for the current test.

FEAT_NUM Unique number for this test.

SENSOR PID where the feature was found.

PATR_SENSOR

VIOLAT_START, Start and stop times of the redline violation.
VIOLAT_END

16

CHECK_TYPE

LIMIT_TYPE

REDLINE

Redline value.

SENSOR_LABEL

PID description for this PID.

PR_SEN_LABEL

PID description for the paired sensor.

The feature spike table,

F_ISFLAT, is updated by the feature extractor whenever the
Findspike module finds any spike features. The table F_SPIKE is used by Sensor Validation.

Table F_SPIKE

MODULE PTDS module which requested this fcature.
TESTID Test ID for the current test.

FEAT_NUM Unique number for this test.

SENSOR PID where the feature was found.
START_TIME, Start and stop times of the detected feature.
END_TIME

MAGNITUDE Magnitude of the detected spike.
THRUST_LEVEL Thrust level of the detected feature.
SENSOR_LABEL

PID description for this’PID.

The table F_THLEDE is used by the Comparator.

Table F_THLEDE

MODULE PTDS module which requested this feature.

TESTID Test ID for the current test.

FEAT_NUM Unigue number for this test.

SENSOR Standard descriptor string corresponding to the thrust PID.
START_TIME, Start and end times of the period of constant thrust.
END_TIME

OFFSET, SLOPE

Parameters of a straight line fit to the data over the
specified time range.

OFFSET_SIGMA,
SLOPE_SIGMA

The standard deviations on the straight line fit parameters.

CHI_SQUARE

Measurement of how good the fit of a straight line to the
data was.

THRUST_LEVEL

Thrust level of the detected feature, as given by OFFSET
scaled to percent thrust.

The table F_ZEROSC is used by Sensor Validation.

17

Table F_ZEROSC

TESTID Test ID for the current test.

MODULE PTDS module which requested this feature.
FEAT_NUM Unique number for this test.

AVER Average value for the sensor.
THRUST_LEVEL Thrust level of the detected feature.
SENSOR_LABEL PID description for this PID. |

DELTA Difference of sensor value from expected value.
PID PID where the feature was found.

The history table, HISTORY, contains the historical database of parameters for Rocketdyne
pumps utilized by the HPOTP diagnostic system. It is updated automatically by the HPOTP module or by
the program HPOTP_update. (See Section III of the User’s Guide for more information.)

Table HISTORY
TESTID The test ID.
TYPE The type of the parameter.
PARAM ' The name of the parameter.
VALUE The value of the parameter.
OK_TO_USE Whether the parameter is to be used in future statistical

analyses.

Table KONFLICT
TEST_ID
FMODE1
FMODE2
START TIME
STOP_TIME

The table PARAINFO is used by the Comparator, Case Based Reasoner, and Sensor Validation.
It is updated manually as required.

Table PARAINFO

SENSOR_LABEL

UNITS

NORM_VALUE

SIG_CHANGE

18

PID_PACKAGE

UNIT_LABEL
Table PHASES

TEST_ID Test ID for the current test.
MODULE PTDS module initially generating this feature.
PHASE Phase name.
START_TIME, Start and stop times for the phase.
STOP_NAME

Table PIDINFO
TEST_ID Test ID for the current test.
PID PID name.
UNITS PID units.
DESCR PID description as in flat ﬁlé.
STD_DESCR Standard PID description.
RATE Sample rate.
START_TIME, Start and stop times of the PID as in flat file.
END_TIME

SENSOR_LABEL

PID description for this PID.

The table PIDS_MIA is used by Sensor Validation.

Table PIDS_MIA

TEST_ID | Test ID for the current test.

PID Required PID that is missing from the flat file.
Table PID_DEF

PID PID name.

DESCR PID description as sometimes read in the flat file.

STD_DESCR Standardized PID description.

SENSOR_LABEL

PID description for this PID.

Table PID_DEF2

PID

DESCR

STD_DESCR

19

SENSOR_LABEL

Table PID_ORID

TEST_ID

Test ID for the current test.

PID

Nominally standard PID name.

OVERRIDE_PID

The table PLOTINFO is populated by the Case Based Reasoner and Sensor Validation.

Table PLOTINFO

NAME

POST_NUMBER

Unique anomaly number.

PLOT _TYPE
MODULE Module submitting
CUR_TESTID Test ID for the current test.

PREV_TESTID

Test ID for the previous test if applicable.

NUM_PLOTS

Number of plots (maximum 10).

FULL_SAMPLEL,
FULL_SAMPLE2,
FULL_SAMPLE3

Flags specifying whether to plot with full sample or 1-
second averages for plots 1, 2, and 3, respectively.

NUM_CURVES1,
NUM_CURVES2,
NUM_CURVES3

Number of curves for each of plots 1, 2, and 3,
respectively; sum must be equal to NUM_ PLOTS.

START_TIME1,
START_TIMEZ2,
START_TIME3

Start times for plots 1, 2, and 3, respectively.

END_TIME1,
END_TIMEZ,
END_TIME3

End times for plots 1, 2, and 3, respectively.

TITLEL,
TITLE3

TITLEZ2,

Titles for plots 1, 2, and 3, respectively.

SUBTITLE1L,
SUBTITLEZ,
SUBTITLE3

Subtitles for plots 1, 2, and 3, respectively.

XTITLEL,
XTITLE2, XTITLE3

Titles for the x-axes for plots 1, 2, and 3, respectively.

YTITLEL,
YTITLE2, YTITLE3

Titles for the y-axes for plots 1, 2, and 3, respectively.

20

PID1, PID2,

PID3, PID4,
PID5, PID6,
PID7, PIDS8,
PID9, PID10

PIDs used for each plot, up to NUM_PLOTS.

WHICH_TESTI1,
WHICH_TESTZ2,
WHICH_TEST3,
WHICH_TEST4,
WHICH_TESTS,
WHICH_TESTS6,
WHICH_TEST7,
WHICH_TESTS,
WHICH_TESTS,
WHICH_TEST10

Test ID used for each plot, up 10 NUM_PLOTS.

LEG_LABEL1,
LEG_LABELZ2,
LEG_LABEL3,
LEG_LABEL4,
LEG_LABELS,
LEG_LABELS6,
LEG_LABEL7,
LEG_LABELS,
LEG_LABEL9,
LEG_LABEL10

Legend for each plot, up to NUM_PLOTS.

SET_NUM

The table POSCAUSE is populated by the Case Based Reasoner.

Table POSCAUSE

TEST_ID

MODULE

NUMBER

ENG_CHANGE

START_TIME

STOP_TIME

DESCRIPTIONZ2

SCORE

RANK

SCALED_VAL

STAND_DEV

NOT_COVERED

The table POSHW_CH is populated by the Hardware Change Reporter.

21

Table POSHW_CH

TEST_ID

COMP_TEST_ID

COMPONENT

TYPE_CHANGE

PARAMETER

START _TIME

END_TIME

CHANGE

The postulates table, POSTUL, is used by the Case Based Reasoner. It is populated by the Case
Based Reasoner and Sensor Validation.

Table POSTUL
NAME Unique name for the postulate.
TEST_ID Test ID for the current test.
MODULE PTDS module initially generating this feature.
FMODE
POST_NUMBER Postulate number; unique to TYPE.
PRIORITY _| Plotting priority.
START_TIME, Start and stop times for the problem.
STOP_TIME
PROBLEM Description of the problem.
TYPE ANOMALY, OBSERVATION, or INSTRUMENTATION.
PID PID name if TYPE = INSTRUMENTATION.

The redundant sensor choice table, RED_S_C, is used by the Case Based Reasoner and

external to determine valid PIDs to be used for a particular parameter. It is populated by Sensor
Validation.

Table RED_S_C

NAME Description of the PID.

TEST_ID Test ID for the current test.

MODULE

PID_PACKAGE List of redundant/related PIDs.

PID Name of the validated PID corresponding to the PID
description.

22

SENSOR
SENSOR_LABEL

The table REL_PIDS is used by Sensor Validation. It is updated manually as required.

Table REL_PIDS

MAP_NAME Unique MAP ID.
RPID_LIST List of related PIDs by description.

The table RL_INFO is used by Sensor Validation. Itis updated manually as required.

Table RL_INFO

PID PID name or combination.

LIMIT_TYPE “UPPER” or “LOWER” limits.

STARTTIME, Beginning and ending times that redline is applicable.
ENDTIME '

LIMIT Limit value.

REDLINE_TIME Minimum time of redline.

The table SEGMENT is populated by the Case Based Reasoner.

Table SEGMENT

TEST_ID

MODULE

SEGMENT

START _TIME

STOP_TIME

MODEL

Table TEST

TEST_ID

START_TIME

The table TESTINFO is used by the Comparator and Sensor Validation to get the shutdown time

for a test.
Table TESTINFO
JOB_SUE_DATE Date test submitted to new_data.
TEST_ID Test ID for current test.

23

DATEX

Date of the test from flat file.

ENGINE#

Engine number from flat file.

CPIDS

FPIDS

COMB_DEVICES

CONTROLLER

NOZZLE

MCC

MAIN_INJ

POWERHEAD

HPFTP

HPQTP

LPFTP

LPOTP

ENG_SHUTDOWN

Engine shutdown time.

PREV_TESTID

Test ID for the comparison test.

The table TST_HW is used by the HardWare Change Reporter. It is also used by external to
determine which set of gains are used in calculating the effects of independent parameters. Updating of
this table is described under “Hardware Configuration Data Entry” in Section II of the User’s Guide.

Table TST_HW
TEST_ID Test identifier.
ENGINE_NO Engine number for this test.
HPOTP_U_NO High pressure oxidizer turbopump unit number.
LPOTP_U_NO Low pressure oxidizer turbopump unit number.
HPFTP_U_NO High pressure fuel turbopump unit number.
LPFTP_U_NO

Low pressure fuel turbopump unit number.

HPOTP_SER_NO

High pressure oxidizer turbopump serial number.

LPOTP_SER_NO

Low pressure oxidizer turbopump serial number.

HPFTP_SER_NO

High pressure fuel turbopump serial number.

LPFTP_SER_NO

Low pressure fuel turbopump serial number.

POWERHEAD_UN

Powerhead unit number.

MAIN_INJ_UN

Main injector unit numbey.

MCC_U_NO Main combustion chamber unit number.
NOZZLE_U_NO Nozzle unit number.

CONT_UNIT_NO Controller unit number.

POWERHEAD_TY

CONT_TYPE

CON_SER_NO Controller serial number.

FL_M_S_NO Flow meter serial number.

HPFPD_SER_NO High pressure fuel pump duct serial number.
HPFP_DUCT_TY High pressure fuel pump duct type (Inconel or Titanium),
HEX_ORI_DIA Heat exchanger orifice diameter.

HEX_O_SER_NO Heat exchanger orifice serial number.

F7_ORI_DIA F7 orifice diameter.

F7_O_SER_NO F7 orifice serial number.

THROAT_DIA Main combustion chamber throat diameter.

EXIT _DIA Nozzle exit diameter.

PLUGGED_POST Plugged posts in injector.

MCC_CRACKS Main combustion chamber hot wall cracks.
ENL_BLCS Enlarged boundary layer coolant holes.
HPFTP_CONT Contractor that built the HPFT pump used in this test.
HPOTP_CONT Contractor that built the HPOT pump used in this test.
OPOV_SER_NO LOX preburner oxidizer vaive serial numbef.
FPOV_SER_NO Fuel preburner oxidizer valve serial number.
MFV_SER_NO Main fuel valve serial number.

MOV_SER_NO Main oxidizer valve serial number.

CCV_SER_NO Coolant control valve serial number.

POWH_SER_NO [Powerhead serial number.

MAINI_SER_NO Main injector serial number.

MCC_SER_NO Main combustion chamber serial number.
NOZ_SER_NO Nozzle serial number.

The table TST_INFO is used by the Hardware Change Reporter. Updating of this table is
described under “Hardware Configuration Data Entry” in Section II of the User’s Guide.

25

Table TST_INFO

TEST_ID Test identifier.

TEST_DATE Date of this test.
PLANNED_DUR Planned duration of this test.
SHUTDOWN

Engine shutdown time (actual duration).

ACCEPT_TEST

Is this an acceptance test?

FLT_ENGINE Is this a flight engine?

FLT_HPFTP Is this a flight high pressure fuel turbopump?
FLT_HPOTP Is this a flight high pressure oxidizer turbopump?
FLT_LPFTP Is this 4 flight low pressure fuel turbopump?

FLT _LPOTP

Is this a flight low pressure oxidizer turbopump?

HPFP_GR_RUN

Is this a green run high pressure fuel pump?

HPOP_GR_RUN

Is this a green run high pressure oxidizer pump?

HPOP_SC_RUN

Is this a screen run high pressure oxidizer pump?

LPFP_GR_RUN

Is this a green run low pressure fuel pump?

LPOP_GR_RUN

Is this a green run low pressure oxidizer pump?

The table TST_PERF is used by the Hardware Change Reporter. Updating of this table is
described under “Hardware Configuration Data Entry” in Section II of the User’s Guide.

Table TST_PERF

TEST_ID

Test identifier.

HPFP_EFF_100

High pressure fuel pump efficiency at 100% power level.

HPFP_EFF_104

High pressure fuel pump efficiency at 104% power level.

HPFP_EFF_109

High pressure fuel pump efficiency at 109% power level.

HPOP_EFF_100

High pressure oxidizer pump efficiency at 100% power
level.

HPOP_EFF_104

High pressure oxidizer pump efficiency at 104% power
level.

HPOP_EFF_109

High pressure oxidizer pump efficiency at 109% power
level. :

LPFP_EFF_100

Low pressure fuel pump efficiency at 100% power level.

LPFP_EFF_104

Low pressure fuel pump efficiency at 104% power level.

LPFP_EFF_109

Low pressure fuel pump efficiency at 109% power level.

HPF_TEM_104

High pressure fuel turbine efficiency multiplier at 104%
power level.

26

HPF_PEM 104

High pressure fuel pump efficiency multiplier at 104%
power level.

HPF_PHCM_104

High pressure fuel pump head coefficient multiplier at
104% power level.

HPF_TFPM_104

HPO_TEM_104 High pressure oxidizer turbine efficiency multiplier at
104% power level.
High pressure oxidizer pump efficiency multiplier at 104%

HPO_PEM_104

power level. -

HPO_PHCM_104

High pressure oxidizer pump head coefficient multiplier at
104% power level.

HPO_TFPM_104

High pressure oxidizer turbine flow parameter multiplier at
104% power level.

LPF_TEM_104

Low pressure fuel turbine efficiency multiplier at' 104%

LPF_PEM_104

power level.

Low pressure fuel pump efficiency multiplier at 104%
power level.

LPF_PHCM_104

Low pressure fuel pump head coefficient multiplier at
104% power level. -

LPF_TFPM_104

Low pressure fuel turbine flow parameter multiplier at
104% power level.

LPO_TEM_104

Low pressure oxidizer turbine efficiency multiplier at
104% power level.

LPO_PEM_104

Low pressure oxidizer pump efficiency multiplier at 104%
power level.

LPO_PHCM_104

Low pressure oxidizer pump head coefficient multiplier at
104% power level.

PBP_PEM_104

Preburner pump efficiency multiplier at 104% power level.

PBP_PHCM_104

Preburmer pump head coefficient multiplier at 104% power
level.

Table TST_SW

TEST_ID

€2_100

C2_104

C2_109

KF_100

KF_104

27

KF_109

2.2 Session Manager Database (SESS_MGR)

The Session Manager database, SESS_MGR, contains five tables used by the session manager,
smgy, to determine which modules have been run on a test and the order in which modules are executed.

The job table, JOB, is used by the session manager to form the command necessary to invoke a
module. Itis updated automatically by the Session Manager as the modules are being executed.

Table JOB
MODULE Name of PTDS module.
TEST_ID Test ID for test which this module is currently running

i
The message table, MSG, indicates which tests have been run through each module. This table is

updated automatically if the module is executed through the Session Manager. It may be updated
manually if a module is executed standalone.

Table MSG
MODULE Name of PTDS module.
TEST_ID Test ID for test for which this module has been run.
START_TIME Time at which module began exécuting this test.
END_TIME Time at which module finished executing this test.

The resource prerequisite table, PREREQ, provides the mechanism for specifying what resources
are needed in order for a given module to be invoked. It must be updated each time a new module is

added to PTDS which depends on other modules being run previously or the prerequisites change for an
existing module.

Table PREREQ
ID Index value for the resource.
PREL Index value for first prerequisite resource.
PRE2, PRE3, Index value for additional prerequisite resources as
PRE4, PRES, applicable. Negative values indicate unused prerequisite
PRE6, PRE7, resources.
PRE8, PREY,
PRE10

The resource activity board table, RSRC_BRD, is the job status blackboard used by the session
manager. This table is used to track which modules have run correctly, which are currently in progress or
have exited with an error, and which have not yet run. The table is updated automatically by the session
manager as a test is processed and is not intended to be reabable by users or other applications.

28

Table RSRC_BRD

TEST_ID Test identifier.

RO, R1, R2, R3, | Resource variables encoding 127 resources with a two bit
R4, RS, R6, R7, |flag for each resource. A value of 0 in a resource flag
R8, R9 indicates that resource has not yet run for this test. A value

of 1 in a resource flag indicates that the resource has run
correctly for this test. A value of -1 indicates that the
resource is running or has exited with an error.

The resource list table, RSRC_LST, provides a cross reference between resource indices and
module names and additional information about the modules. It should be updated each time a new
module is added to PTDS. '

Table RSRC_LST

ID Index value for this resource.

NAME Name of the resource, i.e., the module name.

DISPLAYABLE Flag to indicate whether this resource is to be displayed on
the test status board in EHMS; ‘Y’ = do, ‘N’ = don’t
display

WHATIF Flag to indicate which resources are available to be run
under the “Whatif” module.

23 External Effects Database (EXTERNAL)

The EXTERNAL database contains only the table GAINS. This table is used by the External
Effects program, external, in calculating the effects of the independent PIDs on the dependent PIDs.
The values in this table have been estimated as discussed in the algorithm description of the External
Effects program below. Normally, users will have no need to modify this table unless it is determined that
the estimations are not sufficiently accurate and need refinement. Additional entnes will be needed for
each dependent PID for each type of HPOT pump tested.

Table GAINS
A_LOCATION Used by software which calculated the gains; not used by
PTDS.
DESCRIPTION Description of the PID.
PID_1, PID_2, Used by software which calculated the gains; not used by
PID_3, MSID_1, PIDS.
MSID_2
BASELINE
DIM_Al Linear gain associated with the Power Level (not used
because the power level effect is assumed to be nonlinear).
DIM_A2 Linear gain associated with the Mixture Ratio.
DIM A4 Linear gain associated with the LPFP Inlet Pressure.

29

DIM_AS

Linear gain associated with the LPOP Inlet Pressure.

DIM_A6

Linear gain associated with the LPFP Inlet Temperature.

DIM A7

Linear gain associated with the LPOP Inlet Temperature.

LSQCOF_1,
LSQCOF_2,
LSQCOF_3,
LSQCOF_4,
LSQCOF_5,
L.SQCOF_6

Coefficients of the fifth degrec polynomial approximating
the power level effects, where LSQCOF_1 is the constant
term and LSQCOF_6 is the coefficient of the fifth degree
term.

HPOTP_CONT

Contractor which built the HPOT pump for which the
values in this entry are valid.

3. New Data (new_data)

3.1. Source Files

NDATA_main.c: The main program for new_data.

NDATA_create.c
NDATA_db_t.c
NDATA_markfile.c
NDATA_utils.c
SHWER_errors.c

32 Header Files
NDATA_defs.h
SHWER_defs.h

33 Functions

3.4 Cflow output

1 main: wvoid* (), <NDATA main.c 44>

init_PTDS_tekbase: <>
SHWER_Initialize: void*(), <SHWER errors.c 80>
SHWER_ShowErrorClose: void* (), <SHWER_errors.c 149>
SHWER_ShowWarningClose: void* (), <SHWER_errors.c 172>
NDATA_Initialize: void*(), <NDATA_main.c 130>
RSRC_GetResourceList: void* (), <RSRC_dbutils_t.c 201>
tbl_count: <>
tbl_get: <>
STRNG_RemoveTrailingSpaces: char*(), <STRNG_utils
NDATA_CreateSSMETestList: void* (), <NDATA _db_t.c 138>
DBCT_SetDBSession: void* (), <DBCT_utils_t.c 132>
tbl_count: 21
tbl_get: 25)
NDATA_CreateSMGRTestList: void* (), <NDATA _db_t.c 186>

30

.c 76>

38 DBCT_SetDBSession: 30

39 tbl_count: 21
43 tbl_get: 25
45 time: <>
46 localtime: <>
47 strftime: <>
50 NDATA_CreateManagedWidgets: void* (), <NDATA_create.c 236>
51 NDATA_CreatePidOverrideDialog: struct*{), <NDATA_ create.c 257>
59 NDATA_UnmanageWidgetCB: void* (), <NDATA_main.c 416>
61 NDATA_AddToListCB: void* (), <NDATA_main.c 474>
65 NDATA_AddToListUnselected: void* (), <NDATA utils.c 38>
70 NDATA_DeleteFromListCB: void* (), <NDATA_main.c 583>
76 NDATA_ClearListCB: void* (), <NDATA_main.c 550>
71 NDATA_DeleteAllInList: void* (), <NDATA_main.c 518>
86 NDATA_PidOoverrideListCB: void* (), <NDATA_main.c 438>
95 NDATA_CreateMainWindow: void* (), <NDATA_create.c 40>
104 NDATA_ManageWidgetCB: void* (), <NDATA_main.c 370>
105 NDATA_ManageWidget: void*(), <NDATA main.c 390>
111 NDATA_ClearButtonCB: void*(), <NDATA _main.c 344>
113 NDATA_ExitButtonCB: veoid* (), <NDATA main.c 313>
114 DBCT_SetDBSession: 30
115 DBCT_DBSessionDisconnect: void*(), <DBCT_ utils_t.c 91>
116 tekbase_disconnect: int(), <../../DB/tekbase.c 248>
117 query_term: <>
119 NDATA_GoButtonCB: void* (), <NDATA_main.c 217>
125 SHWER_ShowWarning: void* (), <SHWER_errors.c 196>
132 NDATA_IsTestAlreadyPresent: int(), <NDATA_utils.c 63>
134 NDATA_InsertTestInfo: void* (), <NDATA _db_t.c 45>
135 DBCT_SetDBSession: 30
136 tbl_put: <>
139 tbl_update: <> .
140 NDATA_InsertPidoverrideInfo: void* (), <NDATA_db_t.c 85>
141 DBCT._SetDBSession: 30
145 tbl_put: 136
14° DBCT_SetDRBCession: 30
150 RSRC_InsertResourceBoardTestId: void* (), <RSRC_dbutils_t.c 48>
151 tbl_put: 136
154 RSRC_FindResourcelId: int(), <RSRC_rlist.c 87>
156 RSRC_UpdateResourceBoardResourceValue: void* (), <RSRC_dbutils_t.c 84>
158 tbl_get: 25
161 RSRC_GetBits: int(), <RSRC_rlist.c 238>
162 tbl_update: 139
164 NDATA_CheckTestInsert: int(), <NDATA db_t.c 238>
166 tbl_count: 21
169 DBCT_SetDBSession: 30
171 IsSMGRRunning: int (), <NDATA_main.c 179>
177 execlp: <>
185 tbl_free_all: <>

4. Session Manager (smgr)

4.1 Source Files
SMGR_main.c: The main program with initialization and closing functions.

SMGR_db_t.c: The functions which retrieve data from the SESS_MGR database and which update the
MSG table in the database.

31

SMGR_job.c: The functions which determine the PTDS modules to be run on a test and which execute
the modules. ‘

SMGR_resource.c:

42 Header File

SMGR_defs.h: Header file containing the constant definitions and type definitions used in
SMGR_main.c, SMGR_Ab_t.c, SMGR_job.c, and SMGR_resource.c, and declarations
of all external functions defined in those files.

4.3 Defined Constants

Boolean: Used as the type for integer variables that only take on the values True and False; value
int; defined in SMGR_defs.h.

False: value 0; defined in SMGR_defs . h.
SMGR_DetermineNewJob: value 0; defined in SMGR_defs . h.
SMGR_JobPathStringLength: value 200; defined in SMGR_defs .h.
SMGR_MaxPathLength: value 50; defined in SMGR_defs.h.

SMGR_SessionManagerDB: Name of the database used to determine which modules have been run on

a test and the order in which modules are executed; value "sess_mgr"; defined in
SMGR_defs.h.

SMGR_StartJob: value 1; defined in SMGR_defs .h.
SMGR_StopSession: value 2; defined in SMGR_defs .h.
True: value 1; defined in SMGR_defs.h and STRNG_defs.h.

44 Defined Types

SMGR_Job and SMGR_PJob (defined in SMGR_defs.h)

typedef struct SMGR_job {
char
module [DBFL_ResourceNameStringLength+1],
test_id[DBFL_TestIdStringLength+1];
} SMGR_Job, *SMGR_PJob;

SMGR_Message and SMGR_PMessage (defined in SMGR_defs.h)

typedef struct SMGR_message {
char
module [DBFL_ResourceNameStringLength+1],
test_id[DBFL_TestIdStringLength+1],
start_time[DBFL_TimeStringLength+1],
end_time[DBFL_TimeStringLength+1];
} SMGR_Message, *SMGR_PMessage;

SMGR_PrerequisitelList and SMGR_PPrerequisitelist (defined in SMGR_defs.h)
typedef struct SMGR_prerequisitelist ({

32

int

iq,

num_prerequisites,

prerequisite [DBFL_MaxNumResourcevars] ;

} SMGR_PrerequisiteList, *SMGR_PPrerequisiteList;

4.5 Global Variables
SMGR_CurrentTestId: char [DBFL_TestIdStringLength+1]; defined in SMGR_defs.h.
SMGR_NumPrerequisites: int; defined in SMGR_defs.h.
SMGR_RSRCExeDir: char *; defined in SMGR_defs.h.

SMGR_ThePrerequisiteList: SMGR_PrerequisiteList *;defined in SMGR_defs.h.

4.6 Functions

IsAnotherSMGRRunning (declaration in SMGR_defs . h, definition in SMGR_main.c)

int IsAnotherSMGRRunning ()
This function determines whether another session manager process is already running and writes the
current process ID to the lock file smgr_lock if another session manager process is not running. The
return value is zero if another session manager process is running or one otherwise.
RemoveLockFile (declaration in SMGR_defs . h, definition in SMGR_main.c)

void RemoveLockFile ()
This function removes the session manager lock file smgr_1ock upon completion of the tests just before
exiting the session manager.
SaveSMGRpid (default declaration, definition in SMGR_main. ¢)

SaveSMGRpid (int proc_id)
This function writes the process ID for the current session manager process to the lock file smgr_lock.

Argument:
proc_id: Process ID for the current session manager process (input).

Returns zero if successful or -1 if the lock file already exists and the owner of the current process does not
have permission to write to the file.
SMGR_CheckJobQueue (declaration in SMGR_defs . h, definition in SMGR_job.c)

int SMGR_CheckJobQueue ()

This function is .

SMGR_DeletedJdob (declaration in SMGR_defs . h, definition in SMGR_db_t .c)
void SMGR_DeleteJob (char *module, char *test_id)
This function .

Arguments:

33

module: (input)
test_id: (input)

SMGR_DeleteMessage (declaration in SMGR_defs . h, definition in SMGR_db_t.c)

void SMGR_DeleteMessage (char *module, char *test_iq,
char *start_time, char *end_time)

‘This function .
Arguments:
module: (input)
test_id: (input)
start_time: (input)
end_time: (input)
SMGR_EvaluateResources (declaration in SMGR_defs . h, definition in SMGR_resource.c)
int SMGR_EvaluateResources ()

‘This function .

SMGR_ExecutedJob (declaration in SMGR_defs.h, definition in SMGR_job.c)
void SMGR_ExecuteJob (SMGR_PJob job)

This function .

Argument§
job:

SMGR_GetJobs (declaration in SMGR_defs . h, definition in SMGR_db_t.c)
void SMGR_GetJobs (SMGR_Job **list_ptr, int *num_jobs)

This function .

Arguments:
list_ptr: -
num_jobs:

SMGR_GetNextJob (declaration in SMGR_defs . h, definition in SMGR_job.c)
Boolean SMGR_GetNextJob (SMGR_PJob job)

This function .

Argument:
job:

SMGR_GetPrerequisites (declaration in SMGR_defs .h, definition in SMGR_db_t.c)
void SMGR_GetPrerequisites ()

This function .

34

SMGR_Initialize (declaration in SMGR_defs . h, definition in SMGR_main.c)
void SMGR_Initialize ()

This function initializes the session manager.

SMGR_InsexrtJob (declaration in SMGR_defs . h, definition in SMGR_db_t.c)
void SMGR_InsertJob (char *module, char *test_id)

This function . '

Arguments:
module: (input)
test_id: (input)

SMGR_InsertMessage (declaration in SMGR_defs .h, definition in SMGR_db_t.c)

void SMGR_InsertMessage (char *module, char *test_id,
char *start_time, char *end_time)

‘This function .

Arguments:
module: (input)
test_id: (input)
start_time: (input)
end_time: (input)

SMGR_PostJob (declaration in SMGR_defs .'h, definition in SMGR_job.¢)
void SMGR_PostJob (SMGR_PJob job)
This function is currently not used.
Argument:
job:
SMGR_UpdateMessageEndTime (declaration in SMGR_defs . h, definition in SMGR_db_t .c)

void SMGR_UpdateMessageEndTime (char *module, char *test_id,
char *end_time)

This function updates the cnd time field of the MSG table in the SESS_MGR database when a PTDS
module is completed. '

Arguments:
module: Name of the module which has completed (input).
test_id: Test ID for the current test (input).
end_time: Time at which the module completed (input).

SMGR_UpdateMessageStartTime (declaration in SMGR_defs . h, definition in SMGR_db_t.c)

void SMGR_UpdateMessageStartTime (char *module, char *test_id,
: char *start_time)

35

This function updates the start time ficld of the MSG table in the SESS_MGR database when a PTDS
module is started.

Arguments:
module: Name of the module which has started (input).
test_id: Test ID for the current test (input).
start_time: Time at which the module started (input).

4.7 Cflow output

1 main: void(), <SMGR_main.c 45>

2 IsAnotherSMGRRunning: int(), <SMGR_main.c 175>
10 SaveSMGRpid: int(), <SMGR_main.c 241>
18 init_PTDS_tekbase: void(), <tektables.c 40>
19 tbl_tekbase_init: int(), <tekbase.c 1484>
20 tbl_add_mode: void(), <tbl.c 102>
21 tkbdone: int(), <tekbase.c 1455>
22 tekbase_close: int(), <tekbase.c 313>
23 clear_typecache: void(), <tekbase.c 400>
24 tekbase_do_tql: int(), <tekbase.c 166>
25 query: <>
26 handle_error: int(), <tekbase.c 127>
27 query_status: <>
28 query_mess: <>
30 query_term: <>
31 query, _erroxr: <>
32 tekbase_disconnect: int(), <tekbase.c 248>
33 query_term: 30
34 tkbfree: int(), <tekbase.c 1431>
35 tkbupd: int(), <tekbase.c 1387>
36 " check_DB: int({), <tekbase.c 345>
38 tekbase_close: 22 .
39 tekbase_open: int(), <tekbase.c 276>
40 tekbase_connect: int(), <tekbase.c 197>
42 query_host: <>
43 query_init: <>
44 handle_error: 26
45 query_error: 31
46 query_mode: <>
47 query_buffer: <>
48 clear_typecache: 23
49 clear_unique: void(), <tekbase.c 437>
51 tekbase_do_tgl: 24
53 clear_typecache: 23
54 : clear_unique: 49
55 MakeUpdateList: int(), <tekbase.c 861>
57 MakeStringValue: char*(), <tekbase.c 727>
59 MakeConditionString: int(), <tekbase.c 772>
60 GetConditionRelop: char*(), <tekbase.c 692>
61 MakeStringValue: 57
64 tql_check_types: int(), <tekbase.c 490>
65 query_mode: 46
66 get_cached_type: int(), <tekbase.c 412>
67 hash: unsigned int (), <tekbase.c 392>
70 query: 25
71 handle_error: 26
72 query_error: 31

36

73 query_status: 27

75 cache_type: void(), <tekbase.c 428>
76 hash: 67
78 put_row: int(), <tekbase.c 558>
79 query_mode: 46
80 query_buffer: 47
85 query_mode: 46
86 tekbase_do_tgl: 24
87 tkbdel: int(), <tekbase.c 1343>
88 : check_DB: 36
89 MakeConditionsString: 59
92] tekbase_do_tqgl: 24
93 tkbput: int(), <tekbase.c 1300>
94 check_DB: 36
95 tql_check_types: 64
96 MakeParameterList: int(), <tekbase.c 820>
98 query_buffer: 47
929 put_row: 78
100 query_mode: 46
102 tekbase_do_tqgl: 24
103 tkbget: int(), <tekbase.c 1091>
104 check_DB: 36
105 MakeConditionsString: 59
106 MakeParameterList: 96
107 tal_check_types: 64
108 set_unique: int(), <tekbase.c 443>
- 109 tekbase_do_tqgl: 24
112 j tekbase_do_tqgl: 24
113 find_col: int(), <tbl.c 170>
116 query_mode: 46)
117 query.on_eob: <>
118 handle_fetch: void(), <tekbase.c 939>
121 query: 25
122 query. error: 31
123 query_status: 27
124 handle_error: 26
125 tkbcount: int(), <tekbase.c 1239>
126 check_DB: 36
127 MakeConditionstring: 59
128 query_mode: 46
129 query_on_eob: 117
130 handle_count: void(), <tekbase.c 1190>
131 set_unique: 108
134 tekbase_do_tqgl: 24
135 query: 25
136 query_error: 31
137 query_status: 27
138 handle_error: 26
139 tbl_new: int(), <tbl.c 557>
144 DBCT_DBConnect: void(), <DBCT utils_t.c 69>
145 tekbase_open: 39
148 SMGR_Initialize: void(), <SMGR_main.c 99>
151 RSRC_GetResourceList: void(), <RSRC_dbutils_t.c 201>
1153 tbl_count: int(), <tbl.c 329>
154 £find_tbl: struct*(), <tbl.c 138>
156 find_col: 113
158 parse_tbl_commands: int(), <tbl.c 209>
159 find_col: 113

37

163
164
165
166
169
171
174
176
177
178
180
183
186
188
193
1%4
196
198
199
200
202
204
207
208
213
215
216
217
219
221
223
226
228
229
230
231
236
238
240
241
243
244
246
248
249
251
253

5.

5.1

tbl_get: int (), <tbl.c 269>
£ind_tbl: 154
parse_tbl_commands: 158
STRNG_RemoveTrailingSpaces: char* (), <STRNG_utils.c 76>
SMGR_GetPrerequisites: void(), <SMGR db_t.c 205>
tbl_count: 153
thl_get: 163
SMGR_EvaluateResources: int(), <SMGR_resource.c 39>
SMGR_CheckJobQueue: int(), <SMGR_job.c 194>
SMGR_GetJobs: void(), <SMGR_db_t.c 265>
tbl_count: 153
tbl_get: 163
RSRC_GetResources: void(), <RSRC_dbutils_t.c 137>
tbl_count: 153
RSRC_GetBits: int(), <RSRC_rlist.c 238>
RSRC_FindResourceName: int(), <RSRC_rlist.c 49>
SMGR_InsertMessage: void(), <SMGR_db_t.c 51>
tbl_put: int(), <tbl.c 398>
find_tbl: 154
parse_tbl_commands: 158
SMGR_Insertdob: void(), <SMGR_db_t.c 159>
tbl_put: 198
SMGR_GetNextJob: int(), <SMGR_job.c 44>
SMGR,_GetJobs: 178
SMGR_DeleteJob: void(), <SMGR_db_t.c 183>
tbl_delete: int(), <tbl.c 451>
find_tbl: 154
parse_tbl_commands: 158
SMGR_EXxecutedob: void(), <SMGR_job.c 105>
RSRC_FindResourceld: int(), <RSRC_rlist.c 87>
RSRC_UpdateResourceBoardResourceValue: void(), <RSRC_dbutils_t.c 84>
tbl_get: 163
RSRC_GetBits: 193
tbl_update: int{), <tbl.c 504>
find_tbl: 154
parse_tbl_commands: 158
SMGR_UpdateMessageStartTime: void(), <SMGR_db_t.c 107>
tbl_update: 229 ’
DBCT._DBSessionDisconnect: void(), <DBCT utils_t.c 91>
tekbase_disconnect: 32
DBCT _DBConnect: 144
SMGR_UpdateMessageEndTime: void(), <SMGR_db_t.c 133>
tbl_update: 229
DBCT_DBDisconnect: void(), <DBCT_utils_t.c 111>
tekbase_disconnect: 32
RSRC_FreeResourceList: void(), <RSRC_rlist.c 156>
RemoveLockFile: void(), <SMGR_main.c 135>

Features (features)

Source Files

FEAT main.c: The main program for features.
FEAT dbutils_t.c:

FEAT featureUtils.c:

38

FEAT featurefits.c:
FEAT features.c:
FEAT_fileio_t.c:
FEAT _markfile.c:

5.2 Header Files

FEAT dbio_defs.h: Header file containing the declarations of all functions defined in
FEAT dbutils_t.c. :

FEAT featurefits.h: Header file containing the declartions of functions defined in
FEAT featurefits.cand FEAT featureUtils.c.

FEAT features.h: Header file containing constant definitions, macro definitions, and type
definitions and the declarations of functions defined in FEAT_features.c,
FEAT_ featureUtils.c,and FEAT fileio_t.c.

FEAT_jump.h: Header file containing a global variable used to save the contents of the stack at a point
in the main program. - The purpose is to restore all local variables in the case of a severe error
such as a numerical recipes run time error. After such an error the program will use the contents
of this variable to restart the program picking up with the next feature extraction command.

5.3 Defined Constants

BalancePistonCompai*e: value 9; defined in FEAT _features.h.

BIT_TOGGLE.MULT: value 10.0; defined in FEAT_features.h.

DBA_StartOfDatalAnalysis: value -6.5; defined in FEAT_features.h.

DeltaLevelShift: value §; defined in FEAT features.h.

DifferentThan: value 0; defined in FEAT features.h.

EHMS_AllPeaks: value 1; defined in FEAT_features.h.

EHMS_AverageSampleRate: Sample rate for one-second averaged data; value 1.0; defined in
FEAT_features.h.

EHMS_BeginningOfTestStr: value "bot"; defined in FEAT_features.h.

EHMS_BistablePid: PID searched for spikes during periods of constant thrust having a thrust no
greater than EHMS_MaxThrustForBistability; wvalue “59"; defined in
FEAT features.h.

EHMS_CloseEnoughToZero: Range above and below zero considered to be zero by the feature
extractor for purposes of determining if two data sets are the same, different, or differ by a
constant offset; value 0.001; defined in FEAT features.h.

EHMS_ControllerFullSample: Sample rate for 25 Hz data; value 0.04; defined in defined in
FEAT features.h, '

EHMS_DummySigma: Used as a standard deviation for full sample data; value 1.0; defined in
FEAT features.h,

EHMS_EndOfTestStr: value "eot"; defined in FEAT_features.h.

39

EHMS_EngineCutoffStr: value "cutoff*; defined in FEAT features.h.
EHMS_Erratic: value 1; defined in FEAT features.h.

EHMS_ExpectedsigmaMultiplier: A sensor is considered erratic if the fit standard deviation is
greater than this value times the expected sigma; value 4; defined in FEAT features.h.

EHMS_FacilityFullSample: Sample rate for 50 Hz data; value 0.02; defined in
FEAT features.h.

EHMS_Fullsample: value 0; defined in FEAT features.h.

EHMS_GoodFitFactor: This value times the number of degrees of freedom is the limit of what is

considered an acceptable fit according to the rule of thumb from statistics theory; value 4; defined
in FEAT_features.h.

EHMS_IndeterminateThrustLevelStr: Used as the thrust_level tag for features which may span
more than one thrust level; value *-999 . 0*; defined in FEAT features.h.

EHMS_LOXSealEquilibrium: Thermal equilibrium reached; value 200.0; defined in
FEAT_ features.h.

EHMS_LOXSealEquilibriumstr: value *lox_eq"; defined in FEAT features.h.
EHMS_LPOTPDischargePressureA: value "209"; defined ianEAT_f eatures.h.

EHMS_MaxCheckTypeStr: Size in bytes of maximum redline check type string; value 11; defined in
FEAT_ features.h.

EHMS_MaxLimitTypeStr: Size in bytes of maximum limit type string; value 6; defined in
FEAT_ features.h.

EHMS_MaxsSettlingTime: Time to account for transients resulting from response to a change in
commanded throttle; value 5.0; defined in FEAT_features.h.

EHMS_MaxSlopeForLevelshift: Maximum allowable slope for periods of constant data that bound
a level shift; value 0.15; defined in FEAT_features.h.

EHMS_MaxThrustForBistabli ty: Maximum value for thrust level for periods of constant thrust to
be examined for bistability; value 65; defined in FEAT features.h.

EHMS_MinConstantThrustPeriod: Width in seconds of smallest interval of constant thrust which
will be considered by the program; value 6.0; defined in FEAT features.h.

EHMS_MinPeriodOfLinearTankPressure: Minimum duration of a period of linear LPOTP
discharge pressure during which to look for erratic behaviour in a sensor trace (in seconds); value
6; defined in FEAT_features.h.

EHMS_MinSettlingTime: Time to account for transients resulting from response to a change in
commanded throttle; value 1.0; defined in FEAT_features.h.

EHMS_MinThrustForBistablity: Minimum value for thrust level for periods of constant thrust to
be examined for bistability; value 0; defined in FEAT_ features.h.

EHMS_MinThrustSlope: Empirically determined constant; value 04; defined in
FEAT_ features.h.

EHMS_NonErratic: value 0; defined in FEAT features.h.

EHMS_NumFeatureExtractionModules: value 14; defined in FEAT_features.h.

40

EHMS_NumSigmaForSiglevelShift: The delta between two periods of constant data must exceed
this value times sigma_mag of the first data set to be deemed significant; value 3; defined in
FEAT_ features.h. :

EHMS_NumSigmasForFlat: Number of sigmas above/below 0.0 the slope of a fitted line must lie to
have the line considered flat (slope of 0.0); value 3.0; defined in FEAT _features.h.

EHMS_NumSigmasForSpike: Number of sigmas beyond fit which a point must exhibit to qualify it as
a peak, having a magnitude outside the noise level; value 4.0; defined in FEAT features.h.

EHMS_OneSecondAve: value 1; defined in FEAT features.h.

EHMS_PctAreaToCheck: Percentage of thrust period to check for bistability (furthest from end
points); value 0.85; defined in FEAT features.h.

EHMS_PrimaryPeak: value 0; defined in FEAT features.h.

EHMS_SameAsProbability: Probability cutoff above which two compared by the kstwo function
are considered drawn from the same; value 0.70; defined in FEAT_features.h.

EHMS_ScaledMinThrustSlope: value 0.00000001; defined in FEAT_features.h.

EHMS_SigmaFudgeNumber: Fake number used as a standard deviation when the number is really 0.0
because the Numerical Recipes code cannot handle 0.0; value 0.02; defined in
FEAT features.h.

EHMS_SigmasForSigStep: This value times sigma[i] must be exceeded for the slope of a level
shift to be significant; value 2; defined in FEAT_features.h.

EHMS. SmallestPossibleStepSize: Smallest step size by which any digital data measured; value
0.0001; defined in FEAT features.h. '

EHMS_SpikeCountForBistability: Number of spikes needed on an interval before the PBP is
judged to be bistable at that thrust level; value 2; defined in FEAT_features.h.

EHMS_SpikeWidth: Width in one second intervals of a spike; value 1; defined in
FEAT_features.h.

EHMS_SubIntervalLength: Length in seconds of subinterval used in finding level shifts; value 6;
defined in FEAT_ features.h.

EHMS_ThrustPid: PID to be used for determining periods of constant thrust; value "287*; defined in
FEAT _features.h.

EHMS_TurbineSealEquilibrium: Thermal equilibrium reached; value 150.0; defined in
FEAT_features.h. ' .

EHMS_TurbineSealEquilibriumsStr: value "ts_eq"; defined in FEAT_f eatures.h.
executed: value 0; defined in FEAT features.h. ‘
FEAT_MainDB: value "ssme_data"; defined in FEAT features.h.

FEAT MaxPathLength: value 60; defined in FEAT features.h.

FEAT_OPOV_bit_toggle: Used in Dbistability calculations; value 0.07; defined in
FEAT features.h.

FEAT_SQLScriptDir: value "FEAT_ SQL_SCRIPTS'; defined in FEAT_features.h.
FEAT TestEnvVar: value *TEST_DB"; defined in FEAT features.h.

41

FindBistable: value 3; defined in FEAT features.h.
FindDbrift: value 10; defined in FEAT features.h.
FindErraticBehaviour: value 1; defined in FEAT features.h.
FindLevelsShift: value 5; defined in FEAT_features.h.
FindPeak: value 2; defined in FEAT features.h.

FindSpike: value 4; defined in FEAT features.h.

IsFlat: value 7; defined in FEAT_features.h.

NoisyPid: value 11; defined in FEAT_features.h.
not_executed: value 1; defined in FEAT features.h.
NUMSIGMAS: value 3.0; defined in FEAT features.h.
PERCENTAGE_RANGE: value 0.070; defined in FEAT_features.h.

PWR_LEVEL_OFFSET: Time added to the beginning of a power level to try to avoid noise; value 1.4;
defined in FEAT features.h.

RedlineCheck: value 6; defined in FEAT features.h.
RedundChannelCheck: value 12; defined in FEAT features.h.
YNORM: value 100.0; defined in FEAT_features.h.
ZeroShiftCheck: value 13; defined in FEAT_features.h,

5.4 Defined Types

EHMS_ConstantPeriodlID, EHMS_PConstantPeriodID (defined in FEAT features.h)

typedef struct EHMS_constantperiodid ({
float

start_time,

end_time,

magnitude,

mag_sigma,

slope;
} EHMS_ConstantPeriodID, *EHMS_PConstantPeriodlID;

Members:

start_time: Start time of period of constant thrust.
end_time: End time of period of constant thrust.
magnitude:
mag_sigma:

slope:

EHMS_DatalIDRecord, EHMS_PDataIDRecord (defined in FEAT features.h)

typedef struct EHMS_dataidrecord ({
char

expert [DBFL_MaxExpertModuleNameLength + 1],

42

test_str([DBFL_MaxTestIdLength + 1],
pid_str[DBFL_PidNameLength + 11},

descrip [DBFL_MaxMeasurementStringlLength + 11,
compare_test [DBFL_MaxTestIdLength + 1],
compare_pid[DBFL_PidNameLength + 1},

compa_.re_descrip[DBFL__MaxMeasurementStringLength + 1];

float
start_time,
end_time,
unaltered_start_time,
unaltered_end_time,
period,
thrust_level;
} EHMS_DataIDRecord, *EHMS_PDatalDRecord;
Members:
expert:
test_str: Test ID of the source of the data.
pid_str: PID from the specified test.
descrip: Description of the measurement.
compare_test: Test ID of the comparison test used.

compare_pid: PID from the specified comparison test.

compare_descrip: Description of the measurement from the comparison test.

start_time: Start time of the feature;

end_time: End time of the features.
unaltered_start_time:

unaltered_end_time:

period: Sample period for the data set.

thrust_level: Thrust level over the given time range.

EHMS_DifferentThanRecord, EHMS_PDifferentThanRecord
FEAT features.h)

typedef struct EHMX_differentthanrecord {
float
chi_square,
prob;
FEAT_Boolean
coeffs_within_error_bars,
differ by constant_offset;
float
offset,
offset_sigma;

(defined

} EHMS_DifferentThanRecord, *EHMS_PDifferentThanRecord;

Members:
chi_square:
prob:

43

in

coeffs_within_error_bars:
differ_by_constant_offset:
offset:

offset_sigma:

Emas;FeatureRecord, EHMS_PFeatureRecord (defined in FEAT features.h)

typedef struct EHMS_featurerecord {
struct EHMS_featurerecord
*next,
*prev;
char
test_id[DBFL_MaxTestIdLength + 1],
sensor [DBFL_PidNameLength + 1];
float
peak_ht,
taph,
fwhm,
tafwhmil,
tafwhm2;
EHMS_FitType
fit_type;
float
chi_square;
int
num_paranms;
float
offset,
*fitted_params;
} EHMS_FeatureRecord, *EHMS_PFeatureRecord;
Members:
next: Pointer to the next feature record.
prev: Pointer to the previous feature record.
test_id:
sensor: Sensor from which the data was taken.
peak_ht: Maximum peak height.
taph: Time at the maximum peak height.
fwhm: Full width half maximum for peak (feature).
tafwhm1: Time at full width half maximum 1.
tafwhm?2: Time at full width half maximum 2.
fit_type: Type of equation fit to points comprising feature.
chi_square: Goodness of fit measurement.
num_params: Number of elements in the a array.
offset: Number of elements in the a, array.
fitted_params: Coefficients of the fit from which function parameters may be calculated.

EHMS_FeatureRecordHead, EHMS PFeatureRecordHead (defined in FEAT features.h)

typedef struct EHMS_featurerecordhead {
EHMS_ PFeatureRecord
first,
last; .
} EHMS_FeatureRecordHead, *EHMS_PFeatureRecordHead;
Members:
first: First feature in the list.

last: Last feature in the list.

EHMS_FitType (defined in FEAT_f eatures. h)

typedef enum EHMS_FitFuncs
{Gaussian, FastRiseExpFall, NthOrderPoly} EHMS_FitType;

EHMS_LinearLPOTPDischargePressureRec,
EHMS_PLinearLPOTPDischargePressureRec (defined in FEAT features.h)

typedef struct EHMS_linearL.POTPdischargepressurerec {
float
start_time,
end_time; ‘
} EHMS_LinearLPOTPDischargePressureRec,
*EHMS_PLinearLPOTPDischargePressureRec;
Members:
start_time:
end_time:

EEMS_RedlineCheckType (defined in FEAT features.h)

typedef enum EHMS_RedCheckChoice
{single_pid, both_pids, either_pid, difference}
EHMS_RedlineCheckType;

EHMS_RedlineInfoRecord, EHMS_PRedlineInfoRecord (defined in FEAT features.h)

typedef struct EHMS_redlineinforecord {
float
start_time,
end_time,
redline,
redline_time;
} EHMS_RedlineInfoRecord, *EHMS_PRedlineInfoRecord;
Members: '
start_time:
end_time:
redline:
redline_time:

45

EHMS_RedlineType (defined in FEAT_features.h)

typedef enum EHMS_RedlineTypes {upper, lower} EHMS_RedlineType;

EHMS_SpikeType (defined in FEAT_ features.h)

typedef enum EHMS_Spikes {posetive, negative} EHMS_FitType;

EHMS_ThrustPeriodID, EHMS_PThrustPeriodID (defined in FEAT_ features.h)

typedef struct EHMS_thrustperiodid ({
float
start_time,
end_time,
thrust_level;
} EHMS_ThrustPeriodID, *EHMS_PThrustPeriodID;

Members:
start_time: Start time of period of constant thrust.
end_time: End time of period of constant thrust.
thrust_level:

FEAT Boolean (defined in FEAT features.h)

typedef enum feat_boolean {Ffalse, Ftrue} FEAT Boolean;

5.5 = Global Variables

EHMS_SelectString: char [DBFL_MaxCommandLength]; definedin FEAT features.h.
5.6 Functions

calc_stddev (definition in FEAT featureUtils.c)

double calc_stddev (float *data, int num pts)

covsrt (declaration in FEAT featurefits.h, definition in FEAT featurefits.c)

void covsrt (float **covar, int ma, int lista[], int mfit)

DBA_StandardsStringToPid (declaration in FEAT dbio_defs.h, definition in
FEAT dbutils_t.c)

void DBA_StandardStringToPid (char *test_id, char *pid_name,
char *standard_string)

DBA_TimeRangeToRecNumRange (declaration in FEAT features.h, definition in
FEAT featureUtils.c)

void DBA_TimeRangeToRecNumRange (float start_time, float end_time,
float sample_period,
int *start_rec, int *end_rec)

46

DBIO_FetchRedlineInfo (declaration in FEAT dbio_defs.h, definition in
FEAT dbutils_t.c)

void DBIO_FetchRedlineInfo (char *test_id, char *pid,
EHMS_RedlineType limit_type,
EHMS_PRedlineInfoRecord *red_info_rec,
int *num_recs)

DBIO_GetConstantThrustLevels (declaration in FEAT dbio_defs.h, definition in
FEAT dbutils_t.c) ‘ '
void
DBIO_GetConstantThrustLevels (char *test, int *num thrust_ids,
EHMS_PThrustPeriodID *thrust_ids)

DBIO_GetPidInfo (declaration in FEAT dbio_defs.h, definition in FEAT _dbutils_t.c)

void DBIO_GetPidInfo (char *test, char *pid, char *units,
char *descrip, float *start, float *end,
float *rate)

DBIO_GetTheFeatureExtractionCommands (declaration in FEAT dbio_defs.h, definition in
FEAT dbutils_t.c)

char **DBIO_GetTheFeatureExtractionCommands (int *num entries)

DBIO_PidToSensorLabel (declaration in FEAT dbio_defs.h, definition in
FEAT dbutils_t.c)

char *DBIO_PidToSensorLabel (char *test, char *pid)

EHMS_AddConstantPeriodlID (declaration in FEAT_ features.h, definition in
FEAT featureUtils.c)

void EHMS_AddConstantPeriodID (EHMS_PConstantPeriodID *period_ids,
int num period_ids,
float start_time, float end_time,
float magnitude, float mag_sigma,
float slope) ‘

EHMS_AddFeatureRecord (declaration in FEAT features.h, definition in
FEAT_ featureUtils.c)

void EHMS_AddFeatureRecord (EHMS_PFeatureRecord new_data_record,
EHMS_PFeatureRecordHead
" data_record_head)

EHMS_AddLinearPresgsureRec (definition in FEAT featureUtils.c)

void EHMS_AddLinearPressureRec
(EHMS_PLinearLPOTPDischargePressureRec *pressure_recs,
int *num_linear_periods, float start_time, float end_time)

47

ERMS_AddThrustPeriodID (declaration in FEAT_features.h, definition

FEAT featureUtils.c)

void EHMS_AddThrustPeriodlID (EHMS_PThrustPeriodID *thrust_ids,
int num_thrust_ids, float start_time,

float end_time,

EHMS_AnalyzeThrustProfile (declaration in
FEAT_ features.c)

EHMS_PThrustPeriodID

EHMS_AnalyzeThrustProfile (char *test_id,

FEAT_ features.h, definition

char *db_string)

EHMS_ArrayAdd (definition in FEAT featureUtils.c)

int EHMS_ArrayAdd (float *data, int num_pts, float val)

EHMS_ArrayMult (definition in FEAT featureUtils.c)

int EHMS_ArrayMult (float *data, int num_pts, float mult)

EHMS_BalancePistonCheckInit (declaration in
FEAT_ features.c)

FEAT_Boolean

FEAT features.h, definition

EHMS_BalancePistonCheck