
NASA Contractor Report 198375

SSME Post Test Diagnostic System
Systems Section

Timothy Bickmore
Aerojet Propulsion Systems
Sacramento, California

August 1995

Prepared for
Lewis Research Center
Under Contract NAS3-2S883

• National Aeronautics and
Space Administration

9/aQ/9s
£-C;3d7

NASA Contractor Report 198375

SSME Post Test Diagnostic System
Systems Section

Timothy Bickmore
Aerojet Propulsion Systems
Sacramento, California

August 1995

Prepared for
Lewis Research Center
Under Contract NAS3-2S883

• National Aeronautics and
Space Administration

9/aQ/9s
£-C;3d7

Intelligent Software Associates, Inc.

SSME Post Test Diagnostic System
Systems Section

Prepared for:

Submitted by:

Final Report

Task 11 of Contract NAS3-25883
Development of Life Prediction Capabilities for

Liquid Propulsion Rocket Engines

Aerojet Propulsion Systems
P.O. Box 13222
Sacramento, CA 95813-6000

Intelligent Software Associates, Inc.
P.O. Box 188825
Sacramento, CA 95818

May 6th, 1995

Intelligent Software Associates, Inc.

SSME Post Test Diagnostic System
Systems Section

Prepared for:

Submitted by:

Final Report

Task 11 of Contract NAS3-25883
Development of Life Prediction Capabilities for

Liquid Propulsion Rocket Engines

Aerojet Propulsion Systems
P.O. Box 13222
Sacramento, CA 95813-6000

Intelligent Software Associates, Inc.
P.O. Box 188825
Sacramento, CA 95818

May 6th, 1995

Contents

I. Introduction ... e 1
1.1. The SSME Post-Test Diagnostic System Project 1
1.2. The SSME PTDS Systems Section .. 2
1.3. Results .. 5
1.4. Other PTDS Enhancements ... 6

1.4.1 Further Enhancements to the HPOTP Module 6
1.4.2. Porting the Anomaly Database from Ingres to TekBase 7
1.4.3. Integration of "Features" Signal Processing Routines••.... 7
1.4.4. TKCLIPS Training .. 7

n. Systems Section Architectme ... 8
n.1. Feature Extractor Module .. 8
n.2. Sensor Validation Module ... 11
11.3. Hardware Change Module ... 11
ll.4. External Effects Module ... 12
11.5. Case-Based Reasoner Module .. 12
11.5. Performance Module ... 14

m. Anomalies Currently Detected by the Systems SectioD 15
IV. Conclusion ... 19

IV.I. Future Work ... 19
Acknowledgements ...•...................................... 21
References .. 22

User's Guide .. 0 •••••••••••••••••••••••••••••••• Attachment #1
Programmer's Guide -............................... Attachment #2
Transcripts of Interviews with SSME Data Analysts Attachment #3
GENERIC Features Description and TKCLIPS User's Guide Attachment#4

Contents

I. Introduction ... e 1
1.1. The SSME Post-Test Diagnostic System Project 1
1.2. The SSME PTDS Systems Section .. 2
1.3. Results .. 5
1.4. Other PTDS Enhancements ... 6

1.4.1 Further Enhancements to the HPOTP Module 6
1.4.2. Porting the Anomaly Database from Ingres to TekBase 7
1.4.3. Integration of "Features" Signal Processing Routines••.... 7
1.4.4. TKCLIPS Training .. 7

n. Systems Section Architectme ... 8
n.1. Feature Extractor Module .. 8
n.2. Sensor Validation Module ... 11
11.3. Hardware Change Module ... 11
ll.4. External Effects Module ... 12
11.5. Case-Based Reasoner Module .. 12
11.5. Performance Module ... 14

m. Anomalies Currently Detected by the Systems SectioD 15
IV. Conclusion ... 19

IV.I. Future Work ... 19
Acknowledgements ...•...................................... 21
References .. 22

User's Guide .. 0 •••••••••••••••••••••••••••••••• Attachment #1
Programmer's Guide -............................... Attachment #2
Transcripts of Interviews with SSME Data Analysts Attachment #3
GENERIC Features Description and TKCLIPS User's Guide Attachment#4

I. Introduction

An assessment of engine and component health is routinely made after each test fIring or
flight firing of a Space Shuttle Main Engine (SSME). Currently. this health assessment is
done by teams of engineers who manually review sensor data. performance data. and
engine and component operating histories. Based on review of information from these
various sources. an evaluation is made as to the health of each component of the SSME and
the preparedness of the engine for another test or flight.

The objective of this project-the SSME Post-Test Diagnostic System (PTDS) 1-is to
develop a computer program which automates the analysis of test data from the SSME in
order to detect and diagnose anomalies. This report primarily covers work on the Systems
Section of the PTDS. which automates the analyses performed by the systems/performance
group at the Propulsion Branch of NASA Marshall Space Flight Center (MSFC). This
group is responsible for assessing the overall health and performance of the engine, and
detecting and diagnosing anomalies which involve multiple components (other groups are
responsible for analyzing the behavior of specillc components).

The PTDS utilizes several advanced software technologies to perform its analyses. Raw
test data is analyzed using signal processing routines which detect features in the data, such
a spikes. shifts. peaks. and drifts. Component analyses are performed by expert systems.
which use "rules-of-thumb" obtained from interviews with the MSFC data analysts to
detect and diagnose anomalies. The systems analysis is performed using case-based
reasoning. Results of all analyses are stored in a relational database and displayed via an X­
window-based graphical user interface which provides ranked lists of anomalies and
observations by engine component. along with supporting data plots for each.

1.1. The SSME Post-Test Diagnostic System Project

The post-test diagnostic system is a cooperative effort involving engineers and scientists at
NASA Marshall Space Flight Center (MSFC). NASA Lewis Research Center (LeRC).
Aerojet Propulsion Systems, Intelligent Software Associates, Inc. (ISAI), Science
Applications International Corporation (SAIC). and support contractors from NYMA,
Analex. Computer Sciences Corp .• and Martin Marietta. Work on the PTDS began in
1990. and development of the Systems Section was started in 1992.

The PTDS is designed to automate post-test fIring data reviews. The fIrst application has
been to the space shuttle main engine. A modular, distributed architecture was selected
which enables the use of separate modules which analyze different aspects of an engine's
performance. The PTDS modules currently implemented or being developed include the
following (see Figure 1):

• CAE Package - The Computer Aided Engineering package is used primarily to provide
a very flexible mechanism for displaying plots of engine data. The PV ... Wave command
language was selected as a commercial off-the-shelf (COTS) package to fIll this need.

• Relational Database Management System - A database is used to store information
about tests. engines confIgurations, anomalies. performance parameter histories, and all
PTDS analysis results (using the TekBase relational database system).

• Session Manager - The executive for the system which launches each of the modules
as needed once test data becomes available. Implemented in C.

• Feature Extractor - Performs the pattern recognition analyses on the raw data.
Implemented in C (routines can also be called from within CLIPS).

PTDS Systems Section Page 1

I. Introduction

An assessment of engine and component health is routinely made after each test fIring or
flight firing of a Space Shuttle Main Engine (SSME). Currently. this health assessment is
done by teams of engineers who manually review sensor data. performance data. and
engine and component operating histories. Based on review of information from these
various sources. an evaluation is made as to the health of each component of the SSME and
the preparedness of the engine for another test or flight.

The objective of this project-the SSME Post-Test Diagnostic System (PTDS) 1-is to
develop a computer program which automates the analysis of test data from the SSME in
order to detect and diagnose anomalies. This report primarily covers work on the Systems
Section of the PTDS. which automates the analyses performed by the systems/performance
group at the Propulsion Branch of NASA Marshall Space Flight Center (MSFC). This
group is responsible for assessing the overall health and performance of the engine, and
detecting and diagnosing anomalies which involve multiple components (other groups are
responsible for analyzing the behavior of specillc components).

The PTDS utilizes several advanced software technologies to perform its analyses. Raw
test data is analyzed using signal processing routines which detect features in the data, such
a spikes. shifts. peaks. and drifts. Component analyses are performed by expert systems.
which use "rules-of-thumb" obtained from interviews with the MSFC data analysts to
detect and diagnose anomalies. The systems analysis is performed using case-based
reasoning. Results of all analyses are stored in a relational database and displayed via an X­
window-based graphical user interface which provides ranked lists of anomalies and
observations by engine component. along with supporting data plots for each.

1.1. The SSME Post-Test Diagnostic System Project

The post-test diagnostic system is a cooperative effort involving engineers and scientists at
NASA Marshall Space Flight Center (MSFC). NASA Lewis Research Center (LeRC).
Aerojet Propulsion Systems, Intelligent Software Associates, Inc. (ISAI), Science
Applications International Corporation (SAIC). and support contractors from NYMA,
Analex. Computer Sciences Corp .• and Martin Marietta. Work on the PTDS began in
1990. and development of the Systems Section was started in 1992.

The PTDS is designed to automate post-test fIring data reviews. The fIrst application has
been to the space shuttle main engine. A modular, distributed architecture was selected
which enables the use of separate modules which analyze different aspects of an engine's
performance. The PTDS modules currently implemented or being developed include the
following (see Figure 1):

• CAE Package - The Computer Aided Engineering package is used primarily to provide
a very flexible mechanism for displaying plots of engine data. The PV ... Wave command
language was selected as a commercial off-the-shelf (COTS) package to fIll this need.

• Relational Database Management System - A database is used to store information
about tests. engines confIgurations, anomalies. performance parameter histories, and all
PTDS analysis results (using the TekBase relational database system).

• Session Manager - The executive for the system which launches each of the modules
as needed once test data becomes available. Implemented in C.

• Feature Extractor - Performs the pattern recognition analyses on the raw data.
Implemented in C (routines can also be called from within CLIPS).

PTDS Systems Section Page 1

Systems Combustion Turbomachinery Transient
Section Devices • HPOTP Analysis

• etc

Analysis Feature Sensor Graphical

Extractor Validation User
Software Interface

Support Relational DB
CAE • Anomalies Applications • Test Data

• DB: Tekbase • Sun Workstations
Platform · GUI : Motif • Expert System: CLI PS

• CA E: PV Wave/Tekbase • Procedural Language: C

Figure 1. PTDS Architecture

• Sensor Validation - Detects instrumentation anomalies and failures so that analysis
modules do not reason over bad data.

• Systems Section - Analyzes the system-wide health and performance of the engine,
and detects anomalies which involve more than one component. Implemented in C and
CLIPS.

• HPOTP Analysis Module - Analyzes the health and performance of the SSME
HPOTP. Implemented in CLIPS.

• Combustion Devices Module - Detects anomalies in the main combustion chamber and
the two pre-burners. Implemented in CLIPS and scheduled for completion in 1995.

• Transient Module - Detects anomalies during start and shutdown transients.
Implemented in CLIPS and scheduled for completion in 1995.

• HPFTP, LPFfP, LPOTP Analysis Modules - Analyzes the health and performance of
the other three turbopumps on the SSME. To be implemented in CLIPS and scheduled
for completion in 1996.

• Graphical Browser - Allows analysts to view PTDS results using an X-windows­
based display (see Figure 2). Implemented in C.

1.2. The SSME PTDS Systems Section

Development of the Systems Section was begun in 1992 with a series of lengthy interviews
with data analysts from MSFC's propulsion branch systems/performance group. The
interviews were initially conducted via telephone, but a series of on-site visits were made in

PTDS Systems Section Page 2

Systems Combustion Turbomachinery Transient
Section Devices • HPOTP Analysis

• etc

Analysis Feature Sensor Graphical

Extractor Validation User
Software Interface

Support Relational DB
CAE • Anomalies Applications • Test Data

• DB: Tekbase • Sun Workstations
Platform · GUI : Motif • Expert System: CLI PS

• CA E: PV Wave/Tekbase • Procedural Language: C

Figure 1. PTDS Architecture

• Sensor Validation - Detects instrumentation anomalies and failures so that analysis
modules do not reason over bad data.

• Systems Section - Analyzes the system-wide health and performance of the engine,
and detects anomalies which involve more than one component. Implemented in C and
CLIPS.

• HPOTP Analysis Module - Analyzes the health and performance of the SSME
HPOTP. Implemented in CLIPS.

• Combustion Devices Module - Detects anomalies in the main combustion chamber and
the two pre-burners. Implemented in CLIPS and scheduled for completion in 1995.

• Transient Module - Detects anomalies during start and shutdown transients.
Implemented in CLIPS and scheduled for completion in 1995.

• HPFTP, LPFfP, LPOTP Analysis Modules - Analyzes the health and performance of
the other three turbopumps on the SSME. To be implemented in CLIPS and scheduled
for completion in 1996.

• Graphical Browser - Allows analysts to view PTDS results using an X-windows­
based display (see Figure 2). Implemented in C.

1.2. The SSME PTDS Systems Section

Development of the Systems Section was begun in 1992 with a series of lengthy interviews
with data analysts from MSFC's propulsion branch systems/performance group. The
interviews were initially conducted via telephone, but a series of on-site visits were made in

PTDS Systems Section Page 2

Figure 2. PTDS Graphical User Interface

April and May of 1992 during which the analysts were asked to walk-through their
analyses of earlier tests and describe the process and reasoning they used (transcripts from
these interviews are given in Attachment #3).

PTDS Systems Section Page 3

Figure 2. PTDS Graphical User Interface

April and May of 1992 during which the analysts were asked to walk-through their
analyses of earlier tests and describe the process and reasoning they used (transcripts from
these interviews are given in Attachment #3).

PTDS Systems Section Page 3

The strategy taken by the systems analysts was to first detect an anomaly, then to try and
explain it. Anomaly detection primarily consisted of comparing the current test to one or
more previous tests using plots with overlaid data (see Figure 3) and noting any significant
deviations in the current test data. To explain any detected discrepancies, analysts would
generally go through the following steps:

1. Detennine if the anomaly is "real" - This is the problem of sensor validation. The first
thing analysts will typically do upon detection of an event on a plot is to cross-check it
with the plots of related engine parameters. If there is at least one other signal which
confmns that something changed at the point of the event, then the event is considered
real, otherwise a failed sensor is suspected.

2. Determine if the discrepancy is due to differences in hardware configuration between
the comparison tests and the current test - Each engine is unique, and has its own
performance characteristics (e.g., different pump efficiencies, line resistances, leak
rates, etc.), and since the SSME is built-up with Line-Replaceable Units (LRUs) which
are very frequently changed, even consecutive tests of the same engine can show
substantial differences in performance. In comparing a current test to a comparison test
these differences must be taken into account in order to "explain away" discrepancies
which are due to such hardware changes.

3. Determine if the anomaly is due to some influence which is external to the engine-­
Differences in thrust profiles, vent profiles, mixture ratios, or repressurization flows
will all lead to significant differences in sensor data between two tests. These "external
effects" must be taken into account when determining if an anomaly represents a
problem or simply a change in operating conditions. -

4. If none of the above steps provides a valid explanation for a discrepancy, than the
discrepancy is labelled an anomaly, and a diagnostic investigation is made into its
possible causes. Most of the diagnostic reasoning used by the analysts utilize what they
call "gains models", which are monotonic qualitative causal models of the form
"parameter X varies directly with Y and inversely with Z" (e.g., "HPFTP speed
increases with volumetric flow, decreases with efficiency, decreases with downstream
resistance, and decreases with pump inlet pressure."). These models are used to isolate
a set of likely candidates which could have caused the anomaly.

This overall diagnostic strategy was taken as the blueprint for the design of the Systems
Section software.2 The process starts with the Sensor Validation module which attempts to
detect failed or anomalous sensors and remove them from further consideration by the
system. Next, the current test data is compared with data from a previously conducted test,
which has been adjusted for differences in hardware configuration and external effects. A
signal processing routine is then run on each of the difference signals to detect significant
shifts in behavior between the two tests. Finally, a "Case-Based Reasoner" is employed to
detennine a set of candidate causes for the ovserved shifts, using quantitative gains values
derived from runs of the SSME Power Balance Model and heuristic information supplied
by the expert data analysts. This set of candidate failure causes is then written to the
database along with descriptions of supporting plots for later viewing by the analysts. Note
that analyses are performed during steady-state operation of the engine.

One element of the Systems Section does not follow the above strategy. The accurate
determination of pump and turbine efficiencies requires extensive calculations, so a separate
Performance Module was implemented specifically to detect subtle shifts in these

PTDS Systems Section Page 4

The strategy taken by the systems analysts was to first detect an anomaly, then to try and
explain it. Anomaly detection primarily consisted of comparing the current test to one or
more previous tests using plots with overlaid data (see Figure 3) and noting any significant
deviations in the current test data. To explain any detected discrepancies, analysts would
generally go through the following steps:

1. Detennine if the anomaly is "real" - This is the problem of sensor validation. The first
thing analysts will typically do upon detection of an event on a plot is to cross-check it
with the plots of related engine parameters. If there is at least one other signal which
confmns that something changed at the point of the event, then the event is considered
real, otherwise a failed sensor is suspected.

2. Determine if the discrepancy is due to differences in hardware configuration between
the comparison tests and the current test - Each engine is unique, and has its own
performance characteristics (e.g., different pump efficiencies, line resistances, leak
rates, etc.), and since the SSME is built-up with Line-Replaceable Units (LRUs) which
are very frequently changed, even consecutive tests of the same engine can show
substantial differences in performance. In comparing a current test to a comparison test
these differences must be taken into account in order to "explain away" discrepancies
which are due to such hardware changes.

3. Determine if the anomaly is due to some influence which is external to the engine-­
Differences in thrust profiles, vent profiles, mixture ratios, or repressurization flows
will all lead to significant differences in sensor data between two tests. These "external
effects" must be taken into account when determining if an anomaly represents a
problem or simply a change in operating conditions. -

4. If none of the above steps provides a valid explanation for a discrepancy, than the
discrepancy is labelled an anomaly, and a diagnostic investigation is made into its
possible causes. Most of the diagnostic reasoning used by the analysts utilize what they
call "gains models", which are monotonic qualitative causal models of the form
"parameter X varies directly with Y and inversely with Z" (e.g., "HPFTP speed
increases with volumetric flow, decreases with efficiency, decreases with downstream
resistance, and decreases with pump inlet pressure."). These models are used to isolate
a set of likely candidates which could have caused the anomaly.

This overall diagnostic strategy was taken as the blueprint for the design of the Systems
Section software.2 The process starts with the Sensor Validation module which attempts to
detect failed or anomalous sensors and remove them from further consideration by the
system. Next, the current test data is compared with data from a previously conducted test,
which has been adjusted for differences in hardware configuration and external effects. A
signal processing routine is then run on each of the difference signals to detect significant
shifts in behavior between the two tests. Finally, a "Case-Based Reasoner" is employed to
detennine a set of candidate causes for the ovserved shifts, using quantitative gains values
derived from runs of the SSME Power Balance Model and heuristic information supplied
by the expert data analysts. This set of candidate failure causes is then written to the
database along with descriptions of supporting plots for later viewing by the analysts. Note
that analyses are performed during steady-state operation of the engine.

One element of the Systems Section does not follow the above strategy. The accurate
determination of pump and turbine efficiencies requires extensive calculations, so a separate
Performance Module was implemented specifically to detect subtle shifts in these

PTDS Systems Section Page 4

>O(TE5T 9020556 233 HPOT OS THP A
6t:. TEST 90213556 234 HPOT OS TMP B
OJ TEST 9020554 233 HPOT OS THP A

~_~TE~S~T_9~0~20_5_5_4,-___ 2_3_4 __ -. ____ H_PO_T __ O_SrT_MP __ B~~ __ r--------,---------,---------,
1500-

1400

H
A
I
N

1300 S
T
A
G
E

P 1200
E
R
F
0
R
H 1100
A
N
C
E

1000

o 50 100 150 200 250 300

ENGINE 2107
SHU TOOIJN 299 86 SEC TIME FROM START COMMANO - SECS

Figure 3. Example Current-vs-Comparison Test Plot

performance characteristics. The Performance Module consists of a large portion of the
55MB Power Balance Model which computes performance characteristics at one-second
intervals during steady-state, and detects any significant shifts in these parameters over
time.

1.3. Results

The Systems Section was demonstrated to several systems analysts at MSFC on February
27th and 28th, 1995. During this demonstration the system correctly detected and
diagnosed a Piston Ring Seal Shift anomaly on 55MB test A40019. During these
demonstrations. the analysts provided feedback which will be used to guide future
refmements of the system.

PTDS Systems Section Page 5

>O(TE5T 9020556 233 HPOT OS THP A
6t:. TEST 90213556 234 HPOT OS TMP B
OJ TEST 9020554 233 HPOT OS THP A

~_~TE~S~T_9~0~20_5_5_4,-___ 2_3_4 __ -. ____ H_PO_T __ O_SrT_MP __ B~~ __ r--------,---------,---------,
1500-

1400

H
A
I
N

1300 S
T
A
G
E

P 1200
E
R
F
0
R
H 1100
A
N
C
E

1000

o 50 100 150 200 250 300

ENGINE 2107
SHU TOOIJN 299 86 SEC TIME FROM START COMMANO - SECS

Figure 3. Example Current-vs-Comparison Test Plot

performance characteristics. The Performance Module consists of a large portion of the
55MB Power Balance Model which computes performance characteristics at one-second
intervals during steady-state, and detects any significant shifts in these parameters over
time.

1.3. Results

The Systems Section was demonstrated to several systems analysts at MSFC on February
27th and 28th, 1995. During this demonstration the system correctly detected and
diagnosed a Piston Ring Seal Shift anomaly on 55MB test A40019. During these
demonstrations. the analysts provided feedback which will be used to guide future
refmements of the system.

PTDS Systems Section Page 5

1.4. Other PTDS Enhancements

Several additional tasks were performed under this contractual effort which were not
directly part of the Systems Section.

1.4.1 Further Enhancements to the HPOTP Module

Several additional enhancements were made to the HPOTP module,3 including:

• Extended analyses to cover the Pratt & Whitney Advanced Technology Development
(A TD) pumps. This involved the creation of a new database table to track perfonnance
statistics for A TD pumps, classification of the A TD into hot or cold "ski slope"
categories, modification of 44 diagnostic rules, and the addition of 17 greenrun
specification checks.

• Improved the accuracy of detecting nose seal leaks by implementing a new signal
processing routine in the feature extractor to identify them. These features are extremely
subtle and difficult to accurately detect, since they involve shifts whose magnitude is on
the order of the sensor's noise (Le., two or three "bit-toggles").

• Added a sensor validation check for redundant sensors which drift apart during steady­
state.

• Fixed the greenrun specification check for duration of minimum and maximum LOX
inlet NPSP conditions by extending the analysis across power level transients.

• Extended the HPOTP module so that it would run from a Unix command-line so that it
could be added to MSFC's "run-stream" and executed automatically following each test

• Added the capability for the HPOTP module to generate a textual report similar to the
one-page test summaries produced by the turbomachinery group (Figure 4. shows an
example).

SSME Post-Test Diagnostic System -- HPOTP Analysis
Test: A10750 Duration: 710 HPOTP Type: P&W

Analysis Run 03/10/95 by rballard

Instrumentation

328, 2, 518, 521, 519, 522, 327 -- Do not exist in datafile.
1188 -- Not at post-test ambient conditions.
211/212 -- Drift apart between 18.00 and 94.00.

GreenRun Specification Check (Note: This is NOT a green run.)

Failed HPOTP GreenRun 65/64/63% throttle criteria 3.5.1.2(d)

Anomalies

Seen between T=21.00 and 35.00. Possible rotor drag.

Observations

HOT ski-slope classification.

Figure 4. Sample HPOTP Text Report

PTDS Systems Section Page 6

1.4. Other PTDS Enhancements

Several additional tasks were performed under this contractual effort which were not
directly part of the Systems Section.

1.4.1 Further Enhancements to the HPOTP Module

Several additional enhancements were made to the HPOTP module,3 including:

• Extended analyses to cover the Pratt & Whitney Advanced Technology Development
(A TD) pumps. This involved the creation of a new database table to track perfonnance
statistics for A TD pumps, classification of the A TD into hot or cold "ski slope"
categories, modification of 44 diagnostic rules, and the addition of 17 greenrun
specification checks.

• Improved the accuracy of detecting nose seal leaks by implementing a new signal
processing routine in the feature extractor to identify them. These features are extremely
subtle and difficult to accurately detect, since they involve shifts whose magnitude is on
the order of the sensor's noise (Le., two or three "bit-toggles").

• Added a sensor validation check for redundant sensors which drift apart during steady­
state.

• Fixed the greenrun specification check for duration of minimum and maximum LOX
inlet NPSP conditions by extending the analysis across power level transients.

• Extended the HPOTP module so that it would run from a Unix command-line so that it
could be added to MSFC's "run-stream" and executed automatically following each test

• Added the capability for the HPOTP module to generate a textual report similar to the
one-page test summaries produced by the turbomachinery group (Figure 4. shows an
example).

SSME Post-Test Diagnostic System -- HPOTP Analysis
Test: A10750 Duration: 710 HPOTP Type: P&W

Analysis Run 03/10/95 by rballard

Instrumentation

328, 2, 518, 521, 519, 522, 327 -- Do not exist in datafile.
1188 -- Not at post-test ambient conditions.
211/212 -- Drift apart between 18.00 and 94.00.

GreenRun Specification Check (Note: This is NOT a green run.)

Failed HPOTP GreenRun 65/64/63% throttle criteria 3.5.1.2(d)

Anomalies

Seen between T=21.00 and 35.00. Possible rotor drag.

Observations

HOT ski-slope classification.

Figure 4. Sample HPOTP Text Report

PTDS Systems Section Page 6

1.4.2. Porting the Anomaly Database from Ingres to TekBase

The Anomaly Database is a graphical user interface to a set of database tables which allow
data analysts to store information about observed anomalies, and to search the database
using a variety of selection criteria. With assistance from personnel at NASA LeRC, this
database was ported from Ingres to TekBase (the relational database being used by the
MSFC SSME data analysts).

1.4.3. Integration of "Features" Signal Processing Routines

During the development of the Enhanced HPOTP Diagnostic Module, the signal processing
routines in the Features Module were copied and integrated into CLIPS so that the HPOTP
module could be run as a stand-alone system. In the year that followed, many changes
were made to both sets of routines resulting in a significant software maintenance problem.
The solution to this problem was to create a single source file of "generic" signal
processing routines which could be called either from CLIPS or from the Features Module.
This involved the integration of some 11,000 lines of C code. The result, described in
Attachment #4, is a set of routines which can be centrally maintained. In addition, these
routines can easily be integrated into any future health monitoring application which needs
to analyze time-varying data.

1.4.4. TKCLIPS Training

A training seminar was held at NASA MSFC, March 1st - 3rd, 1995, for NASA personnel
and support contractors working on the PTDS project

PTDS Systems Section Page 7

1.4.2. Porting the Anomaly Database from Ingres to TekBase

The Anomaly Database is a graphical user interface to a set of database tables which allow
data analysts to store information about observed anomalies, and to search the database
using a variety of selection criteria. With assistance from personnel at NASA LeRC, this
database was ported from Ingres to TekBase (the relational database being used by the
MSFC SSME data analysts).

1.4.3. Integration of "Features" Signal Processing Routines

During the development of the Enhanced HPOTP Diagnostic Module, the signal processing
routines in the Features Module were copied and integrated into CLIPS so that the HPOTP
module could be run as a stand-alone system. In the year that followed, many changes
were made to both sets of routines resulting in a significant software maintenance problem.
The solution to this problem was to create a single source file of "generic" signal
processing routines which could be called either from CLIPS or from the Features Module.
This involved the integration of some 11,000 lines of C code. The result, described in
Attachment #4, is a set of routines which can be centrally maintained. In addition, these
routines can easily be integrated into any future health monitoring application which needs
to analyze time-varying data.

1.4.4. TKCLIPS Training

A training seminar was held at NASA MSFC, March 1st - 3rd, 1995, for NASA personnel
and support contractors working on the PTDS project

PTDS Systems Section Page 7

II. Systems Section Architecture

This section describes the overall architecture of the Systems Section. Figure 5 shows a
high-level dataflow diagram for the PTDS. and Figure 6. shows the current execution
sequence of the modules in the system. Each of the modules in the Systems Section is
described next.

FEAT_
Tables

HW&
Ext Effects

Figure 5. PTDS Dataflow

II.I. Feature Extractor Module

Systems

Combuslion
Devices

TESTINFO
PIDINR>

Tables

Used by All Modules

HPOTP

HPFI'P

The Feature Extractor employs signal processing routines which analyze raw time-varying
data from an SSME test fIring to detect features of interest for the rest of the PTDS. The
features currently detected by this module are shown in Table 1. The Feature Extractor
imports descriptions of the features to look for from database tables, and writes any
features found back out to the database for use by the other modules in the PTDS.

PTDS Systems Section PageS

II. Systems Section Architecture

This section describes the overall architecture of the Systems Section. Figure 5 shows a
high-level dataflow diagram for the PTDS. and Figure 6. shows the current execution
sequence of the modules in the system. Each of the modules in the Systems Section is
described next.

FEAT_
Tables

HW&
Ext Effects

Figure 5. PTDS Dataflow

II.I. Feature Extractor Module

Systems

Combuslion
Devices

TESTINFO
PIDINR>

Tables

Used by All Modules

HPOTP

HPFI'P

The Feature Extractor employs signal processing routines which analyze raw time-varying
data from an SSME test fIring to detect features of interest for the rest of the PTDS. The
features currently detected by this module are shown in Table 1. The Feature Extractor
imports descriptions of the features to look for from database tables, and writes any
features found back out to the database for use by the other modules in the PTDS.

PTDS Systems Section PageS

Figure 6. PTDS Execution Sequence

The following two versions of the feature extractor are used in each run of the PTDS:

FE - During the fIrst invocation of the Feature Extractor, it looks at the raw data from
the current test and computes features for use by the Sensor Validation module and
the various component modules (Le., the Turbomachinery and Combustion Devices
modules) which look for combinations of features as indicators of anomalies.

SYSTEM FE - The second run of the Feature Extractor is specifIcally for the Systems
Section. During this run, it looks exclusively at the normalized data for the current
test produced by the Hardware Change and External Effects modules along with data
from the comparison test, and computes Delta Level Shift features which are
indicative of anomalous changes in engine behavior in the current test relative to the
comparison test This is performed in a separate run from FEl, because the External
Effects module uses the results of Sensor Validation to determine which sensors to
use in its normalization (see Figures 5 and 6).

PTDS Systems Section Page 9

Figure 6. PTDS Execution Sequence

The following two versions of the feature extractor are used in each run of the PTDS:

FE - During the fIrst invocation of the Feature Extractor, it looks at the raw data from
the current test and computes features for use by the Sensor Validation module and
the various component modules (Le., the Turbomachinery and Combustion Devices
modules) which look for combinations of features as indicators of anomalies.

SYSTEM FE - The second run of the Feature Extractor is specifIcally for the Systems
Section. During this run, it looks exclusively at the normalized data for the current
test produced by the Hardware Change and External Effects modules along with data
from the comparison test, and computes Delta Level Shift features which are
indicative of anomalous changes in engine behavior in the current test relative to the
comparison test This is performed in a separate run from FEl, because the External
Effects module uses the results of Sensor Validation to determine which sensors to
use in its normalization (see Figures 5 and 6).

PTDS Systems Section Page 9

Feature Apphc- DescriptIOn
ability

Bistability HPOTP Used exclusively by the HPOTP module, this checks for
preburner boost pump bistability on Rocketdyne HPOTPs.

Constant Thrust Generic Determines time intervals of constant power level.
Different Than Generic Determines if two signals are significantly "different" from

each other.
Delta Different Than Generic Given four signals-Al,A2,Bl,B2-determines if AI-A2

is significantly different from B I-B2.
Drift Generic Detects a slow linear change in a signal over a large time

period.
Erratic Generic Detects a non-smooth signal, by first fitting a first or

second-degree polynomial to it (whichever fits better), then
threshholding on the standard deviation of the fit

Fit Line Generic Fits a line to a signal over a specified interval of time.
Delta Fit Line Generic Fits a line to the difference between two signals.
Flat Signal Generic Determines if a signal is "flat" over a specified time

interval. Used primarily by sensor validation to detect
sensors which are not connected to the engine during a
test

Level Shift Generic Detects step shifts in a signal.
Delta Level Shift Generic Detects step shifts in the difference between two signals.
Limit Check Generic Detects excursions beyond a specified limit
Delta Limit Check Generic Detects when two signals vary from each other by more or

less than a specified limit.
Noise Generic Detects excessive noise, by computing standard deviations

during one-second intervals and comparing them against a
threshold.

Nose Seal Leakage HPOTP Detects nose seal leaks on Rocketdyne HPOTPs, which are
indicated by very subtle shifts down and back up in
HPOTP intermediate seal purge pressure.

Peak Generic Detects excursions and recovery over a relatively long time
interval which form the shape of a hill or peak in the
signal.

Piece-wise Linear Generic Creates a piece-wise linear model of a signal.
Delta Piece-wise Generic Creates a piece-wise linear model of the difference between

Linear two signals.
Redundant Channel Generic Detects significant deviations between data from redundant

Check sensors by comparing the difference between N-point

Spike Generic
averages against a threshhold.
Detects rapid excursion and recovery (on the order of a few
data samples) indicative of a "spiking" signal.

Statistics Generic Computes mean, standard deviation, minimum and
maximum values of a signal over a specified time interval.

Delta Statistics Generic Computes statistics for the difference between two signals.
Zero Shift Check Generic Computes an average over a specified time interval and

compares it to lower and upper limits. Used to detect failed
sensors j)rior to engine start.

Table 1. Features Currently Detected by Feature Extractor Module

PTDS Systems Section Page 10

Feature Apphc- DescriptIOn
ability

Bistability HPOTP Used exclusively by the HPOTP module, this checks for
preburner boost pump bistability on Rocketdyne HPOTPs.

Constant Thrust Generic Determines time intervals of constant power level.
Different Than Generic Determines if two signals are significantly "different" from

each other.
Delta Different Than Generic Given four signals-Al,A2,Bl,B2-determines if AI-A2

is significantly different from B I-B2.
Drift Generic Detects a slow linear change in a signal over a large time

period.
Erratic Generic Detects a non-smooth signal, by first fitting a first or

second-degree polynomial to it (whichever fits better), then
threshholding on the standard deviation of the fit

Fit Line Generic Fits a line to a signal over a specified interval of time.
Delta Fit Line Generic Fits a line to the difference between two signals.
Flat Signal Generic Determines if a signal is "flat" over a specified time

interval. Used primarily by sensor validation to detect
sensors which are not connected to the engine during a
test

Level Shift Generic Detects step shifts in a signal.
Delta Level Shift Generic Detects step shifts in the difference between two signals.
Limit Check Generic Detects excursions beyond a specified limit
Delta Limit Check Generic Detects when two signals vary from each other by more or

less than a specified limit.
Noise Generic Detects excessive noise, by computing standard deviations

during one-second intervals and comparing them against a
threshold.

Nose Seal Leakage HPOTP Detects nose seal leaks on Rocketdyne HPOTPs, which are
indicated by very subtle shifts down and back up in
HPOTP intermediate seal purge pressure.

Peak Generic Detects excursions and recovery over a relatively long time
interval which form the shape of a hill or peak in the
signal.

Piece-wise Linear Generic Creates a piece-wise linear model of a signal.
Delta Piece-wise Generic Creates a piece-wise linear model of the difference between

Linear two signals.
Redundant Channel Generic Detects significant deviations between data from redundant

Check sensors by comparing the difference between N-point

Spike Generic
averages against a threshhold.
Detects rapid excursion and recovery (on the order of a few
data samples) indicative of a "spiking" signal.

Statistics Generic Computes mean, standard deviation, minimum and
maximum values of a signal over a specified time interval.

Delta Statistics Generic Computes statistics for the difference between two signals.
Zero Shift Check Generic Computes an average over a specified time interval and

compares it to lower and upper limits. Used to detect failed
sensors j)rior to engine start.

Table 1. Features Currently Detected by Feature Extractor Module

PTDS Systems Section Page 10

11.2. Sensor Validation Module

The Sensor Validation module is responsible for detecting instrumentation failures and
anomalies. The results are both for display to the data analysts and for use by other PIDS
modules which need to know which signals consist of valid data and which will yield
erroneous analysis results.

The Sensor Validation module employs several strategies to detect instrumentation
problems:
• First, a determination is made to see if a sensor is even available in the data fIle (a sensor

will sometimes be dropped from a particular test). .
• Checks are performed to see if a sensor is either flat for the duration of the test

(indicating it is not hooked up to the engine) or is excessively noisy (indicating a
potential electrical problem).

• The value of a sensor just prior to engine start is compared against known ambient
conditions, and the sensor is failed if it is too far out of tolerance.

• Reasonableness checks are made on sensors during the fIring to catch "hard" failures in
which the sensor suddenly goes off-scale high or low.

• For sensors with redundant channels, a check is made between all the channels to ensure
that they all stay within a tight tolerance of each other.

• Finally, an analysis is made of all features computed during the run of the feature
extractor (FE) to determine if a feature found in one signal is also present in related
signals. To do this, a map of related parameters is used which was derived through
interviews with the data analysts (see Table 2). The result of this step is a preference
ranking of the sensors which passed the fIrst fIve screenings described above.

Map_ Related Parameters
1 MCC CL DS P, LPFT IN P, LPFP SP, HPFP DS P
2 LPFP SP, HPFP IN P, LPFT IN P, FL PR INT P
3 MCC CL DS T, MCC CL D P, LPFP SP, HPFP DS T
4 FPB PC, FPOV POS, HPFT DS T, HPFP SP, PBP DS P
5 HPFP SP, HPFP DS P, HPFT OS T, FPB PC
6 MCC 0 INJ T, PBP DS T, ENG 0 IN T
7 ENG FL IN P, FAC FL FM DS P
8 FPOV POS, PBP OS P, HPFT OS T, FPB PC, HPFP SP
9 FPB PC, HPFT DS T, FPOV POS
10 HPFP IN P, LPFP SP, ENG FL IN P
11 OPOV POS, PBP OS T, HPOT DS T, OPB PC
12 OPB PC, HPOT DS T, OPOV POS, PBP DS P, MCC HG IN P
13 HPFP IN T, ENG FL IN T, HPFP DS T, LPFP SP
14 HPOP IN P, LPOP SP, ENG 0 IN P
15 ENG 0 IN T, FAC 0 PM OS T, MCC 0 INJ T, PBP OS T
16 ENG 0 IN P, FAC 0 PM OS P
17 ENG FL IN T, FAC FL PM DS T
18 HPOP .SP, LPOP SP, PBP DS P, HPOP OS P

Table 2. Related Parameter Maps Used in Sensor Validation

11.3. Hardware Change Module

The Hardware Change module identifies changes in major SSME components between the
current and comparison tests and generates a table of corrections applicable to the current

PTDS Systems Section Page 11

11.2. Sensor Validation Module

The Sensor Validation module is responsible for detecting instrumentation failures and
anomalies. The results are both for display to the data analysts and for use by other PIDS
modules which need to know which signals consist of valid data and which will yield
erroneous analysis results.

The Sensor Validation module employs several strategies to detect instrumentation
problems:
• First, a determination is made to see if a sensor is even available in the data fIle (a sensor

will sometimes be dropped from a particular test). .
• Checks are performed to see if a sensor is either flat for the duration of the test

(indicating it is not hooked up to the engine) or is excessively noisy (indicating a
potential electrical problem).

• The value of a sensor just prior to engine start is compared against known ambient
conditions, and the sensor is failed if it is too far out of tolerance.

• Reasonableness checks are made on sensors during the fIring to catch "hard" failures in
which the sensor suddenly goes off-scale high or low.

• For sensors with redundant channels, a check is made between all the channels to ensure
that they all stay within a tight tolerance of each other.

• Finally, an analysis is made of all features computed during the run of the feature
extractor (FE) to determine if a feature found in one signal is also present in related
signals. To do this, a map of related parameters is used which was derived through
interviews with the data analysts (see Table 2). The result of this step is a preference
ranking of the sensors which passed the fIrst fIve screenings described above.

Map_ Related Parameters
1 MCC CL DS P, LPFT IN P, LPFP SP, HPFP DS P
2 LPFP SP, HPFP IN P, LPFT IN P, FL PR INT P
3 MCC CL DS T, MCC CL D P, LPFP SP, HPFP DS T
4 FPB PC, FPOV POS, HPFT DS T, HPFP SP, PBP DS P
5 HPFP SP, HPFP DS P, HPFT OS T, FPB PC
6 MCC 0 INJ T, PBP DS T, ENG 0 IN T
7 ENG FL IN P, FAC FL FM DS P
8 FPOV POS, PBP OS P, HPFT OS T, FPB PC, HPFP SP
9 FPB PC, HPFT DS T, FPOV POS
10 HPFP IN P, LPFP SP, ENG FL IN P
11 OPOV POS, PBP OS T, HPOT DS T, OPB PC
12 OPB PC, HPOT DS T, OPOV POS, PBP DS P, MCC HG IN P
13 HPFP IN T, ENG FL IN T, HPFP DS T, LPFP SP
14 HPOP IN P, LPOP SP, ENG 0 IN P
15 ENG 0 IN T, FAC 0 PM OS T, MCC 0 INJ T, PBP OS T
16 ENG 0 IN P, FAC 0 PM OS P
17 ENG FL IN T, FAC FL PM DS T
18 HPOP .SP, LPOP SP, PBP DS P, HPOP OS P

Table 2. Related Parameter Maps Used in Sensor Validation

11.3. Hardware Change Module

The Hardware Change module identifies changes in major SSME components between the
current and comparison tests and generates a table of corrections applicable to the current

PTDS Systems Section Page 11

test data to account for differences in component performance whenever possible. In all
cases, significant changes in hardware configuration are reported to the analysts along with
the conclusions reached by the Systems Section. Table 3. shows the changes in hardware
configurations which are recognized, and those which result in correction factors being
applied to the current test data.

Component

Engine
Powerhead
Main Injector
MCC
Nozzle
Controller
Flowmeter
FPOV, OPOV, MOV,
MFV,CCV
HPFD
F7 Orifice
HEX Orifice
HPOTP
HPFTP
LPFTP
LPOTP

DeSCriptive Parameters

Serial Number
Serial Number
Serial Number
Serial Number
Serial Number
Serial Number
Serial Number
Serial Number

Serial Number, Type
Diameter
Diameter
Serial Number, TEM,PEM,TFPM,PHCM
Serial Number, TEM, PEM,TFPM,PHCM
Serial Number, TEM,PEM,TFPM,PHCM
Serial Number, TEM, PEM, PHCM

Table 3. Hardware Changes Recognized

1I.4. External Effects Module

Correction
Ap)!lied?

The External Effects module normalizes a number of dependent sensors in the current
SSME test data with respect to a set of independent sensors describing engine-external
conditions. The independent variables are: MCC PC, LPFP inlet pressure, LPOP inlet
pressure, LPFP inlet temperature, LPOP inlet temperature, and facility mixture ratio. For
each of these parameters a curve has been developed (using runs of the SSME Power
Balance Model) which normalize all dependent parameters to the same inlet conditions
found on the comparison test The dependent parameters currently normalized are shown in
Table 4.

1I.S. Case· Based Reasoner Module

Level shift features found in the difference between the normalized data for the current test
and the comparison test data by the systems feature extractor represent true anomalies
which must be explained by the Case-Based Reasoner module. This module has three main
components: a "comparator" which partitions the current test up into time intervals to
diagnose; a "case base" or library of possible anomalies; and a case-indexing mechanism
which finds a ranked list of candidates in the case base which best explain each anomaly.

PTDS Systems Section Page 12

test data to account for differences in component performance whenever possible. In all
cases, significant changes in hardware configuration are reported to the analysts along with
the conclusions reached by the Systems Section. Table 3. shows the changes in hardware
configurations which are recognized, and those which result in correction factors being
applied to the current test data.

Component

Engine
Powerhead
Main Injector
MCC
Nozzle
Controller
Flowmeter
FPOV, OPOV, MOV,
MFV,CCV
HPFD
F7 Orifice
HEX Orifice
HPOTP
HPFTP
LPFTP
LPOTP

DeSCriptive Parameters

Serial Number
Serial Number
Serial Number
Serial Number
Serial Number
Serial Number
Serial Number
Serial Number

Serial Number, Type
Diameter
Diameter
Serial Number, TEM,PEM,TFPM,PHCM
Serial Number, TEM, PEM,TFPM,PHCM
Serial Number, TEM,PEM,TFPM,PHCM
Serial Number, TEM, PEM, PHCM

Table 3. Hardware Changes Recognized

1I.4. External Effects Module

Correction
Ap)!lied?

The External Effects module normalizes a number of dependent sensors in the current
SSME test data with respect to a set of independent sensors describing engine-external
conditions. The independent variables are: MCC PC, LPFP inlet pressure, LPOP inlet
pressure, LPFP inlet temperature, LPOP inlet temperature, and facility mixture ratio. For
each of these parameters a curve has been developed (using runs of the SSME Power
Balance Model) which normalize all dependent parameters to the same inlet conditions
found on the comparison test The dependent parameters currently normalized are shown in
Table 4.

1I.S. Case· Based Reasoner Module

Level shift features found in the difference between the normalized data for the current test
and the comparison test data by the systems feature extractor represent true anomalies
which must be explained by the Case-Based Reasoner module. This module has three main
components: a "comparator" which partitions the current test up into time intervals to
diagnose; a "case base" or library of possible anomalies; and a case-indexing mechanism
which finds a ranked list of candidates in the case base which best explain each anomaly.

PTDS Systems Section Page 12

PIDs
2

203,204
17
18

21,595
24, 367, 371

30, 734
38,139
52,459
58,410
59,341
203,204
90,334
93,94

40, 141
42, 143
209,210
231,232
233,234

260,261,764
436
480
659
835

Parameter
HPOTPSpeed
HPFP Inlet Temp
MCC Coolant Discharge Pressure
MCC Coolant Discharge Temp
MCC Oxid Injection Temp
MCC Hot Gas Injection Pressure
LPOTPSpeed
MOY Position
HPFP Discharge Pressure
FPB Pc
PBP Discharge Pressure
HPFP Inlet Pressure
HPOP Discharge Pressure
PBP Discharge Temperature
OPOY Position
FPOY Position
HPOP Inlet Pressure
HPFf Discharge Temperature
HPOTP Discharge Temperature
HPFfP Speed
LPFf Inlet Pressure
OPBPc
HPFP Discharge Temperature
Fuel Press Interface Pressure

Table 4. Parameters Normalized by the External Effects Module

Each case represents the shifts, or gains, in a set of engine parameters expected to
accompany a specific anomaly, along with the magnitude of the anomaly. These gains can
be derived heuristically or from runs of the SSME Power Balance Model. The full set of
cases is present in Section ill, but the following example is for Piston Ring Seal Shift:

Parameter
LPFPSPD
FLPRINTP
LPFfDeltaP

Gain
100
-10
10

This case states that of the parameters given in Table 4, there are only significant changes in
three parameters for a piston ring seal shift (LPFf DeltaP = LPFf IN P - LPFf DS P, and
FL PR !NT P = LPFT DS P), and that the relative direction and magnitude of the shifts
should be approximately proportional to the ones given in the above case.

The case-indexing mechanism compares each anomaly response pattern in the case base to
the normalized delta level shifts found by System FE in order to select a small set of most
probable cases. To perform this selection, the Case-Based Reasoner employs two indexing
techniques: a sign or direction comparison and a case magnitude evaluation.

The fIrst technique compares the directions of the observed gains with the directions of the
gains expected for each hypothesis case in the case base. A score is generated for each
observed gain and accumulated for a total case score. Table 5 defines the types of results

PTDS Systems Section Page 13

PIDs
2

203,204
17
18

21,595
24, 367, 371

30, 734
38,139
52,459
58,410
59,341
203,204
90,334
93,94

40, 141
42, 143
209,210
231,232
233,234

260,261,764
436
480
659
835

Parameter
HPOTPSpeed
HPFP Inlet Temp
MCC Coolant Discharge Pressure
MCC Coolant Discharge Temp
MCC Oxid Injection Temp
MCC Hot Gas Injection Pressure
LPOTPSpeed
MOY Position
HPFP Discharge Pressure
FPB Pc
PBP Discharge Pressure
HPFP Inlet Pressure
HPOP Discharge Pressure
PBP Discharge Temperature
OPOY Position
FPOY Position
HPOP Inlet Pressure
HPFf Discharge Temperature
HPOTP Discharge Temperature
HPFfP Speed
LPFf Inlet Pressure
OPBPc
HPFP Discharge Temperature
Fuel Press Interface Pressure

Table 4. Parameters Normalized by the External Effects Module

Each case represents the shifts, or gains, in a set of engine parameters expected to
accompany a specific anomaly, along with the magnitude of the anomaly. These gains can
be derived heuristically or from runs of the SSME Power Balance Model. The full set of
cases is present in Section ill, but the following example is for Piston Ring Seal Shift:

Parameter
LPFPSPD
FLPRINTP
LPFfDeltaP

Gain
100
-10
10

This case states that of the parameters given in Table 4, there are only significant changes in
three parameters for a piston ring seal shift (LPFf DeltaP = LPFf IN P - LPFf DS P, and
FL PR !NT P = LPFT DS P), and that the relative direction and magnitude of the shifts
should be approximately proportional to the ones given in the above case.

The case-indexing mechanism compares each anomaly response pattern in the case base to
the normalized delta level shifts found by System FE in order to select a small set of most
probable cases. To perform this selection, the Case-Based Reasoner employs two indexing
techniques: a sign or direction comparison and a case magnitude evaluation.

The fIrst technique compares the directions of the observed gains with the directions of the
gains expected for each hypothesis case in the case base. A score is generated for each
observed gain and accumulated for a total case score. Table 5 defines the types of results

PTDS Systems Section Page 13

currently available, along with the score for each type. The accumulated score is used to
rank the hypothesis cases for further evaluation. This provides an initial screening of the
hypothesis case base. This screening reduces the processing time, by reducing the number
of cases which undergo the computationally more intensive case magnitude evaluation.

Type Description Score
Match Case Gain 0

Matches Observed Gain
Not Observed Gain 1
Covered Not In Case Fact
Not Case Gain Not Observed lOOIK
Observed
Opposite Case Gain Opposite In lOOOIK

Direction to Observed Gain

Table 5. Direction Comparison Types
The variable K found in the Score column is equal to the number of

parameter shifts in the particular case being evaluated.

The case magnitude evaluation is performed on each hypothesis case selected by the sign
comparison technique. Given case i with anomaly magnitude Mi and gains Cij (for each
engine parameter j) and an observed shift in engine parameters described by the gains OJ,
scale factors are computed for each Cij * 0:

Sij = OJ /Cij

The mean (J..lj) and standard deviation (an of the set of scale factors for each case is the
computed. The cases are ranked according to minimum standard deviation in scale factors
(those with lower standard deviations provide a better overall fit of the gains in the case to
the observed gains, taking a linear scaling of the magnitude of the anomaly into account).
Given the best case (the one with the minimum av, the estimated magnitude of the anomaly
is given by J..l.i * Mi. The set of best matches are then output to the database along with a
description of plots which support their selection.

11.5. Performance Module

The Performance Module essentially runs part of the SSME Power Balance model at one­
second intervals during steady-state conditions to determine the following parameters:

LPFP Efficiency, LPFf Efficiency
HPFP Efficiency, HPFf Efficiency
LPOP Efficiency, LPOT Efficiency

HPOP Efficiency, HPOT Efficiency. PBP Efficiency

A simplified Level Shift routine is then run to detect significant shifts in any of these
parameters. Results are then posted to the database for later viewing by the analysts.

PTDS Systems Section Page 14

currently available, along with the score for each type. The accumulated score is used to
rank the hypothesis cases for further evaluation. This provides an initial screening of the
hypothesis case base. This screening reduces the processing time, by reducing the number
of cases which undergo the computationally more intensive case magnitude evaluation.

Type Description Score
Match Case Gain 0

Matches Observed Gain
Not Observed Gain 1
Covered Not In Case Fact
Not Case Gain Not Observed lOOIK
Observed
Opposite Case Gain Opposite In lOOOIK

Direction to Observed Gain

Table 5. Direction Comparison Types
The variable K found in the Score column is equal to the number of

parameter shifts in the particular case being evaluated.

The case magnitude evaluation is performed on each hypothesis case selected by the sign
comparison technique. Given case i with anomaly magnitude Mi and gains Cij (for each
engine parameter j) and an observed shift in engine parameters described by the gains OJ,
scale factors are computed for each Cij * 0:

Sij = OJ /Cij

The mean (J..lj) and standard deviation (an of the set of scale factors for each case is the
computed. The cases are ranked according to minimum standard deviation in scale factors
(those with lower standard deviations provide a better overall fit of the gains in the case to
the observed gains, taking a linear scaling of the magnitude of the anomaly into account).
Given the best case (the one with the minimum av, the estimated magnitude of the anomaly
is given by J..l.i * Mi. The set of best matches are then output to the database along with a
description of plots which support their selection.

11.5. Performance Module

The Performance Module essentially runs part of the SSME Power Balance model at one­
second intervals during steady-state conditions to determine the following parameters:

LPFP Efficiency, LPFf Efficiency
HPFP Efficiency, HPFf Efficiency
LPOP Efficiency, LPOT Efficiency

HPOP Efficiency, HPOT Efficiency. PBP Efficiency

A simplified Level Shift routine is then run to detect significant shifts in any of these
parameters. Results are then posted to the database for later viewing by the analysts.

PTDS Systems Section Page 14

III. Anomalies Currently Detected by the Systems Section

In addition to detecting instrumentation failures (in the Sensor Validation module), pump
efficiency shifts (in the Performance module) and noting changes in hardware configuration
(in the Hardware Change module), the following cases have been developed for Case­
Based Reasoner by runs of the SSME Power Balance Model. At this time, however, only
the cases for positive and negative piston ring seal shift have been validated by analysts and
tested against SSME test datasets. Validation of the remaining cases and development of
new ones is currently being performed by personnel at LeRC and MSFC.

Case Parameter Gain
Primary Piston Ring Seal Shift (Close) LPFP SPD +100

FLPRINTP -10
LPFfDeltaP +10

Primary Piston Ring Seal Shift (Open) LPFP SPD -10{)
FLPRINTP +10
LPFfDeltaP -10

MCC Pc Biased Hi 20 psi HPFPDS P -15
HPOPSPD -99
HPOPDS P -18
OPOV -0.3
FPB Pc -14
OPBPc -22
HPOTDST -18.3

MCC PC Biased Low 20 psi HPFP DS P +15
HPOPSPD +100
HPOPDSP +18
OPOV +0.4
FPB Pc +14
OPBPc +22
HPOTDST +18.2

Eng Fuel Flowmeter Biased Hi 3lbm/sec HPFP SPD -275
HPFP DS P -58
HPOPSPD +178
HPOPDS P +20
OPOV +1.1
FPOV -2.2
FPB Pc -41
HPOTDST 102.9

Eng Fuel Flowmeter Biased Lo 3lbm/sec HPFP SPD +294
HPFPDS P +60
HPOPSPD -162
HPOPDS P -19
OPOV -1
FPOV +2.8
FPB Pc +43
HPOTDST -90.4

MCC Combustion Eff Decrease 1 sec ISP HPOPSPD +60
HPOTDST +10.6

PTDS Systems Section Page 15

III. Anomalies Currently Detected by the Systems Section

In addition to detecting instrumentation failures (in the Sensor Validation module), pump
efficiency shifts (in the Performance module) and noting changes in hardware configuration
(in the Hardware Change module), the following cases have been developed for Case­
Based Reasoner by runs of the SSME Power Balance Model. At this time, however, only
the cases for positive and negative piston ring seal shift have been validated by analysts and
tested against SSME test datasets. Validation of the remaining cases and development of
new ones is currently being performed by personnel at LeRC and MSFC.

Case Parameter Gain
Primary Piston Ring Seal Shift (Close) LPFP SPD +100

FLPRINTP -10
LPFfDeltaP +10

Primary Piston Ring Seal Shift (Open) LPFP SPD -10{)
FLPRINTP +10
LPFfDeltaP -10

MCC Pc Biased Hi 20 psi HPFPDS P -15
HPOPSPD -99
HPOPDS P -18
OPOV -0.3
FPB Pc -14
OPBPc -22
HPOTDST -18.3

MCC PC Biased Low 20 psi HPFP DS P +15
HPOPSPD +100
HPOPDSP +18
OPOV +0.4
FPB Pc +14
OPBPc +22
HPOTDST +18.2

Eng Fuel Flowmeter Biased Hi 3lbm/sec HPFP SPD -275
HPFP DS P -58
HPOPSPD +178
HPOPDS P +20
OPOV +1.1
FPOV -2.2
FPB Pc -41
HPOTDST 102.9

Eng Fuel Flowmeter Biased Lo 3lbm/sec HPFP SPD +294
HPFPDS P +60
HPOPSPD -162
HPOPDS P -19
OPOV -1
FPOV +2.8
FPB Pc +43
HPOTDST -90.4

MCC Combustion Eff Decrease 1 sec ISP HPOPSPD +60
HPOTDST +10.6

PTDS Systems Section Page 15

Case Parameter Gain
Fuel Leak 3Ib/s HPFP IN P -42

HPFPOS P -26
HPFPOST +23.1
HPOPINP -2.3
HPOPSPD +176
HPOPDS P +17
OPOV +0.7
FPOV -0.5
HPOTDST +57.7

Nozzle Coolant Leak 4m/s HPFP SPD -74
HPFPDS P -42
HPFPDST +32.7
HPOPSPD +230
HPOPDS P +29
HPOTDST +97.1

Ox Leak at PBP Discharge 9lbm/s HPOP INP -4.3
HPFP In T Biased Hi 2deg HPFP SPD +294

HPFP OS P +60
HPOPSPD -162
HPOPDSP -19
OPOV -1
FPOV +2.8
FPB Pc +43
HPOTDST -90.4

HPFP In T Biased Lo 2 deg HPFP SPD -275
HPFPDS P -58
HPOPSPD +178
HPOPDS P +20
OPOV +1.1
FPOV -2.2
FPB Pc -41
HPOTOST +102.9

LPFT Bearing Cool Inc llbm/s HPFP IN P -8
HPFP SPD +820
HPFPDS P +41
HPFPDST +48.1
HPOPSPD +51
FPOV +2.1
FPBPc +45
OPBPc +15
HPOTDST -21.1

CCV Resistance Inc 10% HPFP IN P +26
HPFP SPD +422
HPFPDSP +235
HPFPDST +80.8
FPOV +2.9
FPB Pc +33

MFV Resistance Inc 4% HPFP SPD +147
HPFPDS P +75
FPOV +0.9
HPOTDST -8.7

PTDS Systems Section Page 16

Case Parameter Gain
Fuel Leak 3Ib/s HPFP IN P -42

HPFPOS P -26
HPFPOST +23.1
HPOPINP -2.3
HPOPSPD +176
HPOPDS P +17
OPOV +0.7
FPOV -0.5
HPOTDST +57.7

Nozzle Coolant Leak 4m/s HPFP SPD -74
HPFPDS P -42
HPFPDST +32.7
HPOPSPD +230
HPOPDS P +29
HPOTDST +97.1

Ox Leak at PBP Discharge 9lbm/s HPOP INP -4.3
HPFP In T Biased Hi 2deg HPFP SPD +294

HPFP OS P +60
HPOPSPD -162
HPOPDSP -19
OPOV -1
FPOV +2.8
FPB Pc +43
HPOTDST -90.4

HPFP In T Biased Lo 2 deg HPFP SPD -275
HPFPDS P -58
HPOPSPD +178
HPOPDS P +20
OPOV +1.1
FPOV -2.2
FPB Pc -41
HPOTOST +102.9

LPFT Bearing Cool Inc llbm/s HPFP IN P -8
HPFP SPD +820
HPFPDS P +41
HPFPDST +48.1
HPOPSPD +51
FPOV +2.1
FPBPc +45
OPBPc +15
HPOTDST -21.1

CCV Resistance Inc 10% HPFP IN P +26
HPFP SPD +422
HPFPDSP +235
HPFPDST +80.8
FPOV +2.9
FPB Pc +33

MFV Resistance Inc 4% HPFP SPD +147
HPFPDS P +75
FPOV +0.9
HPOTDST -8.7

PTDS Systems Section Page 16

Case Parameter Gain
HPOP Disch Resistance Inc 15 posts HPOPSPD +208

HPOPDS P +46
FPOV -1.3
OPBPc +25
HPOTDST +38.5

MOV Resistance Inc 98% HPOPINP +6.4
HPOPSPD +88
HPOPDS P +53
FPOV -1
OPBPc +12
HPOTDST +20.2

HPFP In P Inc 25psi HPFP IN P +24
HPFP DS P +26
HPFPDST -23.1
HPOTDST -22.1

HPFP In P Dec (LPFP Cause) 25psi HPFP IN P -24
HPFP SPD +67

HPFP In P Dec (LPFT Cause) 25psi HPFP IN P -24
HPFP DS P -18
HPFPDST +18.3
HPOTDST +16.4

Fuel In Temp Inc 3deg HPFP SPD +609
HPFP DS P +27
HPFPDST +37.5
FPOV +1.9
FPB Pc +34
HPOTDST -24

LOX In Temp Inc 7 deg HPOPSPD +415
HPOPDS P +14
OPOV +1.1
OPBPc +26
HPOTDST +38.5

LPOT Flow Inc 20lbs HPOPINP +32.3
HPOPSPD +162
OPOV +0.5
FPOV -0.5
OPBPc +17
HPOTDST +26

LPOT Flow Dec 20lbs HPOPINP -35.5
OPOV -0.2
FPOV +0.4
HPOTDST -14.4

HPFT Efficiency Dec 5% HPFP IN P +5
HPFP SPD +95
HPFP DS P +53
HPFPDST +120.2
FPOV +7.2
FPBPc +85
OPBPc +18
HPOTDST -61.5

PTDS Systems Section Page 17

Case Parameter Gain
HPOP Disch Resistance Inc 15 posts HPOPSPD +208

HPOPDS P +46
FPOV -1.3
OPBPc +25
HPOTDST +38.5

MOV Resistance Inc 98% HPOPINP +6.4
HPOPSPD +88
HPOPDS P +53
FPOV -1
OPBPc +12
HPOTDST +20.2

HPFP In P Inc 25psi HPFP IN P +24
HPFP DS P +26
HPFPDST -23.1
HPOTDST -22.1

HPFP In P Dec (LPFP Cause) 25psi HPFP IN P -24
HPFP SPD +67

HPFP In P Dec (LPFT Cause) 25psi HPFP IN P -24
HPFP DS P -18
HPFPDST +18.3
HPOTDST +16.4

Fuel In Temp Inc 3deg HPFP SPD +609
HPFP DS P +27
HPFPDST +37.5
FPOV +1.9
FPB Pc +34
HPOTDST -24

LOX In Temp Inc 7 deg HPOPSPD +415
HPOPDS P +14
OPOV +1.1
OPBPc +26
HPOTDST +38.5

LPOT Flow Inc 20lbs HPOPINP +32.3
HPOPSPD +162
OPOV +0.5
FPOV -0.5
OPBPc +17
HPOTDST +26

LPOT Flow Dec 20lbs HPOPINP -35.5
OPOV -0.2
FPOV +0.4
HPOTDST -14.4

HPFT Efficiency Dec 5% HPFP IN P +5
HPFP SPD +95
HPFP DS P +53
HPFPDST +120.2
FPOV +7.2
FPBPc +85
OPBPc +18
HPOTDST -61.5

PTDS Systems Section Page 17

Case Parameter Gain
HPFP Efficiency Decrease 5% . HPFP IN P +9

HPFP SPD +147
HPFPDS P +72
HPFPDST +133.7
HPOPINP -1.4
HPOPDS P -12
OPOV -0.2
FPOV +9.6
FPB Pc +102
OPBPc +23
HPOTDST -71.2

-HPOT Efficiency Decrease 5% HPFP IN P +3
HPFP SPD +45
HPFPDS P +25
HPFPDS T -25
OPOV +4.5
FPOV +0.4
OPBPc +65
HPOTDST +115.4

HPOP Efficiency Decrease 5% HPFP IN P +4
HPFP SPD +67
HPFPDS P +38
HPFPDST -38.5
HPOPINP +1.5
OPOV +7.9
FPOV +1
OPBPc +97
HPOTDST +167.3

PBP Efficiency Decrease 5% OPOV +0.3

PTDS Systems Section Page 18

Case Parameter Gain
HPFP Efficiency Decrease 5% . HPFP IN P +9

HPFP SPD +147
HPFPDS P +72
HPFPDST +133.7
HPOPINP -1.4
HPOPDS P -12
OPOV -0.2
FPOV +9.6
FPB Pc +102
OPBPc +23
HPOTDST -71.2

-HPOT Efficiency Decrease 5% HPFP IN P +3
HPFP SPD +45
HPFPDS P +25
HPFPDS T -25
OPOV +4.5
FPOV +0.4
OPBPc +65
HPOTDST +115.4

HPOP Efficiency Decrease 5% HPFP IN P +4
HPFP SPD +67
HPFPDS P +38
HPFPDST -38.5
HPOPINP +1.5
OPOV +7.9
FPOV +1
OPBPc +97
HPOTDST +167.3

PBP Efficiency Decrease 5% OPOV +0.3

PTDS Systems Section Page 18

IV. Conclusion

The SSME Post-Test Diagnostic System is not intended to replace the human data analysts,
but rather is intended. to be used as an additional cross-check for data obtained from each
test fIring. The PTDS should provide a standardized set of analyses which always look at
each test in the same manner, and has the potential for det~cting very subtle anomalies that
analysts might otherwise overlook (this has already been demonstrated on the HPOTP
module).

In addition to its immediate applicability to the SSME, the PTDS has been designed as a
generic system which could be applied to the analysis of test data from other rocket
engines. Elements of the PTDS have already been applied to the analysis of Atlas/Centaur
data, and an application for Titan data analysis is planned.

Automated checkout procedures such as those implemented in the PTDS are crucial
elements of integrated vehicle health management systems whose goals are to reduce
operations costs and turnaround times, and increase reliability. Health management tools
such as the PIDS are expected to be requisite elements of most future rocket propulsion
systems.

IV.I. Future Work

Although the PIDS now detects and diagnoses a broad range of SSME anomalies, there
are several areas in which it could be further enhanced, including:

• Combustion Devices Analysis - The Combustion Devices group in the MSFC
Propulsion Branch looks specifically at the performance of and anomalies in the two
SSME prebumers and the main combustion chamber. A PTDS module is currently
under development which encodes their procedures for detecting common anomalies in
these components.

• Turbomachinery Analysis - The HPOTP module only looks for anomalies in the
SSME HPOTP; there are three other pumps on the engine which are currently not
covered by the PTDS. Development of modules to cover the analysis of data from the
other three turbopumps (HPFTP, LPOTP, and LPFTP) is planned for 1995.

• Transient Analysis - The PTDS currently performs steady-state (constant power level)
analyses only. However, several significant anomalies occur during the startup and
shutdown transients. A module which specifically looks at SSME data during these
times is currently under development

• Flight Data Analysis - The PTDS is currently configured to analyze ground test data
only. Several extensions to the system would need to be made to enable it to analyze
flight data, and new, flight-specific anomalies may need to be added to the various
diagnostic modules. This work is currently scheduled. for early 1996.

• Integration with MSFC Plot Program - The PTDS graphical user interface currently
displays plots of engine data for the anomalies it has detected.. The MSFC data analysts
have been using a PV-Wave-based plotting program for the last several years which
supports a wide range of scaling, zooming, and cross-plotting options. Ultimately, the
PTDS should utilize this program to display its plots, since the analysts are already
familiar with its functionality and it is more flexible than the PIDS plotting routine. This
integration task is scheduled for 1995.

PTDS Systems Section Page 19

IV. Conclusion

The SSME Post-Test Diagnostic System is not intended to replace the human data analysts,
but rather is intended. to be used as an additional cross-check for data obtained from each
test fIring. The PTDS should provide a standardized set of analyses which always look at
each test in the same manner, and has the potential for det~cting very subtle anomalies that
analysts might otherwise overlook (this has already been demonstrated on the HPOTP
module).

In addition to its immediate applicability to the SSME, the PTDS has been designed as a
generic system which could be applied to the analysis of test data from other rocket
engines. Elements of the PTDS have already been applied to the analysis of Atlas/Centaur
data, and an application for Titan data analysis is planned.

Automated checkout procedures such as those implemented in the PTDS are crucial
elements of integrated vehicle health management systems whose goals are to reduce
operations costs and turnaround times, and increase reliability. Health management tools
such as the PIDS are expected to be requisite elements of most future rocket propulsion
systems.

IV.I. Future Work

Although the PIDS now detects and diagnoses a broad range of SSME anomalies, there
are several areas in which it could be further enhanced, including:

• Combustion Devices Analysis - The Combustion Devices group in the MSFC
Propulsion Branch looks specifically at the performance of and anomalies in the two
SSME prebumers and the main combustion chamber. A PTDS module is currently
under development which encodes their procedures for detecting common anomalies in
these components.

• Turbomachinery Analysis - The HPOTP module only looks for anomalies in the
SSME HPOTP; there are three other pumps on the engine which are currently not
covered by the PTDS. Development of modules to cover the analysis of data from the
other three turbopumps (HPFTP, LPOTP, and LPFTP) is planned for 1995.

• Transient Analysis - The PTDS currently performs steady-state (constant power level)
analyses only. However, several significant anomalies occur during the startup and
shutdown transients. A module which specifically looks at SSME data during these
times is currently under development

• Flight Data Analysis - The PTDS is currently configured to analyze ground test data
only. Several extensions to the system would need to be made to enable it to analyze
flight data, and new, flight-specific anomalies may need to be added to the various
diagnostic modules. This work is currently scheduled. for early 1996.

• Integration with MSFC Plot Program - The PTDS graphical user interface currently
displays plots of engine data for the anomalies it has detected.. The MSFC data analysts
have been using a PV-Wave-based plotting program for the last several years which
supports a wide range of scaling, zooming, and cross-plotting options. Ultimately, the
PTDS should utilize this program to display its plots, since the analysts are already
familiar with its functionality and it is more flexible than the PIDS plotting routine. This
integration task is scheduled for 1995.

PTDS Systems Section Page 19

• Dynamics Data Analysis - Several significant anomalies, such as bearing wear, can
only be detected through analysis of accelerometer data. Currently, this data is reviewed
by a separate group at MSFC, which is in the process of automating their data analysis
procedures. It should be possible in the future to automatically integrate the results of
this system with the PTDS to obtain an overall best picture of the health of the engine.

• Automated Case Entry - Anomaly cases for the Case-Based Reasoner must currently
be entered by hand via the TekBase database graphical user interface (KingFisher). A
more automated means should be provided for case entry, which ideally would take a
diagnosed and validated anomaly from a test dataset, extract the appropriate gains, and
make an entry into the case base at the push of a button.

• Display and Modify Intermediate Results - Currently, the PTDS analyzes the data from
a test for several hours and then displays its results. Although some of the intermediate
decisions reached (e.g., detection of bad instrumentation, hardware changes, etc.) are
available for review by the analyst, there is no capability to modify any of these
decisions. Thus, if the system makes an incorrect decision at an early stage of its
reasoning (e.g., not disqualifying a failed sensor) then all results based on this decision
will be incorrect. The PTDS could be made more interactive by allowing analysts to
incrementally run each of the modules and then review and possible correct its results
before continuing on with the analysis.

• Analyst Entry of Diagnostic Rules - Many of the diagnostic rules used in the PTDS are
very simple in form (e.g., many of them just perform limit checks on signals). A
graphical template (or "form") could be constructed for each of these rule types which
would allow analysts to enter or modify these classes of diagnostic rules. This would
give the analysts a better understanding of how the system works, and enable them to
take over some part of the maintenance of the system.

• Indexing of Similar Anomalies - When the PTD~ is displaying an anomaly, provide a
button which will automatically show a list of all previous tests which had the same
anomaly and allow the analyst to quickly plot the data for comparison against the current
test

• Extend the Classes of Events the Systems Section Detects - Currently, the Systems
Section only responds to level shifts in the difference between the current test and a
comparison test. Often, anomalies will present themselves as spikes, peaks, or drifts in
the difference signal. The Systems Section should be extended to detect and diagnose
these events (although, the Case-Based Reasoner may need additional cases to
accommodate the dynamic effects of rapid spikes or peaks).

• Hybrid Queries Across TekBase and SSME DataFile - MSFC data analysts spend a lot
of time looking for data from past tests which meet specific criteria, such as "find all
previous tests on stand At which had HPOTP #123 and ran for at least 30 seconds at
109% at minimum LOX NPSP". Currently, information about the hardware
configuration (such as HPOTP serial numbers) and general test profile are stored in the
TekBase database, while more specific information about the test data (such as time at
109% and minimum LOX NPSP) must be computed from data stored in the test data
fIle. A hybrid query mechanism could be developed which could answer queries such as
the one above, by satisfying as much as the query as possible against the database, then
automatically going to the data fIles and computing the remaining information required.

PTDS Systems Section Page 20

• Dynamics Data Analysis - Several significant anomalies, such as bearing wear, can
only be detected through analysis of accelerometer data. Currently, this data is reviewed
by a separate group at MSFC, which is in the process of automating their data analysis
procedures. It should be possible in the future to automatically integrate the results of
this system with the PTDS to obtain an overall best picture of the health of the engine.

• Automated Case Entry - Anomaly cases for the Case-Based Reasoner must currently
be entered by hand via the TekBase database graphical user interface (KingFisher). A
more automated means should be provided for case entry, which ideally would take a
diagnosed and validated anomaly from a test dataset, extract the appropriate gains, and
make an entry into the case base at the push of a button.

• Display and Modify Intermediate Results - Currently, the PTDS analyzes the data from
a test for several hours and then displays its results. Although some of the intermediate
decisions reached (e.g., detection of bad instrumentation, hardware changes, etc.) are
available for review by the analyst, there is no capability to modify any of these
decisions. Thus, if the system makes an incorrect decision at an early stage of its
reasoning (e.g., not disqualifying a failed sensor) then all results based on this decision
will be incorrect. The PTDS could be made more interactive by allowing analysts to
incrementally run each of the modules and then review and possible correct its results
before continuing on with the analysis.

• Analyst Entry of Diagnostic Rules - Many of the diagnostic rules used in the PTDS are
very simple in form (e.g., many of them just perform limit checks on signals). A
graphical template (or "form") could be constructed for each of these rule types which
would allow analysts to enter or modify these classes of diagnostic rules. This would
give the analysts a better understanding of how the system works, and enable them to
take over some part of the maintenance of the system.

• Indexing of Similar Anomalies - When the PTD~ is displaying an anomaly, provide a
button which will automatically show a list of all previous tests which had the same
anomaly and allow the analyst to quickly plot the data for comparison against the current
test

• Extend the Classes of Events the Systems Section Detects - Currently, the Systems
Section only responds to level shifts in the difference between the current test and a
comparison test. Often, anomalies will present themselves as spikes, peaks, or drifts in
the difference signal. The Systems Section should be extended to detect and diagnose
these events (although, the Case-Based Reasoner may need additional cases to
accommodate the dynamic effects of rapid spikes or peaks).

• Hybrid Queries Across TekBase and SSME DataFile - MSFC data analysts spend a lot
of time looking for data from past tests which meet specific criteria, such as "find all
previous tests on stand At which had HPOTP #123 and ran for at least 30 seconds at
109% at minimum LOX NPSP". Currently, information about the hardware
configuration (such as HPOTP serial numbers) and general test profile are stored in the
TekBase database, while more specific information about the test data (such as time at
109% and minimum LOX NPSP) must be computed from data stored in the test data
fIle. A hybrid query mechanism could be developed which could answer queries such as
the one above, by satisfying as much as the query as possible against the database, then
automatically going to the data fIles and computing the remaining information required.

PTDS Systems Section Page 20

Acknowledgements

The PTDS has been developed over the last five years by a large development team. The
members, past and present, include:

Rick Ballard
Tim Bickmore
Jeff Cornelius
J. Allen Crider
Chris Fulton
Mark 'Gage
Amy Jankovsky
Bill Maul
Catherine Mcleod
Claudia Meyer
PamSurko
VirgWa Tickles
Luis Trevino
Jean Tucker
June Zakrasjek

Many data analysts at MSFC have contributed to the PTDS by answering our endless
stream of questions about SSME data analysis. These analysts include:

Glenn Doughty
Bill Foster
Dave Foust
Darrel Gaddy
Taylor Hooper
Randy Hurt
Mike Kynard
Larry Leopard
Lewis Maddux
Marc Neely
Brian Piekarski
Eric Sanders
Chris Singer
Dave Vaughan
Glenn Wilmer

Finally, this work could obviously not have been completed without the support of the
project managers and supervisors:

June Zakrasjek
Catherine Mcleod
Dave Seymour
Randy Bickford
Roy Michel

PTDS Systems Section

NASALeRC
NASA MSFC
NASA MSFC
Aerojet
Aerojet

Page 21

Acknowledgements

The PTDS has been developed over the last five years by a large development team. The
members, past and present, include:

Rick Ballard
Tim Bickmore
Jeff Cornelius
J. Allen Crider
Chris Fulton
Mark 'Gage
Amy Jankovsky
Bill Maul
Catherine Mcleod
Claudia Meyer
PamSurko
VirgWa Tickles
Luis Trevino
Jean Tucker
June Zakrasjek

Many data analysts at MSFC have contributed to the PTDS by answering our endless
stream of questions about SSME data analysis. These analysts include:

Glenn Doughty
Bill Foster
Dave Foust
Darrel Gaddy
Taylor Hooper
Randy Hurt
Mike Kynard
Larry Leopard
Lewis Maddux
Marc Neely
Brian Piekarski
Eric Sanders
Chris Singer
Dave Vaughan
Glenn Wilmer

Finally, this work could obviously not have been completed without the support of the
project managers and supervisors:

June Zakrasjek
Catherine Mcleod
Dave Seymour
Randy Bickford
Roy Michel

PTDS Systems Section

NASALeRC
NASA MSFC
NASA MSFC
Aerojet
Aerojet

Page 21

References

lZakrasjek, June, The Development of a Post-Test Diagnostic System for Rocket Engines. AIAA-91-2528, AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, June 1991.
2Bickmore, Timothy W., and Maul, William A., "A Qualitative Approach to Systemic Diagnosis of the SSME," AIAA Aerospace Sciences Conference and Exhibition, Reno, Nevada, January 1993.
3Bickmore, Timothy W., SSME HPOTP Post-Test Diagnostic System Enhancement Project, NASA Contractor Report 4643, Contract NAS3-25883, January 1995.,

PTDS Systems Section Page 22

References

lZakrasjek, June, The Development of a Post-Test Diagnostic System for Rocket Engines. AIAA-91-2528, AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, June 1991.
2Bickmore, Timothy W., and Maul, William A., "A Qualitative Approach to Systemic Diagnosis of the SSME," AIAA Aerospace Sciences Conference and Exhibition, Reno, Nevada, January 1993.
3Bickmore, Timothy W., SSME HPOTP Post-Test Diagnostic System Enhancement Project, NASA Contractor Report 4643, Contract NAS3-25883, January 1995.,

PTDS Systems Section Page 22

SSME Post-Test Diagnostic System
Systems Section

Final Report
Attachment #1

User's Guide

SSME Post-Test Diagnostic System
Systems Section

Final Report
Attachment #1

User's Guide

Post-Test

Diagnostic System

(PTDS)

User's Guide

Prepared by:

J. Allen Crider

Computer Sciences Corporation

16 February, 1995

Preceding Page Blank

Post-Test

Diagnostic System

(PTDS)

User's Guide

Prepared by:

J. Allen Crider

Computer Sciences Corporation

16 February, 1995

Preceding Page Blank

Table of Contents

Table of Contents .. i

List of Figures .. ; ii

Acknowledgments ... iii

I. Introduction ...••............................ 1
System Requirements .. ~1

Prerequisites ... 1
Execution Modes .. 2

II. PTDS Execution ... 3

Hardware-Configuration Data Entry .. .3
Test Data Analysis ... 3
Graphical Review of Results ... 5
Anomaly Database Update and Review ... 13

III. Maintaining the Historical Database .. ; ... 19
Updating the Historical Database .. 19
Viewing the Historical Database ... 19

Preceding Page Blank

Table of Contents

Table of Contents .. i

List of Figures .. ; ii

Acknowledgments ... iii

I. Introduction ...••............................ 1
System Requirements .. ~1

Prerequisites ... 1
Execution Modes .. 2

II. PTDS Execution ... 3

Hardware-Configuration Data Entry .. .3
Test Data Analysis ... 3
Graphical Review of Results ... 5
Anomaly Database Update and Review ... 13

III. Maintaining the Historical Database .. ; ... 19
Updating the Historical Database .. 19
Viewing the Historical Database ... 19

Preceding Page Blank

List of Figures

}I'igure 1. Main panelfor the program new_data ... 4
Figure 2. Options pull-down menufor the program new_data4
Figure 3. PID Override panelfor the program new_data .. 5
Figure 4. Main panel for the program ehms.,. .. 6
Figure 5. Panel for the "History" option from the "Analysis Tools" menu ... 7
Figure 6. "History" panel with "LRU's" pull-down menu ... 8
Figure 7. HPOTP window 9
Figure 8. Systems window 11
Figure 9. "Make Pids" window for modifying PID buttons on plant diagrams .. 11
Figure 10. Explanations window for anomalies . .. 12
Figure 11. Plotpanelforprogram ehms ... 13
Figure 12. Main panel for the program anom .. 14
Figure 13. "Fixed Fields" and "Anomaly Title" areas of the Anomaly Database query window after

selecting "LRU" from the "Location" menu button ... 15
Figure 14. "Anomaly Title" area of the Anomaly Database query window after selecting "System" from

the "Location" menu button .. 15
Figure 15. Selection panel for anom displayed when more than one anomaly satisfies a query or the

"Read Selection" button on the main panel is pressed ... 16
Figure 16. Main panel for the program anom after a data retrieval ... 17
Figure 17. Main panel for the program anom when using the "Add" command 18

ii

List of Figures

}I'igure 1. Main panelfor the program new_data ... 4
Figure 2. Options pull-down menufor the program new_data4
Figure 3. PID Override panelfor the program new_data .. 5
Figure 4. Main panel for the program ehms.,. .. 6
Figure 5. Panel for the "History" option from the "Analysis Tools" menu ... 7
Figure 6. "History" panel with "LRU's" pull-down menu ... 8
Figure 7. HPOTP window 9
Figure 8. Systems window 11
Figure 9. "Make Pids" window for modifying PID buttons on plant diagrams .. 11
Figure 10. Explanations window for anomalies . .. 12
Figure 11. Plotpanelforprogram ehms ... 13
Figure 12. Main panel for the program anom .. 14
Figure 13. "Fixed Fields" and "Anomaly Title" areas of the Anomaly Database query window after

selecting "LRU" from the "Location" menu button ... 15
Figure 14. "Anomaly Title" area of the Anomaly Database query window after selecting "System" from

the "Location" menu button .. 15
Figure 15. Selection panel for anom displayed when more than one anomaly satisfies a query or the

"Read Selection" button on the main panel is pressed ... 16
Figure 16. Main panel for the program anom after a data retrieval ... 17
Figure 17. Main panel for the program anom when using the "Add" command 18

ii

Acknowledgments

This User's Guide and Programmer's Guide contains contributions from various members of the
Post-Test Diagnostic System (PIDS) development team. The members of the development team are

Rick Ballard
Tim Bickmore

J. Allen Crider
Chris Fulton
Bill Maul
Catherine McLeod
Claudia Meyer
Virginia Tickles

Luis Trevino
June Zakrajsek

iii

Acknowledgments

This User's Guide and Programmer's Guide contains contributions from various members of the
Post-Test Diagnostic System (PIDS) development team. The members of the development team are

Rick Ballard
Tim Bickmore

J. Allen Crider
Chris Fulton
Bill Maul
Catherine McLeod
Claudia Meyer
Virginia Tickles

Luis Trevino
June Zakrajsek

iii

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

I
j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

I
j

I. Introduction

This manual describes the operation of the Post-Test Diagnostic System (PIDS), which detects
and diagnoses anomalies in the Space Shuttle Main Engine (SSME) by analyzing data from ground tests
of the engine.

Thc PIDS is an expert system which utilizes heuristics and case based reasoning techniques to
identify common anomalies and obselVations in the data. It operates by first running "feature extraction"
routines to scan the raw test data and identify any features of interest, such as spikes, shifts, peaks, or limit
violations. Expert system rules then analyze combinations of tllese features which are indicative of known
anomalies. Results from the system are stored in a relational database for future reference, and can be
viewed via a graphical user interface whieh displays obselVations and supporting plots of test data for a
selected test of interest.

From the viewpoint of the average user, two primary programs comprise PIDS: new_data and
ehms (engine health management system). neW_data allows a user to run the diagnostic system on a
new test and ehms allows the user to view the results of the diagnostics using graphical and textual
screens.

The PIDS has been designed to validate sensors, required for the analysis, and to incrementally
add modules to diagnose Line Replaceable Units (LRUs) and tlle overall system. Currently, PIDS is
composed of a SYSTEMS module, which analyzes overall engine system conditions, and a HPOTP
module which identifies approximately 80 HPOTP anomalies.

System Requirements

The PIDS currently runs on Sun SPARCstations, and requires tlle following commercial
software packages:

• Sun Operating System SunOS 4.1.3
• X Window System

• Motif
• TekBase Relational Database Management System

• PV-Wave Command Language

Full installation and setup of this system is beyond tlle scope of this manual. Please see your system
administrator for details.

Prerequisites

To use the Post-Test Diagnostic System, you should already be familiar with the following:
• Basic Unix commands (see SunOS User's Guide: Getting Started or other Unix references)

• Use of a windows-based graphical user interface (see OSFlMoti! User's Guide)

• Ability to view and update tables in TekBase (see Kingfisher Users Guide)

In order to run tlle programs which make up tlle Post-Test Diagnostic System, you will need to
have tlle following environment variables defined (usually in your . cshrc file):

• NASA_HOME must be set to tlle directory containing tlle PIDS executables (e.g., on the Propulsion
Lab network at MSFC use /hd4 / PTDS /bin)

Preceding Page Blank
1

I. Introduction

This manual describes the operation of the Post-Test Diagnostic System (PIDS), which detects
and diagnoses anomalies in the Space Shuttle Main Engine (SSME) by analyzing data from ground tests
of the engine.

Thc PIDS is an expert system which utilizes heuristics and case based reasoning techniques to
identify common anomalies and obselVations in the data. It operates by first running "feature extraction"
routines to scan the raw test data and identify any features of interest, such as spikes, shifts, peaks, or limit
violations. Expert system rules then analyze combinations of tllese features which are indicative of known
anomalies. Results from the system are stored in a relational database for future reference, and can be
viewed via a graphical user interface whieh displays obselVations and supporting plots of test data for a
selected test of interest.

From the viewpoint of the average user, two primary programs comprise PIDS: new_data and
ehms (engine health management system). neW_data allows a user to run the diagnostic system on a
new test and ehms allows the user to view the results of the diagnostics using graphical and textual
screens.

The PIDS has been designed to validate sensors, required for the analysis, and to incrementally
add modules to diagnose Line Replaceable Units (LRUs) and tlle overall system. Currently, PIDS is
composed of a SYSTEMS module, which analyzes overall engine system conditions, and a HPOTP
module which identifies approximately 80 HPOTP anomalies.

System Requirements

The PIDS currently runs on Sun SPARCstations, and requires tlle following commercial
software packages:

• Sun Operating System SunOS 4.1.3
• X Window System

• Motif
• TekBase Relational Database Management System

• PV-Wave Command Language

Full installation and setup of this system is beyond tlle scope of this manual. Please see your system
administrator for details.

Prerequisites

To use the Post-Test Diagnostic System, you should already be familiar with the following:
• Basic Unix commands (see SunOS User's Guide: Getting Started or other Unix references)

• Use of a windows-based graphical user interface (see OSFlMoti! User's Guide)

• Ability to view and update tables in TekBase (see Kingfisher Users Guide)

In order to run tlle programs which make up tlle Post-Test Diagnostic System, you will need to
have tlle following environment variables defined (usually in your . cshrc file):

• NASA_HOME must be set to tlle directory containing tlle PIDS executables (e.g., on the Propulsion
Lab network at MSFC use /hd4 / PTDS /bin)

Preceding Page Blank
1

NASA_TEST_DATA must be set to a colon-separated list of the directories in which 55MB tests data
is stored (e.g., on the Propulsion Lab network at MSFC use
/hdl:/hd2:/hd3:/datal:/data2:.)

• SYSTEMS_KBDir must be set to the directory containing the CLIPS files for the SYS1EMS module
(e.g., on the Propulsion Lab network at MSFC use /hd4/PTDS/bin/ system_kb)

• INCLUDE_PIDS_FILE is required by FEATIJRES and db_load and must be set to the name of
the file containing a list of all PIDs (Parameter IDs) for a test (e.g., on the Propulsion Lab network at
MSFC use include .pts)

• FL_RC_PATH must be set to the directory containing the resource file • f 11 ibrc if it is not located
in a default location (e.g., on the Propulsion Lab network at MSFC use /hd4/ PTDS / da ta)

The NASA_HOME directory should be added to your search path. Normally this can be done by adding the
following line to your. cshrc file after the definition of NASA_HOME:

source $NASA_HOME/ .. /data/.nasarc

This will also set all of the environment variables listed above other than NASA_HOME. Check with your
system administrator if your installation is set up differently.

Your environment must also be configured for proper use of TekBase and PV-Wave. (For the
Propulsion Lab network at MSFC, adding the following lines to your • cshrc file will be sufficient:

setenv TQL_SERVER_DIR /u/metrica4.0/tqlserver.sUN4
setenv TQL_CLIENT_DIR /u/metrica4.0/tqlclients
setenv PATH "$TQL_CLIENT_DIR/bin:$PATH"
setenv WAVE_DEVICE X
setenv WAVE_DIR /hd3/vni/wave
setenv WAVE_PATH $WAVE_DIR/lib

For those running PTDS on other systems, see your system administrator for the proper paths to use.)

Finally, the data files for the test you wish to analyze should be accessible from the machine you
are running on. Currently, both compressed and uncompressed MSFC datafile formats are supported.

Execution Modes

The PTDS is configured to run as a "batch" process (typically run overnight) which analyzes all
55MB components in parallel. In addition, each module can be run interactively. In interactive mode,
only tlle component specified will be analyzed and all results are simply displayed in textual form. See
"Test Data Analysis" in Section II for more information about funning PTDS in either mode.

2

NASA_TEST_DATA must be set to a colon-separated list of the directories in which 55MB tests data
is stored (e.g., on the Propulsion Lab network at MSFC use
/hdl:/hd2:/hd3:/datal:/data2:.)

• SYSTEMS_KBDir must be set to the directory containing the CLIPS files for the SYS1EMS module
(e.g., on the Propulsion Lab network at MSFC use /hd4/PTDS/bin/ system_kb)

• INCLUDE_PIDS_FILE is required by FEATIJRES and db_load and must be set to the name of
the file containing a list of all PIDs (Parameter IDs) for a test (e.g., on the Propulsion Lab network at
MSFC use include .pts)

• FL_RC_PATH must be set to the directory containing the resource file • f 11 ibrc if it is not located
in a default location (e.g., on the Propulsion Lab network at MSFC use /hd4/ PTDS / da ta)

The NASA_HOME directory should be added to your search path. Normally this can be done by adding the
following line to your. cshrc file after the definition of NASA_HOME:

source $NASA_HOME/ .. /data/.nasarc

This will also set all of the environment variables listed above other than NASA_HOME. Check with your
system administrator if your installation is set up differently.

Your environment must also be configured for proper use of TekBase and PV-Wave. (For the
Propulsion Lab network at MSFC, adding the following lines to your • cshrc file will be sufficient:

setenv TQL_SERVER_DIR /u/metrica4.0/tqlserver.sUN4
setenv TQL_CLIENT_DIR /u/metrica4.0/tqlclients
setenv PATH "$TQL_CLIENT_DIR/bin:$PATH"
setenv WAVE_DEVICE X
setenv WAVE_DIR /hd3/vni/wave
setenv WAVE_PATH $WAVE_DIR/lib

For those running PTDS on other systems, see your system administrator for the proper paths to use.)

Finally, the data files for the test you wish to analyze should be accessible from the machine you
are running on. Currently, both compressed and uncompressed MSFC datafile formats are supported.

Execution Modes

The PTDS is configured to run as a "batch" process (typically run overnight) which analyzes all
55MB components in parallel. In addition, each module can be run interactively. In interactive mode,
only tlle component specified will be analyzed and all results are simply displayed in textual form. See
"Test Data Analysis" in Section II for more information about funning PTDS in either mode.

2

-----~. -~--.~ . . " -'--"---~-~'~'--~~'~"" ~ ' - ~~.----~-"-~---- --'-. . -_. ---

II. PTDS Execution

The full SSME Post-Test Diagnostic System is run in four steps: (1) hardware configuration data
entry; (2) test data analysis; (3) graphical review of results; and (4) anomaly database update and review.

Hardware Configuration Data Entry

The data necessary to run the Post Test Diagnostic System (PIDS) are supplied by Rocketdyne,
Canoga Park, through jetson in a comma delimited file approximately one day before the test firing. The
data can be found in the directory /home/gyork.

Any changes to the pretest information are sent in a post-test file and the files are updated. Pump
and turbine efficiency data is sent to NASA via jetson immediately after a test fIring. However, in cases
where a pump has been changed out, efficiency data is usually delayed. The pretest, post-test and
efficiency data files are identified by test numbers and suffIXes. (Examples are al0750 .pre,
al 07 5 0 . pos, and al 07 5 0 . eff, respectively). This data has to be manipulated before transferring
into the database. To do so the user types:

hwconv infile outfile

where infile is the pretest and/or post-test file you want to access and outfile is the modified
hardware file you want to create. (Example: hwconv al0750 .pre al0750 .hmod, where hmod is
the suffix of the modified version of the hardware file.)

This procedure is also used to create the other files needed for PTDS access. Thus the user types:

infconv infile outfile

where infile is the pretest and lor post-test file you want to access and outfile is the modified test
information file you want 10 create. (Example: infconv al0750 .pre al0750 . imod, where imod
is the suffix of the modified version of the test-information data file.) And,

effconv infile Dutfile

where infile is the efficiency file you want to access and outfile is the modified efficiency file you
want to create. (Example: effconv al07 50. eff al07 50 . emod, where emod is the suffIX of the
modified version of the efficiency data file.)

Now that all the data has been modified, it is ready to be transferred into the TekBase SSME_DB
database (see Kingfisher Users Guide) .

The . hmod files transfer into the TST_HW table. The . imod files transfer into the TST_INFO
table. The . emod files transfer into the TST_PERF table. (See Section 2.1 for Table Listings.)

This data is now ready to be accessed by the Post-Test Diagnostic System.

Test Data Analysis

To begin full PIDS analysis of a new SSME test, once the data files are on-line, run the program
new_data. This program is used to launch the PTDS. It allows the user to specify the tests which are to
be run by the system and to start the session manager on those tests, which in turn executes the other
components of the system in a batch mode. Normally, neW_data is the only program the user will need
for the test data analysis step.

3

-----~. -~--.~ . . " -'--"---~-~'~'--~~'~"" ~ ' - ~~.----~-"-~---- --'-. . -_. ---

II. PTDS Execution

The full SSME Post-Test Diagnostic System is run in four steps: (1) hardware configuration data
entry; (2) test data analysis; (3) graphical review of results; and (4) anomaly database update and review.

Hardware Configuration Data Entry

The data necessary to run the Post Test Diagnostic System (PIDS) are supplied by Rocketdyne,
Canoga Park, through jetson in a comma delimited file approximately one day before the test firing. The
data can be found in the directory /home/gyork.

Any changes to the pretest information are sent in a post-test file and the files are updated. Pump
and turbine efficiency data is sent to NASA via jetson immediately after a test fIring. However, in cases
where a pump has been changed out, efficiency data is usually delayed. The pretest, post-test and
efficiency data files are identified by test numbers and suffIXes. (Examples are al0750 .pre,
al 07 5 0 . pos, and al 07 5 0 . eff, respectively). This data has to be manipulated before transferring
into the database. To do so the user types:

hwconv infile outfile

where infile is the pretest and/or post-test file you want to access and outfile is the modified
hardware file you want to create. (Example: hwconv al0750 .pre al0750 .hmod, where hmod is
the suffix of the modified version of the hardware file.)

This procedure is also used to create the other files needed for PTDS access. Thus the user types:

infconv infile outfile

where infile is the pretest and lor post-test file you want to access and outfile is the modified test
information file you want 10 create. (Example: infconv al0750 .pre al0750 . imod, where imod
is the suffix of the modified version of the test-information data file.) And,

effconv infile Dutfile

where infile is the efficiency file you want to access and outfile is the modified efficiency file you
want to create. (Example: effconv al07 50. eff al07 50 . emod, where emod is the suffIX of the
modified version of the efficiency data file.)

Now that all the data has been modified, it is ready to be transferred into the TekBase SSME_DB
database (see Kingfisher Users Guide) .

The . hmod files transfer into the TST_HW table. The . imod files transfer into the TST_INFO
table. The . emod files transfer into the TST_PERF table. (See Section 2.1 for Table Listings.)

This data is now ready to be accessed by the Post-Test Diagnostic System.

Test Data Analysis

To begin full PIDS analysis of a new SSME test, once the data files are on-line, run the program
new_data. This program is used to launch the PTDS. It allows the user to specify the tests which are to
be run by the system and to start the session manager on those tests, which in turn executes the other
components of the system in a batch mode. Normally, neW_data is the only program the user will need
for the test data analysis step.

3

Usage:

new_data [&]

This command displays the main panel for the program as shown in Figure 1.

Figure 1. Main panel for the program new_data.

To launch PIDS from new_data, enter the Current Test ID in the text field labeled Current
Test and enter the Comparison Test ID in the text field labeled Previous Test. Selecting Go from the
menu bar will then queue the specified test(s) for the session manager, and if the session manager is not
already running, it will begin the session manager.

The Options pull-down menu is shown in Figure 2. The Clear option is used to clear the Current
Test and Previous Test text fields. The Exit option is used to exit the program. The PID (Parameter
Identification) Override option displays the PID Override panel.

Figure 2. Options pull-down menu for the program new_data.

The PID Override panel, shown in Figure 3, is used to substitute different PIDs for the default
PIDs during analysis of the test(s) currently indicated on the main panel. To override a PID, enter the
default PID name in the left text item and the substituted PID name in the right text item. Then press the
Add button. The substitution will be added to the scrolling list at the bottom of the panel. If a mistake is
made, the item may be selected in the scrolling list and tlle Delete button used to remove it. The Clear
buuon will delete all items from the list and the Close button closes the panel.

4

- ----.. _----

Usage:

new_data [&]

This command displays the main panel for the program as shown in Figure 1.

Figure 1. Main panel for the program new_data.

To launch PIDS from new_data, enter the Current Test ID in the text field labeled Current
Test and enter the Comparison Test ID in the text field labeled Previous Test. Selecting Go from the
menu bar will then queue the specified test(s) for the session manager, and if the session manager is not
already running, it will begin the session manager.

The Options pull-down menu is shown in Figure 2. The Clear option is used to clear the Current
Test and Previous Test text fields. The Exit option is used to exit the program. The PID (Parameter
Identification) Override option displays the PID Override panel.

Figure 2. Options pull-down menu for the program new_data.

The PID Override panel, shown in Figure 3, is used to substitute different PIDs for the default
PIDs during analysis of the test(s) currently indicated on the main panel. To override a PID, enter the
default PID name in the left text item and the substituted PID name in the right text item. Then press the
Add button. The substitution will be added to the scrolling list at the bottom of the panel. If a mistake is
made, the item may be selected in the scrolling list and tlle Delete button used to remove it. The Clear
buuon will delete all items from the list and the Close button closes the panel.

4

- ----.. _----

Figure 3. PID Ovenide panel for the program new_data.

To use interactive mode to perform diagnosis on a Line Replaceable Unit of the SSME, simply
type component_interactive at the Unix command line, where component is the name of the
LRU that requires diagnosis, e.g., HPOTP_interactive. After a brief loading period, the program
will ask you to enter the test ID for the current test. The test ID should be specified as a six-character
string of the form A20551, A40134, etc. The program will than ask you to specify the test ID for a
comparison test. You can either enter a test ID or simply a carriage return if a good comparison test is not
available (most analyses can be run without the use of a comparison test). The program may also prompt
the user for other information. For example, The HPOTP module will ask you if this test uses a
Rocketdyne or Pratt & Whitney (AID) pump, and finally, the program will ask you for the name of a log
file to store the analysis results in. You can either enter a valid filename, or simply a carriage return to
indicate that you do not want a log file created.

The program will then perform its analysis of the component., periodically printing results as they
are obtained. At the end of its execution, the program will ask if you want to update the historical
database with the parameters from the current test Gust answer yes or no). Program execution varies
according to the component.

See Attachment #3 of SSME HPOTP Post-Test Diagnostic System Enhancement Project for a
sample session log for the HPOTP module.

Most of the other components of PIDS can also be run individually, either interactively or as
background processes, although this should rarely be done under normal circumstances. Information on
running the other programs individually is provided in Section 1 of the Programmer's Guide.

Graphical Review of Results

To view the results of a PIDS analysis, or to check the progress of an analysis in progress, type

ehms at the Unix command line. This will bring up the window shown in Figure 4. The top scrolling
window is the test status board which displays the status of all analyses in progress in its top portion (with
a check mark showing which modules have completed; a clock icon denotes analysis still pending), and a
list of all completed analyses at the bottom. To select a test to review, simply click on the test ID with the
left mouse button. The system will then take a few minutes to load in the analysis results, and highlight
any components on the SSME plant diagram which were found to be anomalous. To view the results of a
component analysis, left-click on the desired component icon in the SSME plant diagram, to bring up a
more detailed component schematic. Examples of this window are shown in Figures 7 and 8, which

5

1

Figure 3. PID Ovenide panel for the program new_data.

To use interactive mode to perform diagnosis on a Line Replaceable Unit of the SSME, simply
type component_interactive at the Unix command line, where component is the name of the
LRU that requires diagnosis, e.g., HPOTP_interactive. After a brief loading period, the program
will ask you to enter the test ID for the current test. The test ID should be specified as a six-character
string of the form A20551, A40134, etc. The program will than ask you to specify the test ID for a
comparison test. You can either enter a test ID or simply a carriage return if a good comparison test is not
available (most analyses can be run without the use of a comparison test). The program may also prompt
the user for other information. For example, The HPOTP module will ask you if this test uses a
Rocketdyne or Pratt & Whitney (AID) pump, and finally, the program will ask you for the name of a log
file to store the analysis results in. You can either enter a valid filename, or simply a carriage return to
indicate that you do not want a log file created.

The program will then perform its analysis of the component., periodically printing results as they
are obtained. At the end of its execution, the program will ask if you want to update the historical
database with the parameters from the current test Gust answer yes or no). Program execution varies
according to the component.

See Attachment #3 of SSME HPOTP Post-Test Diagnostic System Enhancement Project for a
sample session log for the HPOTP module.

Most of the other components of PIDS can also be run individually, either interactively or as
background processes, although this should rarely be done under normal circumstances. Information on
running the other programs individually is provided in Section 1 of the Programmer's Guide.

Graphical Review of Results

To view the results of a PIDS analysis, or to check the progress of an analysis in progress, type

ehms at the Unix command line. This will bring up the window shown in Figure 4. The top scrolling
window is the test status board which displays the status of all analyses in progress in its top portion (with
a check mark showing which modules have completed; a clock icon denotes analysis still pending), and a
list of all completed analyses at the bottom. To select a test to review, simply click on the test ID with the
left mouse button. The system will then take a few minutes to load in the analysis results, and highlight
any components on the SSME plant diagram which were found to be anomalous. To view the results of a
component analysis, left-click on the desired component icon in the SSME plant diagram, to bring up a
more detailed component schematic. Examples of this window are shown in Figures 7 and 8, which

5

1

display t1le HPOTP schematic and diagnostic results and the Systems schematic and diagnostic results,
respectively.

Figure 4. Main panel for the program ehms.

The menu bar at the top of the main panel provides a means to start execution of other programs
useful in the analysis process. There is a pull-down menu under "Analysis Tools" with three options.
The first option, "What If', is currently inactive. The second option, "History", brings up tlle panel
shown in Figure 5. The last option, "Plot Pkg", starts the program sunplot in a new terminal window.
"Ext. Software" starts other useful programs through another pull-down menu. The options on this menu
are "new_data", which starts the program new_data (see "Test Data Analysis" above for usage

6

display t1le HPOTP schematic and diagnostic results and the Systems schematic and diagnostic results,
respectively.

Figure 4. Main panel for the program ehms.

The menu bar at the top of the main panel provides a means to start execution of other programs
useful in the analysis process. There is a pull-down menu under "Analysis Tools" with three options.
The first option, "What If', is currently inactive. The second option, "History", brings up tlle panel
shown in Figure 5. The last option, "Plot Pkg", starts the program sunplot in a new terminal window.
"Ext. Software" starts other useful programs through another pull-down menu. The options on this menu
are "new_data", which starts the program new_data (see "Test Data Analysis" above for usage

6

information), "Anomaly DB", which starts the program anom (see "Anomaly Database Update and
Review" below for usage information), and "Kingfisher", which starts the program kingf isher (see
Kingfisher Users Guide for more informalion). "Update Status" may be uscd to update tllC status area in
the lOP scrolling window to show any modules which have completed since ehms was started. "Quit"
exits the program and currently there is no information available througb the "Help" button.

rw .. ~~~.;.; ~:.~.; "' ... ·.·.·.·.·.·.·.·.·.·.·.·.·.·.w.·.·.·.·.·.·.·.·.·.·.·.······~~~~==~~~~~~~~~:::~:~::=~~~~·~:·i·~]

I A2:5v6~lable Tests :: @~ .

I ~20~E
; A10750
j A20564
~
i A20551 I A20549

I ,
I C=-:~~w

.z::

l: ... : : .. :l: .. w"":::~~~~~~~~""":.:::...-.::.:::~==W] ""'=::::~::~:::""' .. . :. __ ~_ OK · ... r····· i
__ , :~J

~
Figure 5. Panel for the "History" option [rom the "Analysis Tools" menu.

7

information), "Anomaly DB", which starts the program anom (see "Anomaly Database Update and
Review" below for usage information), and "Kingfisher", which starts the program kingf isher (see
Kingfisher Users Guide for more informalion). "Update Status" may be uscd to update tllC status area in
the lOP scrolling window to show any modules which have completed since ehms was started. "Quit"
exits the program and currently there is no information available througb the "Help" button.

rw .. ~~~.;.; ~:.~.; "' ... ·.·.·.·.·.·.·.·.·.·.·.·.·.·.w.·.·.·.·.·.·.·.·.·.·.·.······~~~~==~~~~~~~~~:::~:~::=~~~~·~:·i·~]

I A2:5v6~lable Tests :: @~ .

I ~20~E
; A10750
j A20564
~
i A20551 I A20549

I ,
I C=-:~~w

.z::

l: ... : : .. :l: .. w"":::~~~~~~~~""":.:::...-.::.:::~==W] ""'=::::~::~:::""' .. . :. __ ~_ OK · ... r····· i
__ , :~J

~
Figure 5. Panel for the "History" option [rom the "Analysis Tools" menu.

7

.: .. , ,., ..•...•.........•.•.•...•...•.....•... ~ .•.

!t[E~·~~:.:;;t:.:~.~:!:;-:.:.:.:.::.:.:-:.:.:::.: .:~_~__ ~ ;,,; Help~
! mCoJ'tlbustion Devices~

III ~:~~~o 11 er
: ~~
! ~, HPOTP

! !LPFTP
~ : LPOTP

d MCC : ::

: : Ma in InjectOJ :j
: !, Nozzle I,

It~~ri~~ j
!
I
i

I
I

-:--········0;<······· .. , r·· ············ .. ··, :···· .. ··· ... -···············-·1 I
!
!
i :

Figure 6. "History" panel with "LRU's" pull-down menu.

8

.: .. , ,., ..•...•.........•.•.•...•...•.....•... ~ .•.

!t[E~·~~:.:;;t:.:~.~:!:;-:.:.:.:.::.:.:-:.:.:::.: .:~_~__ ~ ;,,; Help~
! mCoJ'tlbustion Devices~

III ~:~~~o 11 er
: ~~
! ~, HPOTP

! !LPFTP
~ : LPOTP

d MCC : ::

: : Ma in InjectOJ :j
: !, Nozzle I,

It~~ri~~ j
!
I
i

I
I

-:--········0;<······· .. , r·· ············ .. ··, :···· .. ··· ... -···············-·1 I
!
!
i :

Figure 6. "History" panel with "LRU's" pull-down menu.

8

Figure 7. HPOTP window.

The top portion of the component window shows the list of ranked anomalies found for the
selected test, broken down into three categories: anomalies, observations, and instrumentation. As shown
in Figure 7, the bottom portion of the HPOTP window shows a plant diagram of the HPOTP, with buttons
representing sensors used in analysis of the HPOTP (the buttons are labeled with the sensor's PID name).
To view the raw data for any sensor, simply left-click on the corresponding button. To obtain plots of data
which support an anomaly or observation, left-click on the text of the description. Similarly, the bottom
portion of the Systems window contains the SSME plant diagram with buttons representing applicable
sensors as shown in Figure 8.

9

Figure 7. HPOTP window.

The top portion of the component window shows the list of ranked anomalies found for the
selected test, broken down into three categories: anomalies, observations, and instrumentation. As shown
in Figure 7, the bottom portion of the HPOTP window shows a plant diagram of the HPOTP, with buttons
representing sensors used in analysis of the HPOTP (the buttons are labeled with the sensor's PID name).
To view the raw data for any sensor, simply left-click on the corresponding button. To obtain plots of data
which support an anomaly or observation, left-click on the text of the description. Similarly, the bottom
portion of the Systems window contains the SSME plant diagram with buttons representing applicable
sensors as shown in Figure 8.

9

The "Close" button at the top of each component window is used to close the window. The
"Make Pids" button brings up the window shown in Figure 9, which may be used to update the buttons in
the plant diagram at the bottom of the window. The "Next" and "Prev" buttons can be used to move
througb the list of PIDs for wbich buttons are included on the plant diagram. The current PID llame will
be displayed in the text item labeled "Pid name:" and the position of the button will be displayed in the
text items labeled "x:" and "y:".

The "Explanations" button brings up the window shown in Figure 10. If an anomaly has been
selected on the component window, this window will contain a list of the data which caused the anomaly
to be identified by PIDS. If no anomaly has been selected, the scrollable portion of the window will be
blank.

. The "Add to Anomaly DB" button is only active if an anomaly is selected. Currently, no
information is available through the "Help" button.

10

The "Close" button at the top of each component window is used to close the window. The
"Make Pids" button brings up the window shown in Figure 9, which may be used to update the buttons in
the plant diagram at the bottom of the window. The "Next" and "Prev" buttons can be used to move
througb the list of PIDs for wbich buttons are included on the plant diagram. The current PID llame will
be displayed in the text item labeled "Pid name:" and the position of the button will be displayed in the
text items labeled "x:" and "y:".

The "Explanations" button brings up the window shown in Figure 10. If an anomaly has been
selected on the component window, this window will contain a list of the data which caused the anomaly
to be identified by PIDS. If no anomaly has been selected, the scrollable portion of the window will be
blank.

. The "Add to Anomaly DB" button is only active if an anomaly is selected. Currently, no
information is available through the "Help" button.

10

, . . " .-. ---~- ._- - - '-'~~ '

Figure 8. Systems window.

Figure 9. "Make Pids" window for modifying PID buttons on plant diagrams.

11

, . . " .-. ---~- ._- - - '-'~~ '

Figure 8. Systems window.

Figure 9. "Make Pids" window for modifying PID buttons on plant diagrams.

11

~-----.---.--.- ------

lext:Hi~wr'iC91 v.;!lue of f'EHK_TlNE fot, .' '"' ,":~,
-HPOTP._"S£C:-1RB.:.SLJAV_F~ lS 10.41176470588235 +/- "'_'
-4 .. ~~?68f)85(l189 {2 StdDe\d" ,'-: ' .

Figure 10. Explanations window for anomalies.

Plots are displayed in a window such as the one shown in Figure 11. The buttons along the top
allow you to change the vertical or horizontal scales (range and time interval) of the display, or select
whether full-sample or one-second-averaged data is displayed. Note that none of these options take effect
until you left-click on the Replot button.

12

-----.~- ~-

~-----.---.--.- ------

lext:Hi~wr'iC91 v.;!lue of f'EHK_TlNE fot, .' '"' ,":~,
-HPOTP._"S£C:-1RB.:.SLJAV_F~ lS 10.41176470588235 +/- "'_'
-4 .. ~~?68f)85(l189 {2 StdDe\d" ,'-: ' .

Figure 10. Explanations window for anomalies.

Plots are displayed in a window such as the one shown in Figure 11. The buttons along the top
allow you to change the vertical or horizontal scales (range and time interval) of the display, or select
whether full-sample or one-second-averaged data is displayed. Note that none of these options take effect
until you left-click on the Replot button.

12

-----.~- ~-

10 12 t6 II

10 12 16 II

-
-
-

-
~L-__ --J

• 10 12 14 16 18

Figure 11. Plot panel for program ehms.

Anomaly Database Update and Review

Tbe Anomaly Database gives analysts a mechanism for tracking engine performance troubles.
The following tasks can be performed with the Anomaly Database:

after a test and data review, log and categorize any anomalies in SSME test data, along with expert
assessments relating to the anomalies, actions taken, aud the corroborating sensor data, if desired

retrieve data describing previously observed anomalies for analyzing patterns in engine performance

• retrieve all examples of classes of anomalies along with experts' determination of their causes for the
purpose of training new analysts.

To start execution of the Anomaly Database, type anom at the Unix command line. After several minutes
and a number of messages, the window shown in Figure 12 will be displayed. This window is the request
screen used to enter the facts about the anomalies to be retrieved. The "Go" button on the menu bar is
used to submit a request to the database to return all of the anomalies that match the fields filled in on the
request screen. The "Options" button provides access to a short pull-down menu with the options "Clear"
and "Quit". The "Clear" option clears the window of all user-entered material, useful when a user has
finished looking at one record and is ready to request another, and the "Quit" option exits the Anomaly
Database.

13

10 12 t6 II

10 12 16 II

-
-
-

-
~L-__ --J

• 10 12 14 16 18

Figure 11. Plot panel for program ehms.

Anomaly Database Update and Review

Tbe Anomaly Database gives analysts a mechanism for tracking engine performance troubles.
The following tasks can be performed with the Anomaly Database:

after a test and data review, log and categorize any anomalies in SSME test data, along with expert
assessments relating to the anomalies, actions taken, aud the corroborating sensor data, if desired

retrieve data describing previously observed anomalies for analyzing patterns in engine performance

• retrieve all examples of classes of anomalies along with experts' determination of their causes for the
purpose of training new analysts.

To start execution of the Anomaly Database, type anom at the Unix command line. After several minutes
and a number of messages, the window shown in Figure 12 will be displayed. This window is the request
screen used to enter the facts about the anomalies to be retrieved. The "Go" button on the menu bar is
used to submit a request to the database to return all of the anomalies that match the fields filled in on the
request screen. The "Options" button provides access to a short pull-down menu with the options "Clear"
and "Quit". The "Clear" option clears the window of all user-entered material, useful when a user has
finished looking at one record and is ready to request another, and the "Quit" option exits the Anomaly
Database.

13

Figure 12. Main panel for the program anom.

The "Edit Mode" menu button indicates the type of database access that is being requested. For
most users, this should always be set to "Read". The remaining options ("Add", "Delete", and "Modify")
are used for adding new anomalies and deleting or modifying existing ones and are limited to usage by
users with write permission for the database.

The remaining areas of the window are used to place restrictions on the list of anomalies to be
retrieved when the "Go" button is pressed. If no data is entered into these areas, the request would return
all anomalies in the database, potentially a long list. Otherwise, all anomalies which match the
information entered in the window will be retrieved when the "Go" button is pressed. In general, if the
user wishes to retrieve one particular anomaly, the simplest way to find it, without retrieving a large
number of other anomalies that must be browsed through as well, is to fill in the fields that will place the
most severe restriction on the list retrieved.

The "Fixed Fields" area includes three text fields: "Test Number", "Test Date", and "Engine
Number". The test number must be entered as a six character string such as A20531 if used. The test
date, if used, must be entered as an eight character string composed of two month digits, a slash, two day
digits, another slash, and two year digits, e.g., 02/12/90. A question mark, '1', may be used as a wildcard
for a digit anywhere in the date field . To retrieve anomalies by matching on the engine number, the
engine number must be entered as a four digit number, including leading zeros, e.g., 0213.

14

Figure 12. Main panel for the program anom.

The "Edit Mode" menu button indicates the type of database access that is being requested. For
most users, this should always be set to "Read". The remaining options ("Add", "Delete", and "Modify")
are used for adding new anomalies and deleting or modifying existing ones and are limited to usage by
users with write permission for the database.

The remaining areas of the window are used to place restrictions on the list of anomalies to be
retrieved when the "Go" button is pressed. If no data is entered into these areas, the request would return
all anomalies in the database, potentially a long list. Otherwise, all anomalies which match the
information entered in the window will be retrieved when the "Go" button is pressed. In general, if the
user wishes to retrieve one particular anomaly, the simplest way to find it, without retrieving a large
number of other anomalies that must be browsed through as well, is to fill in the fields that will place the
most severe restriction on the list retrieved.

The "Fixed Fields" area includes three text fields: "Test Number", "Test Date", and "Engine
Number". The test number must be entered as a six character string such as A20531 if used. The test
date, if used, must be entered as an eight character string composed of two month digits, a slash, two day
digits, another slash, and two year digits, e.g., 02/12/90. A question mark, '1', may be used as a wildcard
for a digit anywhere in the date field . To retrieve anomalies by matching on the engine number, the
engine number must be entered as a four digit number, including leading zeros, e.g., 0213.

14

The "Anomaly Title" area is used to restrict the types of anomalies to be retrieved. The
"Location" menu button allows the user to specify whether tlle anomaly was in a particular LRU (option
"LRlf'), a sensor (option "Sensor"), or a system problem (option "System"). The default option
"BLANK" means no restrictions will be made on the anomalies retrieved, based on this field. Selecting
another option, the query window will change to allow the user to specify more about the anomaly. For
example, if "LRU" is selected, tlle "LRU Unit #" field will be added to tlle "Fixed Fields" area of the
query window and the button menu for "Type" will be displayed in the "Anomaly Title" area. The
changed areas for the "LRU" and "System" options are shown in Figures 13 and 14, respectively. The
options on the other menu buttons in the "Anomaly Title" area, when displayed, will depend on the
selections already made at the time the menu button is displayed. For example, if "LRU" was selected for
the location, the options on the "Type" menu button will be a list ofLRUs, or if "Sensor" was selected for
the location, the "Type" menu button will be used to specify which LRU the sensor was monitoring.

Figure 13. "Fixed Fields" and "Anomaly Title" areas of the Anomaly Database query window after
selecting "LRU" from the "Location" menu button.

Figure 14. "Anomaly Title" area of the Anomaly Database query window after selecting "System" from
the "Location" menu button.

The "Misc. Fields" area of the query window provides for other miscellaneous restrictions on the
anomalies to be retrieved. The 'Test Phase" menu button allows the selection of a test phase (prestart,
mainstage, etc.), the "Engine FltJDev" menu button allows restricting queries to flight engines or
development engines, and the "LRU FltJDev" menu button allows restricting queries to flight LRUs or
development LRUs.

The "Spec Violation" menu button in the "Spec Violation" area may be used to specify a
particular type of Spec Violation, such as Greenrun, lCD, ICC, Max Qual, etc.

15

The "Anomaly Title" area is used to restrict the types of anomalies to be retrieved. The
"Location" menu button allows the user to specify whether tlle anomaly was in a particular LRU (option
"LRlf'), a sensor (option "Sensor"), or a system problem (option "System"). The default option
"BLANK" means no restrictions will be made on the anomalies retrieved, based on this field. Selecting
another option, the query window will change to allow the user to specify more about the anomaly. For
example, if "LRU" is selected, tlle "LRU Unit #" field will be added to tlle "Fixed Fields" area of the
query window and the button menu for "Type" will be displayed in the "Anomaly Title" area. The
changed areas for the "LRU" and "System" options are shown in Figures 13 and 14, respectively. The
options on the other menu buttons in the "Anomaly Title" area, when displayed, will depend on the
selections already made at the time the menu button is displayed. For example, if "LRU" was selected for
the location, the options on the "Type" menu button will be a list ofLRUs, or if "Sensor" was selected for
the location, the "Type" menu button will be used to specify which LRU the sensor was monitoring.

Figure 13. "Fixed Fields" and "Anomaly Title" areas of the Anomaly Database query window after
selecting "LRU" from the "Location" menu button.

Figure 14. "Anomaly Title" area of the Anomaly Database query window after selecting "System" from
the "Location" menu button.

The "Misc. Fields" area of the query window provides for other miscellaneous restrictions on the
anomalies to be retrieved. The 'Test Phase" menu button allows the selection of a test phase (prestart,
mainstage, etc.), the "Engine FltJDev" menu button allows restricting queries to flight engines or
development engines, and the "LRU FltJDev" menu button allows restricting queries to flight LRUs or
development LRUs.

The "Spec Violation" menu button in the "Spec Violation" area may be used to specify a
particular type of Spec Violation, such as Greenrun, lCD, ICC, Max Qual, etc.

15

The "Logged By" and "Logged Date" fields of the "User Info" area are used for the user ill of the
person entering the records and the date on which the anomaly was entered into the database. These
search fields are mainly for the convenience of users who are editing records in the database.

The remaining areas, "Free Form Text", "Anomaly Time", and "Data Stored" are not used in
preparing a query for a search of the anomaly database. They are filled ill by the program when a query
bas been completed or are used by the other "Edit Mode" options.

After a query is processed, tile "Status" line will indicate tile number of anomalies that satisfied
the query. If only one anomaly satisfied tlle query, me data for tllat anomaly will be displayed on tlle main
panel. If the query was satisfied by more than one anomaly, the selection window shown in Figure 15 will
also be displayed witll a list of anomalies which satisfy tlle query. A particular anomaly can tllen be
selected from tlle scrolling list in the center of tlle window. When tlle "Load" button is pressed, tllis
window will close and the data for the selected anomaly will be displayed on me main panel. Figure 16
shows me main panel after a single anomaly has been selected.

Figure 15. Selection panel for anorn displayed when more than one anomaly satisfies a query or the
"Read Selection" button on the main panel is pressed.

If there was more than one anomaly tllat satisfied tlle query, the "Read Selection" button in the
"Edit Mode" area of the main panel can be used to redisplay the selection window for selecting otber
anomalies to display. The "Print" button in tbe selection window is used to print tlle data for tbe selected
anomaly and tile "Print All" button is used to print me data for all anomalies tllat satisfied the query. If
tllere was only one anomaly tllat satisifed a query, the "Read Selection" button is used to display tlle
selection window to provide access to tlle print buttons.

16

The "Logged By" and "Logged Date" fields of the "User Info" area are used for the user ill of the
person entering the records and the date on which the anomaly was entered into the database. These
search fields are mainly for the convenience of users who are editing records in the database.

The remaining areas, "Free Form Text", "Anomaly Time", and "Data Stored" are not used in
preparing a query for a search of the anomaly database. They are filled ill by the program when a query
bas been completed or are used by the other "Edit Mode" options.

After a query is processed, tile "Status" line will indicate tile number of anomalies that satisfied
the query. If only one anomaly satisfied tlle query, me data for tllat anomaly will be displayed on tlle main
panel. If the query was satisfied by more than one anomaly, the selection window shown in Figure 15 will
also be displayed witll a list of anomalies which satisfy tlle query. A particular anomaly can tllen be
selected from tlle scrolling list in the center of tlle window. When tlle "Load" button is pressed, tllis
window will close and the data for the selected anomaly will be displayed on me main panel. Figure 16
shows me main panel after a single anomaly has been selected.

Figure 15. Selection panel for anorn displayed when more than one anomaly satisfies a query or the
"Read Selection" button on the main panel is pressed.

If there was more than one anomaly tllat satisfied tlle query, the "Read Selection" button in the
"Edit Mode" area of the main panel can be used to redisplay the selection window for selecting otber
anomalies to display. The "Print" button in tbe selection window is used to print tlle data for tbe selected
anomaly and tile "Print All" button is used to print me data for all anomalies tllat satisfied the query. If
tllere was only one anomaly tllat satisifed a query, the "Read Selection" button is used to display tlle
selection window to provide access to tlle print buttons.

16

Figure 16. Main panel for the program anom after a data retrieval.

The three buttons in tile "Free Form Text" area CAssessment", "Analysis Results", and "Actions
Taken") are used to pop up text windows containing additional textual material that is stored as part of the
anomaly record. If the "Data Stored" button in the "Data Stored" area says "YES", clicking on the "PIDs
and Data" button will display an auxiliary window used for displaying the data graphically.

If any of the data filled in by the user in preparing a query does not match the expected format for
that field, a dialog box will be displayed containing a suggestion for editing the field when the "Go"
button is pressed and the query will not be submitted to the database. The user should then close the
dialog box and modify the contents of the indicated field before attempting to resubmit the query.

The "Add" option from the "Edit Mode" menu button is used for adding new anomalies to the
database. Figure 17 shows the main panel with the "Add" option selected before any data for the anomaly
has been entered.

17

I

Figure 16. Main panel for the program anom after a data retrieval.

The three buttons in tile "Free Form Text" area CAssessment", "Analysis Results", and "Actions
Taken") are used to pop up text windows containing additional textual material that is stored as part of the
anomaly record. If the "Data Stored" button in the "Data Stored" area says "YES", clicking on the "PIDs
and Data" button will display an auxiliary window used for displaying the data graphically.

If any of the data filled in by the user in preparing a query does not match the expected format for
that field, a dialog box will be displayed containing a suggestion for editing the field when the "Go"
button is pressed and the query will not be submitted to the database. The user should then close the
dialog box and modify the contents of the indicated field before attempting to resubmit the query.

The "Add" option from the "Edit Mode" menu button is used for adding new anomalies to the
database. Figure 17 shows the main panel with the "Add" option selected before any data for the anomaly
has been entered.

17

I

Figure 17. Main panel for the program anom when using the "Add" command.

18

Figure 17. Main panel for the program anom when using the "Add" command.

18

llI. Maintaining the mstorical Database

The HPOTP diagnostic system utilizes a historical database of parameters for use in statistical
analyses. This database is currently stored in the TekBase database named SSME_DB in the table named
HISTORY (for Rocketdyne pumps) and ATDHSTRY (for Pratt & Whitney pumps). Each row in these
tables contains information about a single paramcter value for a single test, and has the fo])owing four
columns:

The testID. TESTID

PARAM

TYPE

VALUE
OK_TO_USE

The name of the parameter (e.g., HPOTP _PRI_TRB_SL_DR_P).

The type of the parameter (e.g., PEAK_WIDTH).

The value of the parameter (e.g., 3.27).

A Boolean (1RUE or FALSE) value which indicates if this value should be
used for future statistical analyses.

In addition, the ADTHSTRY table also contains a Boolean column IS_HOT which is used to classify the
pump as having either a hot or cold "ski slope". This effectively dermes three classes of pumps for which
statistics are gathered: Rocketdyne, "Hot" AID, and "Cold" AID.

By default, OK_TO_USE values are always 1RUE. However, if a HPOTP experiences a
significant anomaly and you do not want some or all of its parameters used in future statistical analyses,
simply set the appropriate OK_TO_USE values to FALSE (via Kingfisher).

Updating the Historical Database

A utility program is available which will update the historical database with parameters from a
test without performing a full diagnostic analYSis. To run this program, enter HPOTP _update testID
at tIle Unix command line, where testIDis a six-character string such asA20551 or A40123.

Viewing the Historical Database

A utility program is available which will provide a quick print out of the contents of the historical
database. To run it, enter HPOTP_history at the UNIX command line. The program will ask you for
the name of a log file to store the data in. You can either enter a valid filename, or simply a carriage
return to indicate that you do not want a log file created. The program will then ask whether you want
statistics for Rocketdyne, "lIot" ATD, or "Cold" AID pumps. A printout similar to the following will be
output:

-------------------- A20571 (ENABLED) --------------------
PEAK_HEIGHT

PEAK_WIDTH
PEAK_TIME

PEAKJiEIGHT
PEAK_WIDTH

PEAK_TIME
EQ_VAL
EQ_VAL

START_VAL
5_TO_CUT

MAX..,AFTEFJ:Q
104_MIN_NPSP

HPOTP_SEC_TRB_SL_CAV_P
HPOTP_SEC_TRB_SL_CAV_P
HPOTP_SEC_TRB_SL_CAV_P

HPOTP_PRI_TRB_SL_DR-P
HPOTP_PRI_TRB_SL_DR_P
HPOTP_PRI_TRB_SL_DR-P

HPOTP_SEC_TRB_SL_CAV_P
HPOTP_PRI_TRB_SL_DR-P

HPOTP_INT_SL_PRG_P
HPOTP_PRI_PMP_SL-PR-P
HPOTP_PRI_PMP_SL_DR-T

HPOTP_BAL_CAV_P_A

19

24.31
19.67

9.00
36.97
22.66

8.00
11.53
7.75

188.91
0.25

427.52

3141.81

llI. Maintaining the mstorical Database

The HPOTP diagnostic system utilizes a historical database of parameters for use in statistical
analyses. This database is currently stored in the TekBase database named SSME_DB in the table named
HISTORY (for Rocketdyne pumps) and ATDHSTRY (for Pratt & Whitney pumps). Each row in these
tables contains information about a single paramcter value for a single test, and has the fo])owing four
columns:

The testID. TESTID

PARAM

TYPE

VALUE
OK_TO_USE

The name of the parameter (e.g., HPOTP _PRI_TRB_SL_DR_P).

The type of the parameter (e.g., PEAK_WIDTH).

The value of the parameter (e.g., 3.27).

A Boolean (1RUE or FALSE) value which indicates if this value should be
used for future statistical analyses.

In addition, the ADTHSTRY table also contains a Boolean column IS_HOT which is used to classify the
pump as having either a hot or cold "ski slope". This effectively dermes three classes of pumps for which
statistics are gathered: Rocketdyne, "Hot" AID, and "Cold" AID.

By default, OK_TO_USE values are always 1RUE. However, if a HPOTP experiences a
significant anomaly and you do not want some or all of its parameters used in future statistical analyses,
simply set the appropriate OK_TO_USE values to FALSE (via Kingfisher).

Updating the Historical Database

A utility program is available which will update the historical database with parameters from a
test without performing a full diagnostic analYSis. To run this program, enter HPOTP _update testID
at tIle Unix command line, where testIDis a six-character string such asA20551 or A40123.

Viewing the Historical Database

A utility program is available which will provide a quick print out of the contents of the historical
database. To run it, enter HPOTP_history at the UNIX command line. The program will ask you for
the name of a log file to store the data in. You can either enter a valid filename, or simply a carriage
return to indicate that you do not want a log file created. The program will then ask whether you want
statistics for Rocketdyne, "lIot" ATD, or "Cold" AID pumps. A printout similar to the following will be
output:

-------------------- A20571 (ENABLED) --------------------
PEAK_HEIGHT

PEAK_WIDTH
PEAK_TIME

PEAKJiEIGHT
PEAK_WIDTH

PEAK_TIME
EQ_VAL
EQ_VAL

START_VAL
5_TO_CUT

MAX..,AFTEFJ:Q
104_MIN_NPSP

HPOTP_SEC_TRB_SL_CAV_P
HPOTP_SEC_TRB_SL_CAV_P
HPOTP_SEC_TRB_SL_CAV_P

HPOTP_PRI_TRB_SL_DR-P
HPOTP_PRI_TRB_SL_DR_P
HPOTP_PRI_TRB_SL_DR-P

HPOTP_SEC_TRB_SL_CAV_P
HPOTP_PRI_TRB_SL_DR-P

HPOTP_INT_SL_PRG_P
HPOTP_PRI_PMP_SL-PR-P
HPOTP_PRI_PMP_SL_DR-T

HPOTP_BAL_CAV_P_A

19

24.31
19.67

9.00
36.97
22.66

8.00
11.53
7.75

188.91
0.25

427.52

3141.81

104_MINJ"PSP HPOTP_BAL_CAV_P~ 3012.06

109_MAJCNPSP HPOTP_BAL_CAV_P-A 3380.77
109_MAXJ"PSP HPOTP~L_CAV_P_B 3258.33
104_NOMJ"PSP HPOTP_BAL_CAV_P-A 3187.00
104_NOMJ"PSP HPOTP-BAL_CAV_P~ 3048.27

******************** SUMMARY OF ENABLED TESTS ********************

TYPE PARAMETER MEAN STDDEV N
109_MAXJ"PSP HPOTP_BAL_CAV_P-A 3286.86 77.40 11
109J1AX-NPSP HPOTP_BAL_CAV_P~ 3076.68 178.48 11
104_MINJ"PSP HPOTP_BAL_CAV_P-A 3053.03 75.97 22
104_MINJ"PSP HPOTP~_CAV_P_B 2863.38 143.00 22

PEAKJfEIGHT HPOTP_SEC_TRB_SL_CAV_P 24.15 2.48 32
PEAK_WIDTH HPOTP_SEC_TRB_SL_CAV_P 23.32 4.14 32

PEA1CTIME HPOTP_SEC_TRB_SL_CAV-Y 10.41 2.24 32
EQ_VAL HPOTP_SEC_TRB_SL_CAV_P 12.64 1.21 34
EQ_VAL HPOTP_PRI_TRB_SL-PR-P 8.99 1.21 34

MAX-AF'l'ER-EQ HPOTP_PRI_PMP_SL-PR-T 416.55 20.73 34
PEAK_HEIGHT HPOTP_PRI_TRB_SL_DR-P 33.47 2.91 36

PEAICWIDTH HPOTP_PRI_TRB_SL_DR-P 25.14 5.41 36
PEA1CTIME HPOTP_PRI_TRB_SL_DR-P 8.83 1.32 36

104_NOM_NPSP HPOTP_BAL_CAV_P-A 3100.58 76.04 37
104_NOM_NPSP HPOTP_BAL_CAV_P_B 2899.31 143.76 37

5_TO_CUT HPOTP_PRI_PMP_SL_DR-P -0.02 0.23 37
START_VAL HPOTP_INT_SL_PRG_P 190.92 4.29 38

20

104_MINJ"PSP HPOTP_BAL_CAV_P~ 3012.06

109_MAJCNPSP HPOTP_BAL_CAV_P-A 3380.77
109_MAXJ"PSP HPOTP~L_CAV_P_B 3258.33
104_NOMJ"PSP HPOTP_BAL_CAV_P-A 3187.00
104_NOMJ"PSP HPOTP-BAL_CAV_P~ 3048.27

******************** SUMMARY OF ENABLED TESTS ********************

TYPE PARAMETER MEAN STDDEV N
109_MAXJ"PSP HPOTP_BAL_CAV_P-A 3286.86 77.40 11
109J1AX-NPSP HPOTP_BAL_CAV_P~ 3076.68 178.48 11
104_MINJ"PSP HPOTP_BAL_CAV_P-A 3053.03 75.97 22
104_MINJ"PSP HPOTP~_CAV_P_B 2863.38 143.00 22

PEAKJfEIGHT HPOTP_SEC_TRB_SL_CAV_P 24.15 2.48 32
PEAK_WIDTH HPOTP_SEC_TRB_SL_CAV_P 23.32 4.14 32

PEA1CTIME HPOTP_SEC_TRB_SL_CAV-Y 10.41 2.24 32
EQ_VAL HPOTP_SEC_TRB_SL_CAV_P 12.64 1.21 34
EQ_VAL HPOTP_PRI_TRB_SL-PR-P 8.99 1.21 34

MAX-AF'l'ER-EQ HPOTP_PRI_PMP_SL-PR-T 416.55 20.73 34
PEAK_HEIGHT HPOTP_PRI_TRB_SL_DR-P 33.47 2.91 36

PEAICWIDTH HPOTP_PRI_TRB_SL_DR-P 25.14 5.41 36
PEA1CTIME HPOTP_PRI_TRB_SL_DR-P 8.83 1.32 36

104_NOM_NPSP HPOTP_BAL_CAV_P-A 3100.58 76.04 37
104_NOM_NPSP HPOTP_BAL_CAV_P_B 2899.31 143.76 37

5_TO_CUT HPOTP_PRI_PMP_SL_DR-P -0.02 0.23 37
START_VAL HPOTP_INT_SL_PRG_P 190.92 4.29 38

20

SSME Post-Test Diagnostic System
Systems Section

Final Report
Attachment #2

Programmer's Guide

SSME Post-Test Diagnostic System
Systems Section

Final Report
Attachment #2

Programmer's Guide

Post-Test

Diagnostic System

(PTDS)

Programmer's Guide

Prepared by:

J. Allen Crider

Computer Sciences Corporation

22 February, 1995

Post-Test

Diagnostic System

(PTDS)

Programmer's Guide

Prepared by:

J. Allen Crider

Computer Sciences Corporation

22 February, 1995

Table of Contents

Table of Contents .. i

Acknowledgments ... iii

Introduction ... 1

1. Execution of Individual PIDS Programs ... 1
1.1 Session Manager (smgr) ... 1

1.2 Feature Extractor (features} .. 1

1.3 External Effects (external} .. 2

2. Database Tables .. 4

2.1 Space Shuttle Main Engine Database (SSME_DB}4

2.2 Session Manager Database (SESS_MGR) ... 28

2.3 External Effects Database (EXTERNAL) ... 29

3. New Data (new_data) .. 30
3.1. Source Files .. : .. 30
3.2 Header Files ... 30
3.3 Functions ... ; .. .30
3.4 Cflow output30

4. Session Manager (smgr) .. 31

4.1 Source Files .. 31
4.2 Header File ... 32
4.3 Defined Constants .. 32
4.4 Defined Types .. 32
4.5 Global Variables .. 33
4.6 Functions ... 33
4.7 Cflow output .. 36

5. Features (features} ... 38

5.1 Source Files .. 38

5.2 Header Files ... 39
5.3 Defined Constants .. ; ... 39

5.4 Defined Types .. 42
5.5 Global Variables .. 46
5.6 Functions ... : ... 46
5.7 Algorithm Comments ... 68

5.7.1 General Cotiunents ... 68
5.1.,~~ DifferentThan Module , .. 68

5.8 Cflow output .. 70

6. External Effects Program (external) ... 74

Table of Contents

Table of Contents .. i

Acknowledgments ... iii

Introduction ... 1

1. Execution of Individual PIDS Programs ... 1
1.1 Session Manager (smgr) ... 1

1.2 Feature Extractor (features} .. 1

1.3 External Effects (external} .. 2

2. Database Tables .. 4

2.1 Space Shuttle Main Engine Database (SSME_DB}4

2.2 Session Manager Database (SESS_MGR) ... 28

2.3 External Effects Database (EXTERNAL) ... 29

3. New Data (new_data) .. 30
3.1. Source Files .. : .. 30
3.2 Header Files ... 30
3.3 Functions ... ; .. .30
3.4 Cflow output30

4. Session Manager (smgr) .. 31

4.1 Source Files .. 31
4.2 Header File ... 32
4.3 Defined Constants .. 32
4.4 Defined Types .. 32
4.5 Global Variables .. 33
4.6 Functions ... 33
4.7 Cflow output .. 36

5. Features (features} ... 38

5.1 Source Files .. 38

5.2 Header Files ... 39
5.3 Defined Constants .. ; ... 39

5.4 Defined Types .. 42
5.5 Global Variables .. 46
5.6 Functions ... : ... 46
5.7 Algorithm Comments ... 68

5.7.1 General Cotiunents ... 68
5.1.,~~ DifferentThan Module , .. 68

5.8 Cflow output .. 70

6. External Effects Program (external) ... 74

6.1 Source Files .. 74

6.2 Header Files ... 75

6.3 Defmed Constants .. 75

6.4 .Defined Types .. 75
6.S Functions ... 80

6.6 Algorithm .. 87
6.6.1 Notation .. 87
6.6.2 Computations ... 88

6.7 Cflow output .. 89

7. lIPOTP Module , ... 90

7.1 Modules ... 90
7.1.1 Executive .. 90
7.1.2 Feature Extraction .. 91
7.1.3 HPOTP Sensor Validation .. 91
7.1.4 Redundancy Management. .. 92
7.1.5 Statistics Module .. 92
7.1.6 Anomaly Detection & Diagnosis ... 92
7.1.7 Green Run Specifications Check ... 93
7.1.8 Supporting Plot Generation ... 93
7.1.9 Output of Results .. 93

7.2 Anomalies Currently Detected by the lIPOTP Diagnostic System ... 93
7.2.1 General Anomalies ... 93
7.2.2 Green Run Specifications ... 99

8. Common Function Library for PTDS ... 100

8.1 Source Files .. 1 00

8.2 Header Files ... 100
8.3 Dt:iinoo Constants .. 1 0 1
8.4 Defined Types .. 1 02
8.5 Global Variables .. 105

8.6 Functions ... 106

ii

6.1 Source Files .. 74

6.2 Header Files ... 75

6.3 Defmed Constants .. 75

6.4 .Defined Types .. 75
6.S Functions ... 80

6.6 Algorithm .. 87
6.6.1 Notation .. 87
6.6.2 Computations ... 88

6.7 Cflow output .. 89

7. lIPOTP Module , ... 90

7.1 Modules ... 90
7.1.1 Executive .. 90
7.1.2 Feature Extraction .. 91
7.1.3 HPOTP Sensor Validation .. 91
7.1.4 Redundancy Management. .. 92
7.1.5 Statistics Module .. 92
7.1.6 Anomaly Detection & Diagnosis ... 92
7.1.7 Green Run Specifications Check ... 93
7.1.8 Supporting Plot Generation ... 93
7.1.9 Output of Results .. 93

7.2 Anomalies Currently Detected by the lIPOTP Diagnostic System ... 93
7.2.1 General Anomalies ... 93
7.2.2 Green Run Specifications ... 99

8. Common Function Library for PTDS ... 100

8.1 Source Files .. 1 00

8.2 Header Files ... 100
8.3 Dt:iinoo Constants .. 1 0 1
8.4 Defined Types .. 1 02
8.5 Global Variables .. 105

8.6 Functions ... 106

ii

Acknowledgments

This User's Guide and Programmer's Guide contains contributions from various members of the
Post-Test Diagnostic System (PTDS) development team. The members of the development team are

Rick Ballard
Tim Bickmore
J. Allen Crider
Chris Fulton
Bill Maul
Catherine McLeod
Claudia Meyer
Virginia Tickles
Luis Trevino
June Zakrajsek

iii

Acknowledgments

This User's Guide and Programmer's Guide contains contributions from various members of the
Post-Test Diagnostic System (PTDS) development team. The members of the development team are

Rick Ballard
Tim Bickmore
J. Allen Crider
Chris Fulton
Bill Maul
Catherine McLeod
Claudia Meyer
Virginia Tickles
Luis Trevino
June Zakrajsek

iii

Introduction

This portion of the manual provides information useful to the maintainers of the Post-Test
Diagnostic System (proS) and developers of new modules for the system. The first section contains
information on running individual programs that are normally not executed directly by the average user.
The following section includes descriptions of all of the TekBase databases utilized by proS. The
remaining sections include descriptions of all source files, header files, and functions for each module,
program, or library included in PTDS. In addition, a partial listing of the output from the Unix utility
cflow is provided for each program. All references to PTDS functions and Metrica library functions are
included in these listings, but references to standard library functions and X Windows library functions
have been deleted.

1. Execution of Individual PTDS Programs

This section provides usage information on programs included in PTDS which are not normally
executed by the average user. All of these programs are run automatically as a result of running
new_data and should only be run standalone by developers and maintainers of the system.

1.1 Session Manager (smgr)

The session manager, smgr, runs all tests queued by the program new_data through a
predetermined set of PTDS modules. It is started automatically by new_data whenever a new test is
queued if it is not already running. It can also be started from the command line with no arguments,
although tllis is not normally done.

1.2 Feature Extractor (features)

The feature extractor program, features, provides the basic information on engine behavior
necessary for operation of the expert modules. The expert modules use the sensor trace "features"
reported by the feature extractor to reason about the health of an SSME component or assembly.

The feature extractor is currently capable of detecting the following generalized sensor trace
features:
• peaks (All peaks or only the primary peak, where primary peak is defined as the peak having the

greatest magnitude on the interval of interest)

• spikes
• erratic behavior
• level shifts
• redline violations

Sensor traces may also be statistically compared to determine the likelihood that they represent
the "same" (two samples of data from the same parent distribution) or a different measurement or differ by
a constant offset. This capability is provided by the feature extractor DifferentThan. In addition to
detecting the general features described above, the feature extractor is also capable of detecting more
specific behaviors of the SSME such as changes in the net force exerted on the balance piston, and
prebumer pump bistability.

1

Introduction

This portion of the manual provides information useful to the maintainers of the Post-Test
Diagnostic System (proS) and developers of new modules for the system. The first section contains
information on running individual programs that are normally not executed directly by the average user.
The following section includes descriptions of all of the TekBase databases utilized by proS. The
remaining sections include descriptions of all source files, header files, and functions for each module,
program, or library included in PTDS. In addition, a partial listing of the output from the Unix utility
cflow is provided for each program. All references to PTDS functions and Metrica library functions are
included in these listings, but references to standard library functions and X Windows library functions
have been deleted.

1. Execution of Individual PTDS Programs

This section provides usage information on programs included in PTDS which are not normally
executed by the average user. All of these programs are run automatically as a result of running
new_data and should only be run standalone by developers and maintainers of the system.

1.1 Session Manager (smgr)

The session manager, smgr, runs all tests queued by the program new_data through a
predetermined set of PTDS modules. It is started automatically by new_data whenever a new test is
queued if it is not already running. It can also be started from the command line with no arguments,
although tllis is not normally done.

1.2 Feature Extractor (features)

The feature extractor program, features, provides the basic information on engine behavior
necessary for operation of the expert modules. The expert modules use the sensor trace "features"
reported by the feature extractor to reason about the health of an SSME component or assembly.

The feature extractor is currently capable of detecting the following generalized sensor trace
features:
• peaks (All peaks or only the primary peak, where primary peak is defined as the peak having the

greatest magnitude on the interval of interest)

• spikes
• erratic behavior
• level shifts
• redline violations

Sensor traces may also be statistically compared to determine the likelihood that they represent
the "same" (two samples of data from the same parent distribution) or a different measurement or differ by
a constant offset. This capability is provided by the feature extractor DifferentThan. In addition to
detecting the general features described above, the feature extractor is also capable of detecting more
specific behaviors of the SSME such as changes in the net force exerted on the balance piston, and
prebumer pump bistability.

1

, When invoked, the feature extractor reads a general command table, F _COMM in the SSME_DB

database, that provides the program with basic information such as to what type of features to look for and
in what measurements (PIDs) to look for them. More specific information, such as the start and stop
times of the search, and in the case of peaks, what type of model to fit to, are determined by the program
at run time. By writing a set of general commands to the feature extractor, which are valid for all tests,
consistent behavior is assured. In light of the consistent manner in which features are collected, the results
may be used to accurately monitor the health of an SSME component.

Feature extraction is initiated by the session manager after the session manager has been notified
of the arrival of new data. It can also be started from the command line with a test ID as the only
argument. Both controller and facilities data for a test must be loaded prior to feature extraction. The
fmt operation performed by the feature extractor is an analysis of the thrust profile for the test of interest.
Periods of constant thrust are detected and classified by start time, stop time and percent thrust. This
information is then used to provide parameters for each feature extraction module. Only features
occluding ('1) during times of constant thrust are extracted. This provides protection against expected
transients in the data which could manifest themselves as interesting features.

The feature extractor is designed to be run once for each analysis of an SSME test. A general
command table, as referred to above, has been provided for the extraction of those features necessary for
HPOTP analysis. No changes to this command table, or test specific setup is required. To extract features
for the analysis of another module, appropriate commands must be appended to the command table. To
alter any aspect of the program or command table between tests, aside from additions to the command
table pertaining to additional modules, would make any further comparisons between tests invalid. The
program needs only to be called with a different test ID on the command line to provide features for
another test.

1.3 External Effects (external)

The External Effects program, external, removes the effects of several independent PIDs from
the differences of dependent PIDs for two tests, resulting in normalized delta PIDs for the dependent
parameters. The independent PIDs for which effects are removed are power level, mixture ratio, low
pressure fuel pump (LPFP) inlet pressure, low pressure Ox pump (LPOP) inlet pressure, LPFP inlet
temperature, and LPOP inlet temperature. In addition, the module uses the results from the Hardware
Change Reporter to adjust the normalized delta PIDs for changes in the hardware used for the two tests.
The resulting data can then be examined for anomalies.

External effects is automatically run as part of the Systems module. The typical user will
normally not need to run this program separately. The remainder of this section describes what a user
needs to know to run external effects separately.

The external effects module depends on several TekBase database tables containing some
necessary information required by the program in order to get complete results. The GAINS table in the
EXTERNAL database is used to determine the dependent PIDs and the values required in computing the
effects of the independent PIDs. Further discussion of the EXTERNAL database may be found in the
Database Tables section below and in the algorithm description for this program below. Other database
tables referenced are in the SSME_DB database. The CMP _DESC table is referenced to determine the
comparison test to be used and the TST_HW table is used to determine the HPOT pump type used during
the current test. If the required data is not available from these tables, the program will output an error
message and terminate. The RED_S_C table is used to determine a valid PID to be used for each
independent PID except mixture ratio and for each dependent PID. If any independent PIDs are missing
for either the current test or comparison test, the program will output an error message and terminate. If

2

, When invoked, the feature extractor reads a general command table, F _COMM in the SSME_DB

database, that provides the program with basic information such as to what type of features to look for and
in what measurements (PIDs) to look for them. More specific information, such as the start and stop
times of the search, and in the case of peaks, what type of model to fit to, are determined by the program
at run time. By writing a set of general commands to the feature extractor, which are valid for all tests,
consistent behavior is assured. In light of the consistent manner in which features are collected, the results
may be used to accurately monitor the health of an SSME component.

Feature extraction is initiated by the session manager after the session manager has been notified
of the arrival of new data. It can also be started from the command line with a test ID as the only
argument. Both controller and facilities data for a test must be loaded prior to feature extraction. The
fmt operation performed by the feature extractor is an analysis of the thrust profile for the test of interest.
Periods of constant thrust are detected and classified by start time, stop time and percent thrust. This
information is then used to provide parameters for each feature extraction module. Only features
occluding ('1) during times of constant thrust are extracted. This provides protection against expected
transients in the data which could manifest themselves as interesting features.

The feature extractor is designed to be run once for each analysis of an SSME test. A general
command table, as referred to above, has been provided for the extraction of those features necessary for
HPOTP analysis. No changes to this command table, or test specific setup is required. To extract features
for the analysis of another module, appropriate commands must be appended to the command table. To
alter any aspect of the program or command table between tests, aside from additions to the command
table pertaining to additional modules, would make any further comparisons between tests invalid. The
program needs only to be called with a different test ID on the command line to provide features for
another test.

1.3 External Effects (external)

The External Effects program, external, removes the effects of several independent PIDs from
the differences of dependent PIDs for two tests, resulting in normalized delta PIDs for the dependent
parameters. The independent PIDs for which effects are removed are power level, mixture ratio, low
pressure fuel pump (LPFP) inlet pressure, low pressure Ox pump (LPOP) inlet pressure, LPFP inlet
temperature, and LPOP inlet temperature. In addition, the module uses the results from the Hardware
Change Reporter to adjust the normalized delta PIDs for changes in the hardware used for the two tests.
The resulting data can then be examined for anomalies.

External effects is automatically run as part of the Systems module. The typical user will
normally not need to run this program separately. The remainder of this section describes what a user
needs to know to run external effects separately.

The external effects module depends on several TekBase database tables containing some
necessary information required by the program in order to get complete results. The GAINS table in the
EXTERNAL database is used to determine the dependent PIDs and the values required in computing the
effects of the independent PIDs. Further discussion of the EXTERNAL database may be found in the
Database Tables section below and in the algorithm description for this program below. Other database
tables referenced are in the SSME_DB database. The CMP _DESC table is referenced to determine the
comparison test to be used and the TST_HW table is used to determine the HPOT pump type used during
the current test. If the required data is not available from these tables, the program will output an error
message and terminate. The RED_S_C table is used to determine a valid PID to be used for each
independent PID except mixture ratio and for each dependent PID. If any independent PIDs are missing
for either the current test or comparison test, the program will output an error message and terminate. If

2

any dependent PIDs are missing for either test, no data for that PID will be included in the output me
generated by the program. This table is normally populated by the Sensor Validation module of P'IDS.
The DELTAS table is used to determine the constants to be added to the normalized delta PIDs to account
for changes in the hardware. If there is no entry for a particular dependent PID for the current test, no
adjustment is made to the normalized delta PID for that parameter. This table is normally populated by
the Hardware Change Reporter module of PTDS.

Two environment variables are checked by the program. The variable QYHOST is checked to
determine the machine to use as the TekBase server for database queries. If the environment variable is
not set, the program uses the default machine, jetson. The me location library used to determine the
directories containing data mes uses the environment variable FL_RC_PATH to determine the location of
the resource me . f 11 ibrc. (See the File Location library documentation for more information.)

where

The command line for running the external effects module is

external CurrentTest [normalizeFlg]

CurrentTest is the identifier for the current test. This may be either the name of a single test
data me or the name of a database directory file which contains a list of the data mes containing
the test data. Currently, the program assumes that if the identifier contains a period, it is the
name of a single test data me; otherwise, it is assumed to be the name of a database directory file.
The program uses the File Location library and the me • f 11 ibrc to determine the locations of
any database directory mes and test data meso The CMP _DESC table from the SSME_DB
database is searched to determine the appropriate comparison test corresponding to
CurrentTest to be used by the program.

normalizeFlg is an optional flag for indicating whether the user wishes to. calculate
normalized delta PIDs (i.e., delta PIDs with the external effects removed) or only delta PIDs (i.e.,
PIDs which are the result of subtracting the PIDs for the comparison test from the corresponding
PIDs for the current test with no adjustment made for external effects). If the first character of
normalizeFlg is D (must be upper case), then only delta PIDs are computed and written to the
output me. If normalizeFlg is omitted or if the first character of normalizeFlg is
anything other than D, then the external effects are removed after calculating the delta PIDs and
only the normalized PIDs are written to the output me.

If no arguments or more than two arguments are provided on the command line, the program
prints the message

Usage: external CurrentTest [D]
D - produce unnormalized deltas

and exits. The program will also print an appropriate error message and exit when some error conditions
are detected, such as a required t«;st data me or database directory me miSSing or required data missing
from a referenced database table. A warning message will be printed if a test data me listed in a required
database directory me is missing, but the program will continue to execute if all of the independent PIDs
can be found in the existing test data meso A warning message is also printed if no entry can be found in
the RED_S_C table in the SSME_DB database for a dependent PID description for the current test or for
the comparison test. If no errors are encountered, the results are written to a binary data me in SSME
format. If the first character of normalizeFlg is D, the name of the output me will be
Curren tTes t.DPID. Otherwise, the name of the output me will be CurrentTest.NPID. In
addition, the following items are written to· stdout: the cutoff time for the current test, a list of the

3

any dependent PIDs are missing for either test, no data for that PID will be included in the output me
generated by the program. This table is normally populated by the Sensor Validation module of P'IDS.
The DELTAS table is used to determine the constants to be added to the normalized delta PIDs to account
for changes in the hardware. If there is no entry for a particular dependent PID for the current test, no
adjustment is made to the normalized delta PID for that parameter. This table is normally populated by
the Hardware Change Reporter module of PTDS.

Two environment variables are checked by the program. The variable QYHOST is checked to
determine the machine to use as the TekBase server for database queries. If the environment variable is
not set, the program uses the default machine, jetson. The me location library used to determine the
directories containing data mes uses the environment variable FL_RC_PATH to determine the location of
the resource me . f 11 ibrc. (See the File Location library documentation for more information.)

where

The command line for running the external effects module is

external CurrentTest [normalizeFlg]

CurrentTest is the identifier for the current test. This may be either the name of a single test
data me or the name of a database directory file which contains a list of the data mes containing
the test data. Currently, the program assumes that if the identifier contains a period, it is the
name of a single test data me; otherwise, it is assumed to be the name of a database directory file.
The program uses the File Location library and the me • f 11 ibrc to determine the locations of
any database directory mes and test data meso The CMP _DESC table from the SSME_DB
database is searched to determine the appropriate comparison test corresponding to
CurrentTest to be used by the program.

normalizeFlg is an optional flag for indicating whether the user wishes to. calculate
normalized delta PIDs (i.e., delta PIDs with the external effects removed) or only delta PIDs (i.e.,
PIDs which are the result of subtracting the PIDs for the comparison test from the corresponding
PIDs for the current test with no adjustment made for external effects). If the first character of
normalizeFlg is D (must be upper case), then only delta PIDs are computed and written to the
output me. If normalizeFlg is omitted or if the first character of normalizeFlg is
anything other than D, then the external effects are removed after calculating the delta PIDs and
only the normalized PIDs are written to the output me.

If no arguments or more than two arguments are provided on the command line, the program
prints the message

Usage: external CurrentTest [D]
D - produce unnormalized deltas

and exits. The program will also print an appropriate error message and exit when some error conditions
are detected, such as a required t«;st data me or database directory me miSSing or required data missing
from a referenced database table. A warning message will be printed if a test data me listed in a required
database directory me is missing, but the program will continue to execute if all of the independent PIDs
can be found in the existing test data meso A warning message is also printed if no entry can be found in
the RED_S_C table in the SSME_DB database for a dependent PID description for the current test or for
the comparison test. If no errors are encountered, the results are written to a binary data me in SSME
format. If the first character of normalizeFlg is D, the name of the output me will be
Curren tTes t.DPID. Otherwise, the name of the output me will be CurrentTest.NPID. In
addition, the following items are written to· stdout: the cutoff time for the current test, a list of the

3

dependent PIDs for which deltas were computed, and a message including the name of the binary output
file.

Example: When external is run with the command line

external a20584 D

the following information is written to stdout:

comparison test is
cutoff = 299.869

86 52 17
659 18 93
140 1205 1212

a20583

835 209
21 231

Data is in file a20584.DPID

2. Database Tables

90
233

59
32

2.1 Space Shuttle Main Engine Database (SSME_DB)

Table ANOMDATA

ANOM#

PID#

REC#

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15

V16

V17

4

58
260

480
30

24
2

15
142

dependent PIDs for which deltas were computed, and a message including the name of the binary output
file.

Example: When external is run with the command line

external a20584 D

the following information is written to stdout:

comparison test is
cutoff = 299.869

86 52 17
659 18 93
140 1205 1212

a20583

835 209
21 231

Data is in file a20584.DPID

2. Database Tables

90
233

59
32

2.1 Space Shuttle Main Engine Database (SSME_DB)

Table ANOMDATA

ANOM#

PID#

REC#

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15

V16

V17

4

58
260

480
30

24
2

15
142

V18

V19

V20

V2i

V22

V23

V24

V25

V26

V28

V29

V30

V3i

V32

V33

V34

V35

V36

V38

V39

V40

V4i

V42

V43

V44

V45

V46

V48

V49

V50

Table ANOMDATO

I ANOM#

5

V18

V19

V20

V2i

V22

V23

V24

V25

V26

V28

V29

V30

V3i

V32

V33

V34

V35

V36

V38

V39

V40

V4i

V42

V43

V44

V45

V46

V48

V49

V50

Table ANOMDATO

I ANOM#

5

PID#

DESC

RATE

START TIME

END TIME

Table ANOMINFO

ANOM# Unique number given to the anomaly

TEST# Test ID for test where anomaly occurred.

MONTH, DAY, YEAR Month, da~ and year that the test was run.

TEST PHASE

POWER LEVEL

ANOM ST TIME Time that the anomaly started.

ANOM DUR Duration of the anomaly.

ENGINE#

ANOM LOC

ANOM TYPE

ANOM PROBLEM

SENSOR TYPE

LRU UNIT#

FL OR DEV EG

FL OR DV LRU

SPEC VIOLAT

SPEC VIOLCR

ANOM ANALYS

ANOM ACTION

ANOM ASSESS

START TIME

END TIME

USER NAME User that entered data into the database.

USER_MONTH, Month, day, and year that user entered data into the
USER_DAY, database.
USER YEAR

6

PID#

DESC

RATE

START TIME

END TIME

Table ANOMINFO

ANOM# Unique number given to the anomaly

TEST# Test ID for test where anomaly occurred.

MONTH, DAY, YEAR Month, da~ and year that the test was run.

TEST PHASE

POWER LEVEL

ANOM ST TIME Time that the anomaly started.

ANOM DUR Duration of the anomaly.

ENGINE#

ANOM LOC

ANOM TYPE

ANOM PROBLEM

SENSOR TYPE

LRU UNIT#

FL OR DEV EG

FL OR DV LRU

SPEC VIOLAT

SPEC VIOLCR

ANOM ANALYS

ANOM ACTION

ANOM ASSESS

START TIME

END TIME

USER NAME User that entered data into the database.

USER_MONTH, Month, day, and year that user entered data into the
USER_DAY, database.
USER YEAR

6

Table ANOMPRDE

Table ANOMTEX'l'

ANOM# Unigue anomaly number

COMMENT# ID number specifying comment as action, analysis, or
resolution.

COMMENT Text of comment.

Table ANOMTPH

I PHASE

I VIOLATION I Available anomaly.

I SENSOR I Available sensor types.

The AID history table, ATDHSTRY, contains the historical database of parameters for Pratt &
Whitney (AID) pumps utilized by the HPOTP diagnostic system. It is updated automatically by the
HPOTP module or by the program HPOTP_update. (See Section III of the User's Guide for more
information.)

Table ATDHSTRY

TESTID The testID.

TYPE The type of the parameter.

PARAM The name of the parameter.

VALUE The value of the paranleter.

IS_HOT Classifies the pump as having either a hot or cold "ski
slope".

OK_TO_USE Whether the parameter is to be used in future statistical
analyses.

IMOD~

7

Table ANOMPRDE

Table ANOMTEX'l'

ANOM# Unigue anomaly number

COMMENT# ID number specifying comment as action, analysis, or
resolution.

COMMENT Text of comment.

Table ANOMTPH

I PHASE

I VIOLATION I Available anomaly.

I SENSOR I Available sensor types.

The AID history table, ATDHSTRY, contains the historical database of parameters for Pratt &
Whitney (AID) pumps utilized by the HPOTP diagnostic system. It is updated automatically by the
HPOTP module or by the program HPOTP_update. (See Section III of the User's Guide for more
information.)

Table ATDHSTRY

TESTID The testID.

TYPE The type of the parameter.

PARAM The name of the parameter.

VALUE The value of the paranleter.

IS_HOT Classifies the pump as having either a hot or cold "ski
slope".

OK_TO_USE Whether the parameter is to be used in future statistical
analyses.

IMOD~

7

I REDLlNE

The comparison description table, CMP _DESC, is used to store information about the comparison
test to be used for each test. It is normally updated by new_data, but it may be updated manually. All
columns are used by the Hardware Change Reporter. The first two columns are also used by the Case
Based Reasoner and external.

Table CMP _DEBC

TEST_ID Test 10 for a current test.

COMP_TEST_ID Test 10 for the test to be used as a comparison test for the
current test.

CMP_START

CMP STOP

DURATION

CMP_SHUTDOWN

POWER LEVEL

The table DELTAS is populated by the Hardware Change Reporter, Comparator, and Sensor
Validation. The table is accessed by external during the process of modifying PIDs to account for
hardware changes.

Table DELTAS

TEST_ID Test 10 for the current test.

COMP_TEST_ID Test 10 for the comj)arison test used.

PRODUCER Systems sub-module which produced the delta entry.

COMPONENT

PARAMETER

START_TIME

END TIME

START_DELTA

END_DELTA

UNITS

The table D_BOOK is used by the Hardware Change Reporter and Case Based Reasoner. It is
updated manually as required.

I ENG CHANGE

8

I REDLlNE

The comparison description table, CMP _DESC, is used to store information about the comparison
test to be used for each test. It is normally updated by new_data, but it may be updated manually. All
columns are used by the Hardware Change Reporter. The first two columns are also used by the Case
Based Reasoner and external.

Table CMP _DEBC

TEST_ID Test 10 for a current test.

COMP_TEST_ID Test 10 for the test to be used as a comparison test for the
current test.

CMP_START

CMP STOP

DURATION

CMP_SHUTDOWN

POWER LEVEL

The table DELTAS is populated by the Hardware Change Reporter, Comparator, and Sensor
Validation. The table is accessed by external during the process of modifying PIDs to account for
hardware changes.

Table DELTAS

TEST_ID Test 10 for the current test.

COMP_TEST_ID Test 10 for the comj)arison test used.

PRODUCER Systems sub-module which produced the delta entry.

COMPONENT

PARAMETER

START_TIME

END TIME

START_DELTA

END_DELTA

UNITS

The table D_BOOK is used by the Hardware Change Reporter and Case Based Reasoner. It is
updated manually as required.

I ENG CHANGE

8

UNITS

TYPE

PHASE

ENG_FL_IN_PR

ENG_FL_IN_T

LPFP_SP

HPFP_IN_PR

HPFP_IN_T

ENG_V_FU_FL

HPFP_SP

HPFP DS_PR

HPFP_DS_T

MCC_CL_DS_PR

MCC_CL_DS_T

LPFT_IN_PR

ENG_O_IN_PR

ENG_O_IN_T

LPOP_SP

HPOP_IN_PR

HPOP_SP

HPOP_DS_PR

MCC_O_INJ_PR

MCC_O_INJ_T

PBP_DS_PR

PBP_DS_T

MFV_POS

MOV_POS

CCV_POS

OPOV_POS

FPOV_POS

FL_PR_INT_PR

FU_PR_INT_T

HEX_INT_PR

9

UNITS

TYPE

PHASE

ENG_FL_IN_PR

ENG_FL_IN_T

LPFP_SP

HPFP_IN_PR

HPFP_IN_T

ENG_V_FU_FL

HPFP_SP

HPFP DS_PR

HPFP_DS_T

MCC_CL_DS_PR

MCC_CL_DS_T

LPFT_IN_PR

ENG_O_IN_PR

ENG_O_IN_T

LPOP_SP

HPOP_IN_PR

HPOP_SP

HPOP_DS_PR

MCC_O_INJ_PR

MCC_O_INJ_T

PBP_DS_PR

PBP_DS_T

MFV_POS

MOV_POS

CCV_POS

OPOV_POS

FPOV_POS

FL_PR_INT_PR

FU_PR_INT_T

HEX_INT_PR

9

HEX_INT_T

FPB_PC

HPFT_DS_T

OPB PC

HPOT_DS_T

MCC HG IN_PR

VOL_LOX_FL

VOL_FUEL_FL

CBR

Table EXPEC'l'_l

TEST ID Test ID for the current test.

MODULE

NUMBER

TYPE

PID

START_TIME

STOP_TIME

SIGN

CHG_MAG \

The table EXPLANE is populated by the Hardware Change Reporter, Case Based Reasoner, and
Sensor Validation.

Table EXPLANE

TEST_ID

MODULE

NUMBER

TYPE

DEGREE

START_TIME

STOP_TIME

DESCRIPTION

COMP_IDl

COMP_ID2

10

HEX_INT_T

FPB_PC

HPFT_DS_T

OPB PC

HPOT_DS_T

MCC HG IN_PR

VOL_LOX_FL

VOL_FUEL_FL

CBR

Table EXPEC'l'_l

TEST ID Test ID for the current test.

MODULE

NUMBER

TYPE

PID

START_TIME

STOP_TIME

SIGN

CHG_MAG \

The table EXPLANE is populated by the Hardware Change Reporter, Case Based Reasoner, and
Sensor Validation.

Table EXPLANE

TEST_ID

MODULE

NUMBER

TYPE

DEGREE

START_TIME

STOP_TIME

DESCRIPTION

COMP_IDl

COMP_ID2

10

I DATA PARAM

Table FILTBIAC

TEST_ID

MODULE

PID

START_TIME

END_TIME

SIGN

PID VALUE

TEST_TYPE

The feature bistability table, F _B I STAB, is updated by the feature extractor whenever the
FindBistable module finds any bistability features.

MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT_NUM Unique number for this test.

SENSOR PID where the feature was found.

FIT_START, Start and end times of the fit interval where this feature
FIT_END was found.

THRUST_LEVEL Thrust level on the interval where this feature was found.

SENSOR_LABEL PID description for this sensor.

The feature commands table, F _COMM, contains the commands processed by the feature extractor
for each test processed by PIDS. The table must be updated manually when new modules are added to
the feature extractor or new commands are required for new or existing PTDS modules.

EXPERT This character string indicates the name of the expert
module which requests the feature. The feature extractor
runs only once per test so the features needed by all expert
modules are extracted at the same time. This field is saved
in the feature tables so that database queries may be issued
for all features requested for use by a certain expert
module.

11

I DATA PARAM

Table FILTBIAC

TEST_ID

MODULE

PID

START_TIME

END_TIME

SIGN

PID VALUE

TEST_TYPE

The feature bistability table, F _B I STAB, is updated by the feature extractor whenever the
FindBistable module finds any bistability features.

MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT_NUM Unique number for this test.

SENSOR PID where the feature was found.

FIT_START, Start and end times of the fit interval where this feature
FIT_END was found.

THRUST_LEVEL Thrust level on the interval where this feature was found.

SENSOR_LABEL PID description for this sensor.

The feature commands table, F _COMM, contains the commands processed by the feature extractor
for each test processed by PIDS. The table must be updated manually when new modules are added to
the feature extractor or new commands are required for new or existing PTDS modules.

EXPERT This character string indicates the name of the expert
module which requests the feature. The feature extractor
runs only once per test so the features needed by all expert
modules are extracted at the same time. This field is saved
in the feature tables so that database queries may be issued
for all features requested for use by a certain expert
module.

11

SENSOR

MODULENAME

STARTTlME,
ENDTIME

PARAM1, PARAM2,
PARAM3, PARAM4,
PARAMS

PARAM1_LABEL,
PARAM2_LABEL,
PARAM3_LABEL,
PARAM4_LABEL,
PARAMS LABEL

This is a standardized string describing the measurement
to be searched for the given class of feature. This string is
used to look up the appropriate PID name which is an
index into the data tables. For example, PID 63 is
represented by the string "MCC Combustion Pressure,
Average"

This indicates the use of either full sample data or one
second average. The former is indicated by entering an
"F' in this column while the latter is indicated by an "A".
This field is used to qualify the contents of the SENSOR
field which indicates which PID to operate on but does not
specify whether to use sample rates of the raw data, or one­
second averages computed ~y tbe PTDS.

This is a string representing the feature extraction module
to be called. The names of the available modules are as
follows: BalancePistoncompare,
DeltaLevelShift, DifferentThan,
FindBistable, FindErraticBehavior,
FindLevelShift,FindPea~FindSpike,IsFlat,

Redl ineCheck.

These character fields contain strings indicating the time
at which feature extraction is to start and stop for this
measurement. The times can be specified as an integer
value or as one of the following generic strings which
represent times of interest common to all tests: bot­
beginning of test data; eot - end of test data; cutoff -
engine cutoff time; ts_eq - time at which turbine seal
equilibrium is reached; lox_eq - time at which LOX seal
eqUilibrium is reached. NOTE: Setting STARTTlME =
ENDTIME indicates the special case where all periods of
constant thrust are examined for the requested feature.

These character fields contain parameters specific to the
named extraction module. Depending on the module,
some, all or none of these fields may be used. In the event
that a field is unused, its contents are irrelevant. Unused
fields have been filled with an X for ease of inspection.

PID description for this PID.

Archaic routine specific parameters.

The feature different than table, F _DIFTHA, is updated by the feature extractor whenever the
DifferentThan module or BalancePistonCompare modules find any features. The table is used
by Sensor Validation.

12

SENSOR

MODULENAME

STARTTlME,
ENDTIME

PARAM1, PARAM2,
PARAM3, PARAM4,
PARAMS

PARAM1_LABEL,
PARAM2_LABEL,
PARAM3_LABEL,
PARAM4_LABEL,
PARAMS LABEL

This is a standardized string describing the measurement
to be searched for the given class of feature. This string is
used to look up the appropriate PID name which is an
index into the data tables. For example, PID 63 is
represented by the string "MCC Combustion Pressure,
Average"

This indicates the use of either full sample data or one
second average. The former is indicated by entering an
"F' in this column while the latter is indicated by an "A".
This field is used to qualify the contents of the SENSOR
field which indicates which PID to operate on but does not
specify whether to use sample rates of the raw data, or one­
second averages computed ~y tbe PTDS.

This is a string representing the feature extraction module
to be called. The names of the available modules are as
follows: BalancePistoncompare,
DeltaLevelShift, DifferentThan,
FindBistable, FindErraticBehavior,
FindLevelShift,FindPea~FindSpike,IsFlat,

Redl ineCheck.

These character fields contain strings indicating the time
at which feature extraction is to start and stop for this
measurement. The times can be specified as an integer
value or as one of the following generic strings which
represent times of interest common to all tests: bot­
beginning of test data; eot - end of test data; cutoff -
engine cutoff time; ts_eq - time at which turbine seal
equilibrium is reached; lox_eq - time at which LOX seal
eqUilibrium is reached. NOTE: Setting STARTTlME =
ENDTIME indicates the special case where all periods of
constant thrust are examined for the requested feature.

These character fields contain parameters specific to the
named extraction module. Depending on the module,
some, all or none of these fields may be used. In the event
that a field is unused, its contents are irrelevant. Unused
fields have been filled with an X for ease of inspection.

PID description for this PID.

Archaic routine specific parameters.

The feature different than table, F _DIFTHA, is updated by the feature extractor whenever the
DifferentThan module or BalancePistonCompare modules find any features. The table is used
by Sensor Validation.

12

Table F DIFTHA

MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.

SENSOR PID where the feature was found for DifferentThan
features or an indicator of the form PID#-PID# for the
composite data where the feature is found for
BalancePi stonCompare features.

COMP TESTID Test ID for the comparison test.

COMP SENSOR Comparison test PID.

START_TIME, Start and end times of the fit interval where this feature
END TIME was found.

CHI SQUARE Comparison statistic.

PROB Comparison statistic.

COEF W ERR B Comoarison statistic.

DIF BY OFFSE Offset Fla~.

OFFSET Offset Fla.!!.

OFFSET SIGMA Offset Fla~.

THRUST LEVEL Thrust level on the interval where this feature was found.

SENSOR LABEL PID descriotion for this PID.

COMP SEN LAB PID description for the comparison PID.

The table F _DRIFT is used by Sensor Validation.

Table F DRIFT -
MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.

SENSOR PID where the feature was found.

START_TIME,
END TIME

Start and stop times of the detected feature.

OFFSET

SLOPE A vera.!!e slope of the drift.

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID description for this PID.

13

Table F DIFTHA

MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.

SENSOR PID where the feature was found for DifferentThan
features or an indicator of the form PID#-PID# for the
composite data where the feature is found for
BalancePi stonCompare features.

COMP TESTID Test ID for the comparison test.

COMP SENSOR Comparison test PID.

START_TIME, Start and end times of the fit interval where this feature
END TIME was found.

CHI SQUARE Comparison statistic.

PROB Comparison statistic.

COEF W ERR B Comoarison statistic.

DIF BY OFFSE Offset Fla~.

OFFSET Offset Fla.!!.

OFFSET SIGMA Offset Fla~.

THRUST LEVEL Thrust level on the interval where this feature was found.

SENSOR LABEL PID descriotion for this PID.

COMP SEN LAB PID description for the comparison PID.

The table F _DRIFT is used by Sensor Validation.

Table F DRIFT -
MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.

SENSOR PID where the feature was found.

START_TIME,
END TIME

Start and stop times of the detected feature.

OFFSET

SLOPE A vera.!!e slope of the drift.

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID description for this PID.

13

Magnitudes of the PID at the beginning and end of the
drift.

The feature erratic table, F _ERRAT, is updated by the feature extractor whenever the
FindErrat icBehavi our module finds any erratic behaviour features.

Table F ERRA'l' -
MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.
\

SENSOR PIO where the feature was found.

START_TIME , Start and end times of the fit interval where this feature
END_TIME was found.

THRUST LEVEL Thrust level on the interval where this feature was found.

SENSOR LABEL PID description for this PID.

The feature is flat table, F _ISFLAT, is updated by the feature extractor whenever the IsFlat
module finds any is flat features. The table is used by Sensor Validation.

Table F I:SFLA'l' -
MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.

SENSOR PID where the feature was found.

START_TIME, Start and stop times of the detected feature.
END TIME

OFFSET

SLOPE A vera1!e sloDe of the drift.

OFFSET_SIGMA Statistic from the feature routine.

SLOPE SIGMA Statistic from the feature routine.

CHI_SQUARE Statistic from the feature routine.

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID descriotion for this PIO.

The feature level shift table, F _LEVSH, is updated by the feature extractor whenever the
FindLevelShift or DeltaLevelShift modules find any features. The table F _LEVSH is used by
the Comparator and Sensor Validation.

14

Magnitudes of the PID at the beginning and end of the
drift.

The feature erratic table, F _ERRAT, is updated by the feature extractor whenever the
FindErrat icBehavi our module finds any erratic behaviour features.

Table F ERRA'l' -
MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.
\

SENSOR PIO where the feature was found.

START_TIME , Start and end times of the fit interval where this feature
END_TIME was found.

THRUST LEVEL Thrust level on the interval where this feature was found.

SENSOR LABEL PID description for this PID.

The feature is flat table, F _ISFLAT, is updated by the feature extractor whenever the IsFlat
module finds any is flat features. The table is used by Sensor Validation.

Table F I:SFLA'l' -
MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.

SENSOR PID where the feature was found.

START_TIME, Start and stop times of the detected feature.
END TIME

OFFSET

SLOPE A vera1!e sloDe of the drift.

OFFSET_SIGMA Statistic from the feature routine.

SLOPE SIGMA Statistic from the feature routine.

CHI_SQUARE Statistic from the feature routine.

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID descriotion for this PIO.

The feature level shift table, F _LEVSH, is updated by the feature extractor whenever the
FindLevelShift or DeltaLevelShift modules find any features. The table F _LEVSH is used by
the Comparator and Sensor Validation.

14

MODULE PTDS module which reauested this feature.

TESTID Test ID for the current test.

FEAT NOM Unique number for this test.

SENSOR PID where the feature was found for FindLevelShift
features or an indicator of the form PID#-PID# for the
composite data where the feature is found for
DeltaLevelShift features.

START_TIME, Start and stop times of the detected feature.
END TIME

LAST MAG Magnitude of the PID at the end of Ihe level shift

DELTA Size of tbe level shift.

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID description for this PID.

The table F _NOISE is used by Sensor Validation.

MODULE PTDS module which reauested this feature.

TESTID Test ID for the current test.

FEAT NOM Unique number for this test.

SENSOR PID where the feature was found.

START_TIME, Start and stop times of the detected feature.
END TIME

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID description for this PID.

PID

The feature peak table, F _PEAK, is updated by the feature extractor whenever the F indPeak
module fmds any peak features.

TableF PEAK -
MODULE PTDS module which reauested this feature.

TESTID Test ID for the current test.

FEAT NOM Unique number for tllis test.

SENSOR PID where the feature was found.

'PEAK HT Ma~nitude of the peak.

TAPH Time at the maximum peak hei~ht.

15

MODULE PTDS module which reauested this feature.

TESTID Test ID for the current test.

FEAT NOM Unique number for this test.

SENSOR PID where the feature was found for FindLevelShift
features or an indicator of the form PID#-PID# for the
composite data where the feature is found for
DeltaLevelShift features.

START_TIME, Start and stop times of the detected feature.
END TIME

LAST MAG Magnitude of the PID at the end of Ihe level shift

DELTA Size of tbe level shift.

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID description for this PID.

The table F _NOISE is used by Sensor Validation.

MODULE PTDS module which reauested this feature.

TESTID Test ID for the current test.

FEAT NOM Unique number for this test.

SENSOR PID where the feature was found.

START_TIME, Start and stop times of the detected feature.
END TIME

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID description for this PID.

PID

The feature peak table, F _PEAK, is updated by the feature extractor whenever the F indPeak
module fmds any peak features.

TableF PEAK -
MODULE PTDS module which reauested this feature.

TESTID Test ID for the current test.

FEAT NOM Unique number for tllis test.

SENSOR PID where the feature was found.

'PEAK HT Ma~nitude of the peak.

TAPH Time at the maximum peak hei~ht.

15

FWHM Magnitude of the peak at half hei~ht.

TAFWHMl Time of the half ma1!nitude on the rising slope.

TAFWHM2 Time of the half magnitude on the falling slope.

FIT TYPE Tyve of fit applied to the slope.

CHI_SQUARE

NUM PARAMS

PARAM1F

PARAM2F

PARAM3F

PARAM4F

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID description for this PID.

OFFSET

The table F _RD_CC is used by Sensor Validation.

Table F RD_CC -
EXPERT pros module which requested this feature.

TEST ID Test ID for the current test.

FEAT NUM UniQue number for this test.

CHANNEL A PJDone.

CHANNEL B PIDtwo.

START_TIME,
END TIME

Start and stop times of the detected feature.

The feature redline violations table, F _RLVIOL, is updated by the feature extractor whenever the
RedlineCheck module finds any redline violations features. The table F _RLVIOL is used by Sensor
Validation.

Table F _RLVIOL

MODULE pros module which requested this feature.

TESTID Test JD for the current test.

FEAT NUM UniQue number for this test.

SENSOR PID where the feature was found.

PAIR_SENSOR

VIOLAT_START,
VIOLAT END

Start and stop times of the redline violation.

16

FWHM Magnitude of the peak at half hei~ht.

TAFWHMl Time of the half ma1!nitude on the rising slope.

TAFWHM2 Time of the half magnitude on the falling slope.

FIT TYPE Tyve of fit applied to the slope.

CHI_SQUARE

NUM PARAMS

PARAM1F

PARAM2F

PARAM3F

PARAM4F

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID description for this PID.

OFFSET

The table F _RD_CC is used by Sensor Validation.

Table F RD_CC -
EXPERT pros module which requested this feature.

TEST ID Test ID for the current test.

FEAT NUM UniQue number for this test.

CHANNEL A PJDone.

CHANNEL B PIDtwo.

START_TIME,
END TIME

Start and stop times of the detected feature.

The feature redline violations table, F _RLVIOL, is updated by the feature extractor whenever the
RedlineCheck module finds any redline violations features. The table F _RLVIOL is used by Sensor
Validation.

Table F _RLVIOL

MODULE pros module which requested this feature.

TESTID Test JD for the current test.

FEAT NUM UniQue number for this test.

SENSOR PID where the feature was found.

PAIR_SENSOR

VIOLAT_START,
VIOLAT END

Start and stop times of the redline violation.

16

CHECK TYPE

LIMIT TYPE

REDLINE Redline value.

SENSOR LABEL PID description for this PID.

PR SEN LABEL PID description for the paired sensor.

The feature spike· table. F _ISFLAT. is updated by the feature extractor whenever the
FindSpike module fmds any spike features. The table F _SPIKE is used by Sensor Validation.

Table F SPIKE -
MODULE PTDS module which reQuested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.

SENSOR PID where the feature was found.

START_TIME, Start and stop times of the detected feature.
END TIME

MAGNITUDE MaJ;!nitude of the detected spike.

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID description for this PID.

The table F _THLEDE is used by the Comparator.

Table F 'l'HLEDE -
MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.

SENSOR Standard descriPtor string correspondinl! to the thrust PID.

START_TIME, Start and end times of the period of constant thrust.
END TIME

OFFSET, SLOPE Parameters of a straight line fit to the data over the
specified time range.

OFFSET_SIGMA, The standard deviations on the straight line fit parameters.
SLOPE SIGMA

CHI_SQUARE Measurement of how good the fit of a straight line to the
data was.

THRUST_LEVEL Thrust level of the detected feature. as given by OFFSET
scaled to percent thrust.

The table F _ZEROSC is used by Sensor Validation.

17

CHECK TYPE

LIMIT TYPE

REDLINE Redline value.

SENSOR LABEL PID description for this PID.

PR SEN LABEL PID description for the paired sensor.

The feature spike· table. F _ISFLAT. is updated by the feature extractor whenever the
FindSpike module fmds any spike features. The table F _SPIKE is used by Sensor Validation.

Table F SPIKE -
MODULE PTDS module which reQuested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.

SENSOR PID where the feature was found.

START_TIME, Start and stop times of the detected feature.
END TIME

MAGNITUDE MaJ;!nitude of the detected spike.

THRUST LEVEL Thrust level of the detected feature.

SENSOR LABEL PID description for this PID.

The table F _THLEDE is used by the Comparator.

Table F 'l'HLEDE -
MODULE PIDS module which requested this feature.

TESTID Test ID for the current test.

FEAT NUM Unique number for this test.

SENSOR Standard descriPtor string correspondinl! to the thrust PID.

START_TIME, Start and end times of the period of constant thrust.
END TIME

OFFSET, SLOPE Parameters of a straight line fit to the data over the
specified time range.

OFFSET_SIGMA, The standard deviations on the straight line fit parameters.
SLOPE SIGMA

CHI_SQUARE Measurement of how good the fit of a straight line to the
data was.

THRUST_LEVEL Thrust level of the detected feature. as given by OFFSET
scaled to percent thrust.

The table F _ZEROSC is used by Sensor Validation.

17

TESTID Test ID for the current test.

MODULE PTDS module which requested this feature.

FEAT_NUM Unique number for this test.

AVER Average value for the sensor.

THRUST LEVEL Thrust level of the detected feature.

SENSOR_LABEL PID description for this PID.

DELTA Difference of sensor value from expected value.

PID PID where the feature was found.

The history table, HISTORY, contains the historical database of parameters for Rocketdyne
pumps utilized by the HPOTP diagnostic system. It is updated automatically by the HPOTP module or by
the program HPOTP _update. (See Section III of the User's Guide for more information.)

Table HISTORY

TESTID The testID.

TYPE The type of the parameter.

PARAM The name of the parameter.

VALUE The value of the parameter.

OK_TO_USE Whether the parameter is to be used in future statistical
analyses.

Table KONFLICT

FMODEl

FMODE2

The table PARA INFO is used by the Comparator, Case Based Reasoner, and Sensor Validation.
It is updated manually as required.

Table PARAINFO

UNITS

NORM VALUE

18

TESTID Test ID for the current test.

MODULE PTDS module which requested this feature.

FEAT_NUM Unique number for this test.

AVER Average value for the sensor.

THRUST LEVEL Thrust level of the detected feature.

SENSOR_LABEL PID description for this PID.

DELTA Difference of sensor value from expected value.

PID PID where the feature was found.

The history table, HISTORY, contains the historical database of parameters for Rocketdyne
pumps utilized by the HPOTP diagnostic system. It is updated automatically by the HPOTP module or by
the program HPOTP _update. (See Section III of the User's Guide for more information.)

Table HISTORY

TESTID The testID.

TYPE The type of the parameter.

PARAM The name of the parameter.

VALUE The value of the parameter.

OK_TO_USE Whether the parameter is to be used in future statistical
analyses.

Table KONFLICT

FMODEl

FMODE2

The table PARA INFO is used by the Comparator, Case Based Reasoner, and Sensor Validation.
It is updated manually as required.

Table PARAINFO

UNITS

NORM VALUE

18

I PID PACKAGE

UNIT LABEL

Table PHASES

TEST IO Test ID for the current test.

MOOULE PTDS module initially generating this feature.

PHASE Phase name.

START_TIME, Start and stop times for the phase.
STOP NAME

Table PIDINFO

TEST IO Test ID for the current test.

PIO PIDname.

UNITS PID units.

OEseR PID description as in flat file.

STO OEseR Standard PID description.

RATE Sample rate.

START_TIME, Start and stop times of the PID as in flat file.
ENO TIME

SENSOR LABEL PID descripJi,on for this PID.

Thc table PIOS_MIA is used by Sensor Validation.

Table PIDS MIA

TEST IO Test ID for the current test.

PIO ReQuired PID that is missin.!!: from the flat file.

Table PID DEF -
PIO PIDname.

OEseR PID description as sometimes read in the flat file.

STO OEseR Standardized PID description.

SENSOR LABEL PID description for this PID.

19

I PID PACKAGE

UNIT LABEL

Table PHASES

TEST IO Test ID for the current test.

MOOULE PTDS module initially generating this feature.

PHASE Phase name.

START_TIME, Start and stop times for the phase.
STOP NAME

Table PIDINFO

TEST IO Test ID for the current test.

PIO PIDname.

UNITS PID units.

OEseR PID description as in flat file.

STO OEseR Standard PID description.

RATE Sample rate.

START_TIME, Start and stop times of the PID as in flat file.
ENO TIME

SENSOR LABEL PID descripJi,on for this PID.

Thc table PIOS_MIA is used by Sensor Validation.

Table PIDS MIA

TEST IO Test ID for the current test.

PIO ReQuired PID that is missin.!!: from the flat file.

Table PID DEF -
PIO PIDname.

OEseR PID description as sometimes read in the flat file.

STO OEseR Standardized PID description.

SENSOR LABEL PID description for this PID.

19

I SENSOR LABEL

TEST 10 Test ID for the current test.

PID Nominally standard PID name.

OVERRIDE PlD

The table PLOT INFO is populated by the Case Based Reasoner and Sensor Validation.

Table PLOT INFO

NAME

POST NUMBER Unique anomaly number.

PLOT TYPE

MODULE Module submittin-.Z

CUR TESTID Test ID for the current test.

PREV TESTID Test ID for the previous test if applicable.

NUM PLOTS Number o(plotsJ.maximum 10).

FULL_SAMPLE1, Flags specifying whether to plot with full sample or 1-
FULL_SAMPLE2, second averages for plots 1, 2, and 3, respectively.
FULL SAMPLE3

NUM_CURVES1, Number of curves for each of plots 1, 2, and 3,
NUM_CURVES2, respectively; sum must be equal to NUM_PLOTS.
NUM CURVES3

START_TIME1,
START_TIME2,

Start times for plots 1,2, and 3, respectively.

START TIME3

END_TIME1,
END_TIME2,

End times for plots 1, 2, and 3, respectively.

END TIME3

TITLE1, TlTLE2, Titles for plots 1, 2, and 3, respectively.
TITLE3

SUBTITLE1, Subtitles for plots 1,2, and 3, respectively.
SUBTITLE2,
SUBTITLE3

XTITLE1, Titles for tlle x-axes for plots 1,2, and 3, respectively.
XTITLE2, XTITLE3

YTITLE1, Titles for the y-axes for plots 1,2, and 3, respectively.
YTITLE2, YTITLE3

20

I SENSOR LABEL

TEST 10 Test ID for the current test.

PID Nominally standard PID name.

OVERRIDE PlD

The table PLOT INFO is populated by the Case Based Reasoner and Sensor Validation.

Table PLOT INFO

NAME

POST NUMBER Unique anomaly number.

PLOT TYPE

MODULE Module submittin-.Z

CUR TESTID Test ID for the current test.

PREV TESTID Test ID for the previous test if applicable.

NUM PLOTS Number o(plotsJ.maximum 10).

FULL_SAMPLE1, Flags specifying whether to plot with full sample or 1-
FULL_SAMPLE2, second averages for plots 1, 2, and 3, respectively.
FULL SAMPLE3

NUM_CURVES1, Number of curves for each of plots 1, 2, and 3,
NUM_CURVES2, respectively; sum must be equal to NUM_PLOTS.
NUM CURVES3

START_TIME1,
START_TIME2,

Start times for plots 1,2, and 3, respectively.

START TIME3

END_TIME1,
END_TIME2,

End times for plots 1, 2, and 3, respectively.

END TIME3

TITLE1, TlTLE2, Titles for plots 1, 2, and 3, respectively.
TITLE3

SUBTITLE1, Subtitles for plots 1,2, and 3, respectively.
SUBTITLE2,
SUBTITLE3

XTITLE1, Titles for tlle x-axes for plots 1,2, and 3, respectively.
XTITLE2, XTITLE3

YTITLE1, Titles for the y-axes for plots 1,2, and 3, respectively.
YTITLE2, YTITLE3

20

PID1, PID2, PIDs used for each plot, up to NUM_PLOTS.
PID3, PID4,
PIDS, PID6,
PID7, PIDS,
PID9, PID10

WHICH_TEST1,
WHICH_TEST2,

Test ID used for each plot. up to NUM_PLOTS.

WHICH_TEST3,
WHICH_TEST4,
WHICH_TESTS,
WHICH_TEST6,
WHICH_TEST7,
WHICH_TESTS,
WHICH_TEST9,
WHICH TEST10

LEG_LABELl, Legend for each plot, up to NUM_PLOTS.
LEG_LABEL2,
LEG_LABEL3,
LEG_LABEL4,
LEG_LABELS,
LEG_LABEL 6 ,
LEG_LABEL7,
LEG_LABELS,
LEG_LABEL 9 ,
LEG LABEL10

SET~

The table POSCAUSE is populated by the Case Based Reasoner.

Table POSCAUSE

TEST ID

MODULE

NUMBER

ENG CHANGE

START TIME

STOP TIME

DESCRIPTION2

SCORE

RANK

SCALED VAL

STAND DEV

NOT COVERED

The table POSHW_CH is populated by the Hardware Change Reporter.

21

PID1, PID2, PIDs used for each plot, up to NUM_PLOTS.
PID3, PID4,
PIDS, PID6,
PID7, PIDS,
PID9, PID10

WHICH_TEST1,
WHICH_TEST2,

Test ID used for each plot. up to NUM_PLOTS.

WHICH_TEST3,
WHICH_TEST4,
WHICH_TESTS,
WHICH_TEST6,
WHICH_TEST7,
WHICH_TESTS,
WHICH_TEST9,
WHICH TEST10

LEG_LABELl, Legend for each plot, up to NUM_PLOTS.
LEG_LABEL2,
LEG_LABEL3,
LEG_LABEL4,
LEG_LABELS,
LEG_LABEL 6 ,
LEG_LABEL7,
LEG_LABELS,
LEG_LABEL 9 ,
LEG LABEL10

SET~

The table POSCAUSE is populated by the Case Based Reasoner.

Table POSCAUSE

TEST ID

MODULE

NUMBER

ENG CHANGE

START TIME

STOP TIME

DESCRIPTION2

SCORE

RANK

SCALED VAL

STAND DEV

NOT COVERED

The table POSHW_CH is populated by the Hardware Change Reporter.

21

TEST_ID

COMP_TEST_lO

COMPONENT

TYPE_CHANGE

PARAMETER

START_TIME

END_TIME

CHANGE

The postulates table, POSTUL, is used by the Case Based Reasoner. It is populated by the Case
Based Reasoner and Sensor Validation.

Table POSTUL

NAME Unique name for the~ostulate.

TEST_ID Test ID for the current test.

MODULE PTDS module initially generating this feature.

FMODE

POST_NUMBER Postulate number; un!gue to TYPE.

PRIORITY Plotti~riority.

START_TIME, Start and stop times for the problem.
STOP TIME

PROBLEM Description of the problem.

TYPE ANOMALY,OBSERVATION,orINSTRUMENTATION.

PID PID name if TYPE = INSTRUMENTATION.

The redundant sensor choice table, RED_S_C, is used by the Case Based Reasoner and
external to determine valid PIDs to be used for a particular parameter. It is populated by Sensor
Validation.

NAME Description of the PID.

TEST_lO Test ID for the current test.

MODULE

PID_PACKAGE List of redundant/related PIDs.

PID Name of the validated PID corresponding to the PID
descri~tion.

22

TEST_ID

COMP_TEST_lO

COMPONENT

TYPE_CHANGE

PARAMETER

START_TIME

END_TIME

CHANGE

The postulates table, POSTUL, is used by the Case Based Reasoner. It is populated by the Case
Based Reasoner and Sensor Validation.

Table POSTUL

NAME Unique name for the~ostulate.

TEST_ID Test ID for the current test.

MODULE PTDS module initially generating this feature.

FMODE

POST_NUMBER Postulate number; un!gue to TYPE.

PRIORITY Plotti~riority.

START_TIME, Start and stop times for the problem.
STOP TIME

PROBLEM Description of the problem.

TYPE ANOMALY,OBSERVATION,orINSTRUMENTATION.

PID PID name if TYPE = INSTRUMENTATION.

The redundant sensor choice table, RED_S_C, is used by the Case Based Reasoner and
external to determine valid PIDs to be used for a particular parameter. It is populated by Sensor
Validation.

NAME Description of the PID.

TEST_lO Test ID for the current test.

MODULE

PID_PACKAGE List of redundant/related PIDs.

PID Name of the validated PID corresponding to the PID
descri~tion.

22

I SENSOR

The table REL_PIDS is used by Sensor Validation. It is updated manually as required.

Unique MAP 10.

List of related PIDs by description.

The table RL_INFO is used by Sensor Validation. It is updated manually as required.

PID PID name or combination.

LIMIT_TYPE "UPPER" or "LOWER" limits.

STARTTIME, Beginning and ending times that redline is applicable.
ENDTIME

LIMIT Limit value.

REDLINE_TIME Minimum time of redline.

The table SEGMENT is populated by the Case Based Reasoner.

Table SEGMENT

TEST_ID

MODULE

SEGMENT

START_TIME

STOP_TIME

MODEL

Table TEST

I TEST ID

The table TEST INFO is used by the Comparator and Sensor Validation to get the shutdown time
for a test.

Table TESTINFO

JOB_SUB_DATE Date test submitted to new data.

TEST_ID Test 10 for current test.

23

I SENSOR

The table REL_PIDS is used by Sensor Validation. It is updated manually as required.

Unique MAP 10.

List of related PIDs by description.

The table RL_INFO is used by Sensor Validation. It is updated manually as required.

PID PID name or combination.

LIMIT_TYPE "UPPER" or "LOWER" limits.

STARTTIME, Beginning and ending times that redline is applicable.
ENDTIME

LIMIT Limit value.

REDLINE_TIME Minimum time of redline.

The table SEGMENT is populated by the Case Based Reasoner.

Table SEGMENT

TEST_ID

MODULE

SEGMENT

START_TIME

STOP_TIME

MODEL

Table TEST

I TEST ID

The table TEST INFO is used by the Comparator and Sensor Validation to get the shutdown time
for a test.

Table TESTINFO

JOB_SUB_DATE Date test submitted to new data.

TEST_ID Test 10 for current test.

23

DATEX Date of the lest from flat me.

ENGINE# Engine number from flat me.

CPIDS

FPIDS

COMB_DEVICES

CONTROLLER

NOZZLE

MCC

MAIN INJ

POWERHEAD

HPFTP

HPOTP

LPFTP

LPOTP

ENG_SHUTDOWN Engine shutdown time.

PREV_TESTID Test ID for the comparison lest.

The table TST_HW is used by the Hardware Change Reporter. It is also used by external to
detennine which set of gains are used in calculating the effects of independent parameters. Updating of
this table is described under "Hardware Configuration Data Entry" in Section II of the User's Guide.

Table TST_HW

TEST_ID Test identifier.

ENGINE_NO En,Kine number for this test.

HPOTP_U_NO High pressure oxidizer turbopump unit number.

LPOTP_U_NO Low ~essure oxidizer tur~um~ unit number.

HPFTP_U_NO High_pressure fuel turbo pump unit number.

LPFTP_U_NO Low pressure fuel lurbopump unit number.

HPOTP_SER_NO Hi,KbJ)I'essure oxidizer turbo~um~ serial number.

LPOTP_SER_NO Low pressure oxidizer turbopump serial number.

HPFTP_SER_NO High pressure fuel lurb(mump serial number.

LPFTP_SER_NO Low pressure fuel lurbopump serial number.

POWERHEAD_UN Powerhead unit number.

MAIN_INJ_UN Main injector unit number.

24

DATEX Date of the lest from flat me.

ENGINE# Engine number from flat me.

CPIDS

FPIDS

COMB_DEVICES

CONTROLLER

NOZZLE

MCC

MAIN INJ

POWERHEAD

HPFTP

HPOTP

LPFTP

LPOTP

ENG_SHUTDOWN Engine shutdown time.

PREV_TESTID Test ID for the comparison lest.

The table TST_HW is used by the Hardware Change Reporter. It is also used by external to
detennine which set of gains are used in calculating the effects of independent parameters. Updating of
this table is described under "Hardware Configuration Data Entry" in Section II of the User's Guide.

Table TST_HW

TEST_ID Test identifier.

ENGINE_NO En,Kine number for this test.

HPOTP_U_NO High pressure oxidizer turbopump unit number.

LPOTP_U_NO Low ~essure oxidizer tur~um~ unit number.

HPFTP_U_NO High_pressure fuel turbo pump unit number.

LPFTP_U_NO Low pressure fuel lurbopump unit number.

HPOTP_SER_NO Hi,KbJ)I'essure oxidizer turbo~um~ serial number.

LPOTP_SER_NO Low pressure oxidizer turbopump serial number.

HPFTP_SER_NO High pressure fuel lurb(mump serial number.

LPFTP_SER_NO Low pressure fuel lurbopump serial number.

POWERHEAD_UN Powerhead unit number.

MAIN_INJ_UN Main injector unit number.

24

MCC UJJO Main combustion chamber unit number.

NOZZLE U NO Nozzle unit number.

CONT UNIT NO Controller unit number.

POWERHEAO TY

CONT TYPE

CON SER NO Controller serial number.

FL M S NO Flow meter serial number.

HPFPO SER NO Hi~h pressure fuel pump duct serial number.

HPFP DUCT TY HiJ!h pressure fuel Dump duct tvoe (Inconel or Titanium).

HEX ORI OIA Heat exchanl!er orifice diameter.

HEX 0 SER NO Heat exchanger orifice serial number.

F7 ORI DIA F7 orifice diameter.

F7 o SER NO F7 orifice serial number.

THROAT DrA Main combustion chamber throat diameter.

EXIT DIA Nozzle exit diameter.

PLUGGED POST Plul!l!ed pOsts in injector.

MCC CRACKS Main combustion chamber hot wall cracks.

ENL BLCS Enlarl!ed boundary layer coolant holes.

HPFTP CONT Contractor that built the HPFf DumD used in this test.

HPOTP CONT Contractor that built the HPOT Dump used in this test.

OPOV SER NO LOX Dreburner oxidizer valve serial number.

FPOV SER NO Fuel Dreburner oxidizer valve serial number.

MFV SER NO Main fuel valve serial number.

MOV SER NO Main oxidizer valve serial number.

CCV SER NO Coolant control valve serial number.

POWH SER NO Powerhead serial number.

MAINI SER NO Main iniector serial number.

MCC SER NO Main combustion chamber serial number.

NOZ SER NO Nozzle serial number.

The table TST_INFO is used by the Hardware Change Reporter. Updating of this table is
described under "Hardware Configuration Data Entry" in Section II of the User's Guide.

25

MCC UJJO Main combustion chamber unit number.

NOZZLE U NO Nozzle unit number.

CONT UNIT NO Controller unit number.

POWERHEAO TY

CONT TYPE

CON SER NO Controller serial number.

FL M S NO Flow meter serial number.

HPFPO SER NO Hi~h pressure fuel pump duct serial number.

HPFP DUCT TY HiJ!h pressure fuel Dump duct tvoe (Inconel or Titanium).

HEX ORI OIA Heat exchanl!er orifice diameter.

HEX 0 SER NO Heat exchanger orifice serial number.

F7 ORI DIA F7 orifice diameter.

F7 o SER NO F7 orifice serial number.

THROAT DrA Main combustion chamber throat diameter.

EXIT DIA Nozzle exit diameter.

PLUGGED POST Plul!l!ed pOsts in injector.

MCC CRACKS Main combustion chamber hot wall cracks.

ENL BLCS Enlarl!ed boundary layer coolant holes.

HPFTP CONT Contractor that built the HPFf DumD used in this test.

HPOTP CONT Contractor that built the HPOT Dump used in this test.

OPOV SER NO LOX Dreburner oxidizer valve serial number.

FPOV SER NO Fuel Dreburner oxidizer valve serial number.

MFV SER NO Main fuel valve serial number.

MOV SER NO Main oxidizer valve serial number.

CCV SER NO Coolant control valve serial number.

POWH SER NO Powerhead serial number.

MAINI SER NO Main iniector serial number.

MCC SER NO Main combustion chamber serial number.

NOZ SER NO Nozzle serial number.

The table TST_INFO is used by the Hardware Change Reporter. Updating of this table is
described under "Hardware Configuration Data Entry" in Section II of the User's Guide.

25

Table 'l'S'l' I:NFO -
TEST ID Test identifier.

TEST DATE Date of this test.

PLANNED DUR Planned duration of this test.

SHUTDOWN Em!ine shutdown time (actual duration),

ACCEPT TEST Is this an acceptance test'!

FLT ENGINE Is this a fli~ht engine'!

FLT HPFTP Is this a flil!ht hi~h pressure fuel turbooumo'!

FLT HPOTP Is this a fli~ht high pressure oxidizer turbopump'!

FLT LPFTP Is this a flight low pressure fuel turbooumo?

FLT LPOTP Is this a flight low pressure oxidizer turbopump'!

HPFP GR RUN Is this a green run high pressure fuel pump'!

HPOP GR RUN Is this a green run high oressure oxidizer oump'!

HPOP SC RUN Is this a screen run high pressure oxidizer pump'!

LPFP GR.-RUN Is this a ~reen run low oressure fuel oump'!

LPOP GR RUN Is this a green run low nressure oxidizernump?

The table TST_PERF is used by the Hardware Change Reporter. Updating of this table is
described under "Hardware Configuration Data Entry" in Section II of the User's Guide.

TEST ID Test identifier.

HPFP EFF 100 Hi!!h pressure fuel pump efficiency at 100% power level.

HPFP EFF 104 Hi~h pressure fuel pump efficiencY at 104% power level.

HPFP EFF 109 High pressure fuel pump efficiency at 109% power level.

HPOP_EFF_l00 High pressure oxidizer pump efficiency at 100% power
level.

HPOP_EFF_l04 High pressure oxidizer pump efficiency at 104% power
level.

HPOP_EFF_l09 High pressure oxidizer pump efficiency at 109% power
level.

LPFP EFF 100 Low oressure fuel pump efficiency at 100% power level.

LPFP EFF 104 Low pressure fuel pump efficiency at 104% power level.

LPFP EFF 109 Low pressure fuel pump efficiency at 109% power level.

HPF_TEM_l04 High pressure fuel turbine efficiency multiplier at 104%
power level.

26

Table 'l'S'l' I:NFO -
TEST ID Test identifier.

TEST DATE Date of this test.

PLANNED DUR Planned duration of this test.

SHUTDOWN Em!ine shutdown time (actual duration),

ACCEPT TEST Is this an acceptance test'!

FLT ENGINE Is this a fli~ht engine'!

FLT HPFTP Is this a flil!ht hi~h pressure fuel turbooumo'!

FLT HPOTP Is this a fli~ht high pressure oxidizer turbopump'!

FLT LPFTP Is this a flight low pressure fuel turbooumo?

FLT LPOTP Is this a flight low pressure oxidizer turbopump'!

HPFP GR RUN Is this a green run high pressure fuel pump'!

HPOP GR RUN Is this a green run high oressure oxidizer oump'!

HPOP SC RUN Is this a screen run high pressure oxidizer pump'!

LPFP GR.-RUN Is this a ~reen run low oressure fuel oump'!

LPOP GR RUN Is this a green run low nressure oxidizernump?

The table TST_PERF is used by the Hardware Change Reporter. Updating of this table is
described under "Hardware Configuration Data Entry" in Section II of the User's Guide.

TEST ID Test identifier.

HPFP EFF 100 Hi!!h pressure fuel pump efficiency at 100% power level.

HPFP EFF 104 Hi~h pressure fuel pump efficiencY at 104% power level.

HPFP EFF 109 High pressure fuel pump efficiency at 109% power level.

HPOP_EFF_l00 High pressure oxidizer pump efficiency at 100% power
level.

HPOP_EFF_l04 High pressure oxidizer pump efficiency at 104% power
level.

HPOP_EFF_l09 High pressure oxidizer pump efficiency at 109% power
level.

LPFP EFF 100 Low oressure fuel pump efficiency at 100% power level.

LPFP EFF 104 Low pressure fuel pump efficiency at 104% power level.

LPFP EFF 109 Low pressure fuel pump efficiency at 109% power level.

HPF_TEM_l04 High pressure fuel turbine efficiency multiplier at 104%
power level.

26

HPF_PEM_104 High pressure fuel pump efficiency multiplier at 104%
power level.

HPF_PHCM_104 High pressure fuel pump head coefficient multiplier at
104% power level.

HPF TFPM 104

HPO_TEM_104 High pressure oxidizer turbine efficiency multiplier at
104% DOwer level.

HPO_PEM_104 High pressure oxidizer pump efficiency multiplier at 104%
power level.

HPO_PHCM_104 High pressure oxidizer pump head coefficient multiplier at
104% power level.

HPO_TFPM_104 High pressure oxidizer turbine flow parameter multiplier at
104% power level.

LPF_TEM_104 Low pressure fuel turbine efficiency multiplier at 104%
oower level.

LPF_PEM_104 Low pressure fuel pump efficiency multiplier at 104%
power level.

LPF_PHCM_104 Low pressure fuel pump head coefficient multiplier at
104% DOwer level.

LPF_TFP~104 Low pressure fuel turbine flow parameter multiplier at
104% power level.

LPO_TEM_104 Low pressure oxidizer turbine efficiency multiplier at
104% power level.

LPO_PEM_104 Low pressure oxidizer pump efficiency multiplier at 104%
power level.

LPO_PHCM_104 Low pressure oxidizer pump head coefficient multiplier at
104% oower level.

PBP PEM 104 Preburner oumo efficiency multiolier at 104% DOwer level.

PBP_PHCM_104 Preburner pump head coefficient multiplier at 104% power
level.

TableTST SW -
TEST ID

C2 100

C2 104

C2 109

KF 100

KF 104

27

HPF_PEM_104 High pressure fuel pump efficiency multiplier at 104%
power level.

HPF_PHCM_104 High pressure fuel pump head coefficient multiplier at
104% power level.

HPF TFPM 104

HPO_TEM_104 High pressure oxidizer turbine efficiency multiplier at
104% DOwer level.

HPO_PEM_104 High pressure oxidizer pump efficiency multiplier at 104%
power level.

HPO_PHCM_104 High pressure oxidizer pump head coefficient multiplier at
104% power level.

HPO_TFPM_104 High pressure oxidizer turbine flow parameter multiplier at
104% power level.

LPF_TEM_104 Low pressure fuel turbine efficiency multiplier at 104%
oower level.

LPF_PEM_104 Low pressure fuel pump efficiency multiplier at 104%
power level.

LPF_PHCM_104 Low pressure fuel pump head coefficient multiplier at
104% DOwer level.

LPF_TFP~104 Low pressure fuel turbine flow parameter multiplier at
104% power level.

LPO_TEM_104 Low pressure oxidizer turbine efficiency multiplier at
104% power level.

LPO_PEM_104 Low pressure oxidizer pump efficiency multiplier at 104%
power level.

LPO_PHCM_104 Low pressure oxidizer pump head coefficient multiplier at
104% oower level.

PBP PEM 104 Preburner oumo efficiency multiolier at 104% DOwer level.

PBP_PHCM_104 Preburner pump head coefficient multiplier at 104% power
level.

TableTST SW -
TEST ID

C2 100

C2 104

C2 109

KF 100

KF 104

27

2.2 Session Manager Database (SESS_MGR)

The Session Manager database, SESS_MGR, contains five tables used by the session manager,
smgr, to determine which modules have been rull 011 a test and the order in which modules are executed.

The job table, JOB, is used by the session manager to form the command necessary to invoke a
module. It is updated automatically by the Session Manager as the modules are being executed.

Table JOB

MODULE Name of PTDS module.

Test ID for test which this module is currently runnin~

The message table, MSG, indicates which tests have been run through each module. This table is
updated automatically if the module is executed through the Session Manager. It may be updated
manually if a module is executed standalone.

TableMSG

MODULE Name of PfDS module.

TEST_ID Test ID for test for which this module has been run.

START_TIME Time at which module began executing this test.

END_TIME Time at which module finished executin~ this test.

The resource prerequisite table, PREREQ, provides the mechanism for specifying what resources
are needed in order for a given module to be invoked. It must be updated each time a new module is
added to PTDS which depends on other modules being run previously or the prerequisites change for an
existing module.

Table PREREQ

ID Index value for the resource.

PREl Index value for fIrst prerequisite resource.

PRE2, PRE3, Index value for additional prerequisite resources as
PRE4, PRES, applicable. Negative values indicate unused prerequisite
PRE 6 , PRE7, resources.
PRES, PRE 9 ,
PRE10

The resource activity board table, RSRC_BRD, is the job status blackboard used by the session
manager. This table is used to track which modules have run correctly. which are currently in progress or
have exited with an error, and which have not yet run. The table is updated automatically by the session
manager as a test is processed and is not intended to be reabable by users or other applications.

28

2.2 Session Manager Database (SESS_MGR)

The Session Manager database, SESS_MGR, contains five tables used by the session manager,
smgr, to determine which modules have been rull 011 a test and the order in which modules are executed.

The job table, JOB, is used by the session manager to form the command necessary to invoke a
module. It is updated automatically by the Session Manager as the modules are being executed.

Table JOB

MODULE Name of PTDS module.

Test ID for test which this module is currently runnin~

The message table, MSG, indicates which tests have been run through each module. This table is
updated automatically if the module is executed through the Session Manager. It may be updated
manually if a module is executed standalone.

TableMSG

MODULE Name of PfDS module.

TEST_ID Test ID for test for which this module has been run.

START_TIME Time at which module began executing this test.

END_TIME Time at which module finished executin~ this test.

The resource prerequisite table, PREREQ, provides the mechanism for specifying what resources
are needed in order for a given module to be invoked. It must be updated each time a new module is
added to PTDS which depends on other modules being run previously or the prerequisites change for an
existing module.

Table PREREQ

ID Index value for the resource.

PREl Index value for fIrst prerequisite resource.

PRE2, PRE3, Index value for additional prerequisite resources as
PRE4, PRES, applicable. Negative values indicate unused prerequisite
PRE 6 , PRE7, resources.
PRES, PRE 9 ,
PRE10

The resource activity board table, RSRC_BRD, is the job status blackboard used by the session
manager. This table is used to track which modules have run correctly. which are currently in progress or
have exited with an error, and which have not yet run. The table is updated automatically by the session
manager as a test is processed and is not intended to be reabable by users or other applications.

28

TEST_ID Test identifier.

RO, Rl, R2, R3, Resource variables encoding 127 resources with a two bit
R4, RS, R6, R7, flag for each resource. A value of 0 in a resource flag
RB, R9 indicates that resource has not yet run for tbis test. A value

of 1 in a resource flag indicates that the resource has run
correctly for this test. A value of -1 indicates that the
resource is running or has exited with an error.

The resource list table, RSRC_LST, provides a cross reference between resource indices and
module names and additional infonnation about the modules. It should be updated each time a new
module is added to PTDS.

ID Index value for this resource.

NAME Name of the resource, i.e., the module name.

DISPLAYABLE Flag to indicate whether this resource is to be displayed on
the test status board in EHMS; 'Y' = do, 'N' = don't
display

WHATIF Flag to indicate which resources are available to be run
under tlle "Whatif' module.

2.3 External Effects Database (EXTERNAL)

The EXTERNAL database contains only the table GAINS. This table is used by the External
Effects program, external, in calculating the effects of the independent PlOs on the dependent PlOs.
The values in this table have been estimated as discussed in tlle algorithm description of the External
Effects program below. Nonnally, users will have no need to modify this table unless it is detennined that
the estimations are not sufficiently accurate and need refinement. Additional entries will be needed for
each dependent PIO for each type of HPOT pump tested.

Table GAINS

A_LOCATION Used by software which calculated the gains; not used by
PIDS.

DESCRIPTION Description of the PIO.

PID_l, PID_2, Used by software wbich calculated the gains; not used by
PID_3, MSID_l, PIDS.
MSID 2

BASELINE

DIM_Al Linear gain associated with the Power Level (not used
because the power level effect is assumed to be nonlinear).

DIM_A2 Linear ~ain associated with the Mixture Ratio.

DIM_A4 Linear ~ain associated with the LPFP Inlet Pressure.

29

TEST_ID Test identifier.

RO, Rl, R2, R3, Resource variables encoding 127 resources with a two bit
R4, RS, R6, R7, flag for each resource. A value of 0 in a resource flag
RB, R9 indicates that resource has not yet run for tbis test. A value

of 1 in a resource flag indicates that the resource has run
correctly for this test. A value of -1 indicates that the
resource is running or has exited with an error.

The resource list table, RSRC_LST, provides a cross reference between resource indices and
module names and additional infonnation about the modules. It should be updated each time a new
module is added to PTDS.

ID Index value for this resource.

NAME Name of the resource, i.e., the module name.

DISPLAYABLE Flag to indicate whether this resource is to be displayed on
the test status board in EHMS; 'Y' = do, 'N' = don't
display

WHATIF Flag to indicate which resources are available to be run
under tlle "Whatif' module.

2.3 External Effects Database (EXTERNAL)

The EXTERNAL database contains only the table GAINS. This table is used by the External
Effects program, external, in calculating the effects of the independent PlOs on the dependent PlOs.
The values in this table have been estimated as discussed in tlle algorithm description of the External
Effects program below. Nonnally, users will have no need to modify this table unless it is detennined that
the estimations are not sufficiently accurate and need refinement. Additional entries will be needed for
each dependent PIO for each type of HPOT pump tested.

Table GAINS

A_LOCATION Used by software which calculated the gains; not used by
PIDS.

DESCRIPTION Description of the PIO.

PID_l, PID_2, Used by software wbich calculated the gains; not used by
PID_3, MSID_l, PIDS.
MSID 2

BASELINE

DIM_Al Linear gain associated with the Power Level (not used
because the power level effect is assumed to be nonlinear).

DIM_A2 Linear ~ain associated with the Mixture Ratio.

DIM_A4 Linear ~ain associated with the LPFP Inlet Pressure.

29

DIM_AS Linear gain associated with the LPOP Inlet Pressure.

DIM_A6 Linear ~n associated with the LPFP Inlet Tem~ature.

DIM_A7 Linear gain associated with the LPOP Inlet Temperature.

LSQCOF_1, Coefficients of the fifth degree polynomial approximating
LSQCOF_2, the power level effects. where LSQCOF _1 is the constant
LSQCOF_3, term and LSQCOF_6 is the coefficient of the fifth degree
LSQCOF_4,
LSQCOF_5, term.

LSQCOF 6

HPOTP_CONT Contractor which built the HPOT pump for which the
values in this entry are valid.

3. New Data (new_data)

3.1. Source Files

NDATA_main. c: The main program for new_data.

NDATA_create.c

NDATA_db_t. c

NDATA_markfile. c

NDATA_utils . c

SHWER_errors.c

3.2 Header Files
NDATA_defs.h

SHWER_defs.h

3.3 Functions

3.4 Cflow output
1 main: void*(), <NDATA_main.c 44>
3 init_PTDS_tekbase: <>
4 SHWER-Initialize: void*(), <SHWER-errors.c 80>
9 SHWER-ShowErrorClose: void*(), <SHWER-errors.c 149>

12 SHWER-ShowWarningClose: void*(), <SHWER-errors.c 172>
17 NDATA-Initialize: void*(), <NDAT~ain.c 130>
20 RSRC_GetResourceList: void*(), <RSRC_dbutils_t.c 201>
21 tbl_count: <>
25 tbl_get: <>
26 STRNG_RemoveTrailingSpaces: char*(), <STRNG_utils.c 76>
29 NDATA-CreateSSMETestList: void*(), <NDATA-db_t.c 138>
30 DBCT_SetDBSess1on: void*(), <DBCT_utils_t.c 132>
31 tbl_count: 21
35 tbl_get: 25
37 NDATA-CreateSMGRTestList: void*(), <NDATA-db_t.c 186>

30

DIM_AS Linear gain associated with the LPOP Inlet Pressure.

DIM_A6 Linear ~n associated with the LPFP Inlet Tem~ature.

DIM_A7 Linear gain associated with the LPOP Inlet Temperature.

LSQCOF_1, Coefficients of the fifth degree polynomial approximating
LSQCOF_2, the power level effects. where LSQCOF _1 is the constant
LSQCOF_3, term and LSQCOF_6 is the coefficient of the fifth degree
LSQCOF_4,
LSQCOF_5, term.

LSQCOF 6

HPOTP_CONT Contractor which built the HPOT pump for which the
values in this entry are valid.

3. New Data (new_data)

3.1. Source Files

NDATA_main. c: The main program for new_data.

NDATA_create.c

NDATA_db_t. c

NDATA_markfile. c

NDATA_utils . c

SHWER_errors.c

3.2 Header Files
NDATA_defs.h

SHWER_defs.h

3.3 Functions

3.4 Cflow output
1 main: void*(), <NDATA_main.c 44>
3 init_PTDS_tekbase: <>
4 SHWER-Initialize: void*(), <SHWER-errors.c 80>
9 SHWER-ShowErrorClose: void*(), <SHWER-errors.c 149>

12 SHWER-ShowWarningClose: void*(), <SHWER-errors.c 172>
17 NDATA-Initialize: void*(), <NDAT~ain.c 130>
20 RSRC_GetResourceList: void*(), <RSRC_dbutils_t.c 201>
21 tbl_count: <>
25 tbl_get: <>
26 STRNG_RemoveTrailingSpaces: char*(), <STRNG_utils.c 76>
29 NDATA-CreateSSMETestList: void*(), <NDATA-db_t.c 138>
30 DBCT_SetDBSess1on: void*(), <DBCT_utils_t.c 132>
31 tbl_count: 21
35 tbl_get: 25
37 NDATA-CreateSMGRTestList: void*(), <NDATA-db_t.c 186>

30

38 DBCT_SetDBSession: 30
39 tbl_count: 21
43 tbl_get: 25
45 time: <>
46 localtime: <>
47 strftime: <>
50 NDATA-CreateManagedWidgets: void*(), <NDATA-create.c 236>
51 NDATA-CreatePidOverrideDialog: struct*(), <NDATA-create.c 257>
59 NDATA-UnmanageWidgetCB: void*(), <NDAT~in.c 416>
61 NDAT~ddToListCB: void*(), <NDATA-main.c 474>
65 NDAT~ddToListUnselected: void*(), <NDATA-utils.c 38>
70 NDATA-DeleteFromListCB: void*(), <NDATA-main.c 583>
76 NDATA-ClearListCB: void*(), <NDATA-main.c 550>
77 NDAT~eleteAlllnList: void*(), <NDATA~ain.c 518>
86 NDATA-PidOverrideListCB: void* (), <NDATA-mail1.c 438>
95 NDATA_CreateMainWindow: void*(), <NDATA_create.c 40>

104 NDATA-ManageWidgetCB: void*(), <NDATA-main.c 370>
105 NDAT~anageWidget: void*(), <NDATA-main.c 390>
111 NDATA-ClearButtonCB: void*(), <NDATA-main.c 344>
113 NDATA-ExitButtonCB: void*(), <NDAT~ain.c 313>
114 DBCT_SetDBSession: 30
115 DBCT_DBsessionDisconnect: void*(), <DBCT_utils_t.c 91>
116 tekbase_disconnect: int(), < .. / •. /DB/tekbase.c 248>
117 query_term: <>
119 NDATA_GoButtonCB:void* (), <NDAT~ain.c 217>
125 SHWER-ShoWWarning: void*(), <SHWER-errors.c 196>
132 NDATA_IsTestAlreadyPresent: int(), <NDATA-utils.c 63>
134 NDATA-InsertTestlnfo: void*(), <NDATA-db_t.c 45>
135 DBCT_SetDBSession: 30
136 tbl-put: <>
139 tbl_update: <>
140 NDATA-InsertPidoverridelnfo: void*(), <NDATA-db_t.c 85>
141 DBCT_SetDBSession: 30
145 tbl-put: 136
149 DBCT_SetDBCession: 30
150 RSRC_InsertResourceBoardTestld: void*(), <RSRC_dbutils_t.c 48>
151 tbl-put: 136
154 RSRC_FindResourceld: int(), <RSRC_rlist.c 87>
156 RSRC_UpdateResourceBoardResourceValue: void*(), <RSRC_dbutils_t.c 84>
158 tbl~et: 25
161 RSRC_GetBits: int(), <RSRC_rlist.c 238>
162 tbl_update: 139
164 NDATA-checkTestlnsert: int(), <NDATA-db_t.c 238>
166 tbl_count: 21
169 DBCT_SetDBSession: 30
171 IsSMGRRunning: int(), <NDAT~ain.c 179>
177 execlp: <>
185 tbl_free_all: <>

4. Session Manager (smgr)

4.1 Source Files

SMGR_main • c: The main program with initialization and closing functions.

SMGR_db_t. c: The functions which retrieve data from the SESS_MGR database and which update the
MSG table in the database.

31

38 DBCT_SetDBSession: 30
39 tbl_count: 21
43 tbl_get: 25
45 time: <>
46 localtime: <>
47 strftime: <>
50 NDATA-CreateManagedWidgets: void*(), <NDATA-create.c 236>
51 NDATA-CreatePidOverrideDialog: struct*(), <NDATA-create.c 257>
59 NDATA-UnmanageWidgetCB: void*(), <NDAT~in.c 416>
61 NDAT~ddToListCB: void*(), <NDATA-main.c 474>
65 NDAT~ddToListUnselected: void*(), <NDATA-utils.c 38>
70 NDATA-DeleteFromListCB: void*(), <NDATA-main.c 583>
76 NDATA-ClearListCB: void*(), <NDATA-main.c 550>
77 NDAT~eleteAlllnList: void*(), <NDATA~ain.c 518>
86 NDATA-PidOverrideListCB: void* (), <NDATA-mail1.c 438>
95 NDATA_CreateMainWindow: void*(), <NDATA_create.c 40>

104 NDATA-ManageWidgetCB: void*(), <NDATA-main.c 370>
105 NDAT~anageWidget: void*(), <NDATA-main.c 390>
111 NDATA-ClearButtonCB: void*(), <NDATA-main.c 344>
113 NDATA-ExitButtonCB: void*(), <NDAT~ain.c 313>
114 DBCT_SetDBSession: 30
115 DBCT_DBsessionDisconnect: void*(), <DBCT_utils_t.c 91>
116 tekbase_disconnect: int(), < .. / •. /DB/tekbase.c 248>
117 query_term: <>
119 NDATA_GoButtonCB:void* (), <NDAT~ain.c 217>
125 SHWER-ShoWWarning: void*(), <SHWER-errors.c 196>
132 NDATA_IsTestAlreadyPresent: int(), <NDATA-utils.c 63>
134 NDATA-InsertTestlnfo: void*(), <NDATA-db_t.c 45>
135 DBCT_SetDBSession: 30
136 tbl-put: <>
139 tbl_update: <>
140 NDATA-InsertPidoverridelnfo: void*(), <NDATA-db_t.c 85>
141 DBCT_SetDBSession: 30
145 tbl-put: 136
149 DBCT_SetDBCession: 30
150 RSRC_InsertResourceBoardTestld: void*(), <RSRC_dbutils_t.c 48>
151 tbl-put: 136
154 RSRC_FindResourceld: int(), <RSRC_rlist.c 87>
156 RSRC_UpdateResourceBoardResourceValue: void*(), <RSRC_dbutils_t.c 84>
158 tbl~et: 25
161 RSRC_GetBits: int(), <RSRC_rlist.c 238>
162 tbl_update: 139
164 NDATA-checkTestlnsert: int(), <NDATA-db_t.c 238>
166 tbl_count: 21
169 DBCT_SetDBSession: 30
171 IsSMGRRunning: int(), <NDAT~ain.c 179>
177 execlp: <>
185 tbl_free_all: <>

4. Session Manager (smgr)

4.1 Source Files

SMGR_main • c: The main program with initialization and closing functions.

SMGR_db_t. c: The functions which retrieve data from the SESS_MGR database and which update the
MSG table in the database.

31

SMGR_j ob . c: The functions which detennine the PTDS modules to be run on a test and which execute
the modules.

SMGR_resource . c:

4.2 Header File

SMGR_defs .h: Header file containing the constant definitions and type definitions used in
SMGR_main. c, SMGR_db_t. c, SMGR_j ob. c, and SMG~resource. c, and declarations
of all external functions defined in those files.

4.3 Defined Constants
Boolean: Used as the type for integer variables that only take on the values True and False; value

int; defined in SMGR_defs .h.

False: value 0; defined in SMGR_defs .h.

SMGR_DetermineNewJob: value 0; defined in SMGR_defs .h.

SMGR_JobPathStringLength: value 200; defined in SMGR_defs .h.

SMGR_MaxPathLength: value 50; defined in SMGR_defs .h.

SMGR_SessionManagerDB: Name of the daiabase used to detennine which modules have been run on
a test and the order in which modules are executed; value "sess_mgr"; dermed in
SMGR_defs .h.

SMGR_StartJob: value 1; defined in SMGR_defs .h.

SMGR_StopSession: value 2; defined in SMGR_defs .h.

True: value 1; defined in SMGR_defs.h and STRNG_defs .h.

4.4 Defined Types

SMGR_Job and SMGR_PJob (detlned ill SMGR_def s . h)

typedef struct SMGR_job {
char

module[DBFL_ResourCeNameStringLength+l],
test_id[DBFL_TestIdStringLength+l]i

} SMGR_Job, *SMGR_PJobi

SMGR_Message and SMGR_PMessage (defined ill SMGR_defs .h)

typedef struct SMGR_message {
char

module[DBFL_ResourceNameStringLength+l],
test_id[DBFL_TestIdStringLength+l],
start_time [DBFL_TimeStringLength+l],
end_time[DBFL_TimeStringLength+l]i

} SMGR_Message, *SMG~PMessagei

SMGR_PrerequisiteList and SMGR_PPrerequisiteList (defined in SMGR_defs .h)

typedef struct SMGR-prerequisitelist {

32

SMGR_j ob . c: The functions which detennine the PTDS modules to be run on a test and which execute
the modules.

SMGR_resource . c:

4.2 Header File

SMGR_defs .h: Header file containing the constant definitions and type definitions used in
SMGR_main. c, SMGR_db_t. c, SMGR_j ob. c, and SMG~resource. c, and declarations
of all external functions defined in those files.

4.3 Defined Constants
Boolean: Used as the type for integer variables that only take on the values True and False; value

int; defined in SMGR_defs .h.

False: value 0; defined in SMGR_defs .h.

SMGR_DetermineNewJob: value 0; defined in SMGR_defs .h.

SMGR_JobPathStringLength: value 200; defined in SMGR_defs .h.

SMGR_MaxPathLength: value 50; defined in SMGR_defs .h.

SMGR_SessionManagerDB: Name of the daiabase used to detennine which modules have been run on
a test and the order in which modules are executed; value "sess_mgr"; dermed in
SMGR_defs .h.

SMGR_StartJob: value 1; defined in SMGR_defs .h.

SMGR_StopSession: value 2; defined in SMGR_defs .h.

True: value 1; defined in SMGR_defs.h and STRNG_defs .h.

4.4 Defined Types

SMGR_Job and SMGR_PJob (detlned ill SMGR_def s . h)

typedef struct SMGR_job {
char

module[DBFL_ResourCeNameStringLength+l],
test_id[DBFL_TestIdStringLength+l]i

} SMGR_Job, *SMGR_PJobi

SMGR_Message and SMGR_PMessage (defined ill SMGR_defs .h)

typedef struct SMGR_message {
char

module[DBFL_ResourceNameStringLength+l],
test_id[DBFL_TestIdStringLength+l],
start_time [DBFL_TimeStringLength+l],
end_time[DBFL_TimeStringLength+l]i

} SMGR_Message, *SMG~PMessagei

SMGR_PrerequisiteList and SMGR_PPrerequisiteList (defined in SMGR_defs .h)

typedef struct SMGR-prerequisitelist {

32

int
id,
num-prerequisites,
prerequisite[DBFL_MaxNumResourceVars]i

} SMGR_PrerequisiteList, *SMGR_PPrerequisiteListi

4.5 Global Variables

SMGR_CUrrentTestld: char [DBFL_TestldStringLength+l]; defined in SMGR_defs .h.

SMGR-.Numprerequisites: int; defined in SMGR_defs .h.

SMGR_RSRCExeDir: char *; defined in SMGR_defs .h.

SMGR_ThePrerequisi teList: SMGR_Prerequisi teList *; defined in SMGR_defs. h.

4.6 Functions

IsAnotherSMGRRunning (declaration in SMGR_def s . h. definition in SMGR_main. c)

int ISAnotherSMGRRunning ()

This function determines whether another session manager process is already running and writes the
current process ID to the lock file smgr_lock if another session manager process is not running. The
return value is zero if another session manager process is running or one otherwise.

RemoveLockFile (declaration in SMGR_def s . h, definition in SMGR_main . c)

void RemoveLockFile ()

This function removes the session manager lock file smgr_lock upon completion of the tests just before
exiting the session manager.

SaveSMGRpid (dcfault declaration, definition in SMGR_main. c)

SaveSMGRpid (int proc_id)

This function writes the process ID for the current session manager process to the lock file smgr_lock.

Argument:
proc_id: Process ID for the current session manager process (input).

Returns zero if successful or -1 if the lock file already exists and the owner of the current process does not
have permission to write to the file.

SMGR_CheckJobQueue (declaration in SMGR_defs .h, definition in SMGR_job. c)

int SMGR_CheckJobQueue ()

This function is .

SMGR_DeleteJob (declaration in SMGR_defs. h, definition in SMGR_db_t. c)

void SMGR_DeleteJob (char *module, char *test_id)

This function .

Arguments:

33

int
id,
num-prerequisites,
prerequisite[DBFL_MaxNumResourceVars]i

} SMGR_PrerequisiteList, *SMGR_PPrerequisiteListi

4.5 Global Variables

SMGR_CUrrentTestld: char [DBFL_TestldStringLength+l]; defined in SMGR_defs .h.

SMGR-.Numprerequisites: int; defined in SMGR_defs .h.

SMGR_RSRCExeDir: char *; defined in SMGR_defs .h.

SMGR_ThePrerequisi teList: SMGR_Prerequisi teList *; defined in SMGR_defs. h.

4.6 Functions

IsAnotherSMGRRunning (declaration in SMGR_def s . h. definition in SMGR_main. c)

int ISAnotherSMGRRunning ()

This function determines whether another session manager process is already running and writes the
current process ID to the lock file smgr_lock if another session manager process is not running. The
return value is zero if another session manager process is running or one otherwise.

RemoveLockFile (declaration in SMGR_def s . h, definition in SMGR_main . c)

void RemoveLockFile ()

This function removes the session manager lock file smgr_lock upon completion of the tests just before
exiting the session manager.

SaveSMGRpid (dcfault declaration, definition in SMGR_main. c)

SaveSMGRpid (int proc_id)

This function writes the process ID for the current session manager process to the lock file smgr_lock.

Argument:
proc_id: Process ID for the current session manager process (input).

Returns zero if successful or -1 if the lock file already exists and the owner of the current process does not
have permission to write to the file.

SMGR_CheckJobQueue (declaration in SMGR_defs .h, definition in SMGR_job. c)

int SMGR_CheckJobQueue ()

This function is .

SMGR_DeleteJob (declaration in SMGR_defs. h, definition in SMGR_db_t. c)

void SMGR_DeleteJob (char *module, char *test_id)

This function .

Arguments:

33

module: (input)

tesUd: (input)

SMGR_DeleteMessage (declaration in SMGR_defs .h, definition in SMGR_db_t, c)

void SMGR_DeleteMessage (char *module, char *test_id,

This function.

Arguments:

module: (input)

tesUd: (input)

start_time: (input)

end_time: (input)

char * start_time , char *end_time)

SMGR_EvaluateResources (declaration in SMGR_def s . h, definition in SMGR_resource . c)

int SMGR_EvaluateResources ()

This function .

SMGR_ExecuteJob (declaration in SMGR_defs .h, definition in SMGR_job. c)

void SMGR_ExecuteJob (SMGR_PJob job)

This function .

Argument:

job:

SMGR_GetJobs (declaration in SMGR_defs . h, definition in SMGR_db_t. c)

void SMGR_GetJobs (SMGR_Job **list-ptr, int *num_jobs)

This function .

Arguments:

lisCptr:

numjobs:

SMGR_GetNextJob (declaration in SMGR_def s . h, definition in SMGR_j ob . c)

Boolean SMGR_GetNextJob (SMGR_PJob job)

This function .

Argument:

job:

SMGR_GetPrerequisites (declaration in SMGR_defs . h, definition in SMGR_db_t. c)

void SMGR_GetPrerequisites ()

This function .

34

module: (input)

tesUd: (input)

SMGR_DeleteMessage (declaration in SMGR_defs .h, definition in SMGR_db_t, c)

void SMGR_DeleteMessage (char *module, char *test_id,

This function.

Arguments:

module: (input)

tesUd: (input)

start_time: (input)

end_time: (input)

char * start_time , char *end_time)

SMGR_EvaluateResources (declaration in SMGR_def s . h, definition in SMGR_resource . c)

int SMGR_EvaluateResources ()

This function .

SMGR_ExecuteJob (declaration in SMGR_defs .h, definition in SMGR_job. c)

void SMGR_ExecuteJob (SMGR_PJob job)

This function .

Argument:

job:

SMGR_GetJobs (declaration in SMGR_defs . h, definition in SMGR_db_t. c)

void SMGR_GetJobs (SMGR_Job **list-ptr, int *num_jobs)

This function .

Arguments:

lisCptr:

numjobs:

SMGR_GetNextJob (declaration in SMGR_def s . h, definition in SMGR_j ob . c)

Boolean SMGR_GetNextJob (SMGR_PJob job)

This function .

Argument:

job:

SMGR_GetPrerequisites (declaration in SMGR_defs . h, definition in SMGR_db_t. c)

void SMGR_GetPrerequisites ()

This function .

34

SM~R_Initialize (declaration in SMGR_defs .h, definition in SMGR_main. c)

void SMGR_Initialize ()

This function initializes the session manager.

SMGR_InsertJob (declaration in SMGR_defs .h, definition in SMGR_db_t. c)

void SMGR_InsertJob (char *module, char *test_id)

This function.

Arguments:

module: (input)

tesUd: (input)

SMGR_InsertMessage (declaration in SMGR_defs .h, definition in SMGR_dl:>-t. c)

void SMGR_InsertMessage (char *module, char *test_id,
char *start_time, char *end_time)

This function.

Arguments:

module: (input)

tesUd: (input)

start_time: (input)

end_time: (input)

SMGR_PostJob (declaration in SMGR_def s . h, definition in SMGR_j ob. c)

void SMGR_PostJob (SMGR_PJob job)

This function is currently not used.

Argument:

job:

,
SMGR_UpdateMessageEndTime (declaration in SMGR_defs. h, definition in SMGR_db_t. c)

void SMGR_UpdateMessageEndTime (char *module, char *test_id,
char * end_time)

This function updates the end time field of tile MSG table in the SESS_MGR database when a PTDS
module is completed.

Arguments:

module: Name of tile module which has completed (input).

tesUd: Test ID for tile current test (input).

end_time: Time at which the module completed (input).

SMGR_UpdateMessageStartTime (declaration in SMGR_defs. h, definition in SMGR_db_t. c)

void SMGR_UpdateMessageStartTime (char *module, char *test_id,
char *start_time)

35

SM~R_Initialize (declaration in SMGR_defs .h, definition in SMGR_main. c)

void SMGR_Initialize ()

This function initializes the session manager.

SMGR_InsertJob (declaration in SMGR_defs .h, definition in SMGR_db_t. c)

void SMGR_InsertJob (char *module, char *test_id)

This function.

Arguments:

module: (input)

tesUd: (input)

SMGR_InsertMessage (declaration in SMGR_defs .h, definition in SMGR_dl:>-t. c)

void SMGR_InsertMessage (char *module, char *test_id,
char *start_time, char *end_time)

This function.

Arguments:

module: (input)

tesUd: (input)

start_time: (input)

end_time: (input)

SMGR_PostJob (declaration in SMGR_def s . h, definition in SMGR_j ob. c)

void SMGR_PostJob (SMGR_PJob job)

This function is currently not used.

Argument:

job:

,
SMGR_UpdateMessageEndTime (declaration in SMGR_defs. h, definition in SMGR_db_t. c)

void SMGR_UpdateMessageEndTime (char *module, char *test_id,
char * end_time)

This function updates the end time field of tile MSG table in the SESS_MGR database when a PTDS
module is completed.

Arguments:

module: Name of tile module which has completed (input).

tesUd: Test ID for tile current test (input).

end_time: Time at which the module completed (input).

SMGR_UpdateMessageStartTime (declaration in SMGR_defs. h, definition in SMGR_db_t. c)

void SMGR_UpdateMessageStartTime (char *module, char *test_id,
char *start_time)

35

This function updates the start time field of the MSG table in the SESS_MGR database when a PTDS
module is started.

Arguments:

module: Name of the module which has started (input).

tesUd: Test ID for the current test (input).

start_time: Time at which tbe module started (input).

4.7 Cflow output
1 main: void(), <SMG~ain.c 45>
2 ISAnotherSMGRRunning: int(), <SMG~ain.c 175>

10 SaveSMGRpid: int(), <SMG~ain.c 241>
18 init_PTDS_tekbase: void(), <tektables.c 40>
19 tbl_tekbase_init: int(). <tekbase.c 1484>
20 tbl_ad~ode: void(), <tbl.c 102>
21 tkbdone: int(), <tekbase.c 1455>
22 tekbase_close: int(), <tekbase.c 313>
23 clear_typecache: void(), <tekbase.c 400>
24 tekbase_do_tql: int(), <tekbase.c 166>
25 query: <>
26 handle_error: int(), <tekbase.c 127>
27 query_status: <>
28 queryJl\ess: <>
30 query_term: <>
31 query_error: <>
32 tekbase_disconnect: int(), <tekbase.c 248>
33 query_term: 30
34 tkbfree: int(), <tekbase.c 1431>
35 tkbupd: int(), <tekbase.c 1387>
36 check-OB: int(), <tekbase.c 345>
38 tekbase_close: 22
39 tekbase_open: int(), <tekbase.c 276>
40 tekbase_connect: int(), <tekbase.c 197>
42 query-host: <>
43 query_init: <>
44 handle_error: 26
45 query_error: 31
46 queryJl\ode: <>
47 query_buffer: <>
48 clear_typecache: 23
49 Clear_unique: void(), <tekbase.c 437>
51 tekbase_do_tql: 24
53 clear_typecache: 23
54 clear_unique: 49
55 MakeUpdateList: int(), <tekbase.c 861>
57 MakeStringValue: char*(), <tekbase.c 727>
59 MakeConditionString: int(), <tekbase.c 772>
60 GetConditionRelop: char*(), <tekbase.c 692>
61 MakeStringValue: 57
64 tql_check_types: int(), <tekbase.c 490>
65 queryJl\ode: 46
66 get_cache4-type: int(), <tekbase.c 412>
67 hash: unsigned int(). <tekbase.c 392>
70 query: 25
71 handle_error: 26
72 query_error: 31

36

This function updates the start time field of the MSG table in the SESS_MGR database when a PTDS
module is started.

Arguments:

module: Name of the module which has started (input).

tesUd: Test ID for the current test (input).

start_time: Time at which tbe module started (input).

4.7 Cflow output
1 main: void(), <SMG~ain.c 45>
2 ISAnotherSMGRRunning: int(), <SMG~ain.c 175>

10 SaveSMGRpid: int(), <SMG~ain.c 241>
18 init_PTDS_tekbase: void(), <tektables.c 40>
19 tbl_tekbase_init: int(). <tekbase.c 1484>
20 tbl_ad~ode: void(), <tbl.c 102>
21 tkbdone: int(), <tekbase.c 1455>
22 tekbase_close: int(), <tekbase.c 313>
23 clear_typecache: void(), <tekbase.c 400>
24 tekbase_do_tql: int(), <tekbase.c 166>
25 query: <>
26 handle_error: int(), <tekbase.c 127>
27 query_status: <>
28 queryJl\ess: <>
30 query_term: <>
31 query_error: <>
32 tekbase_disconnect: int(), <tekbase.c 248>
33 query_term: 30
34 tkbfree: int(), <tekbase.c 1431>
35 tkbupd: int(), <tekbase.c 1387>
36 check-OB: int(), <tekbase.c 345>
38 tekbase_close: 22
39 tekbase_open: int(), <tekbase.c 276>
40 tekbase_connect: int(), <tekbase.c 197>
42 query-host: <>
43 query_init: <>
44 handle_error: 26
45 query_error: 31
46 queryJl\ode: <>
47 query_buffer: <>
48 clear_typecache: 23
49 Clear_unique: void(), <tekbase.c 437>
51 tekbase_do_tql: 24
53 clear_typecache: 23
54 clear_unique: 49
55 MakeUpdateList: int(), <tekbase.c 861>
57 MakeStringValue: char*(), <tekbase.c 727>
59 MakeConditionString: int(), <tekbase.c 772>
60 GetConditionRelop: char*(), <tekbase.c 692>
61 MakeStringValue: 57
64 tql_check_types: int(), <tekbase.c 490>
65 queryJl\ode: 46
66 get_cache4-type: int(), <tekbase.c 412>
67 hash: unsigned int(). <tekbase.c 392>
70 query: 25
71 handle_error: 26
72 query_error: 31

36

73
75
76
78
79
80
85
86
87
88
89
92
93
94
95
96
98

99
100
102
103
104
105
106
107
108
109
112
113
116
117
118
121
122
123
124
125
126
127
128
129
130
131
134
135
136
137
138
139
144
145
148
151
153
154
156
158
159

query_status: 27
cache_type: void(l, <tekbase.c 428>

hash: 67
put_row: intel, <tekbase.c 558>

queryJllode: 46
query_buffer: 47

queryJllode: 46
tekbase_do_tql: 24

tkbdel: intel, <tekbase.c 1343>
check_DB: 36
MakeConditionString: 59
tekbase_do_tql: 24

tkbput: intel, <tekbase.c 1300>
checJcDB: 36
tql_check_types: 64
MakeParameterList: intel, <tekbase.c 820>
query_buffer: 47
put_row: 78
queryJllode: 46
tekbase_do_tql: 24

tkbget: intel, <tekbase.c 1091>
check_DB: 36
MakeConditionString: 59
MakeParameterList: 96
tql_check_types: 64
set_unique: intel, <tekbase.c 443>

tekbase_do_tql: 24
tekbase_do_tql: 24
fin~col: intel, <tbl.c 170>
queryJllode: 46
query_on_eob: <>
handle_fetch: void(l, <tekbase.c 939>
query: 25
query_error: 31
query_status: 27
handle_error: 26

tkbcount: intel, <tekbase.c 1239>
check_DB: 36
MakeConditionString: 59
query JIlode : 46
query_on_eob: 117
handle_count: void(l, <tekbase.c 1190>
set_unique: 108
tekbase_do_tql: 24
query: 25
query_error: 31
query_status: 27
handle_error: 26

tbl_new: intel, <tbl.c 557>
DBCT_DBConnect: void(l, <DBCT_utils_t.c 69>

tekbase_open: 39
SMG~Initialize: void(l, <SMG~ain.c 99>

RSRC_GetResourceList: void(l, <RSRC_dbutils_t.c 201>
tbl_count: intel, <tbl.c 329>

fin~tbl: struct*(l, <tbl.c 138>
fin~col: 113
parse_tbl_commands: intel, <tbl.c 209>

find_col: 113

37

73
75
76
78
79
80
85
86
87
88
89
92
93
94
95
96
98

99
100
102
103
104
105
106
107
108
109
112
113
116
117
118
121
122
123
124
125
126
127
128
129
130
131
134
135
136
137
138
139
144
145
148
151
153
154
156
158
159

query_status: 27
cache_type: void(l, <tekbase.c 428>

hash: 67
put_row: intel, <tekbase.c 558>

queryJllode: 46
query_buffer: 47

queryJllode: 46
tekbase_do_tql: 24

tkbdel: intel, <tekbase.c 1343>
check_DB: 36
MakeConditionString: 59
tekbase_do_tql: 24

tkbput: intel, <tekbase.c 1300>
checJcDB: 36
tql_check_types: 64
MakeParameterList: intel, <tekbase.c 820>
query_buffer: 47
put_row: 78
queryJllode: 46
tekbase_do_tql: 24

tkbget: intel, <tekbase.c 1091>
check_DB: 36
MakeConditionString: 59
MakeParameterList: 96
tql_check_types: 64
set_unique: intel, <tekbase.c 443>

tekbase_do_tql: 24
tekbase_do_tql: 24
fin~col: intel, <tbl.c 170>
queryJllode: 46
query_on_eob: <>
handle_fetch: void(l, <tekbase.c 939>
query: 25
query_error: 31
query_status: 27
handle_error: 26

tkbcount: intel, <tekbase.c 1239>
check_DB: 36
MakeConditionString: 59
query JIlode : 46
query_on_eob: 117
handle_count: void(l, <tekbase.c 1190>
set_unique: 108
tekbase_do_tql: 24
query: 25
query_error: 31
query_status: 27
handle_error: 26

tbl_new: intel, <tbl.c 557>
DBCT_DBConnect: void(l, <DBCT_utils_t.c 69>

tekbase_open: 39
SMG~Initialize: void(l, <SMG~ain.c 99>

RSRC_GetResourceList: void(l, <RSRC_dbutils_t.c 201>
tbl_count: intel, <tbl.c 329>

fin~tbl: struct*(l, <tbl.c 138>
fin~col: 113
parse_tbl_commands: intel, <tbl.c 209>

find_col: 113

37

tbl_get: intel, <tbl.c 269>
fin<t-tbl: 154
parse_tbl_commands: 158

163
164
165
166
169
171
174

STRNG_RemoveTrailingSpaces: char*(), <STRNG_utils.c 76>
SMG~GetPrerequisites: void(), <SMG~db_t.c 205>

tbl_count: 153
tbl~et: l.63

176 SMG~EvaluateRosources: intel, <SMG~resource.c 39>
177 SMG~CheckJobQueue: intel, <SMG~job.c 194>
178 SMG~GetJobs: void(), <SMG~db_t.c 265>
180 tbl_count: 153
183 tbl_get: 163
186 RSRC_GetResources: void(), <RSRC_dbutils_t.c 137>
188 tbl_count: 153
193 RSRC_GetBits: intel, <RsRC_rlist.c 238>
194 RSRC_FindResourceName: intel, <RsRc_rlist.c 49>
196 SMG~InsertMessage: void(), <SMG~db_t.c 51>
198 tbl-put: intel, <tbl.c 398>
199 fin<t-tbl: 154
200 parse_tbl_commands: 158
202 SMG~InsertJob: void(), <SMG~db_t.c 159>
204 tbl-put: 198
207 SMG~GetNextJob: intel, <SMGR_job.c 44>
208 SMG~GetJobs: 178
213 SMG~DeleteJob: void(), <SMG~db_t.c 183>
215 tbl_delete: intel, <tbl.c 451>
216 fin<t-tbl: 154
217 parse_tbl_commands: 158
219 SMG~ExecuteJob: void(), <SMG~job.c 105>
221
223
226
228

RSRC_FindResourceld: intel, <RSRC_rlist.c 87>
RSRC_UpdateResourceBoardResourceValue: void(), <RSRC_dbutils_t.c 84>

tbl_get: 163
RSRC_GetBits: 193

229 tbl_update: intel, <tbl.c 504>
230 find_tbl: 154
231 parse_tbl_commands: 158
236 SMG~UpdateMessageStartTime: void(), <SMG~db_t.c 107>
238 tbl_update: 229
240 DBCT_DBSessionDisconnect: void(), <DBCT_utils_t.c 91>
241 tekbase_disconnect: 32
243 DBCT_DBConnect: 144
244 SMGR_UpdateMessageEndTime: void(), <SMG~db_t.c 133>
246 tbl_update: 229
248 DBCT-PBDisconnect: void(), <DBCT_utils_t.c 111>
249 tekbase_disconnect: 32
251 RSRC_FreeResourceList: void(), <RSRC_rlist.c 156>
253 RemoveLockFile: void(), <SMG~ain.c 135>

s. Features (features)

5.1 Source Files

FEAT_main. c: The main program for features.

FEAT_dbutils_t. c:

FEAT_featureUtils.c:

38

tbl_get: intel, <tbl.c 269>
fin<t-tbl: 154
parse_tbl_commands: 158

163
164
165
166
169
171
174

STRNG_RemoveTrailingSpaces: char*(), <STRNG_utils.c 76>
SMG~GetPrerequisites: void(), <SMG~db_t.c 205>

tbl_count: 153
tbl~et: l.63

176 SMG~EvaluateRosources: intel, <SMG~resource.c 39>
177 SMG~CheckJobQueue: intel, <SMG~job.c 194>
178 SMG~GetJobs: void(), <SMG~db_t.c 265>
180 tbl_count: 153
183 tbl_get: 163
186 RSRC_GetResources: void(), <RSRC_dbutils_t.c 137>
188 tbl_count: 153
193 RSRC_GetBits: intel, <RsRC_rlist.c 238>
194 RSRC_FindResourceName: intel, <RsRc_rlist.c 49>
196 SMG~InsertMessage: void(), <SMG~db_t.c 51>
198 tbl-put: intel, <tbl.c 398>
199 fin<t-tbl: 154
200 parse_tbl_commands: 158
202 SMG~InsertJob: void(), <SMG~db_t.c 159>
204 tbl-put: 198
207 SMG~GetNextJob: intel, <SMGR_job.c 44>
208 SMG~GetJobs: 178
213 SMG~DeleteJob: void(), <SMG~db_t.c 183>
215 tbl_delete: intel, <tbl.c 451>
216 fin<t-tbl: 154
217 parse_tbl_commands: 158
219 SMG~ExecuteJob: void(), <SMG~job.c 105>
221
223
226
228

RSRC_FindResourceld: intel, <RSRC_rlist.c 87>
RSRC_UpdateResourceBoardResourceValue: void(), <RSRC_dbutils_t.c 84>

tbl_get: 163
RSRC_GetBits: 193

229 tbl_update: intel, <tbl.c 504>
230 find_tbl: 154
231 parse_tbl_commands: 158
236 SMG~UpdateMessageStartTime: void(), <SMG~db_t.c 107>
238 tbl_update: 229
240 DBCT_DBSessionDisconnect: void(), <DBCT_utils_t.c 91>
241 tekbase_disconnect: 32
243 DBCT_DBConnect: 144
244 SMGR_UpdateMessageEndTime: void(), <SMG~db_t.c 133>
246 tbl_update: 229
248 DBCT-PBDisconnect: void(), <DBCT_utils_t.c 111>
249 tekbase_disconnect: 32
251 RSRC_FreeResourceList: void(), <RSRC_rlist.c 156>
253 RemoveLockFile: void(), <SMG~ain.c 135>

s. Features (features)

5.1 Source Files

FEAT_main. c: The main program for features.

FEAT_dbutils_t. c:

FEAT_featureUtils.c:

38

FEAT_featurefits.c:

FEAT_features.c:

FEAT_fileio_t. c:

FEAT_markfile.c:

S.2 Header Files

FEAT_dbio_defs .h: Header file containing the declarations of all functions dermed in
FEAT_dbutils_t.c.

FEAT_featurefits .h: Header file containing the declartions of functions defined in
FEAT_featurefi ts. c and FEAT_featureUtils. c.

FEAT_features .h: Header Iile containing constant definitions, macro definitions, and type

definitions and the declarations of functions dermed in FEAT_features. c,
FEAT_featureUtils. c, and FEAT_fileio_t. c.

FEAT_j ump . h: Header file containing a global variable used to save the contents of the stack at a point
in the main program. The purpose is to restore all local variables in the case of a severe error
such as a numerical recipes run time error. After such an error the program will use the contents
of this. variable to restart. the program picking up with the next feature extraction command.

S.3 Defined Constants

BalancePistonCompare: value 9; defined in FEAT_features .h.

BIT_TOGGLEJroLT: value 10.0; defined in FEAT_features. h.

DBA_StartOfDataAnalysis: value -6.5; defined in FEAT_features .h.

DeltaLevelShift: value 8; defined in FEAT_features .h.

DifferentThan: value 0; defined in FEAT_features .h.

EHMS_AllPeaks: value 1; defined in FEAT_features .h.

EHMS_AverageSampleRate: Sample rate for one-second averaged data; value 1.0; defined in
FEAT_features .h.

EHMS_BeginningOfTestStr: value "bot"; defined in FEAT_features. h.

EHMS_BistablePid: PID searched for spikes during periods of constant thrust having a thrust no
greater than EHMS_MaxThrustForBistability; value "59"; dermed in
FEAT_features. h.

EHMS_CloseEnoughToZero: Range above and below zero considered to be zero by the feature
extractor for purposes of determining if two data sets are the same, different, or differ by a
constant offset; value 0.001; defined in FEAT_f ea tures . h.

EHMS_ControllerFullSample: Sample rate for 25 Hz data; value 0.04; dermed in dermed in
FEAT_features .h.

EHMS_DummySigma: Used as a standard deviation for full sample data; value 1.0; dermed in
FEAT_features .h.

EHMS_EndOfTestStr: value" eot"; defined in FEAT_features. h.

39

FEAT_featurefits.c:

FEAT_features.c:

FEAT_fileio_t. c:

FEAT_markfile.c:

S.2 Header Files

FEAT_dbio_defs .h: Header file containing the declarations of all functions dermed in
FEAT_dbutils_t.c.

FEAT_featurefits .h: Header file containing the declartions of functions defined in
FEAT_featurefi ts. c and FEAT_featureUtils. c.

FEAT_features .h: Header Iile containing constant definitions, macro definitions, and type

definitions and the declarations of functions dermed in FEAT_features. c,
FEAT_featureUtils. c, and FEAT_fileio_t. c.

FEAT_j ump . h: Header file containing a global variable used to save the contents of the stack at a point
in the main program. The purpose is to restore all local variables in the case of a severe error
such as a numerical recipes run time error. After such an error the program will use the contents
of this. variable to restart. the program picking up with the next feature extraction command.

S.3 Defined Constants

BalancePistonCompare: value 9; defined in FEAT_features .h.

BIT_TOGGLEJroLT: value 10.0; defined in FEAT_features. h.

DBA_StartOfDataAnalysis: value -6.5; defined in FEAT_features .h.

DeltaLevelShift: value 8; defined in FEAT_features .h.

DifferentThan: value 0; defined in FEAT_features .h.

EHMS_AllPeaks: value 1; defined in FEAT_features .h.

EHMS_AverageSampleRate: Sample rate for one-second averaged data; value 1.0; defined in
FEAT_features .h.

EHMS_BeginningOfTestStr: value "bot"; defined in FEAT_features. h.

EHMS_BistablePid: PID searched for spikes during periods of constant thrust having a thrust no
greater than EHMS_MaxThrustForBistability; value "59"; dermed in
FEAT_features. h.

EHMS_CloseEnoughToZero: Range above and below zero considered to be zero by the feature
extractor for purposes of determining if two data sets are the same, different, or differ by a
constant offset; value 0.001; defined in FEAT_f ea tures . h.

EHMS_ControllerFullSample: Sample rate for 25 Hz data; value 0.04; dermed in dermed in
FEAT_features .h.

EHMS_DummySigma: Used as a standard deviation for full sample data; value 1.0; dermed in
FEAT_features .h.

EHMS_EndOfTestStr: value" eot"; defined in FEAT_features. h.

39

EHMS_EnginecutoffStr: value "cutoff"; defined in FEAT_features .h.

EHMS_Erratic: value 1; defined in FEAT_features .h.

EHMS_ExpectedSigmaMul tiplier: A sensor is considered erratic if the fit standard deviation is
greater than this value times the expected sigma; value 4; defined in FEAT_f ea tures . h.

EHMS_FacilityFullSample: Sample rate for 50 Hz data; value 0.02; defined in
FEAT_features. h.

EHMS_FullSample: value 0; defined in FEAT_features .h.

EHMS_GOOdFi tFactor: This value times the number of degrees of freedom is the limit of what is
considered an acceptable fit according to the rule of thumb from statistics theory; value 4; defined
in FEAT_features. h.

EHMS_IndeterminateThrustLevelStr: Used as the thrusUevel tag for features which may span
more than one thrust level; value "-9 9 9 . 0 " ; defined in FEAT_f ea tures . h.

EHMS_LOXSealEquilibrium: Thermal equilibrium reached; value 200.0; dermed in
FEAT_features .h.

EHMS_LOXSealEquilibriumstr: value M lox_eq"; defined in FEAT_features .h.

EHMS_LPOTPDischargePressureA: value "209"; defined in FEAT_features .h.

EHMS_MaxCheckTypeStr: Size in bytes of maximum redline check type string; value 11; defined in
FEAT_features .h.

EHMS_MaxLimi tTypeStr: Size in bytes of maximum limit type string; value 6; dermed in
FEAT_features .h.

EHMS_MaxSettlingTime: Time to account for transients resulting from response to a change in
commanded throttle; value 5.0; defined in FEAT_features .h.

EHMS_MaxSlopeForLevelShift: Maximum allowable slope for periods of constant data that bound
a level shift; value 0.15; dermed in FEAT_features .h.

EHMS_MaxThrustForBistabli ty: Maximum value for thrust level for periods of constant thrust to
be examined for bistability; value 65; defined in FEAT_features. h.

EHMS __ MinconstantThrustPeriod: Width in seconds of smallest interval of constant thrust which
will be considered by the program; value 6.0; defined in FEAT_f ea tures . h.

EHMS_MinPeriodOfLinearTankPressure: Minimum duration of a period of linear LPOTP
discharge pressure during which to look for erratic behaviour in a sensor trace (in seconds); value
6; defined in FEAT_f eatures . h.

EHMS_MinSettlingTime: Time to account for transients resulting from response to a change in
commanded throttle; value 1.0; defined in FEAT_f ea tures . h.

EHMS_MinThrustForBistabli ty: Minimum value for thrust level for periods of constant thrust to
be examined for bistability; value 0; defined in FEAT_features .h.

EHMS_MinThrustSlope: Empirically determined constant; value 0.4; dermed in
FEAT_features .h.

EHMS_NonErratic: value 0; defined in FEAT_features .h.

EHMS_NumFeatureExtractiOnModules: value 14; defined in FEAT_features .h.

40

EHMS_EnginecutoffStr: value "cutoff"; defined in FEAT_features .h.

EHMS_Erratic: value 1; defined in FEAT_features .h.

EHMS_ExpectedSigmaMul tiplier: A sensor is considered erratic if the fit standard deviation is
greater than this value times the expected sigma; value 4; defined in FEAT_f ea tures . h.

EHMS_FacilityFullSample: Sample rate for 50 Hz data; value 0.02; defined in
FEAT_features. h.

EHMS_FullSample: value 0; defined in FEAT_features .h.

EHMS_GOOdFi tFactor: This value times the number of degrees of freedom is the limit of what is
considered an acceptable fit according to the rule of thumb from statistics theory; value 4; defined
in FEAT_features. h.

EHMS_IndeterminateThrustLevelStr: Used as the thrusUevel tag for features which may span
more than one thrust level; value "-9 9 9 . 0 " ; defined in FEAT_f ea tures . h.

EHMS_LOXSealEquilibrium: Thermal equilibrium reached; value 200.0; dermed in
FEAT_features .h.

EHMS_LOXSealEquilibriumstr: value M lox_eq"; defined in FEAT_features .h.

EHMS_LPOTPDischargePressureA: value "209"; defined in FEAT_features .h.

EHMS_MaxCheckTypeStr: Size in bytes of maximum redline check type string; value 11; defined in
FEAT_features .h.

EHMS_MaxLimi tTypeStr: Size in bytes of maximum limit type string; value 6; dermed in
FEAT_features .h.

EHMS_MaxSettlingTime: Time to account for transients resulting from response to a change in
commanded throttle; value 5.0; defined in FEAT_features .h.

EHMS_MaxSlopeForLevelShift: Maximum allowable slope for periods of constant data that bound
a level shift; value 0.15; dermed in FEAT_features .h.

EHMS_MaxThrustForBistabli ty: Maximum value for thrust level for periods of constant thrust to
be examined for bistability; value 65; defined in FEAT_features. h.

EHMS __ MinconstantThrustPeriod: Width in seconds of smallest interval of constant thrust which
will be considered by the program; value 6.0; defined in FEAT_f ea tures . h.

EHMS_MinPeriodOfLinearTankPressure: Minimum duration of a period of linear LPOTP
discharge pressure during which to look for erratic behaviour in a sensor trace (in seconds); value
6; defined in FEAT_f eatures . h.

EHMS_MinSettlingTime: Time to account for transients resulting from response to a change in
commanded throttle; value 1.0; defined in FEAT_f ea tures . h.

EHMS_MinThrustForBistabli ty: Minimum value for thrust level for periods of constant thrust to
be examined for bistability; value 0; defined in FEAT_features .h.

EHMS_MinThrustSlope: Empirically determined constant; value 0.4; dermed in
FEAT_features .h.

EHMS_NonErratic: value 0; defined in FEAT_features .h.

EHMS_NumFeatureExtractiOnModules: value 14; defined in FEAT_features .h.

40

EHMS_NumSigmaForSigLevelShi ft: The delta between two periods of constant data must exceed
this value times sigma_mag of the first data set to be deemed significant; value 3; defined in
FEAT_features .h.

EHMS_NumSigmasForFlat: Number of sigmas abovelbelow 0.0 the slope of a fitted line must lie to
have the line considered flat (slope of 0.0); value 3.0; defined in FEAT_f ea tures . h.

EHMS_NumSigmasForSpike: Number of sigmas beyond fit which a point must exhibit to qualify it as
a peak, having a magnitude outside the noise level; value 4.0; defined in FEAT_features. h.

EHMS_OneSecondAve: value 1; defined in FEAT_features .h.

EHMS_PctAreaToCheck: Percentage of thrust period to check for bistability (furthest from end
points); value 0.85; defined in FEAT_features .h.

EHMS_PrimaryPeak: value 0; defined in FEAT_features. h.

EHMS_SameAsProbabili ty: Probability cutoff above which two compared by the kstwo function
are considered drawn from the same; value 0.70; defined in FEAT_features .h.

EHMS_ScaledMinThrustSlope: value 0.00000001; defined in FEAT_features. h.

EHMS_SigmaFudgeNumber: Fake number used as a standard deviation when the number is really 0.0
because the Numerical Recipes code cannot handle 0.0; value 0.02; defined in
FEAT_features. h.

EHMS_sigmasForSigStep: This value times sigma [i) must be exceeded for the slope of a level
shift to be significant; value 2; defined in FEAT_f ea tures . h.

EHMS_SmallestPossibleStepSize: Smallest step size by which any digital data measured; value
0.0001; defined in FEAT_features .h.

EHMS_SpikeCountForBistability: Number of spikes needed on an interval before the PBP is
judged to be bistable at that thrust level; value 2; defined in FEAT_f ea tures . h.

EHMS_SpikeWidth: Width in one second intervals of a spike; value 1; defmed in
FEAT_features.h.

EHMS_SublntervalLength: Length in seconds of subinterval used in finding level shifts; value 6;
defined in FEAT_features .h.

EHMS_ThrustPid: PID to be used for determining periods of constant thrust; value "287"; defined in
FEAT_features .h.

EHMS_TurbineSealEquilibrium: Thermal equilibrium reached; value 150.0; defmed in
FEAT_features.h.

EHMS_TurbineSealEquilibriumStr: value" ts_eq"; defined in FEAT_features .h.

executed: value 0; defined in FEAT_features .h.

FEAT_MainDB: value "s sme_da ta " ; defined in FEAT_f ea tures . h.

FEAT_MaxPathLength: value 60; defined in FEAT_features .h.

FEAT_OPOV_bit_toggle: Used in bistability calculations; value 0.07; defined in
FEAT_features .h.

FEAT_SQLScriptDir: value "FEAT_SQL_SCRIPTS"; defined in FEAT_features .h.

FEAT_TestEnVVar: value "TEST_DB"; defined in FEAT_features .h.

41

EHMS_NumSigmaForSigLevelShi ft: The delta between two periods of constant data must exceed
this value times sigma_mag of the first data set to be deemed significant; value 3; defined in
FEAT_features .h.

EHMS_NumSigmasForFlat: Number of sigmas abovelbelow 0.0 the slope of a fitted line must lie to
have the line considered flat (slope of 0.0); value 3.0; defined in FEAT_f ea tures . h.

EHMS_NumSigmasForSpike: Number of sigmas beyond fit which a point must exhibit to qualify it as
a peak, having a magnitude outside the noise level; value 4.0; defined in FEAT_features. h.

EHMS_OneSecondAve: value 1; defined in FEAT_features .h.

EHMS_PctAreaToCheck: Percentage of thrust period to check for bistability (furthest from end
points); value 0.85; defined in FEAT_features .h.

EHMS_PrimaryPeak: value 0; defined in FEAT_features. h.

EHMS_SameAsProbabili ty: Probability cutoff above which two compared by the kstwo function
are considered drawn from the same; value 0.70; defined in FEAT_features .h.

EHMS_ScaledMinThrustSlope: value 0.00000001; defined in FEAT_features. h.

EHMS_SigmaFudgeNumber: Fake number used as a standard deviation when the number is really 0.0
because the Numerical Recipes code cannot handle 0.0; value 0.02; defined in
FEAT_features. h.

EHMS_sigmasForSigStep: This value times sigma [i) must be exceeded for the slope of a level
shift to be significant; value 2; defined in FEAT_f ea tures . h.

EHMS_SmallestPossibleStepSize: Smallest step size by which any digital data measured; value
0.0001; defined in FEAT_features .h.

EHMS_SpikeCountForBistability: Number of spikes needed on an interval before the PBP is
judged to be bistable at that thrust level; value 2; defined in FEAT_f ea tures . h.

EHMS_SpikeWidth: Width in one second intervals of a spike; value 1; defmed in
FEAT_features.h.

EHMS_SublntervalLength: Length in seconds of subinterval used in finding level shifts; value 6;
defined in FEAT_features .h.

EHMS_ThrustPid: PID to be used for determining periods of constant thrust; value "287"; defined in
FEAT_features .h.

EHMS_TurbineSealEquilibrium: Thermal equilibrium reached; value 150.0; defmed in
FEAT_features.h.

EHMS_TurbineSealEquilibriumStr: value" ts_eq"; defined in FEAT_features .h.

executed: value 0; defined in FEAT_features .h.

FEAT_MainDB: value "s sme_da ta " ; defined in FEAT_f ea tures . h.

FEAT_MaxPathLength: value 60; defined in FEAT_features .h.

FEAT_OPOV_bit_toggle: Used in bistability calculations; value 0.07; defined in
FEAT_features .h.

FEAT_SQLScriptDir: value "FEAT_SQL_SCRIPTS"; defined in FEAT_features .h.

FEAT_TestEnVVar: value "TEST_DB"; defined in FEAT_features .h.

41

FindBistable: value 3; defined in FEAT_features .h.

FindDrift: value 10; defined in FEAT_features .h.

FindErraticBehaviour: value 1; defined in FEAT_features .h.

FindLevelShift: value 5; defined in FEAT_features .h.

FindPeak: value 2; defined in FEAT_features .h.

FindSpike: value 4; defined in FEAT_features. h.

IsFlat: value 7; defined in FEAT_features .h.

NoisyPid: value 11; defined in FEAT_features .h.

not_executed: value 1; defined in FEAT_features .h.

NUMSIGMAS: value 3.0; defined in FEAT_features .h.

PERCENTAGE_RANGE: value 0.070; defined in FEAT_features .h.

PWR_LEVEL_OFFSET: Time added to the beginning of a power level to try to avoid noise; value 1.4;
defined in FEAT_features .h.

RedlineCheck: value 6; defined in FEAT_features. h.

RedundChannelCheck: value 12; defined in FEAT_features .h.

YNORM: value 100.0; defined in FEAT_features. h.

ZeroShiftCheck: value 13; defined in FEAT_features .h.

5.4 Defined Types

EBMS_ConstantPeriodID,EHMS_PConstantPeriodID(definedinFEAT_features.h)

typedef struct EHMS_constantperiodid {
float

start_time,
end_time,
magnitude,
mag_sigma,
slope;

} EHMS_ConstantPeriodID, *EHMS_PConstantPeriodID;

Members:

staruime: Start time of period of constant thrust.

end_time: End time of period of constant thrust.

magnitude:

mag_sigma:

slope:

EHMS_DataIDRecord,EHMS_PDataIDRecord(definedmFEAT_features.h)

typedef struct EHMS_dataidrecord {
char

expert[DBFL_MaxExpertModuleNameLength + 1],

42

FindBistable: value 3; defined in FEAT_features .h.

FindDrift: value 10; defined in FEAT_features .h.

FindErraticBehaviour: value 1; defined in FEAT_features .h.

FindLevelShift: value 5; defined in FEAT_features .h.

FindPeak: value 2; defined in FEAT_features .h.

FindSpike: value 4; defined in FEAT_features. h.

IsFlat: value 7; defined in FEAT_features .h.

NoisyPid: value 11; defined in FEAT_features .h.

not_executed: value 1; defined in FEAT_features .h.

NUMSIGMAS: value 3.0; defined in FEAT_features .h.

PERCENTAGE_RANGE: value 0.070; defined in FEAT_features .h.

PWR_LEVEL_OFFSET: Time added to the beginning of a power level to try to avoid noise; value 1.4;
defined in FEAT_features .h.

RedlineCheck: value 6; defined in FEAT_features. h.

RedundChannelCheck: value 12; defined in FEAT_features .h.

YNORM: value 100.0; defined in FEAT_features. h.

ZeroShiftCheck: value 13; defined in FEAT_features .h.

5.4 Defined Types

EBMS_ConstantPeriodID,EHMS_PConstantPeriodID(definedinFEAT_features.h)

typedef struct EHMS_constantperiodid {
float

start_time,
end_time,
magnitude,
mag_sigma,
slope;

} EHMS_ConstantPeriodID, *EHMS_PConstantPeriodID;

Members:

staruime: Start time of period of constant thrust.

end_time: End time of period of constant thrust.

magnitude:

mag_sigma:

slope:

EHMS_DataIDRecord,EHMS_PDataIDRecord(definedmFEAT_features.h)

typedef struct EHMS_dataidrecord {
char

expert[DBFL_MaxExpertModuleNameLength + 1],

42

test_str(DBFL_MaxTestIdLength + 1J,
pid_str[DBFL_PidNameLength + 1],
descrip[DBFL_MaxMeasurementstringLength + 1],
compare_test[DBFL_MaxTestIdLength + 1],
compare-pid[DBFL_PidNameLength + 1],
compare_descrip[DBFL_MaxMeasurementStringLength + 1];

float
start_time,
end_time,
unaltered_start_time,
unaltered_end_time,
period,
thrust_level;

} EHMS_DataIDRecord, *EHMS_PDataIDRecord;

Members:
expert:
tescstr: Test ID of the source of the data.

pid_str: PID from the specified test.
descrip: Description of the measurement.
compare_test Test ID of the comparison test used.
compare~pid: PID from the specified comparison test.
compare_descrip: Description of the measurement from the comparison test.
starLtime: Start time of the feature;
end_time: End time of the features.
unaltered_start_time:
unaltered_end_time:
period: Sample period for the data set.
thrusUevel: Thrust level over the given time range.

EHMS_DifferentThanRecord,
FEAT_features.h)

EHMS_PDifferentThanRecord

typedef struct EHMX_differentthanrecord {
float

chi_square,
prob;

FEAT_Boolean
coeffs_within_error_bars,
differ_by_constant_offset;

float
offset,
offset_sigma;

(defmed

} EHMS_DifferentThanRecord, *EHMS_PDifferentThanRecord;

Members:
chi_square:

prob:

43

in

test_str(DBFL_MaxTestIdLength + 1J,
pid_str[DBFL_PidNameLength + 1],
descrip[DBFL_MaxMeasurementstringLength + 1],
compare_test[DBFL_MaxTestIdLength + 1],
compare-pid[DBFL_PidNameLength + 1],
compare_descrip[DBFL_MaxMeasurementStringLength + 1];

float
start_time,
end_time,
unaltered_start_time,
unaltered_end_time,
period,
thrust_level;

} EHMS_DataIDRecord, *EHMS_PDataIDRecord;

Members:
expert:
tescstr: Test ID of the source of the data.

pid_str: PID from the specified test.
descrip: Description of the measurement.
compare_test Test ID of the comparison test used.
compare~pid: PID from the specified comparison test.
compare_descrip: Description of the measurement from the comparison test.
starLtime: Start time of the feature;
end_time: End time of the features.
unaltered_start_time:
unaltered_end_time:
period: Sample period for the data set.
thrusUevel: Thrust level over the given time range.

EHMS_DifferentThanRecord,
FEAT_features.h)

EHMS_PDifferentThanRecord

typedef struct EHMX_differentthanrecord {
float

chi_square,
prob;

FEAT_Boolean
coeffs_within_error_bars,
differ_by_constant_offset;

float
offset,
offset_sigma;

(defmed

} EHMS_DifferentThanRecord, *EHMS_PDifferentThanRecord;

Members:
chi_square:

prob:

43

in

coeffs_ within_errocbars:

diffecby _constancoffset:

offset:
offseCsigma:

EHMS_FeatureRecord,EHMS_PFeatureRecord(definedinFEAT_features.h)

typedef struct EHMS_featurerecord {
struct EHMS_featurerecord

*next,
*prev;

char
test_id[DBFL_MaxTestldLength + i),
sensor[DBFL_PidNarneLength + 1];

float
peaJcht,
taph,
fwhm,
tafwhml,
tafwhm2;

EHMS_FitType
fit_type;

float
chi_square;

int
num...pararns;

float
offset,
*fitted...,pararns;

} EHMS_FeatureRecord, *EHMS_PFeatureRecord;

Members:

next: Pointer to the next feature record.
prev: Pointer to the previous feature record.

tesUd:
sensor: Sensor from which the data was taken.

pealcht: Maximum peak height.
taph: Time at the maximum peak height.

fwhm: Full width half maximum for peak (feature).

tafwhm1: Time at full width half maximum 1.

tafwhm2: Time at full width half maximum 2.

fiUype: Type of equation fit to points comprising feature.

chi_square: Goodness of fit measurement.

num_params: Number of elements in the au array.

offset: Number of elements in the au array.

fitted_params: Coefficients of the fit from which function parameters may be calculated.

44

coeffs_ within_errocbars:

diffecby _constancoffset:

offset:
offseCsigma:

EHMS_FeatureRecord,EHMS_PFeatureRecord(definedinFEAT_features.h)

typedef struct EHMS_featurerecord {
struct EHMS_featurerecord

*next,
*prev;

char
test_id[DBFL_MaxTestldLength + i),
sensor[DBFL_PidNarneLength + 1];

float
peaJcht,
taph,
fwhm,
tafwhml,
tafwhm2;

EHMS_FitType
fit_type;

float
chi_square;

int
num...pararns;

float
offset,
*fitted...,pararns;

} EHMS_FeatureRecord, *EHMS_PFeatureRecord;

Members:

next: Pointer to the next feature record.
prev: Pointer to the previous feature record.

tesUd:
sensor: Sensor from which the data was taken.

pealcht: Maximum peak height.
taph: Time at the maximum peak height.

fwhm: Full width half maximum for peak (feature).

tafwhm1: Time at full width half maximum 1.

tafwhm2: Time at full width half maximum 2.

fiUype: Type of equation fit to points comprising feature.

chi_square: Goodness of fit measurement.

num_params: Number of elements in the au array.

offset: Number of elements in the au array.

fitted_params: Coefficients of the fit from which function parameters may be calculated.

44

EHMS_FeatureRecordHead,EHMS_PFeatureRecordHead(definedinFEAT_features.h}

typedef struct EHMS_featurerecordhead {
EHMS_PFeatureRecord

first,
last;

} EHMS_FeatureRecordHead, *EHMS_PFeatureRecordHeadi

Members:
first: First feature in the list.

last: Last feature in the list.

EHMS_FitType (defined in FEAT_features .h)

typedef enum EHMS_FitFuncs
{Gaussian, FastRiseExpFall, NthOrderPoly} EHMS_FitType;

EHMS_LinearLPOTPDischargePressureRec,
EHMS_PLinearLPOTPDischargePressureRec(definedmFEAT_features.h)

typedef struct EHMS_linearLPoTPdischargepressurerec {
float

start_time,
end_time;

} EHMS_LinearLPOTPDischargePressureRec,
*EHMS_PLinearLPOTPDischargePressureRec;

Members:
start_time:
end_time:

EHMS_RedlineCheckType (defined in FEAT_features .h)

typedef enum EHMS_RedCheckChoice
{single-pid, both-pids, either-pid, difference}
EHMS_RedlineCheckType;

EHMS_RedlinelnfoRecord,EHMS_PRedlinelnfoRecord(definedinFEAT_features.h)

typedefstruct EHMS_redlineinforecord {
float

start_time,
end_time,
redline,
redline_time;

} EHMS_RedlinelnfoRecord, *EHMS_PRedlinelnfoRecordi

Members:
start_time:
end_time:

redline:
redline_time:

45

EHMS_FeatureRecordHead,EHMS_PFeatureRecordHead(definedinFEAT_features.h}

typedef struct EHMS_featurerecordhead {
EHMS_PFeatureRecord

first,
last;

} EHMS_FeatureRecordHead, *EHMS_PFeatureRecordHeadi

Members:
first: First feature in the list.

last: Last feature in the list.

EHMS_FitType (defined in FEAT_features .h)

typedef enum EHMS_FitFuncs
{Gaussian, FastRiseExpFall, NthOrderPoly} EHMS_FitType;

EHMS_LinearLPOTPDischargePressureRec,
EHMS_PLinearLPOTPDischargePressureRec(definedmFEAT_features.h)

typedef struct EHMS_linearLPoTPdischargepressurerec {
float

start_time,
end_time;

} EHMS_LinearLPOTPDischargePressureRec,
*EHMS_PLinearLPOTPDischargePressureRec;

Members:
start_time:
end_time:

EHMS_RedlineCheckType (defined in FEAT_features .h)

typedef enum EHMS_RedCheckChoice
{single-pid, both-pids, either-pid, difference}
EHMS_RedlineCheckType;

EHMS_RedlinelnfoRecord,EHMS_PRedlinelnfoRecord(definedinFEAT_features.h)

typedefstruct EHMS_redlineinforecord {
float

start_time,
end_time,
redline,
redline_time;

} EHMS_RedlinelnfoRecord, *EHMS_PRedlinelnfoRecordi

Members:
start_time:
end_time:

redline:
redline_time:

45

EHMS_Redline'l'ype (defined in FEAT_features .h)

typedef enum EHMS_RedlineTypes {upper, lower} EHMS_RedlineType;

EBMS_Spike'l'ype (defined in FEAT_features. h)

typedef enum EHMS_Spikes {posetive, negative} EHMS_FitType;

EBMS_~rustPeriodID,EHMS_p~rustPeriodID(definedinFEAT_features.h)

typedef struct EHMS_thrustperiodid {
float

start_time,
end_time,
thrust_level;

} EHMS_ThrustPGriodID, *EHMS_PThrustPeriodID;

Members:
slarUime: Start time of period of constant thrust.

end_time: End time of period of constant thrust.

thrusClevel:

FEA'l'_Boolean (defined in FEAT_features .h)

typedef enum feat_boolean {Ffalse, Ftrue} FEAT_Boolean;

5.5 Global Variables

EHMS_SelectString: char [DBFL_MaxConunandLength]; defined in FEAT_features .h.

5.6 Functions

calc_stddev (definition in FEAT_featureUti Is. c)

double calc_stddev (float *data, int num-pts)

covsrt (declaration in FEAT_featurefits .h, definition in FEAT_featurefits. c)

void covsrt (float **covar, int rna, int lista[], int mfit)

DBA_StandardString'l'oPid
FEAT_dbutils_t.c)

(declaration in definition

void DBA_StandardStringToPid (char *test_id, char *pid_name,
char * standard_string)

in

DBA_'l'imeRangeToRecNumRange (declaration in FEAT_features .h, definition in
FEAT_featureutils.c)

void DBA_TimeRangeToRecNumRange (float start_time, float end_time,
float sample-period,
int *start_rec, int *end_rec)

46

EHMS_Redline'l'ype (defined in FEAT_features .h)

typedef enum EHMS_RedlineTypes {upper, lower} EHMS_RedlineType;

EBMS_Spike'l'ype (defined in FEAT_features. h)

typedef enum EHMS_Spikes {posetive, negative} EHMS_FitType;

EBMS_~rustPeriodID,EHMS_p~rustPeriodID(definedinFEAT_features.h)

typedef struct EHMS_thrustperiodid {
float

start_time,
end_time,
thrust_level;

} EHMS_ThrustPGriodID, *EHMS_PThrustPeriodID;

Members:
slarUime: Start time of period of constant thrust.

end_time: End time of period of constant thrust.

thrusClevel:

FEA'l'_Boolean (defined in FEAT_features .h)

typedef enum feat_boolean {Ffalse, Ftrue} FEAT_Boolean;

5.5 Global Variables

EHMS_SelectString: char [DBFL_MaxConunandLength]; defined in FEAT_features .h.

5.6 Functions

calc_stddev (definition in FEAT_featureUti Is. c)

double calc_stddev (float *data, int num-pts)

covsrt (declaration in FEAT_featurefits .h, definition in FEAT_featurefits. c)

void covsrt (float **covar, int rna, int lista[], int mfit)

DBA_StandardString'l'oPid
FEAT_dbutils_t.c)

(declaration in definition

void DBA_StandardStringToPid (char *test_id, char *pid_name,
char * standard_string)

in

DBA_'l'imeRangeToRecNumRange (declaration in FEAT_features .h, definition in
FEAT_featureutils.c)

void DBA_TimeRangeToRecNumRange (float start_time, float end_time,
float sample-period,
int *start_rec, int *end_rec)

46

DBXO_FetchRedlineXnfo
FEAT_dbutils_t.c)

(declaration in definition in

void DBIO_FetchRedlinelnfo (char *test_id, char *pid,
EHMS_RedlineType limit_type,
EHMS_PRedlinelnfoRecord *red_info_rec,
int *nUlILrecs)

DBXO_GetconstantThrustLevels (declaration in FEAT_dbio_defs .h, definition in
FEAT_dbutils_t. c)

void
DBIO_GetConstantThrustLevels (char *test, int *nUlILthrust_ids,

EHMS_PThrustPeriodID *thrust_ids)

DBIO_GetPidlnfo (declaration in FEAT_dbio_defs . h, definition ill FEAT_dbutils_t. c)

void DBIO_GetPidlnfo (char *test, char *pid, char *units,
char *descrip, float *start, float *end,
float *rate)

DBXO_GetTheFeatureExtractionCommands (declaration in FEAT_dbio_defs .h, definition in
FEAT_dbutils_t.c)

char **DBIO_GetTheFeatureExtractionCommands (int *num_entries)

DBIO_PidToSensorLabel
FEAT_dbutils_t.c)

(declaration in

char *DBIO_PidToSensorLabel (char *test, char *pid)

EHMS_AddConstantPeriodID
FEAT_featureUtils.c)

(declaration in FEAT_features .h,

definition

definition

in

in

void EHMS~ddConstantPeriodID (EHMS_PConstantPeriodID *period_ids,
int num-perio~ids,

EHMS_AddFeatureRecord
FEAT_featureUtils.c)

(declaration

float start_time, float end_time,
float magnitude, float mag_sigma,
float slope)

in FEAT_fentures.h, definition

void EHMS_AddFeatureRecord (EHMS_PFeatureRecord new_data_record,
EHMS_PFeatureRecordHead
data_record~head)

EHMS_AddLinearPressureRec (definition in FEAT_featureUtils. c)

void EHMS_AddLinearPressureRec
(EHMS_PLinearLPOTPDischargePressureRec *pressure_recs,
int *num_linear-periods, float start_time, float end_time)

47

in

DBXO_FetchRedlineXnfo
FEAT_dbutils_t.c)

(declaration in definition in

void DBIO_FetchRedlinelnfo (char *test_id, char *pid,
EHMS_RedlineType limit_type,
EHMS_PRedlinelnfoRecord *red_info_rec,
int *nUlILrecs)

DBXO_GetconstantThrustLevels (declaration in FEAT_dbio_defs .h, definition in
FEAT_dbutils_t. c)

void
DBIO_GetConstantThrustLevels (char *test, int *nUlILthrust_ids,

EHMS_PThrustPeriodID *thrust_ids)

DBIO_GetPidlnfo (declaration in FEAT_dbio_defs . h, definition ill FEAT_dbutils_t. c)

void DBIO_GetPidlnfo (char *test, char *pid, char *units,
char *descrip, float *start, float *end,
float *rate)

DBXO_GetTheFeatureExtractionCommands (declaration in FEAT_dbio_defs .h, definition in
FEAT_dbutils_t.c)

char **DBIO_GetTheFeatureExtractionCommands (int *num_entries)

DBIO_PidToSensorLabel
FEAT_dbutils_t.c)

(declaration in

char *DBIO_PidToSensorLabel (char *test, char *pid)

EHMS_AddConstantPeriodID
FEAT_featureUtils.c)

(declaration in FEAT_features .h,

definition

definition

in

in

void EHMS~ddConstantPeriodID (EHMS_PConstantPeriodID *period_ids,
int num-perio~ids,

EHMS_AddFeatureRecord
FEAT_featureUtils.c)

(declaration

float start_time, float end_time,
float magnitude, float mag_sigma,
float slope)

in FEAT_fentures.h, definition

void EHMS_AddFeatureRecord (EHMS_PFeatureRecord new_data_record,
EHMS_PFeatureRecordHead
data_record~head)

EHMS_AddLinearPressureRec (definition in FEAT_featureUtils. c)

void EHMS_AddLinearPressureRec
(EHMS_PLinearLPOTPDischargePressureRec *pressure_recs,
int *num_linear-periods, float start_time, float end_time)

47

in

EHMS_AddThrustPeriodXD
FEAT_featureUtils.c)

(declaration in FEAT_features .h. definition

void EHMS_AddThrustPeriodID (EHMS_PThrustPeriodID *thrust_ids,

in

int num_thrust_ids, float start_time,
float end_time, float thrust_level)

EHNS_AnalyzeThrustProfile
FEAT_features.c)

EHMS_PThrustPeriodID

(declaration in FEAT_features .h, definition in

EHMS_AnalyzeThrustprofile (char *test_id, int *num_thrust_ids,
char *db_string)

EHNS_ArrayAdd (definition in FEAT_featureUtils . c)

int EHMS_ArrayAdd (float *data, int num-pts, float val)

EHNS_ArrayMult (definition in FEAT_featureUtils . c)

int EHMS_ArrayMult (float *data, int nllmLPts, float mult)

EHNS_BalancePistonCheck:Init (declaration in FEAT_features .h, definition in
FEAT_features.c)

FEAT_Boolean
EHMS_BalancePistonChecklnit (EHMS_PDataIDRecord data_id,

float *timel, float *datal,
float *sigmasl, float **time2,
float **composite_datal~
float **composite_sigmasl,
float **composite_data2,
float **composite_sigmas2)

Tbis function is the primary function of the BalancePistoncompare module, wbicb serves as a front
end preprocessor to another standard module. DifferentThan. BalancePistonCompare produces
a composite data set made up of the point for point difference between the two specified data sets.
BalancePistonCompare creates two composite data sets, one with data drawn from the current test
and one with data drawn from the comparison test. A call is then made to the DifferentThan module
with the composite data sets. Tbe purpose of this specialized module is to look for changes in the net
force exerted on the balance piston between tests at similar thrust levels.

Arguments:

data_id:

time1:

datal:

sigmasl:

time2:

compOSite_datal:

composite_sigmas 1:

composite_data2:

composite_sigmas2:

48

EHMS_AddThrustPeriodXD
FEAT_featureUtils.c)

(declaration in FEAT_features .h. definition

void EHMS_AddThrustPeriodID (EHMS_PThrustPeriodID *thrust_ids,

in

int num_thrust_ids, float start_time,
float end_time, float thrust_level)

EHNS_AnalyzeThrustProfile
FEAT_features.c)

EHMS_PThrustPeriodID

(declaration in FEAT_features .h, definition in

EHMS_AnalyzeThrustprofile (char *test_id, int *num_thrust_ids,
char *db_string)

EHNS_ArrayAdd (definition in FEAT_featureUtils . c)

int EHMS_ArrayAdd (float *data, int num-pts, float val)

EHNS_ArrayMult (definition in FEAT_featureUtils . c)

int EHMS_ArrayMult (float *data, int nllmLPts, float mult)

EHNS_BalancePistonCheck:Init (declaration in FEAT_features .h, definition in
FEAT_features.c)

FEAT_Boolean
EHMS_BalancePistonChecklnit (EHMS_PDataIDRecord data_id,

float *timel, float *datal,
float *sigmasl, float **time2,
float **composite_datal~
float **composite_sigmasl,
float **composite_data2,
float **composite_sigmas2)

Tbis function is the primary function of the BalancePistoncompare module, wbicb serves as a front
end preprocessor to another standard module. DifferentThan. BalancePistonCompare produces
a composite data set made up of the point for point difference between the two specified data sets.
BalancePistonCompare creates two composite data sets, one with data drawn from the current test
and one with data drawn from the comparison test. A call is then made to the DifferentThan module
with the composite data sets. Tbe purpose of this specialized module is to look for changes in the net
force exerted on the balance piston between tests at similar thrust levels.

Arguments:

data_id:

time1:

datal:

sigmasl:

time2:

compOSite_datal:

composite_sigmas 1:

composite_data2:

composite_sigmas2:

48

Command table inputs:

expert:

sensor:

sensocpostfix:

rnodulename:

starttime:

endtime:

compare_descrip (paraml):

compare_test (param2):

num30mparison_sigmas (param3):

AllY features found by this module are reported to the same table used by the standard DifferentThan
module, F _DIFTHA. The results of this module are distinguishable by entries ill the sensor and
comparison sensor columns which, for BalancePi s tonCompare, are of the form PIDi - PIDi, which
correspond to the sensor and comparison sensor.

EHMS_BuildRun'l'imecommandArray (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

char
**EHMS_BuildRunTimeCommandArray (char *test_id,

char **command_table_rows,
int num_entries,
EHMS_PThrustPeriodID thrust_ids,
int num_thrust_ids,
int *num_rt_commands)

EHMS_BuildSelectstring (definition in FEAT_featureUtils . c)

void EHMS_BuildSelectString (char *select_string, char *test_id,
char *pid, int start_rec,
int end_rec)

EHMS_CompareRealNums (defmition in FEAT_featureUtils . c)

FEAT_Boolean EHMS_CompareRealNums (float argl, float arg2,
float precision)

EHMS_CopyDataID (declaration in FEAT_features .h, definition in FEAT_featureUtils. c)

void EHMS_CopyDataID (EHMS_PDataIDRecord new_data_id,
EHMS_PDataIDRecord old_data_id)

EHMS_CreateConstantPeriodRecord (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

EHMs_PConstantPeriodID EHMS_CreateConstantPeriodRecord ()

EHMS_CreateDataIDRecord
FEAT_featureUtils.c)

(declaration in FEAT_features.h,

EHMS_PDataIDRecord EHMS_CreateDataIDRecord ()

49

definition in

Command table inputs:

expert:

sensor:

sensocpostfix:

rnodulename:

starttime:

endtime:

compare_descrip (paraml):

compare_test (param2):

num30mparison_sigmas (param3):

AllY features found by this module are reported to the same table used by the standard DifferentThan
module, F _DIFTHA. The results of this module are distinguishable by entries ill the sensor and
comparison sensor columns which, for BalancePi s tonCompare, are of the form PIDi - PIDi, which
correspond to the sensor and comparison sensor.

EHMS_BuildRun'l'imecommandArray (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

char
**EHMS_BuildRunTimeCommandArray (char *test_id,

char **command_table_rows,
int num_entries,
EHMS_PThrustPeriodID thrust_ids,
int num_thrust_ids,
int *num_rt_commands)

EHMS_BuildSelectstring (definition in FEAT_featureUtils . c)

void EHMS_BuildSelectString (char *select_string, char *test_id,
char *pid, int start_rec,
int end_rec)

EHMS_CompareRealNums (defmition in FEAT_featureUtils . c)

FEAT_Boolean EHMS_CompareRealNums (float argl, float arg2,
float precision)

EHMS_CopyDataID (declaration in FEAT_features .h, definition in FEAT_featureUtils. c)

void EHMS_CopyDataID (EHMS_PDataIDRecord new_data_id,
EHMS_PDataIDRecord old_data_id)

EHMS_CreateConstantPeriodRecord (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

EHMs_PConstantPeriodID EHMS_CreateConstantPeriodRecord ()

EHMS_CreateDataIDRecord
FEAT_featureUtils.c)

(declaration in FEAT_features.h,

EHMS_PDataIDRecord EHMS_CreateDataIDRecord ()

49

definition in

EHMS_CreateDifferent'l'hanRecord (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

EHMS_PDifferentThanRecord EHMS_CreateDifferentThanRecord ()

EHMS_CreateFeatureRecord
FEAT_featureUtils.c)

EHMS_PFeatureRecord

(declaration in FEAT_features .h,

EHMS_CreateFeatureRecord (EHMS_PDataIDRecord data_id)

definition in

EHMS_CreateFeatureRecordHead (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

EHMS_PFeatureRecordHead EHMS_CreateFeatureRecordHead ()

EHMS_DeleteFeatureRecord
FEAT_featureUtils.c)

void

(declaration in FEAT_features .h, definition

EHMS_DeleteFeatureRecord (EHMS_PFeatureRecord old_data_record,
EHMS_PFeatureRecordHead
data_record_head)

EHMS_DeltaDifferentThan
FEAT_features.c)

void

(declaration in FEAT_features .h,

EHMS_DeltaDifferentThan (EHMS_PDataIDRecord data_id,
float *timel, float *datal,
float *sigmasl, float *time2,
float *data2, float *sigmas2,

definition

in

ill

int num_comparison_sigmas,
EHMS_PDifferentThanRecord test_results,
int num-points, float step_sizel)

This function is the primary function of the DifferentThan module, which analyzes data from two
sensors which may be drawn from the current test or the current test and a comparison test determined at
fUll time.

Arguments:

data_id:

timel:

datal:

sigmas1:

time2:

data2:

sigmas2:

llum_comparison_sigmas:

tesCresults:

num_points:

50

EHMS_CreateDifferent'l'hanRecord (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

EHMS_PDifferentThanRecord EHMS_CreateDifferentThanRecord ()

EHMS_CreateFeatureRecord
FEAT_featureUtils.c)

EHMS_PFeatureRecord

(declaration in FEAT_features .h,

EHMS_CreateFeatureRecord (EHMS_PDataIDRecord data_id)

definition in

EHMS_CreateFeatureRecordHead (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

EHMS_PFeatureRecordHead EHMS_CreateFeatureRecordHead ()

EHMS_DeleteFeatureRecord
FEAT_featureUtils.c)

void

(declaration in FEAT_features .h, definition

EHMS_DeleteFeatureRecord (EHMS_PFeatureRecord old_data_record,
EHMS_PFeatureRecordHead
data_record_head)

EHMS_DeltaDifferentThan
FEAT_features.c)

void

(declaration in FEAT_features .h,

EHMS_DeltaDifferentThan (EHMS_PDataIDRecord data_id,
float *timel, float *datal,
float *sigmasl, float *time2,
float *data2, float *sigmas2,

definition

in

ill

int num_comparison_sigmas,
EHMS_PDifferentThanRecord test_results,
int num-points, float step_sizel)

This function is the primary function of the DifferentThan module, which analyzes data from two
sensors which may be drawn from the current test or the current test and a comparison test determined at
fUll time.

Arguments:

data_id:

timel:

datal:

sigmas1:

time2:

data2:

sigmas2:

llum_comparison_sigmas:

tesCresults:

num_points:

50

step_size1:

Command table inputs:

expert:

sensor:

sensor_postfix:

modu)ename:

starttime:

endtime:

compare.;..descrip (paraml):

polyorder (param2):

num30mparison_sigmas (param3):

Any features found are reported to the table F _DIFTHA.

EHMS_DeltaLevelShift (declaration in FEAT_features. h, definition in FEAT_features. e)

FEAT_Boolean
EHMS_DeltaLevelShift (EHMS_PDataIDReeord data_id, float *timel,

float *datal, float *sigrnasl,
float *time2, float *data2,
float *sigrnas2, int nUID...,points,
EHMS_PLinearLPOTPDisehargePressureRee
pressure_ree, int num_linear...,periods,
float threshold, int SublntervalLength)

This function is the primary function of the DeltaLevelShift module, which serves as a front end to
the Level Shi f t module. The purpose of this module is to produce a composite data set made up of the
point for point difference between the two specified sensor data sets. A call is then made to the
LevelShift module with the composite data set. Using this preprocessing allows the expert to look for
level shifts in the difference between two pids. This is often useful in such cases as balance piston
analysis where changes in the net force exerted on (he balance piston can be detected by looking for level
shifts in the data set comprised of pid 327 - pid 328.

Arguments:

data_id:

timel:

datal:

sigmasl:

time2:

data2:

sigmas2:

num_points:

pressure_rec:

num_linear_periods:

threshold:

SublntervalLength:

51

step_size1:

Command table inputs:

expert:

sensor:

sensor_postfix:

modu)ename:

starttime:

endtime:

compare.;..descrip (paraml):

polyorder (param2):

num30mparison_sigmas (param3):

Any features found are reported to the table F _DIFTHA.

EHMS_DeltaLevelShift (declaration in FEAT_features. h, definition in FEAT_features. e)

FEAT_Boolean
EHMS_DeltaLevelShift (EHMS_PDataIDReeord data_id, float *timel,

float *datal, float *sigrnasl,
float *time2, float *data2,
float *sigrnas2, int nUID...,points,
EHMS_PLinearLPOTPDisehargePressureRee
pressure_ree, int num_linear...,periods,
float threshold, int SublntervalLength)

This function is the primary function of the DeltaLevelShift module, which serves as a front end to
the Level Shi f t module. The purpose of this module is to produce a composite data set made up of the
point for point difference between the two specified sensor data sets. A call is then made to the
LevelShift module with the composite data set. Using this preprocessing allows the expert to look for
level shifts in the difference between two pids. This is often useful in such cases as balance piston
analysis where changes in the net force exerted on (he balance piston can be detected by looking for level
shifts in the data set comprised of pid 327 - pid 328.

Arguments:

data_id:

timel:

datal:

sigmasl:

time2:

data2:

sigmas2:

num_points:

pressure_rec:

num_linear_periods:

threshold:

SublntervalLength:

51

Command table inputs:

expert:

sensor:

sensocpostfix:

modulename:

starttime:

endtime:

compare_descrip (paraml):

Any features found by this module are reported to the same table used by the standard LevelShift
module, F _LEVSH. The results of this module are distinguishable by an entry in the sensor column of the
fonnat PID#-PID#.

EHMS_DescribeConstantPeriod (defmition in FEAT_features. c)

void
EHMS_DescribeConstantPeriod (EHMS_PConstantPeriodID period_id,

float *xarray, float *data,
float *sigrnas, int num-pts)

EHMS_DescribeConstantThrustLevel (declaration in FEAT_features .h, definition in
FEAT_features.c)

int EHMS_DescribeConstantThrustLevel (EHMS_PDataIDRecord data_id,
float *time, float *data,
float *sigrnas)

EHMS_DetectBistability
FEAT_features.c)

(declaration in FEAT_features .h, definition

FEAT_Boolean EHMS_DetectBistability (EHMS_PDataIDRecord data_id,
float *time, float *data, .
float *sigrnas,
int num_data-pts)

in

This is the primary function of the special purpose module, F indBistable, intended to test for
the presence of Prebumer Pump Bistability in the SSME. This goal is accomplished by searching the pid
defined by the variable EHMS_BistablePid for negative going spikes over each period of constant
thrust having a thrust level of EHMS_MinThustForBistabli ty or lower. The method used to detect
spikes on the interval of interest is the same as that applied by the FindSpike module, with the
exclusion of second order fitting capability. If the number of spikes found on any given interval is greater
than the number defined by the constant EHMS_SpikeCountForBistability, then that interval is
flagged as containing an instance of Preburner Pump Bistabili ty.

Arguments:

data_id:

time:

data:

sigmas:

num_datt-points:

52

Command table inputs:

expert:

sensor:

sensocpostfix:

modulename:

starttime:

endtime:

compare_descrip (paraml):

Any features found by this module are reported to the same table used by the standard LevelShift
module, F _LEVSH. The results of this module are distinguishable by an entry in the sensor column of the
fonnat PID#-PID#.

EHMS_DescribeConstantPeriod (defmition in FEAT_features. c)

void
EHMS_DescribeConstantPeriod (EHMS_PConstantPeriodID period_id,

float *xarray, float *data,
float *sigrnas, int num-pts)

EHMS_DescribeConstantThrustLevel (declaration in FEAT_features .h, definition in
FEAT_features.c)

int EHMS_DescribeConstantThrustLevel (EHMS_PDataIDRecord data_id,
float *time, float *data,
float *sigrnas)

EHMS_DetectBistability
FEAT_features.c)

(declaration in FEAT_features .h, definition

FEAT_Boolean EHMS_DetectBistability (EHMS_PDataIDRecord data_id,
float *time, float *data, .
float *sigrnas,
int num_data-pts)

in

This is the primary function of the special purpose module, F indBistable, intended to test for
the presence of Prebumer Pump Bistability in the SSME. This goal is accomplished by searching the pid
defined by the variable EHMS_BistablePid for negative going spikes over each period of constant
thrust having a thrust level of EHMS_MinThustForBistabli ty or lower. The method used to detect
spikes on the interval of interest is the same as that applied by the FindSpike module, with the
exclusion of second order fitting capability. If the number of spikes found on any given interval is greater
than the number defined by the constant EHMS_SpikeCountForBistability, then that interval is
flagged as containing an instance of Preburner Pump Bistabili ty.

Arguments:

data_id:

time:

data:

sigmas:

num_datt-points:

52

Command table inputs:

expert:

sensor:

sensocpostfix:

modulename:

starllime:

endlime:

Any features found are reported to the table F _BISTAB.

EHMS_ExecuteTheLoadScripts (defmition in FEAT_f ileio_t. c)

void EHMS_ExeeuteTheLoadSeripts (FEAT_Boolean *modules_exeeuted,
char *db_string)

EHMS_FastRiseExpFall
FEAT_featurefits.e)

(declaration in FEAT_featurefits.h,

void EHMS_FastRiseExpFall (float x, float *a, float *y,
float *dyda, int na)

definition in

EHMS_FeatureExtractor (declaration in FEAT_features .h, definition in FEAT_features. c)

FEAT_Boolean EHMS_FeatureExtraetor (char *test_id,

EHMS_FindConstantThrust
FEAT_features.e)

EHMS_PThrustperiodID

(declaration in

char *table_entry_str,
int *module)

FEAT_features.h, definition

EHMS_FindConstantThrust (EHMS_PDataIDReeord data_id,
float *time, float *data,
float *sigmas, int num_data-pts,
int *num_thrust_ids)

EHMS_FindDrift (definition in FEAT_features. c)

FEAT_Boolean
EHMS_FindDrift (EHMS_PDataIDReeord data_id, float *time,

float *data, float *smoothed_data,
. float *sigmas, int n, float multiplier,

float time_range,
EHMS_PLinearLPOTPDisehargePressureRee
pressure_ree, int num_linear-periods)

in

EHMS_FindErraticBehaviour
FEAT_features.e)

(declaration in FEAT_features .h, definition in

FEAT_Boolean
EHMS_FindErratieBehaviour (EHMS_PDataIDReeord data_id,

float *time, float *data,
float *sigmas, float expected_sigma,

53

Command table inputs:

expert:

sensor:

sensocpostfix:

modulename:

starllime:

endlime:

Any features found are reported to the table F _BISTAB.

EHMS_ExecuteTheLoadScripts (defmition in FEAT_f ileio_t. c)

void EHMS_ExeeuteTheLoadSeripts (FEAT_Boolean *modules_exeeuted,
char *db_string)

EHMS_FastRiseExpFall
FEAT_featurefits.e)

(declaration in FEAT_featurefits.h,

void EHMS_FastRiseExpFall (float x, float *a, float *y,
float *dyda, int na)

definition in

EHMS_FeatureExtractor (declaration in FEAT_features .h, definition in FEAT_features. c)

FEAT_Boolean EHMS_FeatureExtraetor (char *test_id,

EHMS_FindConstantThrust
FEAT_features.e)

EHMS_PThrustperiodID

(declaration in

char *table_entry_str,
int *module)

FEAT_features.h, definition

EHMS_FindConstantThrust (EHMS_PDataIDReeord data_id,
float *time, float *data,
float *sigmas, int num_data-pts,
int *num_thrust_ids)

EHMS_FindDrift (definition in FEAT_features. c)

FEAT_Boolean
EHMS_FindDrift (EHMS_PDataIDReeord data_id, float *time,

float *data, float *smoothed_data,
. float *sigmas, int n, float multiplier,

float time_range,
EHMS_PLinearLPOTPDisehargePressureRee
pressure_ree, int num_linear-periods)

in

EHMS_FindErraticBehaviour
FEAT_features.e)

(declaration in FEAT_features .h, definition in

FEAT_Boolean
EHMS_FindErratieBehaviour (EHMS_PDataIDReeord data_id,

float *time, float *data,
float *sigmas, float expected_sigma,

53

int num...,points,
EHMS_PLinearLPOTPDischargePressUreReC
pressure_ree, int num_linear-periods,
float step_size)

This is the primary function of the FindErratieBehaviour module. Processing begins by
comparing the number of points on the interval of interest to the number of parameters varied in a second
order fit multiplied by the value of EHMS_GoodFitFactor. If the number of points is less than the
result of the calculation described above, a first order fit is used instead of a second order. It was found
that for short time intervals this technique produced better detenninations of erratic behavior. After the fit
has been made the standard deviation calculated for the fit is adjusted to account for bit· toggle and then
compared against an expected value, which is specified in the command table as PARAMl. If the standard
deviation for the fit exceeds this value, then tIle sensor trace is deemed to be erratic.

Arguments:

data_id:

time:

data:

sigmas:

expected_sigma:

num_points:

pressure_rec:

num_Iinear_periods:

step_size:

Command table inputs:

expert:

sensor:

sensocpostfix:

modulename:

starLtime:

endtime:

expected_sigma (paraml):

Any features found are reported to the table F _ERRAT.

EHMS_FindInflectionPtsByLinearTrendRemoval (definition in FEAT_featureUtils . e)

void EHMS_FindlnflectionPtsByLinearTrendRemoval
(float *time, float *data, float *sigmas, int nllmLPts,
EHMS_PLinearLPOTPDisehargepressureRee *pressure_recs,
int *n~linear-periods, float threshold)

This routine operates by first checking tIle data period (initially time zero to engine shutdown) to be sure
the time span is greater than EHMS_MinPeriodofLinearTankPressure seconds. The time slice
must meet or exceed this requirement in order for the period to be valid for feature detection. Secondly
any linear trend in tIle data is removed. This results in tIle start and end points being mapped to a
magnitude of zero. The resulting data set is then searched for the point of maximum magnitude. If tItis
maximum is greater than four times the standard deviation at that point, tIlen the period is broken into
two subintervals at the point of maximum magnitude and the routine recursively called for each

54

int num...,points,
EHMS_PLinearLPOTPDischargePressUreReC
pressure_ree, int num_linear-periods,
float step_size)

This is the primary function of the FindErratieBehaviour module. Processing begins by
comparing the number of points on the interval of interest to the number of parameters varied in a second
order fit multiplied by the value of EHMS_GoodFitFactor. If the number of points is less than the
result of the calculation described above, a first order fit is used instead of a second order. It was found
that for short time intervals this technique produced better detenninations of erratic behavior. After the fit
has been made the standard deviation calculated for the fit is adjusted to account for bit· toggle and then
compared against an expected value, which is specified in the command table as PARAMl. If the standard
deviation for the fit exceeds this value, then tIle sensor trace is deemed to be erratic.

Arguments:

data_id:

time:

data:

sigmas:

expected_sigma:

num_points:

pressure_rec:

num_Iinear_periods:

step_size:

Command table inputs:

expert:

sensor:

sensocpostfix:

modulename:

starLtime:

endtime:

expected_sigma (paraml):

Any features found are reported to the table F _ERRAT.

EHMS_FindInflectionPtsByLinearTrendRemoval (definition in FEAT_featureUtils . e)

void EHMS_FindlnflectionPtsByLinearTrendRemoval
(float *time, float *data, float *sigmas, int nllmLPts,
EHMS_PLinearLPOTPDisehargepressureRee *pressure_recs,
int *n~linear-periods, float threshold)

This routine operates by first checking tIle data period (initially time zero to engine shutdown) to be sure
the time span is greater than EHMS_MinPeriodofLinearTankPressure seconds. The time slice
must meet or exceed this requirement in order for the period to be valid for feature detection. Secondly
any linear trend in tIle data is removed. This results in tIle start and end points being mapped to a
magnitude of zero. The resulting data set is then searched for the point of maximum magnitude. If tItis
maximum is greater than four times the standard deviation at that point, tIlen the period is broken into
two subintervals at the point of maximum magnitude and the routine recursively called for each

54

subinterval. If the maximum magnitude is not greater than four times the standard deviation, then the
interval is considered devoid of prominent peaks and is reported as a single continuous interval for the
purposes of feature extraction. When all levels of the routine have returned due to reduction of
subintervals to less than EHMS_MinPeriodOfLinearTankPressure seconds or lack of prominent
peaks, the number of collected subintervals is returned as well as an array of start and end times for the
periods of linear behavior.

EHMtCFindLevelShift (declaration in FEAT_features. h, definition in FEAT_features. c)

FEAT_Boolean
EHMS_FindLevelShift (EHMS_PDataIDRecord data_id, float *time,

float *data, float *sigmas,
float data_range, int num-points,
EHMS_PLinearLPOTPDischargePressureRec
pressure_ree, int num_linear-periods,
int SublntervalLength)

This is the primary function of the module FindLevelShift, which has as its purpose to detect
changes in a sensor trace from one constant value to another. It works by breaking the specified time
period into sub periods of EHMS_SublntervalLength seconds and making a separate first order
polynomial fit to each period. The average and standard deviation of the constant offset terms of the fits
are used to locate any level shifts. Any significant change in the data will manifest itself by a slope
change in the set of fits to the data. A dramatic slope change will result in a line having a projection on
the Y axis which far exceeds the average as determined from the multiple fits. Any excursions which
exceed the average value plus or minus 3 times the standard deviation indicate the start of a level shift.
Excursions are tracked until such time as they return to within acceptable limits or the period of interest
is exhausted.

Arguments:
data_id:
time:
data:
sigmas:
data_range:
num_points:
pressure_ree:
num_linear_periods:
SubIntervalLength:

Command table inputs:
expert:
sensor:
sensocpostfix:
modulename:
starttime:
endtime:

Any features found are reported to the table F _LEVSH.

55

subinterval. If the maximum magnitude is not greater than four times the standard deviation, then the
interval is considered devoid of prominent peaks and is reported as a single continuous interval for the
purposes of feature extraction. When all levels of the routine have returned due to reduction of
subintervals to less than EHMS_MinPeriodOfLinearTankPressure seconds or lack of prominent
peaks, the number of collected subintervals is returned as well as an array of start and end times for the
periods of linear behavior.

EHMtCFindLevelShift (declaration in FEAT_features. h, definition in FEAT_features. c)

FEAT_Boolean
EHMS_FindLevelShift (EHMS_PDataIDRecord data_id, float *time,

float *data, float *sigmas,
float data_range, int num-points,
EHMS_PLinearLPOTPDischargePressureRec
pressure_ree, int num_linear-periods,
int SublntervalLength)

This is the primary function of the module FindLevelShift, which has as its purpose to detect
changes in a sensor trace from one constant value to another. It works by breaking the specified time
period into sub periods of EHMS_SublntervalLength seconds and making a separate first order
polynomial fit to each period. The average and standard deviation of the constant offset terms of the fits
are used to locate any level shifts. Any significant change in the data will manifest itself by a slope
change in the set of fits to the data. A dramatic slope change will result in a line having a projection on
the Y axis which far exceeds the average as determined from the multiple fits. Any excursions which
exceed the average value plus or minus 3 times the standard deviation indicate the start of a level shift.
Excursions are tracked until such time as they return to within acceptable limits or the period of interest
is exhausted.

Arguments:
data_id:
time:
data:
sigmas:
data_range:
num_points:
pressure_ree:
num_linear_periods:
SubIntervalLength:

Command table inputs:
expert:
sensor:
sensocpostfix:
modulename:
starttime:
endtime:

Any features found are reported to the table F _LEVSH.

55

EHMS_FindLinearLPO'l'PDischargePressure (definition in FEAT_featureUtils. c)

EHMS_PLinearLPOTPDischargePressureRec
EHMS_FindLinearLPOTPDischargePressure (char *pid,

float start_time,
float end_time,
char *test_id,
int *num_linear-periods)

EHMS_FindPeak (declaration in FEAT_features. h, definition in FEAT_features. c)

FEAT_Boolean EHMS_FindPeak (EHMS_PDataIDRecord data_id,
float *time, float *data,
float *sigmas, int num_data-pts,
int peak_set, float min-peak,
float min_width)

This function is the primary function of the F indPeak module. This module employs a technique where
transitions in the data are identified by moving a tangent line over the data and noting the slope of the
line. A line made up of three points is used, the center point being the "tangent" point. If the slope of this
line exceeds a limit which allows for noise, then the time at the tangent point is marked as a transition
time. Identification of a transition point is made by a check for slope> or < 3.0 times the standard
deviation at the tangent point. The reasoning behind this is that the worst case slope which is still
classified as noise will be

slope = (4 * sigma) I 2.0 = 2 * sigma

The slope of the tangent line must exceed 2 * sigma in order to be considered above the noise level in
the data. Good results have been obtained using 3 * sigma.

The sign of the slope is also exploited for peak detection. Changes in sign indicate a cusp or peak in the
sensor data. Only positive going peaks are detected, as indicated by a change in the sign of the slope from
positive to negative. A peak is tracked from the first excursion outside the noise level to until either the
measurement levels off, or begins to exhibit another peak. The detected peaks are then checked to make
sure that they have a magnitude >= the minimum specified in the command table and that they have a
width >= that specified in the command table. The data is then fitted to one of two models based on the
position of the cusp relative to the start and end time of the peak feature. The first model is a fast rise
with an exponential falloff. The second model is a gaussian curve . Those peaks with a chi-square per
degree of freedom value of greater than EHMS_ChiSquareFactor are discarded. The remaining
peaks are then described and categorized as features. If it was specified in tlle command table that only
the primary peak be reported, then all others are discarded.

Arguments:

data_id:

time:

data:

sigmas:

num_data_points:

peak_set:

min_peak:

min_width:

Command table inputs:

56

EHMS_FindLinearLPO'l'PDischargePressure (definition in FEAT_featureUtils. c)

EHMS_PLinearLPOTPDischargePressureRec
EHMS_FindLinearLPOTPDischargePressure (char *pid,

float start_time,
float end_time,
char *test_id,
int *num_linear-periods)

EHMS_FindPeak (declaration in FEAT_features. h, definition in FEAT_features. c)

FEAT_Boolean EHMS_FindPeak (EHMS_PDataIDRecord data_id,
float *time, float *data,
float *sigmas, int num_data-pts,
int peak_set, float min-peak,
float min_width)

This function is the primary function of the F indPeak module. This module employs a technique where
transitions in the data are identified by moving a tangent line over the data and noting the slope of the
line. A line made up of three points is used, the center point being the "tangent" point. If the slope of this
line exceeds a limit which allows for noise, then the time at the tangent point is marked as a transition
time. Identification of a transition point is made by a check for slope> or < 3.0 times the standard
deviation at the tangent point. The reasoning behind this is that the worst case slope which is still
classified as noise will be

slope = (4 * sigma) I 2.0 = 2 * sigma

The slope of the tangent line must exceed 2 * sigma in order to be considered above the noise level in
the data. Good results have been obtained using 3 * sigma.

The sign of the slope is also exploited for peak detection. Changes in sign indicate a cusp or peak in the
sensor data. Only positive going peaks are detected, as indicated by a change in the sign of the slope from
positive to negative. A peak is tracked from the first excursion outside the noise level to until either the
measurement levels off, or begins to exhibit another peak. The detected peaks are then checked to make
sure that they have a magnitude >= the minimum specified in the command table and that they have a
width >= that specified in the command table. The data is then fitted to one of two models based on the
position of the cusp relative to the start and end time of the peak feature. The first model is a fast rise
with an exponential falloff. The second model is a gaussian curve . Those peaks with a chi-square per
degree of freedom value of greater than EHMS_ChiSquareFactor are discarded. The remaining
peaks are then described and categorized as features. If it was specified in tlle command table that only
the primary peak be reported, then all others are discarded.

Arguments:

data_id:

time:

data:

sigmas:

num_data_points:

peak_set:

min_peak:

min_width:

Command table inputs:

56

expert:

sensor:

sensor_postfix:

modulename:

startLime:

endtime:

peak_set (param1):

min_peak (param2):

min_width (param3):

Any features found are reported to the table F _PEAK.

EBMS_FindSpike (declaration in FEAT_features. h, definition in FEAT_features. c)

FEAT_Boolean
EHMS_FindSpike (EHMS_PDataIDReeord data_id, float *time,

float *data, float *sigmas, int num-points,
EHMS_PLinearLPOTPDisehargePressureRec
pressure_ree, int num_linear-periods,
float step_size)

The module FindSpike is a variation on FindErratieBehaviour. It makes a fit to the data using
a second order polynomial form, but for each data point on the interval a check is made for points which
fall outside the limit defined by

fitted-point +/- (EHMS_NumsigmasForSpike*fit_std_dev)

where f i t_s td_dev is the standard deviation calculated for the fit, adjusted for bit toggles as shown
below:

ftd_std_dev = fit_std_dev + (0.5 * step_size)

Any excursions outside this limit, which exists for no longer than EHMS_SpikeWidth seconds, are
identified as spikes. The magnitude of the spike is reported as magni tude. The sign ofmagni tude is
determined by the convention

raw_data [Index_of-peak] - fitted-point[Index_of-peak]

Arguments:

data_id:

time:

data:

sigmas:

num_points:

pressure_rec:

num_lineacperiods:

step_size:

Command table inputs:

expert:

sensor:

57

expert:

sensor:

sensor_postfix:

modulename:

startLime:

endtime:

peak_set (param1):

min_peak (param2):

min_width (param3):

Any features found are reported to the table F _PEAK.

EBMS_FindSpike (declaration in FEAT_features. h, definition in FEAT_features. c)

FEAT_Boolean
EHMS_FindSpike (EHMS_PDataIDReeord data_id, float *time,

float *data, float *sigmas, int num-points,
EHMS_PLinearLPOTPDisehargePressureRec
pressure_ree, int num_linear-periods,
float step_size)

The module FindSpike is a variation on FindErratieBehaviour. It makes a fit to the data using
a second order polynomial form, but for each data point on the interval a check is made for points which
fall outside the limit defined by

fitted-point +/- (EHMS_NumsigmasForSpike*fit_std_dev)

where f i t_s td_dev is the standard deviation calculated for the fit, adjusted for bit toggles as shown
below:

ftd_std_dev = fit_std_dev + (0.5 * step_size)

Any excursions outside this limit, which exists for no longer than EHMS_SpikeWidth seconds, are
identified as spikes. The magnitude of the spike is reported as magni tude. The sign ofmagni tude is
determined by the convention

raw_data [Index_of-peak] - fitted-point[Index_of-peak]

Arguments:

data_id:

time:

data:

sigmas:

num_points:

pressure_rec:

num_lineacperiods:

step_size:

Command table inputs:

expert:

sensor:

57

sensocpostfix:

modulename:

starttime:

endtime:

Any features found are reported to the table F _SPIKE.

EHMS_FindSpike_a (defmition in FEAT_features. c)

FEAT_Boolean EHMS_FindSpike_a (EHMS_PDataIDRecord data_id,
float *time, float *data,
float *smoothed_data,
float *sigmas, int nllm-Points,
float bit_toggle, float multiplier)

ElDIS_FindSpike_b (defmition in FEAT_features. c)

FEAT_Boolean EHMS_FindSpike_b (EHMS_PDataIDRecord data_id,
struct SSME_data *data,
float *time, float bit_toggle,
float pid_range, float rate)

EHMS_FindStepSize (declaration in FEAT_features. h, definition in FEAT_featureUtils . c)

float EHMS_FindStepSize (char *test_id, char *pid,
float sample-period)

EHMS_FreeMRQMemory (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

void EHMS_FreeMRQMemory (int *lista, float **covar, float **alpha,
int rna)

EHMS_FreePeakRecords
FEAT_featureUtils.c)

(declaration in FEAT_features .h, definition

void EHMS_FreePeakRecords (EHMS_PFeatureRecordHead list_head)

EHMS_FullSamplePid (defmition in FEAT_featureUtils . c)

FEAT_Boolean EHMS_FullSamplePid (char *pi~str)

EHMS_Gaussian (declaration in FEAT_featuref i ts . h, definition in FEAT_featuref i ts . c)

void EHMS_Gaussian (float x, float *a, float *y, float *dyda,
int na)

ElDIS_GetCompositeDataSet
FEAT_featureUtils.c)

(declaration in FEAT_features .h, definition

float **EHMS_GetCompositeDataSet (float *datal, float *sigmasl,
float *data2, float *sigmas2,
int nUIYLPoints,
EHMS_RedlineCheckType

58

in

in

sensocpostfix:

modulename:

starttime:

endtime:

Any features found are reported to the table F _SPIKE.

EHMS_FindSpike_a (defmition in FEAT_features. c)

FEAT_Boolean EHMS_FindSpike_a (EHMS_PDataIDRecord data_id,
float *time, float *data,
float *smoothed_data,
float *sigmas, int nllm-Points,
float bit_toggle, float multiplier)

ElDIS_FindSpike_b (defmition in FEAT_features. c)

FEAT_Boolean EHMS_FindSpike_b (EHMS_PDataIDRecord data_id,
struct SSME_data *data,
float *time, float bit_toggle,
float pid_range, float rate)

EHMS_FindStepSize (declaration in FEAT_features. h, definition in FEAT_featureUtils . c)

float EHMS_FindStepSize (char *test_id, char *pid,
float sample-period)

EHMS_FreeMRQMemory (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

void EHMS_FreeMRQMemory (int *lista, float **covar, float **alpha,
int rna)

EHMS_FreePeakRecords
FEAT_featureUtils.c)

(declaration in FEAT_features .h, definition

void EHMS_FreePeakRecords (EHMS_PFeatureRecordHead list_head)

EHMS_FullSamplePid (defmition in FEAT_featureUtils . c)

FEAT_Boolean EHMS_FullSamplePid (char *pi~str)

EHMS_Gaussian (declaration in FEAT_featuref i ts . h, definition in FEAT_featuref i ts . c)

void EHMS_Gaussian (float x, float *a, float *y, float *dyda,
int na)

ElDIS_GetCompositeDataSet
FEAT_featureUtils.c)

(declaration in FEAT_features .h, definition

float **EHMS_GetCompositeDataSet (float *datal, float *sigmasl,
float *data2, float *sigmas2,
int nUIYLPoints,
EHMS_RedlineCheckType

58

in

in

EHMS_GetEnginecutoff
FEAT_dbutils_t.c)

(declaration

check_type)

in

float EHMS_GetEngineCutoff (char *test)

EHMS_GetFitlnterval
FEAT_featureUtils.c)

(declaration in FEAT_features .h,

definition

definition

void EHMS_GetFitlnterval (float *data, int num_data-pts, int *i,
int *j, float period)

in

in

EHMS_GetFitlntervalForspikeCheck (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

void EHMS_GetFitlntervalForSpikeCheck (float *data, int *i,
int *j, float period)

EHMS_GetMRQMemory (declaration in FEAT_features. h, definition in FEAT_featureUtils. c)

void EHMS_GetMRQMemory (float **a-ptr, int **lista-ptr,
float ***covar-ptr, float ***alpha-ptr,
int rna)

EHMS_GetNumberBasisFuncs (declaration in FEAT_featurefits .h, definition in
FEAT_featurefits.c)

int EHMS_GetNumberBasisFuncs (void (*fit_func) (), int poly_order)

EHMS_GetSigmas (declaration in FEAT_features .h)

(no longer defined????)

EHMS_GetSmoothedOffset (definition in FEAT_featureUti Is. c)

int EHMS_GetSmoothedOffset (float *smoothed_time, float time,
int nUIt\...Pts)

EHMS_GetThrustLevel
FEAT_featureUtils.c)

(declaration in FEAT_features .h, definition

float EHMS_GetThrustLevel (EHMS_PThrustPeriodID thrust_ids,
int num_thrust_ids, float start_time,
float end_time)

in

EHMS_GetThrustLevellntersection (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

FEAT_Boolean
EHMS_GetThrustLevellntersection (EHMS_PDataIDRecord data_id)

EHMS_IsFlat (declaration in FEAT_features. h, definition in FEAT_features. c)

FEAT_Boolean

59

EHMS_GetEnginecutoff
FEAT_dbutils_t.c)

(declaration

check_type)

in

float EHMS_GetEngineCutoff (char *test)

EHMS_GetFitlnterval
FEAT_featureUtils.c)

(declaration in FEAT_features .h,

definition

definition

void EHMS_GetFitlnterval (float *data, int num_data-pts, int *i,
int *j, float period)

in

in

EHMS_GetFitlntervalForspikeCheck (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

void EHMS_GetFitlntervalForSpikeCheck (float *data, int *i,
int *j, float period)

EHMS_GetMRQMemory (declaration in FEAT_features. h, definition in FEAT_featureUtils. c)

void EHMS_GetMRQMemory (float **a-ptr, int **lista-ptr,
float ***covar-ptr, float ***alpha-ptr,
int rna)

EHMS_GetNumberBasisFuncs (declaration in FEAT_featurefits .h, definition in
FEAT_featurefits.c)

int EHMS_GetNumberBasisFuncs (void (*fit_func) (), int poly_order)

EHMS_GetSigmas (declaration in FEAT_features .h)

(no longer defined????)

EHMS_GetSmoothedOffset (definition in FEAT_featureUti Is. c)

int EHMS_GetSmoothedOffset (float *smoothed_time, float time,
int nUIt\...Pts)

EHMS_GetThrustLevel
FEAT_featureUtils.c)

(declaration in FEAT_features .h, definition

float EHMS_GetThrustLevel (EHMS_PThrustPeriodID thrust_ids,
int num_thrust_ids, float start_time,
float end_time)

in

EHMS_GetThrustLevellntersection (declaration in FEAT_features .h, definition in
FEAT_featureUtils.c)

FEAT_Boolean
EHMS_GetThrustLevellntersection (EHMS_PDataIDRecord data_id)

EHMS_IsFlat (declaration in FEAT_features. h, definition in FEAT_features. c)

FEAT_Boolean

59

EHMS_IsFlat (EHMS_PDataIDRecord data_id, float *time,
float *data, float *sigmas,
EHMS_PLinearLPOTPDisehargepressureRee pressure_ree,
int nllmLlinear-periods, int num-points)

EHMS_MakeDummySigmas
FEAT_featureUtils.e)

(declaration in FEAT_features .h.

float *EHMS_MakeDummySigmas (int nllmLPts)

definition

EHMS_MakeFit (declaration in FEAT_featurefits .h. definition in FEAT_featurefits .e)

void EHMS_MakeFit (float *time, float *data, float *sigmas,
int num-pts, float *a, int ma, int *lista,
int mfit, float **eovar, float **alpha,
float *ehi_square, void (*fit_fune) (),
float *alamda, float *fit_std_dev)

in

This curvefitting routine is the basis of all the feature extraction modules. It makes use of the routine
mrqmin. EHMS_MakeFi t can fit to any function that is differentiable with respect to the fitted
parameters over the interval of interest. Each model for use in curve fitting exists as an independent
subroutine. A pointer to the desired model for fitting is passed to the routine, indicating which model
(functional form) to fit the data to. Currently models exist for an Nth order polynomial, a fast riSing
function with an exponential fall-off, as well as for a Gaussian (bell) curve. Additional models can be
added to the system by writing a short model routine based on the existing examples and making an entry
in the routine EHMS_GetNumBasisFunes to note how may fitted parameters are involved.

EHMS_MatchPostfix (declaration in FEAT_features .h, definition in FEAT_featureUtils. c)

void EHMS_MatehPostfix (char *postfix, char *pid)

EHMS_MaxMin (definition in FEAT_featureUtils . c)

int EHMS_MaxMin (float *maA~al, float *minval, float *data,
int num-pts)

EHMS_NoisYPid (definition in FEAT_features. c)

FEAT_Boolean EHMS_NoisyPid (EHMS_PDataIDRecord data_id,
float *time, float *sigmas,
int num-points, float gross_sigma,
float fine_sigma)

EHMS_NthOrderPoly (declaration in FEAT_featurefits.h, definition in
FEAT_featurefits.e)

void EHMS_NthOrderPoly (float X, float *a, float *y, float *dyda,
int na)

EHMS_ParseTableEntry
FEAT_featureUtils.c)

(declaration in FEAT_features .h, definition

FEAT_Boolean EHMS_ParseTableEntry (char *table_entry_str,
int *extraetion_module,

60

in

EHMS_IsFlat (EHMS_PDataIDRecord data_id, float *time,
float *data, float *sigmas,
EHMS_PLinearLPOTPDisehargepressureRee pressure_ree,
int nllmLlinear-periods, int num-points)

EHMS_MakeDummySigmas
FEAT_featureUtils.e)

(declaration in FEAT_features .h.

float *EHMS_MakeDummySigmas (int nllmLPts)

definition

EHMS_MakeFit (declaration in FEAT_featurefits .h. definition in FEAT_featurefits .e)

void EHMS_MakeFit (float *time, float *data, float *sigmas,
int num-pts, float *a, int ma, int *lista,
int mfit, float **eovar, float **alpha,
float *ehi_square, void (*fit_fune) (),
float *alamda, float *fit_std_dev)

in

This curvefitting routine is the basis of all the feature extraction modules. It makes use of the routine
mrqmin. EHMS_MakeFi t can fit to any function that is differentiable with respect to the fitted
parameters over the interval of interest. Each model for use in curve fitting exists as an independent
subroutine. A pointer to the desired model for fitting is passed to the routine, indicating which model
(functional form) to fit the data to. Currently models exist for an Nth order polynomial, a fast riSing
function with an exponential fall-off, as well as for a Gaussian (bell) curve. Additional models can be
added to the system by writing a short model routine based on the existing examples and making an entry
in the routine EHMS_GetNumBasisFunes to note how may fitted parameters are involved.

EHMS_MatchPostfix (declaration in FEAT_features .h, definition in FEAT_featureUtils. c)

void EHMS_MatehPostfix (char *postfix, char *pid)

EHMS_MaxMin (definition in FEAT_featureUtils . c)

int EHMS_MaxMin (float *maA~al, float *minval, float *data,
int num-pts)

EHMS_NoisYPid (definition in FEAT_features. c)

FEAT_Boolean EHMS_NoisyPid (EHMS_PDataIDRecord data_id,
float *time, float *sigmas,
int num-points, float gross_sigma,
float fine_sigma)

EHMS_NthOrderPoly (declaration in FEAT_featurefits.h, definition in
FEAT_featurefits.e)

void EHMS_NthOrderPoly (float X, float *a, float *y, float *dyda,
int na)

EHMS_ParseTableEntry
FEAT_featureUtils.c)

(declaration in FEAT_features .h, definition

FEAT_Boolean EHMS_ParseTableEntry (char *table_entry_str,
int *extraetion_module,

60

in

char *test_id,
EHMS_PDataIDRecord data_id)

EHMS_ReadFeatureExtractionConunandTable (declaration in FEAT_features .h)

(no longer defined???)

EBMS_RedlineCheck (declaration in FEAT_features. h, definition in FEAT_features. c)

FEAT_Boolean EHMS_RedlineCheck (EHMS_PDataIDRecord data_id,
float *timel, float *datal,
float *sigmasl, float *time2,
float *data2, float *sigmas2,
int num...,points,
EHMS_RedlineCheckType check_type,
EHMS_RedlineType limit_type)

The Redl ineCheck module is used to check two PIDs to ensure that they stay within the limits defined
for the given measurement. If an excursion beyond the limit defined is found, its duration is checked
against a time limit value and decision logic is applied to detennine if a redline has been violated.

Redline limit infonnation is stored in the database table. All infonnation needed for a redline
check is extracted by the Redline Check module, the user need only specify (in the command table) the
parameters check_type_str (of type EHMS_RedlineCheckType) and limit_type_str (of
type EHMS_RedlineType). Specifying both...,pids for check_type_str causes the
Redl ineCheck module to look for instances where both PIDs exhibit an excursion beyond the specified
limit at the same time. Choosing ei ther...,pid will indicate that only one PID must exceed the
specified limit for a redline violation to occur. The last choice, difference, causes this module to
look for redlinc violations in a composite data set made up of the point for point difference of the original
two data sets. Note that the both-pids option should only be used with redundant PIDs as only one set
of redline infonnation is retrieved from the data base. Also when using the difference option a row of
redline infonnation must be present in the table RL_INFO, where the PID value is a string of the format
pid#- pid#, which corresponds to the arguments for sensor and comparison sensor. The parameter
limi t_ type_s tr specifies whether the module should look for excursions below or above the lower or
upper limit. These two options are specified by the values lower and upper respectively.

Arguments:

data_id:

timel:

datal:

sigmasl:

time2:

data2:

sigmas2:

num_points:

check_type:

limiUype:

Command table inputs:

expert:

61

char *test_id,
EHMS_PDataIDRecord data_id)

EHMS_ReadFeatureExtractionConunandTable (declaration in FEAT_features .h)

(no longer defined???)

EBMS_RedlineCheck (declaration in FEAT_features. h, definition in FEAT_features. c)

FEAT_Boolean EHMS_RedlineCheck (EHMS_PDataIDRecord data_id,
float *timel, float *datal,
float *sigmasl, float *time2,
float *data2, float *sigmas2,
int num...,points,
EHMS_RedlineCheckType check_type,
EHMS_RedlineType limit_type)

The Redl ineCheck module is used to check two PIDs to ensure that they stay within the limits defined
for the given measurement. If an excursion beyond the limit defined is found, its duration is checked
against a time limit value and decision logic is applied to detennine if a redline has been violated.

Redline limit infonnation is stored in the database table. All infonnation needed for a redline
check is extracted by the Redline Check module, the user need only specify (in the command table) the
parameters check_type_str (of type EHMS_RedlineCheckType) and limit_type_str (of
type EHMS_RedlineType). Specifying both...,pids for check_type_str causes the
Redl ineCheck module to look for instances where both PIDs exhibit an excursion beyond the specified
limit at the same time. Choosing ei ther...,pid will indicate that only one PID must exceed the
specified limit for a redline violation to occur. The last choice, difference, causes this module to
look for redlinc violations in a composite data set made up of the point for point difference of the original
two data sets. Note that the both-pids option should only be used with redundant PIDs as only one set
of redline infonnation is retrieved from the data base. Also when using the difference option a row of
redline infonnation must be present in the table RL_INFO, where the PID value is a string of the format
pid#- pid#, which corresponds to the arguments for sensor and comparison sensor. The parameter
limi t_ type_s tr specifies whether the module should look for excursions below or above the lower or
upper limit. These two options are specified by the values lower and upper respectively.

Arguments:

data_id:

timel:

datal:

sigmasl:

time2:

data2:

sigmas2:

num_points:

check_type:

limiUype:

Command table inputs:

expert:

61

sensor:

sensocpostfix:

modulename:

starttime:

endtime:

compare_descrip (paraml):

check_type_str (param2):

limiuype_str (param3):

Any features found are reported to the table F _RLVIOL.

EHMS_RedundChannelChk (defmition in FEAT_features. c)

FEAT_Boolean EHMS_RedundChannelChk (EHMS_PDataIDReeord data_idl,
EHMS_PDataIDReeord data_id2,
float *datal, float *data2,
float *timel, float *time2,
float threshhold.
int index-per_time_seg,
int nllmLPointsl,
int num-points2)

EHMS_RemoveLinearTrend (defmition in FEAT_featureUtils. c)

float *EHMS_RemoveLinearTrend (float *time, float *data,
int num-pts)

EHMS_ReportPeakFeatures
FEAT_features.e)

(declaration in FEAT_features .h, definition

void EHMS_ReportPeakFeatures (float *data, float *time,

EHMS_SetThreePointWindow
FEAT_featureUtils.e)

(declaration

float *sigmas, int fit_start,
int fit_end, float min-peak,
EHMS_PFeatureReeord feature_ree,
EHMS_PFeatureReeordHead list_head,
in t num-peaks)

in FEAT_features .h, definition

void EHMS_SetThreePointWindow (int counter, float *data,

in

in

int num_data-pts, float *start-pt,
float *end....Pt)

EBMS_Smooth (defmition in FEAT_featureUtils. c)

int EHMS_Smooth (float *pid, char *data, float *smoothed_data,
int num-pts. int smooth_window)

62

sensor:

sensocpostfix:

modulename:

starttime:

endtime:

compare_descrip (paraml):

check_type_str (param2):

limiuype_str (param3):

Any features found are reported to the table F _RLVIOL.

EHMS_RedundChannelChk (defmition in FEAT_features. c)

FEAT_Boolean EHMS_RedundChannelChk (EHMS_PDataIDReeord data_idl,
EHMS_PDataIDReeord data_id2,
float *datal, float *data2,
float *timel, float *time2,
float threshhold.
int index-per_time_seg,
int nllmLPointsl,
int num-points2)

EHMS_RemoveLinearTrend (defmition in FEAT_featureUtils. c)

float *EHMS_RemoveLinearTrend (float *time, float *data,
int num-pts)

EHMS_ReportPeakFeatures
FEAT_features.e)

(declaration in FEAT_features .h, definition

void EHMS_ReportPeakFeatures (float *data, float *time,

EHMS_SetThreePointWindow
FEAT_featureUtils.e)

(declaration

float *sigmas, int fit_start,
int fit_end, float min-peak,
EHMS_PFeatureReeord feature_ree,
EHMS_PFeatureReeordHead list_head,
in t num-peaks)

in FEAT_features .h, definition

void EHMS_SetThreePointWindow (int counter, float *data,

in

in

int num_data-pts, float *start-pt,
float *end....Pt)

EBMS_Smooth (defmition in FEAT_featureUtils. c)

int EHMS_Smooth (float *pid, char *data, float *smoothed_data,
int num-pts. int smooth_window)

62

EHMS_TranslateTime (declaration in FEAT_features.h,
FEAT_featureUtils.c)

float EHMS_TranslateTime (char *test_id, char *pid,
char *time_str)

EHMS_WithinRedlineLimit
FEAT_featureUtils.c)

(declaration in FEAT_features.h,

definition in

definition in

FEAT_Boolean EHMS_WithinRedlineLimit (EHMS_RedlineType limit_type,
float limit,
float data-point)

EHMS_WriteBistableResults (declaration in FEAT_features .h, definition in
FEAT_fileio_t.c)

void EHMS_WriteBistableResults (EHMS_PDataIDRecord data_id,
float fit_start, float fit_end)

EBMS_WriteDescribeConstantThrustLevelResults (declaration in FEAT_features .h,
defmition in FEAT_fileio_t. c)

void EHMS_WriteDescribeConstantThrustLevelResults
(EHMS_PDataIDRecord data_id, float *a, float *parm_sigmas,
float chi_square)

EBMS_WriteDiffertThanResults (declaration in FEAT_features. h, definition in
FEAT_fileio_t.c)

void EHMS_WriteDiffertThanResults
(EHMS_PDifferentThanRecord test_results,
EHMS_PDataIDRecord data_id)

EHMS_WriteDriftResults (definition in FEAT_fileio_t. c)·

void EHMS_WriteDriftResults (EHMS_PDataIDRecord data_id,

EHMS_WriteErraticResults (declaration
FEAT_fileio_t.c)

float start_time, float end_time,
float start_mag, float end_mag,
float slope)

in FEAT_features.h, definition

void EHMS_WriteErraticResults (EHMS_PDataIDRecord data_id,

EHMS_WriteFeatureRecord
FEAT_fileio_t.c)

(declaration

float start, float end)

in FEAT_features.h, definition

void EHMS_WriteFeatureRecord (EHMS_PFeatureRecord feature_rec,
EHMS_PDataIDRecord data_id)

63

in

in

EHMS_TranslateTime (declaration in FEAT_features.h,
FEAT_featureUtils.c)

float EHMS_TranslateTime (char *test_id, char *pid,
char *time_str)

EHMS_WithinRedlineLimit
FEAT_featureUtils.c)

(declaration in FEAT_features.h,

definition in

definition in

FEAT_Boolean EHMS_WithinRedlineLimit (EHMS_RedlineType limit_type,
float limit,
float data-point)

EHMS_WriteBistableResults (declaration in FEAT_features .h, definition in
FEAT_fileio_t.c)

void EHMS_WriteBistableResults (EHMS_PDataIDRecord data_id,
float fit_start, float fit_end)

EBMS_WriteDescribeConstantThrustLevelResults (declaration in FEAT_features .h,
defmition in FEAT_fileio_t. c)

void EHMS_WriteDescribeConstantThrustLevelResults
(EHMS_PDataIDRecord data_id, float *a, float *parm_sigmas,
float chi_square)

EBMS_WriteDiffertThanResults (declaration in FEAT_features. h, definition in
FEAT_fileio_t.c)

void EHMS_WriteDiffertThanResults
(EHMS_PDifferentThanRecord test_results,
EHMS_PDataIDRecord data_id)

EHMS_WriteDriftResults (definition in FEAT_fileio_t. c)·

void EHMS_WriteDriftResults (EHMS_PDataIDRecord data_id,

EHMS_WriteErraticResults (declaration
FEAT_fileio_t.c)

float start_time, float end_time,
float start_mag, float end_mag,
float slope)

in FEAT_features.h, definition

void EHMS_WriteErraticResults (EHMS_PDataIDRecord data_id,

EHMS_WriteFeatureRecord
FEAT_fileio_t.c)

(declaration

float start, float end)

in FEAT_features.h, definition

void EHMS_WriteFeatureRecord (EHMS_PFeatureRecord feature_rec,
EHMS_PDataIDRecord data_id)

63

in

in

EHMS_WriteIsFlatResults
FEAT_fileio_t.c)

(declaration in FEAT_features .h, definition in

void EHMS_writelsFlatResults (EHMS_PDataIDRecord data_id,
float slope)

EHMS_WriteLevelShiftResults (declaration in FEAT_features .h, definition in
FEAT_fileio_t.c)

void EHMS_WriteLevelshiftResults (EHMS_PDataIDRecord data_id,
float start_time,
float end_time, float last_mag,
float new_mag)

EBMS_WriteNoiseResults (definition in FEAT_fileio_t. c)

void EHMS_WriteNoiseResults (EHMS_PDataIDRecord data_id,
float start_time, float end_time)

EHMS_WriteRedlineViolationRecord (definition in FEAT_fileio_t. c)

void EHMS_writeRedlineViolationRecord
(EHMS_PDataIDRecord data_id, float start_time, float end_time,
EHMS_RedlineCheckType check_type, EHMS_RedlineType limit_type,
float limit, char *offending-pid)

EHMS_WriteRedundResults (definition in FEAT_fileio_t. c)

void EHMS_WriteRedundResults (EHMS~PDataIDRecord data_id,
EHMS_PDataIDRecord data_id2,
float start, float end)

EHMS_WriteSpikeResults
FEAT_fileio_t.c)

(declaration in FEAT_features .h, definition

void EHMS_WriteSpikeResults (EHMS_PDataIDRecord data_id,
float start_time, float end_time,
float magnitude)

in

EHMS_WriteTheFeatureRecords (declaration in FEAT_features .h, definition in
FEAT_fileio_t.c)

void
EHMS_WriteTheFeatureRecords (int peak_set,

EHMS_PFeatureRecordHead list_head,
EHMS_PDataIDRecord data_id)

EHMS_ZeroShiftCheck (declaration in FEAT_features .h, definition in FEAT_features. c)

FEAT_Boolean EHMS_ZeroShiftCheck (EHMS_PDataIDRecord data_id,
float *time, float *data,
int n~data-pts,
float low_limit,
float upper_limit)

64

EHMS_WriteIsFlatResults
FEAT_fileio_t.c)

(declaration in FEAT_features .h, definition in

void EHMS_writelsFlatResults (EHMS_PDataIDRecord data_id,
float slope)

EHMS_WriteLevelShiftResults (declaration in FEAT_features .h, definition in
FEAT_fileio_t.c)

void EHMS_WriteLevelshiftResults (EHMS_PDataIDRecord data_id,
float start_time,
float end_time, float last_mag,
float new_mag)

EBMS_WriteNoiseResults (definition in FEAT_fileio_t. c)

void EHMS_WriteNoiseResults (EHMS_PDataIDRecord data_id,
float start_time, float end_time)

EHMS_WriteRedlineViolationRecord (definition in FEAT_fileio_t. c)

void EHMS_writeRedlineViolationRecord
(EHMS_PDataIDRecord data_id, float start_time, float end_time,
EHMS_RedlineCheckType check_type, EHMS_RedlineType limit_type,
float limit, char *offending-pid)

EHMS_WriteRedundResults (definition in FEAT_fileio_t. c)

void EHMS_WriteRedundResults (EHMS~PDataIDRecord data_id,
EHMS_PDataIDRecord data_id2,
float start, float end)

EHMS_WriteSpikeResults
FEAT_fileio_t.c)

(declaration in FEAT_features .h, definition

void EHMS_WriteSpikeResults (EHMS_PDataIDRecord data_id,
float start_time, float end_time,
float magnitude)

in

EHMS_WriteTheFeatureRecords (declaration in FEAT_features .h, definition in
FEAT_fileio_t.c)

void
EHMS_WriteTheFeatureRecords (int peak_set,

EHMS_PFeatureRecordHead list_head,
EHMS_PDataIDRecord data_id)

EHMS_ZeroShiftCheck (declaration in FEAT_features .h, definition in FEAT_features. c)

FEAT_Boolean EHMS_ZeroShiftCheck (EHMS_PDataIDRecord data_id,
float *time, float *data,
int n~data-pts,
float low_limit,
float upper_limit)

64

FEA'l"_AlarmHandler (declaration in FEAT_features. h, definition in FEAT_features. c)

void FEAT_AlarmHandler()

FEA'l"_BuildlncludeList (definition in FEAT_featureUtils . c)

,int FEAT_BuildlncludeList (char ***include_list)

FEA'l"_GetPostFixSSMEData
FEAT_featureutils.c)

(declaration in FEAT_features.h, definition

int FEAT_GetPostFixSSMEData (char *test, char *pfxpid,
float start, float stop,
struct SSME_data **SSMEData)

features_exec (definition in FEAT_features. c)

features_exec (char *test_id)

in

The main driver of the feature extractor is responsible for building the array of run time commands based
on the contents of the commaud table F _COMM, found in the SSME_DB database, and the results of a
thrust profile analysis. Each entry in the run time command array represents a call to a specific feature
extraction module with parameters detennined by the results of the ~rust profile analysis for the test of
interest and the contents of the command table. The main driver loops through this array of commands
executing each named module with the specified parameters. The results of each feature search are
appended to a temporary output file, found in / tmp, where a separate file is created for each type of
feature. After all commands in the run time command array have been executed, the contents of these
temporary files are loaded into the corresponding Ingres feature tables and the files deleted.

Thrust profile analysis of a test consists of detecting all periods of constant thrust over the entire
range of data stored for EHMS_ThrustPid, which is currently defmed to be the one-second average of
PID 63 (PID "63A"). PID 63 represents the engine's response to the commanded throttle value.
Commanded throttle was originally chosen for this analysis as it is noise free, making thrust level changes
easy to detect and the percent throttle value easy to determine. Currently, response to commanded throttle
is used. It is less prone to falsely indicate as steady state, periods of changing thrust. It was found that in
some cases the rise time of the engine to a throttle step was significant enough to cause the feature
extractor to flag transient effects as features. In the interest of cutting down on the amount of features to
be analyzed by the preprocessor (HFIL TER) the PID used for thrust level analysis was changed from PID
"287a" to PID "63a".

Each period of constant thrust detected has its start time adjusted to account for settling time.
such that the resulting interval represents 95 percent of the Original time segment (with a minimum
allowance of one second and a maximum of three seconds). This operation moves the end points of the
interval away from thrust transition times. This helps eliminate the effect of transients which may
manifest themselves as features.

For each entry in the command table. where STARTTIME equals ENDTlME. a corresponding
entry is made in the run time command array for each period of constant thrust. In this way only features
which occur during periods of constant thrust are recorded. with each feature tagged by the thrust level at
which it occurred. The user can override this operation and set predetermined start and end times for a
feature search in a specific measurement, however if this time period spans more than one thrust level,
any features found will carry thrust level ids of -999.

65

FEA'l"_AlarmHandler (declaration in FEAT_features. h, definition in FEAT_features. c)

void FEAT_AlarmHandler()

FEA'l"_BuildlncludeList (definition in FEAT_featureUtils . c)

,int FEAT_BuildlncludeList (char ***include_list)

FEA'l"_GetPostFixSSMEData
FEAT_featureutils.c)

(declaration in FEAT_features.h, definition

int FEAT_GetPostFixSSMEData (char *test, char *pfxpid,
float start, float stop,
struct SSME_data **SSMEData)

features_exec (definition in FEAT_features. c)

features_exec (char *test_id)

in

The main driver of the feature extractor is responsible for building the array of run time commands based
on the contents of the commaud table F _COMM, found in the SSME_DB database, and the results of a
thrust profile analysis. Each entry in the run time command array represents a call to a specific feature
extraction module with parameters detennined by the results of the ~rust profile analysis for the test of
interest and the contents of the command table. The main driver loops through this array of commands
executing each named module with the specified parameters. The results of each feature search are
appended to a temporary output file, found in / tmp, where a separate file is created for each type of
feature. After all commands in the run time command array have been executed, the contents of these
temporary files are loaded into the corresponding Ingres feature tables and the files deleted.

Thrust profile analysis of a test consists of detecting all periods of constant thrust over the entire
range of data stored for EHMS_ThrustPid, which is currently defmed to be the one-second average of
PID 63 (PID "63A"). PID 63 represents the engine's response to the commanded throttle value.
Commanded throttle was originally chosen for this analysis as it is noise free, making thrust level changes
easy to detect and the percent throttle value easy to determine. Currently, response to commanded throttle
is used. It is less prone to falsely indicate as steady state, periods of changing thrust. It was found that in
some cases the rise time of the engine to a throttle step was significant enough to cause the feature
extractor to flag transient effects as features. In the interest of cutting down on the amount of features to
be analyzed by the preprocessor (HFIL TER) the PID used for thrust level analysis was changed from PID
"287a" to PID "63a".

Each period of constant thrust detected has its start time adjusted to account for settling time.
such that the resulting interval represents 95 percent of the Original time segment (with a minimum
allowance of one second and a maximum of three seconds). This operation moves the end points of the
interval away from thrust transition times. This helps eliminate the effect of transients which may
manifest themselves as features.

For each entry in the command table. where STARTTIME equals ENDTlME. a corresponding
entry is made in the run time command array for each period of constant thrust. In this way only features
which occur during periods of constant thrust are recorded. with each feature tagged by the thrust level at
which it occurred. The user can override this operation and set predetermined start and end times for a
feature search in a specific measurement, however if this time period spans more than one thrust level,
any features found will carry thrust level ids of -999.

65

Thrust profile analysis is made automatically for each test. Each period of constant thrust is
classified and stored in the database table F _THLEDE.

The feature extractor may operate with either one second average or full sample rate data.
Because many features happen over time scales of several seconds or longer, it is appropriate to fit them
using one second average data. For each one second time bin there exists a standard deviation. These
values are used to help track the movement of a measurement and provide the ability to correctly account
for the noise in the data. Full sample data is used when necessary for determination of high speed features
such as the 113 - 1/2 Hz oscillation in PBP bistability. When full sample data is used, only short intervals
should be extracted from the data base to minimize memory use and maximize execution speed.

In the (hopefully rare) event of a severe run time error (such as the attempt to solve a singular
system of equations) during the execution of any given command, the feature extractor main driver will
log the complete text of the current command string in the file BAD_COMMANDS. This file will be found
in the users current working directory. If BAD_COMMANDS already exists in the users current working
directory, the command which produced the error will be appended at the end of the file. Note that the
feature extractor does not halt execution in the event of an run time error. Any command which produces
a severe run time error during a calculation, from which there can be no graceful recovery. causes a Unix
signal 14 (SIGALRM). The handler routine assigned to SIGALRM, logs the current command in
BAD_COMMANDS and executes a longjmp to cause feature extraction to resume with the next command
found in the command table.

FinCiMIAPids (defmition in FEAT_dbutils . c)

int FindMIAPids (char **include_list, int num_included-pids,
char *test_id)

fit (definition in FEAT_featurefits. c)

fit (float * y, float *x, int n, int ms, int mf, double *c,
float *sigmas, double *chi_square, double *fit_std_dev)

gauss:! (declaration in FEAT_featurefits .h, definition in FEAT_featurefits. c)

void gaussj (float **a, int n, float **b, int m)

kstwo (declaration in FEAT_featurefi ts . h, definition in FEAT_featuref i ts . c)

void kstwo (float datal[], int nl, float data2[], int n2,
float *d, float *prob)

ludcmq (definition in FEAT_featuref i ts . c)

ludcmq (double **a, int n, int ndim)

moment (definition in FEAT_fea turef i ts . c)

void moment (float data[], int n, float * ave , float *adev,
float *sdev, float *svar, float *skew, float *curt)

mrqcof (declaration in FEAT_featurefi ts . h, definition in FEAT_featurefi ts . c)

void mrqcof (float xC], float y[], float sig[], int ndata,
float a[], int ma,int lista[], int mfit,

66

Thrust profile analysis is made automatically for each test. Each period of constant thrust is
classified and stored in the database table F _THLEDE.

The feature extractor may operate with either one second average or full sample rate data.
Because many features happen over time scales of several seconds or longer, it is appropriate to fit them
using one second average data. For each one second time bin there exists a standard deviation. These
values are used to help track the movement of a measurement and provide the ability to correctly account
for the noise in the data. Full sample data is used when necessary for determination of high speed features
such as the 113 - 1/2 Hz oscillation in PBP bistability. When full sample data is used, only short intervals
should be extracted from the data base to minimize memory use and maximize execution speed.

In the (hopefully rare) event of a severe run time error (such as the attempt to solve a singular
system of equations) during the execution of any given command, the feature extractor main driver will
log the complete text of the current command string in the file BAD_COMMANDS. This file will be found
in the users current working directory. If BAD_COMMANDS already exists in the users current working
directory, the command which produced the error will be appended at the end of the file. Note that the
feature extractor does not halt execution in the event of an run time error. Any command which produces
a severe run time error during a calculation, from which there can be no graceful recovery. causes a Unix
signal 14 (SIGALRM). The handler routine assigned to SIGALRM, logs the current command in
BAD_COMMANDS and executes a longjmp to cause feature extraction to resume with the next command
found in the command table.

FinCiMIAPids (defmition in FEAT_dbutils . c)

int FindMIAPids (char **include_list, int num_included-pids,
char *test_id)

fit (definition in FEAT_featurefits. c)

fit (float * y, float *x, int n, int ms, int mf, double *c,
float *sigmas, double *chi_square, double *fit_std_dev)

gauss:! (declaration in FEAT_featurefits .h, definition in FEAT_featurefits. c)

void gaussj (float **a, int n, float **b, int m)

kstwo (declaration in FEAT_featurefi ts . h, definition in FEAT_featuref i ts . c)

void kstwo (float datal[], int nl, float data2[], int n2,
float *d, float *prob)

ludcmq (definition in FEAT_featuref i ts . c)

ludcmq (double **a, int n, int ndim)

moment (definition in FEAT_fea turef i ts . c)

void moment (float data[], int n, float * ave , float *adev,
float *sdev, float *svar, float *skew, float *curt)

mrqcof (declaration in FEAT_featurefi ts . h, definition in FEAT_featurefi ts . c)

void mrqcof (float xC], float y[], float sig[], int ndata,
float a[], int ma,int lista[], int mfit,

66

float **alpha, float beta[], float *chisq,
void (*funcs) (), float *fit_std_dev)

mrqmin (declaration in FEAT_featurefits .h, definition in FEAT_featurefits .c)

void mrqmin (float xl], float y[], float sig[], int ndata, int a,
int rna, int lista[], int rofit, float **covar,
float * *alpha , float *chisq, void (*funcs) (),
float *alamda, float *fit_std_dev)

Source code for this routine, as well as a dlOrough discussion of its operation, can be found in section 14.4
of Numerical Recipes in C, The Art of Scientific Computing (Cambridge University Press, 1988).

probks (declaration in FEAT_featurefits .h, definition in FEAT_featurefits .c)

float probks (float alam)

solnq (defmition in FEAT_featurefi ts. c)

solnq (double **a, double *b, int n, int ndiro)

sort (declaration in FEAT_featurefits .h, definition in FEAT_featurefits .c)

void sort (int n, float ra[])

svbksb (definition in FEAT_featurefi ts. c)

void svbksb (float **u, float w[],float **v, int ro, int n,
float b[], float xl])

svdcmp (defmition in FEAT_featurefits .c)

void svdcrop (float **a, int ro, int n, float *w, float **v)

svc!lfit (defmition in FEAT_featuref i ts . c)

void svdfit (float xl], float y[], float sig[], int ndata,
float all, int rna, float **u, float **v,
float w[],float *chisq, void (*funcs) (),
float *fit_std_dev)

svdvar (defmition in FEAT_featurefits. c)

void svdvar (float **v, int ma,float w[],float **cvm)

WriteMissingPids (definition in FEAT_dbutils_t. c)

void WriteMissingPids (char *test_id, char *pid)

WritezeroShiftCheckResults (definition in FEAT_fileio_t. c)

void WriteZeroShiftCheckResults (EHMS_PDataIDRecord data_id,
float average, float offset)

67

float **alpha, float beta[], float *chisq,
void (*funcs) (), float *fit_std_dev)

mrqmin (declaration in FEAT_featurefits .h, definition in FEAT_featurefits .c)

void mrqmin (float xl], float y[], float sig[], int ndata, int a,
int rna, int lista[], int rofit, float **covar,
float * *alpha , float *chisq, void (*funcs) (),
float *alamda, float *fit_std_dev)

Source code for this routine, as well as a dlOrough discussion of its operation, can be found in section 14.4
of Numerical Recipes in C, The Art of Scientific Computing (Cambridge University Press, 1988).

probks (declaration in FEAT_featurefits .h, definition in FEAT_featurefits .c)

float probks (float alam)

solnq (defmition in FEAT_featurefi ts. c)

solnq (double **a, double *b, int n, int ndiro)

sort (declaration in FEAT_featurefits .h, definition in FEAT_featurefits .c)

void sort (int n, float ra[])

svbksb (definition in FEAT_featurefi ts. c)

void svbksb (float **u, float w[],float **v, int ro, int n,
float b[], float xl])

svdcmp (defmition in FEAT_featurefits .c)

void svdcrop (float **a, int ro, int n, float *w, float **v)

svc!lfit (defmition in FEAT_featuref i ts . c)

void svdfit (float xl], float y[], float sig[], int ndata,
float all, int rna, float **u, float **v,
float w[],float *chisq, void (*funcs) (),
float *fit_std_dev)

svdvar (defmition in FEAT_featurefits. c)

void svdvar (float **v, int ma,float w[],float **cvm)

WriteMissingPids (definition in FEAT_dbutils_t. c)

void WriteMissingPids (char *test_id, char *pid)

WritezeroShiftCheckResults (definition in FEAT_fileio_t. c)

void WriteZeroShiftCheckResults (EHMS_PDataIDRecord data_id,
float average, float offset)

67

5.7 Algorithm Comments

5.7.1 General Comments

For the collection of certain classes of features, limiting feature extraction to periods of constant
tbrust is inadequate to insure collection of valid features. Due to the methods employed in the feature
extraction routines: FindErraticBehaviour, FindLevelShift, DeltaLevelShift and
FindSpike, the effects of fuel tank repressurization must be accounted for. The feature classes noted
above should only be collected during overlapping periods of constant thrust level and linear fuel tank
repressurization/venting behavior.

Evidence of fuel tank repressurization and venting are searched for in one second average data
for pid labeled, I LPOTP Pump Discharge Pressure A' (nominally PIO #209). There is no
direct measurement of this behavior so • LPOTP Pump Discharge Pressure A' is used as it was
deemed the most sympathetic to the effects of interest. Repressurization and venting are indicated in PIO
209 as linear periods which deviate from the usual horizontal trace, giving sections of the sensor data a
sort of saw tooth effect. The function which detects these periods,
EHMS_FindLinearLPOTPDischargePressure, takes advantage of the observation that all
sections of the trace, including those where venting or repressurization is taking place, exhibit a constant
slope. The recursive routine EHMS_FindInflectionPtsByLinearTrendRemoval is called by
EHMS_FindLinearLPOTPDischargePressure to locate the start and end points of all periods of
linear behavior in PID 209. By searching for features in other traces only during these linear periods (as
well as periods of constant thrust) a reasonable assumption of steady state behavior can be made. The
effects of venting and repressurization on other sympathetic pids are also negated and no longer cause
erroneous periods of erratic behavior to be detected.

While EHMS_FindLinearLPOTPDischargePressure does break out any periods
displaying venting or repressurization effects, it makes no judgment about the data it generates. The
algorithm was designed to negate the effects of venting and repressurization for the purposes of feature
extraction. The feature extraction program does not. need to know if the effects are occurring, it only
needs to account for them.

Another source of potential error in feature extraction is produced by "biCtoggle". This effect is
introduced by measuring a physical quantity with a sensor having limited dynamic range. The
quantization error introduced into the measurements by using a quantizing step size as large as deviations
of interest, produces a toggling effect seen in a graph of the collected data. In order to account for this
type of error (which most often manifests itself as erroneous data spikes) the feature extractor searches for
the smallest non-trivial step difference between two contiguous data points on the given interval. This
value is taken to be the step size used by the sensor to quantize the analog measurements. By adjusting a
calculated parameter up or down by half the step size, we may account for bit toggle error. One half the
step size is equivalent to the maximum error in any given measurement. This toggle extraction technique
is used by the following feature extractor functions: EHMS_FindErraticBehaviour,
EHMS_Del taDi fferentThan, and EHMS_Findspike.

5.7.2 DifferentThan Module

A first order polynomial fit is made to a composite data set where the data points and standard
deviations are given by

delta_data [i) = datal[i] - data2[i]

delta_sigrnas[i] = sqrt((double) (sigrnasl[i] * sigrnasl[i] +

68

5.7 Algorithm Comments

5.7.1 General Comments

For the collection of certain classes of features, limiting feature extraction to periods of constant
tbrust is inadequate to insure collection of valid features. Due to the methods employed in the feature
extraction routines: FindErraticBehaviour, FindLevelShift, DeltaLevelShift and
FindSpike, the effects of fuel tank repressurization must be accounted for. The feature classes noted
above should only be collected during overlapping periods of constant thrust level and linear fuel tank
repressurization/venting behavior.

Evidence of fuel tank repressurization and venting are searched for in one second average data
for pid labeled, I LPOTP Pump Discharge Pressure A' (nominally PIO #209). There is no
direct measurement of this behavior so • LPOTP Pump Discharge Pressure A' is used as it was
deemed the most sympathetic to the effects of interest. Repressurization and venting are indicated in PIO
209 as linear periods which deviate from the usual horizontal trace, giving sections of the sensor data a
sort of saw tooth effect. The function which detects these periods,
EHMS_FindLinearLPOTPDischargePressure, takes advantage of the observation that all
sections of the trace, including those where venting or repressurization is taking place, exhibit a constant
slope. The recursive routine EHMS_FindInflectionPtsByLinearTrendRemoval is called by
EHMS_FindLinearLPOTPDischargePressure to locate the start and end points of all periods of
linear behavior in PID 209. By searching for features in other traces only during these linear periods (as
well as periods of constant thrust) a reasonable assumption of steady state behavior can be made. The
effects of venting and repressurization on other sympathetic pids are also negated and no longer cause
erroneous periods of erratic behavior to be detected.

While EHMS_FindLinearLPOTPDischargePressure does break out any periods
displaying venting or repressurization effects, it makes no judgment about the data it generates. The
algorithm was designed to negate the effects of venting and repressurization for the purposes of feature
extraction. The feature extraction program does not. need to know if the effects are occurring, it only
needs to account for them.

Another source of potential error in feature extraction is produced by "biCtoggle". This effect is
introduced by measuring a physical quantity with a sensor having limited dynamic range. The
quantization error introduced into the measurements by using a quantizing step size as large as deviations
of interest, produces a toggling effect seen in a graph of the collected data. In order to account for this
type of error (which most often manifests itself as erroneous data spikes) the feature extractor searches for
the smallest non-trivial step difference between two contiguous data points on the given interval. This
value is taken to be the step size used by the sensor to quantize the analog measurements. By adjusting a
calculated parameter up or down by half the step size, we may account for bit toggle error. One half the
step size is equivalent to the maximum error in any given measurement. This toggle extraction technique
is used by the following feature extractor functions: EHMS_FindErraticBehaviour,
EHMS_Del taDi fferentThan, and EHMS_Findspike.

5.7.2 DifferentThan Module

A first order polynomial fit is made to a composite data set where the data points and standard
deviations are given by

delta_data [i) = datal[i] - data2[i]

delta_sigrnas[i] = sqrt((double) (sigrnasl[i] * sigrnasl[i] +

68

sigmas2[i] * sigmas2[i]»

A fit which produces a line with little slope indicates that the two curves track each other well.
The constant offset term produced by the fit indicates the distance maintained between the two data sets.
A small value within acceptable error limits indicates that the two curves may be drawn from· the same
parent population. A constant offset term which exceeds acceptable error limits is indicative of a constant
offset maintained between two curves. For the case where both fitted coefficients are outside error limits
the two curves are determined to be "different".

After the fit is made to the composite data set, a probability measurement is made to determine if
the two data set were drawn from the same parent population. This measurement is based on the
Kolmogorov-Smirnov test. Small values· of the measurement indicate that the cumulative distribution
function of the flI'St data set is significantly different from the second. This value, as well as the
maximum step size found in either data set and the maximum average magnitude found on either data set,
is used in the logic described below to determine if the two data sets can be considered to be "the same" or
to differ by a constant offset.

If the result of the KOlmogorov-Smirnov test is greater than the value defmed by
EHMS_SameAsProbability, or three times the standard deviation calculated for the fit is less than
half the maximum average magnitude, then a further check is made to determine if the higher order
coefficients differ with acceptable error. If for each fitted parameter 1 through N (where parnLS igmas
is the sigma for the corresponding parameter, adjusted to account for bit toggle)

param[i] + (num_cornparison_sigmas * parnLsigrnas[i]) > 0.0

and

param[i] - (num_cornparison_sigrnas * parrn_sigrnas[i]) < 0.0

tllen the two data sets are judged to be drawn from the same parent population. If the above is true for all
parameters except the constant term, then the two data sets are said to differ by a constant offset. The
offset value is given by param [1] • and the standard deviation for this value is given by
parnLS i grnas [1]. If none of the above is true and, all parameters 1 through N have statistically
significant terms, then the two data sets are considered to be drawn from different parent populations.

The two most common uses of the DifferentThan module are listed below, along with a
short description of how to interpret the results produced.

1. Checking that redundant sensors are tracking each other within statistical limits.

To make this type of check, add an entry to the table F _COMM containing the command table
inputs listed above. Setting STARTTIME and ENDTIME equal will cause the sensors to be compared for
all periods of constant thrust. After the feature extractor has run, select the different than records for the
current test (1ESTID) and the first PID listed in the command (sensor) from the table F _COMM. Inspect
the COEF _W_ERR_B field of each record. If any records are found which have a value of "False" for this
field then the two sensor traces compared were found to differ statistically from each other. More
specifically, the coefficients of the straight line fit to the difference data set were not within the tolerance
set by num_cornparison_sigmas. Furmer verification of the probability that the two data sets are
not drawn from the same parent population can be determined by inspection of the field CHI_SQUARE
which represents the goodness of the fit to the difference data set and PROB which is a measure of the
actual probability that the two data sets were drawn from the same parent population. Small values of
PROB indicate tllat the two data sets are significantly different.

2. Checking for sensors which differ by a constant offset.

69

sigmas2[i] * sigmas2[i]»

A fit which produces a line with little slope indicates that the two curves track each other well.
The constant offset term produced by the fit indicates the distance maintained between the two data sets.
A small value within acceptable error limits indicates that the two curves may be drawn from· the same
parent population. A constant offset term which exceeds acceptable error limits is indicative of a constant
offset maintained between two curves. For the case where both fitted coefficients are outside error limits
the two curves are determined to be "different".

After the fit is made to the composite data set, a probability measurement is made to determine if
the two data set were drawn from the same parent population. This measurement is based on the
Kolmogorov-Smirnov test. Small values· of the measurement indicate that the cumulative distribution
function of the flI'St data set is significantly different from the second. This value, as well as the
maximum step size found in either data set and the maximum average magnitude found on either data set,
is used in the logic described below to determine if the two data sets can be considered to be "the same" or
to differ by a constant offset.

If the result of the KOlmogorov-Smirnov test is greater than the value defmed by
EHMS_SameAsProbability, or three times the standard deviation calculated for the fit is less than
half the maximum average magnitude, then a further check is made to determine if the higher order
coefficients differ with acceptable error. If for each fitted parameter 1 through N (where parnLS igmas
is the sigma for the corresponding parameter, adjusted to account for bit toggle)

param[i] + (num_cornparison_sigmas * parnLsigrnas[i]) > 0.0

and

param[i] - (num_cornparison_sigrnas * parrn_sigrnas[i]) < 0.0

tllen the two data sets are judged to be drawn from the same parent population. If the above is true for all
parameters except the constant term, then the two data sets are said to differ by a constant offset. The
offset value is given by param [1] • and the standard deviation for this value is given by
parnLS i grnas [1]. If none of the above is true and, all parameters 1 through N have statistically
significant terms, then the two data sets are considered to be drawn from different parent populations.

The two most common uses of the DifferentThan module are listed below, along with a
short description of how to interpret the results produced.

1. Checking that redundant sensors are tracking each other within statistical limits.

To make this type of check, add an entry to the table F _COMM containing the command table
inputs listed above. Setting STARTTIME and ENDTIME equal will cause the sensors to be compared for
all periods of constant thrust. After the feature extractor has run, select the different than records for the
current test (1ESTID) and the first PID listed in the command (sensor) from the table F _COMM. Inspect
the COEF _W_ERR_B field of each record. If any records are found which have a value of "False" for this
field then the two sensor traces compared were found to differ statistically from each other. More
specifically, the coefficients of the straight line fit to the difference data set were not within the tolerance
set by num_cornparison_sigmas. Furmer verification of the probability that the two data sets are
not drawn from the same parent population can be determined by inspection of the field CHI_SQUARE
which represents the goodness of the fit to the difference data set and PROB which is a measure of the
actual probability that the two data sets were drawn from the same parent population. Small values of
PROB indicate tllat the two data sets are significantly different.

2. Checking for sensors which differ by a constant offset.

69

This check is handled in the same manner as the check described above but involves inspection
of the field DIFF _BY_OFFSE. If a value of "True" is found in this field, then the two data sets were
found to track each other but with a constant offset. The value of this offset is found in the field OFFSET.
The sign on this value is determined by the convention used to compute the difference data set used for
the fit

delta_data[i] = datal[i] - data2[i]

A positive value indicates that the first data set listed in the table (datal) has values greater than the
second (data2) by a constant term listed in the table field offset.

5.8 Cflow output
1 main: int(), <FEAT_main.c 75>
7 features_exec: int(), <FEAT_features.c 4586>

10 init_PTDS_tekbase: <>
11 FEAT~uildlncludeList: int(), <FEAT_featureUtils.c 41>
22 FindMIAPids: int(), <FEAT_dbutils_t.c 653>
23
26
27
31
33
35
37
41
42
46
50
54
55
58
59
63
64
65
67
68
70
71
72
74
76
79
82
85
86
87
89
92
94
96
97
98
99

101
103
104

DBIO_GetPidlnfo: void(), <FEAT_dbutils_t.c 217>
DATA.-info: <>
STRNG_RemoveTrailingSpaces: char*(), <STRNG_utils.c 76>

WriteMissingPids: void(), <FEAT_dbutils_t.c 641>
tbl...put: <>

DBIO_GetTheFeatureExtractionCommands: char**(), <FEAT_dbutils_t.c 484>
tbl_count: <>
tbl_get: <>
STRNG_RemoveTrailingSpaces: 27

EHMS-AnalyzeThrustProfile: struct*(), <FEAT_features.c 3701>
EHMS_CreateDataIDRecord: struct*(), <FEAT_featureUtils.c 1336>
DBIO_GetPidlnfo: 23
FEAT_GetPostFixSSMEData: int(), <FEAT_featureutils.c 1927>

DATA.-average: <>
DATA.-get: <>

EHMS_FindConstantThrust: struct*(). <FEAT_features.c 3309>
EHMS_SetThreePointWindow: void(), <FEAT_featureUtils.c 953>
EHMS_GetFitlnterval: void(), <FEAT_featureUtils.c 786>
EHMS_CreateDataIDRecord: 50
EHMS_CopyDataID: void(), <FEAT_featureUtils.c 676>
EHMS_DescribeConstantThrustLevel: int(), <FEAT_features.c 1522>

EHMS_GetNumberBasisFuncs: int(), <FEAT_featurefits.c 312>
EHMS_Gaussian: void(), <FEAT_featurefits.c 136>
EHMS_FastRiseExpFall: void(), <FEAT_featurefits.c 100>
EHMS_NthOrderPoly: void(), <FEAT_featurefits.c 65>

EHMS~thOrderPoly: 76
EHMS_GetMRQMemory: void(), <FEAT_featureUtils.c 1548>
EHMS-MakeFit: void(), <FEAT_featurefits.c 188>

mrqrnin: void(), <FEAT_featurefits.c 235>
matrix: float**(), <nrutil.c 65>

nrerror: void(), <nrutil.c 13>
alarm: <>

vector: float*(), <nrutil.c 33>
nrerror: 89

nrerror: 89
mrqcof: void(), <FEAT_featurefits.c 912>

vector: 94
free_vector: void(), <nrutil.c 139>

gaussj: void(), <FEAT_featurefits.c 832>
ivector: int*(), <nrutil.c 43>

70

This check is handled in the same manner as the check described above but involves inspection
of the field DIFF _BY_OFFSE. If a value of "True" is found in this field, then the two data sets were
found to track each other but with a constant offset. The value of this offset is found in the field OFFSET.
The sign on this value is determined by the convention used to compute the difference data set used for
the fit

delta_data[i] = datal[i] - data2[i]

A positive value indicates that the first data set listed in the table (datal) has values greater than the
second (data2) by a constant term listed in the table field offset.

5.8 Cflow output
1 main: int(), <FEAT_main.c 75>
7 features_exec: int(), <FEAT_features.c 4586>

10 init_PTDS_tekbase: <>
11 FEAT~uildlncludeList: int(), <FEAT_featureUtils.c 41>
22 FindMIAPids: int(), <FEAT_dbutils_t.c 653>
23
26
27
31
33
35
37
41
42
46
50
54
55
58
59
63
64
65
67
68
70
71
72
74
76
79
82
85
86
87
89
92
94
96
97
98
99

101
103
104

DBIO_GetPidlnfo: void(), <FEAT_dbutils_t.c 217>
DATA.-info: <>
STRNG_RemoveTrailingSpaces: char*(), <STRNG_utils.c 76>

WriteMissingPids: void(), <FEAT_dbutils_t.c 641>
tbl...put: <>

DBIO_GetTheFeatureExtractionCommands: char**(), <FEAT_dbutils_t.c 484>
tbl_count: <>
tbl_get: <>
STRNG_RemoveTrailingSpaces: 27

EHMS-AnalyzeThrustProfile: struct*(), <FEAT_features.c 3701>
EHMS_CreateDataIDRecord: struct*(), <FEAT_featureUtils.c 1336>
DBIO_GetPidlnfo: 23
FEAT_GetPostFixSSMEData: int(), <FEAT_featureutils.c 1927>

DATA.-average: <>
DATA.-get: <>

EHMS_FindConstantThrust: struct*(). <FEAT_features.c 3309>
EHMS_SetThreePointWindow: void(), <FEAT_featureUtils.c 953>
EHMS_GetFitlnterval: void(), <FEAT_featureUtils.c 786>
EHMS_CreateDataIDRecord: 50
EHMS_CopyDataID: void(), <FEAT_featureUtils.c 676>
EHMS_DescribeConstantThrustLevel: int(), <FEAT_features.c 1522>

EHMS_GetNumberBasisFuncs: int(), <FEAT_featurefits.c 312>
EHMS_Gaussian: void(), <FEAT_featurefits.c 136>
EHMS_FastRiseExpFall: void(), <FEAT_featurefits.c 100>
EHMS_NthOrderPoly: void(), <FEAT_featurefits.c 65>

EHMS~thOrderPoly: 76
EHMS_GetMRQMemory: void(), <FEAT_featureUtils.c 1548>
EHMS-MakeFit: void(), <FEAT_featurefits.c 188>

mrqrnin: void(), <FEAT_featurefits.c 235>
matrix: float**(), <nrutil.c 65>

nrerror: void(), <nrutil.c 13>
alarm: <>

vector: float*(), <nrutil.c 33>
nrerror: 89

nrerror: 89
mrqcof: void(), <FEAT_featurefits.c 912>

vector: 94
free_vector: void(), <nrutil.c 139>

gaussj: void(), <FEAT_featurefits.c 832>
ivector: int*(), <nrutil.c 43>

70

106
109
110
112
113
114
117

119
121
124
130
131
135
138
140
141
143
145
147
149
152
158
162
163
164
166
172
173
174
175

176
177
178
179
180

182
184
185
190
191
192
195
197
199
201
202
204
208
209
210
211
212
213
216
220

nrerror: 89
nrerror: 89
free_ivector: void(), <nnltil.c 145>

covsrt: void(), <FEAT_featurefits.c 965>
free_vector: 101
free~atrix: void(), <nrutil.c 161>

EHMS_WriteDescribeConstantThrustLevelResults: void(),
<FEAT_fileio_t.c 127>

tblJ)ut: 33
EHMSJreeMRQMemory: void(), <FEAT_featureUtils.c 1608>

EHMS~ddThrustPeriodID: void(), <FEAT_featureUtils.c 496>
DATILrelease: <>

EHMs~uildRunTimeCommandArray: char**(), <FEAT_featureUtils.c 312>
D~StandardStringToPid: void(), <FEAT_dbutils_t.c 59>

tbl_get: 41
STRNG_RemoveTrailingSpaces: 27

EHMS_MatchPostfix: void(), <FEAT_featureUtils.c 111>
EHMS_TranslateTime: float(), <FEAT_featureUtils.c 255>

EHMS_GetEngineCutoff: float(), <FEAT_dbutils_t.c 345>
tbl_get: 41

DBIO_GetPidlnfo: 23
DBIO_GetPidlnfo: 23
EHMS_GetThrustLevel: float(), <FEAT_featureUtils.c 150>

signal: <>
FEAT~larmHandler: void(), <FEAT_features.c 4504>

longjmp: <>
setjmp: <>
EHMS_FeatureExtractor: enum(), <FEAT_features.c 3795>

EHMS_CreateDataIDRecord: 50
DBIO_GetPidlnfo: 23
EHMS_FindLinearLPOTPDischargePressure: strtict*(),

<FEAT_featureUtils.c 2134>
DBILTimeRangeToRecNumRange: void(), <FEAT_featureUtils.c 1020>
DBA_StandardStringTopid: 135
EHMS_MatchPostfix: 141
FEAT_GetPostFixSSMEData: 55
EHMS_FilldlnflectionPtsByLinearTrendRemoval: void(),

<FEAT_featureUtils.c 2052>
EHMS_RemoveLinearTrend: float*(), <FEAT_featureUtils.c 1973>
EHMS_FindlnflectionPtsByLinearTrendRemoval: 180
EHMS~ddLinearPressureRec: void(), <FRAT_featureUtils.c 2010>

EHMS~ddLinearPressureRec: 185
DATILrelease: 130

EHMS_ParseTableEntry: enum(), <FEAT_featureUtils.c 1055>
DBIO_GetPidlnfo: 23

FEAT_GetPostFixSSMEData: 55
cfree: <>
DATILinfo: 26
EHMS_GetEngineCUtoff: 145
EHMS_Smooth: intel, <FEAT_featureUtils.c 1646>
EHMS_GetSmoothedOffset: intel, <FEAT_featureUtils.c 1689>
EHMS~axMin: intel, <FEAT_featureUtils.c 1715>
EHMS~rrayMult: intel, <FEAT_featureUtils.c 1749>
DATILrelease: 130
EHMS_FindstepSize: float(), <FEAT_featureutils.c 2211>

DBIO_GetConstantThrustLevels: void(), <FEAT_dbutils_t.c 287>
tbl_count: 37
tbl_get: 41

71

106
109
110
112
113
114
117

119
121
124
130
131
135
138
140
141
143
145
147
149
152
158
162
163
164
166
172
173
174
175

176
177
178
179
180

182
184
185
190
191
192
195
197
199
201
202
204
208
209
210
211
212
213
216
220

nrerror: 89
nrerror: 89
free_ivector: void(), <nnltil.c 145>

covsrt: void(), <FEAT_featurefits.c 965>
free_vector: 101
free~atrix: void(), <nrutil.c 161>

EHMS_WriteDescribeConstantThrustLevelResults: void(),
<FEAT_fileio_t.c 127>

tblJ)ut: 33
EHMSJreeMRQMemory: void(), <FEAT_featureUtils.c 1608>

EHMS~ddThrustPeriodID: void(), <FEAT_featureUtils.c 496>
DATILrelease: <>

EHMs~uildRunTimeCommandArray: char**(), <FEAT_featureUtils.c 312>
D~StandardStringToPid: void(), <FEAT_dbutils_t.c 59>

tbl_get: 41
STRNG_RemoveTrailingSpaces: 27

EHMS_MatchPostfix: void(), <FEAT_featureUtils.c 111>
EHMS_TranslateTime: float(), <FEAT_featureUtils.c 255>

EHMS_GetEngineCutoff: float(), <FEAT_dbutils_t.c 345>
tbl_get: 41

DBIO_GetPidlnfo: 23
DBIO_GetPidlnfo: 23
EHMS_GetThrustLevel: float(), <FEAT_featureUtils.c 150>

signal: <>
FEAT~larmHandler: void(), <FEAT_features.c 4504>

longjmp: <>
setjmp: <>
EHMS_FeatureExtractor: enum(), <FEAT_features.c 3795>

EHMS_CreateDataIDRecord: 50
DBIO_GetPidlnfo: 23
EHMS_FindLinearLPOTPDischargePressure: strtict*(),

<FEAT_featureUtils.c 2134>
DBILTimeRangeToRecNumRange: void(), <FEAT_featureUtils.c 1020>
DBA_StandardStringTopid: 135
EHMS_MatchPostfix: 141
FEAT_GetPostFixSSMEData: 55
EHMS_FilldlnflectionPtsByLinearTrendRemoval: void(),

<FEAT_featureUtils.c 2052>
EHMS_RemoveLinearTrend: float*(), <FEAT_featureUtils.c 1973>
EHMS_FindlnflectionPtsByLinearTrendRemoval: 180
EHMS~ddLinearPressureRec: void(), <FRAT_featureUtils.c 2010>

EHMS~ddLinearPressureRec: 185
DATILrelease: 130

EHMS_ParseTableEntry: enum(), <FEAT_featureUtils.c 1055>
DBIO_GetPidlnfo: 23

FEAT_GetPostFixSSMEData: 55
cfree: <>
DATILinfo: 26
EHMS_GetEngineCUtoff: 145
EHMS_Smooth: intel, <FEAT_featureUtils.c 1646>
EHMS_GetSmoothedOffset: intel, <FEAT_featureUtils.c 1689>
EHMS~axMin: intel, <FEAT_featureUtils.c 1715>
EHMS~rrayMult: intel, <FEAT_featureUtils.c 1749>
DATILrelease: 130
EHMS_FindstepSize: float(), <FEAT_featureutils.c 2211>

DBIO_GetConstantThrustLevels: void(), <FEAT_dbutils_t.c 287>
tbl_count: 37
tbl_get: 41

71

224
225
227
229
231
233
236
237
239
240
242
245
246
248
249
251
253
255
256
258
259
260
263
264
266
268
269
271
273
274
275
276
277
279
280
283
285
286
288
289
290
292
295
296
297
298
299
301
302
305
306
308
309
310

313
314
315

DBA_TimeRangeToRecNumRange: 176
FEAT_GetFostFixSSMEData: 55
DAT~release: 130

EHMS_RedundChannelChk: enum() , <FEAT_features.c 634>
EHMS_WriteRedundResults: void(), <FEAT_fileio_t.c 790>

tbl...put: 33
EHMS~oisyFid: enum() , <FEAT_features.c 808>

EHMS_WriteNoiseResults: void(), <FEAT_fileio_t.c 217>
tbl...put: 33
DBIO_PidToSensorLabel: char·(), <FEAT_dbutils_t.c 112>

tbl_get: 41
EHMS_ZeroShiftCheck: enum() , <FEAT_features.c 4536>

WriteZeroShiftCheckResults: void(), <FEAT_fileio_t.c 172>
tbl...put: 33
DBIO_FidToSensorLabel: 240

EHMS_FindDrift: enum() , <FEAT_features.c 1259>
EHMS_WriteDriftResults: void(), <FEAT_fileio_t.c 267>

tbl...put: 33
DBIO_FidToSensorLabel: 240

EHMS_IsFlat: enum() , <FEAT_features.c 1413>
EHMS_GetNumberBasisFUncs: 71
EHMS~thOrderFoly: 76
EHMS_GetMRQMemory: 82
EHMS_MakeFit: 85
EHMS_WriteIsFlatResults: void(), <FEAT_fileio_t.c 327>

tbl...put: 33
DBIO_FidToSensorLabel: 240

EHMS~reeMRQMemory: 121
EHMS~indSpike-p: enum(), <FEAT_features.c 2864>

EHMS_GetNumberBasisFUncs: 71
EHMS_NthOrderPoly: 76
EHMS_GetMRQMemory: 82
calc_stddev: double(), <FEAT_featureUtils.c 2314>
EHMS_MakeFit: 85
EHMS_FreeMRQMemory: 121
EHMS_WriteSpikeResults: void(), <FEAT_fileio_t.c 422>

tbl...put: 33
DBIO_PidToSensorLabel: 240

EHMS-PetectBistability: enum() , <FEAT_features.c 3557>
EHMS_GetFitlntervalForSpikeCheck: void(), <FEAT_featureUtils.c 904>
FEAT_GetpostFixSSMEData: 55
EHMS_MakeDummySigmas: float*(), <FEAT_featureUtils.c 984>
EHMS_GetMRQMemory: 82
EHMS_MakeFit: 85
EHMS~thOrderFoly: 76
EHMS_FreeMRQMemory: 121
EHMS_WriteBistableResults: void(), <FEAT_fileio_t.c 529>

tbl...put: 33
DBIO_PidToSensorLabel: 240

DAT~release: 130
EHMS_FindLevelShift: enum(), <FEAT_features.c 2357>

EHMS_GetNumberBasisFuncs: 71
EHMS~thOrderFoly: 76
EHMS_CreateConstantFeriodRecord: struct*(),

<FEAT_featureUtils.c 1374>
EHMS_DescribeConstantFeriod: void(), <FEAT~features.c 1632>

EHMS_GetNumberBasisFUncs: 71
EHMS_NthOrderFoly: 76

72

224
225
227
229
231
233
236
237
239
240
242
245
246
248
249
251
253
255
256
258
259
260
263
264
266
268
269
271
273
274
275
276
277
279
280
283
285
286
288
289
290
292
295
296
297
298
299
301
302
305
306
308
309
310

313
314
315

DBA_TimeRangeToRecNumRange: 176
FEAT_GetFostFixSSMEData: 55
DAT~release: 130

EHMS_RedundChannelChk: enum() , <FEAT_features.c 634>
EHMS_WriteRedundResults: void(), <FEAT_fileio_t.c 790>

tbl...put: 33
EHMS~oisyFid: enum() , <FEAT_features.c 808>

EHMS_WriteNoiseResults: void(), <FEAT_fileio_t.c 217>
tbl...put: 33
DBIO_PidToSensorLabel: char·(), <FEAT_dbutils_t.c 112>

tbl_get: 41
EHMS_ZeroShiftCheck: enum() , <FEAT_features.c 4536>

WriteZeroShiftCheckResults: void(), <FEAT_fileio_t.c 172>
tbl...put: 33
DBIO_FidToSensorLabel: 240

EHMS_FindDrift: enum() , <FEAT_features.c 1259>
EHMS_WriteDriftResults: void(), <FEAT_fileio_t.c 267>

tbl...put: 33
DBIO_FidToSensorLabel: 240

EHMS_IsFlat: enum() , <FEAT_features.c 1413>
EHMS_GetNumberBasisFUncs: 71
EHMS~thOrderFoly: 76
EHMS_GetMRQMemory: 82
EHMS_MakeFit: 85
EHMS_WriteIsFlatResults: void(), <FEAT_fileio_t.c 327>

tbl...put: 33
DBIO_FidToSensorLabel: 240

EHMS~reeMRQMemory: 121
EHMS~indSpike-p: enum(), <FEAT_features.c 2864>

EHMS_GetNumberBasisFUncs: 71
EHMS_NthOrderPoly: 76
EHMS_GetMRQMemory: 82
calc_stddev: double(), <FEAT_featureUtils.c 2314>
EHMS_MakeFit: 85
EHMS_FreeMRQMemory: 121
EHMS_WriteSpikeResults: void(), <FEAT_fileio_t.c 422>

tbl...put: 33
DBIO_PidToSensorLabel: 240

EHMS-PetectBistability: enum() , <FEAT_features.c 3557>
EHMS_GetFitlntervalForSpikeCheck: void(), <FEAT_featureUtils.c 904>
FEAT_GetpostFixSSMEData: 55
EHMS_MakeDummySigmas: float*(), <FEAT_featureUtils.c 984>
EHMS_GetMRQMemory: 82
EHMS_MakeFit: 85
EHMS~thOrderFoly: 76
EHMS_FreeMRQMemory: 121
EHMS_WriteBistableResults: void(), <FEAT_fileio_t.c 529>

tbl...put: 33
DBIO_PidToSensorLabel: 240

DAT~release: 130
EHMS_FindLevelShift: enum(), <FEAT_features.c 2357>

EHMS_GetNumberBasisFuncs: 71
EHMS~thOrderFoly: 76
EHMS_CreateConstantFeriodRecord: struct*(),

<FEAT_featureUtils.c 1374>
EHMS_DescribeConstantFeriod: void(), <FEAT~features.c 1632>

EHMS_GetNumberBasisFUncs: 71
EHMS_NthOrderFoly: 76

72

318
319
321
323
330
332
333
335
336
337
338
339
340
342
343
346
348
349
352
353
357
360
361
362
363
364
365
366
367
368
370
371
373
375
377
378
379
380
382
385
389
391
393
397
398
400
401
405
406
408
411
413
416
418
421
422
424
426

EHMS_GetMRQMemory: 82
EHMs~akeFit: 85
EHMS_FreeMRQMemory: 121

EHMS~ddConstantPeriodID: void(), <FEAT_featureUtils.c 542>
EHMS_WriteLevelShiftResults: void(), <FEAT_fileio_t.c 474>

tbl..,put: 33
DBIO_pidToSensorLabel: 240

EHMS_FindErraticBehaviour: enwn(), <FEAT_features.c 1724>
EHMS_GetNwnberBasisFuncs: 71
EHMS~thOrderPoly: 76
EHMS_GetMRQMemory: 82
EHMS~akeFit: 85
EHMS_WriteErraticResults: void(), <FEAT_fileio_t.c 376>

tbl..,put: 33
DBIO_PidTosensorLabel: 240

EHMS_FreeMRQMemory: 121
EHMS_FindPeak: enum(), <FEAT_features.c 476>

EHMS_CreateFeatureRecordHead: struct*(), <FEAT_featureUtils.c 1455>
EHMS_SetThreePointWindow: 64
EHMS_CreateFeatureRecord: struct*(), <FEAT_featureUtils.c 1427>
EHMS_ReportPeakFeatures: void(), <FEAT_features.c 271>

EHMS_Gaussian: 72
EHMS_FastRiseExpFall: 74
EHMS_GetNwnberBasisFuncs: 71
EHMS_GetMRQMemory: 82
EHMs_MakeFit: 85
EHMS_FreeMRQMemory: 121
EHMS~ddFeatureRecord: void(), <FEAT_featureUtils.c 1262>

EHMS_WriteTheFeatureRecords: void(), <FEAT_fileio_t.c 738>"
EHMS_WriteFeatureRecord: voidO, <FEAT_fileio_t.c 676>

tbl..,put: 33
DBIO_PidToSensorLabel: 240

EHMS_FreePeakRecords: void(), <FEAT_featureUtils.c 1486>
. EHMS-PeleteFeatureRecord: void(), <FEAT_featureUtils.c 1296>

DBA-StandardStringToPid: 135
EHMS_MatchPostfix: 141
EHMS_MakeDummySigmas: 292
EHMS_RedlineCheck: enum() , <FEAT_features.c 1863>

DBIO_FetchRedlinelnfo: void(), <FEAT_dbutils_t.c 380>
tbl_count: 37
tbl_get: 41
index: <>

EHMS_GetCompositeDataSet: float**(), <FEAT_featureUtils.c 585>
EHMS_WithinRedlineLimit: enum() , <FEAT_featureUtils.c 643>
EHMS_WriteRedlineViolationRecord: void(), <FEAT_fileio_t.c 58>

tbl..,put: 33
DBIO_PidToSensorLabel: 240

WPREV_GetPreviousTest: int(), <WPREV_findtest.c 43>
WPREV_GetTests: void(), <WPREV_db_t.c 44>

tbl_count: 37
tbl_get: 41
STRNG_RemoVeTrailingSpaces: 27

WPREV_GetThrustDescriptions: void(), <WPREV_db_t.c 156>
tbl_count: 37
tbl_get: 41
STRNG_RemoveTrailingSpaces: 27

WPREV_GetAnomalies: void(), <WPREV_db_t.c 111>
tbl_count: 37

73

318
319
321
323
330
332
333
335
336
337
338
339
340
342
343
346
348
349
352
353
357
360
361
362
363
364
365
366
367
368
370
371
373
375
377
378
379
380
382
385
389
391
393
397
398
400
401
405
406
408
411
413
416
418
421
422
424
426

EHMS_GetMRQMemory: 82
EHMs~akeFit: 85
EHMS_FreeMRQMemory: 121

EHMS~ddConstantPeriodID: void(), <FEAT_featureUtils.c 542>
EHMS_WriteLevelShiftResults: void(), <FEAT_fileio_t.c 474>

tbl..,put: 33
DBIO_pidToSensorLabel: 240

EHMS_FindErraticBehaviour: enwn(), <FEAT_features.c 1724>
EHMS_GetNwnberBasisFuncs: 71
EHMS~thOrderPoly: 76
EHMS_GetMRQMemory: 82
EHMS~akeFit: 85
EHMS_WriteErraticResults: void(), <FEAT_fileio_t.c 376>

tbl..,put: 33
DBIO_PidTosensorLabel: 240

EHMS_FreeMRQMemory: 121
EHMS_FindPeak: enum(), <FEAT_features.c 476>

EHMS_CreateFeatureRecordHead: struct*(), <FEAT_featureUtils.c 1455>
EHMS_SetThreePointWindow: 64
EHMS_CreateFeatureRecord: struct*(), <FEAT_featureUtils.c 1427>
EHMS_ReportPeakFeatures: void(), <FEAT_features.c 271>

EHMS_Gaussian: 72
EHMS_FastRiseExpFall: 74
EHMS_GetNwnberBasisFuncs: 71
EHMS_GetMRQMemory: 82
EHMs_MakeFit: 85
EHMS_FreeMRQMemory: 121
EHMS~ddFeatureRecord: void(), <FEAT_featureUtils.c 1262>

EHMS_WriteTheFeatureRecords: void(), <FEAT_fileio_t.c 738>"
EHMS_WriteFeatureRecord: voidO, <FEAT_fileio_t.c 676>

tbl..,put: 33
DBIO_PidToSensorLabel: 240

EHMS_FreePeakRecords: void(), <FEAT_featureUtils.c 1486>
. EHMS-PeleteFeatureRecord: void(), <FEAT_featureUtils.c 1296>

DBA-StandardStringToPid: 135
EHMS_MatchPostfix: 141
EHMS_MakeDummySigmas: 292
EHMS_RedlineCheck: enum() , <FEAT_features.c 1863>

DBIO_FetchRedlinelnfo: void(), <FEAT_dbutils_t.c 380>
tbl_count: 37
tbl_get: 41
index: <>

EHMS_GetCompositeDataSet: float**(), <FEAT_featureUtils.c 585>
EHMS_WithinRedlineLimit: enum() , <FEAT_featureUtils.c 643>
EHMS_WriteRedlineViolationRecord: void(), <FEAT_fileio_t.c 58>

tbl..,put: 33
DBIO_PidToSensorLabel: 240

WPREV_GetPreviousTest: int(), <WPREV_findtest.c 43>
WPREV_GetTests: void(), <WPREV_db_t.c 44>

tbl_count: 37
tbl_get: 41
STRNG_RemoVeTrailingSpaces: 27

WPREV_GetThrustDescriptions: void(), <WPREV_db_t.c 156>
tbl_count: 37
tbl_get: 41
STRNG_RemoveTrailingSpaces: 27

WPREV_GetAnomalies: void(), <WPREV_db_t.c 111>
tbl_count: 37

73

429
430
435
439
440
442
445
449
450
451
452
453
454
455
457
461
463
466
467
470
471
474
476
477
479
480
481
482
483
486
487

'488

490
493
494
496

tbl_get: 41
STRNG_RemoveTrailingSpaces: 27

WPREV_FreeLists: void(), <WPREV_findtest.c 376>
EHMS_GetThrustLevellntersection: enum(), <FEAT_featureUtils.c 186>

DBIO_GetConstantThrustLevels: 213
EHMS_CreateDifferentThanRecord: struct*(), <FEAT_featureUtils.c 1401>
EHMS_DeltaDifferentThan: void(), <FEAT_features.c 2113>

EHMS_GetNumberBasisFuncs: 71
EHMS~thOrderPoly: 76
EHMS_GetMRQMemory: 82
EHMS~akeFit: 85
EHMS_FreeMRQMemory: 121
kstwo: void(), <FEAT_featurefits.c 706>

sort: void(), <FEAT_featurefits.c 745>
probks: float(), <FEAT_featurefits.c 796>

EHMS_FindStepSize: 212
EHMS_WriteDiffertThanResults: void(), <FEAT_fileio_t.c 576>

tb1..put: 33
DBIO_PidToSensorLabel: 240

EHMS_DeltaLevelShift: enum() , <FEAT_features.c 2049>
EHMS_GetCompositeDataSet: 393
EHMS~indLevelShift: 306

EHMS_BalancePistonChecklnit: enum(), <FEAT_features.c 79>
DB~StandardStringToPid: 135
EHMS_MatchPostfix: 141
DBIO_GetPidlnfo: 23
FEAT_GetPostFixSSMEData: 55
EHMS_GetThrustLevellntersection: 439
EHMS_GetCompositeDataSet: 393
DAT~release: 130

RSRC_UpdateResource: void(), <RSRC_rlist.c 125>
RSRC_GetResourceList: void(), <RSRC_dbutils_t.c 211>

tbl_count: 37
tbl_get: 41
STRNG_RemoveTrailingSpaces: 27

RSRC_FindResourceld: int(), <RSRC_rlist.c 87>
498 RSRC_UpdateResourceBoardResourceValue: void(), <RSRC_dbutils_t.c 84>
501 tbl_get: 41
504 RSRC_GetBits: int(), <RSRC_rlist.c 240>
505 tbl_update: <>
507 RSRC_FreeResourceList: void(), <RSRC_rlist.c 158>
508 cfree: 199
510 tbl_free_all: <>

6. External Effects Program (external)

6.1 Source Files

external. c: The main program for the External Effects Module and many of the subroutines written
specifically for this module.

dbAccess. c: The functions which access the TekBase databases for retrieving data.

loadData. c: Functions to allocate memory and load data for a specified test database and for PIDs and
to free the memory allocated.

rernoveEffect. c: The functions which perform the calculations given in the Algorithm section above
for removing the external effects.

74

429
430
435
439
440
442
445
449
450
451
452
453
454
455
457
461
463
466
467
470
471
474
476
477
479
480
481
482
483
486
487

'488

490
493
494
496

tbl_get: 41
STRNG_RemoveTrailingSpaces: 27

WPREV_FreeLists: void(), <WPREV_findtest.c 376>
EHMS_GetThrustLevellntersection: enum(), <FEAT_featureUtils.c 186>

DBIO_GetConstantThrustLevels: 213
EHMS_CreateDifferentThanRecord: struct*(), <FEAT_featureUtils.c 1401>
EHMS_DeltaDifferentThan: void(), <FEAT_features.c 2113>

EHMS_GetNumberBasisFuncs: 71
EHMS~thOrderPoly: 76
EHMS_GetMRQMemory: 82
EHMS~akeFit: 85
EHMS_FreeMRQMemory: 121
kstwo: void(), <FEAT_featurefits.c 706>

sort: void(), <FEAT_featurefits.c 745>
probks: float(), <FEAT_featurefits.c 796>

EHMS_FindStepSize: 212
EHMS_WriteDiffertThanResults: void(), <FEAT_fileio_t.c 576>

tb1..put: 33
DBIO_PidToSensorLabel: 240

EHMS_DeltaLevelShift: enum() , <FEAT_features.c 2049>
EHMS_GetCompositeDataSet: 393
EHMS~indLevelShift: 306

EHMS_BalancePistonChecklnit: enum(), <FEAT_features.c 79>
DB~StandardStringToPid: 135
EHMS_MatchPostfix: 141
DBIO_GetPidlnfo: 23
FEAT_GetPostFixSSMEData: 55
EHMS_GetThrustLevellntersection: 439
EHMS_GetCompositeDataSet: 393
DAT~release: 130

RSRC_UpdateResource: void(), <RSRC_rlist.c 125>
RSRC_GetResourceList: void(), <RSRC_dbutils_t.c 211>

tbl_count: 37
tbl_get: 41
STRNG_RemoveTrailingSpaces: 27

RSRC_FindResourceld: int(), <RSRC_rlist.c 87>
498 RSRC_UpdateResourceBoardResourceValue: void(), <RSRC_dbutils_t.c 84>
501 tbl_get: 41
504 RSRC_GetBits: int(), <RSRC_rlist.c 240>
505 tbl_update: <>
507 RSRC_FreeResourceList: void(), <RSRC_rlist.c 158>
508 cfree: 199
510 tbl_free_all: <>

6. External Effects Program (external)

6.1 Source Files

external. c: The main program for the External Effects Module and many of the subroutines written
specifically for this module.

dbAccess. c: The functions which access the TekBase databases for retrieving data.

loadData. c: Functions to allocate memory and load data for a specified test database and for PIDs and
to free the memory allocated.

rernoveEffect. c: The functions which perform the calculations given in the Algorithm section above
for removing the external effects.

74

smoothData. c: Function to smooth the data for a PID by averaging over a specified interval, in effect,
a simple convolution filter.

wri teNPID. c: Functions to generate the output file.

6.2 Header Files

external. h: Header file containing tbe declarations required for external. c.

dbAccess. h: Header file containing the type definitions and declarations of the functions defined in
dbAccess. c.

1 oadDa ta . h: Header file containing the declarations of the functions defined in 1 oadDa ta . c.

removeEffect .h: Header file containing the declarations of the functions defmed in
removeEffect. c.

smoothDa ta . h: Header file containing the declaration of the function defined in smoothDa ta . c.

wri teNPID. h: Header file containing the declaration of the function defmed in wri teNPID. c which
is available to other functions.

6.3 Defined Constants

DB_SERVER: Default TekBase database server to use if the environment variable QYHOST is not set;
value II jetson "; defined in dbAccess . h.

FALSE: Used as a flag value when delta PIDs are not to be normalized and as the return value if failure
occurs in some functions, including dbGetcompInfo and wri teNPID; value 0; defmed in
external. h.

INDEPENDENT_PIDS: Number of independent PIDs used in removing external effects; value 6; defined
in loadData. h.

MAX_FILES: Maximum number of data files that can be associated with a test; value 9; defined in
loadData. h.

SMOOTH_WINDOW: Width of window used for averaging data when smoothing raw PID data, currently
not utilized; value 51; defined in smoothData. h.

SMOOTH_WIN_D: Width of the window used for averaging data wben smoothing tbe unnormalized delta
between the dependent PIDs for the current and comparison test; value 51; defmed in
smoothData.h.

SMOOTH_WIN_I: Width of the window used for averaging data when smoothing the deltas between the
independent PIDs for the current and comparison test; value 51; defined in smoothData. h.

TRUE: Used as a flag value when delta PIDs are to be normalizied and as the return value by some
functions, including dbGetCompInfo and writeNPID, if successful; value 1; defined in
external. h.

6.4 Defined Types

CompDesc (defined in dbAccess . h)

typedef struct {
TSTRING

75

smoothData. c: Function to smooth the data for a PID by averaging over a specified interval, in effect,
a simple convolution filter.

wri teNPID. c: Functions to generate the output file.

6.2 Header Files

external. h: Header file containing tbe declarations required for external. c.

dbAccess. h: Header file containing the type definitions and declarations of the functions defined in
dbAccess. c.

1 oadDa ta . h: Header file containing the declarations of the functions defined in 1 oadDa ta . c.

removeEffect .h: Header file containing the declarations of the functions defmed in
removeEffect. c.

smoothDa ta . h: Header file containing the declaration of the function defined in smoothDa ta . c.

wri teNPID. h: Header file containing the declaration of the function defmed in wri teNPID. c which
is available to other functions.

6.3 Defined Constants

DB_SERVER: Default TekBase database server to use if the environment variable QYHOST is not set;
value II jetson "; defined in dbAccess . h.

FALSE: Used as a flag value when delta PIDs are not to be normalized and as the return value if failure
occurs in some functions, including dbGetcompInfo and wri teNPID; value 0; defmed in
external. h.

INDEPENDENT_PIDS: Number of independent PIDs used in removing external effects; value 6; defined
in loadData. h.

MAX_FILES: Maximum number of data files that can be associated with a test; value 9; defined in
loadData. h.

SMOOTH_WINDOW: Width of window used for averaging data when smoothing raw PID data, currently
not utilized; value 51; defined in smoothData. h.

SMOOTH_WIN_D: Width of the window used for averaging data wben smoothing tbe unnormalized delta
between the dependent PIDs for the current and comparison test; value 51; defmed in
smoothData.h.

SMOOTH_WIN_I: Width of the window used for averaging data when smoothing the deltas between the
independent PIDs for the current and comparison test; value 51; defined in smoothData. h.

TRUE: Used as a flag value when delta PIDs are to be normalizied and as the return value by some
functions, including dbGetCompInfo and writeNPID, if successful; value 1; defined in
external. h.

6.4 Defined Types

CompDesc (defined in dbAccess . h)

typedef struct {
TSTRING

75

cornp_test_id[13];
} CornpDesci

This structure is used in retrieving the comparison test corresponding to the current test from the
CMP _DESC table of the TekBase database 55MB_DB.

Members:
comp_tesUd: Test ID for the comparison test.

DataBase (defined in loadData. h)

typedef struct {
int

nurn_file;
char

db_name [40) ,
*file_name[MAX_FILES};

fileCtlData
*file[MAX_FILES);

pidlnfo
*pid[INDEPENDENT_PIDS];

} DataBase;

This structure contains the information required by the program for the data files and independent PIDs
for a test.

Members:
num_file: Number of test data files associated with the test.
db_name: Name of the test. This may be the name of a single test data file or the test name

taken from the first line of the database directory file for the test, depending on the value
of CureentTest used in the command line to run the external effects module.

file_name: Array of file names for all test data files associated with the test.
file: File descriptor and other database information for each file associated with the test.
pid: Information and data for each independent PID for the test.

External_Effects (defined in dbAccess .h)

typedef struct {
TSTRING

description[41);
TREAL

PL,
MR,
H2P,
02P,
H2T,
02T,
LSQCOFF1,
LSQCOFF2,
LSQCOFF3,
LSQCOFF4,
LSQCOFFS,

76

cornp_test_id[13];
} CornpDesci

This structure is used in retrieving the comparison test corresponding to the current test from the
CMP _DESC table of the TekBase database 55MB_DB.

Members:
comp_tesUd: Test ID for the comparison test.

DataBase (defined in loadData. h)

typedef struct {
int

nurn_file;
char

db_name [40) ,
*file_name[MAX_FILES};

fileCtlData
*file[MAX_FILES);

pidlnfo
*pid[INDEPENDENT_PIDS];

} DataBase;

This structure contains the information required by the program for the data files and independent PIDs
for a test.

Members:
num_file: Number of test data files associated with the test.
db_name: Name of the test. This may be the name of a single test data file or the test name

taken from the first line of the database directory file for the test, depending on the value
of CureentTest used in the command line to run the external effects module.

file_name: Array of file names for all test data files associated with the test.
file: File descriptor and other database information for each file associated with the test.
pid: Information and data for each independent PID for the test.

External_Effects (defined in dbAccess .h)

typedef struct {
TSTRING

description[41);
TREAL

PL,
MR,
H2P,
02P,
H2T,
02T,
LSQCOFF1,
LSQCOFF2,
LSQCOFF3,
LSQCOFF4,
LSQCOFFS,

76

LSQCOFF6;
} External_Effects;

This structure is used in retrieving the gains table information required by the external effects module for
each of the dependent PlOs from the GAINS table of the TekBase database EXTERNAL.

Members:
description: Description oftlle dependent PIO.
PL: Linear gain associated with the Power Level (not used because the power level effect is

assumed to be nonlinear).
MR: Linear gain associated with the Mixture Ratio.
H2P: Linear gain associated with the LPFP Inlet Pressure.
02P: Linear gain associated with the LPOP Inlet Pressure.
H2T: Linear gain associated with the LPFP Inlet Temperature.
02T: Linear gain associated with the LPOP Inlet Temperature.

LSQCOFFl: Constant term of the fifth degree polynomial approximating the power level effects.

LSQCOFF2: Coefficient of the first degree term of the fifth order polynomial approximating the
power level effects.

LSQCOFF3: Coefficient of the second degree term of the fifth order polynomial approximating
the power level effects.

LSQCOFF4: Coefficient of the third degree term of the fifth order polynomial approximating the
power level effects.

LSQCOFF5: Coefficient of the fourth degree term of the fifth order polynomial approximating
the power level effects.

LSQCOFF6: Coefficient of the fifth degree term of the fifth order polynomial approximating the
power level effects.

filectlData (defined in loadData.h)

typedef struct {
char

test_title [41] i
float

cutoff;
struct file_control_data

*fileDatai
} filectlDatai

This structure contains information used by the external effects module concerning a test data file.

Members:
tesCtitle: Title for the test.
cutoff: Cutoff time for the test.
fileData: Additional file information used by the dbacc_ v2 library for accessing the data file (See

dbacc_ v2 . h for the definition of the structure f ile_control_da ta).

gains'l'bl (defined in external. h)

typedef struct {
char

77

LSQCOFF6;
} External_Effects;

This structure is used in retrieving the gains table information required by the external effects module for
each of the dependent PlOs from the GAINS table of the TekBase database EXTERNAL.

Members:
description: Description oftlle dependent PIO.
PL: Linear gain associated with the Power Level (not used because the power level effect is

assumed to be nonlinear).
MR: Linear gain associated with the Mixture Ratio.
H2P: Linear gain associated with the LPFP Inlet Pressure.
02P: Linear gain associated with the LPOP Inlet Pressure.
H2T: Linear gain associated with the LPFP Inlet Temperature.
02T: Linear gain associated with the LPOP Inlet Temperature.

LSQCOFFl: Constant term of the fifth degree polynomial approximating the power level effects.

LSQCOFF2: Coefficient of the first degree term of the fifth order polynomial approximating the
power level effects.

LSQCOFF3: Coefficient of the second degree term of the fifth order polynomial approximating
the power level effects.

LSQCOFF4: Coefficient of the third degree term of the fifth order polynomial approximating the
power level effects.

LSQCOFF5: Coefficient of the fourth degree term of the fifth order polynomial approximating
the power level effects.

LSQCOFF6: Coefficient of the fifth degree term of the fifth order polynomial approximating the
power level effects.

filectlData (defined in loadData.h)

typedef struct {
char

test_title [41] i
float

cutoff;
struct file_control_data

*fileDatai
} filectlDatai

This structure contains information used by the external effects module concerning a test data file.

Members:
tesCtitle: Title for the test.
cutoff: Cutoff time for the test.
fileData: Additional file information used by the dbacc_ v2 library for accessing the data file (See

dbacc_ v2 . h for the definition of the structure f ile_control_da ta).

gains'l'bl (defined in external. h)

typedef struct {
char

77

description[41);
double

PL,
MR,
H2P,
02P,
H2T,
02T,
lsqcoef[6];

} gainsTbl;

This structure contains a description of a dependent PID and the linear gains and least-squares
coefficients used in removing the effects of the independent PIDs for that dependent PID.

Members:

description: Description of the dependent PID.

PL: Linear gain associated with the Power Level (not used because the power level effect is
assumed to be nonlinear).

MR: Linear gain associated with the Mixture Ratio (not used because the program currently does
not remove the effect of the mixture ratio).

H2P: Linear gain associated with the LPFP Inlet Pressure.

02P: Linear gain associated with the LPOP Inlet Pressure.

H2T: Linear gain associated with the LPFP Inlet Temperature.

02T: Linear gain associated with the LPOP Inlet Temperature.

lsqcoef: Least-squares coefficients of the fifth degree polynomial approximating tile power level
effects.

hardwareDeltalnfo (defined in dbAccess .h)

typedef struct {
TSTRING

test_id[13],
parameter [61] ;

TREAL
start_delta;

} hardwareDeltaInfo;

This structure is used in retrieving the constant delta due to changes in the hardware configuration
between the current and comparison tests for each of the dependent PIDs from the DELTAS table of the
TekBase database SSME_DB.

Members:

tesUd: Test ID for the current test.

parameter: Description of the dependent PID for which the hardware delta is requested.

start_delta: The constant delta for the dependent PID due to changes in the hardware
configuration between the current and comparison tests.

LowRate (defined in external. h)

typedef struct {
float

78

description[41);
double

PL,
MR,
H2P,
02P,
H2T,
02T,
lsqcoef[6];

} gainsTbl;

This structure contains a description of a dependent PID and the linear gains and least-squares
coefficients used in removing the effects of the independent PIDs for that dependent PID.

Members:

description: Description of the dependent PID.

PL: Linear gain associated with the Power Level (not used because the power level effect is
assumed to be nonlinear).

MR: Linear gain associated with the Mixture Ratio (not used because the program currently does
not remove the effect of the mixture ratio).

H2P: Linear gain associated with the LPFP Inlet Pressure.

02P: Linear gain associated with the LPOP Inlet Pressure.

H2T: Linear gain associated with the LPFP Inlet Temperature.

02T: Linear gain associated with the LPOP Inlet Temperature.

lsqcoef: Least-squares coefficients of the fifth degree polynomial approximating tile power level
effects.

hardwareDeltalnfo (defined in dbAccess .h)

typedef struct {
TSTRING

test_id[13],
parameter [61] ;

TREAL
start_delta;

} hardwareDeltaInfo;

This structure is used in retrieving the constant delta due to changes in the hardware configuration
between the current and comparison tests for each of the dependent PIDs from the DELTAS table of the
TekBase database SSME_DB.

Members:

tesUd: Test ID for the current test.

parameter: Description of the dependent PID for which the hardware delta is requested.

start_delta: The constant delta for the dependent PID due to changes in the hardware
configuration between the current and comparison tests.

LowRate (defined in external. h)

typedef struct {
float

78

rate;
long int

points;
float

*time;
} LowRate;

This structure contains information concerning the lowest sampling rate among the independent PIDs for
both the current and comparison tests.

Members:
rate: Lowest sampling rate among the independent PIDs for both the current and comparison

tests.
points: Number of data points for the PID with the lowest sampling rate.
time: Pointer into time array for the test corresponding to the beginning time of the PID with the

lowest sampling rate.

pidl:nfo (defined in loadData.h)

typedef struct {

char
*name,
*units,
*descri

int
npa,
points;

float
rate,
t_start,
t_stop,
*data,
*time;

} pidlnfo;

This structure is used to store the PID information required by the external effects module.

Members:
name: Name of the PID.
units: Units for the PID data.
descr: Description of the PID.
npa: Number of points available for the PID.

points: Actual number of points stored for the PID.
rate: Sampling rate for the PID data.
estart: Time for the first point in the PID data.
estop: Time for the last point in the PID data.
data: Data points for the PID.
time: Times corresponding to the data points for the PID.

79

rate;
long int

points;
float

*time;
} LowRate;

This structure contains information concerning the lowest sampling rate among the independent PIDs for
both the current and comparison tests.

Members:
rate: Lowest sampling rate among the independent PIDs for both the current and comparison

tests.
points: Number of data points for the PID with the lowest sampling rate.
time: Pointer into time array for the test corresponding to the beginning time of the PID with the

lowest sampling rate.

pidl:nfo (defined in loadData.h)

typedef struct {

char
*name,
*units,
*descri

int
npa,
points;

float
rate,
t_start,
t_stop,
*data,
*time;

} pidlnfo;

This structure is used to store the PID information required by the external effects module.

Members:
name: Name of the PID.
units: Units for the PID data.
descr: Description of the PID.
npa: Number of points available for the PID.

points: Actual number of points stored for the PID.
rate: Sampling rate for the PID data.
estart: Time for the first point in the PID data.
estop: Time for the last point in the PID data.
data: Data points for the PID.
time: Times corresponding to the data points for the PID.

79

PumpCont (defined in dbAcces s . h)

typedef struct {
TSTRING

hpotp_cont[41i
} Pumpconti

This structure is used in reUieving the identifier of the HPOT pump contractor from the TST_HW
database table, which is required to determine the pump type.

Member:

hpotp_cont: Identifier of the HPOT pump contractor.

RedundantSensor (defined in dbAccess . h)

typedef struct {
TSTRING

name[41] ,
test_id[131,
pid[13] i

} RedundantSensor;

This structure is used in reUieving the name of the good PID for a given test corresponding to a particular
PID descriptor from the RED_S_C table of the TekBase database SSME_DB.

Members:

name: Descriptor for the desired PID.

tesUd: Test ID for which the PID is required.

pid: Name of the good PID corresponding to the specified descriptor.

6.5 Functions

closeDB (declaration in dbAccess .h, definition in dbAccess. c)

void closeDB ()

This function closes the TekBase query session which was started by a call to ini tDB. It is called once
in the external effects module after all TekBase queries have been completed.

dbCloseSSME (declaration in dbAccess . h, definition in dbAccess . c)

void dbCloseSSME ()

This function closes the SSME_DB database when it is no longer needed by the program. It should be
called once after all calls to the functions dbGetComplnfo, dbFindPidName, and dbFindHWDel ta
have been completed.

dbFindPidName (declaration in dbAccess. h, definition in dbAccess . c)

void dbFindPidName (char *testID, char *pidDescriptor,
char pidName[])

This function reUieves the name of a good PID for a specified test corresponding to a given PID descriptor
from the RED_S_C table of the SSME_DB database. The function dblni tSSME must have been called
once by the program before the frrst call to this function.

80

PumpCont (defined in dbAcces s . h)

typedef struct {
TSTRING

hpotp_cont[41i
} Pumpconti

This structure is used in reUieving the identifier of the HPOT pump contractor from the TST_HW
database table, which is required to determine the pump type.

Member:

hpotp_cont: Identifier of the HPOT pump contractor.

RedundantSensor (defined in dbAccess . h)

typedef struct {
TSTRING

name[41] ,
test_id[131,
pid[13] i

} RedundantSensor;

This structure is used in reUieving the name of the good PID for a given test corresponding to a particular
PID descriptor from the RED_S_C table of the TekBase database SSME_DB.

Members:

name: Descriptor for the desired PID.

tesUd: Test ID for which the PID is required.

pid: Name of the good PID corresponding to the specified descriptor.

6.5 Functions

closeDB (declaration in dbAccess .h, definition in dbAccess. c)

void closeDB ()

This function closes the TekBase query session which was started by a call to ini tDB. It is called once
in the external effects module after all TekBase queries have been completed.

dbCloseSSME (declaration in dbAccess . h, definition in dbAccess . c)

void dbCloseSSME ()

This function closes the SSME_DB database when it is no longer needed by the program. It should be
called once after all calls to the functions dbGetComplnfo, dbFindPidName, and dbFindHWDel ta
have been completed.

dbFindPidName (declaration in dbAccess. h, definition in dbAccess . c)

void dbFindPidName (char *testID, char *pidDescriptor,
char pidName[])

This function reUieves the name of a good PID for a specified test corresponding to a given PID descriptor
from the RED_S_C table of the SSME_DB database. The function dblni tSSME must have been called
once by the program before the frrst call to this function.

80

Arguments:
testID: Test ID for the test for which the PID is required (input).
pidDescriptor: Descriptor for the PID required (input).
pidName: Name of the good PID for the specified test cOlTesponding to the given PID descriptor

(output).

There is no return value. If a good PIO is found, the name of that PIO is copied into the string pidName.
OthelWise, the first character of pidName is set to zero.

dbFreeGains (declaration in dbAccess .h, definition in dbAccess. c)

void dbFreeGains (gainsTbl *gain)

This function frees the memory that was allocated by the function dbGetGains.

Argument:
gain: Table of gains and least-square coefficients for each dependent PID (input).

dbGetComplnfo (declaration in dbAccess . h, definition in dbAccess . c)

int dbGetComplnfo (char *currentTest, char *comparisonTest)

This function queries the SSME_DB database to determine the comparison test and time interval to be
used for the current test.

Arguments:
currentTest: Test ID for the current test (input).
comparisonTest: Test ID for the comparison test (output).

Returns a non-zero value if the function was successful, zero otherwise. The function is successful if an
entry for the current test is found in the CMP _DESC table of the SSME_DB database, in which case the
test ID for the comparison test is copied into the string comparisonTest. If more than one entry for
the current test is found, only the one returned as the [rrst row by the database query is used.

dbGetGains (declaration in dbAccess . h, definition in dbAccess . c)

void dbGetGains (char *testPump, gainsTbl **gain,
int *numberOfEntry)

This function queries the EXTERNAL database to retrieve the appropriate gains and least-square
coefficients, corresponding to the pump type used in the current test, required to remove the effects of the
independent PIDs from each dependent PID.

Arguments:
testPump: Type of pump used in the current test (input).

gain: Table of gains and least-square coefficients for each dependent PID (output).

numberOtEntry: The number of entries in the gains table (output).

There is no return value. If the gains table is found, gain will be set to the address of an array of
pointers to structures of type gainsTbl and numberOfEntry will be set to the number of entries in
the array. Otherwise, gain will be set to NULL and numberOfEntry will be set to zero.

dbGetPump'l'ype (declaration in dbAccess . h, definition in dbAccess . c)

void dbGetPumpType (char *currentTest, char *testPump)

81

Arguments:
testID: Test ID for the test for which the PID is required (input).
pidDescriptor: Descriptor for the PID required (input).
pidName: Name of the good PID for the specified test cOlTesponding to the given PID descriptor

(output).

There is no return value. If a good PIO is found, the name of that PIO is copied into the string pidName.
OthelWise, the first character of pidName is set to zero.

dbFreeGains (declaration in dbAccess .h, definition in dbAccess. c)

void dbFreeGains (gainsTbl *gain)

This function frees the memory that was allocated by the function dbGetGains.

Argument:
gain: Table of gains and least-square coefficients for each dependent PID (input).

dbGetComplnfo (declaration in dbAccess . h, definition in dbAccess . c)

int dbGetComplnfo (char *currentTest, char *comparisonTest)

This function queries the SSME_DB database to determine the comparison test and time interval to be
used for the current test.

Arguments:
currentTest: Test ID for the current test (input).
comparisonTest: Test ID for the comparison test (output).

Returns a non-zero value if the function was successful, zero otherwise. The function is successful if an
entry for the current test is found in the CMP _DESC table of the SSME_DB database, in which case the
test ID for the comparison test is copied into the string comparisonTest. If more than one entry for
the current test is found, only the one returned as the [rrst row by the database query is used.

dbGetGains (declaration in dbAccess . h, definition in dbAccess . c)

void dbGetGains (char *testPump, gainsTbl **gain,
int *numberOfEntry)

This function queries the EXTERNAL database to retrieve the appropriate gains and least-square
coefficients, corresponding to the pump type used in the current test, required to remove the effects of the
independent PIDs from each dependent PID.

Arguments:
testPump: Type of pump used in the current test (input).

gain: Table of gains and least-square coefficients for each dependent PID (output).

numberOtEntry: The number of entries in the gains table (output).

There is no return value. If the gains table is found, gain will be set to the address of an array of
pointers to structures of type gainsTbl and numberOfEntry will be set to the number of entries in
the array. Otherwise, gain will be set to NULL and numberOfEntry will be set to zero.

dbGetPump'l'ype (declaration in dbAccess . h, definition in dbAccess . c)

void dbGetPumpType (char *currentTest, char *testPump)

81

This function finds the pump type used on tIle current test for determining the proper set of gains values to
use in calculating the effects of the independent PIDs on the dependent PIDs.

Arguments:
currentTest: The identifier for the current test (input).

testPump: The contractor which built the HPOT pump used in the current test (output; space
must be allocated by the calling function).

There is no return value. If the pump type cannot be found, a NULL string will be written to testPump.

dbJ:nitSSME (declaration in dbAccess .h, definition in dbAccess. c)

void dblnitSSME ()

This function opens tl1e SSME_DB database for subsequent accesses by tIle functions dbGetCompInfo,
dbFindPidName, and dbFindHWDelta. dblnitSSME must be called by tIle program once before any calls
are made to these three functions.

FindLowRate (declaration in external. h, definition in external. c)

LowRate * FindLowRate (DataBase *comp, DataBase *cur)

This function checks each of tl1e independent PIDs for tl1e current test and comparison test and determines
which PID has the lowest sampling rate. The rate, number of points, and time array for that PID are
stored for later use by tl1e function Nterp.

Arguments:

comp: Comparison test infonnation (input).

cur: Current test infonnation (input).

Returns a structure containing the rate, number of points, and time array for the independent PID with the
lowest sampling rate.

freeDBJ:nfo (declaration in loadData. h, definition in loadData. c)

void freeDBlnfo (DataBase *db)

This function frees tl1e memory that was allocated by tl1e function loadDBlnfo and any memory
allocated for independent PIDs (pointed to by elements of the member pid of the structure db) by calls to
loadPid.

Argument:

db: Previously loaded infonnation about a particular test (input).

freePid (declaration in loadData .h, definition in loadData. c)

void freePid (pidlnfo *pid)

This function frees tl1e memory that was allocated by the function loadPid.

Argument:

pid: Previously loaded infonnation about a particular PID (input).

EandleError (declaration and definition in dbAccess . c)

static void HandleError ()

82

This function finds the pump type used on tIle current test for determining the proper set of gains values to
use in calculating the effects of the independent PIDs on the dependent PIDs.

Arguments:
currentTest: The identifier for the current test (input).

testPump: The contractor which built the HPOT pump used in the current test (output; space
must be allocated by the calling function).

There is no return value. If the pump type cannot be found, a NULL string will be written to testPump.

dbJ:nitSSME (declaration in dbAccess .h, definition in dbAccess. c)

void dblnitSSME ()

This function opens tl1e SSME_DB database for subsequent accesses by tIle functions dbGetCompInfo,
dbFindPidName, and dbFindHWDelta. dblnitSSME must be called by tIle program once before any calls
are made to these three functions.

FindLowRate (declaration in external. h, definition in external. c)

LowRate * FindLowRate (DataBase *comp, DataBase *cur)

This function checks each of tl1e independent PIDs for tl1e current test and comparison test and determines
which PID has the lowest sampling rate. The rate, number of points, and time array for that PID are
stored for later use by tl1e function Nterp.

Arguments:

comp: Comparison test infonnation (input).

cur: Current test infonnation (input).

Returns a structure containing the rate, number of points, and time array for the independent PID with the
lowest sampling rate.

freeDBJ:nfo (declaration in loadData. h, definition in loadData. c)

void freeDBlnfo (DataBase *db)

This function frees tl1e memory that was allocated by tl1e function loadDBlnfo and any memory
allocated for independent PIDs (pointed to by elements of the member pid of the structure db) by calls to
loadPid.

Argument:

db: Previously loaded infonnation about a particular test (input).

freePid (declaration in loadData .h, definition in loadData. c)

void freePid (pidlnfo *pid)

This function frees tl1e memory that was allocated by the function loadPid.

Argument:

pid: Previously loaded infonnation about a particular PID (input).

EandleError (declaration and definition in dbAccess . c)

static void HandleError ()

82

This function is provided to print a message to stderr and exit the program if an error is encountered while
retrieving any information from a TekBase database.

initDB (declaration in dbAccess .h, definition in dbAccess. c)

void ini tDB ()

This function initializes the TekBase query session for the program. It is called once at the beginning of
the external effects module before any other functions from dbAccess . c are called. The environment
variable QYHOST is checked to determine which machine is the TekBase server. If the environment
variable is not set, the value of the constant DB_SERVER will be used.

loadDBlnfo (declaration in loadData .h, definition in loadData. c)

DataBase * loadPid (char *db)

This function retrieves the information about a specified test and the associated data files.

Argument:
db: Name of the test; this may be the test 10 or the name of a particular test file (input).

Returns the available information about the test and associated data files. A structure of type Da taBas e
is allocated and all members of that structure except pid are set. The function freeDBlnfo is called
when the structure is 110 longer needed to free the memory allocated by loadDBlnfo.

loadPid (declaration in loadData. h, definition in loadData. c)

pidlnfo * loadPid (DataBase *db-ptr, char *pid, float timer])

This function retrieves the data associated with a specified PIO for a given test.

Arguments:
db_ptr: Database information for the test for which the PIO is required (input).
pid: Name of PIO required (input).
time: Time interval for which PIO data is required (input).

Returns the available data from the database for the requested PIO. A structure of type loadPid is
allocated and all members of that structure are set. The function freePid is called when the structure
is no longer needed to free the memory allocated by loadPid.

Nterp (declaration in external. h, definition in external. c)

void Nterp (LowRate *low, pidlnfo *high)

This function selects the points from a PIO that correspond to the times for the PIO with the lowest rate as
determined by the function FindLowRate.

Arguments:
low: Structure containing the rate, number of points, and times for the points for the PIO with

the lowest rate as determined by the function FindLowRate (input).

high: PIO to be resampled at the possibly lower rate (input and output).

There is no return value, but high->points, high->data, and high->time are modified to reflect
the resampling results.

83.

This function is provided to print a message to stderr and exit the program if an error is encountered while
retrieving any information from a TekBase database.

initDB (declaration in dbAccess .h, definition in dbAccess. c)

void ini tDB ()

This function initializes the TekBase query session for the program. It is called once at the beginning of
the external effects module before any other functions from dbAccess . c are called. The environment
variable QYHOST is checked to determine which machine is the TekBase server. If the environment
variable is not set, the value of the constant DB_SERVER will be used.

loadDBlnfo (declaration in loadData .h, definition in loadData. c)

DataBase * loadPid (char *db)

This function retrieves the information about a specified test and the associated data files.

Argument:
db: Name of the test; this may be the test 10 or the name of a particular test file (input).

Returns the available information about the test and associated data files. A structure of type Da taBas e
is allocated and all members of that structure except pid are set. The function freeDBlnfo is called
when the structure is 110 longer needed to free the memory allocated by loadDBlnfo.

loadPid (declaration in loadData. h, definition in loadData. c)

pidlnfo * loadPid (DataBase *db-ptr, char *pid, float timer])

This function retrieves the data associated with a specified PIO for a given test.

Arguments:
db_ptr: Database information for the test for which the PIO is required (input).
pid: Name of PIO required (input).
time: Time interval for which PIO data is required (input).

Returns the available data from the database for the requested PIO. A structure of type loadPid is
allocated and all members of that structure are set. The function freePid is called when the structure
is no longer needed to free the memory allocated by loadPid.

Nterp (declaration in external. h, definition in external. c)

void Nterp (LowRate *low, pidlnfo *high)

This function selects the points from a PIO that correspond to the times for the PIO with the lowest rate as
determined by the function FindLowRate.

Arguments:
low: Structure containing the rate, number of points, and times for the points for the PIO with

the lowest rate as determined by the function FindLowRate (input).

high: PIO to be resampled at the possibly lower rate (input and output).

There is no return value, but high->points, high->data, and high->time are modified to reflect
the resampling results.

83.

pefloat (declaration and defmition in wr i teNPID. c)

static float pefloat (float x)

This function is used by wr i teNPID to convert floating point values to the fonna~ required for SSME
fonnat binary data files.

Argument:
x: Floating point number to be converted (input).

Returns the converted floating point number.

removeH2PEffec:t (declaration in removeEffect.h, definition in removeEffect.c)

void removeH2PEffect (pidlnfo *deltaPid, pidlnfo *H2PDelta,
gainsTbl *gains)

This function removes the effects of the independent PID LPFP inlet pressure from the provided delta
PID.

Arguments:
deltaPid: Delta PID from which the LPFP inlet pressure effects are to be removed (input and

output).
H2PDelta: The difference in the LPFP inlet pressure PIDs for the current and comparison tests

(input).

gains: The gains values and other infonnation for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the LPFP inlet
pressure effects.

removeH2TEffec:t (declaration in removeEffect.h, definition in removeEffect.c)

void removeH2TEffect (pidlnfo *deltaPid, pidlnfo *H2TDelta,
gainsTbl *gains)

This function removes the effects of the independent PID LPFP inlet temperature from the provided delta
PID.

Arguments:
deltaPid: Delta PID from which the LPFP inlet temperature effects are to be removed (input and

output).
H21Delta: The difference in the LPFP inlet temperature PIDs for the current and comparison

tests (input).

gains: The gains values and other infonnation for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the LPFP inlet
temperature effects.

removeMixRatioEffec:t (declaration in removeEffect.h, definition in removeEffect.c)

void removeMixRatioEffect (pidlnfo *deltaPid,
pidlnfo *MixRatioDelta,
gainsTbl *gains)

This function removes the effects of the independent PID mixture ratio from the provided delta PID.

84

pefloat (declaration and defmition in wr i teNPID. c)

static float pefloat (float x)

This function is used by wr i teNPID to convert floating point values to the fonna~ required for SSME
fonnat binary data files.

Argument:
x: Floating point number to be converted (input).

Returns the converted floating point number.

removeH2PEffec:t (declaration in removeEffect.h, definition in removeEffect.c)

void removeH2PEffect (pidlnfo *deltaPid, pidlnfo *H2PDelta,
gainsTbl *gains)

This function removes the effects of the independent PID LPFP inlet pressure from the provided delta
PID.

Arguments:
deltaPid: Delta PID from which the LPFP inlet pressure effects are to be removed (input and

output).
H2PDelta: The difference in the LPFP inlet pressure PIDs for the current and comparison tests

(input).

gains: The gains values and other infonnation for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the LPFP inlet
pressure effects.

removeH2TEffec:t (declaration in removeEffect.h, definition in removeEffect.c)

void removeH2TEffect (pidlnfo *deltaPid, pidlnfo *H2TDelta,
gainsTbl *gains)

This function removes the effects of the independent PID LPFP inlet temperature from the provided delta
PID.

Arguments:
deltaPid: Delta PID from which the LPFP inlet temperature effects are to be removed (input and

output).
H21Delta: The difference in the LPFP inlet temperature PIDs for the current and comparison

tests (input).

gains: The gains values and other infonnation for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the LPFP inlet
temperature effects.

removeMixRatioEffec:t (declaration in removeEffect.h, definition in removeEffect.c)

void removeMixRatioEffect (pidlnfo *deltaPid,
pidlnfo *MixRatioDelta,
gainsTbl *gains)

This function removes the effects of the independent PID mixture ratio from the provided delta PID.

84

Arguments:
deltaPid: Delta PID from which the power level effects are to be removed (input and output).
MixRatioDelta: The difference in the mixture ratio PIDs for the current and comparison tests

(input). .

gains: The gains values and other information for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the mixture
ratio effects.

remove02PEffect (declaration in removeEffect.h, definition in removeEffect.c)
void remove02PEffect (pidlnfo *deltaPid, pidlnfo *02PDelta,

gainsTbl *gains)

This function removes the effects of the independent PID LPOP inlet pressure from the provided delta
PID.

Arguments:
deltaPid: Delta PID from which the LPOP inlet pressure effects are to be removed (input and

output).
02PDelta: The difference in the LPOP inlet pressure PIDs for the current and comparison tests

(input).

gains: The gains values and other information for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the LPOP inlet
pressure effects.

remove02TEffect (declaration in removeEffect. h, definition in removeEffect. c)

void remove02TEffect (pidlnfo *deltaPid, pidlnfo *02TDelta,
gainsTbl *gains)

This function removes the effects of the independent PID LPOP inlet temperature from the provided delta
PID.

Arguments:
deltaPid: Delta PID from which the LPOP inlet temperature effects are to be removed (input and

output).

02TDelta: The difference in the LPOP inlet temperature PIDs for the current and comparison
tests (input).

gains: The gains values and other information for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the LPOP inlet
temperature effects.

removePowerLevelEffect (declaration in removeEffect.h, definition in removeEffect.c)

void removePowerLevelEffect (pidlnfo *deltaPid,
pidlnfo *PowerLevelCurrent,
pidlnfo *PowerLevelComparison,
gainsTbl *gains)

This function removes the effects of the independent PID power level from the provided delta PID. The
power level effects are filtered before subtracting them from the delta PID.

85

Arguments:
deltaPid: Delta PID from which the power level effects are to be removed (input and output).
MixRatioDelta: The difference in the mixture ratio PIDs for the current and comparison tests

(input). .

gains: The gains values and other information for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the mixture
ratio effects.

remove02PEffect (declaration in removeEffect.h, definition in removeEffect.c)
void remove02PEffect (pidlnfo *deltaPid, pidlnfo *02PDelta,

gainsTbl *gains)

This function removes the effects of the independent PID LPOP inlet pressure from the provided delta
PID.

Arguments:
deltaPid: Delta PID from which the LPOP inlet pressure effects are to be removed (input and

output).
02PDelta: The difference in the LPOP inlet pressure PIDs for the current and comparison tests

(input).

gains: The gains values and other information for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the LPOP inlet
pressure effects.

remove02TEffect (declaration in removeEffect. h, definition in removeEffect. c)

void remove02TEffect (pidlnfo *deltaPid, pidlnfo *02TDelta,
gainsTbl *gains)

This function removes the effects of the independent PID LPOP inlet temperature from the provided delta
PID.

Arguments:
deltaPid: Delta PID from which the LPOP inlet temperature effects are to be removed (input and

output).

02TDelta: The difference in the LPOP inlet temperature PIDs for the current and comparison
tests (input).

gains: The gains values and other information for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the LPOP inlet
temperature effects.

removePowerLevelEffect (declaration in removeEffect.h, definition in removeEffect.c)

void removePowerLevelEffect (pidlnfo *deltaPid,
pidlnfo *PowerLevelCurrent,
pidlnfo *PowerLevelComparison,
gainsTbl *gains)

This function removes the effects of the independent PID power level from the provided delta PID. The
power level effects are filtered before subtracting them from the delta PID.

85

Arguments:

deltaPid: Delta PID from which the power level effects are to be removed (input and output).

PowerLevelCurrent: The power level PID for the current test (input).

PowerLevelComparison: The power level PID for the comparison test (input).

gains: The gains values and other information for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the power level
effects.

smoothData (declaration in smoothData.h, definition in smoothData.c)

int smoothData (float *data, float *smoothData, int numpts,
int smoothWindow)

This function filters the array data by computing a sliding average for each point in the array, in effect a
simple convolution filter.

Arguments:

data: Array of data to be filtered (input).

smoothedData: Array in which filtered data is to be stored (output).

numPts: Number of data points in the array to be filtered (input).

smoothWindow: Width of the sliding window to used when computing the averages if odd; if
even, actual window size used will be smoothWindow + 1 (input).

Returns -1 if smoothWindow > numPts, 0 otherwise. If the return value is 0, the array
smoothedData will contain the filtered data, except for the frrst and last smoothWindow/2 points,
which will be identical to the corresponding points in the array data.

writeNPID (declaration in writeNPID .h, definition in writeNPID. c)

int writeNPID (char *testid, float time[2], float cutoff,
char test_title[41], int numpids,
pidlnfo *pid_to_store, int normalize)

This function writes the binary SSME format data file containing the delta PIDs or normalized delta PIDs
and writes some useful information to stdout.

Arguments:

testid: Identifier for the current test (input).

time: Time interval for which PID data was generated (input).

cutoff: Engine cutoff time for the current test (input).

tesCtitle: Test title to be used for tlle SSME format data file (input).

numpids: Number of PIDs to be written to the data file (input).

pid_lo_store: Array of structures containing the data for each of the PIDs to be written to the
data file (input).

normalize: Flag to indicate whether the PIDs to be written are normalized; value must be zero
for unnormalized delta PIDs and one for normalized delta PIDs (input).

Returns FALSE if an error is encountered while writing the file, TRUE otherwise.

86

Arguments:

deltaPid: Delta PID from which the power level effects are to be removed (input and output).

PowerLevelCurrent: The power level PID for the current test (input).

PowerLevelComparison: The power level PID for the comparison test (input).

gains: The gains values and other information for the current dependent PID (input).

There is no return value. The values in del taPid are modified to reflect the removal of the power level
effects.

smoothData (declaration in smoothData.h, definition in smoothData.c)

int smoothData (float *data, float *smoothData, int numpts,
int smoothWindow)

This function filters the array data by computing a sliding average for each point in the array, in effect a
simple convolution filter.

Arguments:

data: Array of data to be filtered (input).

smoothedData: Array in which filtered data is to be stored (output).

numPts: Number of data points in the array to be filtered (input).

smoothWindow: Width of the sliding window to used when computing the averages if odd; if
even, actual window size used will be smoothWindow + 1 (input).

Returns -1 if smoothWindow > numPts, 0 otherwise. If the return value is 0, the array
smoothedData will contain the filtered data, except for the frrst and last smoothWindow/2 points,
which will be identical to the corresponding points in the array data.

writeNPID (declaration in writeNPID .h, definition in writeNPID. c)

int writeNPID (char *testid, float time[2], float cutoff,
char test_title[41], int numpids,
pidlnfo *pid_to_store, int normalize)

This function writes the binary SSME format data file containing the delta PIDs or normalized delta PIDs
and writes some useful information to stdout.

Arguments:

testid: Identifier for the current test (input).

time: Time interval for which PID data was generated (input).

cutoff: Engine cutoff time for the current test (input).

tesCtitle: Test title to be used for tlle SSME format data file (input).

numpids: Number of PIDs to be written to the data file (input).

pid_lo_store: Array of structures containing the data for each of the PIDs to be written to the
data file (input).

normalize: Flag to indicate whether the PIDs to be written are normalized; value must be zero
for unnormalized delta PIDs and one for normalized delta PIDs (input).

Returns FALSE if an error is encountered while writing the file, TRUE otherwise.

86

6.6 Algorithm

The effects of each of the 6 independent PIDs on 25 dependent PIDs bave been estimated and
stored in the GAINS table of the EXTERNAL database for tests using the Rocketdyne HPOT pump and for
tests using the A 1D HPOT pump. Tbe estimations were determined by assuming that the effects of
mixture ration, LPFP inlet pressure, LPOP inlct pressure, LPFP inlet temperature, and LPOP Inlet
temperature were linear on each dependent PID and that the effect of the power level could be
approximated by doing a least-squares fit to a fifth degree polynomial. Tbe estimations of the effects are
used by the External Effects Module to remove the effects of the independent PIDs from the dependent
PIDs.

6.6.1 Notation

PL: Linear gain associated with the Power Level (not used because the power level effect is assumed to be
nonlinear).

MR: Linear gain associated with the Mixture Ratio.

H2 P: Linear gain associated with the LPFP Inlet Pressure.

02P: Linear gain associated with the LPOP Inlet Pressure.

H2T: Linear gain associated with the LPFP Inlet Temperature.

02T: Linear gain associated with the LPOP Inlet Temperature.

LSQCOF _1: Constant term of the fifth degree polynomial approximating the power level effects.

LSQCOF _2: Coefficient of the fust degree term of the fifth order polynomial approximating the power
level effects.

LSQCOF _3: Coefficient of the second degree term of the fifth order polynomial approximating the power
level effects.

LSQCOF _4: Coefficient of the third degree term of the fifth order polynomial approximating the power
level effects.

LSQCOF _5: Coefficient of the fourth degree term of the fifth order polynomial approximating the power
level effects.

LSQCOF _6: Coefficient of the fifth degree term of the fifth order polynomial approximating the power
level effects.

t: Time-.a particular point in time during a test.

Dependen t (t): The value of the Dependent PID at time t.

DependentComparison(t): The value ofa Dependent PID at time t of the comparison test.

Dependen tCurren t (t): The value of a Dependent PID at time t of the current test.

PLValueCurrent (t): Value of the Independent PID Power Level of tJle current test at time t.

MRValueCurrent (t): Value of the IndependentPID Mixture Ratio of the current testat time t.

H2PVal ueCurrent (t): Value of the Independent PID LPFP Inlet Pressure of the current test at time
t.

02 PVal ueCurren t (t): Value of the Independent PID LPOP Inlet Pressure of the current test.

H2TVal ueCurren t (t): Value of the Independent PID LPFP Inlet Temperature of the current test.

87

6.6 Algorithm

The effects of each of the 6 independent PIDs on 25 dependent PIDs bave been estimated and
stored in the GAINS table of the EXTERNAL database for tests using the Rocketdyne HPOT pump and for
tests using the A 1D HPOT pump. Tbe estimations were determined by assuming that the effects of
mixture ration, LPFP inlet pressure, LPOP inlct pressure, LPFP inlet temperature, and LPOP Inlet
temperature were linear on each dependent PID and that the effect of the power level could be
approximated by doing a least-squares fit to a fifth degree polynomial. Tbe estimations of the effects are
used by the External Effects Module to remove the effects of the independent PIDs from the dependent
PIDs.

6.6.1 Notation

PL: Linear gain associated with the Power Level (not used because the power level effect is assumed to be
nonlinear).

MR: Linear gain associated with the Mixture Ratio.

H2 P: Linear gain associated with the LPFP Inlet Pressure.

02P: Linear gain associated with the LPOP Inlet Pressure.

H2T: Linear gain associated with the LPFP Inlet Temperature.

02T: Linear gain associated with the LPOP Inlet Temperature.

LSQCOF _1: Constant term of the fifth degree polynomial approximating the power level effects.

LSQCOF _2: Coefficient of the fust degree term of the fifth order polynomial approximating the power
level effects.

LSQCOF _3: Coefficient of the second degree term of the fifth order polynomial approximating the power
level effects.

LSQCOF _4: Coefficient of the third degree term of the fifth order polynomial approximating the power
level effects.

LSQCOF _5: Coefficient of the fourth degree term of the fifth order polynomial approximating the power
level effects.

LSQCOF _6: Coefficient of the fifth degree term of the fifth order polynomial approximating the power
level effects.

t: Time-.a particular point in time during a test.

Dependen t (t): The value of the Dependent PID at time t.

DependentComparison(t): The value ofa Dependent PID at time t of the comparison test.

Dependen tCurren t (t): The value of a Dependent PID at time t of the current test.

PLValueCurrent (t): Value of the Independent PID Power Level of tJle current test at time t.

MRValueCurrent (t): Value of the IndependentPID Mixture Ratio of the current testat time t.

H2PVal ueCurrent (t): Value of the Independent PID LPFP Inlet Pressure of the current test at time
t.

02 PVal ueCurren t (t): Value of the Independent PID LPOP Inlet Pressure of the current test.

H2TVal ueCurren t (t): Value of the Independent PID LPFP Inlet Temperature of the current test.

87

02TVal ueCurren t (t): Value of the Independent PID LPOP Inlet Temperature of the current test.

PLValueComparison(t): Value oftlle Independent PIO Power Level oftlle comparison test at time
t.

MRValueComparison (t): Value of Ole Independent PIO Mixture Ratio of Ole comparison test at time
t.

H2PVal ueCompar i son (t): Value of the Independent PID LPFP Inlet Pressure of the comparison test
at time t.

02PValueComparison (t): Value of the Independent PIO LPOP Inlet Pressure of the comparison
test at time t.

H2TVal ueCompar ison (t): Value of the Independent PIO LPFP Inlet Temperature of Ole comparison
test at time t.

02TValueComparison (t) : Value of the Independent PIO LPOP Inlet Temperature of Ole
comparison test at time t.

PLEffect (t): The power level effect to be subtracted from Ole dependent delta in calculating Ole
normalized delta PIO.

DependentNormalO (t): Intermediate value used during calculation of normalized delta PIO value at
time t.

DependentNormall (t): Intermediate value used during calculation of normalized delta PID value at
time t.

Normal (t): Normalized delta PIO value at time t.

HWDel ta: Constant to be added to Ole normalized delta PIO to adjust for differences in Ole hardware
configurations for Ole two tests.

6.6.2 Computations

Calculate all Ole PIO deltas.

DependentDelta(t) = DependentCurrent(t) - DependentComparison(t)

PLDelta(t) = PLValueCurrent(t) - PLValueComparison(t)

MRDelta(t)

H2PDelta (t)

02PDelta(t)

H2TDelta (t)

02TDe lta (t)

= MRValueCurrent(t)

= H2PValueCurrent(t)

= 02PValueCurrent(t)

= H2TValueCurrent(t)

= 02TValueCurrent(t)

MRValueComparison(t)

- H2PValueComparison(t)

- 02PValueComparison(t)

- H2TValueComparison(t)

- 02TValueComparison(t)

Subtract linear Independent PIO effects:

DependentNormalO(t) = DependentDelta(t) -

Calculate Power Level effects:

(MRDelta(t) * MRCoefficient +
H2PDelta(t) * H2PCoefficient +
02PDelta(t) * 02PCoefficient +
H2TDelta(t) * H2TCoefficient +
02TDelta(t) * 02TCoefficient)

88

02TVal ueCurren t (t): Value of the Independent PID LPOP Inlet Temperature of the current test.

PLValueComparison(t): Value oftlle Independent PIO Power Level oftlle comparison test at time
t.

MRValueComparison (t): Value of Ole Independent PIO Mixture Ratio of Ole comparison test at time
t.

H2PVal ueCompar i son (t): Value of the Independent PID LPFP Inlet Pressure of the comparison test
at time t.

02PValueComparison (t): Value of the Independent PIO LPOP Inlet Pressure of the comparison
test at time t.

H2TVal ueCompar ison (t): Value of the Independent PIO LPFP Inlet Temperature of Ole comparison
test at time t.

02TValueComparison (t) : Value of the Independent PIO LPOP Inlet Temperature of Ole
comparison test at time t.

PLEffect (t): The power level effect to be subtracted from Ole dependent delta in calculating Ole
normalized delta PIO.

DependentNormalO (t): Intermediate value used during calculation of normalized delta PIO value at
time t.

DependentNormall (t): Intermediate value used during calculation of normalized delta PID value at
time t.

Normal (t): Normalized delta PIO value at time t.

HWDel ta: Constant to be added to Ole normalized delta PIO to adjust for differences in Ole hardware
configurations for Ole two tests.

6.6.2 Computations

Calculate all Ole PIO deltas.

DependentDelta(t) = DependentCurrent(t) - DependentComparison(t)

PLDelta(t) = PLValueCurrent(t) - PLValueComparison(t)

MRDelta(t)

H2PDelta (t)

02PDelta(t)

H2TDelta (t)

02TDe lta (t)

= MRValueCurrent(t)

= H2PValueCurrent(t)

= 02PValueCurrent(t)

= H2TValueCurrent(t)

= 02TValueCurrent(t)

MRValueComparison(t)

- H2PValueComparison(t)

- 02PValueComparison(t)

- H2TValueComparison(t)

- 02TValueComparison(t)

Subtract linear Independent PIO effects:

DependentNormalO(t) = DependentDelta(t) -

Calculate Power Level effects:

(MRDelta(t) * MRCoefficient +
H2PDelta(t) * H2PCoefficient +
02PDelta(t) * 02PCoefficient +
H2TDelta(t) * H2TCoefficient +
02TDelta(t) * 02TCoefficient)

88

PLEffect(t) = (LSQCOF_l +
LSQCOF_2 * PLValueCurrent(t) +
LSQCOF_3 * PLValueCurrent(t)**2 +
LSQCOF_4 * PLValueCurrent(t)**3 +
LSQCOF_5 * PLValueCurrent(t)**4 +
LSQCOF_6 * PLValueCurrent(t)**5) -

(LSQCOF_l +
LSQCOF_2 * PLValueComparison(t) +
LSQCOF_3 * PLValueComparison(t)**2 +
LSQCOF_4 * PLValueComparison(t)**3 +
LSQCOF_5 * PLValueComparison(t)**4 +
LSQCOF_6 * PLValueComparison(t)**5)

DependentNormall(t) = DependentNormalO(t) - PLEffect(t)

Normal(t) = DependentNormall(t) + HWDelta

In addition to the calculations shown above, the program utilizes a filter on some of the intermediate
calculations to reduce the effects of noise in the data. The fIlter is a simple convolution filter calculated as
follows:

Filtered(t)=(Data(t-WIN/2)+Data(t+l-WIN/2)+ ... +Data(t+WIN/2»/WIN

where WIN is the window size, which must be odd, for the fIlter, Data (t) is the data to be fIltered, and
Fil tered (t) is the fIltered value at time t. Currently, the following intermediate calculations are
fIltered: MRDelta(t), H2PDelta(t), 02PDelta(t), H2TDelta(t), 02TDelta(t),
PLEffect(t) (all using a window size of SMOOTH_WIN_I), and DependentDelta(t) (using a
window size of SMOOTH_WIN_D).

6.7 Cflow output
1 main: intI), <external.c 33>
4 initDB: void(), <dbAccess.c 68>
9 tql_init: <>

12 tql_error: <>
13 HandleError: void(), <dbAccess.c 556>
14 tql_status: <>
15 tql~ess: <>
17 tql_term: <>
19 tql~ode: <>
20 tql_create_buffer: <>
21 fllnitLib: <>
22 dblnitSSME: void(), <dbAccess.c 247>
23 tql_query: <>
24 tql_error: 12
25 HandleError: 13
27 dbGetComplnfo: intI), <dbAccess.c 334>
31 tql_query: 23
32 tql_error: 12
33 HandleError: 13
34 tql_status: 14
35 tolower: <>
37 dbGetPumpType: enum(), <dbAccess.c 274>
41 tql_query: 23
42 'tql_error: 12
43 HandleError: 13
44 tql_status: 14
45 dbCloseSSME: void(), <dbAccess.c 513>
46 tql_query: 23
47 dbGetGains: void(), <dbAccess.c 129>
50 tql_query: 23
51 tql_error: 12
52 HandleError: 13

89

PLEffect(t) = (LSQCOF_l +
LSQCOF_2 * PLValueCurrent(t) +
LSQCOF_3 * PLValueCurrent(t)**2 +
LSQCOF_4 * PLValueCurrent(t)**3 +
LSQCOF_5 * PLValueCurrent(t)**4 +
LSQCOF_6 * PLValueCurrent(t)**5) -

(LSQCOF_l +
LSQCOF_2 * PLValueComparison(t) +
LSQCOF_3 * PLValueComparison(t)**2 +
LSQCOF_4 * PLValueComparison(t)**3 +
LSQCOF_5 * PLValueComparison(t)**4 +
LSQCOF_6 * PLValueComparison(t)**5)

DependentNormall(t) = DependentNormalO(t) - PLEffect(t)

Normal(t) = DependentNormall(t) + HWDelta

In addition to the calculations shown above, the program utilizes a filter on some of the intermediate
calculations to reduce the effects of noise in the data. The fIlter is a simple convolution filter calculated as
follows:

Filtered(t)=(Data(t-WIN/2)+Data(t+l-WIN/2)+ ... +Data(t+WIN/2»/WIN

where WIN is the window size, which must be odd, for the fIlter, Data (t) is the data to be fIltered, and
Fil tered (t) is the fIltered value at time t. Currently, the following intermediate calculations are
fIltered: MRDelta(t), H2PDelta(t), 02PDelta(t), H2TDelta(t), 02TDelta(t),
PLEffect(t) (all using a window size of SMOOTH_WIN_I), and DependentDelta(t) (using a
window size of SMOOTH_WIN_D).

6.7 Cflow output
1 main: intI), <external.c 33>
4 initDB: void(), <dbAccess.c 68>
9 tql_init: <>

12 tql_error: <>
13 HandleError: void(), <dbAccess.c 556>
14 tql_status: <>
15 tql~ess: <>
17 tql_term: <>
19 tql~ode: <>
20 tql_create_buffer: <>
21 fllnitLib: <>
22 dblnitSSME: void(), <dbAccess.c 247>
23 tql_query: <>
24 tql_error: 12
25 HandleError: 13
27 dbGetComplnfo: intI), <dbAccess.c 334>
31 tql_query: 23
32 tql_error: 12
33 HandleError: 13
34 tql_status: 14
35 tolower: <>
37 dbGetPumpType: enum(), <dbAccess.c 274>
41 tql_query: 23
42 'tql_error: 12
43 HandleError: 13
44 tql_status: 14
45 dbCloseSSME: void(), <dbAccess.c 513>
46 tql_query: 23
47 dbGetGains: void(), <dbAccess.c 129>
50 tql_query: 23
51 tql_error: 12
52 HandleError: 13

89

53 tql_status: 14
56 loadDBlnfo: struct*(), <loadData.c 63>
58 flFindDataFile: <>
62 init_file: <>
64 flDBdirTestName: <>
66 flDBdirEntries: <>
67 flDBdirNthEntry: <>
69 dbFindPidName: void(), <dbAccess.c 398>
73 tql_query: 23
74 tql_error: 12
75 HandleError: 13
76 tql_status: 14
79 loadPid: struct*(), <loadData.c 216>
83 dbread: <>
85 smoothData: int(), <smoothData.c 56>
87 release_data: <>
88 FindLowRate: struct*(), <external.c 454>
91 Nterp: void(), <external.c 499>
98 smoothData: 85

100 freePid: void(), <loadData.c 309>
102 removeH2PEffect: void(), <removeEffect.c 168>
103 remove02PEffect: void(), <removeEffect.c 202>
104 removeH2TEffect: void(), <removeEffect.c 236>
105 remove02TEffect: void(), <removeEffect.c 270>
106 removePowerLevelEffect: void(), <removeEffect.c 61>
108 smoothData: 85
110 removeMixRatioEffect: void(), <removeEffect.c 134>
111 dbFindHWDelta: void(), <dbAccess.c 459>
115 tql_query: 23
116 tql_error: 12
117 HandleError: 13
118 tql_status: 14
119 writeNPID: int(), <writeNPID.c 66>
126 pefloat: float(), <writeNPID.c 271>
134 dbFreeGains: void(), <dbAccess.c 223>
136 freeDBlnfo: void(), <loadData.c 170>
138 release_file: <>
139 freePid: 100
140 closeDB: void(), <dbAccess.c 534>
141 tql_term: 17

7. HPOTP Module

This section describes the overall architecture of the Enhanced HPOTP Diagnostic System. The
enhanced system is designed to run in one of two execution modes: interactive and batch. In interactive
mode, the system queries a user for all needed information, computes all features dynamically as-needed,
and outputs results in a textual form to the terminal. Batch mode is designed for use with the PTDS. In
batch mode features are rust computed by a separate module and stored in a database, then the HPOTP
modules is started, reads the features in, performs its analyses and writes its results back out to the
database. A user can then browse thc system's results via a graphical user interface.

7.1 Modules

The major modules in the diagnostic system are each described in the following sections.

7.1.1 Executive

The executive module is primarily responsible for guiding execution of the diagnostic system
through several major steps or "phases". These phases are:

initialize Connect to database. Get test IDs and thrust profiles.

SV AL_hardjailures Check for hard sensor failures.

90

53 tql_status: 14
56 loadDBlnfo: struct*(), <loadData.c 63>
58 flFindDataFile: <>
62 init_file: <>
64 flDBdirTestName: <>
66 flDBdirEntries: <>
67 flDBdirNthEntry: <>
69 dbFindPidName: void(), <dbAccess.c 398>
73 tql_query: 23
74 tql_error: 12
75 HandleError: 13
76 tql_status: 14
79 loadPid: struct*(), <loadData.c 216>
83 dbread: <>
85 smoothData: int(), <smoothData.c 56>
87 release_data: <>
88 FindLowRate: struct*(), <external.c 454>
91 Nterp: void(), <external.c 499>
98 smoothData: 85

100 freePid: void(), <loadData.c 309>
102 removeH2PEffect: void(), <removeEffect.c 168>
103 remove02PEffect: void(), <removeEffect.c 202>
104 removeH2TEffect: void(), <removeEffect.c 236>
105 remove02TEffect: void(), <removeEffect.c 270>
106 removePowerLevelEffect: void(), <removeEffect.c 61>
108 smoothData: 85
110 removeMixRatioEffect: void(), <removeEffect.c 134>
111 dbFindHWDelta: void(), <dbAccess.c 459>
115 tql_query: 23
116 tql_error: 12
117 HandleError: 13
118 tql_status: 14
119 writeNPID: int(), <writeNPID.c 66>
126 pefloat: float(), <writeNPID.c 271>
134 dbFreeGains: void(), <dbAccess.c 223>
136 freeDBlnfo: void(), <loadData.c 170>
138 release_file: <>
139 freePid: 100
140 closeDB: void(), <dbAccess.c 534>
141 tql_term: 17

7. HPOTP Module

This section describes the overall architecture of the Enhanced HPOTP Diagnostic System. The
enhanced system is designed to run in one of two execution modes: interactive and batch. In interactive
mode, the system queries a user for all needed information, computes all features dynamically as-needed,
and outputs results in a textual form to the terminal. Batch mode is designed for use with the PTDS. In
batch mode features are rust computed by a separate module and stored in a database, then the HPOTP
modules is started, reads the features in, performs its analyses and writes its results back out to the
database. A user can then browse thc system's results via a graphical user interface.

7.1 Modules

The major modules in the diagnostic system are each described in the following sections.

7.1.1 Executive

The executive module is primarily responsible for guiding execution of the diagnostic system
through several major steps or "phases". These phases are:

initialize Connect to database. Get test IDs and thrust profiles.

SV AL_hardjailures Check for hard sensor failures.

90

SV AL_softjailures
gecfeatures
find_evenUntervals
find_anomalies
prepare_output
outpuUmomalies
wrapup

7.1.2 Feature Extraction

Determine preferred sensors via voting.
Determine features needed for diagnosis.
Determine time intervals to analyze.
Diagnosis.
Prepare anomaly and supporting plot descriptions.
Output results.
Disconnect from database, cleanup.

This module obtains features requested by other parts of the HPOTP system. The requests (in the
form of 'GetFeature' facts) are honored by either importing features from TekBase (in batch processing
mode) or by computing them on-the-fly as needed (in interactive mode). Resulting features are stored as
facts for use by redundancy management, sensor validation, and diagnostic routines.

All calls to import data from TekBase are located within this module.

7.1.3 HPOTP Sensor Validation

The HPOTP sensor validation module is responsible for detecting and diagnosing
instrumentation anomalies and failures. It first attempts to import any results obtained from the PTDS
sensor validation module by examining the "RED_S_C" (redundant sensor choice) table entries asserted
in the SSME_DB database for the current test. If a sensor appears in the RED_S_C table, then the
HPOTP module does not validate it, and takes the PTDS sensor validation module's recommendation for
the best sensor to use for the specified parameter. If sensor validation information is not available for the
current test under analysis (e.g., in performing an interactive mode analysis of a new test), then the
HPOTP system will attempt to validate sensors on its own.

When performing its own sensor validation, the HPOTP module operates in two phases. First, it
attempts to detect obvious, "hard" failures. These include:

• No data in the file.
• Exceeds gross noise limits.
• Pre- or Post-test reasonableness limit exceedance.
• Reasonableness limit exceedance during the test.
• Sensor trace is flat during the test (for sensor whose values are expected to vary significantly). This

indicates that the sensor may have been disconnected.
• Redundancy voting, when three or more redundant transducers are available.

In its second phase of operation, the sensor validation module essentially replicates the voting
scheme implemented in the original HPOTP diagnostic system implementation. This strategy entails
selecting a "preferred" sensor from each set of redundants on the. basis of the minimum number of erratic
or spike features. These sensor preferences are not relied upon to the extent they were in the original
implementation; wherever possible, features are redundancy voted (see the next section).

The HPOTP module always checks for certain sensor anomalies which are particular to the
HPOTP. These include "redundant sensor drift" checks which make note of any cases in which redundant
sensors consistently drift apart during any steady-state power segment.

91

SV AL_softjailures
gecfeatures
find_evenUntervals
find_anomalies
prepare_output
outpuUmomalies
wrapup

7.1.2 Feature Extraction

Determine preferred sensors via voting.
Determine features needed for diagnosis.
Determine time intervals to analyze.
Diagnosis.
Prepare anomaly and supporting plot descriptions.
Output results.
Disconnect from database, cleanup.

This module obtains features requested by other parts of the HPOTP system. The requests (in the
form of 'GetFeature' facts) are honored by either importing features from TekBase (in batch processing
mode) or by computing them on-the-fly as needed (in interactive mode). Resulting features are stored as
facts for use by redundancy management, sensor validation, and diagnostic routines.

All calls to import data from TekBase are located within this module.

7.1.3 HPOTP Sensor Validation

The HPOTP sensor validation module is responsible for detecting and diagnosing
instrumentation anomalies and failures. It first attempts to import any results obtained from the PTDS
sensor validation module by examining the "RED_S_C" (redundant sensor choice) table entries asserted
in the SSME_DB database for the current test. If a sensor appears in the RED_S_C table, then the
HPOTP module does not validate it, and takes the PTDS sensor validation module's recommendation for
the best sensor to use for the specified parameter. If sensor validation information is not available for the
current test under analysis (e.g., in performing an interactive mode analysis of a new test), then the
HPOTP system will attempt to validate sensors on its own.

When performing its own sensor validation, the HPOTP module operates in two phases. First, it
attempts to detect obvious, "hard" failures. These include:

• No data in the file.
• Exceeds gross noise limits.
• Pre- or Post-test reasonableness limit exceedance.
• Reasonableness limit exceedance during the test.
• Sensor trace is flat during the test (for sensor whose values are expected to vary significantly). This

indicates that the sensor may have been disconnected.
• Redundancy voting, when three or more redundant transducers are available.

In its second phase of operation, the sensor validation module essentially replicates the voting
scheme implemented in the original HPOTP diagnostic system implementation. This strategy entails
selecting a "preferred" sensor from each set of redundants on the. basis of the minimum number of erratic
or spike features. These sensor preferences are not relied upon to the extent they were in the original
implementation; wherever possible, features are redundancy voted (see the next section).

The HPOTP module always checks for certain sensor anomalies which are particular to the
HPOTP. These include "redundant sensor drift" checks which make note of any cases in which redundant
sensors consistently drift apart during any steady-state power segment.

91

7.1.4 Redunda,ncy Management

The redundancy management module performs redundancy management for a select group of
features. Whenever one of these features is defmed for a sensor (either imported from TekBase or
computed dynamically), it is classified by checking it against all redundant sensors. The results of the
c1assification can be one of the following:

For transducers with only one bridge each:

unconfumed If the sensor has no valid redundants.

spurious If the sensor has valid redundants, none of which register a similar feature at
the same time.

confirmed If the sensor has a redundant which registers a similar feature at the same time.
Any outlier redundants (which did not see the feature) are marked as spurious.

For transducers with two bridges:

confumed If seen on any bridge of 2 or more transducers. (Outlier bridges are marked as
spurious.)

unconfumed Seen on all valid bridges of a transducer and there are no other valid
transducers.

spurious If more than one transducer is valid but only seen on one. (All bridges are
marked as spurious.)

Feature equivalence is based on start times only (Le., they must be within one second of each
other), and the resulting 'confumed' feature from two or more redundant features is formed by simply
selecting one of the inputs (i.e., no attempt is made to average the values).

7.1.5 Statistics Module

The statistics module is responsible for computing statistical summaries of the parameters stored
in the historical database, computing parameter values for the current test, and determining if any current .
test parameters are "outliers".

7.1.6 Anomaly Detection & Diagnosis

The Anomaly Detection module checks for combinations of features which are indicative of
known anomalies. Results are asserted as anomaly records, which have deSCriptions of appropriate
supporting plots associated with them. Results are classified as either INSTRUMENTATION,
OBSERVATION, or ANOMALIES, and have a priority number associated with them indicating the
degrcc of severity.

To simplify many of the anomaly detection rules, the test time-line is partitioned into intervals
within which nothing is happening (i.e. no features start or end). The anomaly detection rules which are
interested in concurrent combinations of features then simply analyze each of these time intervals
separately. If the same anomaly is detected in adjacent intervals, the anomaly descriptions are combined
into one spanning the entire interval.

A complete list of the diagnostic rules used in the system is given in Section 7.2.

92

7.1.4 Redunda,ncy Management

The redundancy management module performs redundancy management for a select group of
features. Whenever one of these features is defmed for a sensor (either imported from TekBase or
computed dynamically), it is classified by checking it against all redundant sensors. The results of the
c1assification can be one of the following:

For transducers with only one bridge each:

unconfumed If the sensor has no valid redundants.

spurious If the sensor has valid redundants, none of which register a similar feature at
the same time.

confirmed If the sensor has a redundant which registers a similar feature at the same time.
Any outlier redundants (which did not see the feature) are marked as spurious.

For transducers with two bridges:

confumed If seen on any bridge of 2 or more transducers. (Outlier bridges are marked as
spurious.)

unconfumed Seen on all valid bridges of a transducer and there are no other valid
transducers.

spurious If more than one transducer is valid but only seen on one. (All bridges are
marked as spurious.)

Feature equivalence is based on start times only (Le., they must be within one second of each
other), and the resulting 'confumed' feature from two or more redundant features is formed by simply
selecting one of the inputs (i.e., no attempt is made to average the values).

7.1.5 Statistics Module

The statistics module is responsible for computing statistical summaries of the parameters stored
in the historical database, computing parameter values for the current test, and determining if any current .
test parameters are "outliers".

7.1.6 Anomaly Detection & Diagnosis

The Anomaly Detection module checks for combinations of features which are indicative of
known anomalies. Results are asserted as anomaly records, which have deSCriptions of appropriate
supporting plots associated with them. Results are classified as either INSTRUMENTATION,
OBSERVATION, or ANOMALIES, and have a priority number associated with them indicating the
degrcc of severity.

To simplify many of the anomaly detection rules, the test time-line is partitioned into intervals
within which nothing is happening (i.e. no features start or end). The anomaly detection rules which are
interested in concurrent combinations of features then simply analyze each of these time intervals
separately. If the same anomaly is detected in adjacent intervals, the anomaly descriptions are combined
into one spanning the entire interval.

A complete list of the diagnostic rules used in the system is given in Section 7.2.

92

7.1.7 Green Run Specifications Check

The Green Run Specifications module checks all Green Run requirements and creates anomaly
records whenever any violations are detected.

7.1.8 Supporting Plot Generation

The Plot Generation module takes abbreviated descriptions of supporting plots required for
detected anomalies, and expands them into the 60 fields required by the PIDS to produce plots in the
graphical user interface.

7.1.9 Output of Results

The Output module takes the results of the analyses, along with information about supporting
plOts, and either writes them to the database for later viewing (in batch mode) or prints a textual summary
to the terminal (in interactive mode). This module also updates the historical database automatically (in
batch mode) or if indicated by the user (in interactive mode).

All calls to export data to TekBase are located within this module.

7.2 Anomalies Currently Detected by the HPOTP Diagnostic System

This section provides a brief, but complete listing of the anomalies currently detected by the
enhanced HPOTP diagnostic system.

7.2.1 General Anomalies

Rule: anomaly5.05.l
Pumps: Rocketdyne and Pratt&Whitney
Source: SAle final report, section 5.05
Summary: Difference 327-328 is different between current and comparison tests.
Report: "The difference (327 - 328) is different at thrust level <PL> between this test and the previous."

Rule: anomaly5.06.1
Pumps: Rocketdyne and Pratt& Whitney
Source: SAle final report, section 5.06
Summary: Spike seen in 327(328), not in 328(327), and no level shift in 327,328, or 327-328.
Report: "Spike seen in sensor <3271328> only, with no change in steady state pressures or pressure

difference. Possible sensor or omni seal anomaly. No real rotor motion."

Rule: anomaly5.06.2
Pumps: Rocketdyne and Pratt&Whitney
Source: SAle final report, section 5.06
Summary: Level shift seen in 327(328) and not in 328(327).
Report: "Level shift seen in <3271328> only. Possible sensor problem, omni seal leakage problem. No real

rotor motion."

Rule: anomaly5.06.3
Pumps: Rocketdyne and Pratt& Whitney
Source: SAle final report, section 5.06
Summary: Spike seen in 327 and 328, and level shift seen in 327-328.

93

7.1.7 Green Run Specifications Check

The Green Run Specifications module checks all Green Run requirements and creates anomaly
records whenever any violations are detected.

7.1.8 Supporting Plot Generation

The Plot Generation module takes abbreviated descriptions of supporting plots required for
detected anomalies, and expands them into the 60 fields required by the PIDS to produce plots in the
graphical user interface.

7.1.9 Output of Results

The Output module takes the results of the analyses, along with information about supporting
plOts, and either writes them to the database for later viewing (in batch mode) or prints a textual summary
to the terminal (in interactive mode). This module also updates the historical database automatically (in
batch mode) or if indicated by the user (in interactive mode).

All calls to export data to TekBase are located within this module.

7.2 Anomalies Currently Detected by the HPOTP Diagnostic System

This section provides a brief, but complete listing of the anomalies currently detected by the
enhanced HPOTP diagnostic system.

7.2.1 General Anomalies

Rule: anomaly5.05.l
Pumps: Rocketdyne and Pratt&Whitney
Source: SAle final report, section 5.05
Summary: Difference 327-328 is different between current and comparison tests.
Report: "The difference (327 - 328) is different at thrust level <PL> between this test and the previous."

Rule: anomaly5.06.1
Pumps: Rocketdyne and Pratt& Whitney
Source: SAle final report, section 5.06
Summary: Spike seen in 327(328), not in 328(327), and no level shift in 327,328, or 327-328.
Report: "Spike seen in sensor <3271328> only, with no change in steady state pressures or pressure

difference. Possible sensor or omni seal anomaly. No real rotor motion."

Rule: anomaly5.06.2
Pumps: Rocketdyne and Pratt&Whitney
Source: SAle final report, section 5.06
Summary: Level shift seen in 327(328) and not in 328(327).
Report: "Level shift seen in <3271328> only. Possible sensor problem, omni seal leakage problem. No real

rotor motion."

Rule: anomaly5.06.3
Pumps: Rocketdyne and Pratt& Whitney
Source: SAle final report, section 5.06
Summary: Spike seen in 327 and 328, and level shift seen in 327-328.

93

Report: "Possible HPOTP momentary anomalous rotor motion. Possible HPOTP balance piston
momentary shift in orifice position."

Rule: anomaly5.06.4
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.06
Summary: Level shift seen in 327 and 328 (opposite directions), and in 327-328.
Report: "Possible HPOTP anomalous rotor motion."

Rule: anomaly5.06.5
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.06
Summary: Level shift seen in 327 and 328 (same direction).
Report: "Possible HPOTP balance piston orifice position change."

Rule: anomaly5.06.7
Source: SAIC final report, section 5.06
Pumps: Rocketdyne and Pratt& Whitney
Summary: Level shift seen in 327(328) and not in 328(327).
Report: "Statistically significant change in <3271328> but not in difference (327 - 328). Possible omni

seal leakage. No real rotor motion."

Rule: anomaly5.06.9
Pumps: Rocketdync and Pratt&Whitney
Source: SAIC final report, section 5.06
Summary: Level shift seen in 327-328, but not in 327 or 328.
Report: "Statistically significant change in difference (327 - 328) but not in individual sensors. Not

anomalous; no real rotor motion."

Rule: anomalyRotorDragl. anomalyRotorDragl
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary:

1. Concurrent: Significant increase in 328, decrease in 327, LOX in P is flat
Following increase in PL or decrease in LOX in P
Duration of more than 10 seconds (or duration of current power level, if less).

2. Opposite of above case.
Report: "Possible rotor drag."

Rule: anomaly5.07.l
Pumps: Rocketdyne only
Source: SAIC final report, section 5.07
Summary: PBP bistability detection. Just reports result from C routine.
Report: "PBP bistability at thrust level <PL>"

Rule: anomaly5.08.l
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.08
Summary: Erratic 990, 1190 not erratic or spiking.
Report: "HPOTP erratic primary turbine seal drain pressure may indicate sensor problem or seal

anomaly. No effect seen in drain temperature."

94

Report: "Possible HPOTP momentary anomalous rotor motion. Possible HPOTP balance piston
momentary shift in orifice position."

Rule: anomaly5.06.4
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.06
Summary: Level shift seen in 327 and 328 (opposite directions), and in 327-328.
Report: "Possible HPOTP anomalous rotor motion."

Rule: anomaly5.06.5
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.06
Summary: Level shift seen in 327 and 328 (same direction).
Report: "Possible HPOTP balance piston orifice position change."

Rule: anomaly5.06.7
Source: SAIC final report, section 5.06
Pumps: Rocketdyne and Pratt& Whitney
Summary: Level shift seen in 327(328) and not in 328(327).
Report: "Statistically significant change in <3271328> but not in difference (327 - 328). Possible omni

seal leakage. No real rotor motion."

Rule: anomaly5.06.9
Pumps: Rocketdync and Pratt&Whitney
Source: SAIC final report, section 5.06
Summary: Level shift seen in 327-328, but not in 327 or 328.
Report: "Statistically significant change in difference (327 - 328) but not in individual sensors. Not

anomalous; no real rotor motion."

Rule: anomalyRotorDragl. anomalyRotorDragl
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary:

1. Concurrent: Significant increase in 328, decrease in 327, LOX in P is flat
Following increase in PL or decrease in LOX in P
Duration of more than 10 seconds (or duration of current power level, if less).

2. Opposite of above case.
Report: "Possible rotor drag."

Rule: anomaly5.07.l
Pumps: Rocketdyne only
Source: SAIC final report, section 5.07
Summary: PBP bistability detection. Just reports result from C routine.
Report: "PBP bistability at thrust level <PL>"

Rule: anomaly5.08.l
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.08
Summary: Erratic 990, 1190 not erratic or spiking.
Report: "HPOTP erratic primary turbine seal drain pressure may indicate sensor problem or seal

anomaly. No effect seen in drain temperature."

94

Rules: ANoseLeak....one, ANoseLealcboth
Pumps: Rocketdyne only
Summary: IMSL Nose Seal Leak detected on citllcr 211 or 212.
Source: Wilmer
Report: "Nose seal leakage indicated by PID <PID>."

Rule: anomalyS.OS.2
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section S .OS
Summary: 1190 erratic, 990 not erratic or spiking.
Report: "HPOTP erratic primary turbine seal drain temperature may indicate sensor problem or seal

anomaly. No effect seen in drain pressure."

Rule: anomalyS.OS.3
Source: SAIC final report, section S.OS
Pumps: Rocketdyne and Pratt&Whitney
Summary: 990 erratic or spiking, and 1190 erratic or spiking.
Report: "HPOTP shows concurrent jitter in both primary turbine seal drain pressure and temperature.

Possible seal anomaly."

Rule: anomalyS.OS.4
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary: Erratic or spiking 990 & 1190 in same power-level interval, but not concurrently.
Report: "HPOTP shows non-concurrent jitter in both primary turbine seal drain pressure and

temperature. Possible seal anomaly."

Rule: anomaly990shift
Pumps: Rocketdyne only
Source: Wilmer
Summary: 990 is low (or high) in peak and eqUilibrium values relative to family.

Primary turbine seal drain pressure.
Report: "HPOTP primary turbine seal drain pressure is <IDGHILOW> in peak and equilibrium values

compared to historical statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly A990peakshift
Pumps: Rocketdyne only
Source: Wilmer
Summary: 990 peak value is out-of-family, but equilibrium value is OK.
Report: "HPOTP primary turbine seal drain pressure peak is <IDGHILOW> compared to historical

statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly99Opeakshift
Pumps: Rocketdyne only
Source: Wilmer
Summary: 990 equilibrium value is out-of-family, but peak value is OK.
Report: "HPOTP primary turbine seal drain pressure eqUilibrium value is <IDGHILOW> compared to

historical statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly91shift
Pumps: Rocketdyne only

9S

Rules: ANoseLeak....one, ANoseLealcboth
Pumps: Rocketdyne only
Summary: IMSL Nose Seal Leak detected on citllcr 211 or 212.
Source: Wilmer
Report: "Nose seal leakage indicated by PID <PID>."

Rule: anomalyS.OS.2
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section S .OS
Summary: 1190 erratic, 990 not erratic or spiking.
Report: "HPOTP erratic primary turbine seal drain temperature may indicate sensor problem or seal

anomaly. No effect seen in drain pressure."

Rule: anomalyS.OS.3
Source: SAIC final report, section S.OS
Pumps: Rocketdyne and Pratt&Whitney
Summary: 990 erratic or spiking, and 1190 erratic or spiking.
Report: "HPOTP shows concurrent jitter in both primary turbine seal drain pressure and temperature.

Possible seal anomaly."

Rule: anomalyS.OS.4
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary: Erratic or spiking 990 & 1190 in same power-level interval, but not concurrently.
Report: "HPOTP shows non-concurrent jitter in both primary turbine seal drain pressure and

temperature. Possible seal anomaly."

Rule: anomaly990shift
Pumps: Rocketdyne only
Source: Wilmer
Summary: 990 is low (or high) in peak and eqUilibrium values relative to family.

Primary turbine seal drain pressure.
Report: "HPOTP primary turbine seal drain pressure is <IDGHILOW> in peak and equilibrium values

compared to historical statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly A990peakshift
Pumps: Rocketdyne only
Source: Wilmer
Summary: 990 peak value is out-of-family, but equilibrium value is OK.
Report: "HPOTP primary turbine seal drain pressure peak is <IDGHILOW> compared to historical

statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly99Opeakshift
Pumps: Rocketdyne only
Source: Wilmer
Summary: 990 equilibrium value is out-of-family, but peak value is OK.
Report: "HPOTP primary turbine seal drain pressure eqUilibrium value is <IDGHILOW> compared to

historical statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly91shift
Pumps: Rocketdyne only

9S

Source: Wilmer
Summary: 91 or 92 is low (or high) in peak and equilibrium values relative to family.

Secondary turbine seal cavity pressure.
Report: "HPOTP secondary turbine seal cavity pressure is <lllGHILOW> in peak and eqUilibrium

values compared to historical statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly91 peakshift
Pumps: Rocketdyne only
Source: Wilmer
Summary: 91192 peak value is out-of-family, but equilibrium value is OK.
Report: "HPOTP secondary turbine seal cavity pressure peak is <IDGHILOW> compared to historical

statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly91eqshift
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary: 91192 equilibrium value is out~of-family. but peak value is OK.
Report: "HPOTP secondary turbine seal cavity pressure equilibrium value is <IDGHILOW> compared to

historical statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly91peakwidth
.Pumps: Rocketdyne only
Source: Wilmer
Summary: 91192 peak width is out-of-family.
Report: "HPOTP secondary turbine seal cavity pressure peak width is <IDGHILOW> compared to

historical statistics."

Rule: anomaly99Opeakwidth
Pumps: Rocketdyne only
Source: Wilmer
Summary: 990 peak width is out-of-family.
Report: "HPOTP primary turbine seal drain pressure peak width is <IDGHILOW> compared to historical

statistics. "

Rule: anomaly91peaktime
Pumps: Rocketdyne only
Source: Wilmer
Summary: 91192 peak time is out-of-family.
Report: "HPOTP secondary. seal cavity pressure peak time is <IDGHILOW> compared to

historical statistics."

Rule: anomaly990peaktime
Pumps: Rocketdyne only
Source: Wilmer
Summary: 990 peak time is out-of-family.
Report: "HPOTP primary turbine seal drain pressure peak time is <IDGHILOW> compared to historical

statistics. "

Rule: anomalyIMSLstart
Pumps: Rocketdyne and Pratt& Whitney
Source: Wilmer

96

Source: Wilmer
Summary: 91 or 92 is low (or high) in peak and equilibrium values relative to family.

Secondary turbine seal cavity pressure.
Report: "HPOTP secondary turbine seal cavity pressure is <lllGHILOW> in peak and eqUilibrium

values compared to historical statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly91 peakshift
Pumps: Rocketdyne only
Source: Wilmer
Summary: 91192 peak value is out-of-family, but equilibrium value is OK.
Report: "HPOTP secondary turbine seal cavity pressure peak is <IDGHILOW> compared to historical

statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly91eqshift
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary: 91192 equilibrium value is out~of-family. but peak value is OK.
Report: "HPOTP secondary turbine seal cavity pressure equilibrium value is <IDGHILOW> compared to

historical statistics. May be change in seal clearance or sensor calibration."

Rule: anomaly91peakwidth
.Pumps: Rocketdyne only
Source: Wilmer
Summary: 91192 peak width is out-of-family.
Report: "HPOTP secondary turbine seal cavity pressure peak width is <IDGHILOW> compared to

historical statistics."

Rule: anomaly99Opeakwidth
Pumps: Rocketdyne only
Source: Wilmer
Summary: 990 peak width is out-of-family.
Report: "HPOTP primary turbine seal drain pressure peak width is <IDGHILOW> compared to historical

statistics. "

Rule: anomaly91peaktime
Pumps: Rocketdyne only
Source: Wilmer
Summary: 91192 peak time is out-of-family.
Report: "HPOTP secondary. seal cavity pressure peak time is <IDGHILOW> compared to

historical statistics."

Rule: anomaly990peaktime
Pumps: Rocketdyne only
Source: Wilmer
Summary: 990 peak time is out-of-family.
Report: "HPOTP primary turbine seal drain pressure peak time is <IDGHILOW> compared to historical

statistics. "

Rule: anomalyIMSLstart
Pumps: Rocketdyne and Pratt& Whitney
Source: Wilmer

96

Summary: START value of 211/212 is out-of-family.
Report: "HPOTP intennediate seal purge pressure is <IDGHILOW> at START compared to historical

statistics. "

Rule: anomalyBalPistonFamily1
Pumps: Rocketdyne and Pratt& Whitney
Source: Wilmer
Summary: 327 is out-of-family (at 109MAX, 104MIN, or 104Nominal NPSP).
Report: "HPOTP balance cavity pressure A is <IDGHILOW> at <time> compared to historical statistics.

B channel is within limits."

Rule: anomalyBalPistonFamily2
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary: 328 is out-of-family (at 109MAX, 104MIN, or 104Nominal NPSP).
Report "HPOTP balance cavity pressure B is <IDGHIWW> at <time> compared to historical statistics.

A channel is within limits."

Rule: anomalyBalPistonFamily3
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary: 327 and 328 are both out-of-family (at 104MIN, 109Max, or 104Nominal NPSP).
Report: "HPOTP balance cavity pressure A is <IDGHILOW> and channel B is <IDGHILOW> at <time>

compared to historical statistics."

Rule: anomalyLOXSlPFamily
Pumps: Rocketdyne and Pratt& Whitney
Source: Wilmer
Summary: 95119521953 are out-of-family.
Report "HPOTP primary pump seal drain pressure is <IDGHILOW> from 5 seconds to cutoff compared

to historical statistics."

Rule: anomalyLOXSITFamily
Pumps: Rocketdyne and Pratt&Whitlley
Source: Wilmer
Summary: 1187 is out-of-family.
Report: "HPOTP primary pump seal drain temperature maximum is <HIGHILOW> compared to

historical statistics."

Rule: anomalySlingerProblem
Pumps: Rocketdyne and Pratt& Whitney
Source: Wilmer
Summary: 1187 is out-of-family low and 95119521953 is out-of-family high.
Report: "HPOTP primary pump seal drain temperature maximum is LOW and HPOTP primary pump

seal drain pressure is HIGH compared to historical statistics. Indicates possible slinger problem."

Rule: anomaly5.09.6
Pumps: Rocketdyne only
Source: SAiC final report, section 5.09
Summary: Could not compute a peak for 990.
Report "Current test HPOTP primary turbine seal drain pressure peak missing."

97

Summary: START value of 211/212 is out-of-family.
Report: "HPOTP intennediate seal purge pressure is <IDGHILOW> at START compared to historical

statistics. "

Rule: anomalyBalPistonFamily1
Pumps: Rocketdyne and Pratt& Whitney
Source: Wilmer
Summary: 327 is out-of-family (at 109MAX, 104MIN, or 104Nominal NPSP).
Report: "HPOTP balance cavity pressure A is <IDGHILOW> at <time> compared to historical statistics.

B channel is within limits."

Rule: anomalyBalPistonFamily2
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary: 328 is out-of-family (at 109MAX, 104MIN, or 104Nominal NPSP).
Report "HPOTP balance cavity pressure B is <IDGHIWW> at <time> compared to historical statistics.

A channel is within limits."

Rule: anomalyBalPistonFamily3
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary: 327 and 328 are both out-of-family (at 104MIN, 109Max, or 104Nominal NPSP).
Report: "HPOTP balance cavity pressure A is <IDGHILOW> and channel B is <IDGHILOW> at <time>

compared to historical statistics."

Rule: anomalyLOXSlPFamily
Pumps: Rocketdyne and Pratt& Whitney
Source: Wilmer
Summary: 95119521953 are out-of-family.
Report "HPOTP primary pump seal drain pressure is <IDGHILOW> from 5 seconds to cutoff compared

to historical statistics."

Rule: anomalyLOXSITFamily
Pumps: Rocketdyne and Pratt&Whitlley
Source: Wilmer
Summary: 1187 is out-of-family.
Report: "HPOTP primary pump seal drain temperature maximum is <HIGHILOW> compared to

historical statistics."

Rule: anomalySlingerProblem
Pumps: Rocketdyne and Pratt& Whitney
Source: Wilmer
Summary: 1187 is out-of-family low and 95119521953 is out-of-family high.
Report: "HPOTP primary pump seal drain temperature maximum is LOW and HPOTP primary pump

seal drain pressure is HIGH compared to historical statistics. Indicates possible slinger problem."

Rule: anomaly5.09.6
Pumps: Rocketdyne only
Source: SAiC final report, section 5.09
Summary: Could not compute a peak for 990.
Report "Current test HPOTP primary turbine seal drain pressure peak missing."

97

Rule: anomaly5.09.12
Pumps: Rocketdyne only
Source: SAIC final report, section 5.09
Summary: Could not compute a peak for 91192.
Report: "Current test HPOTP secondary turbine seal cavity pressure peak missing."

Rule: allomaly5.12.1
Pumps: Rocketdyne and Pratt& Whitney
Source: SAIC final report, section 5.12
Summary: 91/92 is erratic, 1188 is nomal.
Report: "HPOTP erratic secondary turbine seal drain pressure may indicate sensor problem or seal

anomaly No effect seen in drain temperature."

Rule: anomaly5.12.2
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.12
Summary: 1188 is erratic, 91192 is nomal.
Report: "HPOTP erratic secondary turbine seal drain temperature may indicate sensor problem or seal

anomaly. No effect seen in drain pressure."

Rule: anomaly5.12.3
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.12
Summary: 91192 and 1188 are both erratic or spiking. Check for concurrent anomalies.
Report: "HPOTP shows concurrent jitter in both secondary turbine seal drain pressure and temperature.

Possible seal anomaly."

Rule: anomaly5.12.4
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary: 91192 and 1188 are both erratic or spiking. Check for non-concurrent anomalies.
Report: "HPOTP shows non-concurrent jitter in boill secondary turbine seal drain prt:ssure and

temperature. Possible seal anomaly."

Rule: anomaly5.15.1
Pumps: Rocketdyne and Pratt& Whitney
Source: SAIC final report, section 5.15
Summary: 951/952/953 is erratic, 1187 is normal.
Report: "HPOTP erratic primary pump seal drain pressure may indicate sensor problem or seal anomaly.

No effect seen in drain temperature."

Rule: anomaly5.15.2
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.15
Summary: 1187 is erratic, 9511952/953 are normal.
Report: "HPOTP erratic primary pump seal drain temperature may indicate sensor problem or seal

anomaly. No effect seen in drain pressure."

Rule: anomaly5.15.3
Pumps: Rocketdyne and Pratt&Wbitney
Source: SAIC final report, section 5.15

98

Rule: anomaly5.09.12
Pumps: Rocketdyne only
Source: SAIC final report, section 5.09
Summary: Could not compute a peak for 91192.
Report: "Current test HPOTP secondary turbine seal cavity pressure peak missing."

Rule: allomaly5.12.1
Pumps: Rocketdyne and Pratt& Whitney
Source: SAIC final report, section 5.12
Summary: 91/92 is erratic, 1188 is nomal.
Report: "HPOTP erratic secondary turbine seal drain pressure may indicate sensor problem or seal

anomaly No effect seen in drain temperature."

Rule: anomaly5.12.2
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.12
Summary: 1188 is erratic, 91192 is nomal.
Report: "HPOTP erratic secondary turbine seal drain temperature may indicate sensor problem or seal

anomaly. No effect seen in drain pressure."

Rule: anomaly5.12.3
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.12
Summary: 91192 and 1188 are both erratic or spiking. Check for concurrent anomalies.
Report: "HPOTP shows concurrent jitter in both secondary turbine seal drain pressure and temperature.

Possible seal anomaly."

Rule: anomaly5.12.4
Pumps: Rocketdyne and Pratt&Whitney
Source: Wilmer
Summary: 91192 and 1188 are both erratic or spiking. Check for non-concurrent anomalies.
Report: "HPOTP shows non-concurrent jitter in boill secondary turbine seal drain prt:ssure and

temperature. Possible seal anomaly."

Rule: anomaly5.15.1
Pumps: Rocketdyne and Pratt& Whitney
Source: SAIC final report, section 5.15
Summary: 951/952/953 is erratic, 1187 is normal.
Report: "HPOTP erratic primary pump seal drain pressure may indicate sensor problem or seal anomaly.

No effect seen in drain temperature."

Rule: anomaly5.15.2
Pumps: Rocketdyne and Pratt&Whitney
Source: SAIC final report, section 5.15
Summary: 1187 is erratic, 9511952/953 are normal.
Report: "HPOTP erratic primary pump seal drain temperature may indicate sensor problem or seal

anomaly. No effect seen in drain pressure."

Rule: anomaly5.15.3
Pumps: Rocketdyne and Pratt&Wbitney
Source: SAIC final report, section 5.15

98

Summary: 951/952/953 and 1187 are both erratic or spiking. Concurrent anomaly in both sensors.
Report "HPOTP shows concurrent jitter in both primary pump seal drain pressure and temperature.

Possible seal anomaly."

Rule: anomaly5.15.4
Pumps: Rocketdyne and Pratt&Whitlley
Source: Wilmer
Summary: 951/952/953 and 1187 are both erratic or spiking. Non-concurrent anomaly in both sensors.
Report "HPOTP shows non-concurrent jitter in both primary pump seal drain pressure and temperature.

Possible seal anomaly." ,

Rule: anomaly5.19.3
Pumps: Rockctdyne and Pratt& Whitney
Source: Inferred from Priority table in SAIC's POST_defs.h ftle.
Summary: 233/234 are erratic or spiking.
Report "Spike or erratic behavior in HPOT discharge temperature (confumed by two sensors)."

Rule: ADeltaPfamily
Pumps: Rocketdyne and Pratt&Whitney
Source: Inferred from examples from Wilmer.
Summary: 327-328 statistics (for any time interval) are greater than 2.5 sigma.
Report "HPOTP balance cavity pressure delta-P is out-of-family <HIGHILOW> during <time>

conditions, compared to historical statistics."

7.2.2 Green Run Specifications

Rule: GREEN_cheek_duration
Source: Green Run Spees, RL00461, 6 Jan 1988
Summary: The following rules determine the total time spent at 104% and 109%, and cheek them against

the Green Run specs.
Report "Failed HPOTP Green Run test duration criteria 3.5.1.2(a)."

Rule: GREEN_check_LPOTP _inlet
Source: Green Run Spees, RL00461, 6 Jan 1988
Summary: The following rules check the minimum required duration at MIN and MAX LOX

pressurization.
Report:

1. "Failed HPOTP Green Run LPOTP inlet criteria 3.5.1.2(b)."
"(Minimum NPSP of 20+51-0 for 5 seconds at 104% or higher.)"

2. "Failed HPOTP Green Run LPOTP inlet criteria 3.5.1.2(c)."
"(Maximum NPSP of 150+10/-0 for 10 seconds at 104% or higher;)"

Rule: GREEN_chec~65_time
Source: Green Run Specs, RL00461, 6 Jan 1988
Summary: Checks the minimum bucket durations.
Report: "Failed HPOTP Green Run 65/64/63% throttle criteria 3.5.1.2(d)"

Rule: GREEN_chec~limits
Source: Green Run Specs, RL00461, 6 Jan 1988
Summary: 351311 & III, Checks the various hard Green Run limits
Report:

99

Summary: 951/952/953 and 1187 are both erratic or spiking. Concurrent anomaly in both sensors.
Report "HPOTP shows concurrent jitter in both primary pump seal drain pressure and temperature.

Possible seal anomaly."

Rule: anomaly5.15.4
Pumps: Rocketdyne and Pratt&Whitlley
Source: Wilmer
Summary: 951/952/953 and 1187 are both erratic or spiking. Non-concurrent anomaly in both sensors.
Report "HPOTP shows non-concurrent jitter in both primary pump seal drain pressure and temperature.

Possible seal anomaly." ,

Rule: anomaly5.19.3
Pumps: Rockctdyne and Pratt& Whitney
Source: Inferred from Priority table in SAIC's POST_defs.h ftle.
Summary: 233/234 are erratic or spiking.
Report "Spike or erratic behavior in HPOT discharge temperature (confumed by two sensors)."

Rule: ADeltaPfamily
Pumps: Rocketdyne and Pratt&Whitney
Source: Inferred from examples from Wilmer.
Summary: 327-328 statistics (for any time interval) are greater than 2.5 sigma.
Report "HPOTP balance cavity pressure delta-P is out-of-family <HIGHILOW> during <time>

conditions, compared to historical statistics."

7.2.2 Green Run Specifications

Rule: GREEN_cheek_duration
Source: Green Run Spees, RL00461, 6 Jan 1988
Summary: The following rules determine the total time spent at 104% and 109%, and cheek them against

the Green Run specs.
Report "Failed HPOTP Green Run test duration criteria 3.5.1.2(a)."

Rule: GREEN_check_LPOTP _inlet
Source: Green Run Spees, RL00461, 6 Jan 1988
Summary: The following rules check the minimum required duration at MIN and MAX LOX

pressurization.
Report:

1. "Failed HPOTP Green Run LPOTP inlet criteria 3.5.1.2(b)."
"(Minimum NPSP of 20+51-0 for 5 seconds at 104% or higher.)"

2. "Failed HPOTP Green Run LPOTP inlet criteria 3.5.1.2(c)."
"(Maximum NPSP of 150+10/-0 for 10 seconds at 104% or higher;)"

Rule: GREEN_chec~65_time
Source: Green Run Specs, RL00461, 6 Jan 1988
Summary: Checks the minimum bucket durations.
Report: "Failed HPOTP Green Run 65/64/63% throttle criteria 3.5.1.2(d)"

Rule: GREEN_chec~limits
Source: Green Run Specs, RL00461, 6 Jan 1988
Summary: 351311 & III, Checks the various hard Green Run limits
Report:

99

1. "Failed HPOTP Green Run limits at START for <parameter>. "
2. "Failed HPOTP Green Run <PL>% peak limits for <parameter>."
3. "Failed HPOTP Green Run <VentCondition> limits for <parameteD."

Rule: GREEN_check_IMSLStart
Source: Wilmer
Summary: Normalized form. Checks the intermediate seal purge pressure requirement at start.
Report: "Failed HPOTP Green Run intermediate seal purge pressure START criteria."

Rule: GREEN_check_DeltaT
Source: Green Run Specs, RL00461, 6 Jan 1988, Wilmer
Summary: 3513II & Ill, Checks the minimum turbine delta-T requirements. If limit is exceeded and

turbine temps are cold, then that is offered as an explanation.
Report:

1. "Failed HPOTP Green Run <PL>% limits for turbine Delta-T. Probable cause is cold turbine
temperature (below 1300.0)."

2. "Failed HPOTP Green Run <PI.>% limits for turbine Delta-T. Turbine temperature is not cold."

Rule: GREEN_check_DeltaSpeed
Source: Green Run Specs, RL00461, 6 Jan 1988
Summary: 351311 & III, Checks delta-speed requirements.
Report: "Failed HPOTP Green Run <PL>% limits for speed change."

8. Common Function Library for PTDS

This section includes descriptions of any code written for the Post-Test Diagnostic System which
is used in several modules.

8.1 Source Files
DBCT_utils_t . c

RSRC_dbutils_t.c

RSRC_rlist. c

STRNG_utils . c

tbl . c: Functions which provide generalized access to non-relational, tabular data.

tekbase . c: TekBase mode functions for the generalized table interface functions in tbl . c.

tektables. c: Initialization function for TekBase mode and table declarations for the table interface
functions in tbl. c.

8.2 Header Files

DBCT_defs .h:

DBFL_defs.h

RSRC_defs.h

STRNG_defs.h

tbl. h: Header file containing constant definitions, type definitions, and declarations of external
functions dermed in tbl . c.

100

1. "Failed HPOTP Green Run limits at START for <parameter>. "
2. "Failed HPOTP Green Run <PL>% peak limits for <parameter>."
3. "Failed HPOTP Green Run <VentCondition> limits for <parameteD."

Rule: GREEN_check_IMSLStart
Source: Wilmer
Summary: Normalized form. Checks the intermediate seal purge pressure requirement at start.
Report: "Failed HPOTP Green Run intermediate seal purge pressure START criteria."

Rule: GREEN_check_DeltaT
Source: Green Run Specs, RL00461, 6 Jan 1988, Wilmer
Summary: 3513II & Ill, Checks the minimum turbine delta-T requirements. If limit is exceeded and

turbine temps are cold, then that is offered as an explanation.
Report:

1. "Failed HPOTP Green Run <PL>% limits for turbine Delta-T. Probable cause is cold turbine
temperature (below 1300.0)."

2. "Failed HPOTP Green Run <PI.>% limits for turbine Delta-T. Turbine temperature is not cold."

Rule: GREEN_check_DeltaSpeed
Source: Green Run Specs, RL00461, 6 Jan 1988
Summary: 351311 & III, Checks delta-speed requirements.
Report: "Failed HPOTP Green Run <PL>% limits for speed change."

8. Common Function Library for PTDS

This section includes descriptions of any code written for the Post-Test Diagnostic System which
is used in several modules.

8.1 Source Files
DBCT_utils_t . c

RSRC_dbutils_t.c

RSRC_rlist. c

STRNG_utils . c

tbl . c: Functions which provide generalized access to non-relational, tabular data.

tekbase . c: TekBase mode functions for the generalized table interface functions in tbl . c.

tektables. c: Initialization function for TekBase mode and table declarations for the table interface
functions in tbl. c.

8.2 Header Files

DBCT_defs .h:

DBFL_defs.h

RSRC_defs.h

STRNG_defs.h

tbl. h: Header file containing constant definitions, type definitions, and declarations of external
functions dermed in tbl . c.

100

tekbase . h: Header file containing declarations of external functions defmed in tekbase • c.

tektables. h: Header file containing the declaration of the function defined in tektables • c.

8.3 Defined Constants
ALLCOLUMNS: value -1; defined in tekbase. c.

Boolean: Used as the type for integer variables that only take on the values True and False; value
int; defined in STRNG_defs . h.

DBCT_MaxStringLength: value 200; defined in DBCT_defs .h.

DBFL_CommandTimeStrLength: value 8; defined in DBFL_defs .h.

DBFL_DateStringLength: value 6; defined in DBFL_defs .h.

DBFL_DefaultsCols: value 50; defined in DBFL_defs .h.

DBFL_EngineNumberStringLength: value 4; defined in DBFL_defs .h.

DBFL_LegendLabelstringLength: value 25; defined in DBFL_defs .h.

DBFL_LRUStringLength: value 8; defined in DBFL_defs .h.

DBFL_MaxAllowableTableNameLen: value 20; defined in DBFL_defs .h.

DBFL_MaxcommandLength: value 600; defined in DBFL_defs • h.

DBFL_MaxDBNameLength: value 20; defined in DBFL_defs .h.

DBFL_MaxDescriptionStringLength: value 38; defined in DBFL_defs .h.

DBFL_MaxExpertModuleNameLength: value 9; defined in DBFL_defs . h.

DBFL_MaxLimi tTypeStr: value 6; defined in DBFL_defs • h.

DBFL_MaxMeasurementStringLength: value 60; defined in DBFL_defs .h.

DBFL_MaxModuleNameLength: value 25; defined in DBFL_def s . h.

DBFL_MaxstringLength: value 200; defined in DBFL_defs .h.

DBFL_MaxTableStringLength: value 20; defined in DBFL_defs .h.

DBFL_MaxTestIdLength: value 9; defined in DBFL_defs .h.

DBFL_MaxTimeLimitStr: value 10; defined in DBFL_defs .h.

DBFL_MaxUnitsStringLength: value 10; defined in DBFL_defs .h.

DBFL_MaxUnknownparamLength: value 60; defined in DBFL_def s • h.

DBFL_ModuleStringLength: value 10; defined in DBFL_defs .h.

DBFL_ObservationstringLength: value 200; defined in DBFL_defs . h.

DBFL_PidNameLength: value 12; defined in DBFL_defs .h.

DBFL_PIDStringLength: value 12; defined in DBFL_defs .h.

DBFL_PlotSubTi tleStringLength: value 40; defined in DBFL_defs . h.

DBFL_PlotTitleStringLength: value 40; defined in DBFL_defs .h.

101

tekbase . h: Header file containing declarations of external functions defmed in tekbase • c.

tektables. h: Header file containing the declaration of the function defined in tektables • c.

8.3 Defined Constants
ALLCOLUMNS: value -1; defined in tekbase. c.

Boolean: Used as the type for integer variables that only take on the values True and False; value
int; defined in STRNG_defs . h.

DBCT_MaxStringLength: value 200; defined in DBCT_defs .h.

DBFL_CommandTimeStrLength: value 8; defined in DBFL_defs .h.

DBFL_DateStringLength: value 6; defined in DBFL_defs .h.

DBFL_DefaultsCols: value 50; defined in DBFL_defs .h.

DBFL_EngineNumberStringLength: value 4; defined in DBFL_defs .h.

DBFL_LegendLabelstringLength: value 25; defined in DBFL_defs .h.

DBFL_LRUStringLength: value 8; defined in DBFL_defs .h.

DBFL_MaxAllowableTableNameLen: value 20; defined in DBFL_defs .h.

DBFL_MaxcommandLength: value 600; defined in DBFL_defs • h.

DBFL_MaxDBNameLength: value 20; defined in DBFL_defs .h.

DBFL_MaxDescriptionStringLength: value 38; defined in DBFL_defs .h.

DBFL_MaxExpertModuleNameLength: value 9; defined in DBFL_defs . h.

DBFL_MaxLimi tTypeStr: value 6; defined in DBFL_defs • h.

DBFL_MaxMeasurementStringLength: value 60; defined in DBFL_defs .h.

DBFL_MaxModuleNameLength: value 25; defined in DBFL_def s . h.

DBFL_MaxstringLength: value 200; defined in DBFL_defs .h.

DBFL_MaxTableStringLength: value 20; defined in DBFL_defs .h.

DBFL_MaxTestIdLength: value 9; defined in DBFL_defs .h.

DBFL_MaxTimeLimitStr: value 10; defined in DBFL_defs .h.

DBFL_MaxUnitsStringLength: value 10; defined in DBFL_defs .h.

DBFL_MaxUnknownparamLength: value 60; defined in DBFL_def s • h.

DBFL_ModuleStringLength: value 10; defined in DBFL_defs .h.

DBFL_ObservationstringLength: value 200; defined in DBFL_defs . h.

DBFL_PidNameLength: value 12; defined in DBFL_defs .h.

DBFL_PIDStringLength: value 12; defined in DBFL_defs .h.

DBFL_PlotSubTi tleStringLength: value 40; defined in DBFL_defs . h.

DBFL_PlotTitleStringLength: value 40; defined in DBFL_defs .h.

101

DBFL_PlotXTi tleStringLength: value 40; defined in DBFL_defs. h.

DBFL_Pl otYTi t 1 eStr ingLength: value 40; defined in DBFL_def s • h.

DBFL_postulateStringLength: value 500; defined in DBFL_defs .h.

DBFL_ResourceNameStringLength: value 20; defined in DBFL_defs .h.

DBFL_TestIdStringLength: value 6; defined in DBFL_defs .h.

DBFL_TimeStringLength: value 25; defined in DBFL_defs .h.

False: value 0; defined in STRNG_defs .h.

FALSE: value 0; defined in tbl • h, tbl. c, and tekbase • c.

HASHSIZE: value 101; defined in tekbase. c.

MA2CCOMMANDS: value 100; defined in tbl.h.

MAXTNAME: value 20; defined in tekbase. c.

RSRC_ExeEnvVar: value "NASA_HOME"; defined in RSRC_defs .h.

RSRC_Incomplete: value 2; defined in RSRC_defs .h.

RSRC_MaxNumResources: value 150; defined in RSRC_defs .h.

RSRC_NumResourcesPerInt: value 15; defined in RSRC_defs .h.

RSRC_Off: value 0; defined in RSRC_defs .h.

RSRC_On: value 1; defined in RSRC_defs .h.

RSRC_ResourceBoardUpdateStringLength: value 200; defined in RSRC_defs .h.

RSRC_ResourceNumBi ts: value 2; defined in RSRC_defs . h.

TBL_END: value NULL; defined in tbl.h.

TBL_NillLMODES: The number of database modes available, corresponding to the number of values for
the enum type tbl_modes (see section 4.4); value 3; defined in tbl.h.

True: value 1; defined in STRNG_defs .h.

TRUE: value 1; defined in tbl. h, tbl. c, and tekbase. c.

TUSER: value" GUEST"; defined in tekbase. c.

8.4 Defined Types

accessfun (defined in tbl. c)

typedef int (*accessfun) ();

This type is used for convenience in declaring pointers to the mode functions for database access.

mode_info (defined in tbl. c)

struct mode_info {
access fun

count fun ,
put fun ,

102

DBFL_PlotXTi tleStringLength: value 40; defined in DBFL_defs. h.

DBFL_Pl otYTi t 1 eStr ingLength: value 40; defined in DBFL_def s • h.

DBFL_postulateStringLength: value 500; defined in DBFL_defs .h.

DBFL_ResourceNameStringLength: value 20; defined in DBFL_defs .h.

DBFL_TestIdStringLength: value 6; defined in DBFL_defs .h.

DBFL_TimeStringLength: value 25; defined in DBFL_defs .h.

False: value 0; defined in STRNG_defs .h.

FALSE: value 0; defined in tbl • h, tbl. c, and tekbase • c.

HASHSIZE: value 101; defined in tekbase. c.

MA2CCOMMANDS: value 100; defined in tbl.h.

MAXTNAME: value 20; defined in tekbase. c.

RSRC_ExeEnvVar: value "NASA_HOME"; defined in RSRC_defs .h.

RSRC_Incomplete: value 2; defined in RSRC_defs .h.

RSRC_MaxNumResources: value 150; defined in RSRC_defs .h.

RSRC_NumResourcesPerInt: value 15; defined in RSRC_defs .h.

RSRC_Off: value 0; defined in RSRC_defs .h.

RSRC_On: value 1; defined in RSRC_defs .h.

RSRC_ResourceBoardUpdateStringLength: value 200; defined in RSRC_defs .h.

RSRC_ResourceNumBi ts: value 2; defined in RSRC_defs . h.

TBL_END: value NULL; defined in tbl.h.

TBL_NillLMODES: The number of database modes available, corresponding to the number of values for
the enum type tbl_modes (see section 4.4); value 3; defined in tbl.h.

True: value 1; defined in STRNG_defs .h.

TRUE: value 1; defined in tbl. h, tbl. c, and tekbase. c.

TUSER: value" GUEST"; defined in tekbase. c.

8.4 Defined Types

accessfun (defined in tbl. c)

typedef int (*accessfun) ();

This type is used for convenience in declaring pointers to the mode functions for database access.

mode_info (defined in tbl. c)

struct mode_info {
access fun

count fun ,
put fun ,

102

} i

getfun,
deletefun,
updatefun,
freefun,
donefun;

int
in_use;

This structure is used to store pointers to the mode functions for database access.

Members:

countfun: Pointer to the mode function which counts the number of rows in a table which meet
specified conditions.

putfun: Pointer to the mode function which adds a row of data to a table.

getfun: Pointer to the mode function which retrieves data from a table.

deletefun: Pointer to the mode function which deletes one or more rows of data from a table.

updatefun: Pointer to the mode function which changes values in a table.

freefun: Pointer to the mode function which frees any memory which was allocated by the other
table access functions; this function is called once for each referenced table after access
to the database is no longer needed.

donefun: Pointer to the mode function which performs any additional functions required when
access to the database is no longer needed; this function is called once after all calls to
freefun are complete.

in_use: Flag used to indicate that the mode corresponding to the functions is being used by the
program.

RSRC_ResourceBoard and RSRC_PResourceBoard (defined in RSRC_defs .h)

typedef struct RSRC_resourceboard {
char

test_id[DBFL_TestldStringLength+l)i
int

resource[RSRC_MaxNumResources)i
} RSRC_ResourceBoard, *RSRC_PResourceBoardi

RSRC_ResourceList and RSRC_PResourceList (defined in RSRC_defs .h)

typedef struct RSRC_resourcelist {
int

idi
char

name[DBFL_ResourceNameStringLength+l)i
} RSRC_ResourceList, *RSRC_PResourceListi

sort_ops (defined in tbl . h)

enum sort_ops {TASC=l, TDESC}i

tbl_column (defined in tbl . h)

struct tbl_column {

103

} i

getfun,
deletefun,
updatefun,
freefun,
donefun;

int
in_use;

This structure is used to store pointers to the mode functions for database access.

Members:

countfun: Pointer to the mode function which counts the number of rows in a table which meet
specified conditions.

putfun: Pointer to the mode function which adds a row of data to a table.

getfun: Pointer to the mode function which retrieves data from a table.

deletefun: Pointer to the mode function which deletes one or more rows of data from a table.

updatefun: Pointer to the mode function which changes values in a table.

freefun: Pointer to the mode function which frees any memory which was allocated by the other
table access functions; this function is called once for each referenced table after access
to the database is no longer needed.

donefun: Pointer to the mode function which performs any additional functions required when
access to the database is no longer needed; this function is called once after all calls to
freefun are complete.

in_use: Flag used to indicate that the mode corresponding to the functions is being used by the
program.

RSRC_ResourceBoard and RSRC_PResourceBoard (defined in RSRC_defs .h)

typedef struct RSRC_resourceboard {
char

test_id[DBFL_TestldStringLength+l)i
int

resource[RSRC_MaxNumResources)i
} RSRC_ResourceBoard, *RSRC_PResourceBoardi

RSRC_ResourceList and RSRC_PResourceList (defined in RSRC_defs .h)

typedef struct RSRC_resourcelist {
int

idi
char

name[DBFL_ResourceNameStringLength+l)i
} RSRC_ResourceList, *RSRC_PResourceListi

sort_ops (defined in tbl . h)

enum sort_ops {TASC=l, TDESC}i

tbl_column (defined in tbl . h)

struct tbl_column {

103

}

enum tbl_dat~types
data_type;

char
external_name[80],
internal_name(80);

tbl_command (defined in tbl. h)

struct tbl_command {
int

}

colwnni
enum tbl_ops

command;
void

*arg;

tbl_data_types (defined in tbl . h)

enum tbl_data_types {TBL_STRING=1, TBL_INT, TBL_FLOAT};

tbl_info (defined in tbl.h)

struct tbl_info {

}

char
internal_name[80],
external_name[80];

enum tblJUodes
mode;

char
DB_name [80] i

int
.num_colwnns i

struct tbl_colwnn
*colwnns;

struct tbl_info
*nexti

void
*datai

tbl_modes (defined in tbl . h)

enum tbl_modes {TBL_TEXT=1, TBL_TEKBASE, TBL_INGRES}i

These are the database modes available to the program. PTDS currently uses TekBase, although code
exists for other modes used previously. If other modes are added in the future, this type and the constant
TBL_~MODES must be updated.

Values:

TBL_TEXT: Mode for databased information stored in flat ASCII files.
TBL_TEKBASE: Mode for use of TekBase databases.

104

}

enum tbl_dat~types
data_type;

char
external_name[80],
internal_name(80);

tbl_command (defined in tbl. h)

struct tbl_command {
int

}

colwnni
enum tbl_ops

command;
void

*arg;

tbl_data_types (defined in tbl . h)

enum tbl_data_types {TBL_STRING=1, TBL_INT, TBL_FLOAT};

tbl_info (defined in tbl.h)

struct tbl_info {

}

char
internal_name[80],
external_name[80];

enum tblJUodes
mode;

char
DB_name [80] i

int
.num_colwnns i

struct tbl_colwnn
*colwnns;

struct tbl_info
*nexti

void
*datai

tbl_modes (defined in tbl . h)

enum tbl_modes {TBL_TEXT=1, TBL_TEKBASE, TBL_INGRES}i

These are the database modes available to the program. PTDS currently uses TekBase, although code
exists for other modes used previously. If other modes are added in the future, this type and the constant
TBL_~MODES must be updated.

Values:

TBL_TEXT: Mode for databased information stored in flat ASCII files.
TBL_TEKBASE: Mode for use of TekBase databases.

104

TBL_INGRES: Mode for usc of INGRES databases.

tbl_ops (defined in tbl. h)

enum tbl_ops {TEQ=l, TGE, TLT, TGT, TLE, TNE, TFETCH, TUPDATE}i

tHst (defined in tekbase. c)

struct tHst {
char

}

typename [MAXTNAME] ;
TSHORT

val type;
TLONG

fieldsize;

'l'QL_type (defined in tekbase . c)

struct TQL_type {
TSHORT

}

val type;
TLONG

fieldsize;

unique_values (defined in tekbase. c)

enum unique_values {UNQ.NONE, UNQ_TRUE, UNQ_FALSE};

8.5 Global Variables

corronand_string: static char [1000]; defined in tekbase.c.

condition_string: static char [1000]; defined in tekbase.c.

connected: static int; initial value FALSE; defined in tekbase. c.

current_DB: static char [80]; defined in tekbase.c.

fetch_commands: static int *; defined in tekbase. c.

fetch_eof: static int *; defined in tekbase. c.

fetch_count: static int *; defined in tekbase. c.

fetch_numcommands: static int; defined in tekbase. c.

fetch_numcondi tions: static int; defined in tekbase. c.

fetch_tbl: static struct tbl_info *; dermed in tekbase. c.

mode_list: Pointers to the mode functions for each database mode in use; static struct
mode_info [TBL_NUM_MODES]; defined in tbl. c.

num_select-params: static int; initial value 0; defined in tekbase. c.

qbuffptr: Buffer used for database access by all functions using TekBase databases; char *; defined
in tb1.h.

105

TBL_INGRES: Mode for usc of INGRES databases.

tbl_ops (defined in tbl. h)

enum tbl_ops {TEQ=l, TGE, TLT, TGT, TLE, TNE, TFETCH, TUPDATE}i

tHst (defined in tekbase. c)

struct tHst {
char

}

typename [MAXTNAME] ;
TSHORT

val type;
TLONG

fieldsize;

'l'QL_type (defined in tekbase . c)

struct TQL_type {
TSHORT

}

val type;
TLONG

fieldsize;

unique_values (defined in tekbase. c)

enum unique_values {UNQ.NONE, UNQ_TRUE, UNQ_FALSE};

8.5 Global Variables

corronand_string: static char [1000]; defined in tekbase.c.

condition_string: static char [1000]; defined in tekbase.c.

connected: static int; initial value FALSE; defined in tekbase. c.

current_DB: static char [80]; defined in tekbase.c.

fetch_commands: static int *; defined in tekbase. c.

fetch_eof: static int *; defined in tekbase. c.

fetch_count: static int *; defined in tekbase. c.

fetch_numcommands: static int; defined in tekbase. c.

fetch_numcondi tions: static int; defined in tekbase. c.

fetch_tbl: static struct tbl_info *; dermed in tekbase. c.

mode_list: Pointers to the mode functions for each database mode in use; static struct
mode_info [TBL_NUM_MODES]; defined in tbl. c.

num_select-params: static int; initial value 0; defined in tekbase. c.

qbuffptr: Buffer used for database access by all functions using TekBase databases; char *; defined
in tb1.h.

105

RSRC_NurnDisplayableResources: int; defined in RSRC_defs .h.

RSRC_NUmResources: int; defined in RSRC_defs .h.

RSRC_WhatIfResources: int; defined in RSRC_defs .h.

RSRC_TheDisplayableResourceList: RSRC_ResourceList *; defined in RSRC_defs .h.

RSRC_TheResourceList: RSRC_ResourceList *; defined in RSRC_defs .h.

RSRC_TheWhatIfResourceList: RSRC_ResourceList *; defined in RSRC_defs .h.

tbl_cornrnands: struct tbl_cornrnand [MruCCOMMANDS]; declared in tbl. hand defmed in
tbl.c.

tbl_conditions: struct tbl_cornrnand [MAX_COMMANDS]; declared in tbl.h and defined
in tbl.c.

tbl_list: A list of tables accessed by the program and associated data; struct tbl_info *;
initial value NULL; declared in tbl . h and defined in tbl . c.

tbl_numcornrnands: int; declared in tbl.h and defined in tbl. c.

tbl_numcondi tions: int; declared in tbl. h and defined in tbl. c.

tpvalues: static char [MAX_COMMANDS] [100]; defined in tekbase. c.

TQL_string: static char [1000);definedintekbase.c.

TQL_types: struct TQL_type [100]; defined in tekbase. c.

TQL_typecache: struct tlist [HASHSIZE]; defined in tekbase. c.

unique_state: static enum unique_values; initial value UNQ_NONE; defmed in
tekbase.c.

wri te-ptr: static char *; defined in tekbase. c.

8.6 Functions

cache_type (declaration and definition in tekbase. c)

static void cache_type (char *name, TSHORT val type,
TLONG fieldsize)

This function .

Arguments:

name:

valtype:

fieldsize:

check_DB (declaration and definition in tekbase. c)

static int check_DB (struct tbl_info *tbl)

This function ensures that the process is connected t<? TekBase and the database·for the specified table is
open.

Argument:

106

RSRC_NurnDisplayableResources: int; defined in RSRC_defs .h.

RSRC_NUmResources: int; defined in RSRC_defs .h.

RSRC_WhatIfResources: int; defined in RSRC_defs .h.

RSRC_TheDisplayableResourceList: RSRC_ResourceList *; defined in RSRC_defs .h.

RSRC_TheResourceList: RSRC_ResourceList *; defined in RSRC_defs .h.

RSRC_TheWhatIfResourceList: RSRC_ResourceList *; defined in RSRC_defs .h.

tbl_cornrnands: struct tbl_cornrnand [MruCCOMMANDS]; declared in tbl. hand defmed in
tbl.c.

tbl_conditions: struct tbl_cornrnand [MAX_COMMANDS]; declared in tbl.h and defined
in tbl.c.

tbl_list: A list of tables accessed by the program and associated data; struct tbl_info *;
initial value NULL; declared in tbl . h and defined in tbl . c.

tbl_numcornrnands: int; declared in tbl.h and defined in tbl. c.

tbl_numcondi tions: int; declared in tbl. h and defined in tbl. c.

tpvalues: static char [MAX_COMMANDS] [100]; defined in tekbase. c.

TQL_string: static char [1000);definedintekbase.c.

TQL_types: struct TQL_type [100]; defined in tekbase. c.

TQL_typecache: struct tlist [HASHSIZE]; defined in tekbase. c.

unique_state: static enum unique_values; initial value UNQ_NONE; defmed in
tekbase.c.

wri te-ptr: static char *; defined in tekbase. c.

8.6 Functions

cache_type (declaration and definition in tekbase. c)

static void cache_type (char *name, TSHORT val type,
TLONG fieldsize)

This function .

Arguments:

name:

valtype:

fieldsize:

check_DB (declaration and definition in tekbase. c)

static int check_DB (struct tbl_info *tbl)

This function ensures that the process is connected t<? TekBase and the database·for the specified table is
open.

Argument:

106

tbl: The current database table (input).

Returns TRUE if OK or FALSE if any problems are encountered.

clear_typecache (declaration and definition in tekbase. c)

static void clear_typecache ()

This function .

clear_unique (declaration and defmition in tekbase . c)

static void clear_unique ()

This function .

DBCT_DBConnect (declaration in DBCT_defs. h, definition in DBCT_utils_t. c)

void DBCT_DBConnect (char *database)

This function opens a specified database.

Argument:
database: The database to be opened (input).

DBCT_DBDisconnect (declaration in DBCT_defs .h, definition in DBCT_utils_t. c)

void DBCT_DBDisconnect ()

This function closes the current database session.

DBCT_DBSessionconnect (declaration in DBCT_defs . h, definition in DBCT_utils_t. c)

void DBCT_DBSessionConnect (char *database, int session)

This function opens the specified database.

Arguments:
database: The database to be opened (input).
session: . The session ID for the database session; currently not used as it is not applicable to

Metrica 3.1 (input).

DBCT_DBSessionDisconnect (declaration in DBCT_defs .h, definition in DBCT_utils_t. c)

void DBCT_DBSessionDisconnect (int session)

This function disconnects from the database with the specified session ID.

Arguments:

session: The session ID for the database session to be closed; currently not used as it is not
applicable to Metrica 3.1 (input).

DBCT_SetDBSession (declaration in DBCT_defs .h, definition in DBCT_utils_t .c)

void DBCT_SetDBSession (int session)

This function is a holdover from the Ingres version of the database utilities. It is not applicable to Metrica
3.1 and is not used by the Session Manager.

107

tbl: The current database table (input).

Returns TRUE if OK or FALSE if any problems are encountered.

clear_typecache (declaration and definition in tekbase. c)

static void clear_typecache ()

This function .

clear_unique (declaration and defmition in tekbase . c)

static void clear_unique ()

This function .

DBCT_DBConnect (declaration in DBCT_defs. h, definition in DBCT_utils_t. c)

void DBCT_DBConnect (char *database)

This function opens a specified database.

Argument:
database: The database to be opened (input).

DBCT_DBDisconnect (declaration in DBCT_defs .h, definition in DBCT_utils_t. c)

void DBCT_DBDisconnect ()

This function closes the current database session.

DBCT_DBSessionconnect (declaration in DBCT_defs . h, definition in DBCT_utils_t. c)

void DBCT_DBSessionConnect (char *database, int session)

This function opens the specified database.

Arguments:
database: The database to be opened (input).
session: . The session ID for the database session; currently not used as it is not applicable to

Metrica 3.1 (input).

DBCT_DBSessionDisconnect (declaration in DBCT_defs .h, definition in DBCT_utils_t. c)

void DBCT_DBSessionDisconnect (int session)

This function disconnects from the database with the specified session ID.

Arguments:

session: The session ID for the database session to be closed; currently not used as it is not
applicable to Metrica 3.1 (input).

DBCT_SetDBSession (declaration in DBCT_defs .h, definition in DBCT_utils_t .c)

void DBCT_SetDBSession (int session)

This function is a holdover from the Ingres version of the database utilities. It is not applicable to Metrica
3.1 and is not used by the Session Manager.

107

DBIO_RemoveTrailingSpaces (declaration in DBCT_defs. h, definition in DBCT_utils_t. c)

char *DBIO_RemoveTrailingSpaces (char *string)

This function removes trailing white spaces from a character array.

Argument:
string: .The character string from which trailing white spaces are to be removed (input and

output).

The return value is the argument string. The character string is modified by overwriting all trailing white
space with NULL characters.

find_col (declaration in tbl . h, definition in tbl . c)

int find_col (struct tbl_info *tbl, char *name)

This function .

Arguments:
tbl: Pointer to a table (input).
name: The internal name of a column (input).

The return value is the column number associated with name or -1 if the column is not found.

find_tbl (declaration in tbl . h, definition in tbl . c)

struct tbl_info *find_tbl (char *name)

This function locates the infonnation about a table with a specified internal name.

Argument:
name: The internal name of a table (input).

The return value is a pointer to the table associated with name or NULL if the table is not found.

get_cached_type (declaration and definition in tekbase. c)

static intget_cached_type (char *name, TSHORT *valtype,
TLONG *fieldsize)

This function .

Arguments:

name:
valtype:

fieldsize:

get_colwnri_conunand (declaration and defmition in tekbase . c)

static struct tbl_command
*get_column_command (struct tbl_command *commands,

int numcommands, int column)

This function.

Arguments:
command: The current command list (input).

108

DBIO_RemoveTrailingSpaces (declaration in DBCT_defs. h, definition in DBCT_utils_t. c)

char *DBIO_RemoveTrailingSpaces (char *string)

This function removes trailing white spaces from a character array.

Argument:
string: .The character string from which trailing white spaces are to be removed (input and

output).

The return value is the argument string. The character string is modified by overwriting all trailing white
space with NULL characters.

find_col (declaration in tbl . h, definition in tbl . c)

int find_col (struct tbl_info *tbl, char *name)

This function .

Arguments:
tbl: Pointer to a table (input).
name: The internal name of a column (input).

The return value is the column number associated with name or -1 if the column is not found.

find_tbl (declaration in tbl . h, definition in tbl . c)

struct tbl_info *find_tbl (char *name)

This function locates the infonnation about a table with a specified internal name.

Argument:
name: The internal name of a table (input).

The return value is a pointer to the table associated with name or NULL if the table is not found.

get_cached_type (declaration and definition in tekbase. c)

static intget_cached_type (char *name, TSHORT *valtype,
TLONG *fieldsize)

This function .

Arguments:

name:
valtype:

fieldsize:

get_colwnri_conunand (declaration and defmition in tekbase . c)

static struct tbl_command
*get_column_command (struct tbl_command *commands,

int numcommands, int column)

This function.

Arguments:
command: The current command list (input).

108

numcommands: The number of commands in the list (input).
column: A user specified, I-based, column number (input).

Returns the column structure associated with the number or NULL if no column structure found.

GetConditionRelop (declaration and defmition in tekbase. c)

static char *GetConditionRelop (enum tbl_ops op)

This function .

Argument:
op: The current TBL relational operator (input).

Returns the TekBase string representation of the operator.

handle_count (declaration and definition in tekbase. c)

static void handle_count (int rows)

This function is called by TekBase after it has written a long value into the query buffer in response to a
TQL 'COUNT' command.

Argument:
rows: The number of rows of data currently in the data buffer (input).

handle_error (declaration and defmition in tekbase. c)

static int handle_error ()

This function prints out the current TekBase error and disconnects from the database. It returns FALSE.

handle_fetch (declaration and definition in tekbase. c)

static void handle_fetch (int rows)

This function is called by TekBase with each row of data after a DISPLAY command has been issued, to
retrieve and store the data values in the QueryBuffer.

Argument:
rows: The number of rows of data currently in the QueryBuffer (input).

hash (declaration and definition ill tekbase. c)

static unsigned hash (char *s)

This function .

Argument:

s:

init_PTDS_tekbase (declaration in tektables .h, definition in tektables. c)

void init_PTDS_tekbase ()

This function initializes TekBase mode and table declarations for the table inteface routines in tbl. c.

109

numcommands: The number of commands in the list (input).
column: A user specified, I-based, column number (input).

Returns the column structure associated with the number or NULL if no column structure found.

GetConditionRelop (declaration and defmition in tekbase. c)

static char *GetConditionRelop (enum tbl_ops op)

This function .

Argument:
op: The current TBL relational operator (input).

Returns the TekBase string representation of the operator.

handle_count (declaration and definition in tekbase. c)

static void handle_count (int rows)

This function is called by TekBase after it has written a long value into the query buffer in response to a
TQL 'COUNT' command.

Argument:
rows: The number of rows of data currently in the data buffer (input).

handle_error (declaration and defmition in tekbase. c)

static int handle_error ()

This function prints out the current TekBase error and disconnects from the database. It returns FALSE.

handle_fetch (declaration and definition in tekbase. c)

static void handle_fetch (int rows)

This function is called by TekBase with each row of data after a DISPLAY command has been issued, to
retrieve and store the data values in the QueryBuffer.

Argument:
rows: The number of rows of data currently in the QueryBuffer (input).

hash (declaration and definition ill tekbase. c)

static unsigned hash (char *s)

This function .

Argument:

s:

init_PTDS_tekbase (declaration in tektables .h, definition in tektables. c)

void init_PTDS_tekbase ()

This function initializes TekBase mode and table declarations for the table inteface routines in tbl. c.

109

MakeConditionString (declaration and defmition in tekbase. c)

static int MakeConditionString (struct tbl_info *tbl,
struct tbl_command *conditions,
int numconditions)

This function formats a legal TekBase 'WHERE' clause into the global condition_string.

Arguments:

tbl: The current table (input).

conditions: The current list of conditions (input).

numconditions: The length of the list (input).

Returns TRUE if OK or FALSE if an error is detected.

MakeParameterList (declaration and definition in tekbase. c)

static int MakeParameterList (struct tbl_info *tbl,
struct tbl_command *conditions,
int numconditions)

This function formats a comma-separated list of TekBase column names into the global condition_string.

Arguments:

tbl: The current table (input).

conditions: The current list of conditions (input).

numconditions: The length of the list (input).

Returns TRUE if OK or FALSE if an error is detected.

MakeStringValue (declaration and definition in tekbase. c)

static char *MakeStringValue (struct tbl_info *tbl, int column,
void *arg)

This function .

Arguments:

tbl: The current table (input).

column: The table column index of the value to be converted (input).

arg: A pointer to the current value to convert (input).

Returns a string representation of the value.

MakeUpdateList (declaration and defmition in tekbase. c)

static int MakeUpdateList (struct tbl_info *tbl,
struct tbl_command *conditions,
int numconditions)

This function formats a TekBase 'UPDATE' list of the form <value> AS <columnname> into the global
condition_string.

Arguments:

tbl: The current table (input).

conditions: The current list of conditions (input).

110

MakeConditionString (declaration and defmition in tekbase. c)

static int MakeConditionString (struct tbl_info *tbl,
struct tbl_command *conditions,
int numconditions)

This function formats a legal TekBase 'WHERE' clause into the global condition_string.

Arguments:

tbl: The current table (input).

conditions: The current list of conditions (input).

numconditions: The length of the list (input).

Returns TRUE if OK or FALSE if an error is detected.

MakeParameterList (declaration and definition in tekbase. c)

static int MakeParameterList (struct tbl_info *tbl,
struct tbl_command *conditions,
int numconditions)

This function formats a comma-separated list of TekBase column names into the global condition_string.

Arguments:

tbl: The current table (input).

conditions: The current list of conditions (input).

numconditions: The length of the list (input).

Returns TRUE if OK or FALSE if an error is detected.

MakeStringValue (declaration and definition in tekbase. c)

static char *MakeStringValue (struct tbl_info *tbl, int column,
void *arg)

This function .

Arguments:

tbl: The current table (input).

column: The table column index of the value to be converted (input).

arg: A pointer to the current value to convert (input).

Returns a string representation of the value.

MakeUpdateList (declaration and defmition in tekbase. c)

static int MakeUpdateList (struct tbl_info *tbl,
struct tbl_command *conditions,
int numconditions)

This function formats a TekBase 'UPDATE' list of the form <value> AS <columnname> into the global
condition_string.

Arguments:

tbl: The current table (input).

conditions: The current list of conditions (input).

110

numconditions: The length of the list (input).

Returns TRUE if OK or FALSE if an error is detected.

parse_tbl_conunands (declaration and defmition in tbl. c)

static int parse_tbl_commands (struct tbl_info *tbl, va_list ap)

This function parses the commands and conditions in the variable-length argument list into the global
arrays tbCconunands, tbl_conditions, tbl_numcommallds, and tbCnumconditions.

Arguments:
tbl: A pointer to the current table (input).
ap: A variable-length argument list pointer (input).

Returns TRUE if all went well or FALSE if any problems are encountered.

put_row (declaration and definition in tekbase. c)

static int put_row (struct tbl_info *tbl,
struct tbl_command *commands, int numcommands)

This function writes data from the command list into the TekBase shared memory buffer in preparation
for transfer to the TekBase database.

Arguments:
tbl: The current table (input).
commands: The current list of TBL commands (input).
numcommands: Number of commands in the list (input).

Returns TRUE if OK or FALSE if any errors are detected.

RSRC_FindResourceId (declaration in RSRC_defs .h, definition in RSRC_rlist. c)

int RSRC_FindResourceld (char *name)

This function finds the index number of the resource having a specified name.

Argument:
name: Name of the desired resource (input).

Returns the index number if found, zero otherwise.

RSRC_FindResourceName (declaration in RSRC_defs .h, definition in RSRc_rlist. c)

void RSRC_FindResourceName (int id, char*name)

This function finds the name of the resource having a specified index number.

Arguments:
id: Index number of the desired resource (input).
name: Resource name corresponding to the specified index number (output).

Returns one if the resource name is found, zero otherwise. If the resource name is found, it is copied into
tile array name, which must have been previously allocated.

111

numconditions: The length of the list (input).

Returns TRUE if OK or FALSE if an error is detected.

parse_tbl_conunands (declaration and defmition in tbl. c)

static int parse_tbl_commands (struct tbl_info *tbl, va_list ap)

This function parses the commands and conditions in the variable-length argument list into the global
arrays tbCconunands, tbl_conditions, tbl_numcommallds, and tbCnumconditions.

Arguments:
tbl: A pointer to the current table (input).
ap: A variable-length argument list pointer (input).

Returns TRUE if all went well or FALSE if any problems are encountered.

put_row (declaration and definition in tekbase. c)

static int put_row (struct tbl_info *tbl,
struct tbl_command *commands, int numcommands)

This function writes data from the command list into the TekBase shared memory buffer in preparation
for transfer to the TekBase database.

Arguments:
tbl: The current table (input).
commands: The current list of TBL commands (input).
numcommands: Number of commands in the list (input).

Returns TRUE if OK or FALSE if any errors are detected.

RSRC_FindResourceId (declaration in RSRC_defs .h, definition in RSRC_rlist. c)

int RSRC_FindResourceld (char *name)

This function finds the index number of the resource having a specified name.

Argument:
name: Name of the desired resource (input).

Returns the index number if found, zero otherwise.

RSRC_FindResourceName (declaration in RSRC_defs .h, definition in RSRc_rlist. c)

void RSRC_FindResourceName (int id, char*name)

This function finds the name of the resource having a specified index number.

Arguments:
id: Index number of the desired resource (input).
name: Resource name corresponding to the specified index number (output).

Returns one if the resource name is found, zero otherwise. If the resource name is found, it is copied into
tile array name, which must have been previously allocated.

111

RSRC_FreeDisplayableResourceList (declaration in RSRC_defs .h. definition in
RSRc_rlist. c)

void RSRC_FreeDisplayableResourceList ()

This function frees the global displayable resource list.

RSRC_FreeResourc::eList (declaration in RSRC_defs . h, definition in RSRC_rlist. c)

void RSRC_FreeResourceList ()

This function frees the global resource list.

RSRC_GetBits (declaration in RSRC_defs . h, definition in RSRC_rlist. c)

int RSRC_GetBits (unsigned x, unsigned pos, unsigned nllm-bits)

This function determines the value obtained by taking a specified number of bits from a specified position
in a number.

Arguments:

x: Number from which the bits are to be taken (input).

pos: Position of the low order bit to be taken (input).

num_bits: Number of bits to be taken from the number (input).

Returns the value of the required bits.

RSRC_GetDisplayableResourc::eListOrderedByld (declaration in RSRC_defs .h, definition
in RSRC_dbutils . c)

void RSRC_GetDisplayableResourceListOrderedById ()

This function.

RSRC_GetNumPreqs (default declaration, definition in RSRC_dbutils . c)

int RSRC_GetNumPreqs ()

This function .

RSRC_GetResourc::eList (declaration in RSRC_defs .h, definition in RSRC_dbutils .c)

void RSRC_GetResourceList ()

This function .

RSRC_GetResourc::es (declaration in RSRC_defs . h, definition in RSRC_dbutils . c)

void RSRC_GetResources (RSRC_ResourceBoard **list-ptr,

This function .

Arguments:

lisCptr: (output).

num_tests: (output).

int *num~tests)

112

RSRC_FreeDisplayableResourceList (declaration in RSRC_defs .h. definition in
RSRc_rlist. c)

void RSRC_FreeDisplayableResourceList ()

This function frees the global displayable resource list.

RSRC_FreeResourc::eList (declaration in RSRC_defs . h, definition in RSRC_rlist. c)

void RSRC_FreeResourceList ()

This function frees the global resource list.

RSRC_GetBits (declaration in RSRC_defs . h, definition in RSRC_rlist. c)

int RSRC_GetBits (unsigned x, unsigned pos, unsigned nllm-bits)

This function determines the value obtained by taking a specified number of bits from a specified position
in a number.

Arguments:

x: Number from which the bits are to be taken (input).

pos: Position of the low order bit to be taken (input).

num_bits: Number of bits to be taken from the number (input).

Returns the value of the required bits.

RSRC_GetDisplayableResourc::eListOrderedByld (declaration in RSRC_defs .h, definition
in RSRC_dbutils . c)

void RSRC_GetDisplayableResourceListOrderedById ()

This function.

RSRC_GetNumPreqs (default declaration, definition in RSRC_dbutils . c)

int RSRC_GetNumPreqs ()

This function .

RSRC_GetResourc::eList (declaration in RSRC_defs .h, definition in RSRC_dbutils .c)

void RSRC_GetResourceList ()

This function .

RSRC_GetResourc::es (declaration in RSRC_defs . h, definition in RSRC_dbutils . c)

void RSRC_GetResources (RSRC_ResourceBoard **list-ptr,

This function .

Arguments:

lisCptr: (output).

num_tests: (output).

int *num~tests)

112

RSRC_GetWhatifModules (declaration in RSRC_defs. h, definition in RSRC_dbutils . c)

void RSRC_GetWhatifModules ()

This function .

RSRC_InitializeDisplayableResourceList (declaration in RSRC_defs .h, definition in
RSRC_dbutils. c)

void RSRC_InitializeDisplayableResourceList ()

This function.

RSRC_InsertResourceBoardTestld (declaration in RSRC_defs .h, definition in
RSRC_dbutils . c)

void RSRC_InsertResourceBoardTestld (char *test_id)

This function adds an entry for a specified test to the resource_board table of the Session Manager
database.

Argument:
tesUd: Test ID for the test to be added to the resource_board table (input).

RSRC_UmnaskResources (declaration in RSRC_defs .h, definition in RSRc_rlist. c)

void RSRC_UnrnaskResources (int resource_value, * resource_array ,
num_to-process)

This function unmasks a specified number of values out of the masked resource value.

Arguments:
resource_value: Masked resource value (input).
resource_array: Array to hold unmasked resource values; must be allocated before calling this

function (output)
num_to_process: Number of values to pull out of the masked resource value (input).

RSRC_UpdateResource (declaration in RSRc_defs . h, definition in RSRc_rlist. c)

void RSRC_UpdateResource (char *name, char *test_id, int value)

This function sets the resource to value in table resource_board jf name is found in the resource_list.

Arguments:
name: Resource name (input).
tesUd: Test ID (input).
value: Resource value (input).

RSRC_UpdateResourceBoardResourceValue (declaration in RSRc_defs .h, definition in
RSRC_dbutils . c)

void RSRC_UpdateResourceBoardResourceValue (char *test_id,
int rsrc_number,
int value)

113

RSRC_GetWhatifModules (declaration in RSRC_defs. h, definition in RSRC_dbutils . c)

void RSRC_GetWhatifModules ()

This function .

RSRC_InitializeDisplayableResourceList (declaration in RSRC_defs .h, definition in
RSRC_dbutils. c)

void RSRC_InitializeDisplayableResourceList ()

This function.

RSRC_InsertResourceBoardTestld (declaration in RSRC_defs .h, definition in
RSRC_dbutils . c)

void RSRC_InsertResourceBoardTestld (char *test_id)

This function adds an entry for a specified test to the resource_board table of the Session Manager
database.

Argument:
tesUd: Test ID for the test to be added to the resource_board table (input).

RSRC_UmnaskResources (declaration in RSRC_defs .h, definition in RSRc_rlist. c)

void RSRC_UnrnaskResources (int resource_value, * resource_array ,
num_to-process)

This function unmasks a specified number of values out of the masked resource value.

Arguments:
resource_value: Masked resource value (input).
resource_array: Array to hold unmasked resource values; must be allocated before calling this

function (output)
num_to_process: Number of values to pull out of the masked resource value (input).

RSRC_UpdateResource (declaration in RSRc_defs . h, definition in RSRc_rlist. c)

void RSRC_UpdateResource (char *name, char *test_id, int value)

This function sets the resource to value in table resource_board jf name is found in the resource_list.

Arguments:
name: Resource name (input).
tesUd: Test ID (input).
value: Resource value (input).

RSRC_UpdateResourceBoardResourceValue (declaration in RSRc_defs .h, definition in
RSRC_dbutils . c)

void RSRC_UpdateResourceBoardResourceValue (char *test_id,
int rsrc_number,
int value)

113

This function adds an entry for a specified test to the resource_board table of the Session Manager
database.

Arguments:

tesUd: Test ID for the test to be updated on the resource_board table (input).

rsrc_number: Number of t.he resource to be updated (input).

value: Updated value for the resource; acceptable values are RSRC_On, RSRC_Off, or
RSRC_Incornplete (input).

set_unique (declaration and definition in tekbase . c)

static int set_unique (int value)

This function .

Argument:

value:

S'1'RNG_l:sBlank (declaration in STRNG_defs .h, definition in STRNG_utils .c)

Boolean STRNG_IsBlank (char *str)

This function .

Arguments:

str:

S'1'RNG_Myfgets (declaration in STRNG_defs .h, definition in STRNG_utils. c)

char *STRNG_Myfgets (char *str, int n, register FILE *iop)

This function .

Arguments:

str:

n:
iop:

S'1'RNG_NullOutString (declaration in STRNG_defs .h, definition in STRNG_utils. c)

void STRNG~ull0utString (char *str, int len)

This function .

Arguments:

str:

len:

STRNG_RemoveTrailingSpaces (declaration in STRNG_defs .h, definition in STRNG_utils. c)

void STRNG_RernoveTrailingSpaces (char *str)

This function .

Arguments:

str:

114

This function adds an entry for a specified test to the resource_board table of the Session Manager
database.

Arguments:

tesUd: Test ID for the test to be updated on the resource_board table (input).

rsrc_number: Number of t.he resource to be updated (input).

value: Updated value for the resource; acceptable values are RSRC_On, RSRC_Off, or
RSRC_Incornplete (input).

set_unique (declaration and definition in tekbase . c)

static int set_unique (int value)

This function .

Argument:

value:

S'1'RNG_l:sBlank (declaration in STRNG_defs .h, definition in STRNG_utils .c)

Boolean STRNG_IsBlank (char *str)

This function .

Arguments:

str:

S'1'RNG_Myfgets (declaration in STRNG_defs .h, definition in STRNG_utils. c)

char *STRNG_Myfgets (char *str, int n, register FILE *iop)

This function .

Arguments:

str:

n:
iop:

S'1'RNG_NullOutString (declaration in STRNG_defs .h, definition in STRNG_utils. c)

void STRNG~ull0utString (char *str, int len)

This function .

Arguments:

str:

len:

STRNG_RemoveTrailingSpaces (declaration in STRNG_defs .h, definition in STRNG_utils. c)

void STRNG_RernoveTrailingSpaces (char *str)

This function .

Arguments:

str:

114

tbl_add_mode (declaration in tbl . h. definition in tbl . c)

void tbl_add_mode (enum tbl_modes mode, accessfun count fun ,
accessfun get fun , accessfun putfun,
accessfun deletefun, accessfun update fun ,
access fun freefun, accessfun donefun)

This function associates the specified database access fUllctions with the specified database mode.

Arguments:
mode: The enum value of the mode being defined (input).

countfun: A function which will be called via tbl_count to count the number of rows in a
table which meet specified conditions (input).

getfun: A function which will be called via tbl_get to retrieve data from a table (input).

putfun: A function which will be called via tbl-pu t to add a row of data to a table (input).
deletefun: A function which will be called via tbl_delete to remove one or more rows of

data to a table (input).

updatefun: A function which will be called via tbl_update to change data values in a table
(input).

freefun: A function which will be called for each referenced table during tbl_free_all to
free up any memory allocated by the table access functions and associated with that table
(input).

donefun: A function which will be called at the end of tbl_free_all to perform any other
cJeanup when database access is no longer needed (input).

tbl_count (declaration in tbl . h, definition in tbl. c)
int tbl_count (va_alist)

This function parses the commands and looks up the named table, then calls a mode-specific funtion of
the fOJm mcount (table, count, unique, col. conditions, tbCnumconditions) to count the number of rows
of data in the table which meet specified conditions.

Argument:
va_alist: A variable length argument list; the required elements are tblname (char *). count (int

*), is_unique (int), colname (char *); the remaining elements are passed to
parse_tbl_commands as the second argument (input).

Returns FALSE if an error is encountered in parsing the argument list; otherwise the return value is the
result of the mode-specific function call.

tbl_delete (declaration in tbl . h, definition in tbl . c)
int tbl_delete (va_alist)

This function parses the' commands and looks up the named table, then calls a mode-specific funtion of
the form mdel (table, conditions, tbCnumconditions) to delete one or more rows of data from the table.

Argument:

va_alist: A variable length argument list; the required element is tblname (char *); the
remaining elements are passed to parse_tbl_commands as the second argument
(input).

115

tbl_add_mode (declaration in tbl . h. definition in tbl . c)

void tbl_add_mode (enum tbl_modes mode, accessfun count fun ,
accessfun get fun , accessfun putfun,
accessfun deletefun, accessfun update fun ,
access fun freefun, accessfun donefun)

This function associates the specified database access fUllctions with the specified database mode.

Arguments:
mode: The enum value of the mode being defined (input).

countfun: A function which will be called via tbl_count to count the number of rows in a
table which meet specified conditions (input).

getfun: A function which will be called via tbl_get to retrieve data from a table (input).

putfun: A function which will be called via tbl-pu t to add a row of data to a table (input).
deletefun: A function which will be called via tbl_delete to remove one or more rows of

data to a table (input).

updatefun: A function which will be called via tbl_update to change data values in a table
(input).

freefun: A function which will be called for each referenced table during tbl_free_all to
free up any memory allocated by the table access functions and associated with that table
(input).

donefun: A function which will be called at the end of tbl_free_all to perform any other
cJeanup when database access is no longer needed (input).

tbl_count (declaration in tbl . h, definition in tbl. c)
int tbl_count (va_alist)

This function parses the commands and looks up the named table, then calls a mode-specific funtion of
the fOJm mcount (table, count, unique, col. conditions, tbCnumconditions) to count the number of rows
of data in the table which meet specified conditions.

Argument:
va_alist: A variable length argument list; the required elements are tblname (char *). count (int

*), is_unique (int), colname (char *); the remaining elements are passed to
parse_tbl_commands as the second argument (input).

Returns FALSE if an error is encountered in parsing the argument list; otherwise the return value is the
result of the mode-specific function call.

tbl_delete (declaration in tbl . h, definition in tbl . c)
int tbl_delete (va_alist)

This function parses the' commands and looks up the named table, then calls a mode-specific funtion of
the form mdel (table, conditions, tbCnumconditions) to delete one or more rows of data from the table.

Argument:

va_alist: A variable length argument list; the required element is tblname (char *); the
remaining elements are passed to parse_tbl_commands as the second argument
(input).

115

Returns FALSE if an error is encountered in parsing the argument list; otherwise the return value is the
result of the mode-specific function call.

tbl_free_all (declaration in tbl . h, definition in tbl. c)
void tbl_free_all ()

This function frees any allocated memory and calls the appropriate mode functions to do anything
required to terminate table access.

tbl_get (declaration in tbl . h, definition in tbl . c)
int tbl_get (va_alist)

This function parses the commands and looks up the named table, then calls a mode-specific funtion of
the form mget (table, first, eof, unique, sortop, sortcol, commands, tbCnumcommands, conditions,
tbl_numconditions) to retrieve data from the table.

Argument:
va_alist: A variable length argument list; the required elements are tblname (char *), first (inO,

eof (int *), unique (int), sortop (int), and sortcol (char *); the remaining elements are
passed to parse_tbl_commands as the second argument (input).

Returns FALSE if an error is encountered ill parsing the argument list; otherwise the return value is the
result of the mode-specific function call.

tbl_new (declaration in tbl . h, definition in tbl . c)
int tbl_new (va_alist)

This function allocates and defines a new table structure.

Argument:
va_alist: A variable length argument list; the required elements are intname (char *), extname

(char *), mode (int), and DB_name (char *); the remaining elements, intcolname (char
*), extcolname (char *), and data_type (int) are repeated for each column in the table
(input).

Returns TRUE if all went well or FALSE if there were any problems.

tbl-print (declaration ill tekbase. h, definition in tekbase. c)

int tbl-print (char *tablename, char *testid)

This function.

Arguments:
tablename:
testid:

Returns TRUE if OK or FALSE if an error is detected.

tbl-print_all (declaration and defmition in tekbase. c)

int tbl-print_all (char *tablename)

This function .

Argument:

116

Returns FALSE if an error is encountered in parsing the argument list; otherwise the return value is the
result of the mode-specific function call.

tbl_free_all (declaration in tbl . h, definition in tbl. c)
void tbl_free_all ()

This function frees any allocated memory and calls the appropriate mode functions to do anything
required to terminate table access.

tbl_get (declaration in tbl . h, definition in tbl . c)
int tbl_get (va_alist)

This function parses the commands and looks up the named table, then calls a mode-specific funtion of
the form mget (table, first, eof, unique, sortop, sortcol, commands, tbCnumcommands, conditions,
tbl_numconditions) to retrieve data from the table.

Argument:
va_alist: A variable length argument list; the required elements are tblname (char *), first (inO,

eof (int *), unique (int), sortop (int), and sortcol (char *); the remaining elements are
passed to parse_tbl_commands as the second argument (input).

Returns FALSE if an error is encountered ill parsing the argument list; otherwise the return value is the
result of the mode-specific function call.

tbl_new (declaration in tbl . h, definition in tbl . c)
int tbl_new (va_alist)

This function allocates and defines a new table structure.

Argument:
va_alist: A variable length argument list; the required elements are intname (char *), extname

(char *), mode (int), and DB_name (char *); the remaining elements, intcolname (char
*), extcolname (char *), and data_type (int) are repeated for each column in the table
(input).

Returns TRUE if all went well or FALSE if there were any problems.

tbl-print (declaration ill tekbase. h, definition in tekbase. c)

int tbl-print (char *tablename, char *testid)

This function.

Arguments:
tablename:
testid:

Returns TRUE if OK or FALSE if an error is detected.

tbl-print_all (declaration and defmition in tekbase. c)

int tbl-print_all (char *tablename)

This function .

Argument:

116

tablename:

Returns TRUE.

tbl-put (declaration in tbl. h, definition in tbl . c)
int tbl-put (va_alist)

This function parses the commands and looks up the named table, then calls a mode-specific funtion of
the fonn mput (table, commands, tbl_numcommands) to add a row of data to the table.

Argument:

va_alist: A variable length argument list; the required element is tblname (char *); the
remaining elements are passed to parse_tbl_commands as the second argument
(input).

Returns FALSE if an error is encountered in parsing the argument list; otherwise the return value is the
result of the mode-specific function call.

tbl_tekbase_init (declaration in tbl . h, definition in tbl. c)

int tbl_tekbase_init ()

This function initializes mode hooks and parameters for TekBase.

tbl_update (declaration in tbl . h, definition in tbl. c)
int tbl_update (va_alist)

This function parses the commands and looks up the named table, then calls a mode-specific funtion of
the fonn mupdate (table, commands, tbCnumcommands, conditions, tbCnumconditions) to update data
in the table.

Argument:
va_alist: A variable length argument list; the required element is tblname (char *); the

remaining elements are passed to parse_tbl_commands as the second argument
(input).

Returns FALSE if an error is encountered in parsing the argument list; otherwise the return value is the
result of the mode-specific function call.

tekbase_check (declaration in tekbase. h, definition in tekbase. c)

int tekbase_check (char *intname)

This function ensures that the process is connected to TekBase .and the database for the current table is
open.

Argument:
intname: lntena! name of a table (input)

Returns TRUE if OK or FALSE if any problems occur.

tekbase_close (declaration in tekbase . h, definition in tekbase. c)

int tekbase_close ()

This function closes the current TekBase database. It returns TRUE if the close is successful or FALSE if
any errors are detected.

117

tablename:

Returns TRUE.

tbl-put (declaration in tbl. h, definition in tbl . c)
int tbl-put (va_alist)

This function parses the commands and looks up the named table, then calls a mode-specific funtion of
the fonn mput (table, commands, tbl_numcommands) to add a row of data to the table.

Argument:

va_alist: A variable length argument list; the required element is tblname (char *); the
remaining elements are passed to parse_tbl_commands as the second argument
(input).

Returns FALSE if an error is encountered in parsing the argument list; otherwise the return value is the
result of the mode-specific function call.

tbl_tekbase_init (declaration in tbl . h, definition in tbl. c)

int tbl_tekbase_init ()

This function initializes mode hooks and parameters for TekBase.

tbl_update (declaration in tbl . h, definition in tbl. c)
int tbl_update (va_alist)

This function parses the commands and looks up the named table, then calls a mode-specific funtion of
the fonn mupdate (table, commands, tbCnumcommands, conditions, tbCnumconditions) to update data
in the table.

Argument:
va_alist: A variable length argument list; the required element is tblname (char *); the

remaining elements are passed to parse_tbl_commands as the second argument
(input).

Returns FALSE if an error is encountered in parsing the argument list; otherwise the return value is the
result of the mode-specific function call.

tekbase_check (declaration in tekbase. h, definition in tekbase. c)

int tekbase_check (char *intname)

This function ensures that the process is connected to TekBase .and the database for the current table is
open.

Argument:
intname: lntena! name of a table (input)

Returns TRUE if OK or FALSE if any problems occur.

tekbase_close (declaration in tekbase . h, definition in tekbase. c)

int tekbase_close ()

This function closes the current TekBase database. It returns TRUE if the close is successful or FALSE if
any errors are detected.

117

tekbase_connect (declaration in tekbase . h, definition in tekbase. c)

int tekbase_connect ()

This function attempts to connect to TekBase. It uses tIle environment variable QYHOST to determine the
database server. It returns TRUE if the connection is successful or FALSE otherwise.

tekbase_disconnect (declaration in tekbase . h, definition in tekbase. c)

int tekbase_disconnect ()

This function disconnects from TekBase. It always returns TRUE.

tekbase_do_tql (declaration in tekbase. h, definition in tekbase. c)

int tekbase_do_tql (char *tqlstring)

This function executes an arbitrary TQL command.

Argument:
tqlstring: The TQL command to execute (input).

Returns TRUE if there are no errors or FALSE if any errors are detected.

tekbase_open (declaration in tekbase . h, definition in tekbase. c)

int tekbase_open (char *DB)

This function attempts to open a specified TekBase database. If the program is not currently connected to
TekBase, an attempt will be made to connect rust.

Argument:
DB: Name of database to be opened (input).

Returns TRUE if the open is successful or FALSE if any errors are detected.

tkbcount (declaration and definition in tekbase. c)

static int tkbcount (struct tbl_info *tbl, int *count, int unique,
int column, struct tbl_cornmand *conditions,
int numconditions)

This function handles execution of tbCcount for TekBase tables.

Arguments:
tbl: The current table (input).
count: Resulting count (output).
unique: Whetl\er duplicate values should be counted (input).
column: User column number (I-based) to use for tlle value-count (input).
conditiops: The current list of conditions (input).
numconditions: The number of conditions in the list (input).

Returns TRUE if OK or FALSE if any errors are detected.

tkbdel (declaration and definition in tekbase. c)

static int tkbdel (struct tbl_info *tbl,

118

tekbase_connect (declaration in tekbase . h, definition in tekbase. c)

int tekbase_connect ()

This function attempts to connect to TekBase. It uses tIle environment variable QYHOST to determine the
database server. It returns TRUE if the connection is successful or FALSE otherwise.

tekbase_disconnect (declaration in tekbase . h, definition in tekbase. c)

int tekbase_disconnect ()

This function disconnects from TekBase. It always returns TRUE.

tekbase_do_tql (declaration in tekbase. h, definition in tekbase. c)

int tekbase_do_tql (char *tqlstring)

This function executes an arbitrary TQL command.

Argument:
tqlstring: The TQL command to execute (input).

Returns TRUE if there are no errors or FALSE if any errors are detected.

tekbase_open (declaration in tekbase . h, definition in tekbase. c)

int tekbase_open (char *DB)

This function attempts to open a specified TekBase database. If the program is not currently connected to
TekBase, an attempt will be made to connect rust.

Argument:
DB: Name of database to be opened (input).

Returns TRUE if the open is successful or FALSE if any errors are detected.

tkbcount (declaration and definition in tekbase. c)

static int tkbcount (struct tbl_info *tbl, int *count, int unique,
int column, struct tbl_cornmand *conditions,
int numconditions)

This function handles execution of tbCcount for TekBase tables.

Arguments:
tbl: The current table (input).
count: Resulting count (output).
unique: Whetl\er duplicate values should be counted (input).
column: User column number (I-based) to use for tlle value-count (input).
conditiops: The current list of conditions (input).
numconditions: The number of conditions in the list (input).

Returns TRUE if OK or FALSE if any errors are detected.

tkbdel (declaration and definition in tekbase. c)

static int tkbdel (struct tbl_info *tbl,

118

struct tbl_cornrnand *conditions,
int numconditions)

This fUllction handles execution of the tbCdelete function for TekBase tables.

Arguments:
tbl: The current table (input).
conditions: The current list of conditions (input).

numconditions: The number of conditions in the list (input).

Returns 1RUE if OK or FALSE if any errors are detected.

tkbdone (declaration and definition in tekbase . c)

static int tkbdone ()

This function closes the TekBase database and disconnects. It always returns TRUE.

tkbfree (declaration and definition in tekbase. c)

static int tkbfree (struct tbl_info *tbl)

This function is not used with TekBase.

Arguments:

tbl: Tbe current table (input).

Returns 1RUE.

tkbget (declaration and definition in tekbase . c)

static int tkbget (struc~ tbl_info *tbl, int first, int *eof,
int unique, int sortop, char *sortcol,
struct tbl_command *commands, int numcommands,
struct tbl_command *conditions,
int numconditions)

This function bandIes the one-row-at-a-time retrieval of tbl-&et, implemented through the use of the
TekBase FETCH ... WHERE command.

Arguments:

tbl: The current table (input).
first: Boolean indicating if this is the frrst call for the current query (input).

eof: Flag set to 1RUE when no more data rows are available (output).

unique: Whether rows retrieved should be unique (input).
sortop: Whether to sort values, FALSE, T ASC, or TDESC (input).

sortco}: The column to sort on (input).

commands: The current list of commands (input).

numcommands: The number of commands in the list (input).

conditions: The current list of conditions (input).

numconditions: The number of conditions in the list (input).

Returns 1RUE if OK or FALSE if any errors are detected.

119

struct tbl_cornrnand *conditions,
int numconditions)

This fUllction handles execution of the tbCdelete function for TekBase tables.

Arguments:
tbl: The current table (input).
conditions: The current list of conditions (input).

numconditions: The number of conditions in the list (input).

Returns 1RUE if OK or FALSE if any errors are detected.

tkbdone (declaration and definition in tekbase . c)

static int tkbdone ()

This function closes the TekBase database and disconnects. It always returns TRUE.

tkbfree (declaration and definition in tekbase. c)

static int tkbfree (struct tbl_info *tbl)

This function is not used with TekBase.

Arguments:

tbl: Tbe current table (input).

Returns 1RUE.

tkbget (declaration and definition in tekbase . c)

static int tkbget (struc~ tbl_info *tbl, int first, int *eof,
int unique, int sortop, char *sortcol,
struct tbl_command *commands, int numcommands,
struct tbl_command *conditions,
int numconditions)

This function bandIes the one-row-at-a-time retrieval of tbl-&et, implemented through the use of the
TekBase FETCH ... WHERE command.

Arguments:

tbl: The current table (input).
first: Boolean indicating if this is the frrst call for the current query (input).

eof: Flag set to 1RUE when no more data rows are available (output).

unique: Whether rows retrieved should be unique (input).
sortop: Whether to sort values, FALSE, T ASC, or TDESC (input).

sortco}: The column to sort on (input).

commands: The current list of commands (input).

numcommands: The number of commands in the list (input).

conditions: The current list of conditions (input).

numconditions: The number of conditions in the list (input).

Returns 1RUE if OK or FALSE if any errors are detected.

119

tkbput (declaration and definition in tekbase . c)

static int tkbput (struct tbl_info *tbl,
struct tbl_command *commands, int numcommands)

This function handles execution of the tbLput function for TekBase tables.

Arguments:
tbl: The current table (input).
commands: The current list of commands (input).
numcommands: The number of commands in the list (input).

Returns TRUE if OK or FALSE if any errors are detected.

tkbupd (declaration and definition in tekbase. c)

static int tkbupd (struct tbl_info *tbl,
struct tbl_command *commands, int numcommands,
struct tbl_command *conditions,
int numconditions)

This function handles execution of the tbLupdate function for TekBase tables.

Arguments:
tbl: The current table (input).
commands: The current list of commands (input).
numcommands: The number of commands in the list (input).
conditions: The current list of conditions (input).
numconditions: The number of conditions in the list (input).

Returns TRUE if OK or FALSE if any errors are detected.

tql_check_types (declaration and definition in tekbase. c)

static int tql_check_types (struct tbl_info *tbl,
struct tbl_command *commands,
int numcommands)

This fUllction looks up the TekBase types for the commands and sets the global variables TQL_types and
num_selecLParams.

Arguments:
tbl: The current table (input).
commands: The current list of TBL commands (input).
numcommands; The number of commands in the current list, or if this is specified as

ALLCOLUMNS, then commands are ignored and the types for all columns in the table
are retrieved (input) ..

Returns TRUE if OK or FALSE if any errors are detected.

120

tkbput (declaration and definition in tekbase . c)

static int tkbput (struct tbl_info *tbl,
struct tbl_command *commands, int numcommands)

This function handles execution of the tbLput function for TekBase tables.

Arguments:
tbl: The current table (input).
commands: The current list of commands (input).
numcommands: The number of commands in the list (input).

Returns TRUE if OK or FALSE if any errors are detected.

tkbupd (declaration and definition in tekbase. c)

static int tkbupd (struct tbl_info *tbl,
struct tbl_command *commands, int numcommands,
struct tbl_command *conditions,
int numconditions)

This function handles execution of the tbLupdate function for TekBase tables.

Arguments:
tbl: The current table (input).
commands: The current list of commands (input).
numcommands: The number of commands in the list (input).
conditions: The current list of conditions (input).
numconditions: The number of conditions in the list (input).

Returns TRUE if OK or FALSE if any errors are detected.

tql_check_types (declaration and definition in tekbase. c)

static int tql_check_types (struct tbl_info *tbl,
struct tbl_command *commands,
int numcommands)

This fUllction looks up the TekBase types for the commands and sets the global variables TQL_types and
num_selecLParams.

Arguments:
tbl: The current table (input).
commands: The current list of TBL commands (input).
numcommands; The number of commands in the current list, or if this is specified as

ALLCOLUMNS, then commands are ignored and the types for all columns in the table
are retrieved (input) ..

Returns TRUE if OK or FALSE if any errors are detected.

120

55MB Post-Test Diagnostic System
Systems Section

Final Report
Attachment #3

Transcripts of Interviews With SSME Data Analysts

55MB Post-Test Diagnostic System
Systems Section

Final Report
Attachment #3

Transcripts of Interviews With SSME Data Analysts

3-/

Erik Sander
4/6/92

Overview of SSME Data Analysis

Org Chart (see attached)
• Chief engineer - Otto Goetz; usually interface with his staff regularly.

Structures guys
Dynamics Lab
Electronics & Controls Lab
Materials Lab
Propulsion Lab (John McCarty); Propulsion systems; EP51 (Jerry Reitas??); Har1an Pratt­

Branch chief of EP52

• Martin Marietta
David Vaughan (spending 80% of his time these days with NLS, so don' see a lot of him; chief

engineer for Martin's NLS effort).
Erik Sander
Do everyday data analysis.
Jeff Cornelius - AI & data processing guy
Rob Smith - dynamics
Two Areas:

Solid propulsion (Bob Bowman)
Liquid propulsion

Dave Foust - Flight data
Data Analysis (Joe Leahy)
Model Analysis (Brian Piekarsky)

Data reduction
Engine modeling (component & system)

Jean Tucker - Model group & AI stuff with Jeff

• Components Branches
Turbo
Combustion Devices
Valves

• Data Review
Erik's group respcnsible for system work; overall interaction of entire machine, valves, etc.
Other groups act as specialist groups; they all look at the data too, but in a more focused
sense.

Documentation (packages assembled &Jor used by Martin guys)
SSM E Data Analysis Handbook

What to look for, how to look for it, procedures, etc.
(NOTE: I have a copy of this; it primarily consists of the high-level steps to go
through in performing an analysis, Le., what data packages to look at, what
analysis programs to run, etc., for different types of tests and for flight).

Flight Handbook

ICDs·
LCCs

What you typically see on flight, why pressures go up & down, etc.

Purge Sequences (1,2,3,4, engine ready mode, START)
Where purging is done & why, where you see it in the data, etc.

SSME Orientation Manual /
Good for schematics & pictures

Eli< Sarder 46 Page 1

3-/

Erik Sander
4/6/92

Overview of SSME Data Analysis

Org Chart (see attached)
• Chief engineer - Otto Goetz; usually interface with his staff regularly.

Structures guys
Dynamics Lab
Electronics & Controls Lab
Materials Lab
Propulsion Lab (John McCarty); Propulsion systems; EP51 (Jerry Reitas??); Har1an Pratt­

Branch chief of EP52

• Martin Marietta
David Vaughan (spending 80% of his time these days with NLS, so don' see a lot of him; chief

engineer for Martin's NLS effort).
Erik Sander
Do everyday data analysis.
Jeff Cornelius - AI & data processing guy
Rob Smith - dynamics
Two Areas:

Solid propulsion (Bob Bowman)
Liquid propulsion

Dave Foust - Flight data
Data Analysis (Joe Leahy)
Model Analysis (Brian Piekarsky)

Data reduction
Engine modeling (component & system)

Jean Tucker - Model group & AI stuff with Jeff

• Components Branches
Turbo
Combustion Devices
Valves

• Data Review
Erik's group respcnsible for system work; overall interaction of entire machine, valves, etc.
Other groups act as specialist groups; they all look at the data too, but in a more focused
sense.

Documentation (packages assembled &Jor used by Martin guys)
SSM E Data Analysis Handbook

What to look for, how to look for it, procedures, etc.
(NOTE: I have a copy of this; it primarily consists of the high-level steps to go
through in performing an analysis, Le., what data packages to look at, what
analysis programs to run, etc., for different types of tests and for flight).

Flight Handbook

ICDs·
LCCs

What you typically see on flight, why pressures go up & down, etc.

Purge Sequences (1,2,3,4, engine ready mode, START)
Where purging is done & why, where you see it in the data, etc.

SSME Orientation Manual /
Good for schematics & pictures

Eli< Sarder 46 Page 1

Analysis Procedures Flow Charts (see attached)
1. Get pretest data (hours to few days prior to test; usu 1/2 to 1 day)

A. Rocketdyne's assessment of the previous test
B. What they're going to do on the next test
-> Analysts obtain from this the following:

• Select comparison tests for data book
Based mainly on hardware; when did it run last, etc. Mainly gives
an "eyeballer" to check the next test against (a reference point).
What's up, what's down; how the engine changed between the two
tests. Usu pretty obvious (e.g., 15th run for same engine on same
stand). Want to take possible reasons for change out (i.e., remove
as many possible sources of behavior deviation as possible).

• Research hardware history.
• Prepare model input decks with engine characteristics to allow proper

reduction of test data.
• Special requests to Boeing for runstream

2. Get phone call: just ran hot test. Info about duration and any FIOs.
Model Group:

• Get 1 s avg file from BCCS (or self-made)
• Run data reduction
(Would like to see model stuff integrated with diagnostic system at some
point; think it would provide valuable information.)

Analysis Group:
• Wait for ALL data to be plotted (data books) so don't have to wait for
each plot needed on request.
• Look for effects of software & hardware changes

e.g., Constants in controller which change MR in engine can effect
LOX turbine temps, fuel turbine temps; operation of the who~e
engine.

• Start looking at data. Usu 1-4 people. One person in charge of each
test (Randy responsible for two test stands, Taylor responsible for one).
• Create "Master Observation List" of anomalies (not necc problems; just
unexpected obsevations)- very informal. Don't start explaining them
yet, just list them for later analysis.
• Start trying to explain observations. Do I have a hardware or software
change which would account for the gain? Most observations are easily
explained and not even documented (e.g., if a software constant change
accounts entirely for an observation).
• Extent of analysis depends entirely on priority of test and when the
program office wants an answer. If it's an important test or something
major happended, might have a review only a few hours after the test.
• Person in charge of test stand directs the analysis of any tests on that
stand (e.g., might farm work out to Eric).
• Anomaly investigation order a function of two parameters: priority
and estimated time to resolve. If an anomaly can be explained very
quickly, will often do it first just to get it out of the way. Can usually
tell when an anomaly is going to take a lot of time.
• When an anomaly is resolved it is just crossed off the list.

3. Set up data review - Informal meeting with program office. Usually several hours
to a day after the test.

• Example of a major anomaly: Setting at steady-state and fuel turbine temp suddenly
jumps up 100 degrees. Severity of anomaly not necessarily a function of the
magnitude of the deviations.

Erk Sarder 416 PaJ9 2

Analysis Procedures Flow Charts (see attached)
1. Get pretest data (hours to few days prior to test; usu 1/2 to 1 day)

A. Rocketdyne's assessment of the previous test
B. What they're going to do on the next test
-> Analysts obtain from this the following:

• Select comparison tests for data book
Based mainly on hardware; when did it run last, etc. Mainly gives
an "eyeballer" to check the next test against (a reference point).
What's up, what's down; how the engine changed between the two
tests. Usu pretty obvious (e.g., 15th run for same engine on same
stand). Want to take possible reasons for change out (i.e., remove
as many possible sources of behavior deviation as possible).

• Research hardware history.
• Prepare model input decks with engine characteristics to allow proper

reduction of test data.
• Special requests to Boeing for runstream

2. Get phone call: just ran hot test. Info about duration and any FIOs.
Model Group:

• Get 1 s avg file from BCCS (or self-made)
• Run data reduction
(Would like to see model stuff integrated with diagnostic system at some
point; think it would provide valuable information.)

Analysis Group:
• Wait for ALL data to be plotted (data books) so don't have to wait for
each plot needed on request.
• Look for effects of software & hardware changes

e.g., Constants in controller which change MR in engine can effect
LOX turbine temps, fuel turbine temps; operation of the who~e
engine.

• Start looking at data. Usu 1-4 people. One person in charge of each
test (Randy responsible for two test stands, Taylor responsible for one).
• Create "Master Observation List" of anomalies (not necc problems; just
unexpected obsevations)- very informal. Don't start explaining them
yet, just list them for later analysis.
• Start trying to explain observations. Do I have a hardware or software
change which would account for the gain? Most observations are easily
explained and not even documented (e.g., if a software constant change
accounts entirely for an observation).
• Extent of analysis depends entirely on priority of test and when the
program office wants an answer. If it's an important test or something
major happended, might have a review only a few hours after the test.
• Person in charge of test stand directs the analysis of any tests on that
stand (e.g., might farm work out to Eric).
• Anomaly investigation order a function of two parameters: priority
and estimated time to resolve. If an anomaly can be explained very
quickly, will often do it first just to get it out of the way. Can usually
tell when an anomaly is going to take a lot of time.
• When an anomaly is resolved it is just crossed off the list.

3. Set up data review - Informal meeting with program office. Usually several hours
to a day after the test.

• Example of a major anomaly: Setting at steady-state and fuel turbine temp suddenly
jumps up 100 degrees. Severity of anomaly not necessarily a function of the
magnitude of the deviations.

Erk Sarder 416 PaJ9 2

• Spend most of our time trying to determine what's causing what. Trying to find our
way back to the root cause of the problem.

• Reason a lot with gains. If this goes up, that should go up, this should go down, etc.
• Usually have larger gains "near" the source of the anomaly (the rest of the system

tends to attenuate the effects).
• Probably half of the anomalies resolved before you finish getting through the data

package.

Phases of Engine Operation
• Phases of engine operation significant to data analysis: pre-start, start, mainstage,

shutdown, post-shutdown.
• In all phases the primary goal is to ensure safe operation of the engine, and determine

if it is ready for another firing.
• During pre-start also interested in data. What is the facility doing to the engine? Is it

properly preparing the engine for firing? Is everything purged properly so that the
engine is ready to receive the cryogens and start in a safe manner?

• Worst thing you can do is blow up an engine. Second worst thing you can do is shut an
engine down prematurely, because it becomes dead-weight on the shuttle. Middle
ground is to operate in any mode in which the engine is producing SQ.Ille. thrust, but at
least it's not acting completely like a dead-weight (i.e. lockup).

• Mainstage. Primary Objective is to determine if there is something which would
prevent you from running the engine again in a safe manner. Secondarily is to see if
the test objectives were met.

• Shutdown objectives. Two different shutdown modes: pneumatic and hydraulic
(hydraulic is normal; pneumatic is emergency backup shutdown system). Pneumatic
powered by Helium on the shuttle. Also look for "cracked frisbee". Frisbee can get
cracks in it allowing LOX to get above it at shutdown, raising turbine temps. Did the
engine come down to a stable point? If fuel-side lockup is performed, check to make
sure fuel isn't goint where it shouldn't.

• Three ways to shut the engine down on test: controller redlines, facility redlines, and
observer (e.g., if he sees a fire).

ErI< Samer 416 PaJe 3

• Spend most of our time trying to determine what's causing what. Trying to find our
way back to the root cause of the problem.

• Reason a lot with gains. If this goes up, that should go up, this should go down, etc.
• Usually have larger gains "near" the source of the anomaly (the rest of the system

tends to attenuate the effects).
• Probably half of the anomalies resolved before you finish getting through the data

package.

Phases of Engine Operation
• Phases of engine operation significant to data analysis: pre-start, start, mainstage,

shutdown, post-shutdown.
• In all phases the primary goal is to ensure safe operation of the engine, and determine

if it is ready for another firing.
• During pre-start also interested in data. What is the facility doing to the engine? Is it

properly preparing the engine for firing? Is everything purged properly so that the
engine is ready to receive the cryogens and start in a safe manner?

• Worst thing you can do is blow up an engine. Second worst thing you can do is shut an
engine down prematurely, because it becomes dead-weight on the shuttle. Middle
ground is to operate in any mode in which the engine is producing SQ.Ille. thrust, but at
least it's not acting completely like a dead-weight (i.e. lockup).

• Mainstage. Primary Objective is to determine if there is something which would
prevent you from running the engine again in a safe manner. Secondarily is to see if
the test objectives were met.

• Shutdown objectives. Two different shutdown modes: pneumatic and hydraulic
(hydraulic is normal; pneumatic is emergency backup shutdown system). Pneumatic
powered by Helium on the shuttle. Also look for "cracked frisbee". Frisbee can get
cracks in it allowing LOX to get above it at shutdown, raising turbine temps. Did the
engine come down to a stable point? If fuel-side lockup is performed, check to make
sure fuel isn't goint where it shouldn't.

• Three ways to shut the engine down on test: controller redlines, facility redlines, and
observer (e.g., if he sees a fire).

ErI< Samer 416 PaJe 3

• "
~ME ENGINEERING RESfONSlBlL111IS @ MSFC

CEN'TER DIRB::TOR
J.Lee

J. ~ (DapIIJ)
STR~ a.j>YNAMlg.,~ J. /R.:,.. I

CONTItOL SYSTEMS (EDII)

SCIENCE a EN\.._ H.Sc:d"Jdd

" MOCHANICAL SYSTEMS (EDt") o.~
P. VIIJdy Ob*r Dyaantics)

~ACBTRANSroIlTAl'JOtIj I E. &rt.d I J. o.dm (A TO) R. . It. lana (Swmhp) • STRUCI1JRAL ANALYStS (ED21)
R • .JeweD

I COMPONENT ASSFSSMENr
H.8-..- ~

SHUI11.E PROmct'OFPICE J. McBride (o,-ics.)
P.J..:. ~ AI)

A.McCoa& (SAOI) T. Fionad {DJ...mc.. A2)
T. Zabd& <D[.; . a. Bt)

55MB I'ROJECTOFPICE (SAl1) T.1t£JIIOIda
.. Mia III BI'eCICe (S~TD)
R.--(AdinB ~) J. wm-b (It!; 1\
C.C-(A1D) DURABILrrY ANALYSIS D. 6Iww4a (Bate' Nt MpDl)

I'\."=--~ It TjIIIwJdcr (CInap hi)
. G. Dill (SSe)

V iwat PIdBI Bc.dtl R. DMOifUr\ (SIlas)

.~

"
~
\'..

'Q
i'

~

Its--. (s..s. ATD)
D.1Ia'4Ia I C.1'nnt:t (Am)

COMP R..tJID DYNAMICS (fDl2) I L Sd-.x:wfoofa-
Ilo-ia

SSMl! OIIF.P ENGINP.ER OfFICe (EEl.)
o. 0.0': f?t4n.,;-...,

D. (DIIpwtJ)
: R. We ria" ...

1NIIUtA1lON (1£1.1) . 0fERA11ONS~) . ~ c.,.. R. W-.cr (Ac6nc .
:, w (lCD.sat. PRaI) Molel u_(V--,o.:ts)
. DIriIIw-. (MIle b' ., . L GallI (A)

Ls.1a (DC) . lM.O.SIsU1h~J
I~ a.A1IIIil (RIIIt; SDt.JIRC8).U· D.Pr,.(ecn ... Dmca
'#' .B. TaM (ltlal.JlMBA/CIL)·.,\-e-;<· .,. B.a.tJe~~ ~ . ..: ~~ . T. aa.e (1Qd. OMISD)' ::";· .. ·yi;;·,' 0
:J; T: t.o.eIl (RId. ROfJ) .. ,'" ~ ~~.' KIt,.-~
;.~~. M.~ (ltd; PRa lCOFI),,..,:, J. ~ (m.t; ri"eot,. CAR)
.~ ~. J.IW (Itt; IIOSC) . " /,.'; .. ~." :,-,. M. ~ (Itld; A~)

:,\ ;:ADVANCED ENGR (m!7:5f7: :~.,<. T.GriflisI (aI; MRS I EItB) ,r .;;'.,LO".·.'i;~I~{~;:~'<:· PRODtJCI1ON £NGR (EE24)

,~, 11.1·"· .. &\,1D.DnlV ;;.,;". r°=" ':-:' :.' c. ~ JIMp....,_.. B. (CcIIIlhDr:..GS£l
t· "NIle,s. =:e- (1"""::' J. = ~adiI ... ,)
?> '. ·\·L (W- ""'.. J. ~PoIl)
;.;~ .. ,V.Y_ ('I1B STA ..);y'· .. 0.8-.. (R.bI;1Wbo~
.~ ... 'so.......... t~~ •. , 1t.~.atW: i ',':': • lAR ••

'"

I

INroRMATION tl!1Sim~T"-~~~1UIlY
GUIDANCe/CONTROL (BB21) COMPUIERS (BB31)
H.o.nat J. CJIIb1, 1M. TQ) (DepItJ) I SENSORS (EB22) MISSION SYSTeMS (E832)

P.GoOey O.Scak
W.'11aJ..-_ lR. M.r.w:,

~ ~ L IJI&rIIIl
MA'IFJUALS ~ PROCESSES LAB SOFTWARe (EMl)

P. SdNaa I C.ltey (Eml) J.Lw:M

r~ MAlBUAIS (IKII)
SYSTEMS SOFTWARE (EB42)
R.~ IC.--ANALYSIS (EH22) R.Jt«dhMa

PIn J.B~
S. Gadz I III t..nIMIia 1IlSct. I D.I (A1D)

1
PROPULSION LABORAlORY (EFOl)_~

I v-=-' I H. ,II,oJ

~JON SYS11!MS (ErS1)
J. J O. L,.. (Dr:pIty)

(X)MJI()NENT DEVELOI'MENT
C. c-diwa III s.,Jy (Dqay) (EP61)

~ PROPuLSION (P.PS7) 'I1JRBO MACH I cor.. DEVD3
o.YCMII ~

~t::;-=r~ It s.-.. (1\Iboiwa:JI&a). A
G. W'i1IDer'(1'-" •• Itiau) c.Sia&ir ~ M.~(HPFI') M.1a (ERB.TIB.AlD) O. Gqe(HPOI')

L Uup.d ~ TIB) J.C-(ATD)
D. <WIy 0pa1lliGa)

Me ~11) LM.Ida~) £ TcpooI lD) J.B_ (Feiw...x.:) Itc-(OoMIotcw. Dmcea)
M.ZoWz (Ftahs.t-t) o.CWdwidte: o.ma.) D..,.... (SftfldlifJ; s,-s) J. DeaIIis(Com~. !Mica)
...... Marida(MMC) D.B __ (HeIlb' ta)
B.s-k3;:!. J (MU) 1.......,.)

5. ($==:'
T ~AI) J. ... (S .. "" A2) D.Jtjdwda "." .. 0.:.0.)
LIhRt tsJ Bl) '. IBlIAMCAL SYS1EMS (E:ftD) B.AdIiuti ~ Bo:hDoe) . T.JhcIIIeI
Il. Feat ~ PtduiiWlCe' CONTROL MB:JIANISMS(I!l'6l) a.o..a (PC6aoa :~).' " .
T. T~ (Pbfow. _= e)" ". .J.
J. c..--. OIOSC) '.", '1 •. 1');: 1= 0.)

PI!RFORMANCI! ANALYSIS . J.......).
, L <D-) .

IL~ (EPS»' PROPtJl.SION''IEST (BI'11) D. B~ C,MPSPaf'oa_tcc)
II. 'n:pooI/B.o.uM(DIpof,r). . c.ScWw I SYS1EMS TEST (EPTl.) .

I.
.......... (TIB) .

nIlS CHART U A

~

I

•

.. !

.r,~.

.:~
~ ... ~:;.

"

.)~J~i
:($

'!~"

~ ,
",

• "
~ME ENGINEERING RESfONSlBlL111IS @ MSFC

CEN'TER DIRB::TOR
J.Lee

J. ~ (DapIIJ)

55MB I'ROJECTOFPICE (SAl1)
.. Mia
R.--<AdinB ~)
C.C-(A1D)
D. 6Iww4a (Bate' Nt MpDl)
It. TjIIIwJdcr (CInap hi)
G. Dill (SSe)
V.... at PIdBI Bc.dI

CONTItOL SYSTEMS (EDII)
H.Sc:d"Jdd

" MOCHANICAL SYSTEMS (EDt")
P. VIIJdy Ob*r Dyaantics)

I E. &rt.d I J. o.dm (A TO)
It. lana (Swmhp)

STRUCI1JRAL ANALYStS (ED21)
R • .JeweD
COMPONENT ASSFSSMENr
H.8-..- (ED23)
J. McBride co,-ics. ERB/MRB) -
P.J..:. ~ AI)
T. Fionad {DJ...mc.. A2)
T. Zabd& <D[.; . cs. Bt)
T.1t£JIIOIda
Il BI'eCICe (S~ ATD)
J. wm-b (It!; AID)

DURABILrrY ANALYSIS

I
Gi.~ cs--.~

R. DMOifUr\ (SIlas)
Its--. (s..s. ATD)
D.1Ia'4Ia I C.1'nnct (Am)

COMP R..tJID DYNAMICS (fDl2)

I L Sdacxafoora­
Ilo-ia

SSMl! OIIF.P ENGINP.ER OfFICe (EEl.)
o. 0.0:-f?t4n.,;-...,

D. (DIIpwtJ)
aWe r •

.. ,

GUIDANCe/CONTROL (BB21)
H.o.nat

I SENSORS (EB22)
P.GoOey
w. nomp ...

MA1FJUAl.S ~ PROCESSES LAB
P. SdNaa I c.ltey (ElIOt)

I
~~ MATFJUALS (l!R!1)

ANALYSIS (PJI22)
PIn

I S. Gadz III t..nIMIia
D.II (AlD)

COMPUIERS (BB31)
J. CJIIb1, 1M. TQ) (DepIty)
MISSION SYSTeMS (E832)
O.Scak

I R.M-..
M.r.w:,
Lh&nM

SOPTWAIm (EMl)
J.Lw:M
SYSTEMS SOFTWARE (EB42)
R.~

I
c.1IcJma (EO)
R.Jt«dhMa
J.B~
R.Scbr

PROPULSION LABORAlORY (EFOl)
1 V--' H.

nIlS CHART U A

•

~
.)

~

~

\)
\
,-

\

Attend pretest te lecon I Get Pretest

Select comparison tests and tr:II)':,fc'!
to BeSS for runstream modH ic..)t ion

Bui Id and update runstreams
for special objectives ;md in';t

Research hardware history using
lIotfire DIB and Tracer

Create temporary Reductlon Input rile

~
.)

\)
\
,-

\

Attend pretest te lecon I Get Pretest

Select comparison tests and tr:m':jfc'!
to BeSS for runstream modH ic.,)t ion

Bui Id and update runstreams
for special objectives ;md in';t

Research hardware history using
lIotfire DIB and Tracer

Create temporary Reductlon Input rile

~
~
~

-

HOTFIRE
-"'"

Plot special InstrumentJlIon t- --..
and review output

r- [valuate effects of software
or hardware changes

Run standard data evaluation
programs and review output r

Review Hunstream output for:
- Data validity
- Anom;)1 ie')

f1.llcll witll comp.lrlsons

~ --..
Coordinate Master Observat ion List

Ass i9rt observat IOns to
individuals for resolution

J
Coordinate data review time and place

Work .Inurll,llles .lnd

after consulting with pertlnant groups ~ observations to conc Ius ion
and update MOL ,

l' I\<:;rd~rnbll' [).lta nrvirw r>;)Ck;lQ~

Put out DJta Rev iew ca lis through
phone I ist and individually as reqd

r .l/: p"r t Jrl.trd P.1L) nf'V iew p.l(les
to ':,'")(,md "lIi P !' intere'3ted parties

Obtain one-second average files from:
BCSS

- Self made

Verify one-second average file
val idity / usability

Modify Reduction Input rile and
perform short trial reduct ion run

,
Check output for Invalid or ml~sing data
and resolve programm ing errors.

• Copy temporary Input File into permanant file
and run reduct Ion over ent ire test

f
Check reduction output to ensure exc lusion of
trans i ent data ,

Set up and run Trend Program
---y

Modify plot runstreams and plot
reduct Ion and trend output ,

Dependent on test, perform a rated run I ,
Work r('r(orm~mce Issues (IS necessary I ,

---{ rV:IlII.lt (. ·~ort W.lf'f' rer()lnmf'nrt.ll iOll'-_

-

HOTFIRE
-"'" Obtain one-second average files from:

Plot special InstrumentJlIon t-

and review output
--..

BCSS
- Self made

r- [valuate effects of software
or hardware changes Verify one-second average file

val idity / usability
Run standard data evaluation
programs and review output r

Review Hunstream output for: Modify Reduction Input rile and

- Data validity perform short trial reduct ion run

- Anom;)1 ie')
f1.llcll witll comp.lrlsons ,

Check output for Invalid or ml~sing data

~ and resolve programm ing errors.
--.. • Coordinate Master Observat ion List Copy temporary Input File into permanant file

and run reduct Ion over ent ire test

Ass i9rt observat IOns to f
individuals for resolution Check reduction output to ensure exc lusion of

J trans i ent data

Coordinate data review time and place
Work .Inurll,llles .lnd

,
after consulting with pertlnant groups ~ observations to conc Ius ion Set up and run Trend Program

and update MOL ---y , Modify plot runstreams and plot

l' I\<:;rd~rnbll' [).lta nrvirw r>;)Ck;lQ~
reduct Ion and trend output ,

Put out DJta Rev iew ca lis through
Dependent on test, perform a rated run I

phone I ist and individually as reqd
,

r .l/: p"r t Jrl.trd P.1L) nf'V iew p.l(les Work r('r(orm~mce Issues (IS necessary I
to ':,'")(,md "lIi P !' intere'3ted parties ,

---{ rV:IlII.lt (. ·~ort W.lf'f' rer()lnmf'nrt.ll iOll'-_

EstJblish lelecon to SSC and any
other pJrt ies upon request

"

'r>resent Data rieview pack;lge,
answering questions or tasking actior
Herne; as necf'ssary

,r
Meet with in MMC to discuss Data Rev iew
and action items taken

~,
I Update databases I

Work assigne(j action items to conclusion I

Close out tracking sheet

•
~ Database flIes

'\ ..

.......

Establish lelecon to SSC and any
other pJrt ies upon request

l'
'r>resent Data rieview pack;lge,
answering questions or tasking actior
items as necf'ssary

,r
Meet with in MMC to discuss Data Rev iew
and act ion iterns taken

I Update databases
~'r
I Work aSsigned "ction Items to conclusion

Close out tracking sheet

"
I Database flIes I

'\ ..

Brian Piekarski
4/6/92

Overview of SSME Data Modeling

• Brian is head of models group in Martin; primarily responsible for running power
balance (steady-state) model. He has five years experience doing this.

• Models run on an IBM mainframe, run after every test.
• Data from a typical test goes to PE then to IBM.
• In addition to data, have several other input files for model which specify, e.g., about

150 resistances. There is a standard input constants file, and another file which
overrides the default input constants (used to tweak the input for a particular
engine). Use these files specify unique configurations. For example, have recently
been doing development testing on a large throat MCC, which requires us to tweak the
model to reflect the change.

• Outputs information about the engine (1350 parameters). Primarily responsible for
determining performance. Isp, flowrates, thrust, etc. Give a report on these at
every data review. Occasionally there will be some turbomachinery issues, and we
will compute efficiencies and head and flow coefficients, etc. These values are all
plotted over time.
o For Flight engine qualification test: Calculate performance & then compute
performance at standard inlet conditions. Will also do this correction if an engine is
running way off nominal (to see if the inlet conditions accounted for the abnormality).
o There are flow calibration constants used in the controller to achieve a desired MR.
If the engine ran off-MR, then the program will compute what the flow constant
should be changed to for the next test to get the desired MR.

• Program is about 15,000 lines of FORTRAN.
• Old program. Not well-modularized.
• Two models: Steady-state (prediction and data reduction modules) & Digital transient

(does not use test data; just has time-lag coefficients, etc.). Brian is not very
familiar with transient model.

• For TTB have tried to compute what some of the internal resistances in the engine are,
since we have more. data. Resistances are normally an input to the model (there isn't
enough instrumentation on the SSME to compute them).

• Occasionally, for new components/configurations, will do some analysiS and try to
determine what the change in resistances or performance.

• We also trend performance, especially for non-flight hardware which can develop
leakages, etc., and have its performance trail off over time.

• Can select time range you want to run the power balance model for. Typically stay 5-
10 seconds away from power level changes. Have tried to run it over transient
portions (e.g., when we had failures) to see if we can get anything out of the data. We
would get some flowrates, etc., knowing that most of the other output is incorrect.
There· are many iterative convergance loops in the program which might not complete
if you ran it on transient data.

• Occasionally use the model as a diagnostic tool. Might be able to verify that there was
leak or blockage_ Had one engine that had an unusually high pressure/resistance due
to a weld bead in the line. When there is a failure, we try to use it as much as
possible. However, most failures occur during transients (START or SHUTDOWN) so
the model is of limited use.

• Had a failure on 81 several years ago which occured during steady-state. Typically
average the data every second for input to the model, but can run the model on every
data point, and might do this when there is an anomaly during steady-state. If there is
a turbopump failure, you might see speed drastically changing, and we would run the

Brian Piekarski 416 Page 1

Brian Piekarski
4/6/92

Overview of SSME Data Modeling

• Brian is head of models group in Martin; primarily responsible for running power
balance (steady-state) model. He has five years experience doing this.

• Models run on an IBM mainframe, run after every test.
• Data from a typical test goes to PE then to IBM.
• In addition to data, have several other input files for model which specify, e.g., about

150 resistances. There is a standard input constants file, and another file which
overrides the default input constants (used to tweak the input for a particular
engine). Use these files specify unique configurations. For example, have recently
been doing development testing on a large throat MCC, which requires us to tweak the
model to reflect the change.

• Outputs information about the engine (1350 parameters). Primarily responsible for
determining performance. Isp, flowrates, thrust, etc. Give a report on these at
every data review. Occasionally there will be some turbomachinery issues, and we
will compute efficiencies and head and flow coefficients, etc. These values are all
plotted over time.
o For Flight engine qualification test: Calculate performance & then compute
performance at standard inlet conditions. Will also do this correction if an engine is
running way off nominal (to see if the inlet conditions accounted for the abnormality).
o There are flow calibration constants used in the controller to achieve a desired MR.
If the engine ran off-MR, then the program will compute what the flow constant
should be changed to for the next test to get the desired MR.

• Program is about 15,000 lines of FORTRAN.
• Old program. Not well-modularized.
• Two models: Steady-state (prediction and data reduction modules) & Digital transient

(does not use test data; just has time-lag coefficients, etc.). Brian is not very
familiar with transient model.

• For TTB have tried to compute what some of the internal resistances in the engine are,
since we have more. data. Resistances are normally an input to the model (there isn't
enough instrumentation on the SSME to compute them).

• Occasionally, for new components/configurations, will do some analysiS and try to
determine what the change in resistances or performance.

• We also trend performance, especially for non-flight hardware which can develop
leakages, etc., and have its performance trail off over time.

• Can select time range you want to run the power balance model for. Typically stay 5-
10 seconds away from power level changes. Have tried to run it over transient
portions (e.g., when we had failures) to see if we can get anything out of the data. We
would get some flowrates, etc., knowing that most of the other output is incorrect.
There· are many iterative convergance loops in the program which might not complete
if you ran it on transient data.

• Occasionally use the model as a diagnostic tool. Might be able to verify that there was
leak or blockage_ Had one engine that had an unusually high pressure/resistance due
to a weld bead in the line. When there is a failure, we try to use it as much as
possible. However, most failures occur during transients (START or SHUTDOWN) so
the model is of limited use.

• Had a failure on 81 several years ago which occured during steady-state. Typically
average the data every second for input to the model, but can run the model on every
data point, and might do this when there is an anomaly during steady-state. If there is
a turbopump failure, you might see speed drastically changing, and we would run the

Brian Piekarski 416 Page 1

model on it as far as possible (when the data starts becoming too transient we can't
run the model).

• Can simulate some failure modes. Example: CCV Actuator Case - Ran the model with
the CCV valve "closed" (in software) to see if the results agreed with the observations.
Also play "what-ir games; what wi" happen to turbine temps if we have a certain
failure. Usually get some things that match the data we", but then usually have a few
"oddba"s" that don't match (usua"y due to inexactness in the power balance model).
But have used the model to validate or give credability to failure hypotheses.

• Interactions with the data analysts: Close interaction when there is a failure analysis.
They screen the data for bad data; analysts will tell us when a sensor is invalid. The
model has some screening capability, but not much (fixed resonablness limits).
Sometimes get redundant measurements that don't agree; we work with analysts to
determine which one is right (e.g., flow measurements); sometimes they help us,
sometimes we help them. It get tricky, because the controller uses the flow
measurements to control the engine and if the flow measurement is bad then the
effects are difficult to track down. They keep some databases which are useful to us;
we keep some which are useful to them.

• At data review, analysts report raw data; we report model results. Pretty much
para"el functions.

• We also do flight predictions. Sometimes fly an engine with components which have
been tested on other engines, but have never been tested as an assembly. We wi"
predict what the performance of the configuration should be on flight. Time history
prediction: for every 10 seconds in the flight.

Databases (See Attached)
• DB of all input files which have been run thru the power balance model. Good second

source of data (independent of the Perkin-Elmer; doesn't hold a lot of data on-line).
It's not full-sample (it's 1 s averaged) but it's better than nothing if you don't have
access to the PE. Access is also faster than through the PE.

• DB of all model input files for a" ground tests (I.e. with configurations, resistances,
etc.).

• DB ·of all outputs (plots) generated for a" ground tests. 1350 parameters per time
slice (usu up to 100 time slices). Typica"y run every 5-10 seconds during steady­
state. Can use to quickly plot information about a test 20 tests ago, e.g. to get the
previous test for a particular engine. Have statistics programs which can take these
in and compute 2sigma curves for statistical comparisons.

• DB of special notes for a" reductions. E.g., special changes made to the model for the
run, any "funnies" seen in the data, etc.

• DB of more prominent predictions that we do. Predictions run for several normal
cases, e.g., different inlet conditions, different resistances. etc. Just keep these
around for quick comparisons.

• Establishing a DB of normalized performance for ground tests. Performance for all
engines normalized to standard inlet conditions (already done for flight, but to date
has not been kept for ground tests)~

• Rocketdyne comes out with a new power balance model every couple of years. When
they do, we re-run a" of our cases through the new model. We have a program setup
to automate the updating, so it only takes us about a week to update all of our
databases.

Accuracy of Model...
• Does the model respond well to variations in engine configuration (e.g.. for

development testing of new components)? There are many unknowns in the model.
There are many things about the engine which are unknown, e.g., internal flows that
aren't measured directly. There are some subtle flow splits that we're not quite sure

Brian Piekarski 416 Page 2

model on it as far as possible (when the data starts becoming too transient we can't
run the model).

• Can simulate some failure modes. Example: CCV Actuator Case - Ran the model with
the CCV valve "closed" (in software) to see if the results agreed with the observations.
Also play "what-ir games; what wi" happen to turbine temps if we have a certain
failure. Usually get some things that match the data we", but then usually have a few
"oddba"s" that don't match (usua"y due to inexactness in the power balance model).
But have used the model to validate or give credability to failure hypotheses.

• Interactions with the data analysts: Close interaction when there is a failure analysis.
They screen the data for bad data; analysts will tell us when a sensor is invalid. The
model has some screening capability, but not much (fixed resonablness limits).
Sometimes get redundant measurements that don't agree; we work with analysts to
determine which one is right (e.g., flow measurements); sometimes they help us,
sometimes we help them. It get tricky, because the controller uses the flow
measurements to control the engine and if the flow measurement is bad then the
effects are difficult to track down. They keep some databases which are useful to us;
we keep some which are useful to them.

• At data review, analysts report raw data; we report model results. Pretty much
para"el functions.

• We also do flight predictions. Sometimes fly an engine with components which have
been tested on other engines, but have never been tested as an assembly. We wi"
predict what the performance of the configuration should be on flight. Time history
prediction: for every 10 seconds in the flight.

Databases (See Attached)
• DB of all input files which have been run thru the power balance model. Good second

source of data (independent of the Perkin-Elmer; doesn't hold a lot of data on-line).
It's not full-sample (it's 1 s averaged) but it's better than nothing if you don't have
access to the PE. Access is also faster than through the PE.

• DB of all model input files for a" ground tests (I.e. with configurations, resistances,
etc.).

• DB ·of all outputs (plots) generated for a" ground tests. 1350 parameters per time
slice (usu up to 100 time slices). Typica"y run every 5-10 seconds during steady­
state. Can use to quickly plot information about a test 20 tests ago, e.g. to get the
previous test for a particular engine. Have statistics programs which can take these
in and compute 2sigma curves for statistical comparisons.

• DB of special notes for a" reductions. E.g., special changes made to the model for the
run, any "funnies" seen in the data, etc.

• DB of more prominent predictions that we do. Predictions run for several normal
cases, e.g., different inlet conditions, different resistances. etc. Just keep these
around for quick comparisons.

• Establishing a DB of normalized performance for ground tests. Performance for all
engines normalized to standard inlet conditions (already done for flight, but to date
has not been kept for ground tests)~

• Rocketdyne comes out with a new power balance model every couple of years. When
they do, we re-run a" of our cases through the new model. We have a program setup
to automate the updating, so it only takes us about a week to update all of our
databases.

Accuracy of Model...
• Does the model respond well to variations in engine configuration (e.g.. for

development testing of new components)? There are many unknowns in the model.
There are many things about the engine which are unknown, e.g., internal flows that
aren't measured directly. There are some subtle flow splits that we're not quite sure

Brian Piekarski 416 Page 2

of. There are some resistances in there that have never really been measured
directly. TIB will give us some insights into some of these models. There are some
things that can't be determined even with extra instrumentation, e.g., there are some
places in the engine where the temperature varies widely over a small area, and a
temperature sensor will only give you the temp at one particular point. Thus, it's
hard to tell whether some parts of the model are accurate or not. Some of the
resistances are based on somebody's best guess made years ago. We have recently
removed the MCC baffles, and we've tried to tweak the model to reflect the change in
resistance, etc., but it's real hard to tell how good the modified model is. Some areas
of the model are very good, yielding good predictions, and some areas yield results that
have to be taken as ballpark figures (I'd trust a random number generator as much as
I'd trust some parts of the model). I've been working with the model for five years,
and it takes that long to know what parts of the model to trust.

Tell me About the Reduction Model •••
• Combination of physical relationships and "fill-in-the-blanks" empirical relations

(e.g., curves from data).
• Model is very poorly documented.
• Model was originally developed by two guys at Rocketdyne, one of which has died. The

other developer is now a very senior engineer who says that he has never liked
documentation and that he has no plans to document the code. There are now some
younger guys at Rocketdyne working on the code (Brian Davis?) who have been trying
to document it, but they don't know where a lot of the relationships have come from.
They have put together a user's manual. A lot of the documentation that we have, we
wrote. Most of the variables in the one large input array ("A" array) are reasonably
well documented.

• It's hard to trace where a value comes from in the program. There are lots of
subroutines, data tables, and lookup curves which are completely undocumented and
have parameter names like "x". Some of the Rocketdyne comments are of the form:
"The following line is bogus.", so don't know whether to leave it in or take it out. Also:
"The following code needs to be changed, but other things need to be changed first, so
we'll just leave it like this for now."

• It was our job to get up to speed on this program, and we have only learned how it
works after years of experience. If I were to leave it would be a tremendous hit.
because / have a lot of unique knowledge about how the model works that is currently
undocumented. _

• We get a lot of questions about gains (both groups get a lot of these questions). E.g., if
we change the inlet pressurs, what are the effects on the engine? Rarely is there just
on thing changed on an engine between firings, so it makes it more difficult (e.g.,
multiple hardware changes, changing inlet conditions, etc.). Questions about
efficiencies only we can't answer because they are computed values (data guys can't
answer them). E.g., If I change the pump efficiency by 4% what will it do to the
turbine temps? They're still playing with the Pratt pumps, so get questions like this
a lot lately. _

• Occasionally get asked questions that are kind of tricky, that the model is not set up to
directly compute. E.g., to simulate a valve position (like the CCV failure), you have to
go in and hardcode the resistance across the valve rather than directly specifying the
position.

What tools would be useful to you?
• Something to pick out anomalous values in the data. E.g., something to be a pre-check

on the data before we send it into the model. Sensor validation.

Brian Piekarski 416 Page 3

of. There are some resistances in there that have never really been measured
directly. TIB will give us some insights into some of these models. There are some
things that can't be determined even with extra instrumentation, e.g., there are some
places in the engine where the temperature varies widely over a small area, and a
temperature sensor will only give you the temp at one particular point. Thus, it's
hard to tell whether some parts of the model are accurate or not. Some of the
resistances are based on somebody's best guess made years ago. We have recently
removed the MCC baffles, and we've tried to tweak the model to reflect the change in
resistance, etc., but it's real hard to tell how good the modified model is. Some areas
of the model are very good, yielding good predictions, and some areas yield results that
have to be taken as ballpark figures (I'd trust a random number generator as much as
I'd trust some parts of the model). I've been working with the model for five years,
and it takes that long to know what parts of the model to trust.

Tell me About the Reduction Model •••
• Combination of physical relationships and "fill-in-the-blanks" empirical relations

(e.g., curves from data).
• Model is very poorly documented.
• Model was originally developed by two guys at Rocketdyne, one of which has died. The

other developer is now a very senior engineer who says that he has never liked
documentation and that he has no plans to document the code. There are now some
younger guys at Rocketdyne working on the code (Brian Davis?) who have been trying
to document it, but they don't know where a lot of the relationships have come from.
They have put together a user's manual. A lot of the documentation that we have, we
wrote. Most of the variables in the one large input array ("A" array) are reasonably
well documented.

• It's hard to trace where a value comes from in the program. There are lots of
subroutines, data tables, and lookup curves which are completely undocumented and
have parameter names like "x". Some of the Rocketdyne comments are of the form:
"The following line is bogus.", so don't know whether to leave it in or take it out. Also:
"The following code needs to be changed, but other things need to be changed first, so
we'll just leave it like this for now."

• It was our job to get up to speed on this program, and we have only learned how it
works after years of experience. If I were to leave it would be a tremendous hit.
because / have a lot of unique knowledge about how the model works that is currently
undocumented. _

• We get a lot of questions about gains (both groups get a lot of these questions). E.g., if
we change the inlet pressurs, what are the effects on the engine? Rarely is there just
on thing changed on an engine between firings, so it makes it more difficult (e.g.,
multiple hardware changes, changing inlet conditions, etc.). Questions about
efficiencies only we can't answer because they are computed values (data guys can't
answer them). E.g., If I change the pump efficiency by 4% what will it do to the
turbine temps? They're still playing with the Pratt pumps, so get questions like this
a lot lately. _

• Occasionally get asked questions that are kind of tricky, that the model is not set up to
directly compute. E.g., to simulate a valve position (like the CCV failure), you have to
go in and hardcode the resistance across the valve rather than directly specifying the
position.

What tools would be useful to you?
• Something to pick out anomalous values in the data. E.g., something to be a pre-check

on the data before we send it into the model. Sensor validation.

Brian Piekarski 416 Page 3

g­
·t
~~

\~
-t

EP / MARTIN MARIETTA SSME DATABASES (continued)

DATABASE PRIMARY!,!SER

I Second A vg Data Model Group

Model Input Files Model Group

Tracking Sheets Model Group

Model Output Files Model Group

Power Balance Database R. Piekarski

Test Summary Database B. Piekarski

Thrust Profile Database B. Piekarski

E8 Test Data J. Leahy

E8 Model Output Files J. Leahy

Start & Cutoff Pop Database ?

I·URMAT

IBM }OX4

IBM 30M

Papa Files

IBM }OX4

1Bf'.'1 3084

Word

Papa Files

IBM 3084

, IBM 3084

Sylllphony

DESCRIPTION

I second <tver<tged dm<t files for ground tests

Input files for Phase II ground tests

Mode I information for Phase " ground tests

Data reduction output files for Phase " ground tests. Performance and
Turhom<tchinery databases are gener<tted from this data using special
access rout ines

Power Balance prediction output files at various operating conditions

Engine configuration, hardware units, and power level information for
Phase II tests

Thrust profiles sorted by standard test profile, power level, and/or
propellant vents

P& W HPFTP and HPOTP component level test data files conducted on the E8
facility

Data reduction output files for P&W HPfTP and HPOTP component level
te s ts

FPB, OPB and MCC Pops

EP / MARTIN MARIETTA SSME DATABASES (continued)

DATABASE PRIMARY!,!SER

I Second A vg Data Model Group

Model Input Files Model Group

Tracking Sheets Model Group

Model Output Files Model Group

Power Balance Database R. Piekarski

Test Summary Database B. Piekarski

Thrust Profile Database B. Piekarski

E8 Test Data J. Leahy

E8 Model Output Files J. Leahy

Start & Cutoff Pop Database ?

I·URMAT

IBM }OX4

IBM 30M

Papa Files

IBM }OX4

1Bf'.'1 3084

Word

Papa Files

IBM 3084

, IBM 3084

Sylllphony

DESCRIPTION

I second <tver<tged dm<t files for ground tests

Input files for Phase II ground tests

Mode I information for Phase II ground tests

Data reduction output files for Phase " ground tests. Performance and
Turhom<tchinery databases are gener<tted from this data using special
access rout ines

Power Balance prediction output files at various operating conditions

Engine configuration, hardware units, and power level information for
Phase II tests

Thrust profiles sorted by standard test profile, power level, and/or
propellant vents

P& W HPFTP and HPOTP component level test data files conducted on the E8
facility

Data reduction output files for P&W HPFTP and HPOTP component level
te s ts

FPB, OPB and MCC Pops

~
~
::. ...

:'

~

~
"\

EP / MARTIN MARIETl'A SSME DATABASES

DATABASE

Anomaly Database

2 Sigma Database

Primetime Database

Phase 11+ Datahase

Hex Temp Database

Flight Changes Database

Flight Prediction Database

Model FI ight Database

Green Run Database

Hotfire Database

Pressure Drop Oat abase

Hardware Database

Early Cutoff Database

DCU-AB Database

PRIMARY USER

Data Group

Data Group

Data Group

FOIHvlAT

Rhasl'

Symphony

Symphony

DESCRIPTION

Key information of anomalies for SSC ground tests

Statistical data for key engine parameters at certain operating conditions
for ground tests and flights.

FI'B, MCC and OI'B prime times for ground tests

Data tiwup ('1 id.l't Ulaph Engine 0209 anll 0215 Phase 11+ spel'ial instrumentation dat;l

n. Foust Cricket Graph IIPOT discharge temps vs. I lex iff temps for all flight engines (post 51 L)

It Foust Rha~(' Ilardwan.' anti software rhanges for all flight engines (post 51 L)

O. Foust Symphony! i{ocketdyne and MSFC night predictions, flight data, and deltas at engine
('.-id.l't Uraph .~tart +200 seconds for all nights (post 51 L)

D. Fousl IBM 30X4

Data Group Symphony

Oata Group Rha~l'

M. Alvarez SYlllphony

Data Group! Rhase
Combustion Devices

L. Maddox Refkx

D. (j • .Illdy 1'<. . - \\II)J'(I

Flight profile model prediction output files and flight data plot files for
all nights (post 51 L)

Statistical data on parameters required for hardware to pass green run
requirements for flight

Engine hardware in/ormation for all ground tests and flights

Pressure drops across engine eomponellls

Post lest hardwan: inspection reports for all ground tests

Information and paperwork for early engine cutoff tests

Engine responses 10 DCU-A halts

EP / MARTIN MARIETTA SSME DATABASES

DATABASE

Anomaly Database

2 Sigma Database

Primetime Database

Phase II + Datahase

Hex Temp Database

Flight Changes Database

Flight Prediction Database

Model FI ight Database

Green Run Database

Hotfirc Database

Pressure Drop Oat abase

Hardware Database

Early Cutoff Database

DCU-AB Database

PRIMARY USER

Data Group

Data Group

Data Group

FOI{/'vlAT

Rhase

Symphony

Symphony

DESCRIPTION

Kcy information of anomalies for SSC ground tests

Statistical data for key engine parameters at certain operating conditions
for ground tests and nights,

FI'B, MCC and OPB prime times for ground tests

Data tiwup ('I id.l't Ulaph Engine 0209 anll 0215 Phase 11+ spcl'ial instrumentation data

n. Foust Cricket Graph IIPOT discharge tcmps vs. I lex iff temps for all flight engines (post 51 L)

n. Foust Ilardwan,' and software rhangcs for all flight cnginl's (post 51 L)

0, Foust Symphony! i{ocketdyne and MSFC night predictions, flight data, and deltas at engine
Crid.ct (iraph ,~tart +200 scconds for all flights (post 51 L)

V. Foust IBM 30X4

Data Group Symphony

Oata Group R ha~l'

M. Alvarez SYlllphony

Data Group! Rhase
Combustion Devices

L. Maddox Reflex

D. (j • .Illdy 1'<.', \\lInd

Flight profile model prcdiction output filcs and flight data plot files for
all nights (post 51 L)

Statistical data on parameters rcquircd for hardwarc to pass grcen run
requirements for night

Engine hardware in/ormation for all ground tests mHI flights

Prcssurc drops across cngine components

Post lest hardwarc inspcction reports for all ground tests

Information and papcrwork for early engine cutoff rests

Engine rc~pon~cs to DCU-A halts

Erik Sander •••

Erik Sander & Randy Hurt
4/7/92

Pre-Test Package

• Make a folder for each test. Has all information about the test. Includes review presentation
packages from our group and other groups. Includes pre-test package.

• Data review: Systems group goes first - with data analysis guys. Next model group. Next
dynamics. Next strain gage guys. Then turbomachinery. Then combustion devices. Each
group's package goes into the folder for the test. (Note: These folders kept in filing cabinets in
Martin's office area.)

• If there is a failure, will often do a separate package on the failure itself.

Pre-Test Package
• A1693 test example. Engine 0219 (has been on the stand for awhile; 7-9 tests). Was the last

test ran on A1. Redesigned powerhead engine. Certification testing of the powerhead and
hydraulic lockup test (have been doing a lot these lately).

• Hydraulic lockup test - Pull the hydraulics from the engine and see how it reacts.
• Get the pre-test about a day before the test.
• Usually go over the package via telecon with ROcketdyne and Stennis.

First 1/2 of the pretest covers Rocketdyne's analysis of the last test on this
stand.

• We've already covered all of this analysis, so it's not really any new information. If we are not
switching engines on the stand, then we cover this in detail. At this point we've already told the
program office what we think about the previous test, and this is a chance for us to compare
notes and iron out any differences that exist.
o Summary of Results. Objectives and how they were met.

• Two definitions of engine data analysis. 1. Looking at the current test in isolation. 2. Looking
at the performance of the family of engines over time. (Analysis of the program.) If analysis of
the program: the two tests need to be related in some way. Typically trying to build off the
results oft of one test to build the objectives for the next series of tests. Think you would want
to initially build the system to do #1 (look at test in isolation).

• To understand the objectives for the upcoming test. you must go back to the previous test and
its objectives and how they were met.

• Main things that feed over from one test to another: What instrumentation failed on the last
test. so we know to keep a special eye on it for the next test (sometimes Stennis doesn't get
things fixed from one test to the next). Sometimes you have a piece of instrumentation that's
"hanging out in the breeze". For example. on this stand for this series of tests. have a fuel
preburner pressure that's reading ambient because they need its port for an accelerometer.
There's only a certain number of bosses on the engine available for instrumentation. That's an
example of somethine you'd expect to be bad on the next test.

• If you see an anomaly on one test, will you still be looking for it on the next. even if it's
supposedly been fixed? Yes. Example: piston ring seal; A round seal that sits around the top
of the MCC. Sometimes during a test it will shift a little. Will rebalance the fuel system on the
engine just slightly. Steps: We see certain things in the fuel system shift. look at directions
and magnitudes. E.g .• fuel pump speed changes. pressures in that leg shift. and the temps
shift Slightly. We come to associate these shifts with a piston ring seal shift. We did analysis on
it once the first time we saw it. now we just know what it is. If the effects are seen again. the
analyst should immediately know that it's a piston ring seal shift. and just have to determine the
effects 01 that on the engine. If seen on one test. we will probably be looking for that again on

ErI< Sander & Randy Hurt 417 Pre-Test Page 1

Erik Sander •••

Erik Sander & Randy Hurt
4/7/92

Pre-Test Package

• Make a folder for each test. Has all information about the test. Includes review presentation
packages from our group and other groups. Includes pre-test package.

• Data review: Systems group goes first - with data analysis guys. Next model group. Next
dynamics. Next strain gage guys. Then turbomachinery. Then combustion devices. Each
group's package goes into the folder for the test. (Note: These folders kept in filing cabinets in
Martin's office area.)

• If there is a failure, will often do a separate package on the failure itself.

Pre-Test Package
• A1693 test example. Engine 0219 (has been on the stand for awhile; 7-9 tests). Was the last

test ran on A1. Redesigned powerhead engine. Certification testing of the powerhead and
hydraulic lockup test (have been doing a lot these lately).

• Hydraulic lockup test - Pull the hydraulics from the engine and see how it reacts.
• Get the pre-test about a day before the test.
• Usually go over the package via telecon with ROcketdyne and Stennis.

First 1/2 of the pretest covers Rocketdyne's analysis of the last test on this
stand.

• We've already covered all of this analysis, so it's not really any new information. If we are not
switching engines on the stand, then we cover this in detail. At this point we've already told the
program office what we think about the previous test, and this is a chance for us to compare
notes and iron out any differences that exist.
o Summary of Results. Objectives and how they were met.

• Two definitions of engine data analysis. 1. Looking at the current test in isolation. 2. Looking
at the performance of the family of engines over time. (Analysis of the program.) If analysis of
the program: the two tests need to be related in some way. Typically trying to build off the
results oft of one test to build the objectives for the next series of tests. Think you would want
to initially build the system to do #1 (look at test in isolation).

• To understand the objectives for the upcoming test. you must go back to the previous test and
its objectives and how they were met.

• Main things that feed over from one test to another: What instrumentation failed on the last
test. so we know to keep a special eye on it for the next test (sometimes Stennis doesn't get
things fixed from one test to the next). Sometimes you have a piece of instrumentation that's
"hanging out in the breeze". For example. on this stand for this series of tests. have a fuel
preburner pressure that's reading ambient because they need its port for an accelerometer.
There's only a certain number of bosses on the engine available for instrumentation. That's an
example of somethine you'd expect to be bad on the next test.

• If you see an anomaly on one test, will you still be looking for it on the next. even if it's
supposedly been fixed? Yes. Example: piston ring seal; A round seal that sits around the top
of the MCC. Sometimes during a test it will shift a little. Will rebalance the fuel system on the
engine just slightly. Steps: We see certain things in the fuel system shift. look at directions
and magnitudes. E.g .• fuel pump speed changes. pressures in that leg shift. and the temps
shift Slightly. We come to associate these shifts with a piston ring seal shift. We did analysis on
it once the first time we saw it. now we just know what it is. If the effects are seen again. the
analyst should immediately know that it's a piston ring seal shift. and just have to determine the
effects 01 that on the engine. If seen on one test. we will probably be looking for that again on

ErI< Sander & Randy Hurt 417 Pre-Test Page 1

the next test, and maybe the test after that. The seal could continue shifting to the point at
which it becomes a problem.

• Example on this engine: On previous redesigned powerhead engines we've seen accelerated
MeC degradation (it cracks terribly). These chambers cost $4M and take 4yrs to make, and we
don't have any spares, so it's a very important item, it can be a "show stopper" on a program.
These redesigned powerheads in the past have just "eaten up" MCCs (cracked them); we
usually get 40,000 sec of life, now we're getting 5,000 seconds. So, if we see evidence of
increased cracking on a test, esp. with a new powerhead, we will always be on the lookout for
further cracking for the engine. It will be one of the first things we look for since it is such a high
priority.

• Usually recognize most major anomalies within the first hour of getting the data.

• You'll see aU kinds of shifts and movements in the data. How fast you can determine what's a
normal reaction and what's an anomaly comes down to experience. For the diagnostic system
that translates into two things: gains and databases.

• Also in pre-test: comparisons to program history relevent to current objectives. Comparisons
ot just with the last test, but with the last 10 tests. How is the program progressing overall?

• Rocketdyne doesn't break up their data packages (pre-test) in the same way we do (post-test).
They do in their internal reviews, but in the reviews with us they combine highlights from all of
their different disciplines.

• After the test, technicians will measure things like torque checks and shaft travel. Information
about these tests are also in the package. Most of this is done on the pumps. Very often we
come up with theories about what kind of anomaly occurred, but it isn't until the post-test
inspection that these theories get confirmed or denied. Example: we see one of the pumps
coming down very quickly on shutdown (Le. very high deceleration rate), and hypothesize that
the pump is "locked up". You then wait for the post-test inspection torque test to prove or
disprove this. Means you probably did some damage internal to the pump, e.g., to the
bearings. At this point you might go back to the data and see if you can find more clues about
exactly what happened within the pump. Would work very closely with turbo guys to resolve
this.

• In the systems group, you don't get knocked out of any problem analysis. By definition you
never have a system problem; it's always a component that fails. So you have to work closely
with the component speCialists.

• For each anomaly on the previous test, will list effects (e.g., for cracking what is the effect in
terms of increase leakage?), and actions taken to correct the anomaly (sometimes none if minor
and there is a tight schedule).

• UCRs simply note anomalies; they are not things that must be fixed prior to next test (??).
NASA control over what must be fixed is exercised when they sign off on the next test.

• Analysts don't get involved in filling out paperwork such as UCRs; program office handles that.

Second 1/2 of Pre-Test Package
• What we're going to do on the next test.
• Where we get most of our information on what's going to be done. This is critical information to

us (possible problem getting this into exper system). Most of this info is in TRACER.
• First thing we'll go thru is the objectives. Some of these never change.
• Example objectives: Pneumatic shutdown with hydrauliC lockup. Evaluate valve drift due to

leakage in actuators (have seen before, but not supposed to happen). What we look for: what
system effects would we expect to see as a result of this? E.g. What's the effect of hydrauliC
lockup? Well. the valve drifts and the engine performance is probably going to change.

Eri< Sander & Randy Hurt 417 Pre-Test Page 2

the next test, and maybe the test after that. The seal could continue shifting to the point at
which it becomes a problem.

• Example on this engine: On previous redesigned powerhead engines we've seen accelerated
MeC degradation (it cracks terribly). These chambers cost $4M and take 4yrs to make, and we
don't have any spares, so it's a very important item, it can be a "show stopper" on a program.
These redesigned powerheads in the past have just "eaten up" MCCs (cracked them); we
usually get 40,000 sec of life, now we're getting 5,000 seconds. So, if we see evidence of
increased cracking on a test, esp. with a new powerhead, we will always be on the lookout for
further cracking for the engine. It will be one of the first things we look for since it is such a high
priority.

• Usually recognize most major anomalies within the first hour of getting the data.

• You'll see aU kinds of shifts and movements in the data. How fast you can determine what's a
normal reaction and what's an anomaly comes down to experience. For the diagnostic system
that translates into two things: gains and databases.

• Also in pre-test: comparisons to program history relevent to current objectives. Comparisons
ot just with the last test, but with the last 10 tests. How is the program progressing overall?

• Rocketdyne doesn't break up their data packages (pre-test) in the same way we do (post-test).
They do in their internal reviews, but in the reviews with us they combine highlights from all of
their different disciplines.

• After the test, technicians will measure things like torque checks and shaft travel. Information
about these tests are also in the package. Most of this is done on the pumps. Very often we
come up with theories about what kind of anomaly occurred, but it isn't until the post-test
inspection that these theories get confirmed or denied. Example: we see one of the pumps
coming down very quickly on shutdown (Le. very high deceleration rate), and hypothesize that
the pump is "locked up". You then wait for the post-test inspection torque test to prove or
disprove this. Means you probably did some damage internal to the pump, e.g., to the
bearings. At this point you might go back to the data and see if you can find more clues about
exactly what happened within the pump. Would work very closely with turbo guys to resolve
this.

• In the systems group, you don't get knocked out of any problem analysis. By definition you
never have a system problem; it's always a component that fails. So you have to work closely
with the component speCialists.

• For each anomaly on the previous test, will list effects (e.g., for cracking what is the effect in
terms of increase leakage?), and actions taken to correct the anomaly (sometimes none if minor
and there is a tight schedule).

• UCRs simply note anomalies; they are not things that must be fixed prior to next test (??).
NASA control over what must be fixed is exercised when they sign off on the next test.

• Analysts don't get involved in filling out paperwork such as UCRs; program office handles that.

Second 1/2 of Pre-Test Package
• What we're going to do on the next test.
• Where we get most of our information on what's going to be done. This is critical information to

us (possible problem getting this into exper system). Most of this info is in TRACER.
• First thing we'll go thru is the objectives. Some of these never change.
• Example objectives: Pneumatic shutdown with hydrauliC lockup. Evaluate valve drift due to

leakage in actuators (have seen before, but not supposed to happen). What we look for: what
system effects would we expect to see as a result of this? E.g. What's the effect of hydrauliC
lockup? Well. the valve drifts and the engine performance is probably going to change.

Eri< Sander & Randy Hurt 417 Pre-Test Page 2

What's the effect of CCV cutoff ramp? What phases of operation are going to be affected?
Make sure we get right information ready for post-test analysis.

• Thrust profile: Very important. Tells you three things. 1. What power levels you expect to see.
2. vent and pressurization schedule. 3. Propellant transfer.

During a typical flight, you have a certain amount of cryogenic pressure at the engine inlet
plane. Have LOX and fuel sitting at low pressure pump inlets. Temp will remain relatively
constant throughout the test. Pressure will change drastically. Pressure made up of 3
things:
o 1. Amount of head from the weight of LOX in tank.
o 2. Acceleration of vehicle (biggest change seen when solids are jetisoned, change from 3G
to 1 G and causes major shift in engine behavior).
o 3. Ullage pressure in tanks. Engine responds greatly to changes in these inlet pressures,
because if pressure is high the pumps don't have to work as hard, that translates into lower
turbine temps and different engine operation. On ground test, we try to simulate these
differences in engine inlet pressure through venting. E.g. starting with a nomiinal LOX
pressure of 70psi, we will drop it to some lower pOint; this is called venting. We will then bring
the pressure back up by pressurizing the ullage with Nitrogen(?); we call this pressurization.

• Analyst will know what changes he expects to see in the engine (e.g. in turbine temps) as a
result of the scheduled venting and repress. Venting and repress is manually controlled (via a
guy on a valve), so the timing is not exact.

• In general, everything you do on flight is much more consistent than on the ground. The
profile is exact, and you do it over and over again. On the ground you change the profiles, the
venting and pressurization, etc.

• Can definitively tell venting and pressurization from data, via sensors in ullage, sensors at
engine inlet, and sensors at bottom of LOX and fuel tanks (???).

• Pressurization is different than Repressurization (repress). Repress is the gas flow from the
engine to the propellant tanks to keep them pressurized during flight.

• Propellant transfer: TT8 and Stennis propellant tanks only hold enough for about
300seconds of firing. For longer tests, transfer propellant from barges through line into tanks
Qu..dn.g the test. See negligable effects on presure, see good effect on temperature. LOX and
Hydrogen (esp hydrogen) heat up as they go through the transfer line. They only cause about
1/2 degree difference, but that is signficant (the engine will react to it).

• On this test we know they're using an FPOV valve which leaks terribly (its actually outside of
specs), and we're doing a hydraulic lockup, so we expect to see significant valve drift. Effects
we expect to see: FPOV will close, which is the controlling valve to the fuel side, so the fuel
side will power down, the LOX side will power up (not due to controller, but due to rebalanced
flows in system).

• Gains very important. If valve closes by this much, how much should turbine temps change by?

• Pneumatic shutdown: We're going to shut the engine down with Helium instead of hydraulics.

• Get all engine inlet conditions from pre-test package. Helium and nitrogen pressures,
temperatures, propellant pressures and temperatures, etc. These are all things that we're
going to "do" to the engine.

• Hardware Changes - Very important section for analysts. If a new piece of hardware is going
to be put on the engine, we will pull the data from the last time that component ran and
compare it with the component being swapped out to try and estimate what the effects on
engine behavior should be. E.g., if you get a dog pump, we're going to run very hot. If the
pump has always run hot on previous tests, and you see it running hot on the next test, that

Eri< Sander & Randy Hurt 417 Pre-Test Page 3

What's the effect of CCV cutoff ramp? What phases of operation are going to be affected?
Make sure we get right information ready for post-test analysis.

• Thrust profile: Very important. Tells you three things. 1. What power levels you expect to see.
2. vent and pressurization schedule. 3. Propellant transfer.

During a typical flight, you have a certain amount of cryogenic pressure at the engine inlet
plane. Have LOX and fuel sitting at low pressure pump inlets. Temp will remain relatively
constant throughout the test. Pressure will change drastically. Pressure made up of 3
things:
o 1. Amount of head from the weight of LOX in tank.
o 2. Acceleration of vehicle (biggest change seen when solids are jetisoned, change from 3G
to 1 G and causes major shift in engine behavior).
o 3. Ullage pressure in tanks. Engine responds greatly to changes in these inlet pressures,
because if pressure is high the pumps don't have to work as hard, that translates into lower
turbine temps and different engine operation. On ground test, we try to simulate these
differences in engine inlet pressure through venting. E.g. starting with a nomiinal LOX
pressure of 70psi, we will drop it to some lower pOint; this is called venting. We will then bring
the pressure back up by pressurizing the ullage with Nitrogen(?); we call this pressurization.

• Analyst will know what changes he expects to see in the engine (e.g. in turbine temps) as a
result of the scheduled venting and repress. Venting and repress is manually controlled (via a
guy on a valve), so the timing is not exact.

• In general, everything you do on flight is much more consistent than on the ground. The
profile is exact, and you do it over and over again. On the ground you change the profiles, the
venting and pressurization, etc.

• Can definitively tell venting and pressurization from data, via sensors in ullage, sensors at
engine inlet, and sensors at bottom of LOX and fuel tanks (???).

• Pressurization is different than Repressurization (repress). Repress is the gas flow from the
engine to the propellant tanks to keep them pressurized during flight.

• Propellant transfer: TT8 and Stennis propellant tanks only hold enough for about
300seconds of firing. For longer tests, transfer propellant from barges through line into tanks
Qu..dn.g the test. See negligable effects on presure, see good effect on temperature. LOX and
Hydrogen (esp hydrogen) heat up as they go through the transfer line. They only cause about
1/2 degree difference, but that is signficant (the engine will react to it).

• On this test we know they're using an FPOV valve which leaks terribly (its actually outside of
specs), and we're doing a hydraulic lockup, so we expect to see significant valve drift. Effects
we expect to see: FPOV will close, which is the controlling valve to the fuel side, so the fuel
side will power down, the LOX side will power up (not due to controller, but due to rebalanced
flows in system).

• Gains very important. If valve closes by this much, how much should turbine temps change by?

• Pneumatic shutdown: We're going to shut the engine down with Helium instead of hydraulics.

• Get all engine inlet conditions from pre-test package. Helium and nitrogen pressures,
temperatures, propellant pressures and temperatures, etc. These are all things that we're
going to "do" to the engine.

• Hardware Changes - Very important section for analysts. If a new piece of hardware is going
to be put on the engine, we will pull the data from the last time that component ran and
compare it with the component being swapped out to try and estimate what the effects on
engine behavior should be. E.g., if you get a dog pump, we're going to run very hot. If the
pump has always run hot on previous tests, and you see it running hot on the next test, that

Eri< Sander & Randy Hurt 417 Pre-Test Page 3

would cause it to go from being an anomaly to being an observation (because we understand
it).

• Software configuration changes - Also important. Two software constants of primary interest:
C2 and Kf (fixed for a given firing). C2 sets the fuel flowrate that you're going to run at a given
power level, we use that to set the MR of the engine (want at about 6.01). (Note: Erik has a plot
somewhere of C2 vs. resulting fuel flow for a given power level.) Kf: There is a fuel flowmeter
between the LPFP and HPOTP. We compute fuel mass flow from this flowmeter (volumetric
flow) and the pressure and temperature of the fuel. Translation from the speed of the
flowmeter to volumetric flow is a function of the efficiency of the flowmeter. Kf is the calibration
constant for the flowmeter which adjusts for differences in efficiency.
o Want to control the engine to a given MR. During firing, things will happen which cause MR to
change. E.g., cracking in the nozzle or the MCC which takes some of the fuel going into the
engine and throws it overboard. This causes the LOX side to power up to give the same MCC
Pc, but with less fuel. More LOX, same amount of fuel gives higher MR. We might continue to
test the engine in this condition as long as things stay within certain tolerances, but once the
tolerances are exceeded we'll change C2 to bring MR back into where it should be. Now will
have the same MR, but with more propellants.

• Instrumentation changes - Won't change the way the engine operates, but changes what we
see. Of particular note is what additional or fewer parameters we expect to have on the test.
We don't worry too much about strain gages; we worry about pressures, temperatures, and
speeds.

• Facility changes.

Randy Hurt Takes Over •••

• Hardware changes are the most important thing we get out of the pre-test package.

• Changes in ~pumps are very important.

• E.g. There's a difference between Inconel and Titanium high-pressure fuel duct (different
diameters cause different static pressures and discharge temperatures).

• Most of this are notes that you just want to be aware of. Changes in redlines, etc.

• Facility changes usu won't cause changes in engine behavior. Facility fuel flowmeter change
can be significant; we use it to cross-check the engine flowmeter.

• Mainly just want to note things that could affect engine performance so you're aware of it.

• Turbine discharge temp redlines change depending on the fuel pump, and if a green run test
or not. If first run of a pump might set turbine discharge temp redline at 1660, otherwise might
set it at 1760. If the pump has been run before then it's either been rejected for flight, or has
come back from flight, and is being used for development. For a greenrun test you don't want
to stress the pump too much; you want early problem detection so they can fix it.

• Redlines don't really change much from test to test.

• If we've changed instrumentation but haven't changed scaling constants in software, I would
make a note of that.

• Facility redlines will change based on what's being tested. E.g. might change tolerances on
temps within a turbine to look for ball bearing problems.

• HPFP speed redline. Used for development engine or first run of the pump. If exceeded
indicates you are leaking too much fuel (e.g., nozzle leak) and your pump has "gone away".

Eri< Sarder & Randy Hurt 417 Pre-Test Page 4

would cause it to go from being an anomaly to being an observation (because we understand
it).

• Software configuration changes - Also important. Two software constants of primary interest:
C2 and Kf (fixed for a given firing). C2 sets the fuel flowrate that you're going to run at a given
power level, we use that to set the MR of the engine (want at about 6.01). (Note: Erik has a plot
somewhere of C2 vs. resulting fuel flow for a given power level.) Kf: There is a fuel flowmeter
between the LPFP and HPOTP. We compute fuel mass flow from this flowmeter (volumetric
flow) and the pressure and temperature of the fuel. Translation from the speed of the
flowmeter to volumetric flow is a function of the efficiency of the flowmeter. Kf is the calibration
constant for the flowmeter which adjusts for differences in efficiency.
o Want to control the engine to a given MR. During firing, things will happen which cause MR to
change. E.g., cracking in the nozzle or the MCC which takes some of the fuel going into the
engine and throws it overboard. This causes the LOX side to power up to give the same MCC
Pc, but with less fuel. More LOX, same amount of fuel gives higher MR. We might continue to
test the engine in this condition as long as things stay within certain tolerances, but once the
tolerances are exceeded we'll change C2 to bring MR back into where it should be. Now will
have the same MR, but with more propellants.

• Instrumentation changes - Won't change the way the engine operates, but changes what we
see. Of particular note is what additional or fewer parameters we expect to have on the test.
We don't worry too much about strain gages; we worry about pressures, temperatures, and
speeds.

• Facility changes.

Randy Hurt Takes Over •••

• Hardware changes are the most important thing we get out of the pre-test package.

• Changes in ~pumps are very important.

• E.g. There's a difference between Inconel and Titanium high-pressure fuel duct (different
diameters cause different static pressures and discharge temperatures).

• Most of this are notes that you just want to be aware of. Changes in redlines, etc.

• Facility changes usu won't cause changes in engine behavior. Facility fuel flowmeter change
can be significant; we use it to cross-check the engine flowmeter.

• Mainly just want to note things that could affect engine performance so you're aware of it.

• Turbine discharge temp redlines change depending on the fuel pump, and if a green run test
or not. If first run of a pump might set turbine discharge temp redline at 1660, otherwise might
set it at 1760. If the pump has been run before then it's either been rejected for flight, or has
come back from flight, and is being used for development. For a greenrun test you don't want
to stress the pump too much; you want early problem detection so they can fix it.

• Redlines don't really change much from test to test.

• If we've changed instrumentation but haven't changed scaling constants in software, I would
make a note of that.

• Facility redlines will change based on what's being tested. E.g. might change tolerances on
temps within a turbine to look for ball bearing problems.

• HPFP speed redline. Used for development engine or first run of the pump. If exceeded
indicates you are leaking too much fuel (e.g., nozzle leak) and your pump has "gone away".

Eri< Sarder & Randy Hurt 417 Pre-Test Page 4

• There are also redlines on facility temperature sensors mounted external to the engine, used
to detect fires.

• CADS computer simulates what the vehicle would do to the engine (as a controller).

• OPOV Limit Command: Limits how far the controller can tell the OPOV to open. (Note: This
appeared on the CADS sheet; this may be dynamically set by the vehicle controller during
flight??).

Immediately Following Test •••

• Stennis will call to say if the test ran to scheduled duration, and if there were any FIOs.

• Stennis will FAX a quick-look sheet (see attached). Any FIOs would be listed on the top of the
sheet by number. We'd have to look the FlO up in the software spec to see what actually
happened.

Eli< Sander & Rardy Hurt 417 Pre-Test Page 5

• There are also redlines on facility temperature sensors mounted external to the engine, used
to detect fires.

• CADS computer simulates what the vehicle would do to the engine (as a controller).

• OPOV Limit Command: Limits how far the controller can tell the OPOV to open. (Note: This
appeared on the CADS sheet; this may be dynamically set by the vehicle controller during
flight??).

Immediately Following Test •••

• Stennis will call to say if the test ran to scheduled duration, and if there were any FIOs.

• Stennis will FAX a quick-look sheet (see attached). Any FIOs would be listed on the top of the
sheet by number. We'd have to look the FlO up in the software spec to see what actually
happened.

Eli< Sander & Rardy Hurt 417 Pre-Test Page 5

1

\
::>

'.

\)
....

~

SSME # __ 2.10'1 ___ I-SSME QUICK LOOK DATA I TEST # _12lo.?.':-S:_
DATE __ 1/-Bjc,_,=-_ TIME Jl~3lt DURATION: SCHEDULED ___ .-?-_'=-~ __ SECONDS

ACTUAL ___ ~1C1.j1--SECONDS

FIDS AND/OR CO'MMENTS ______ liQ~_~ _________________ ~ ____________________ ..

--
PRID tO~ 11'10 14-'1 t) , 18c I ~d"Q - 4'7 8f - -

TIME CJ,RPL HPOrDT(R) I-IPFT DT (R) MCCPC OPOV FPOV lPFPPD
(sec) A B A 8 (psia) (%) (%) (psia)

'l,..o 104 1"c>C, ~ J't~ 1 LI1.) r'77, -SJ~6 ,<t~ 1 ~~/. cr "1-5-2-
110 (04- ,~'1' l~g4' I (t I c1Y-\- 3J2lt (_~D f]~ .t 24,. .
"Z.(O IO~ '4~4 ,~ ~-"3. I ~()4 i"leog ~L'7L. .Co9... .C:- ROil L~_~

11> "'l.:> I 'l. 0

I()O - I - 2, 'I \J 1t:>
~--- - --- .

SSME # __ 2.10'1 ___ I SSM~E QUICK LOOK DATA I TEST # _12lo.?.":-S:_
DATE __ 1/-Bjc,_,=-_ TIME Jl~3lt DURATION: SCHEDULED -z. ,"0 SECONDS

' ...
ACTUAL ___ ~1C1.j1--SECONDS

FIDS AND/OR CO"MMENTS ______ liQ~_~ _________________ ~ ____________________ ..

1 --
)

PRID tO~ 11'10 14-'1 t) , 18c It:, <YQ - 4'7 8f - -
TIME CJ,RPL HPOrDT(R) I-IPFT DT (R) MCCPC OPOV FPOV lPFPPD
(sec) A B A 8 (psia) (%) (%) (psia)

'l,..o 104 1"c>«1 ~ J't_~ 1 Crt) r'77, -St~6 , <t..11 ~'7·1 _ZS2-
110 (04- ,~'1' l~g4' 1 (t I (1Y-\- ~J2lt (_~D f]~ .t 24,. '.

.
"Z.(O IOCl\ '4~4 ,~ ~-"3. I '104 i"leog ~L'7L. Co9... _C:- ~o,l L~_~

1: •• 1:1 ~_ 1"- ." N~P ~ I IUIVlIIaI= .. RA..q(::J~: I
nUl: tJP~ TlUi: MP~P/ J "uc: lim II _Tlue: PRP ~PJ:D I

11> "'l.:> I 'l. 0 '" / 2.0 ~~ ~-o L\ J~_ 4. 3> ~ L
'7,7 .. .'"1 X qo 100 l ")/J 7. __

.
I()O c...o'L.. lfl1-.2 L
- - /' ~ I~O (" O~ ,st> ';\;\/1 ~ 1'.~:"?>2. - / "- -ZSL> (,,61- 1,7.5' 2, 'I \J 1t:> , ""1. 3 2-- -

Randy Hurt
4/7/92 \

"Gains"

o Everything in the engine is interconnected.
o The low pressure pumps are driven by the high pressure pumps.
o The preburner MRs are dictated by each other somewhat. E.g. Ox prebumer MR goes up,

causing pressure and temperature to go up in prebumer. That increases the resistance in fuel
line going to the OPB, thus causing more of the fuel flow to be routed to the FPB, where the
MR then decreases. Thus the Ox side "powers up" and fuel side "powers down".

• Pump change-out gains very important. What happens when you put in a less efficient pump?
o Pump efficency is indicated by the temperature increase across the pump. Inefficient pump will

cause more of a temperature rise, because you're heating up the fluid more.
o Pretty much assume line resistances are constant, and don't really know any of the resistance

numbers.

HPFTP
o Fuel mass flow is constant for a given power level.
o Speed is a function of volumetric flow and efficiency. If efficiency goes up, speed goes down

for the same flow.
o A large percentage change in LOX pump efficiency will not affect the fuel side as much as a

large percentage change in fuel pump efficiency, because the fuel pump is larger, has a larger
preburner, and is getting roughly twice the amount of fuel as the OPB. We saw this with the
Pratt ATD fuel pump, had a larger turbine area so didn't need as much FPB pressure, and it
caused the fuel turbine temps to drop. This lowered the resistance for the fuel line going into
the FPB, which caused more fuel to be directed to the OPB causing its MR and combustion
temperature to go down. This also lowered the required discharge pressure for the HPFP.
Thus pump discharge pressure is a function of turbine efficiency (inversely related).

o We don't have a good measure of turbine efficiency, because we don't have the sensors to get
the change in temperature across the turbines.

o A nozzle leak will also affect HPFP discharge pressures. Leak causes downstream resistance
to go down, thus causing pump discharge to go down. '

o HPFP inlet pressure and temp affected by LPFP. But I don't usually look at these much. LPFP
goes from 40psi to about 250psi. This change in pressure doesn't cause large temperature
fluctuations. Even with pump changeout you won't see much affect on the large pumps, or
on the overall engine performance.

o HPFP - Discharge pressure affected mostly by downstream resistance and not so much by
changes in inlet pressure, even if there were large fluctuations in fuel inlet conditions. You
might see its speed go down, or the outlet temperature go down.

• HPFP outlet temp - Strictly a function of pump efficiency (inlet temp doesn't change mUCh). If
efficiency goes down outlet temp goes up (with same discharge duct).

o HPFP speed - Big pressure increase on inlet pressure would cause this to go down; but this
rarely happens (would have to be 20psi or more). Speed mostly a function of pump'efficiency
and discharge pressure required. If downstream resistance goes down, speed would go
down.

o HPFTP - Don't usually think about turbine efficiency because we can't measure it; usually
think of the turbopump as a unit. If the turbine efficiency went down would have to have more
FPB pressure, will affect downstream resistance of HPFP, will require higher HPFP discharge
pressure, which demands more power, so it bootstraps. So for a small turbine efficiency
change, will see a large change in pump discharge pressure. If turbine efficiency goes up,
less HPFP discharge pressure, less FPB PC, FPB MR down, colder turbine discharge temps.

• HPFTP discharge pressure - measure hot gas injection pressure (from HPFTP to MCC),
pretty much dictated by PC. Have a known resistance across the injector and the faceplate.

• HPFTP discharge temp - Based on FPB MR; if MR goes up, temp goes up. MCC MR stays
pretty constant, preburner MR can change. If efficiency goes down, turbine discharge temps
go up, because you need more pressure in the preburner, causing less fuel flow to the
preburner, causing MR to go up.

Page 1

Randy Hurt
4/7/92 \

"Gains"

o Everything in the engine is interconnected.
o The low pressure pumps are driven by the high pressure pumps.
o The preburner MRs are dictated by each other somewhat. E.g. Ox prebumer MR goes up,

causing pressure and temperature to go up in prebumer. That increases the resistance in fuel
line going to the OPB, thus causing more of the fuel flow to be routed to the FPB, where the
MR then decreases. Thus the Ox side "powers up" and fuel side "powers down".

• Pump change-out gains very important. What happens when you put in a less efficient pump?
o Pump efficency is indicated by the temperature increase across the pump. Inefficient pump will

cause more of a temperature rise, because you're heating up the fluid more.
o Pretty much assume line resistances are constant, and don't really know any of the resistance

numbers.

HPFTP
o Fuel mass flow is constant for a given power level.
o Speed is a function of volumetric flow and efficiency. If efficiency goes up, speed goes down

for the same flow.
o A large percentage change in LOX pump efficiency will not affect the fuel side as much as a

large percentage change in fuel pump efficiency, because the fuel pump is larger, has a larger
preburner, and is getting roughly twice the amount of fuel as the OPB. We saw this with the
Pratt ATD fuel pump, had a larger turbine area so didn't need as much FPB pressure, and it
caused the fuel turbine temps to drop. This lowered the resistance for the fuel line going into
the FPB, which caused more fuel to be directed to the OPB causing its MR and combustion
temperature to go down. This also lowered the required discharge pressure for the HPFP.
Thus pump discharge pressure is a function of turbine efficiency (inversely related).

o We don't have a good measure of turbine efficiency, because we don't have the sensors to get
the change in temperature across the turbines.

o A nozzle leak will also affect HPFP discharge pressures. Leak causes downstream resistance
to go down, thus causing pump discharge to go down. '

o HPFP inlet pressure and temp affected by LPFP. But I don't usually look at these much. LPFP
goes from 40psi to about 250psi. This change in pressure doesn't cause large temperature
fluctuations. Even with pump changeout you won't see much affect on the large pumps, or
on the overall engine performance.

o HPFP - Discharge pressure affected mostly by downstream resistance and not so much by
changes in inlet pressure, even if there were large fluctuations in fuel inlet conditions. You
might see its speed go down, or the outlet temperature go down.

• HPFP outlet temp - Strictly a function of pump efficiency (inlet temp doesn't change mUCh). If
efficiency goes down outlet temp goes up (with same discharge duct).

o HPFP speed - Big pressure increase on inlet pressure would cause this to go down; but this
rarely happens (would have to be 20psi or more). Speed mostly a function of pump'efficiency
and discharge pressure required. If downstream resistance goes down, speed would go
down.

o HPFTP - Don't usually think about turbine efficiency because we can't measure it; usually
think of the turbopump as a unit. If the turbine efficiency went down would have to have more
FPB pressure, will affect downstream resistance of HPFP, will require higher HPFP discharge
pressure, which demands more power, so it bootstraps. So for a small turbine efficiency
change, will see a large change in pump discharge pressure. If turbine efficiency goes up,
less HPFP discharge pressure, less FPB PC, FPB MR down, colder turbine discharge temps.

• HPFTP discharge pressure - measure hot gas injection pressure (from HPFTP to MCC),
pretty much dictated by PC. Have a known resistance across the injector and the faceplate.

• HPFTP discharge temp - Based on FPB MR; if MR goes up, temp goes up. MCC MR stays
pretty constant, preburner MR can change. If efficiency goes down, turbine discharge temps
go up, because you need more pressure in the preburner, causing less fuel flow to the
preburner, causing MR to go up.

Page 1

• If efficiency of both high pressure pumps went down, would require more preburner pressure
on both, causing the fuel line resistance downstream of the HPFP to go up, increasing the
required HPFP discharge pressure, dropping the fuel flow to both preburners, causing both
preburner MRs to go up and their temperatures to go up, and the resistance would cause a
proportionally larger amount of fuel to be run through the MCC coolant circuit.

• Changes in HPFTP efficiency effect the engine much more than HPOTP efficiency changes,
because it is a bigger pump. If HPFTP efficiency went down, have to open up the FPOV, and
will definitely have to open up OPOV. (Efficiency of pump AND turbine considered as a unit.
However, changes in efficiency usually due to turbine efficiency change, because you have
turbine blades which have much more heat transfer on them than in the pump.)

• If the liftoff seal closes down, ???

FPB
• Don't have any pressures or temps on the fuel inlet. These are affected more BY the

preburner, then they affect the preburner. OPB combustion controlled with LOX flow via
OPOV (since we're running so fuel rich).

OPOV,FPOV
• Available pressure in OPB LOX inlet line will affect OPOV position, but that's about it.
o If you don't have as efficient a preburner LOX pump, will cause OPOV and FPOV to open. So

preburner pump efficiency can be driver in preburner valve positions.
• If you had avery efficient HPFP, you wouldn't need very much LOX in the OPB, so you'd close

down FPOV, which would increase the available pressure at OPOV, so you'd close it down too.
• If you increased efficiency on fuel side, decreased(?) efficiency on LOX side, would cause

FPOV to close and OPOV to open(?).
• If you decrease LOX tank pressure, then have to speed up HPOP, have to open up OPOV.

But as you speed up you get increased pressure, so you need to close OPOV down. So it's a
question of which needs more. FPOV stays about the same. So during venting and
pressurization, OPOV controls the engine reaction, and FPOV stays about the same.

Mec
• No direct measure of combustion temperature. Have indirect measure via MCCcoolant

discharge temperature. Temp should be pretty constant. MCC coolant discharge temperature
changes are more a function of the amount of fuel flow through the coolant circuit. If this flow
increases, the coolant discharge temp should go down.

• If the MeC has a crack in it, then we are leaking fuel out. That causes more COOling in MeC (via
film cooling), so the coolant flow should come out colder(?).

• Piston ring seals. There is one on the top and one on the bottom of the MCC. If these shift,
they can change the resistance downstream of the HPFTurbine. If the resistance goes down
(due to a leak through the seal), the HPFTP speed goes up(?).

HPOP
• Inlet pressure can go up due to tank pressurization. Don't have as much delta-P required, so

pump speed goes down.
• Discharge pressure for a given engine will always be about the same, unless you broken a

bunch a posts or something like that. The discharge just needs go through the MOV and then
into the MCC.

• Discharge temp not measured. But, would be a function of efficiency of the pump. Decrease
in efficiency would cause a discharge temp increase.

• Speed mostly a function of inlet pressure. If inlet pressure goes up, speed goes down.
• Discharge pressure is constant. LPOP is driven by HPOP outlet, so inlet pressure of the

HPOP is always about the same(?). LOX inlet pressure to LOX turbine relatively constant(?).

Randy H •. llt 417 Gains pcge 2

• If efficiency of both high pressure pumps went down, would require more preburner pressure
on both, causing the fuel line resistance downstream of the HPFP to go up, increasing the
required HPFP discharge pressure, dropping the fuel flow to both preburners, causing both
preburner MRs to go up and their temperatures to go up, and the resistance would cause a
proportionally larger amount of fuel to be run through the MCC coolant circuit.

• Changes in HPFTP efficiency effect the engine much more than HPOTP efficiency changes,
because it is a bigger pump. If HPFTP efficiency went down, have to open up the FPOV, and
will definitely have to open up OPOV. (Efficiency of pump AND turbine considered as a unit.
However, changes in efficiency usually due to turbine efficiency change, because you have
turbine blades which have much more heat transfer on them than in the pump.)

• If the liftoff seal closes down, ???

FPB
• Don't have any pressures or temps on the fuel inlet. These are affected more BY the

preburner, then they affect the preburner. OPB combustion controlled with LOX flow via
OPOV (since we're running so fuel rich).

OPOV,FPOV
• Available pressure in OPB LOX inlet line will affect OPOV position, but that's about it.
o If you don't have as efficient a preburner LOX pump, will cause OPOV and FPOV to open. So

preburner pump efficiency can be driver in preburner valve positions.
• If you had avery efficient HPFP, you wouldn't need very much LOX in the OPB, so you'd close

down FPOV, which would increase the available pressure at OPOV, so you'd close it down too.
• If you increased efficiency on fuel side, decreased(?) efficiency on LOX side, would cause

FPOV to close and OPOV to open(?).
• If you decrease LOX tank pressure, then have to speed up HPOP, have to open up OPOV.

But as you speed up you get increased pressure, so you need to close OPOV down. So it's a
question of which needs more. FPOV stays about the same. So during venting and
pressurization, OPOV controls the engine reaction, and FPOV stays about the same.

Mec
• No direct measure of combustion temperature. Have indirect measure via MCCcoolant

discharge temperature. Temp should be pretty constant. MCC coolant discharge temperature
changes are more a function of the amount of fuel flow through the coolant circuit. If this flow
increases, the coolant discharge temp should go down.

• If the MeC has a crack in it, then we are leaking fuel out. That causes more COOling in MeC (via
film cooling), so the coolant flow should come out colder(?).

• Piston ring seals. There is one on the top and one on the bottom of the MCC. If these shift,
they can change the resistance downstream of the HPFTurbine. If the resistance goes down
(due to a leak through the seal), the HPFTP speed goes up(?).

HPOP
• Inlet pressure can go up due to tank pressurization. Don't have as much delta-P required, so

pump speed goes down.
• Discharge pressure for a given engine will always be about the same, unless you broken a

bunch a posts or something like that. The discharge just needs go through the MOV and then
into the MCC.

• Discharge temp not measured. But, would be a function of efficiency of the pump. Decrease
in efficiency would cause a discharge temp increase.

• Speed mostly a function of inlet pressure. If inlet pressure goes up, speed goes down.
• Discharge pressure is constant. LPOP is driven by HPOP outlet, so inlet pressure of the

HPOP is always about the same(?). LOX inlet pressure to LOX turbine relatively constant(?).

Randy H •. llt 417 Gains pcge 2

HPOT
• Turbine outlet pressure. pretty constant. Because of hot gas pressure requirements. which

are pretty constant (commanded by PC).
• Turbine outlet temp. Depends on efficiency of the pump. efficiency of HPFTP. OPS MR. If

HPFTP effiiciency goes down. it requires more pressure in FPB. raising the resistance in that
leg of the fuel inlet. forcing more fuel into the OPB. causing its MR to go down. causing the
HPOT discharge temp to go down. Driven directly by MR.

LPOP
• Delta-P across LPOP stays relatively constant. So. changes in engine inlet LOX pressure are

passed on 1-for-1 to the HPOP inlet (e.g .• if inlet LOX goes up SOpsi. HPOP inlet will go up
SOpsi). So the HPOP must make up for any changes in inlet LOX pressure. So have power-up
or power-down the LOX side of the engine depending on the inlet conditions.

• Outlet temp is measured and is relatively constant. due to fairly constant amount of energy into
the pump.

• Speed. Don't look at it very much. but it's pretty constant because of constant delta-P.
• LPOP turbine inlet pressure doesn't change much. because it's tapped ott of HPOP

discharge. which doesn't change much.
• Venting and pressurization have much larger effect on the engine than on fuel side. due to

higher density. Start with 160psi head. down to 30psi during vent. then back up 160psi after
pressurization.

LPFP
• Outlet pressure doesn't vary much. Varies some with inlet pressure (30psi down to about

5psi). Pumping constant delta-P. like on LPOP. Main driver: see about a 300psi ch~nge when
you start repressurization.

• Outlet temp pretty constant, but a function of inlet temp. See this change a little with fuel
propellant transfer (fuel tends to warm up a little).

• Speed. When repress goes from min to max. the LPFP speed changes. When repress opens.
you have less pressure downstream. giving a larger delta-P requirement. so you get more
speed.

• Turbine discharge pressure mainly a function of repressurization.
• Turbine discharge temperature pretty constant. but mainly a function of MCC coolant discharge

temperature.
• If repress flow is increased, have bigger delta-P for pump, it speeds up, turbine discharge

pressure drops, turbine discharge temp down(?).

Preburner Pump
• When you vent. you have a lower LOX inlet pressure, lower inlet pressure to HPOP, HPOP has

to speed uP. HPOP has same discharge pressure. so preburner pump discharge pressure
increases. (Speed causes PSP delta-P to increase. but have same inlet pressure.) This
causes OPOV and FPOV to close down.

Heat Exchanger
• Tap off HPOP discharge. vaporize it, send some of it to LOX repress. some of it to POGO

repress.
• HX interface temperature (of GOX to tank). required to be within a certain range. Changes

according to turbine temp. If HPOTP discharge temp goes up, HX interface temp and pressure
go up.

CCV
• Throttles with power level below 100%. Atways does the same thing, so don't look at it too

much.

Ranctt IiJrt 417 Gains

HPOT
• Turbine outlet pressure. pretty constant. Because of hot gas pressure requirements. which

are pretty constant (commanded by PC).
• Turbine outlet temp. Depends on efficiency of the pump. efficiency of HPFTP. OPS MR. If

HPFTP effiiciency goes down. it requires more pressure in FPB. raising the resistance in that
leg of the fuel inlet. forcing more fuel into the OPB. causing its MR to go down. causing the
HPOT discharge temp to go down. Driven directly by MR.

LPOP
• Delta-P across LPOP stays relatively constant. So. changes in engine inlet LOX pressure are

passed on 1-for-1 to the HPOP inlet (e.g .• if inlet LOX goes up SOpsi. HPOP inlet will go up
SOpsi). So the HPOP must make up for any changes in inlet LOX pressure. So have power-up
or power-down the LOX side of the engine depending on the inlet conditions.

• Outlet temp is measured and is relatively constant. due to fairly constant amount of energy into
the pump.

• Speed. Don't look at it very much. but it's pretty constant because of constant delta-P.
• LPOP turbine inlet pressure doesn't change much. because it's tapped ott of HPOP

discharge. which doesn't change much.
• Venting and pressurization have much larger effect on the engine than on fuel side. due to

higher density. Start with 160psi head. down to 30psi during vent. then back up 160psi after
pressurization.

LPFP
• Outlet pressure doesn't vary much. Varies some with inlet pressure (30psi down to about

5psi). Pumping constant delta-P. like on LPOP. Main driver: see about a 300psi ch~nge when
you start repressurization.

• Outlet temp pretty constant, but a function of inlet temp. See this change a little with fuel
propellant transfer (fuel tends to warm up a little).

• Speed. When repress goes from min to max. the LPFP speed changes. When repress opens.
you have less pressure downstream. giving a larger delta-P requirement. so you get more
speed.

• Turbine discharge pressure mainly a function of repressurization.
• Turbine discharge temperature pretty constant. but mainly a function of MCC coolant discharge

temperature.
• If repress flow is increased, have bigger delta-P for pump, it speeds up, turbine discharge

pressure drops, turbine discharge temp down(?).

Preburner Pump
• When you vent. you have a lower LOX inlet pressure, lower inlet pressure to HPOP, HPOP has

to speed uP. HPOP has same discharge pressure. so preburner pump discharge pressure
increases. (Speed causes PSP delta-P to increase. but have same inlet pressure.) This
causes OPOV and FPOV to close down.

Heat Exchanger
• Tap off HPOP discharge. vaporize it, send some of it to LOX repress. some of it to POGO

repress.
• HX interface temperature (of GOX to tank). required to be within a certain range. Changes

according to turbine temp. If HPOTP discharge temp goes up, HX interface temp and pressure
go up.

CCV
• Throttles with power level below 100%. Atways does the same thing, so don't look at it too

much.

Ranctt IiJrt 417 Gains

-----_ ... __ ._

-.

-

s ~ __ _ -_-__ , . _=
~.~, .. :...--, .. -:-. ..--.~

> ...
:II f

/ -
'1.

0-

t:
0-=

> e

I

-----_ ... __ ._

-.

-

s ~ __ _ -_-__ , . _=
~.~, .. :...--, .. -:-. ..--.~

> ...
:II f

/ -
'1.

0-

t:
0-=

> e

I

•

Randy Hurt
4/7/92

Post-Test Review Package

Randy walked me through an analysis of the plots in a post-test review package from an old test
(A2552). This was not the full data book; just a summary of the more important plots, "enough to
satisfy the chief engineer that everything is OK."

• Used to do 1.5sec, 300sec, 550sec tests, now just do 300 and 550sec tests.

• Green Run. Usually get an engine that's going to on the shuttle to fly. It will have a couple of
pumps that need to have a green run (pumps only get one green run). The engine itself needs
to be calibrated (C2 and Kf in the controller), so it will get two tests before it flies; a calibration
test and an acceptance test. Orifices are also installed to tune the engine: there is one orifice
at the LPFP. Green run lasts 300sec. Hopefully, MR was pretty close to where it should be.

• Acceptance Test. Typically change the pumps out again to new pumps which need to have
green runs, and run the acceptance test for the engine.

Package
• Cover page: Programmatic info and test results. Results are almost always "satisfactory".
• Instrumentation Observations: Noted a 12psi delta in MCC Pc. Not terribly significant, but MCC

Pc very important. Have had some clogging in the sensor which causes the bias. The problem
is that if the clogging gets worse, the bias goes up exponentially. If you get more than a 400psi
delta in MCC Pc you go into electrical lockup.

• Factility fuel repress valve timing (see Fig 1).
• Main info out of pre-test: Hardware changes, max min repress, objectives.
• FFM slope (fuel flowmeter slope), used to computer/evaluate Kf. Kf is calibration constant for

the fuel flowmeter. Want it mostly calibrated at 104% since that's where you're running the
most.

• Cold flow OPOV and FPOV in order to set open-loop timing parameters (used during START).
See Figure 2.

Start
• MCC Pc compared to previous three tests of this engine. Would expect these overlay almost

exactly. Might change a little engine-to-engine. OPOV and FPOV really come into play: most
of the other valves are pretty much "straight up" open. Expect to see some variations during
prime time-when the MCC gets LOX flow thru injectors (before then mainly just have GOX),
gives a rapid increase in MCC Pc. Past about 2.5 seconds, should be almost identical to
comparisons.

• If any MCFs during START, will simply shut down at that point (on flight, decision is made by
shuttle vehicle controller before igniting the solids, and will cause an on-pad abort).

• We used to just ignore MCFs on the test stand, and go ahead and run unless a redline was
reached. E.g., during Mainstage, LOX turbine temps redline is 202(?) (both channels must
exceed this for three major cycles for a redline). During START, one channel gets a red line for
one cycle, it generates an MCF.

• HPFP DS P - See fuel side oscillations. MFV opens at START, liquid hydrogen rushes into
the hot nozzle, and flashes into a gas, causing a big pressure increase causing the gas to reach
all the way back to the HPFP OS P sensor. Causes a slight oscillation. Benign phenonmenon,
sometimes happen, sometimes doesn't.

• HPFP OS T - Gradual increase, spikes during fuel side oscillation when you get gas back into
the pump. Pump basically stalls momentarily. Pressure goes down. When the fuel pump
stalls like this you usually get a warmer start, especially on the LOX side, because the OPB gets
less fuel, also giving you a faster start. See some variation due to the efficiency of the pump
(vs. the comparison pump). Usually see a spike around 1sec, due to the FPOV 1st notch on
the schedule of valve positions during start. The two channels (A and B) are usually plotted
separately, because they're located at physically different positions on the preburner (see Fig
3), and the temperature distribution is not perfect.

Rardy HJrt 4f7 Post-Test Pad<age

.A <. - :l ,-

Page 1

•

Randy Hurt
4/7/92

Post-Test Review Package

Randy walked me through an analysis of the plots in a post-test review package from an old test
(A2552). This was not the full data book; just a summary of the more important plots, "enough to
satisfy the chief engineer that everything is OK."

• Used to do 1.5sec, 300sec, 550sec tests, now just do 300 and 550sec tests.

• Green Run. Usually get an engine that's going to on the shuttle to fly. It will have a couple of
pumps that need to have a green run (pumps only get one green run). The engine itself needs
to be calibrated (C2 and Kf in the controller), so it will get two tests before it flies; a calibration
test and an acceptance test. Orifices are also installed to tune the engine: there is one orifice
at the LPFP. Green run lasts 300sec. Hopefully, MR was pretty close to where it should be.

• Acceptance Test. Typically change the pumps out again to new pumps which need to have
green runs, and run the acceptance test for the engine.

Package
• Cover page: Programmatic info and test results. Results are almost always "satisfactory".
• Instrumentation Observations: Noted a 12psi delta in MCC Pc. Not terribly significant, but MCC

Pc very important. Have had some clogging in the sensor which causes the bias. The problem
is that if the clogging gets worse, the bias goes up exponentially. If you get more than a 400psi
delta in MCC Pc you go into electrical lockup.

• Factility fuel repress valve timing (see Fig 1).
• Main info out of pre-test: Hardware changes, max min repress, objectives.
• FFM slope (fuel flowmeter slope), used to computer/evaluate Kf. Kf is calibration constant for

the fuel flowmeter. Want it mostly calibrated at 104% since that's where you're running the
most.

• Cold flow OPOV and FPOV in order to set open-loop timing parameters (used during START).
See Figure 2.

Start
• MCC Pc compared to previous three tests of this engine. Would expect these overlay almost

exactly. Might change a little engine-to-engine. OPOV and FPOV really come into play: most
of the other valves are pretty much "straight up" open. Expect to see some variations during
prime time-when the MCC gets LOX flow thru injectors (before then mainly just have GOX),
gives a rapid increase in MCC Pc. Past about 2.5 seconds, should be almost identical to
comparisons.

• If any MCFs during START, will simply shut down at that point (on flight, decision is made by
shuttle vehicle controller before igniting the solids, and will cause an on-pad abort).

• We used to just ignore MCFs on the test stand, and go ahead and run unless a redline was
reached. E.g., during Mainstage, LOX turbine temps redline is 202(?) (both channels must
exceed this for three major cycles for a redline). During START, one channel gets a red line for
one cycle, it generates an MCF.

• HPFP DS P - See fuel side oscillations. MFV opens at START, liquid hydrogen rushes into
the hot nozzle, and flashes into a gas, causing a big pressure increase causing the gas to reach
all the way back to the HPFP OS P sensor. Causes a slight oscillation. Benign phenonmenon,
sometimes happen, sometimes doesn't.

• HPFP OS T - Gradual increase, spikes during fuel side oscillation when you get gas back into
the pump. Pump basically stalls momentarily. Pressure goes down. When the fuel pump
stalls like this you usually get a warmer start, especially on the LOX side, because the OPB gets
less fuel, also giving you a faster start. See some variation due to the efficiency of the pump
(vs. the comparison pump). Usually see a spike around 1sec, due to the FPOV 1st notch on
the schedule of valve positions during start. The two channels (A and B) are usually plotted
separately, because they're located at physically different positions on the preburner (see Fig
3), and the temperature distribution is not perfect.

Rardy HJrt 4f7 Post-Test Pad<age

.A <. - :l ,-

Page 1

•

• FPS Prime - Fill up the LOX dome cavity, start flowing LOX into the injector. Prime is when the
face plate is lit all the way across. Measured with HPFP speed; initially running em gas
combustion,but at prime get liquid combustion yielding much more energy, causing the speed
to jump up. Thus, prime is when the slope of HPFP speed changes.

• Priming sequence is essential, because you want to make sure you start up and shut down fuel
rich. So, want to prime FPS first, MCC second, OPB last (need to be about 1/10sec apart). If
you primed the MCC first you'd create a lot of back pressure onto the HPFP.

• MCC Prime ,- when it breaks 100psi. I don't think that's a good way to do it. Rocketdyne
defines it at 300psi. It's really just when the slope MCC Pc slope changes.

• OPS Prime- HPFT temp gOing down initially cause you're running mainly on fuel flow
(starting the engine on fuel gas essentially, from fuel flowed through the nozzle), when you get
enough LOX flow they turn around and start going back uP. and that's the prime time. See a
slight increase(?) at the time of the fuel side oscillation when we stall the fuel pump out.

• Mainstage starts around 5 seconds (full closed loop contrOl).
• Pump discharge pressure looks alot like pump speed, so we usually just show discharge

pressure at the review.
• HPOTurbine OS T - Slight overshoot; normal. (???)

Shutdown
• HPFT DS T - Curve shape is somewhat a function of how much fuel is flowing through the

FPS (?) at the time of shutdown. Fuel flow determines how cold your turbine temps get, and
that varies according to FPOV open-loop position (?). Channel A showed a turnaround (see
Fig 4), channel B didn't. Probably got a little extra LOX in the FPB dome. Normal.

• Frisbee is the LOX diffuser in preburner dome. Can crack, allowing a little LOX in "there" (?). At
shutdown when pressures start dropping, the LOX comes back out and provides a little extra
combustion,. which will show up in the HPFT OS T as a temp increase at shutdown+5-
1 Oseconds at a rate of 6 degrees/sec or more.

• Pump speeds at shutdown. Slowdown a function of resistance; if liquid is still flowing get faster
slowdowns than for gas. Shutdown to shutdown+5: Rotor is moving around, got all this
pressure on one side of it and aU of a sudden you take it off and the impellors tend to push the
rotor up. This can bottom the rotor out, which would cause the pump to slow down a lot faster.
So, your looking for comparable energy dissipation. If one of your bearings was going bad you
might see these come down a lot faster. If speed stops before shutdown+12sec, then usually
there's some kind of problem (that's the fastest normal shutdown we've seen).

• HPOTP OS Ts - See a minor turnaround when the purge comes on and forces a little more
LOX out, causing MR to go up (see Fig 4). MOV comes closed driving the pressure up,
causing a small perturbation (see Fig 4). Mainly want to make sure that this doesn't come down
too quickly, indicating that something grabbed in the pump.

Malnstage
• Thrust profile - This test was a little unusual in that we ran 104% without any vents for about

SOsec to calibrate the facility flowmeters. Drop down to 65%, 64%, 63% to check for preburner
pump bi-stability. Then back up to 104% for awhile, then to 109% and drop to 65% for a 3G
throttle simulation. You never want to exceed 3Gs on the vehicle, so during flight you throttle
back to 65% as it passes through the point of max acceleration so you don't exceed the 3G
limit. Then back to 100% and shutdown. This is a fairly normal acceptance test profile.

• Engine fuel inlet NPSP. NPSP = Net positive suction pressure (inlet pressure minus the vapor
pressure; a measure of how likely the pump is to cavitate, the lower NPSP the more likely we
are to cavitate). Specs for this value are 6NPSP +2/-0. Just indicates what the facility is doing
to the engine. Will see changes in response to changes in engine power level. Plots show a
lower bound for this value, which if exceeded would cause the pumps to start cavitating.

o Engine LOX inlet NPSP. Spec is 20 +21-0. You have to reach this point on a HPOP greenrun
to show that you have good margin on the HPOP. Cavitating the LOX pump is a lot worse than
cavitating the fuel pump because there is only one impellor, so you would immediately
overspeed the pump and lead to a disasterous situation. The HPFP has three impellors, so its
a little more tolerant (some people say that the first impellor is always cavitating). The vent is to
simulate what happens when the SRBs bum out and the vehicle acceleration drops.

Ran:Iy Hurt 4f7 Post-Test Package Page 2

•

• FPS Prime - Fill up the LOX dome cavity, start flowing LOX into the injector. Prime is when the
face plate is lit all the way across. Measured with HPFP speed; initially running em gas
combustion,but at prime get liquid combustion yielding much more energy, causing the speed
to jump up. Thus, prime is when the slope of HPFP speed changes.

• Priming sequence is essential, because you want to make sure you start up and shut down fuel
rich. So, want to prime FPS first, MCC second, OPB last (need to be about 1/10sec apart). If
you primed the MCC first you'd create a lot of back pressure onto the HPFP.

• MCC Prime ,- when it breaks 100psi. I don't think that's a good way to do it. Rocketdyne
defines it at 300psi. It's really just when the slope MCC Pc slope changes.

• OPS Prime- HPFT temp gOing down initially cause you're running mainly on fuel flow
(starting the engine on fuel gas essentially, from fuel flowed through the nozzle), when you get
enough LOX flow they turn around and start going back uP. and that's the prime time. See a
slight increase(?) at the time of the fuel side oscillation when we stall the fuel pump out.

• Mainstage starts around 5 seconds (full closed loop contrOl).
• Pump discharge pressure looks alot like pump speed, so we usually just show discharge

pressure at the review.
• HPOTurbine OS T - Slight overshoot; normal. (???)

Shutdown
• HPFT DS T - Curve shape is somewhat a function of how much fuel is flowing through the

FPS (?) at the time of shutdown. Fuel flow determines how cold your turbine temps get, and
that varies according to FPOV open-loop position (?). Channel A showed a turnaround (see
Fig 4), channel B didn't. Probably got a little extra LOX in the FPB dome. Normal.

• Frisbee is the LOX diffuser in preburner dome. Can crack, allowing a little LOX in "there" (?). At
shutdown when pressures start dropping, the LOX comes back out and provides a little extra
combustion,. which will show up in the HPFT OS T as a temp increase at shutdown+5-
1 Oseconds at a rate of 6 degrees/sec or more.

• Pump speeds at shutdown. Slowdown a function of resistance; if liquid is still flowing get faster
slowdowns than for gas. Shutdown to shutdown+5: Rotor is moving around, got all this
pressure on one side of it and aU of a sudden you take it off and the impellors tend to push the
rotor up. This can bottom the rotor out, which would cause the pump to slow down a lot faster.
So, your looking for comparable energy dissipation. If one of your bearings was going bad you
might see these come down a lot faster. If speed stops before shutdown+12sec, then usually
there's some kind of problem (that's the fastest normal shutdown we've seen).

• HPOTP OS Ts - See a minor turnaround when the purge comes on and forces a little more
LOX out, causing MR to go up (see Fig 4). MOV comes closed driving the pressure up,
causing a small perturbation (see Fig 4). Mainly want to make sure that this doesn't come down
too quickly, indicating that something grabbed in the pump.

Malnstage
• Thrust profile - This test was a little unusual in that we ran 104% without any vents for about

SOsec to calibrate the facility flowmeters. Drop down to 65%, 64%, 63% to check for preburner
pump bi-stability. Then back up to 104% for awhile, then to 109% and drop to 65% for a 3G
throttle simulation. You never want to exceed 3Gs on the vehicle, so during flight you throttle
back to 65% as it passes through the point of max acceleration so you don't exceed the 3G
limit. Then back to 100% and shutdown. This is a fairly normal acceptance test profile.

• Engine fuel inlet NPSP. NPSP = Net positive suction pressure (inlet pressure minus the vapor
pressure; a measure of how likely the pump is to cavitate, the lower NPSP the more likely we
are to cavitate). Specs for this value are 6NPSP +2/-0. Just indicates what the facility is doing
to the engine. Will see changes in response to changes in engine power level. Plots show a
lower bound for this value, which if exceeded would cause the pumps to start cavitating.

o Engine LOX inlet NPSP. Spec is 20 +21-0. You have to reach this point on a HPOP greenrun
to show that you have good margin on the HPOP. Cavitating the LOX pump is a lot worse than
cavitating the fuel pump because there is only one impellor, so you would immediately
overspeed the pump and lead to a disasterous situation. The HPFP has three impellors, so its
a little more tolerant (some people say that the first impellor is always cavitating). The vent is to
simulate what happens when the SRBs bum out and the vehicle acceleration drops.

Ran:Iy Hurt 4f7 Post-Test Package Page 2

o MR. Fuel flowmeter is not required to be calibrated at 65%, only 100%,104%, and 109%. So
you want to make sure that MR is on the mark at 104%, but its not as important at 65%. So you
see MR vary at 65%. You also see MR spike when you change power levels. You get PC
control very quickly after power level changes (fast valve and pump reaction), but it takes MR a
few seconds to adjust, usually due to a LOX overshoot.

o FPOV actuator positions. Showed a 2% variation at 104%PL. Think it was due primarily to a
different preburner pump, but also due to a different HPFP, and a different HPOTP. The
preburner pump efficiency is down on this test, causing its oultet pressure to be lower, causing
FPOV and OPOV to be open a little more. FPOV pretty high here, about 88%. Once it gets to
about 92-93% you start losing control FPOV, because its almost all the way open. If you do
that on FPOV then you start running off MR, although OPOV will keep PC controlled, so it
wouldn't be catastrophic.

o HPFTP OS T - Higher than comparison tests. Probably due to HPFTP being less efficient,
which would also account for FPOV being as high as it is.

o Pump efficiency from the data reduction model.
o OPOV. Looks good, so I would expect to see HPOTP OS Temps about the same.
• HPOTP OS T - Looks a little low (about 50deg).

Special Purpose Plots
o 2 Sigma Comparisons, at 104% PL when HPFTP OS T is at Max. Look for trends. Mainly

looking at? OS Ts, HPFTP OS Ts and HPOTP OS Ts. HPOTP OS Ts here are low, and HPOP
OS P is low (thiS engine doesn't require as much LOX pressure {more efficient?}, so the
preburner pressure and temp are down). As long as everything is within 2 sigma, everything's
OK. Here we have HPFTP OS T(?) 2.5sigma high; the fuel pump was pretty bad (efficiency was
pretty low). so it's expected.

o Usually see same trends at 109%; same things are happening. FPOV position 2.2sigma high,
because of low PBP OS P and low efficiency fuel pump (both contribute to FPOV opening up).

• PBP delta-P vs. MCC Pc plot. Should be pretty constant at each power level. Used to check
for bi-stability.

o FPB acceptance test results. Exceeded HPFTP OS T specs by 46 degrees, so that pump was
bad. They probably didn't even try to get it accepted.

o Difference between engine and facility fuel flowmeter plot. The engine fuel flowmeter can be
bi-stable, in which case you'd see the difference oscillate.

o Heat exchanger. Has an ICD of ? +/-50 at 100% nominal vent. Look at how HEX DS T varies
with HPOTP DS T (plot). Project worst-case conditions to 109% to make sure you reach
HPOTP DS T redline before the HEX DS T redline. You can orifice the GOX line to control how
much LOX goes through the HEX and thus control HEX DS T.

o Low pressure fuel pump DS duct. There is a surge pressure requirement during start.

Observations
o MCC Pc delta problem.

Miscellany
o Hydraulic Lockups. Have done some tests on these recently, where we just pull the hydraulics

from the engine. The controller will continue to send commands to the valves, but they don't
respond. Once the differentials get to be too large, the controller will switch from channel A to
channel B, then to hydraulic lockup. In hydraulic lockup, valves tend to leak which causes them
to drift closed. MCC Pc comes down a little (20psi). During a lockup you have to have different
ways of analyzing tile data, since the controller is no longer taking an active role.

o Bi-stabiliy is that part of the pump curve where you see the pump operating at two different
points (see Fig 5), causing oscillations (for the same speed, you get two different delta-Ps).

• Cavitation is when a pump vaporizes the fluid that its pumping. Can't have any PBP bi-stability.
o Note: The extra delay at 104% to calibrate the facility fuel flowmeter caused an extra

complication in comparing this test to the previous one. The best comparison test did not have
such a delay, so the analysts had to mentally shift the two curves into alignment (see Fig 6).

o Would be nice to have a program to allow you to cut-and-paste parts of sensor plots from
different tests together onto the same plot. This would solve the problem where you have a
good comparison test, but it is time-shifted from the current one (as in this test).

Ran:Iy /-Urt 4f1 Post-Test Pad<aJe Page 3

o MR. Fuel flowmeter is not required to be calibrated at 65%, only 100%,104%, and 109%. So
you want to make sure that MR is on the mark at 104%, but its not as important at 65%. So you
see MR vary at 65%. You also see MR spike when you change power levels. You get PC
control very quickly after power level changes (fast valve and pump reaction), but it takes MR a
few seconds to adjust, usually due to a LOX overshoot.

o FPOV actuator positions. Showed a 2% variation at 104%PL. Think it was due primarily to a
different preburner pump, but also due to a different HPFP, and a different HPOTP. The
preburner pump efficiency is down on this test, causing its oultet pressure to be lower, causing
FPOV and OPOV to be open a little more. FPOV pretty high here, about 88%. Once it gets to
about 92-93% you start losing control FPOV, because its almost all the way open. If you do
that on FPOV then you start running off MR, although OPOV will keep PC controlled, so it
wouldn't be catastrophic.

o HPFTP OS T - Higher than comparison tests. Probably due to HPFTP being less efficient,
which would also account for FPOV being as high as it is.

o Pump efficiency from the data reduction model.
o OPOV. Looks good, so I would expect to see HPOTP OS Temps about the same.
• HPOTP OS T - Looks a little low (about 50deg).

Special Purpose Plots
o 2 Sigma Comparisons, at 104% PL when HPFTP OS T is at Max. Look for trends. Mainly

looking at? OS Ts, HPFTP OS Ts and HPOTP OS Ts. HPOTP OS Ts here are low, and HPOP
OS P is low (thiS engine doesn't require as much LOX pressure {more efficient?}, so the
preburner pressure and temp are down). As long as everything is within 2 sigma, everything's
OK. Here we have HPFTP OS T(?) 2.5sigma high; the fuel pump was pretty bad (efficiency was
pretty low). so it's expected.

o Usually see same trends at 109%; same things are happening. FPOV position 2.2sigma high,
because of low PBP OS P and low efficiency fuel pump (both contribute to FPOV opening up).

• PBP delta-P vs. MCC Pc plot. Should be pretty constant at each power level. Used to check
for bi-stability.

o FPB acceptance test results. Exceeded HPFTP OS T specs by 46 degrees, so that pump was
bad. They probably didn't even try to get it accepted.

o Difference between engine and facility fuel flowmeter plot. The engine fuel flowmeter can be
bi-stable, in which case you'd see the difference oscillate.

o Heat exchanger. Has an ICD of ? +/-50 at 100% nominal vent. Look at how HEX DS T varies
with HPOTP DS T (plot). Project worst-case conditions to 109% to make sure you reach
HPOTP DS T redline before the HEX DS T redline. You can orifice the GOX line to control how
much LOX goes through the HEX and thus control HEX DS T.

o Low pressure fuel pump DS duct. There is a surge pressure requirement during start.

Observations
o MCC Pc delta problem.

Miscellany
o Hydraulic Lockups. Have done some tests on these recently, where we just pull the hydraulics

from the engine. The controller will continue to send commands to the valves, but they don't
respond. Once the differentials get to be too large, the controller will switch from channel A to
channel B, then to hydraulic lockup. In hydraulic lockup, valves tend to leak which causes them
to drift closed. MCC Pc comes down a little (20psi). During a lockup you have to have different
ways of analyzing tile data, since the controller is no longer taking an active role.

o Bi-stabiliy is that part of the pump curve where you see the pump operating at two different
points (see Fig 5), causing oscillations (for the same speed, you get two different delta-Ps).

• Cavitation is when a pump vaporizes the fluid that its pumping. Can't have any PBP bi-stability.
o Note: The extra delay at 104% to calibrate the facility fuel flowmeter caused an extra

complication in comparing this test to the previous one. The best comparison test did not have
such a delay, so the analysts had to mentally shift the two curves into alignment (see Fig 6).

o Would be nice to have a program to allow you to cut-and-paste parts of sensor plots from
different tests together onto the same plot. This would solve the problem where you have a
good comparison test, but it is time-shifted from the current one (as in this test).

Ran:Iy /-Urt 4f1 Post-Test Pad<aJe Page 3

tvf:-L
·R:£pe£>.S

VAL-IlL

04cJL rry 0:1'fTI!aL
OF R.£/ilS5; I="i/EL S(Pl
COy >10£ SIM/~)

r L£fiL 'Pa",,' =- 'GpoV C);8J !err CoMl'AH;o,"

/~oy

/ -y./...,.. ' J(u,,,-.r\ I ~ ... ~ , ./ -'

---------------------------_.----. -------- ---
FUT L{

I

tv'F\!
CJJ)SL'KE.- (~)

o

tvf:-L
·R:£pe£>.S

VAL-IlL

04cJL rry 0:1'fTI!aL
OF R.£/ilS5; I="i/EL S(Pl
COy >10£ SIM/~)

r L£fiL 'Pa",,' =- 'GpoV C);8J !err CoMl'AH;o,"

/~oy

/ -y./...,.. ' J(u,,,-.r\ I ~ ... ~ , ./ -'

---------------------------_.----. -------- ---
FUT L{

I

tv'F\!
CJJ)SL'KE.- (~)

o

FIG- 5

F!C~b

,"j

'(it 6 (l/(/.lf f...
/

Ji ,
'(INV'

"------

. , .
, --

-~-- ---_. --------

FIG- 5

F!C~b

,"j

'(it 6 (l/(/.lf f...
/

Ji ,
'(INV'

"------

. , .
, --

-~-- ---_. --------

Randy Hurt
4/8/92

Data Analysis

Randy walked me through an analysis of the plots in a complete data package the day after a test
(test 904-142, engine 2206). Randy had not seen the data before.

• Randy is responsible for test stands B1 and A2, Taylor is responsible for stand A 1.
• Usually Randy, Erik, and Taylor will all look at the data from a test.
• ATD program: alternate turbopump develpment. Pratt is making an alternate HPOTP (and

unofficially making an alternate HPFTP) for the SSME. Scheduled to fly in '96-'97; just now
starting to test the HPOTP on the engine. E8 is a facility in Florida where they do standalone
testing for the ATD pump. The data is sent to MSFC and Rocketdyne. Major problem with the
pump right now is that it has vibration problems. We ran the latest version of the pump last
night on B1 at Stennis, and it shutdown early (67 seconds in) due to vibration on heat
exchanger.

• Data review is very informal. Randy will start a master observation list.
• The comparison test for this engine had a Pratt HPFTP.
• Randy went through the packages in the following order.
• NOTE: Unknown to me at the time, my tape recorder died shortly Into the

Interview, so this Is very sketchy.

Quick Look
• Tells if there were any FIDs or special notes. Rest of the information is not important (too

imprecise).

Start Comparison Package (1 st 6 seconds plotted against comparison test) ...
• I like looking at the transients; there's a lot more stuff going on, and you can usually tell more

about what's going on in the engine.
• FPOV is high (see Fig 1).
• Fuel side oscillations and HPFT DS T high (see Fig 2).
• HPFT DS T CH B was significantly higher than comparison, but know that CH B on Pratt pumps

has typically run low, so this is OK.
• Normal overshoot on HPOT OS T (see Fig 3).
• Normal POGO pressure (see Fig 4),

Start 2 Sigma Package (1st 6 seconds plotted against historical 2 sigma bands)
Shutdown Comparison Package (20 seconds following SHUTDOWN plotted

against comparison test)
Shutdown 2 Sigma package
Mainstage Comparison Package
MainStage 2 Sigma Package
Instrumentation (Sets of redundant sensors values plotted together)

Summary
• This entire review takes Randy about 30 minutes to do (of course, there were no major

anomalies on this test aside from the vibration, which the systems guys don't seem to worry
themselves about).

• Randy's one major observation concerned a significantly higher HPFTP OS T (up 175 degrees
on this test relative to the comparison). He conjectured that it was due either to changing the
F7 orifice or the change in HPFTPs (both of these noted in the hardware change section). F7
is changed primarily to effect a change on LPFP speed. Randy went up to talk to Brian to see
what effect changing this orifice would have on HPFT OS T.' Brian looked it up in a table and
told Randy that it could account for a 25degree change, max, so Randy dismissed it as a
possible cause. To test the pump-change theory, Randy had Brian pull another comparison
test, one for the same engine and same fuel pump (it wasn't used as the comparison in the
runstream because it was on a different stand and was run a year ago). Randy also checked the

Rardy ~rt 418 Data Analysis

Randy Hurt
4/8/92

Data Analysis

Randy walked me through an analysis of the plots in a complete data package the day after a test
(test 904-142, engine 2206). Randy had not seen the data before.

• Randy is responsible for test stands B1 and A2, Taylor is responsible for stand A 1.
• Usually Randy, Erik, and Taylor will all look at the data from a test.
• ATD program: alternate turbopump develpment. Pratt is making an alternate HPOTP (and

unofficially making an alternate HPFTP) for the SSME. Scheduled to fly in '96-'97; just now
starting to test the HPOTP on the engine. E8 is a facility in Florida where they do standalone
testing for the ATD pump. The data is sent to MSFC and Rocketdyne. Major problem with the
pump right now is that it has vibration problems. We ran the latest version of the pump last
night on B1 at Stennis, and it shutdown early (67 seconds in) due to vibration on heat
exchanger.

• Data review is very informal. Randy will start a master observation list.
• The comparison test for this engine had a Pratt HPFTP.
• Randy went through the packages in the following order.
• NOTE: Unknown to me at the time, my tape recorder died shortly Into the

Interview, so this Is very sketchy.

Quick Look
• Tells if there were any FIDs or special notes. Rest of the information is not important (too

imprecise).

Start Comparison Package (1 st 6 seconds plotted against comparison test) ...
• I like looking at the transients; there's a lot more stuff going on, and you can usually tell more

about what's going on in the engine.
• FPOV is high (see Fig 1).
• Fuel side oscillations and HPFT DS T high (see Fig 2).
• HPFT DS T CH B was significantly higher than comparison, but know that CH B on Pratt pumps

has typically run low, so this is OK.
• Normal overshoot on HPOT OS T (see Fig 3).
• Normal POGO pressure (see Fig 4),

Start 2 Sigma Package (1st 6 seconds plotted against historical 2 sigma bands)
Shutdown Comparison Package (20 seconds following SHUTDOWN plotted

against comparison test)
Shutdown 2 Sigma package
Mainstage Comparison Package
MainStage 2 Sigma Package
Instrumentation (Sets of redundant sensors values plotted together)

Summary
• This entire review takes Randy about 30 minutes to do (of course, there were no major

anomalies on this test aside from the vibration, which the systems guys don't seem to worry
themselves about).

• Randy's one major observation concerned a significantly higher HPFTP OS T (up 175 degrees
on this test relative to the comparison). He conjectured that it was due either to changing the
F7 orifice or the change in HPFTPs (both of these noted in the hardware change section). F7
is changed primarily to effect a change on LPFP speed. Randy went up to talk to Brian to see
what effect changing this orifice would have on HPFT OS T.' Brian looked it up in a table and
told Randy that it could account for a 25degree change, max, so Randy dismissed it as a
possible cause. To test the pump-change theory, Randy had Brian pull another comparison
test, one for the same engine and same fuel pump (it wasn't used as the comparison in the
runstream because it was on a different stand and was run a year ago). Randy also checked the

Rardy ~rt 418 Data Analysis

historical database to see if there were ever consecutive tests with such a change in pumps to
try and get a ballpark number for how it effected HPFT OS temps.

• Erik: We very often pull additional comparison tests to help diagnose specific problems like
this. On the FRF we just had on Endeavor, it had a HPFP OS P was 1 OOpsi low relative to the
comparison ground test on all 3 engines. We have several theories. One is that on the ground
test we have a temperature probe which sticks into the boss where we read the HPFP OS P,
but not on flight. So we think that the change in the flow environment around the pressure
sensor is responsible for the change. So, we're trying to find a previous pair of firings on which
we ran with and without the temperature probe to see if the phenomenon has repeated.

Miscellany
• Erik, discussing another anomaly: If you open up the FPOV, you're going to cut OPOV; that's

why you see them interact all the time (???).
• Higher pump inertia will cause a longer start and a slower stop time at shutdown.
• Pratt HPFTP turbine inlets are larger than Rocketdyne's. Thus, changing from a Pratt to a

Rocketdyne l"lPFTP causes OPB PC to go up a little, FPB PC to go way up, and ???

RaOOy I-lilt 418 Data Analysis

historical database to see if there were ever consecutive tests with such a change in pumps to
try and get a ballpark number for how it effected HPFT OS temps.

• Erik: We very often pull additional comparison tests to help diagnose specific problems like
this. On the FRF we just had on Endeavor, it had a HPFP OS P was 1 OOpsi low relative to the
comparison ground test on all 3 engines. We have several theories. One is that on the ground
test we have a temperature probe which sticks into the boss where we read the HPFP OS P,
but not on flight. So we think that the change in the flow environment around the pressure
sensor is responsible for the change. So, we're trying to find a previous pair of firings on which
we ran with and without the temperature probe to see if the phenomenon has repeated.

Miscellany
• Erik, discussing another anomaly: If you open up the FPOV, you're going to cut OPOV; that's

why you see them interact all the time (???).
• Higher pump inertia will cause a longer start and a slower stop time at shutdown.
• Pratt HPFTP turbine inlets are larger than Rocketdyne's. Thus, changing from a Pratt to a

Rocketdyne l"lPFTP causes OPB PC to go up a little, FPB PC to go way up, and ???

RaOOy I-lilt 418 Data Analysis

F?6- 1.

FiXJ','

r7i 2
I I!; -

[;)

Hfp; t>.s r

....... ,. ""
1 ~. '.;- ~ ... J , _ .

..J.' E i-~ "'7:-;:- ; - - I
- I rtt: .

F?6- 1.

FiXJ','

r7i 2
I I!; -

[;)

Hfp; t>.s r

....... ,. ""
1 ~. '.;- ~ ... J , _ .

..J.' E i-~ "'7:-;:- ; - - I
- I rtt: .

FIC- 5

----...

o)
tkL"J/V
UlfK6f;....·

6

_ .. _----------_._------ _._----_._----_._------

:';!.//'"'f;>j • ,J/;' .:. C'f:,. .. ; E
.~-- 'y, ..lE -r.) ..:::: V

, ~

L .-
--------_ .. _-----

" .. -.:...: .-.",-.," .. -
-. ./ .:. '.'- .

i-!,' rr , , ,

,
(

- ... "\ r;
/ '

l r , ..)

FIC- 5

----...

o)
tkL"J/V
UlfK6f;....·

6

_ .. _----------_._------ _._----_._----_._------

:';!.//'"'f;>j • ,J/;' .:. C'f:,. .. ; E
.~-- 'y, ..lE -r.) ..:::: V

, ~

L .-
--------_ .. _-----

" .. -.:...: .-.",-.," .. -
-. ./ .:. '.'- .

i-!,' rr , , ,

,
(

- ... "\ r;
/ '

l r , ..)

Miscellany
4/8/92

Erik on Analysis of pata from pre-START and post-SHUTPOWN
Pre-START
• Want to make sure that you're preparing the engine for a good start. 1. Make sure the

cryogens are in the engine in the way you want them; correct temperature and pressure to start
the engine in a consistent manner. 2. Make sure the engine is purged properly. Want to clear
out everything including air on the fuel side (air will freeze when liquid hydrogen hits it, and will
block lines, etc.). Check for valve leaks: Have skin thermocouples on outside of the engine,
and know what the normal instrumentation response is when we drop the cryogens. So we
can tell if there's a leak on the engine or in the engine.

• For flight, we have guys in the HOSC 8 hours before launch. It takes two hours to fill the tanks,
after which we basically wait for six hours. Looking for leakage (mainly by skin temperatures
downstream of the valves, or internal temperatures downstream of the valves). Check helium
pressures, hydrauliC pressures, purging.

Post-SHUTDOWN
• Need to make sure we get all of the fuel and LOX out of the engine through purges.
• Check for leaks, espeCially liftoff seal leakage.
• Check for instrumentation bias. If a sensor does not return to ambient, especially if you have

questioned its value, then you can conclude that it shifted off calibration during the test (e.g., a
pressure sensor that only returns to 100psi instead of 14psi). Often happens due to thermal
effects. Will also check it pre-START to see if the bias existed througout the firing.

Endeavor FRF Data Review (some Highlights attached)
• Otto Goetz, et ai, in attendance.
• Most often asked question relative to anomalies: Have we ever seen this before?
• Can you tell me what effect phenomenon X has on parameter Y?

Interview with Mark Neely (see attached writeup)
• Started as SSME data analyst (test and flight). 7-1/2 years experience.
• Hasn1 done regular analysis tor the last year.
• Main question: Is the engine ready to be fired again safely?
• If there's a serious anomaly or incident, the everyone gets involved.
• Two major areas of expertise: Pneumatics and Controller (esp. Block I).
• Two major steps: Detection and Resolution. Resolution is hard, if not impossible.
Resolution
• If you see an anomaly during mainstage, check the parameter during prestart and post­

shutdown to see if the instrument is biased.
• Look at related parameters. E.g. if a certain pressure is up, then you should look for another

parameter which can confirm that the pressure is really up.
• Compare observations with your experience base. Example: There are parameters which

always drift, e.g. due to thermal effects.
Resolving "Real" Problems
• Make comparisons· with your experience DB. You have to develop a plan to fit the particular

anomaly.
Controller
• Runs on 20ms major cycles. Records data 1 st 1 Oms, and then holds data to the end of the

major cycle and then posts it. An actual phenomenon will therefore oCcur some time before it
actually shows up in the data.

Pneumatic Actuators
• You probably shouldn't worry too much about this system until you have the "core" diagnostic

system developed; it's of secondary concern. Just treat this as an input device to the engine
system, but don't worry about diagnosing problems within the peA.

Miscellany
4/8/92

Erik on Analysis of pata from pre-START and post-SHUTPOWN
Pre-START
• Want to make sure that you're preparing the engine for a good start. 1. Make sure the

cryogens are in the engine in the way you want them; correct temperature and pressure to start
the engine in a consistent manner. 2. Make sure the engine is purged properly. Want to clear
out everything including air on the fuel side (air will freeze when liquid hydrogen hits it, and will
block lines, etc.). Check for valve leaks: Have skin thermocouples on outside of the engine,
and know what the normal instrumentation response is when we drop the cryogens. So we
can tell if there's a leak on the engine or in the engine.

• For flight, we have guys in the HOSC 8 hours before launch. It takes two hours to fill the tanks,
after which we basically wait for six hours. Looking for leakage (mainly by skin temperatures
downstream of the valves, or internal temperatures downstream of the valves). Check helium
pressures, hydrauliC pressures, purging.

Post-SHUTDOWN
• Need to make sure we get all of the fuel and LOX out of the engine through purges.
• Check for leaks, espeCially liftoff seal leakage.
• Check for instrumentation bias. If a sensor does not return to ambient, especially if you have

questioned its value, then you can conclude that it shifted off calibration during the test (e.g., a
pressure sensor that only returns to 100psi instead of 14psi). Often happens due to thermal
effects. Will also check it pre-START to see if the bias existed througout the firing.

Endeavor FRF Data Review (some Highlights attached)
• Otto Goetz, et ai, in attendance.
• Most often asked question relative to anomalies: Have we ever seen this before?
• Can you tell me what effect phenomenon X has on parameter Y?

Interview with Mark Neely (see attached writeup)
• Started as SSME data analyst (test and flight). 7-1/2 years experience.
• Hasn1 done regular analysis tor the last year.
• Main question: Is the engine ready to be fired again safely?
• If there's a serious anomaly or incident, the everyone gets involved.
• Two major areas of expertise: Pneumatics and Controller (esp. Block I).
• Two major steps: Detection and Resolution. Resolution is hard, if not impossible.
Resolution
• If you see an anomaly during mainstage, check the parameter during prestart and post­

shutdown to see if the instrument is biased.
• Look at related parameters. E.g. if a certain pressure is up, then you should look for another

parameter which can confirm that the pressure is really up.
• Compare observations with your experience base. Example: There are parameters which

always drift, e.g. due to thermal effects.
Resolving "Real" Problems
• Make comparisons· with your experience DB. You have to develop a plan to fit the particular

anomaly.
Controller
• Runs on 20ms major cycles. Records data 1 st 1 Oms, and then holds data to the end of the

major cycle and then posts it. An actual phenomenon will therefore oCcur some time before it
actually shows up in the data.

Pneumatic Actuators
• You probably shouldn't worry too much about this system until you have the "core" diagnostic

system developed; it's of secondary concern. Just treat this as an input device to the engine
system, but don't worry about diagnosing problems within the peA.

• Used to shutdown the engine when in hydraulic or electrical lockup (an emergency backup to
the hydraulic system).

• Pneumatics also control bleed valves and purges.
• Example anomaly: LN2 dripped onto hydraulic line, freezing a slug of hydraulic fluid.

preventing a valve from closing.
• Common problem: Leaking check valves.
• If you have a pneumatic shutdown and have a problem in the PCA it could cause you to not

execute the right valve schedules.
• If I were doing an engine system diagnostic module, and I had an increased discharge

resistance in one of the big pumps, it would be enough to just say that the problem is a partially
closed valve, .and not worry about what is causing the valve to be closed.

Interview with Chris Singer
• Possibly the most experienced SSME data analyst at MSFC. However, does not currently look

at the data, and is shortly going on a one-year stint at NASA HQ in Washington D.C.
• The most valuable thing the diagnostic system can provide is another set of eyes to look at the

data in a consistent manner. That is the primarY function of the data analysts here, is to provide
an independent look at the data (independent from Rocketdyne). That's also why we have
many people look at the data here. It's all to make sure that a problem doesn't go unnoticed.

• Make sure you keep thorough records of all anomalies you see. This would probably solve
most of the anomalies' you encounter. I still have analysts come to me with "new" problems,
when I saw it years ago.

perno of PC plotting package (Jeff Cornelius & Larry Leopard)
• BCCS developed a PC plot program which allows analysts to call up any parameter from any

test and plot it on their PC. Several parameters can be plotted together, along with arbitrary
algebraic functions of parameter values. You can select a region of the screen with the
mouse, and that region will be blown up to the full size of the screen. Anything on the screen
can be sent to a laser printer. which puts out better quality plots than the PE. Larry Leopard is
currently using the system. Erik saw it for the first time with me and was very impressed.

• See attached network diagram.
• The system is extremely fast, taking only about 15-30 seconds to find the requested data files

on the Sun. extract and export the data. and plot it.
• One of the reasons the analysts are reluctant to put the hotfire data into Ingres is that the PC

Plot program will not work with it.

PcrJ92

• Used to shutdown the engine when in hydraulic or electrical lockup (an emergency backup to
the hydraulic system).

• Pneumatics also control bleed valves and purges.
• Example anomaly: LN2 dripped onto hydraulic line, freezing a slug of hydraulic fluid.

preventing a valve from closing.
• Common problem: Leaking check valves.
• If you have a pneumatic shutdown and have a problem in the PCA it could cause you to not

execute the right valve schedules.
• If I were doing an engine system diagnostic module, and I had an increased discharge

resistance in one of the big pumps, it would be enough to just say that the problem is a partially
closed valve, .and not worry about what is causing the valve to be closed.

Interview with Chris Singer
• Possibly the most experienced SSME data analyst at MSFC. However, does not currently look

at the data, and is shortly going on a one-year stint at NASA HQ in Washington D.C.
• The most valuable thing the diagnostic system can provide is another set of eyes to look at the

data in a consistent manner. That is the primarY function of the data analysts here, is to provide
an independent look at the data (independent from Rocketdyne). That's also why we have
many people look at the data here. It's all to make sure that a problem doesn't go unnoticed.

• Make sure you keep thorough records of all anomalies you see. This would probably solve
most of the anomalies' you encounter. I still have analysts come to me with "new" problems,
when I saw it years ago.

perno of PC plotting package (Jeff Cornelius & Larry Leopard)
• BCCS developed a PC plot program which allows analysts to call up any parameter from any

test and plot it on their PC. Several parameters can be plotted together, along with arbitrary
algebraic functions of parameter values. You can select a region of the screen with the
mouse, and that region will be blown up to the full size of the screen. Anything on the screen
can be sent to a laser printer. which puts out better quality plots than the PE. Larry Leopard is
currently using the system. Erik saw it for the first time with me and was very impressed.

• See attached network diagram.
• The system is extremely fast, taking only about 15-30 seconds to find the requested data files

on the Sun. extract and export the data. and plot it.
• One of the reasons the analysts are reluctant to put the hotfire data into Ingres is that the PC

Plot program will not work with it.

PcrJ92

• 6
X'...< F 1 ENS049 025/G 21 ME -I MI (LOX (,OME TE
M F 2ENS~)49 O.?5/G 21 ME -.': I'll I I.UX (,I)ME TE
mF3ENS049 025/G 21 Ml-{ t'lt (L I) x r,OME T[

471 0-· --- .. - ... -_._ - .. --- .. -- ... -

470 0

P
A
R
A

469 0
M

E
T
E
R

468 0

4670 1 +----~r---~I~~~I~I-----r_----+_----4_----4_----~

466 0 I IIIIJIU.-.t+I-+1 --~

465 0 I I .-rr-i-rrrr-t--,-,--rT\-r I I.-,l-.,--,-y 1,-,-,,--,+-,-,-.-,--1

-300 -275 -250 -225 -2110 -llS - 1':)0 -125 -100 -75 -su -25 0

VU~ .J ')1.)1)
ENGINE 203':)
$HUTDOUN I'} I t-j ':'EC r lt1t_ I 1·'II~1 '. r AI·'r IIIMMAfIlI - ':'oF.-·_)

r'A r r 11-1 1)~J -'J . .'
r HIE l) 7 .2 7 (;;':.

fc-Ml8!fi~
O/('

~~

/~ f1
(,- I

i\ji~/\

• 6
X'...< F 1 EN$049 025/G 21 ME -I MI (LOX (,OME TE
MF2ENS~)49 O.?5/G 21 ME -,': I'll I I.UX (,I)ME TE
mF3ENS049 025/G 21 Ml-{ t'lt (LOX r,OME TE

471 0 ------ .. -

470 0

P
A
R
A

469 0
M

E
T
E
R

468 0

467 0-4-------+------4-------+-------~-----+------~----~~~----~----~------~------+_----_4

466 0~-------4-------+-------+------_+-------+------~------~------+_------+_~--~mU~H~~4-----~

-300

ENGINE 20 J'~
$HUTDmm

-275 -250 -225

I') I t-j ':'EC

-200 -ll5 - 1':)0 -125

IItH_ 1I"II~1 ',IAI·'r IIIMMAfIl> - ':'oF.-'_)

-100 -75 -su -25 0

VU~ .J ')1.)1)

r'A Ir 11-1 1)~J -oJ,.'

r HIE l) 7 27 (;;':.

'1\'-C - •
.. ~o e

4S'; .,

p ".0 e ..
Q ..
"4
E "75 .•
T
Eo
R

47 •. 8

405 .•

.. .,. e

"55 .,

.. se .,

',' r.5tn I ee-iA
~t."1 Ull80

,
"

- t--.

·

· A &

·

• , , . ,

MPf~ GN2 PRGA Tf
HE -2 Het LOX f TE

- --II..~.A.

, , ...

HP
HP

-325 -388 -275 -2Se -225 -2e8

--II..

~

"

, .
-175 -158 -125

fQEN5e .. e ee.
EHGI~ .,
$'1lJTOO\l., ., ee ~c TIHE fQOH 'TART C~A~ - 'Et~

....

if
, . ,

-I" -15

~

PLUS

\

....
'"' - ~

[
J lJI/p~

L
l/

,

-5e -25 .~ <;
VER .. eee M
DATE 8~/.7'92 E
TI"E '2 '6 12 ~

• ',' t;5tn I ee-;A
~t"'l Ull80

,

-1--.

·
p

... 0 e
A
Q
A
"4
E "75 .•
r
E.
R

.. 7 •. 8
· A

405 .•

·

"55 .,

. . , .

...

MPf~ GN2 PRGA Tf
HE -2 Het LOX f TE

- ..

, , , .

HP
HP

-325 -388 -275 -2S8 -225 -288

fQEN58 .. e ee.
EHGl~ .,
$'1l1TOO\l., e ee ~C

PLUS

\

..
~ - ...

""' '"'

[
u

r U
,.. If

"

. • .. .
-175 -158 -125 -t .. -15

.......

X flens049 152 ME-1 HPFPOIS PRESS (PREV) 01.1 4~ PSIA
l::!. F2ENS049 152 ME-2 HPFPDIS PRESS (PREV) DU 4'; PSIA o FlENS049 152 ME-3 HPFP DIS PRESS (PREV) DU 4'; PSIA

100 I I -r-r-r--r-Tj' II T-'-'-

600

500

400

300

200

100

o I I--L_.L._L_
0.8 0.9 1.0 1.1

L __ L-L_l __ l 1--L.....l-1_.-L.-L_~_L_L-J
1.2 1.3

'1"£ . SECONDS

fttJ~

1.4 1_5

04/08/92
09:03 _

~ufI'j ~.-::" -.. ".;MI/'-,'~,1 /
./. ,<"

X flens049 152 ME-1 HPFPOIS PRESS (PREV) 01.1 4~ PSIA
l::!. F2ENS049 152 ME-2 HPFPDIS PRESS (PREV) DU 4'; PSIA o FlENS049 152 ME-3 HPFP DIS PRESS (PREV) DU 4'; PSIA

II

600

500

400

300

200

100

o L--~-.I_...I-.-.L_.L-......L._L---'---'_...L.-L_.L __ L_-'-_'----L-. l ___ 1-L_l __ l_.L.! --L---,,---~~I-L....l-l_.-1..-L-L-J--L~
0_8 0.9 1.0 1.1 1.2 1.] 1.4 1_5

'1"£ - SECONDS

ldt> err/l --- - ..
n -- --.

X fUitS049 90 ME·1 "POP DISCHARGE PRESS
fj. F1ENS049 59 ME-' HPOJ'BSf SfG blSCH P
tl f2ENS049 90 ME -2 "POp 0 I SC"ARGE PRE ss
'i/ f2EMS049 59 ME·2 HPOl" BSt SfG DISCH P
<> F]ENS049 90 ME'] HPOl" DISCHARGE PRESS

bY 30 PSIA (19.16 2S.16)
bW 33 PSIA (19.1625.16)
DU 30 PSIA (20.48 26.48)
DY 33 PSIA (20.48 26.48)
DY 30 PSIA (21.92 27.92)

() F3ENS049 59 ME·3 HPOT eST STG DISC" P

8000 I I -----r--'-T

7000

6000

5000 ~P6P Ds J>,..

4000

3000

2000

1000

'.:,,~, ,
OU 33 PSIA (21.92 27.92)

r-

o I -1. __ L ___ 1 __ .J __ L_L.J_L_.l-L __ JI_L--L--1._"-_L--L_l---1---L---.-JL-J----'----'

o z 3

TIME . SECONDS FROM ENGINE CUTOFF

4 5 6

04/07/92
03:51 pM

X fUitS049 90 ME-1 HPOP DISCHARGE PRESS
fj. F1ENS049 59 ME-1 HPOJ-SST SfG DIsCH P
tl f2ENS049 90 ME -2 HPOP DISCHARGE PRE SS
'i/ F2EMS049 59 ME-2 HPOl" sst STG DISCH P
<> F3ENS049 90 ME-3 HPOl" DISCHARGE PRESS

DY 30 PSIA (19_16 2S.16)
OW 33 PSIA (19.1625.16)
DU 30 PSIA (20.48 26.48)
DY 33 PSIA (20.48 26.48)
DY 30 PSIA (21.92 27.92)

() F]ENS049 59 ME-3 HPOT eST STG DISCH P

8000 r----r---r-,---.-----.--y--.--.-'-----r--'-T

7000

6000

TIME - SECONDS FROM ENGINE CUTOFF

'.:,,~,
~

DU 33 PSIA (21.92 27.92)

04/07192
03:51 pM

>< F1ENS049 149 ME·1 OXID PREBNR PGE PRESS
~ f2ENS049 149 ME·2 OXID PREBNR PGE PRESS
[] flENS049 149 ME,] OXIO PREBNR PGE PRESS

OU 7S PSIA (19.16 2S.16)
DU 7S PSIA (20.48 26.48)
OU 75 PSIA (21.92 27.92)

780 I
---,----.-

---.-

760

7401----

--t.l·-·- ----~----- .-- lJ-----_. ___________ ---LJ----------

720 ----*~

POP

700

680

660

640 I I ____ L __ , __ .L _____ .1-_. __ 1 _ I.J. _____ L--.l.
2.0 2.2 2.4 2.6

TIME - SECONDS fROM ENGINE CUTOff

2.8

04/08/92
08:14 _

-.-
~

760

>< F1ENS049 149 ME'1 OXID PREBNR PGE PRESS
~ f2ENS049 149 ME'2 OXID PREBNR PGE PRESS
[] flENS049 149 ME'] OXIO PREBNR peE PRESS

740 ,..-----

720

700

680

660

OU 7S PSIA (19.16 2S.16)
DU 7S PSIA (20.48 26.48)
OU 75 PSIA (21.92 27.92)

_. t.l···- -... -~ - .. ' lJ----.... _____ . ____-fJ- --.. ----_

640 '--_--'-__ L...-_--'-__ .L._-.-J ____ ... L __ . ____ .L. ____ 1 .--L-_..J. ___ .. L-~._---L_-L---.L--~
2.0 2.2 2.4

TIME - SECONDS fROM ENGINE CUTOff

2.6 2.8

04/08/92
08:14 _

>< F1ENS049 148 ME 0 1 FUEL PREBURN PGE PRESs D~ 74 PSIA (19.1625.16)
~ F2ENS049 148 ME 0 2 FUEL PRE8URN PGE PRESS DY 74 PSIA (20.48 26.48)
[J FlENS049 148 ME·l FUEL PREBURN PGE PREss D~ 74 PSIA (21.92 27.92)

780 i ,--0y----T--00- 1 -----r ----.

760

740 ,,=----

720

700

680

660

r--' .----

-8

640 I --'- --"--L_o_'--._J __ L-_~ _ ___'L_ _ __L._--'L----L---.l.---'
2.0 2.2 2.4

TIME· SECONDS FROM ENGINE CUTOFF

2.6 2.8

OJ./03/92
03:12 -

"" 'i'. --"fIF:

,

760

>< F1ENS049 148 ME·1 FUEL PREBURN PGE PRESS D~ 74 PSIA (19.1625.16)
~ F2ENS049 148 ME·2 FUEL PRE8URN PGE PRESS DY 74 PSIA (20.48 26.48)
[J FlENSG49 148 ME·l FUEL PREBURN PGE PRESS D~ 74 PSIA (21.92 27.92)

740 --=----

120

700

660

640 L-__ "---__ "---__ "---__ L-_---1

2.0 2.2 2.4

I

------8

TIME· SECONDS FROM ENGINE CUTOFF

2.6

.----

2.8

OJ./03/92
03:12 -

>< F1ENS049 209 ME-1 lPOT DISCH PRESS CH A OW 70 PSIA
l\ F2ENS049 209 "£-2 lPOT DISCH PRESS CH A OW 70 PSIA
(] F]ENS049 209 ME-] lPOT DISCH PRESS CH A OW 70 PSIA

380 j -h-r--r-----r----T---."-r-
'

370

360

350

340

330

320'~_-__ ~ ____ L_ __ _L ____ L_ __ _L ____ L_ ___

5 10 15

TIME - SECONDS

20

~~-;;;:~
Lof- W~
[,tf;;- &< ~ '\

25

04/08/92
09: 11 _

",,"',

'"
370

350

]40

110

>< F1ENS049 209 ME-1 lPOT DISCH PRESS CH A OW 70 PSIA
l\ F2ENS049 209 "£-2 lPOT DISCH PRESS CH A OW 70 PSIA
(] F]ENS049 209 ME-] lPOT DISCH PRESS CH A OW 70 PSIA

120~ __ -L __ ~L-__ ~ __ ~ ____ ~ __ -L __ __

5 10 15

TIME - SECONDS

25

04/08/92
09: " _

",,"',

"'

"

Generic Approach to Data Anomaly Detection and Resolution

An anomaly has to be detected before it can be resolved. Some are
easy to detect. For example, if an instrument is recording a value
outside its range you have an anomaly. More often than not
however, detection requires more than just a perusal of the data.
Several methods used to detect anomalies are as follows:

1) Compare the data with the planned test profile and objectives.
Know and understand what the hardware is being commanded to do
and check to see that it responds properly.

2) Look at the interface conditions. Be able to account for
changes in the data as a result of changes at the interfaces.

3) Compare the data with an experience base. Use previous tests
and historical databases. Make sure to account for changes
that might have been made. These include hardware, software,
facility and others.

4) Check the data against specifications. Look for violations
and marginal conditions.

5) Look for "unusual" characterstics in the data. These include
shifts, drift, spikes and so on.

Anomalies can be classified in general terms as "real" or
"instrumentation". "Real" anomalies refers to those related to
abnormal performance of hardware or software. "Instrumentation"
anomalies are those where hardware or software problems are
indicated when there are none. Several ways to determine "real"
anomalies from "instrumentation" anomalies are as follows:

1) Check the data against the physical limitations of the
instrumentation. These include range, response rate,

"signature" and others.

2) Compare redundant data channels for parameters that have them.
It is probably an "instrumentation" anomaly if they do not

agree.

'----5 alies may
several basic steps
almost every anomal

1)

~­

of

"

Generic Approach to Data Anomaly Detection and Resolution

An anomaly has to be detected before it can be resolved. Some are
easy to detect. For example, if an instrument is recording a value
outside its range you have an anomaly. More often than not
however, detection requires more than just a perusal of the data.
Several methods used to detect anomalies are as follows:

1) Compare the data with the planned test profile and objectives.
Know and understand what the hardware is being commanded to do
and check to see that it responds properly.

2) Look at the interface conditions. Be able to account for
changes in the data as a result of changes at the interfaces.

3) Compare the data with an experience base. Use previous tests
and historical databases. Make sure to account for changes
that might have been made. These include hardware, software,
facility and others.

4) Check the data against specifications. Look for violations
and marginal conditions.

5) Look for "unusual" characterstics in the data. These include
shifts, drift, spikes and so on.

Anomalies can be classified in general terms as "real" or
"instrumentation". "Real" anomalies refers to those related to
abnormal performance of hardware or software. "Instrumentation"
anomalies are those where hardware or software problems are
indicated when there are none. Several ways to determine "real"
anomalies from "instrumentation" anomalies are as follows:

1) Check the data against the physical limitations of the
instrumentation. These include range, response rate,

"signature" and others.

2) Compare redundant data channels for parameters that have them.
It is probably an "instrumentation" anomaly if they do not

agree.

'----5 alies may
several basic steps
almost every anomal

1)

~­

of

Plot analysis with Eric Sander

The package that you are looking at is a compilation of 8 or 9
packages that are looked at right off the bat (after a ground test).
Typical example : Run a test at Stennis (SSC)Space Center during
second shift and MSFC receive the data during the middle of the
night. Boeing Computer Support Services (BCSS) has a contract to
process the data and compile these plot packages. These plot
packages are the first look at the data. Plot packages are NOT the
first thing looked at for the test but the first look at the data.
Typically from one to six people look at the plot packages after a
ground test.

The plot analysis package is arranged into four time phases:
1) Pre-start - defined as time that data starts being taken until

engine start command (T -Zero for a ground test , engine start on
flight). T -Zero for flight is SRB Ignition Command Valuable
information can be obtained during pre-start that is used for analysis
during start, mainstage and shutdown.

2) Start - defined as engine start until engine start +5.0 or engine
start +6.0 seconds. Engine stabilizes at a given power level in five or
six seconds. This means that the main chamber pressure gets up to
3006 psi in five or six seconds. Some parts of the engine don't
stabilize for two or three hundred seconds. That means seals or
thermal overshoots exist up to that time.

3) Mainstage - defined as engine start + 5.0 until engine shutoff
command. Shutoff command is normally given by the controller
based on a pre-determined time but can be given by redline.
Incl udes throttling, 3 -g throttle or bucket.

4) Shutdown and post-shutdown - Defined as time from
engine shutdown command until up to 300 seconds or so.

Two things preceed the plot package :
1) Pre-test - Obtained from Rocketdyne during a telecon. Telecon

is held from 3 days until .5 days before the test. First look at the test.
The pre-test package is broken into two parts :

A) Rocketdyne's analysis of the previous test including test
objectives of the previous test.

B) Objectives, hardware changes and other useful information
for the current test.

2) Quick-look - After the test is run. A one page fax from sse
with numbers for key parameters to indicate engine operation. Fuel
turbine temps , Pc , Lox turbine temps, OPOV position, FPOV position

Plot analysis with Eric Sander

The package that you are looking at is a compilation of 8 or 9
packages that are looked at right off the bat (after a ground test).
Typical example : Run a test at Stennis (SSC)Space Center during
second shift and MSFC receive the data during the middle of the
night. Boeing Computer Support Services (BCSS) has a contract to
process the data and compile these plot packages. These plot
packages are the first look at the data. Plot packages are NOT the
first thing looked at for the test but the first look at the data.
Typically from one to six people look at the plot packages after a
ground test.

The plot analysis package is arranged into four time phases:
1) Pre-start - defined as time that data starts being taken until

engine start command (T -Zero for a ground test , engine start on
flight). T -Zero for flight is SRB Ignition Command Valuable
information can be obtained during pre-start that is used for analysis
during start, mainstage and shutdown.

2) Start - defined as engine start until engine start +5.0 or engine
start +6.0 seconds. Engine stabilizes at a given power level in five or
six seconds. This means that the main chamber pressure gets up to
3006 psi in five or six seconds. Some parts of the engine don't
stabilize for two or three hundred seconds. That means seals or
thermal overshoots exist up to that time.

3) Mainstage - defined as engine start + 5.0 until engine shutoff
command. Shutoff command is normally given by the controller
based on a pre-determined time but can be given by redline.
Incl udes throttling, 3 -g throttle or bucket.

4) Shutdown and post-shutdown - Defined as time from
engine shutdown command until up to 300 seconds or so.

Two things preceed the plot package :
1) Pre-test - Obtained from Rocketdyne during a telecon. Telecon

is held from 3 days until .5 days before the test. First look at the test.
The pre-test package is broken into two parts :

A) Rocketdyne's analysis of the previous test including test
objectives of the previous test.

B) Objectives, hardware changes and other useful information
for the current test.

2) Quick-look - After the test is run. A one page fax from sse
with numbers for key parameters to indicate engine operation. Fuel
turbine temps , Pc , Lox turbine temps, OPOV position, FPOV position

and discharge pressure on the low pressure fuel pump. Very quick
look at how the engine was operating. Contains a rough measure of
mixture ratio. Also contains a FID listing if a FID occurred during the
test. Recently started getting a phone message with information
about the test. FID (Failure Identification Delimeter) is a flag issued
by the controller saying that the controller has recognized a problem
during the test (pre-start until post-shutdown). FIDS are declared
when the parameter has exceeded a pre-set limit that is built into
the controller.

Two major catagories of tests are:
1) Flight tests - Fleet leader - most amount of starts or time on a

particular piece of hardware. Conservative amount of time that can
be put on an LRU (Line Replaceable Unit) during a ground test as
compared to flight. Abort scenarios are:

A) TAL-Transatlantic Abort Landing. Longest time abort
scenario.

B) RTLS - Return To Launch Site
C) A TO - Abort To Orbit
D) AOA - Abort Once Around

2) Development tests - All other tested hardware.
These catagories determine objectives and what LR U's are run for a
particular test. On flight hardware there is an emphasis on keeping
time down on the units. This test, a2-556, is a green-run test. Green
run means that a component or engine is' run through a ground
simulation of a flight environment.

Pre-test for test a2-556 include the Rocketdyne data analysis for test
a2-555 (previous test on this stand) as well as the objectives for test
a2-556 (Current test on this stand).

Page 1 & 2 (of Eric's viewgraphs) are the MSFC SSME test summary
for test a2-556 and include test number, engine number, major
components, results for each time phase and observations/anomalies.
Reference page 1 & 2.

Page 3 lists the objectives for test a2-556. This is a typical objective
sheet for a green-run test. In a development test these objectives
would typically be different. This is just used as an example to show
the type of information that is derived from a pre-test package Don't
get hung up on the words on this sheet. The stated objectives are
observed and addressed in the data review. For instance: green run
of the pumps will definitely be addressed because the green run

and discharge pressure on the low pressure fuel pump. Very quick
look at how the engine was operating. Contains a rough measure of
mixture ratio. Also contains a FID listing if a FID occurred during the
test. Recently started getting a phone message with information
about the test. FID (Failure Identification Delimeter) is a flag issued
by the controller saying that the controller has recognized a problem
during the test (pre-start until post-shutdown). FIDS are declared
when the parameter has exceeded a pre-set limit that is built into
the controller.

Two major catagories of tests are:
1) Flight tests - Fleet leader - most amount of starts or time on a

particular piece of hardware. Conservative amount of time that can
be put on an LRU (Line Replaceable Unit) during a ground test as
compared to flight. Abort scenarios are:

A) TAL-Transatlantic Abort Landing. Longest time abort
scenario.

B) RTLS - Return To Launch Site
C) A TO - Abort To Orbit
D) AOA - Abort Once Around

2) Development tests - All other tested hardware.
These catagories determine objectives and what LR U's are run for a
particular test. On flight hardware there is an emphasis on keeping
time down on the units. This test, a2-556, is a green-run test. Green
run means that a component or engine is' run through a ground
simulation of a flight environment.

Pre-test for test a2-556 include the Rocketdyne data analysis for test
a2-555 (previous test on this stand) as well as the objectives for test
a2-556 (Current test on this stand).

Page 1 & 2 (of Eric's viewgraphs) are the MSFC SSME test summary
for test a2-556 and include test number, engine number, major
components, results for each time phase and observations/anomalies.
Reference page 1 & 2.

Page 3 lists the objectives for test a2-556. This is a typical objective
sheet for a green-run test. In a development test these objectives
would typically be different. This is just used as an example to show
the type of information that is derived from a pre-test package Don't
get hung up on the words on this sheet. The stated objectives are
observed and addressed in the data review. For instance: green run
of the pumps will definitely be addressed because the green run

specs call out for looking at the measurments that pertain to the
system group to certify whether the pump is acceptable or not. Some
of the other stated objectives call for evaluation of certain
instrumentation (such as strain gage instrumentation) which
systems group cannot make a call because this is outside of our field.

Pre-test gives what we are doing to the engine in terms of the
repress flow (fuel side to gox side) and what we are doing in terms
of helium and nitrogen pressures (for purges). It specifies what
conditions are going to be put onthe engine in terms of different
fluids.

REPRESS AND FLOWS

In going through the analysis there are actually very few things that
we do to control the way that the engine operates. We have very few
handles on the engine. There are 5 valves: 1) ~I F V - Main Fuel
Valve, 2) MOV - Main Ox Valve, 3) CCV - Coolant Control Valve, 4)
OPOV - Oxidizer Preburner Ox Valve and 5) FPOV - Fuel Preburner
Ox Valve. These are used to control the engine. We have what is
called the repress control valves. BE CAREFUL CSI~G THE TERM
REPRESS. Repress in our field has two connotations. Repress in this
case refers to the repressurization flows that come out of the engine (
refer to the attached engine schematic) In flight gaseous hydrogen
goes to the tank and is used to pressurize the ullage in the tank and
force liquid down into the engine. Certain conditions have to be met
at the low pressure pump inlet (LPFP). One of these conditions is
that a certain amount of pressure has to maintained at the pump
inlet to keep from cavitating the pump. Cavitating the pump means
that certain gaseous zones are forming going into the pump. This can
very quickly ruin the pump or destroy the engine. Pressure going
into the low pressure pumps is maintained by the ullage pressure.
Ullage pressure is the gaseous pressure above the liquid in the tank.
This is the fuel repress flow.

The GOX (gaseous oxygen) repress flow is on the other side. The
liquid hydrogen comes in through the LPFP down to the HPFP and
gasifies right downstream of the MFV due to the temperature and
pressure conditions that exist in the engine. The LOX (Liquid Oxygen
) is liquid throughout the entire system until it reaches the
preburners. Liquid can't be pumped back into the tank to maintain
ullage. It has to be gas. What happens is that the LOX is run through

A-3 -'17

specs call out for looking at the measurments that pertain to the
system group to certify whether the pump is acceptable or not. Some
of the other stated objectives call for evaluation of certain
instrumentation (such as strain gage instrumentation) which
systems group cannot make a call because this is outside of our field.

Pre-test gives what we are doing to the engine in terms of the
repress flow (fuel side to gox side) and what we are doing in terms
of helium and nitrogen pressures (for purges). It specifies what
conditions are going to be put onthe engine in terms of different
fluids.

REPRESS AND FLOWS

In going through the analysis there are actually very few things that
we do to control the way that the engine operates. We have very few
handles on the engine. There are 5 valves: 1) ~I F V - Main Fuel
Valve, 2) MOV - Main Ox Valve, 3) CCV - Coolant Control Valve, 4)
OPOV - Oxidizer Preburner Ox Valve and 5) FPOV - Fuel Preburner
Ox Valve. These are used to control the engine. We have what is
called the repress control valves. BE CAREFUL CSI~G THE TERM
REPRESS. Repress in our field has two connotations. Repress in this
case refers to the repressurization flows that come out of the engine (
refer to the attached engine schematic) In flight gaseous hydrogen
goes to the tank and is used to pressurize the ullage in the tank and
force liquid down into the engine. Certain conditions have to be met
at the low pressure pump inlet (LPFP). One of these conditions is
that a certain amount of pressure has to maintained at the pump
inlet to keep from cavitating the pump. Cavitating the pump means
that certain gaseous zones are forming going into the pump. This can
very quickly ruin the pump or destroy the engine. Pressure going
into the low pressure pumps is maintained by the ullage pressure.
Ullage pressure is the gaseous pressure above the liquid in the tank.
This is the fuel repress flow.

The GOX (gaseous oxygen) repress flow is on the other side. The
liquid hydrogen comes in through the LPFP down to the HPFP and
gasifies right downstream of the MFV due to the temperature and
pressure conditions that exist in the engine. The LOX (Liquid Oxygen
) is liquid throughout the entire system until it reaches the
preburners. Liquid can't be pumped back into the tank to maintain
ullage. It has to be gas. What happens is that the LOX is run through

A-3 -'17

a heat exchanger (HEX). A heat exchanger is simply coils that are
contained within the preburner. The LOX enters the HEX and is
gasified and this GOX is used to pressurize the LOX tank. On a ground
test this GOX is just dumped overboard. The goal is to simulate the
parasitics that exist, to the tank, during flight. The fuel, during a
ground test, is burned in a burn stack.

In flight we have to control the flow because you can't just dump an
endless amount of flow into the ullage The tank will be
overpressurized. What we have is a flow control valve that gives
either max repress flow or min repress flow depending on where the
valve is. We also have the ability to give no repress flow. We also
have the ability to give nominal repress flow. Nominal is kind of a
misnomer because in flight there is either max or min repress flow.
Normally, on a ground test, a test is either run at max or min repress
flow. Repress valves are shuttled back and forth to give max or min
repress flow. 1.2 lbs/second is considered max repress flow on the
fuel side. Downstream in that line there are orifices that give 1.2/lbs
at RPL (Rated Power Level). Min repress flow on the fuel side is .2
lbs/second. On the LOX side max repress is 2.3 lbs/second . Min
repress is 1.1 Ibs/second.

There are things done to the inlet pressures called pressurization.
This will be shown during the mainstage portion of the package.
Repress is also referred to when inlet pressures are increased. The
cryogenic conditions to the low pressure pumps inlets are another
area that can be controlled(temps and pressures). These are the
portions that we have a handle on during a test.

In doing analysis especially during the hotfire time, start until
shutdown plus 10 - 20 seconds, we know what is being done to the
engine, what the effects are and what to expect from the data. This is
the main information used to detect an anomaly. It has to do with
the gains. We know what the gains are if repress flow is varied.
Anything seen outside of the realm of these gains are considered an
anomaly or are initially recognized as an anomaly.

Helium is used primarily to purge the HPOP intermediate seal and to
shut the engine down with pneumatics if the hydraulics have a
problem.

Nitrogen is not used during a flight. It is used pre-start to purge the
LOX side of the engine. Hydraulics are used to run the valves.

a heat exchanger (HEX). A heat exchanger is simply coils that are
contained within the preburner. The LOX enters the HEX and is
gasified and this GOX is used to pressurize the LOX tank. On a ground
test this GOX is just dumped overboard. The goal is to simulate the
parasitics that exist, to the tank, during flight. The fuel, during a
ground test, is burned in a burn stack.

In flight we have to control the flow because you can't just dump an
endless amount of flow into the ullage The tank will be
overpressurized. What we have is a flow control valve that gives
either max repress flow or min repress flow depending on where the
valve is. We also have the ability to give no repress flow. We also
have the ability to give nominal repress flow. Nominal is kind of a
misnomer because in flight there is either max or min repress flow.
Normally, on a ground test, a test is either run at max or min repress
flow. Repress valves are shuttled back and forth to give max or min
repress flow. 1.2 lbs/second is considered max repress flow on the
fuel side. Downstream in that line there are orifices that give 1.2/lbs
at RPL (Rated Power Level). Min repress flow on the fuel side is .2
lbs/second. On the LOX side max repress is 2.3 lbs/second . Min
repress is 1.1 Ibs/second.

There are things done to the inlet pressures called pressurization.
This will be shown during the mainstage portion of the package.
Repress is also referred to when inlet pressures are increased. The
cryogenic conditions to the low pressure pumps inlets are another
area that can be controlled(temps and pressures). These are the
portions that we have a handle on during a test.

In doing analysis especially during the hotfire time, start until
shutdown plus 10 - 20 seconds, we know what is being done to the
engine, what the effects are and what to expect from the data. This is
the main information used to detect an anomaly. It has to do with
the gains. We know what the gains are if repress flow is varied.
Anything seen outside of the realm of these gains are considered an
anomaly or are initially recognized as an anomaly.

Helium is used primarily to purge the HPOP intermediate seal and to
shut the engine down with pneumatics if the hydraulics have a
problem.

Nitrogen is not used during a flight. It is used pre-start to purge the
LOX side of the engine. Hydraulics are used to run the valves.

Every once in a while there is an interesting piece of information
from the pre-test. Example: recently we have been dripping liquid
air on the hydraulic lines or problems exhibited on previous test are
shown. This is very important information that may be hidden
among the test procedures in the pre-test. This is important because
this has to be looked for in the data.

One of the most important pages in the pre-test is the hardware
change page. This is important because hardware changes may
change the way that the engine operates. If the hardware change is
known it can help determine what is or isn't an anomaly. The
thought process is that anything that is different from a previous test
or previous experience is an amomaly in our minds. This allows the
disqualification of "mind anomalies". Each piece of hardware has its
own characteristics and will change the way the engine operates.

In this test 3 of the ..+ pumps were changed, controller, fuel duct.
Some of the hardware changes are more important in terms of
engine operation than others. For example: Negligable engine
operation· change is expected from changing the HPV (Helium Pre­
charge Valve). On the other hand if a pump (HPOP, HPFP,LPFP, LPOP
) is changed there will be good amount of engine operation change.
Turbine temps will change, pressure's will change because of the
change of pumps. No two pumps are the same.

There are two controllers :
1) Block I
2) Block II

There will be negligable effect on engine operation due to the change
out of the controller.

HPFD (High Pressure Fuel Duct) now made of two different
materials

1) Titanium
2) Inconel

The two ducts have a different inside diameter. The Inconel duct is
bigger by a little bit. Static pressure in this line is 100 psi lower with
an Inco duct. This will cause fuel pump discharge pressure to change
by 100 psi.

End of Pre-test information ...

Every once in a while there is an interesting piece of information
from the pre-test. Example: recently we have been dripping liquid
air on the hydraulic lines or problems exhibited on previous test are
shown. This is very important information that may be hidden
among the test procedures in the pre-test. This is important because
this has to be looked for in the data.

One of the most important pages in the pre-test is the hardware
change page. This is important because hardware changes may
change the way that the engine operates. If the hardware change is
known it can help determine what is or isn't an anomaly. The
thought process is that anything that is different from a previous test
or previous experience is an amomaly in our minds. This allows the
disqualification of "mind anomalies". Each piece of hardware has its
own characteristics and will change the way the engine operates.

In this test 3 of the ..+ pumps were changed, controller, fuel duct.
Some of the hardware changes are more important in terms of
engine operation than others. For example: Negligable engine
operation· change is expected from changing the HPV (Helium Pre­
charge Valve). On the other hand if a pump (HPOP, HPFP,LPFP, LPOP
) is changed there will be good amount of engine operation change.
Turbine temps will change, pressure's will change because of the
change of pumps. No two pumps are the same.

There are two controllers :
1) Block I
2) Block II

There will be negligable effect on engine operation due to the change
out of the controller.

HPFD (High Pressure Fuel Duct) now made of two different
materials

1) Titanium
2) Inconel

The two ducts have a different inside diameter. The Inconel duct is
bigger by a little bit. Static pressure in this line is 100 psi lower with
an Inco duct. This will cause fuel pump discharge pressure to change
by 100 psi.

End of Pre-test information ...

TEST NO: A2-556
ENGINE NO: 2107
CONDUCTED: 4/22/92

PROGRAMMED DURATION: 300.00 sec
C/O: Programmed

MAJOR COMPONENTS

HPFTP: 4209
LPFTP: 9305
HPOTP: 4012
LPOTP: 2128
PWRHD: 2014
MCC: 4013
NOZZLE: 2016
CONTR: F48

RESULTS

Prestart - Satisfactory
Start - Satisfactory
Mainstage - Satisfactory
Shutdown - Satisfactory

(j)

SSME TEST SUMMARY

TEST NO: A2-556
ENGINE NO: 2107
CONDUCTED: 4/22/92

PROGRAMMED DURATION: 300.00 sec
C/O: Programmed

MAJOR COMPONENTS

HPFTP: 4209
LPFTP: 9305
HPOTP: 4012
LPOTP: 2128
PWRHD: 2014
MCC: 4013
NOZZLE: 2016
CONTR: F48

RESULTS

Prestart
start
Mainstage
Shutdown

- Satisfactory
- Satisfactory
- Satisfactory
- Satisfactory

SSME TEST SUMMARY

~
. ..JJ

'"1 -

~

A2-556 OBSERVATIONS/ANOMALIES

ENGINE SYSTEMS

START - Nominal

MAINSTAGE - M/R - 6.03 @ 104%

- HPOTP(U/N 4012), LPOTP (U/N 2128) Passed preliminary greenrun requirements.
- HPFTP(U/N 4209) shows indications of rotor hang-up. Turbomachinery to RID.

SHUTDOWN - Nominal

INSTRUMENTATION

Facility HPFP Speed (pid 764) - Not reading throughout test. CADS speed good.

MCC Liner Cavity P #3 (pid 1957) - Erratic nature throughout mainstage may indicate
sense line leakage.

I

I
I

I

'"1 - A2-556 OBSERVATIONS/ANOMALIES

ENGINE SYSTEMS

START - Nominal

MAINSTAGE - M/R - 6.03 @ 104%

- HPOTP(U/N 4012), LPOTP (U/N 2128) Passed preliminary greenrun requirements.
- HPFTP(U/N 4209) shows indications of rotor hang-up. Turbomachinery to RID.

SHUTDOWN - Nominal

INSTRUMENTATION

Facility HPFP Speed (pid 764) - Not reading throughout test. CADS speed good.

MCC Liner Cavity P #3 (pid 1957) - Erratic nature throughout mainstage may indicate
sense line leakage.

I

I
I

I

1[5' g02-556 ,

• OBJECTIVES - ENGIIE 2107

• EIGINE 2101 ",OP GREEI-RUI TEST

• 300 SECOIO TOTAL DURATIOII

• 52. 0 5£COIOS • 109% RPl
. • 109.8 SECOIOS • 104% RPL

• GREEI-RUK OF HPOP U/. 4012. HPFP U/I 4209. I LPOP U/. 2128

• GRE£,.-RUI OF CCIITRCl.LER U'N F48. Afl LINE • .,V. MD "PV

• GREEI-RUI OF 5 ACTUATORS (5th FLIGHT SET - fep 1202)

• CERTIflCATIOI EXTE.SION OF AAAAl3 SOfTIIAR£

• EVAlUATION OF BPOP MELD 3 INSTRUMEITATION

• EVALUATION OF NAIl INJECT. lOX IILET TEE INSTRUIlEIlTATION

• EVALUATION OF OPB LOX DOME INSTRUMENTAllOl

i

Q;

if

. toRI

D
"U
:0

11.1
~

w
N

~

(S)
m

"U
D
G)
m

1(S)
.(S)

iA

1[5' g02-556 ,

• OBJECTIVES - ENGIIE 2107

• EIGINE 2101 ",OP GREEI-RUI TEST

• 300 SECOIO TOTAL DURATIOII

• 52. 0 S£COIOS • 109% RPl
. • 109.8 SECOIOS • 104% RPL

• GREEI-RUK OF HPOP U/. 4012. HPFP U/I 4209. I LPOP U/. 2128

• GRE£,.-RUI OF COIITRCl.LER U'N F48. Afl LINE • .,V. MD "P'

• GREEI-RUI OF 5 ACTUATORS (5th FLIGHT SET - fep 1202)

• CERTIflCATIOI EXTE.SION OF AAAAl3 SOfTIIAR£

• EVAlUATION OF HPOP MELD 3 INSTRU"EITATION

• EVALUATION OF NAIl INJECT. lOX IILET TEE INSTRUIlEIlTATION

• EVALUATION OF OPB LOX DOME INSTRUMENTAllOl

Q;

. toRI

D
"U
:0

11.1
~

.
W
N

~ ..
(S)

m

"U
D
G)
m

~
:N
I

.~

TrST 902-556

• FUEL REPRESS FLOW CONTROL VALVE

• OPEN PRIOR TO E/S

• 1.2 LB/SEC @ RPL (MAX)

·GOX REPRESS FLOW CONTROL VALVE

• OPEN PRIOR TO E/S

• 2.35 LB/SEC @ RPL (MAX)

• ENGINE He INTERFACE PR

• 740 ± 10 PSIA

• ENGINE GN2 INTERFACE PR

• 600 +50 /-20 PSIA

• HYDRAULIC INTERFACE PR

• SUPPLY PR DURING CHILL = 475 ± 25 PSIG

• SUPPLY PR PRIOR TO PSN 4 = 3085 ± 50 PSIG

• RETURN PR = 100 ± 20 PSIG @ 2 GPM

f!j)

I

I
I
I

I
I
!

I

12

TrST 902-556

• FUEL REPRESS FLOW CONTROL VALVE

• OPEN PRIOR TO E/S

• 1.2 LB/SEC @ RPL (MAX)

.GOX REPRESS FLOW CONTROL VALVE

• OPEN PRIOR TO E/S

• 2.35 LB/SEC @ RPL (MAX)

• ENGINE He INTERFACE PR

• 740 ± 10 PSIA

• ENGINE GN2 INTERFACE PR

• 600 +50 /-20 PSIA

• HYDRAULIC INTERFACE PR

• SUPPLY PR DURING CHILL = 475 ± 25 PSIG

• SUPPLY PR PRIOR TO PSN 4 = 3085 ± 50 PSIG

• RETURN PR = 100 ± 20 PSIG @ 2 GPM

I

I
I
I

I
I
!

I

12

TfST 902-556

• STANDARD TEST PROCEDURES

• FACILITY GN2 HEATER SCHEDULE
• SAME AS LAST TEST (REF TEST 902-553)

• OXIDIZER CHILL PROCEDURE
~_SAME--A-S-"[AST TES1:)(REF TEST 902-553)

/-- - -------- "

~. CHILL INSPECTION REQUIREMENTS
• VISUALLY INSPECT VALVE ACTUATOR AND ACTUATOR HYDRAULIC RETURN

LINES FOR LIQUID AIR IMPINGMENT AT LEAST 30 MINUTES AFTER FUEL
DROP. ANY HYDRAULIC COMPONENTS THAT ARE SUSCEPTIBLE TO LIQUID
AIR IMPINGMENT WILL BE INSULATED OR StlIELDF.D

V HEATER SCHEDULE
E AS LAST TEST (REF TEST 902-553)

• ENG I NE GN2 RING PUIfGr"" SCII[I)..lJl E
• SAME AS LAST TEST (REF TES1-9"02-553)"

• CONTROLLER COOLANT PURGE, MINIMUM OF 10 SCFM GN2
• SAME AS LAST TEST (REF TEST 902-553)

• PRETEST AVIONICS CHECKOUT PROCEDURE
• SAME AS LAST TEST (REF T[ST 902-555)

• GLOW PLUG OPERATION
• SAME AS LAST TEST (REF TEST 902-553)

• POST SHUTDOWN LH2 LOCKUP PROCEDURE
• SAME AS LAST TEST (REF TEST 902-553)

(j)

\
\.

\
I
i

13

TfST 902-556

• STANDARD TEST PROCEDURES

• FACILITY GN2 HEATER SCHEDULE
• SAME AS LAST TEST (REF TEST 902-553)

• OXIDIZER CHILL PROCEDURE
~_SAME--AS lAST TE51:)(REF TEST 902-553)

/-- -- -------- "

~. CHILL INSPECTION REQUIREMENTS
• VISUALLY INSPECT VALVE ACTUATOR AND ACTUATOR HYDRAULIC RETURN

LINES FOR LIQUID AIR IMPINGMENT AT LEAST 30 MINUTES AFTER FUEL
DROP. ANY HYDRAULIC COMPONENTS THAT ARE SUSCEPTIBLE TO LIQUID
AIR IMPINGMENT WILL BE INSULATED OR StlIELDF.D

V HEATER SCHEDULE
---.,.,u ... ,·,E AS LAST TEST (REF TEST 902-553)

• ENGINE GN2 RING PUR
• SAME AS LAST TEST (REF TEST-9"02-553)"

• CONTROLLER COOLANT PURGE, MINIMUM OF 10 SCFM GN2
• SAME AS LAST TEST (REF TEST 902-553)

• PRETEST AVIONICS CHECKOUT PROCEDURE
• SAME AS LAST TEST (REF T[ST 902-555)

• GLOW PLUG OPERATION
• SAME AS LAST TEST (REF TEST 902-553)

• POST SHUTDOWN LH2 LOCKUP PROCEDURE
• SAME AS LAST TEST (REF TEST 902-553)

\
\.

\
I
i

13

>
..}J

i
v .J,

TEST 902-556

• HARDWARE CHANGE S

• REPLACED HPOP (ES-9839)
• REMOYED U/" 2218, PIN 8R032814-11, S/I 4815860

• DEVELOPMENT UNIT
• INSTAlLED U/. 401Z, PIN RS007101 - 161. SIN 2185620

• GREEN-AUN U.IT

• REPLACED HPFP (ES-9840)
• REMOVED U/I 2033. PI" RS007501 -1151, 5/1 4862150

• COMPLETED GREER-RUN
• I"STAlLED UIN C209L PIli AS001501-1141. SIN 3041965

• GREEN-RUII UII I

• REPLACED LPOP (ES-9839)
• REMOVED U/N 4Z0)~ PiN GIRS001801-191, SIN 4874613

• DEVELOPMENT UniT .
• INSTAlLED U/. 2128. P/I RS007801-191. SIN 4866312

• GREEN-RUK UNIT

• REPLACED COiTROLlER (£S-9841)
• REMOVED UfN F~2~ PIN kE1493-12. SIN 222

• COMPLETED GRtEN-RUN
• INSTAlLED U/M F48. PIN IEI493-12. Sf. 218

• GREEN-RUN UWI T

• REPLACED HPFD (ES-9840)
• REMOVED PIN R035533-1 •. SIN 2079550

• COMPLETED GREEN-RUN
• INSTAlLED P/I R035533-1. SIN 2019541

• DEVELOPMENT UIIT

• REPLACED HPV (E5- 9841}
• REMOVED P/H RSOIOl80-Z91. SIN 4876159

• COMPLETED GREEN-RUN
• INSTAlLED P/I IS010180- 301. SIN 4871206

• GREEN-IU. UNIT

~-----. - .ey-~ ~ ~~I

~ Il:

(;

14~1

~ l{

t i -
lO
N

" ..
(S)
(J)

-r
(-
(,
l

-u
D
(j)
rn

"((S)
.(S)

ffUl

t

I
t
I

I.
I !

I· I

~ \

!

I
i I

~ I

~ -----.~--,~- D ~n
\J

11; ;{1

N l{ -> TEST 902-556 - I
J-J

i
lD

,

'J'

N

I --.J\ • HARDWARE CHMGES -.J I .. !

• REPLACED HPOP (ES-9S39h
CSl . I

• REMOVED U/" 221 • PIN 8R032814-11. SII 4815860
(J) I

. \ • DEVELOPMENT UNIT
• INSTAlLED U/. 401Z. PIN RS001101-161. SIN 2185620

• GREEN-RUN UIIT

• REPLACED HPFP (ES-9840)
• REROVED U/. 2033. PIN RSOO1501-1151. S/I 4862150

• COMPLETED GREER-RUN
• I"STAlLED U/N 42091 PIN ASOO1501-1141. SIN 3041965

• GREEN-RUII UII

• REPLACED LPOP (ES-98391 I
• REMOVED U/N ~20 N PiN GIRS001801-191. S'N 4874613 t

• OEVElOPMEWT U IT . I

• INSTAlLED U/R 2128. PII RSOO1801-191. SIN 4866312 -
I. • GREEN-RUI UNIT

r
(- I

• REPLACED COiTROLlER ~[S-9841~
(I· ,

i • REMOVED U/N F 2t PIN [1493-12, SIN 222 l

• COMPLETED GR (N-RUN

I
• INSTAlLED U/N F48. PIN RE1491-12. 5/. 218

• GREEN-RUN UWIT

• REPLACED HPFD (ES-9840~
• REMOVED PIN R03 533-1~ SIN 2019550

• COMPLETED GREEN-RU i

• INSTAlLED P/I R035533-1, SIN 2019541
• DEVELOPMENT UIIT

-u

• REPLACED HPV (£S-9841 b D

• REMOVEO P/H RS 10180-291. SIN 4816159
G)
rn

• COMPLETED GREEN-RUN
.

• INSTAlLED P/I RSOI0180-301. SIN 4811206
"{CSl

I .CSl

• GREEN-RU. UIIT
ffUl

~ i 14~1

- - - - ---------

TEST 902-556

• HMHME OlAIMiE S COlI TltKJED

• I£Pltal MV LIME (£$-9841)
• IElDVED ' P,. RSOO1081-261. 5'1 4874593

• ,IEVIOUS &REEI-RUI UNIT TO SUPPORT TIST
• INSTALlED P/I 15007083- 261. S/" 4875731

• GREEN-RUN UNIT

• REPLACED a..t. 5 ACTUATORS I. tl)V (($-984411)
• IIISTM..lEO 5tll FLI&HT SET (Ee'-1202} kWATfltS fOR GREEN-lUll

• Il£MOftD It7VA PIN REUOO8-812~. S/~ 118
• RERO¥ED MO¥A PII IES1008-511'. 5/. 095
• .EMOVED ceVA PIN 1£51008-1319. 5/. OS4
• REMOIED OPOVA ',M I[Sloo8-'116. S/. 114
• REMOI£D F,OIA 'II I£SIOO8-611'. S/~ 121
• REMO¥£D MOY ". RS00825S-401. SIN 4872458

• COMPLETE. GR[E.-~
• INSTALLED MFVA PI. R[SI008-8122. SIN 088
• INSTALLED NOVA PIN RESIO~5119. SIN 055
• I.STAlLED (eVA PI_ RE510~1319. SIN 033
• IIISTALLED OPOWA PIN I[SI008-'116. SIN 066
• I"STAlLED fPOVA PIN 1£51008-'116. 5'1 092
• INSTALLED HOY "I IS008255-401. S/. 4881816

• S .. aP,[D I GJlITmtS {ES-9asol
• REMOVED OPB II IGNITOR PIN GIR0013000-1. S/_ 2107114

• F AILED TO QUEItCH
• REMOVED FPB 12 161 I TOR PIN ROOl4020-021 SIN 4924188
• INSTALLED orl '1 IGlnT~ PIN 10014020-021. S/M 4924788
• INSTAlL£D fH 12 16IITo. PIN GllOOl3000-1. SIN 2101114

• HIGHER FN PI IlIlL HELP QUEatII IGIITOI

• MAIl INJECTOR lOX POST BIASIIIG (E5-9820)
• CHANGED BIAS REQUIREMENT TO 0.101-.111 (VAS .100-.104)

• 29 POSTS REQUIRED MlDITJOIAL IIASIIIG TO MEET IEQUIRE.IT

(j)

11

___ ~_~ r /1

t
I

m
I ...
~
IU

~
."J

~

at ...
01

."J ...
~

(II ...
OJ
I-'"

--i
rrt
(J)
--i

~
0.

1)

...

."J

~

•
~
!

.I

TEST 902-556

• HMHME OlAIMiE S COlI TltKJED

• I£Pltal MV LIME (£$-9841)
• IElDVED ' P,. RSOO1081-261. 5'1 4874593

• ,IEVIOUS &REEI-RUI UNIT TO SUPPORT TIST
• INSTALlED P/I 15007083- 261. S/" 4875731

• GREEN-RUN UNIT

• REPLACED a..t. 5 ACTUATORS I. tl)V (($- 984411)
• IIISTM..lEO 5tll FLI&HT SET (Ee'-1202} kWATfltS fOR GREEN-lUll

• Il£MOftD It7VA PIN REUOO8-812~. S/~ 118
• RERO¥ED MO¥A PII IES1008-511'. 5/. 095
• .EMOVED ceVA PIN 1£51008-1319. 5/. OS4
• REMOIEO OPOVA ',M I[Sloo8-'116. S/. 114
• REMOI£D F,OIA '/1 I£SIOO8-611'. S/~ 121
• REMO¥£D MOY ". RS00825S-401. SIN 4872458

• COMPLETE. GR[E.-~
• INSTALLED MFVA PI. R[SI008-8122. SIN 088
• INSTALLED NOVA PIN RESIO~5119. SIN 055
• I.STAlLED ceVA PI_ RE510~1319. SIN 033
• IIISTALLED OPOWA PIN I[SI008-'116. SIN 066
• I"STAlLED fPOVA PIN 1£51008-'116. 5'1 092
• INSTALLED HOY "I IS008255-401 . S/. 4881816

• S .. aP,[D I GJlITmtS {ES- 9asol
• REMOVED OPB II IGNITOR PIN GIR0013000- 1. S/_ 2107114

• F AILED TO QUEItCH
• REMOVED FPB 12 161 I TOR PIN ROOl4020-021 SIN 4924188
• INSTALLED orl '1 IGlnT~ PIN 10014020-021. S/M 4924788
• INSTAlL£D fH 12 16IITo. PIN GllOOl3000-1. SIN 2101114

• HIGHER FN PI IlIlL HELP QUEatII IGIITOI

• MAIl INJECTOR lOX POST BIASIIIG (E5- 9820)
• CHANGED BIAS REQUIREMENT TO 0.101- .111 (VAS . 100-. 104)

• 29 POSTS REQUIRED MlDITJOIAL IIASIIIG TO MEET IEQUIRE.IT

11

1)

...

..J

•
~
!

.I

~
' J
J I
J'1
,, -1
"

(

TEST 902-556

• SOF11IM£ ClMG£S - SAN DATED 4-21-92 lEY 1. fEe 10076

• IEIISED SCALI.' COEFFICIENTS F~ .EW CONTROlLER MID ACTUAT(IIS

• llCORPORATEO ACCEPTMCE TEST ..,OT OS T£tF REDlIIES
• GR£E.~RUN HfDP
• L/C .EDLIIE (2.3-5.8) • 16600 R
• MIS IESl •• (5.8-C/0) If 1660-R

• IISTRUMEITATIOI CllM6(S

• D£LERD TI£ 2 IDDITIOIIM. lPFT INLET '1 MEASUREMENTS (ES-9861)
• IEJIWEI lICe COOLMT DISCHARGE PlESS.E R[OLIIE

• DElETED 4 HPOP ISCl.ATGI STIlI .. GAGES ([5-9839)
• IISTIUNEIT£O PU .. IEIlWEO

• FACILITY OIMGES

• REVISED FACILITY SYSTENS TO SEID SIGIAL TMlOUGH fACILITY CUTOff RELAY (E5-9856)
'1101 TO TIlE CADS •• AleE AND FACILITY I£ADY RELAYS

• S'STOI atEClOUT COIIPLETE Mil SATISfACTORY
• .. EWEIIT POSSIILE TINIII6 ' ... LEJ4

• FACILITY AID fACILITY MOIITORED EMGII[REDll.E CIAl6ES

• DEACTJIAltO LPFP lAD ACCEl AID IPff SPEED REDlIIES
• cmFlET£D 1ST nST Of IEII lPfP BUILD

• D£LETED SPECIAL lICe CCKl.AIIT DISmAl6E PRESSUIE REOlIIE (1S-9867)
• COMPLETED REQUIRED 3 TEST MIT" REDLINE (IFL 2563)

• ACTIVATEO LPOP RAD ACCEL REDLI.
• I.ITIAl TEST Of MEV BUILD

~/#-

~
I

~
• ...

¢
({)
(()
ru

~
ru ...

m ...
m

" ...
\'i)

' Ul

?~ R.z

.....
CD
.....

-I
III
1I
-I

o
1)

1I

1)

\'i)
.....

...

·r

I

J

1
, ~

~
' J

I l
l v;
0/ -J
')

(

- - --- ---

TEST 902-556

• SCJflllME ClM6£S - SAlt DATED 4-21-92 lEV 1. FEe 10016

• IEIISEO SCALI.' COEFFICIENTS FOI lEW CONTROLLER AID ACTUAT(IIS

• llCORP(IlATEO ACCEPTMCE TEST ..,OT DS ntF REDlIIES
• 6REE.~RUH HfOP
• L/e .EDLIIE (2.3-5.8) • l'60o R
• MIS IESlI. (5.8-C/0) .. 16600 R

• IISTRUMEITATI .. OIAI6[S

• OElEnD TI£ 2 MlITIOILAl lPfT INLET '1 MEASUREMENTS (ES-9861)
• IEJIWEa lICe COOLMT DISCHARGE PlESS.E .EOLIIE

• DElETED .. HPOP ISOLATOI STIAIN GAGES (ES-98]9)
• IISDUNEITtO PU", HIIMO

• fACILITY OIMGES

• REVISED FACILITY SYSTEMS TO SEND SIGIAL TMlOUGH fACilITY CUTOFf RELAY (ES-9856)
PIIOI TO TIlE CADS .,AleE MD fACILITY I£ADY RELAYS

• SYSlDI atEClOUT COIIPLETE AMP SATISfACTORY
• ,.EIDII POSSIILE TIIUN' 'IOiLa.

• FACILITY AID fACILITY MOIITORED £M611E REDllNE CIAl6ES

• DEACTIIAT£O LPFP lao ACCEl AID IPff SPEED REDlIIES
• alFLETED 1ST TEST ~ IEM LPfP BUILD

• D£lETED SPECIAL IICC CCKl..MT DISatARGE PJlESSUIE REOlIIE (£S-9867)
• COMPLETED REQUIRED 3 TEST MIT" REDLINE (IFL 2563)

• ACTIVATEO lPOP RAD ACCEL REDL lIE
• I.ITIAl TEST OF MEV BUilD

~
I

~
I ...
fD
fD
I\J

, U]

...

.r
I

I
i
j
I

, ~

, / .,
(

l.

lEST 902-556

• I£Y PARMElEIS

• AlL IEDLI. ~.TS

• MPFP GlEEI-AUI IEASUREREITS
• SME AS LAST TfST (IEF 902-554)

.... AID L' ... 6IEE"-1UI REASIIEflElTS
• SEE FOl1.CIIII' CHM'S .

• fLOIICtIECI IESUL TS

• OPOW DIS SlEEVE FUJI CfiEClt. OPOV SIR 4892654 I OPOIA S'I Oifi
• em. LEVEL • 24.. 2 sa"
• £JHi LEIEL • 22.9 S[F"

• FPOY DIS SLEEVE FU* cttEClt.. fPM SIN 4811490 I f'OVA S/. 092
• COftP LEVEL - 28. 5 SCf" .
• EI& I.EY£L - 32. 5 SUII

(j)

14

-- ~ ...

t
~
I
!
CSl
~

' 1.1

""

(JI
01

"
CSl

III ...
01

-.
(11
IA -.
0
1]

UI

1]

o·
01

J

~

,
J
J

" 'J
[

L

TEST 902-556

• lEY PARAMETEIS

• AlL IEDLI. IEASUlEJtE.lrS

• MPFP 61£EI-IUI REASUREREITS
• SME AS LAST TfST (IEF 902-554)

• ... AID tPOP 6a£EII-IW ItEMIIE.ITS
• SEE FCl.LOIUI' CHMTS .

• fLOMCtIECI IESUL TS

• OPOW DIS SlEEVE FUJII aiEelt. OPOV 5/1 4892654 I OPOVA 5/. 066
• CCIIP LEVEL • 24.. 2 5U"
• EIG LElEl • 22.9 S[FM

• FPOY DIS SLEEVE fLIMf CttECll. rpov SIN 4871490 / rpOVA 5/. 092
• cmtP LEVEL • 28. 5 scr" .
• [1& lEY£L • 32. 5 SUII

----- ---~--~ ---------

14

&

t
~
I ...
~
III

&
-J

' I,.!
--.I

(]I
m
--.I ...
G

UI ...
m

~
/11
CJI
~

0
1:1 .
UI

1:1

0'
m

Tape 2 Erik Sander Interview - Plot Analysis

So we take the facility flowmeter, take the Kf to match the two
flowmeters. C2 is another way of saying fuel flow. Most people
think that if you vary C2 you are setting the mixture ratio on the
engine. You are-not doing that. If you set a C2, you set a given
=uel flow. I have plotted curves that say that if you use this C2
at a given power level, you will get this fuel flow. PERIOD.
:;nless you are in hydraulic lockup, you will get it. If the
controller is controlling the engine, you will get that fuel flow.
70 get mixture ratio, we set the fuel flow so that with 6 times
-;.hat amount of lox flow, we will get the desired chamber pressure.
7his goes into how the engine operates and how we understand the
system. I guess that this is as good a time as any to go into
-;.his. You must have this basic understanding of how the controller
~perates and how it affects the engine system, to get a basic
-..:nderstanding of the engine itself. Remember I told you that there
are 5 valves? In mainstage, there are only 2 valves that are used
-;'0 control the engine, and they are the two preburner valves. If
you can understand the drivers of those two valves, you have a very
~ood understanding of how the engine system is going to respond to
-;.he controller.

: told you that C2 sets fuel flow. It does that through modulating
-;.he FPOV. The FPOV provides lox to the HPFT, and therefore powers
-;.he pump end up or down to given a certain fuel flow. It goes and
~eads the volumetric flow rate, temps and pressures, converts to a
=ass flowrate, multiplies that by the C2, compares the ac~ual to
.hat is desired, is this the flowrate that I want to be running at?
:f not, it opens the valve more, speeds the pump up, you get more
r.ass flowrate through, and it modulates to bring the two together.
Not all of the fuel goes to the chamber. You lose some through
leaks in the seals, and of course you lose some through repress.
But the majority does end up in the chamber to be burned.

The controller has two hands, one doing the fuel flow thing, the
other controls the OPOV, the other preburner valve. The only thing
its looking at for that is the MCC Pc. It looks at the Pc and the
commanded Pc and it says "Match those two." We build a thrust
profile into the controller, before the test, that says at these
times we will change to these pressures, MCC Pc's. So the
controller knows what power level it is supposed to be at, Pc ref,
and it may be low, say 3000 psi, so it's going to open the OPOV to
provide more lox flow to the preburner which provides more energy
~o the HPOT and HPOP, runs more lox flow, makes the Pc come up. If
you know the efficiency of the chamber and you set the fuel flow
=ight and the lox flow right, you end up getting two things: you
get Pc at the point it's supposed to be at and you get your mixture
=atio right, i.e., 6# lox for every 1# fuel. C2 sets the fuel
=low, but it's an indicator of chamber efficiency. The more fuel
you have to run, the lower the chamber efficiency and the more
propellant you have to run. That is usually in the software
changes.

Tape 2 Erik Sander Interview - Plot Analysis

So we take the facility flowmeter, take the Kf to match the two
flowmeters. C2 is another way of saying fuel flow. Most people
think that if you vary C2 you are setting the mixture ratio on the
engine. You are-not doing that. If you set a C2, you set a given
=uel flow. I have plotted curves that say that if you use this C2
at a given power level, you will get this fuel flow. PERIOD.
:;nless you are in hydraulic lockup, you will get it. If the
controller is controlling the engine, you will get that fuel flow.
70 get mixture ratio, we set the fuel flow so that with 6 times
-;.hat amount of lox flow, we will get the desired chamber pressure.
7his goes into how the engine operates and how we understand the
system. I guess that this is as good a time as any to go into
-;.his. You must have this basic understanding of how the controller
~perates and how it affects the engine system, to get a basic
-..:nderstanding of the engine itself. Remember I told you that there
are 5 valves? In mainstage, there are only 2 valves that are used
-;'0 control the engine, and they are the two preburner valves. If
you can understand the drivers of those two valves, you have a very
~ood understanding of how the engine system is going to respond to
-;.he controller.

: told you that C2 sets fuel flow. It does that through modulating
-;.he FPOV. The FPOV provides lox to the HPFT, and therefore powers
-;.he pump end up or down to given a certain fuel flow. It goes and
~eads the volumetric flow rate, temps and pressures, converts to a
=ass flowrate, multiplies that by the C2, compares the ac~ual to
.hat is desired, is this the flowrate that I want to be running at?
:f not, it opens the valve more, speeds the pump up, you get more
r.ass flowrate through, and it modulates to bring the two together.
Not all of the fuel goes to the chamber. You lose some through
leaks in the seals, and of course you lose some through repress.
But the majority does end up in the chamber to be burned.

The controller has two hands, one doing the fuel flow thing, the
other controls the OPOV, the other preburner valve. The only thing
its looking at for that is the MCC Pc. It looks at the Pc and the
commanded Pc and it says "Match those two." We build a thrust
profile into the controller, before the test, that says at these
times we will change to these pressures, MCC Pc's. So the
controller knows what power level it is supposed to be at, Pc ref,
and it may be low, say 3000 psi, so it's going to open the OPOV to
provide more lox flow to the preburner which provides more energy
~o the HPOT and HPOP, runs more lox flow, makes the Pc come up. If
you know the efficiency of the chamber and you set the fuel flow
=ight and the lox flow right, you end up getting two things: you
get Pc at the point it's supposed to be at and you get your mixture
=atio right, i.e., 6# lox for every 1# fuel. C2 sets the fuel
=low, but it's an indicator of chamber efficiency. The more fuel
you have to run, the lower the chamber efficiency and the more
propellant you have to run. That is usually in the software
changes.

Claudia: There are some pages in the pre-test which contain a box
with this information?

Erik: Yes. Each pretest contains the C2 and Kf that will be run
on that test. C2 varies with power level, because the chamber has
different efficiencies with different power levels. Kf varies.
sometimes we have a flat flow, sometimes we don't. It really
depends on the efficiencies of that turbine. By flat flow I mean
~hat when you go up in power, you may have a different efficiency
~n the LPFT, so you'll get a different Kf.

7im: And you also said that C2 changes with power level?

~rik: Yes. For that they have a slope that has been built in
=orever. There is an equation in the controller, it's a straight
_~ne. And for different engines you move the line up or down. We
~ever change the slope of the line though. In fact it's not really
a straight line, it's a curve. But for our range of interest it
approaches a straight line. All of that info is in the pretest.
Our models group makes recommendations for C2 and Kf for every
~est. Rocketdyne does the same, and we compare to be sure that we
are not too far off.

=nstrumentation changes are important because they tell us what
axtra things that we need to be looking at. In systems, you won't
~~ too interested in alot of this because it isn't stuff that we
~ormally use to analyze the system. We may put extra
~nstrumentation in there to analyze something on this test, but
~t's not something that you can build into a module because it's
~ot going to be there for every test, by any means. Most of this
::'s extra stuff, like here we added a couple of turbine inlet
pressures. Facility changes may affect the engine to some degree,
but not too much, for example the facility flowmeter. It will not
affect the way the engine operates, but it affects the way we see
the data. If it's a new flowmeter that has been calibrated at a
different calibration constant, it will tell us that the engine is
running slower than the engine is actually running. We'll go off
crazy trying to analyze, and then we'll realize they changed the
flowmeter. Redline changes ••• You have to keep in mind that the
only way we can tell what the engine is doing is by looking at the
c.ata, and if the data is bad then we are in trouble. Key
parameters are nothing to worry about, they're things they have to
cave in order to run the test.

There are alot of other packages in the pretest that I'm not going
to go over. If you decide later in the week that you want to go
ever them, let me know.

Let1s start with Pre-start. We break them out into different
packages because there are 4 of us sitting there, and we can let
different people look at different packages at the same time. It's
alot quicker that way. This is a package of data that we go
t-~rough. As I go through I'm going to try to point out different
tnings that we look for as we are going through a test. What

Claudia: There are some pages in the pre-test which contain a box
with this information?

Erik: Yes. Each pretest contains the C2 and Kf that will be run
on that test. C2 varies with power level, because the chamber has
different efficiencies with different power levels. Kf varies.
sometimes we have a flat flow, sometimes we don't. It really
depends on the efficiencies of that turbine. By flat flow I mean
~hat when you go up in power, you may have a different efficiency
~n the LPFT, so you'll get a different Kf.

7im: And you also said that C2 changes with power level?

~rik: Yes. For that they have a slope that has been built in
=orever. There is an equation in the controller, it's a straight
_~ne. And for different engines you move the line up or down. We
~ever change the slope of the line though. In fact it's not really
a straight line, it's a curve. But for our range of interest it
approaches a straight line. All of that info is in the pretest.
Our models group makes recommendations for C2 and Kf for every
~est. Rocketdyne does the same, and we compare to be sure that we
are not too far off.

=nstrumentation changes are important because they tell us what
axtra things that we need to be looking at. In systems, you won't
~~ too interested in alot of this because it isn't stuff that we
~ormally use to analyze the system. We may put extra
~nstrumentation in there to analyze something on this test, but
~t's not something that you can build into a module because it's
~ot going to be there for every test, by any means. Most of this
::'s extra stuff, like here we added a couple of turbine inlet
pressures. Facility changes may affect the engine to some degree,
but not too much, for example the facility flowmeter. It will not
affect the way the engine operates, but it affects the way we see
the data. If it's a new flowmeter that has been calibrated at a
different calibration constant, it will tell us that the engine is
running slower than the engine is actually running. We'll go off
crazy trying to analyze, and then we'll realize they changed the
flowmeter. Redline changes ••• You have to keep in mind that the
only way we can tell what the engine is doing is by looking at the
c.ata, and if the data is bad then we are in trouble. Key
parameters are nothing to worry about, they're things they have to
cave in order to run the test.

There are alot of other packages in the pretest that I'm not going
to go over. If you decide later in the week that you want to go
ever them, let me know.

Let1s start with Pre-start. We break them out into different
packages because there are 4 of us sitting there, and we can let
different people look at different packages at the same time. It's
alot quicker that way. This is a package of data that we go
t-~rough. As I go through I'm going to try to point out different
tnings that we look for as we are going through a test. What

drives the changes in the parameters. If there is something you
are interested in, please stop me and I'll try to explain it. On
some of these plots, you only have 1 test, on others you will see
2 or 3 plotted. Depends on whether you want to compare to another
-::.est or tests. For example on this first plot, you have two
different pids from the same test. Be careful to know what you are
:ooking at. Here they give you the symbol, the pid number, a brief
description, and the ranges. The T indicates it's reading a
-=.emperature, I'm not sure what the 2 means, I think it has
something to do with what they stick it on with. On the bottom,
:::·ou get the test number, the engine number, shutdown time, and some
~ther extraneous data. That's the general format. If there had
been multiple tests, the labels at top would have shown them
~nstead of the multiple pids listed here.

~e will use this schematic to find out where things are in the
:ngine and to relate different perturbations in the data.

:une: (She asked something about the range of the instrumentation)

~rik: We hope that the instrumentation range is much broader than
~he engine range. If ~e get outside the range of the
~nstrumentation, you don't want to believe anything that you see.
~e very rarely go outside of those ranges, if we do it's because
??? The MFV OS temp is just downstream of the MFV. In prestart,
.e break things up into 4 purge sequences. We have appropriate
~ocumentation for each of these phases. PSN1, PSN2, PSN3, PSN4,
:ngine ready, start enable and start. These phases are the
sequences we go through to prepare the engine to receive
;;ropellants and also to 'go ahead and start reliably. Reliably
:means repeatably and safely. During the different purges, we purge
different parts of the engine with either He or N2 in different
w,·ays. Most of that is documented in our book. Cryogens are
=lowing into the engine prior to start, through the LPFP, separates
at the turbine, comes through the HPFP and comes down and sits
right at the MFV. So in pre-start that is where the fuel is. This
=uel bleed valve allows a small amount of fuel to run out and go to
the burn stack. It's function is to keep fuel running through the
system. You can't allow these cryogens to sit static in one place
because they gasify, both the lox and the fuel. The lox prestart
comes down through the LPOP, comes through the duct. Some goes to
the pogo, other feeds through the HPOP, through to the AFV that is
driven open by pressure, but you don't have enough pressure during
prestart to open it, so it doesn't allow any lox to go to the hex.
Line to the LPOT is all filled, it stops at the MOV. It also feeds
through the lines leading to the preburners and stops at the
preburner valves. At the furthest point in the lox system, right
before the FPOV you have the lox bleed valve that keeps lox flowing
through the system, running off to the lox pond where it boils off.
~is is especially important during flight, because if you form a
big lox bubble and it collapses, the bottom of the tank falls out,
and you get ??? MFV is downstream, the two skin temps are on the
outside of the line and all that they are doing is assuring that we
con't have any leakage at the MFV. If we do you will see -this

A3-{,/

drives the changes in the parameters. If there is something you
are interested in, please stop me and I'll try to explain it. On
some of these plots, you only have 1 test, on others you will see
2 or 3 plotted. Depends on whether you want to compare to another
-::.est or tests. For example on this first plot, you have two
different pids from the same test. Be careful to know what you are
:ooking at. Here they give you the symbol, the pid number, a brief
description, and the ranges. The T indicates it's reading a
-=.emperature, I'm not sure what the 2 means, I think it has
something to do with what they stick it on with. On the bottom,
:::·ou get the test number, the engine number, shutdown time, and some
~ther extraneous data. That's the general format. If there had
been multiple tests, the labels at top would have shown them
~nstead of the multiple pids listed here.

~e will use this schematic to find out where things are in the
:ngine and to relate different perturbations in the data.

:une: (She asked something about the range of the instrumentation)

~rik: We hope that the instrumentation range is much broader than
~he engine range. If ~e get outside the range of the
~nstrumentation, you don't want to believe anything that you see.
~e very rarely go outside of those ranges, if we do it's because
??? The MFV OS temp is just downstream of the MFV. In prestart,
.e break things up into 4 purge sequences. We have appropriate
~ocumentation for each of these phases. PSN1, PSN2, PSN3, PSN4,
:ngine ready, start enable and start. These phases are the
sequences we go through to prepare the engine to receive
;;ropellants and also to 'go ahead and start reliably. Reliably
:means repeatably and safely. During the different purges, we purge
different parts of the engine with either He or N2 in different
w,·ays. Most of that is documented in our book. Cryogens are
=lowing into the engine prior to start, through the LPFP, separates
at the turbine, comes through the HPFP and comes down and sits
right at the MFV. So in pre-start that is where the fuel is. This
=uel bleed valve allows a small amount of fuel to run out and go to
the burn stack. It's function is to keep fuel running through the
system. You can't allow these cryogens to sit static in one place
because they gasify, both the lox and the fuel. The lox prestart
comes down through the LPOP, comes through the duct. Some goes to
the pogo, other feeds through the HPOP, through to the AFV that is
driven open by pressure, but you don't have enough pressure during
prestart to open it, so it doesn't allow any lox to go to the hex.
Line to the LPOT is all filled, it stops at the MOV. It also feeds
through the lines leading to the preburners and stops at the
preburner valves. At the furthest point in the lox system, right
before the FPOV you have the lox bleed valve that keeps lox flowing
through the system, running off to the lox pond where it boils off.
~is is especially important during flight, because if you form a
big lox bubble and it collapses, the bottom of the tank falls out,
and you get ??? MFV is downstream, the two skin temps are on the
outside of the line and all that they are doing is assuring that we
con't have any leakage at the MFV. If we do you will see -this

A3-{,/

thing come down (referring to the pid on plot '1). We have what
are called LCC's, Launch commit Criteria, limits that are preset,
that you can't violate in prestart and still allow the engine to
start. If this MFV DS temp falls below 260, we say stop, hold it,
.e have got a problem. It typically means that you are leaking
fuel past the MFV. So what happens here is that we drop fuel into
the engine, and you see the thing start to cool down. It's not
cooling that dramatically, just look at the scale, and the time
scale is about t-8000sec. We have to drop lox at 1.5 hrs before
the test and we drop fuel 1 hr before the test. You can see the
cold fuel sitting on the other side of the valve. The jumps in
this plot are because in PSN3 you do a He purge on the other side
of the valve. The He warms the area and that is why you get the
bump. This purge comes in for 3 minutes every hour.

~~en we go into PSN4, which is the last before engine start, we
purge this area continuously. PSN1 and 2 are just a couple of
~inutes each, they are very rough purges of the engine to get it
=eady. Alot of times we don't even take data during these two
purges. We don't have any cryogens on the engine, we're just
pump1ng He and N2 through the engine. I will get you the
documentation of when and where the purges occur. Alot of times,
.e don't start taking data until we reach PSN3.

During PSN3, we do several things to the engine: 1, purge the HPOP
=ntermediate S~al. We never stop purging this seal, because it is
the most dangerous point of the engine. You have lox on one side
and H2 rich gas on the other side. If the two come together, you
~ave problems. We purge it with N2 in PSN3 and He in PSN4. The
=eason that we switch is that N2 is cheaper.

Jeff: Do your purges follow a rigid schedule like in flight?

Erik: No. In flight, everything from t-9 minutes on follows a
very rigid schedule, because they are all controlled by the ground
computer. On ground test, the only thing set is from when start
enable is declared, which occurs at -t-4 sec. Everything else is
floating. PSN4 usually takes anywhere from 4-12 minutes. PSNJ
usually takes about an hour.

Someone: What determines those times?

Erik: First of all, you have to have lox on the engine for an hour
and a hal f, and you have to have fuel on it for an hour. These are
~inimum requirements. After that, it's simply a matter of when
they are ready to start. We have 4 minutes for PSN4 because that
is what we do in flight. I have seen PSN4 last as long as 15
~inutes. On flight, you can be in PSN4 for a maximum of 12
l::..inutes, because of the limited amount of hydrazine to fuel the
~-PU's. On flight, PSNJ can last 8, 10, 12 hours. If you sit in
PSN3 long enough, you see these temps stabilize.

}'ext is the OPOV skin temps, and this measurement is actually
~pstream of the OPOV. You have a small gaseous bubble in this

thing come down (referring to the pid on plot '1). We have what
are called LCC's, Launch commit Criteria, limits that are preset,
that you can't violate in prestart and still allow the engine to
start. If this MFV DS temp falls below 260, we say stop, hold it,
.e have got a problem. It typically means that you are leaking
fuel past the MFV. So what happens here is that we drop fuel into
the engine, and you see the thing start to cool down. It's not
cooling that dramatically, just look at the scale, and the time
scale is about t-8000sec. We have to drop lox at 1.5 hrs before
the test and we drop fuel 1 hr before the test. You can see the
cold fuel sitting on the other side of the valve. The jumps in
this plot are because in PSN3 you do a He purge on the other side
of the valve. The He warms the area and that is why you get the
bump. This purge comes in for 3 minutes every hour.

~~en we go into PSN4, which is the last before engine start, we
purge this area continuously. PSN1 and 2 are just a couple of
~inutes each, they are very rough purges of the engine to get it
=eady. Alot of times we don't even take data during these two
purges. We don't have any cryogens on the engine, we're just
pump1ng He and N2 through the engine. I will get you the
documentation of when and where the purges occur. Alot of times,
.e don't start taking data until we reach PSN3.

During PSN3, we do several things to the engine: 1, purge the HPOP
=ntermediate S~al. We never stop purging this seal, because it is
the most dangerous point of the engine. You have lox on one side
and H2 rich gas on the other side. If the two come together, you
~ave problems. We purge it with N2 in PSN3 and He in PSN4. The
=eason that we switch is that N2 is cheaper.

Jeff: Do your purges follow a rigid schedule like in flight?

Erik: No. In flight, everything from t-9 minutes on follows a
very rigid schedule, because they are all controlled by the ground
computer. On ground test, the only thing set is from when start
enable is declared, which occurs at -t-4 sec. Everything else is
floating. PSN4 usually takes anywhere from 4-12 minutes. PSNJ
usually takes about an hour.

Someone: What determines those times?

Erik: First of all, you have to have lox on the engine for an hour
and a hal f, and you have to have fuel on it for an hour. These are
~inimum requirements. After that, it's simply a matter of when
they are ready to start. We have 4 minutes for PSN4 because that
is what we do in flight. I have seen PSN4 last as long as 15
~inutes. On flight, you can be in PSN4 for a maximum of 12
l::..inutes, because of the limited amount of hydrazine to fuel the
~-PU's. On flight, PSNJ can last 8, 10, 12 hours. If you sit in
PSN3 long enough, you see these temps stabilize.

}'ext is the OPOV skin temps, and this measurement is actually
~pstream of the OPOV. You have a small gaseous bubble in this

line, and if the OPOV is leaking this temp will go down because
that bubble will disappear and bring the lox into contact with the
wall.

~he AFV downstream temp, remember this is the little valve on the
line that goes to the hex, and it stops flow from going into the
engine prestart. This measurement is downstream of that valve to
~ake sure we don't leak any lox to the hex during prestart. If you
leak lox past any of these, it would be an instant disqualification
of the test, because it would be an indication that the engine was
not properly prepared for the test. You see that it is trending
down, but look at the scale and it's not that big of a drop. 0
5egrees is not cold on this stuff.

Catherine: What kinds of temps do you see if you do have a lox
:eak?

Erik: If you have a lox leak, you will see temps in the range of
:70, 180 degrees R. If you have a fuel leak, you will see your
-=.emps fall below 200 degreesR. All of these measurements have LCC
limits which are preset. You get below these, you can't go on.

~o you want me to go over the OPOV chart again? (The answer was
yes). OK, we have a bubble that sits upstream of the OPOV because
~ts stagnant flow in that area, that if you have a leak in the
CPOV, you will see this bubble disappear and the temps drop
d.ramatically.

~;ext, we have our fuel turbine and our lox turbine temps during
prestart. Remember that all of our time scales in prestart are
-cypically 0 to -8000 seconds. You notice that the trend is for
these temps to come up. These temps are located on the discharge
of the two turbines. They are there to check for a liftoff seal
leak. These temps rise because of the heated N2 purge which is
going on at the beginning of PSN3. It goes through all of the Hot
gas system, and it is done with N2 that is heated about 90 degrees.
l'e do that to dry out the water. Must get all moisture out,
because if cryogens come in contact with the moisture, it will
instantly freeze and can cause problems. We turn it off and you
see the temps fall. In the HPFTP, you have a liftoff seal that
separates the pump end from the turbine end. During operation,
.-e're cooling the turbine end with H2. That H2 is coming in
through the pump ~nd. We can't allow that H2 to enter the hot gas
area during prestart so we have this liftoff seal, a spring loaded
seal. If it fails, i.e. opens, you see these turbine temps drop
very quickly. That is what we are looking for on this graph.

Tim: One question I have is why aren't there any comparison tests
plotted on these prestart plots?

Erik: ijecause all we're comparing to in prestart are the Lee's.
Alot of the things that occur during prestart are determined by the
guys in the stand, not by the engine. It's hard to compare to
another test because the guys may have been doing different things

A3-(,3

line, and if the OPOV is leaking this temp will go down because
that bubble will disappear and bring the lox into contact with the
wall.

~he AFV downstream temp, remember this is the little valve on the
line that goes to the hex, and it stops flow from going into the
engine prestart. This measurement is downstream of that valve to
~ake sure we don't leak any lox to the hex during prestart. If you
leak lox past any of these, it would be an instant disqualification
of the test, because it would be an indication that the engine was
not properly prepared for the test. You see that it is trending
down, but look at the scale and it's not that big of a drop. 0
5egrees is not cold on this stuff.

Catherine: What kinds of temps do you see if you do have a lox
:eak?

Erik: If you have a lox leak, you will see temps in the range of
:70, 180 degrees R. If you have a fuel leak, you will see your
-=.emps fall below 200 degreesR. All of these measurements have LCC
limits which are preset. You get below these, you can't go on.

~o you want me to go over the OPOV chart again? (The answer was
yes). OK, we have a bubble that sits upstream of the OPOV because
~ts stagnant flow in that area, that if you have a leak in the
CPOV, you will see this bubble disappear and the temps drop
d.ramatically.

~;ext, we have our fuel turbine and our lox turbine temps during
prestart. Remember that all of our time scales in prestart are
-cypically 0 to -8000 seconds. You notice that the trend is for
these temps to come up. These temps are located on the discharge
of the two turbines. They are there to check for a liftoff seal
leak. These temps rise because of the heated N2 purge which is
going on at the beginning of PSN3. It goes through all of the Hot
gas system, and it is done with N2 that is heated about 90 degrees.
l'e do that to dry out the water. Must get all moisture out,
because if cryogens come in contact with the moisture, it will
instantly freeze and can cause problems. We turn it off and you
see the temps fall. In the HPFTP, you have a liftoff seal that
separates the pump end from the turbine end. During operation,
.-e're cooling the turbine end with H2. That H2 is coming in
through the pump ~nd. We can't allow that H2 to enter the hot gas
area during prestart so we have this liftoff seal, a spring loaded
seal. If it fails, i.e. opens, you see these turbine temps drop
very quickly. That is what we are looking for on this graph.

Tim: One question I have is why aren't there any comparison tests
plotted on these prestart plots?

Erik: ijecause all we're comparing to in prestart are the Lee's.
Alot of the things that occur during prestart are determined by the
guys in the stand, not by the engine. It's hard to compare to
another test because the guys may have been doing different things

A3-(,3

during that last test.

Next is the lox dome temp, it is checking for leaks past the MOV.
Remember I said that during prestart, the lox flows up to the MOV,
and there should not be any lox past that valve. This temp sensor
is located past that valve, and if you get leakage past that valve,
you will see those temps drop very quickly. This rise is the
result of the heated N2 purge, and you see it drop very quickly,
because once you turn the heat off, the temp of the N2 drops very
quickly. And at the tail of this graph, you see where we go into
PSN4. During this purge, we turn on a fuel system He purge. Once
again, we're looking for a quick drop off. That would indicate to
~s that we have a leak past that valve.

Now, we have ambient powerhead temps. These are to take temp
~easurements around the engine, and they are there looking for
fires. We have 12 of these. They are of two types, the first are
glowplug measurements. 4 of these are situated around the top of
the powerhead. They are temp measures with spark ignitors located
r.ext to them (just like spark plugs in your car). It serves the
same purpose as a spark ignitor on a gas grill, it burns all the
gas in the area. We do this so if there is any loose H2 or lox, it
.ill burn it right away without letting it accumulate and cause a
::.ajor fire. It consequently allows us to check for leaks. The
glowplug temps will go up in case of a fire. The ambient powerhead
temps will drop, because you are pouring lox and LH2 on them.
?restart we're primarily looking for leaks, mainstage we're
Frimarily looking for fires. We have LCC's during prestart and
redlines during mainstage to limit these measurements.

Claudia: Could you clarify on what happens in case of a leak?

Erik: You see glowplug temps go up because of the flame, you see
the 8 ambient powerhead temps drop because of the presence of lox
or liquid H2. on those sensors. Ei ther situation is reason for
disqualification.

Tim: We have 12 measurements, right?

Erik: Yes, 4 are the facility glowplugs that sit about 15 ft away.
S are fitted into the engine framework, sitting within inches of
the engine, the ambient powerhead temps. You can get a SUbstantial
fire around an engine. On A2 they burned the stand, a large fire
caused by a nozzle leak. There was an aluminum grate, used as a
platform that was pulled back with a7 foot diameter hole burned in
it. We're talking hot fires.

This sensor pictured here is a little erratic. This may be an
.indication the sensor is going bad. Or, for this particular
lI:easurement, it could mean that the wind has shifted. In either
:ease, this would raise a flag in your mind that you would carry
over to mainstage, remembering that this sensor looked funny during
prestart. These spikes and shifts that you see aren't bad, they
only represent a few degrees. What we look for are major shifts in

during that last test.

Next is the lox dome temp, it is checking for leaks past the MOV.
Remember I said that during prestart, the lox flows up to the MOV,
and there should not be any lox past that valve. This temp sensor
is located past that valve, and if you get leakage past that valve,
you will see those temps drop very quickly. This rise is the
result of the heated N2 purge, and you see it drop very quickly,
because once you turn the heat off, the temp of the N2 drops very
quickly. And at the tail of this graph, you see where we go into
PSN4. During this purge, we turn on a fuel system He purge. Once
again, we're looking for a quick drop off. That would indicate to
~s that we have a leak past that valve.

Now, we have ambient powerhead temps. These are to take temp
~easurements around the engine, and they are there looking for
fires. We have 12 of these. They are of two types, the first are
glowplug measurements. 4 of these are situated around the top of
the powerhead. They are temp measures with spark ignitors located
r.ext to them (just like spark plugs in your car). It serves the
same purpose as a spark ignitor on a gas grill, it burns all the
gas in the area. We do this so if there is any loose H2 or lox, it
.ill burn it right away without letting it accumulate and cause a
::.ajor fire. It consequently allows us to check for leaks. The
glowplug temps will go up in case of a fire. The ambient powerhead
temps will drop, because you are pouring lox and LH2 on them.
?restart we're primarily looking for leaks, mainstage we're
Frimarily looking for fires. We have LCC's during prestart and
redlines during mainstage to limit these measurements.

Claudia: Could you clarify on what happens in case of a leak?

Erik: You see glowplug temps go up because of the flame, you see
the 8 ambient powerhead temps drop because of the presence of lox
or liquid H2. on those sensors. Ei ther situation is reason for
disqualification.

Tim: We have 12 measurements, right?

Erik: Yes, 4 are the facility glowplugs that sit about 15 ft away.
S are fitted into the engine framework, sitting within inches of
the engine, the ambient powerhead temps. You can get a SUbstantial
fire around an engine. On A2 they burned the stand, a large fire
caused by a nozzle leak. There was an aluminum grate, used as a
platform that was pulled back with a7 foot diameter hole burned in
it. We're talking hot fires.

This sensor pictured here is a little erratic. This may be an
.indication the sensor is going bad. Or, for this particular
lI:easurement, it could mean that the wind has shifted. In either
:ease, this would raise a flag in your mind that you would carry
over to mainstage, remembering that this sensor looked funny during
prestart. These spikes and shifts that you see aren't bad, they
only represent a few degrees. What we look for are major shifts in

the data. For example, if you see them come down to liquid H2 or
lox level, then you would start inquiring, 160 200 degrees. For
fires, you would see them go to 680, 700 degrees. Some of these
shifts are just wind caused. Also during pretest, there is alot of
liquid air dripping. It will drip on to a sensor location and
cause a shift, especially like the LPFP's that have cracks in the
insulation. You run LH2 at 40 degrees through these pumps. Air
liquefies at 190 degrees. So we have temp to liquify air.

~,ext is the fuel press interface temp, it acts as a protection of
-=.he engine from the facility. We have had cases where the facility
·",,-ould leak fuel into the engine. This graph has a very small
scale, it looks ok. You are looking for shifts to indicate
:eakage.

~;ext is the HPOP Intermediate Seal pressure. This is the only
~hing which is purged continuously during both prestart and post
shutdown. It is the primary buffer between the lox pump and the
:ox turbine. The lox pump is carrying lox and the turbine is
carrying H2 rich gas. The spike is common. It is the indication
of a bad data point. We're purging with N2. At the tail is the
shift that indicates we're going into PSN4. We purge with He at a
=-igher pressure during PSN4, that's why you see the shift. This
=easurement has a lower and upper limit.

~\ext is the fuel system purge pressure. It is a He purge for 3 min
of every hour. The rest of the time it is reading ambient. During
~he purge, it will read between 300 and 400. This is a difficult
check to do. Basically, it is done by a peA, pneumatic controller
assembly, that checks for leaks. This plot tells you if you are
getting through the peA correctly.

~;ext the lox preburner pressure. The sid stands for shutdown
because that is where we normally use it. We turn the purge on to
get the lox out of the dome, because if you don't, you get pops
... -hich are energy burst. They can cause damage. In two of the last
three A1 tests, there were pops in the dome that were physically
bending the faceplates.

Tim: We are still in prestart right?

Erik: Yes, we monitor the purge here. It is limited by an LCe.
If there is a problem here, it will automatically generate a fide
~'"'hen you go from purge 3 to 4 you switch from N2 to He purge. On
this measurement, you get the shift before cutoff because at 3
ninutes prior to cutoff you started the 3 minute He purge on the
EPOP Intermediate Seal which caused backpressure in this
~easurement, thus the shift up.

Let's go over it again. When we begin PSN~, we manually turn this
purge off. You are normally sending N2 to the OPB and FPB purge
~ressures and the HPOP IS. But when you switch to He on the HPOP
IS, you have more N2 to go to the two preburners, so you get
cackpressure and thus the shift that shows up here.

the data. For example, if you see them come down to liquid H2 or
lox level, then you would start inquiring, 160 200 degrees. For
fires, you would see them go to 680, 700 degrees. Some of these
shifts are just wind caused. Also during pretest, there is alot of
liquid air dripping. It will drip on to a sensor location and
cause a shift, especially like the LPFP's that have cracks in the
insulation. You run LH2 at 40 degrees through these pumps. Air
liquefies at 190 degrees. So we have temp to liquify air.

~,ext is the fuel press interface temp, it acts as a protection of
-=.he engine from the facility. We have had cases where the facility
·",,-ould leak fuel into the engine. This graph has a very small
scale, it looks ok. You are looking for shifts to indicate
:eakage.

~;ext is the HPOP Intermediate Seal pressure. This is the only
~hing which is purged continuously during both prestart and post
shutdown. It is the primary buffer between the lox pump and the
:ox turbine. The lox pump is carrying lox and the turbine is
carrying H2 rich gas. The spike is common. It is the indication
of a bad data point. We're purging with N2. At the tail is the
shift that indicates we're going into PSN4. We purge with He at a
=-igher pressure during PSN4, that's why you see the shift. This
=easurement has a lower and upper limit.

~\ext is the fuel system purge pressure. It is a He purge for 3 min
of every hour. The rest of the time it is reading ambient. During
~he purge, it will read between 300 and 400. This is a difficult
check to do. Basically, it is done by a peA, pneumatic controller
assembly, that checks for leaks. This plot tells you if you are
getting through the peA correctly.

~;ext the lox preburner pressure. The sid stands for shutdown
because that is where we normally use it. We turn the purge on to
get the lox out of the dome, because if you don't, you get pops
... -hich are energy burst. They can cause damage. In two of the last
three A1 tests, there were pops in the dome that were physically
bending the faceplates.

Tim: We are still in prestart right?

Erik: Yes, we monitor the purge here. It is limited by an LCe.
If there is a problem here, it will automatically generate a fide
~'"'hen you go from purge 3 to 4 you switch from N2 to He purge. On
this measurement, you get the shift before cutoff because at 3
ninutes prior to cutoff you started the 3 minute He purge on the
EPOP Intermediate Seal which caused backpressure in this
~easurement, thus the shift up.

Let's go over it again. When we begin PSN~, we manually turn this
purge off. You are normally sending N2 to the OPB and FPB purge
~ressures and the HPOP IS. But when you switch to He on the HPOP
IS, you have more N2 to go to the two preburners, so you get
cackpressure and thus the shift that shows up here.

Next, you see the same response on the FPB purge pressure. Your
l.evel.s are different, I don't know why. I think we are being
eyeball fooled by the scales. It levels out on this graph because
you have reached thermal stabilization. Remember that you dropped
propellants, and you also had LN2 going through.

OK, here is your emergency shutdown pressure. We have two ways to
shutdown the engine: hydraulically (normally manipulate all the
val ves this way.) We have a hydraul ic component, hydraul ic return.
We have hydraulics running throughout, we shuttle it to different
cavities and to actuators, and that modulates how you turn the
valves around. If we get into a problem with hydraulics, Le., APU
fails during flight, we go to the phase in the controller referred
to as hydraul ic lockup. We have tested that on A1. in several tests
recently. In this phase, the engine recognizes that it can't
control anymore, it just leaves the valves where they are. This is
an intermediate step between normal operation and shutdown of the
engine. We translate the engine from normal operation to fixed
orifice mode. This means you don't have any controlling movement
on the 2 prebarner valves anymore, so your not running the engine
very efficiently. This leads to a pneumatic shutdown which means
that we use the He on the orbiter to drive the valves closed. We
monitor that with this Emergency Shutdown pressure. This measures
the pneumatic pressure available to shut down valves if necessary.
In prestart we are making sure that the valves are closed. The
hydraulics and the He are closing the valves. The driver is a
servo-piston arrangement in the valve, one . side driven by
hydraulics, the other driven by He.

We can immediately identify PSN4 on this chart, because we take the
He off of that valve. The other blip is the fuel purge, remember
the one that comes up 3 min of every hour. Because the He is taken
away to drive the other purge, you get the drop on this
measurement. Refer to the 1. pg purge schematic. The large blip
would be noted as an anomaly, but in reality, we know from
experience that they are manipulating He from the stand. Typical
scenario, "what is causing that?" One, downstream in the PCA, or
upstream in the He interface pressure, He coming from stand. Look
at the upstream measurement, it's doing the same thing, surmise the
facility is causing the blip. Experience tells us that is nothing.
This would be an anomaly of little significance, but an anomaly
none the less.

This next plot is 0 to -1.0 sec, showing that HPFP inlet pr is
within the box it needs to be to start the engine. These arrows
indicate the Lec.

Same thing for HPFP in Temp. (He was pointing at something in this
plot that I don't know about, so this entire discussion was
useless) Why do we use these if we need those? Because we don't
have those on flight. We don't have engine measurements on flight.
The measurements we have are orbiter measurements and it's
instrumentation is poor. So we use these measurements instead.

Next, you see the same response on the FPB purge pressure. Your
l.evel.s are different, I don't know why. I think we are being
eyeball fooled by the scales. It levels out on this graph because
you have reached thermal stabilization. Remember that you dropped
propellants, and you also had LN2 going through.

OK, here is your emergency shutdown pressure. We have two ways to
shutdown the engine: hydraulically (normally manipulate all the
val ves this way.) We have a hydraul ic component, hydraul ic return.
We have hydraulics running throughout, we shuttle it to different
cavities and to actuators, and that modulates how you turn the
valves around. If we get into a problem with hydraulics, Le., APU
fails during flight, we go to the phase in the controller referred
to as hydraul ic lockup. We have tested that on A1. in several tests
recently. In this phase, the engine recognizes that it can't
control anymore, it just leaves the valves where they are. This is
an intermediate step between normal operation and shutdown of the
engine. We translate the engine from normal operation to fixed
orifice mode. This means you don't have any controlling movement
on the 2 prebarner valves anymore, so your not running the engine
very efficiently. This leads to a pneumatic shutdown which means
that we use the He on the orbiter to drive the valves closed. We
monitor that with this Emergency Shutdown pressure. This measures
the pneumatic pressure available to shut down valves if necessary.
In prestart we are making sure that the valves are closed. The
hydraulics and the He are closing the valves. The driver is a
servo-piston arrangement in the valve, one . side driven by
hydraulics, the other driven by He.

We can immediately identify PSN4 on this chart, because we take the
He off of that valve. The other blip is the fuel purge, remember
the one that comes up 3 min of every hour. Because the He is taken
away to drive the other purge, you get the drop on this
measurement. Refer to the 1. pg purge schematic. The large blip
would be noted as an anomaly, but in reality, we know from
experience that they are manipulating He from the stand. Typical
scenario, "what is causing that?" One, downstream in the PCA, or
upstream in the He interface pressure, He coming from stand. Look
at the upstream measurement, it's doing the same thing, surmise the
facility is causing the blip. Experience tells us that is nothing.
This would be an anomaly of little significance, but an anomaly
none the less.

This next plot is 0 to -1.0 sec, showing that HPFP inlet pr is
within the box it needs to be to start the engine. These arrows
indicate the Lec.

Same thing for HPFP in Temp. (He was pointing at something in this
plot that I don't know about, so this entire discussion was
useless) Why do we use these if we need those? Because we don't
have those on flight. We don't have engine measurements on flight.
The measurements we have are orbiter measurements and it's
instrumentation is poor. So we use these measurements instead.

In case you haven't noticed, any pid number below 300 is a cads
pid, anything above is facility. We don't have facility pids
during flight.

Tim: On these inlet temps, would you ever see any changes that
tell you anything?

Erik: Yes. If you get changes here, you get outside of the Lee
and the test would be stopped.

June: Do the rates change on these graphs?

Erik: Yes, they do this often, I don't know why. sometimes they
even switch the data system off for a minute. I don't know why.
loie get straight I ines from that. They have done it when they
turned the nitrogen off.

~~y: Do they do this on every test?

Erik: Yes, I think that they are exercising the different data
rates on the data recorder to insure it's integrity.

On the fuel side we do one pressurization, drop fuel giving a small
amt of head (the weight of the fuel itself), a couple of psi, then
they pressurize the ullage (the gaseous part of the fuel in the
tank) to bring the fuel pressure up to where it needs to be.

On the lox side, they do two pressurizations. They drop lox, which
gives a large amount of head, and then they pressurize once early
~n the test, and then they pressurize here (where you see the big
jump on the HPOP inlet), just a little before the test. Do this a
couple of minutes before the test. You are sitting here in PSN4.
~1nen you pressurize and bring all of the parameters into range, you
declare engine ready (the controller does). You can't start from
purge 4. You have to be in engine ready to indicate that you have
the lox pressurized, the cryogens and He in the condition they need
to be to start the engine. One more phase, start enable at t-4
sec., to open pogo valve and close two bleed valves. You can't
leave them open because the HPOP discharge pressure is so high that
it would blow off the downstream duct. We have done tests in the
past where we left the bleed valves open and put shims in to absorb
the pressure, but the shims were crushed.

Next is the Lox inlet temp. This measurement only has a lower Lee.
The PBP discharge temp downstream is the upper Lee. Reason: lox
coming through becomes restricted, it will heat up because of the.
aJnbient conditions. Many times on ground test, we will start below
this Lee, especially on Bl. We know we can do it, so we do.

PBP OS temp, we don't typically get near that upper LCC.

Ee inlet pressure. The drop is caused by initiation of PSN4.
Remember, for PSN4, we switch from ground N2 to He. This drop
occurs because He is now being required to feed the Intermediate

A-3 -67

In case you haven't noticed, any pid number below 300 is a cads
pid, anything above is facility. We don't have facility pids
during flight.

Tim: On these inlet temps, would you ever see any changes that
tell you anything?

Erik: Yes. If you get changes here, you get outside of the Lee
and the test would be stopped.

June: Do the rates change on these graphs?

Erik: Yes, they do this often, I don't know why. sometimes they
even switch the data system off for a minute. I don't know why.
loie get straight I ines from that. They have done it when they
turned the nitrogen off.

~~y: Do they do this on every test?

Erik: Yes, I think that they are exercising the different data
rates on the data recorder to insure it's integrity.

On the fuel side we do one pressurization, drop fuel giving a small
amt of head (the weight of the fuel itself), a couple of psi, then
they pressurize the ullage (the gaseous part of the fuel in the
tank) to bring the fuel pressure up to where it needs to be.

On the lox side, they do two pressurizations. They drop lox, which
gives a large amount of head, and then they pressurize once early
~n the test, and then they pressurize here (where you see the big
jump on the HPOP inlet), just a little before the test. Do this a
couple of minutes before the test. You are sitting here in PSN4.
~1nen you pressurize and bring all of the parameters into range, you
declare engine ready (the controller does). You can't start from
purge 4. You have to be in engine ready to indicate that you have
the lox pressurized, the cryogens and He in the condition they need
to be to start the engine. One more phase, start enable at t-4
sec., to open pogo valve and close two bleed valves. You can't
leave them open because the HPOP discharge pressure is so high that
it would blow off the downstream duct. We have done tests in the
past where we left the bleed valves open and put shims in to absorb
the pressure, but the shims were crushed.

Next is the Lox inlet temp. This measurement only has a lower Lee.
The PBP discharge temp downstream is the upper Lee. Reason: lox
coming through becomes restricted, it will heat up because of the.
aJnbient conditions. Many times on ground test, we will start below
this Lee, especially on Bl. We know we can do it, so we do.

PBP OS temp, we don't typically get near that upper LCC.

Ee inlet pressure. The drop is caused by initiation of PSN4.
Remember, for PSN4, we switch from ground N2 to He. This drop
occurs because He is now being required to feed the Intermediate

A-3 -67

seal as well.

Next plot shows where they turn off GN2. The little jump is where
they turn off the purge to the intermediate seal, the upswing is
driving the two preburner pressures. Then they cut it offo By the
.-ay keep absolute and gauge pressures straight, because they will
eften switch between measurements.

Eydraulic supply pressure, note two things: level and scale. The
two blips you see are them fooling around with the facility.
certain things going on in fac~lity we don't understand because we
d~n't need to. You see the high levels that they use to drive the
valves.

MFV Hydraulic temp. Make sure these temps stay warm. You freeze
cydraulics at about 380R. Spec says you have to operate at 420 or
above. We know these numbers, because we rerouted lines on A1 that
cave caused freezes and consequently, we have had problems shutting
c~wn the engines. We have gotten severe pops, faceplate damage.
~~so remember that hydraulics are going through the actuator that
is attached to valve that has 40R fuel sitting up against it. We
cave a heater in the actuator to keep the hydraulic from freezing
\';'1'.

T:!is next plot is the most confusing. We have 4 parameters from
e~e test. It is a very short time range. Engine status word tells
you exactly where you are in your test. The first spike is start
e~able, about t-3.1 sec. Then you change the position on three
valves. You close the lox and fuel bl.eed valves, and open the pogo
riv (recirculation isolation valve). It prepares the pogo so that
w~en you pump gaseous oxygen through it, it will release. It goes
from 0 to 95. It was supposed to go to 100. Perhaps this is
s.omething you would flag. It is obvious that it is full open
b-ecause it flattened out. It may be miscalibrated. You are
looking to insure it went from full closed to full open in the
a~lotted time frame. This time frame is 2 sec. This applies to
the bleed valves, they must go from full open to less than 20% in
that 2 sec time frame. The lox bleed valve closes no problem, but
the fuel bleed valve, we have a problem with the rvdt that reacts
t~o slow. We had a no start on STS-26 because of this. The bleed
valve itself was ok, but the rvdt was too slow to react. rvdt­
rotary variable differential transducer? rvdt's and lvdt's measure
position, rvdt does it rotary, lvdt does it linear.

?ogo precharge pressure - we precharge it here. When you start an
~gine you can get two kinds of pulses through the engine, pogo and
s.:::reech. Wave starts in the engine that matches the natural
f:=-equency of the HPOP, and it starts a wavefront that starts
b.3.nging the engine. Low pulsing - pogo, high pulsing - screeching.
Pogo is dangerous because it can match the natural frequency of the
s~ruts that attach the ET to the orbiter. Pogo has half lox and
half ullage of gas, prestart is He, after start is gox. The gox
comes from the hex, it splits between the repress line and pogo
u.llage. It dec~:)Uples the whole system, pulse comes into the pogo,

seal as well.

Next plot shows where they turn off GN2. The little jump is where
they turn off the purge to the intermediate seal, the upswing is
driving the two preburner pressures. Then they cut it offo By the
.-ay keep absolute and gauge pressures straight, because they will
eften switch between measurements.

Eydraulic supply pressure, note two things: level and scale. The
two blips you see are them fooling around with the facility.
certain things going on in fac~lity we don't understand because we
d~n't need to. You see the high levels that they use to drive the
valves.

MFV Hydraulic temp. Make sure these temps stay warm. You freeze
cydraulics at about 380R. Spec says you have to operate at 420 or
above. We know these numbers, because we rerouted lines on A1 that
cave caused freezes and consequently, we have had problems shutting
c~wn the engines. We have gotten severe pops, faceplate damage.
~~so remember that hydraulics are going through the actuator that
is attached to valve that has 40R fuel sitting up against it. We
cave a heater in the actuator to keep the hydraulic from freezing
\';'1'.

T:!is next plot is the most confusing. We have 4 parameters from
e~e test. It is a very short time range. Engine status word tells
you exactly where you are in your test. The first spike is start
e~able, about t-3.1 sec. Then you change the position on three
valves. You close the lox and fuel bl.eed valves, and open the pogo
riv (recirculation isolation valve). It prepares the pogo so that
w~en you pump gaseous oxygen through it, it will release. It goes
from 0 to 95. It was supposed to go to 100. Perhaps this is
s.omething you would flag. It is obvious that it is full open
b-ecause it flattened out. It may be miscalibrated. You are
looking to insure it went from full closed to full open in the
a~lotted time frame. This time frame is 2 sec. This applies to
the bleed valves, they must go from full open to less than 20% in
that 2 sec time frame. The lox bleed valve closes no problem, but
the fuel bleed valve, we have a problem with the rvdt that reacts
t~o slow. We had a no start on STS-26 because of this. The bleed
valve itself was ok, but the rvdt was too slow to react. rvdt­
rotary variable differential transducer? rvdt's and lvdt's measure
position, rvdt does it rotary, lvdt does it linear.

?ogo precharge pressure - we precharge it here. When you start an
~gine you can get two kinds of pulses through the engine, pogo and
s.:::reech. Wave starts in the engine that matches the natural
f:=-equency of the HPOP, and it starts a wavefront that starts
b.3.nging the engine. Low pulsing - pogo, high pulsing - screeching.
Pogo is dangerous because it can match the natural frequency of the
s~ruts that attach the ET to the orbiter. Pogo has half lox and
half ullage of gas, prestart is He, after start is gox. The gox
comes from the hex, it splits between the repress line and pogo
u.llage. It dec~:)Uples the whole system, pulse comes into the pogo,

acts as a shock absorber? Right before start, we charge it with
Be. You have to have ullage for the pogo to function properly.

Tim: Why does the pressure drop if the pogo is charged?

Erik: Because it is measuring the pressure in the line, not the
pressure in the pogo.

June: Is the time important?

Erik: Yes, but its dictated by the controller.

The next few plots for prestart have comparisons to other tests.
You see the fuel inlet pressure. Note the small scale, and the
reasurements are very close.

Tim:
plots?

Do you use the same comparison tests for all comparison

Erik: No, you choose different ones for different phases, usually.
For prestart, you choose comparison tests on the same facility,
because the facility drives how you precondition the engine.
During mainstage, you look to match up profiles, engines, pumps,
etc.

~x inlet pressure - your comparing inlet conditions across tests.
Eetween t-4 and start you will see some wild variations, but note
~he scale. In the facility, you are shuttling valves back and
forth to prepare the facility to deliver fuel and lox properly to
the engine. You don't see it in flight, but it's not detrimental.
You see how repeatable it is between tests. It's all computer
controlled.

Lox inlet temp - wild variations, but notice the scale.

HPOP intermediate seal pressure - once again making sure that you
have more than enough flow going to the intermediate seal. The blip
here is the result of pogo precharge pressure. If you look at the
fuel purge pressure at the same time, you see the same kind of
drop.

Next, He interface pressure - this variation is the results of the
pogo coming up. You have a regulator to keep this constant, but
because so much He goes to the pogo, it can't keep up and you get
this drop with a quick recovery.

End of prestart.

The other time that we may look at prestart is if we have leaks in
prestart, it may affect things in mainstage. Also, if we appear to
cave bad instrumentation during mainstage, we'll go back and look
in prestart to see if it was biased then.

Tim: Are you talking about plotting additional data?

acts as a shock absorber? Right before start, we charge it with
Be. You have to have ullage for the pogo to function properly.

Tim: Why does the pressure drop if the pogo is charged?

Erik: Because it is measuring the pressure in the line, not the
pressure in the pogo.

June: Is the time important?

Erik: Yes, but its dictated by the controller.

The next few plots for prestart have comparisons to other tests.
You see the fuel inlet pressure. Note the small scale, and the
reasurements are very close.

Tim:
plots?

Do you use the same comparison tests for all comparison

Erik: No, you choose different ones for different phases, usually.
For prestart, you choose comparison tests on the same facility,
because the facility drives how you precondition the engine.
During mainstage, you look to match up profiles, engines, pumps,
etc.

~x inlet pressure - your comparing inlet conditions across tests.
Eetween t-4 and start you will see some wild variations, but note
~he scale. In the facility, you are shuttling valves back and
forth to prepare the facility to deliver fuel and lox properly to
the engine. You don't see it in flight, but it's not detrimental.
You see how repeatable it is between tests. It's all computer
controlled.

Lox inlet temp - wild variations, but notice the scale.

HPOP intermediate seal pressure - once again making sure that you
have more than enough flow going to the intermediate seal. The blip
here is the result of pogo precharge pressure. If you look at the
fuel purge pressure at the same time, you see the same kind of
drop.

Next, He interface pressure - this variation is the results of the
pogo coming up. You have a regulator to keep this constant, but
because so much He goes to the pogo, it can't keep up and you get
this drop with a quick recovery.

End of prestart.

The other time that we may look at prestart is if we have leaks in
prestart, it may affect things in mainstage. Also, if we appear to
cave bad instrumentation during mainstage, we'll go back and look
in prestart to see if it was biased then.

Tim: Are you talking about plotting additional data?

Erik: Same or additional. For example, HPFP discharge pressure
Day appear to be reading 50-100 psi lower than expected. First
question is "Is it real?" The easiest way to check that is for
bias in the prestart data. If it's reading low during prestart,
~hen you have an instrumentation problem, not an engine problem.

Claudia: Are you reasoning about those two separately or at the
same time? It sounds like you are reasoning about instrumentation
and engine at the same time.

~rik: Same time. We first try to eliminate the instrumentation
problem. You don't want to waste time chasing problem that were
~eally instrumentation.

~une: During prestart, do you have measurements for every sensor?

~rik: We get all of the data. The only thing we may not get is
scan rate. Facility at 50 cuts/sec. Cads at 25 cuts/sec. We get
=eadings from every piece of instrumentation, but we may not get it
at the same rate that we receive it during mainstage.

:une: So you are getting garbage data and you know it?

~rik: It's not garbage data. There are situations where you use
~t. There is some problem that you need a measurement and it turns
out that it is there.

~t's go over start. Two ways to look at start: comparison to
other tests, compare to 2 sigma database.

Lets start with the comparison to other tests.

':'im: What are. the differences between the two types of information
that you get from these different comparisons?

Erik: 2 sigma tells you if you've been there before. If the start
~s between the 2 sigma, we assign it a much lower priority in terms
of danger to the engine. We've started the engine with those
parameters before and it started safely. Failed starts are
compiled in another database. Second, we look to see if we're
starting the lox side hard or easy. Hard starts (hot, slow, quick,
etc) are defined by lox or fuel side coming up fast. Whether you
get the engine to "mainstage in 4 or 4.5 sec doesn't matter on the
ground. What matters is that all parts of the engine interact
properly, i.e., don't start the lox side so fast that it stalls the
fuel side or vice versa. Our main indicator for these is prime
times. Priming is when you get full flow across a faceplate. You
prime,the fuel preburner, main chamber then lox preburner. You
cave to maintain that order and the deltas between the times that
they occur. For example, if you prime the main chamber too close
behind the fuel preburner, you may stall the fuel pump. When you
co that, you stop fuel flow, go lox rich and lose the engine.

Erik: Same or additional. For example, HPFP discharge pressure
Day appear to be reading 50-100 psi lower than expected. First
question is "Is it real?" The easiest way to check that is for
bias in the prestart data. If it's reading low during prestart,
~hen you have an instrumentation problem, not an engine problem.

Claudia: Are you reasoning about those two separately or at the
same time? It sounds like you are reasoning about instrumentation
and engine at the same time.

~rik: Same time. We first try to eliminate the instrumentation
problem. You don't want to waste time chasing problem that were
~eally instrumentation.

~une: During prestart, do you have measurements for every sensor?

~rik: We get all of the data. The only thing we may not get is
scan rate. Facility at 50 cuts/sec. Cads at 25 cuts/sec. We get
=eadings from every piece of instrumentation, but we may not get it
at the same rate that we receive it during mainstage.

:une: So you are getting garbage data and you know it?

~rik: It's not garbage data. There are situations where you use
~t. There is some problem that you need a measurement and it turns
out that it is there.

~t's go over start. Two ways to look at start: comparison to
other tests, compare to 2 sigma database.

Lets start with the comparison to other tests.

':'im: What are. the differences between the two types of information
that you get from these different comparisons?

Erik: 2 sigma tells you if you've been there before. If the start
~s between the 2 sigma, we assign it a much lower priority in terms
of danger to the engine. We've started the engine with those
parameters before and it started safely. Failed starts are
compiled in another database. Second, we look to see if we're
starting the lox side hard or easy. Hard starts (hot, slow, quick,
etc) are defined by lox or fuel side coming up fast. Whether you
get the engine to "mainstage in 4 or 4.5 sec doesn't matter on the
ground. What matters is that all parts of the engine interact
properly, i.e., don't start the lox side so fast that it stalls the
fuel side or vice versa. Our main indicator for these is prime
times. Priming is when you get full flow across a faceplate. You
prime,the fuel preburner, main chamber then lox preburner. You
cave to maintain that order and the deltas between the times that
they occur. For example, if you prime the main chamber too close
behind the fuel preburner, you may stall the fuel pump. When you
co that, you stop fuel flow, go lox rich and lose the engine.

You have to have a regimented way to bring up the different parts
of the engine, to bring it up safely. You don't want pops or
stalls.

Look at MCC Pc - multiple tests plotted. Look at differences
between the tests. These are different tests from what were used
during theprestart comparisons. Example of using different tests
is if you do a software change during start. Valves are run open
loop, closed/opened loop, and completely closed loop. We will make
software changes on how we modulate the valves during start to try
to get a smoother, safer transient. For these comparisons, you
_ant tests that had the same software. You may have different
comparisons for mainstage to match profile, engine, stand or pumps.
All comparisons do is to give us an eyeball.

Pc comes up nicely. Two main control phases during start: 0-.74
sec open loop control, at .74 sec we begin Pc control to ensure
that we're controlling to Pc Ref. At 2.4 sec we go to mixture
~atio control, mainstage, when we start controlling fuel flow. Up
~o about 3 or 3.5 seconds, the valves are very repeatable. At 4
sec and on, the valves begin to deviate to control the engine. One
cf the controlling factors is Pc, that is why Pc is so tight out
~ere in mainstage, because it's controlling OPOV position.

~\ext is ICD limits for this test. Not many ICD limits. We do have
MeF's, that you can think of as redline limits during start. We
cave them to help on flight. We start engines 6.6 sec before
:aunch. Up until then you have capability for on pad abort. There
are limits on measurements, if they're exceeded you do abort. You
see these limits on this plot.

Tim: On the Pc chart, you see variations. How do you reason on
that?

Erik: This is where the comparisons come into play. They tell you
the history of the engine on Pc. Has it done this before? How did
we analyze it? We don't redo those analyses. If it was safe, it's
ok. We may flag an aberration as an anomaly, but we know its a
safe one. If you see variation past start, then you may have
serious problems.

Oh, by the way, we usually start to RPL(100%). We have started to
ether power levels, but it's rare. For the P&W pump, we started to
cS% because they' didn't feel safe starting to 100% with the new
pump.

June: Are you saying that the variations on this test are normal?

Erik: Let me show you something. We determine fuel preburner
~rimed when we see a predetermined change in slope on fuel pump
speed. You are now getting real power to turbine. The main
chamber priming is when you see this big rise on this Pc plot. It
is defined as primed when the MCC Pc breaks 100 psi.

A3-11

You have to have a regimented way to bring up the different parts
of the engine, to bring it up safely. You don't want pops or
stalls.

Look at MCC Pc - multiple tests plotted. Look at differences
between the tests. These are different tests from what were used
during theprestart comparisons. Example of using different tests
is if you do a software change during start. Valves are run open
loop, closed/opened loop, and completely closed loop. We will make
software changes on how we modulate the valves during start to try
to get a smoother, safer transient. For these comparisons, you
_ant tests that had the same software. You may have different
comparisons for mainstage to match profile, engine, stand or pumps.
All comparisons do is to give us an eyeball.

Pc comes up nicely. Two main control phases during start: 0-.74
sec open loop control, at .74 sec we begin Pc control to ensure
that we're controlling to Pc Ref. At 2.4 sec we go to mixture
~atio control, mainstage, when we start controlling fuel flow. Up
~o about 3 or 3.5 seconds, the valves are very repeatable. At 4
sec and on, the valves begin to deviate to control the engine. One
cf the controlling factors is Pc, that is why Pc is so tight out
~ere in mainstage, because it's controlling OPOV position.

~\ext is ICD limits for this test. Not many ICD limits. We do have
MeF's, that you can think of as redline limits during start. We
cave them to help on flight. We start engines 6.6 sec before
:aunch. Up until then you have capability for on pad abort. There
are limits on measurements, if they're exceeded you do abort. You
see these limits on this plot.

Tim: On the Pc chart, you see variations. How do you reason on
that?

Erik: This is where the comparisons come into play. They tell you
the history of the engine on Pc. Has it done this before? How did
we analyze it? We don't redo those analyses. If it was safe, it's
ok. We may flag an aberration as an anomaly, but we know its a
safe one. If you see variation past start, then you may have
serious problems.

Oh, by the way, we usually start to RPL(100%). We have started to
ether power levels, but it's rare. For the P&W pump, we started to
cS% because they' didn't feel safe starting to 100% with the new
pump.

June: Are you saying that the variations on this test are normal?

Erik: Let me show you something. We determine fuel preburner
~rimed when we see a predetermined change in slope on fuel pump
speed. You are now getting real power to turbine. The main
chamber priming is when you see this big rise on this Pc plot. It
is defined as primed when the MCC Pc breaks 100 psi.

A3-11

FPOV command - very repeatable, open loop. Conditions are
determined in software spec. Valves are trying to get to desired
Pc Ref. FPOV is trying to maintain a certain amount of fuel flow.
For different pumps, you need more or less fuel to get the same
amount of flow out of your turbine.

Same thing with OPOV - very repeatable up to about 4 sec. This
one is incredibly repeatable considering that we changed all of the
pumps. We changed out 3 of 4 pumps between this and the last test.

~~ext is OPOV and OPOV command. OPOV command keeps the engine from
~nning away on the lox side. If we nave some bias that tries to
open the OPOV by 4% or greater, this limit prevents that. At a
given time it looks at the interaction of the OPOV and MCC PC and
~etermines OPOV command limit from those. This is very important
:luring mainstage. If you have some sort of instrumentation
problem, you don't want your OPOV running away. If the engine
still has problems, it will more than likely shut down from a
=edline on the lox turbine temps. See the little bump here, we
incorporate that for transient overshoot. We know that we get it,
so we account for it here.

~im: Is it important for us to know all of these little variations
in FPOV and OPOV during start?

~rik: I wouldn't get too concerned, the 2 sigma package shows that
is ok. If you are significantly off during the later portion, that
~eing 4 sec on, you want to look at it. If you're off by any thing
in the early portion, you have to look at it, you have a problem.
~r, you have done something with the software. Go back to OPOV
.:::ommand. If you have variation of 1%, you have either done
something to the software or you have a problem, software is wrong,
data is not being read correctly, or you have an anomaly.
~ifferent phases of start cause different concerns associated with
~em.

Go on to HPFP discharge pressure. From. 8 to 1.4 sec we are
looking for fuel side oscillation. Fuel pump discharge is before
~. We think that the 40 degree fuel is coming down and hitting
~he hot nozzle, it gasifies and forms a pressure bubble that comes
~ack here(?) and stops this flow for a second, and that is the
pressure that you see here. It affects the way we see the engine
start. When you get a fuel side oscillation, you usually see a
barder start, hotter lox turbine temps, because you instantaneously
~ob fuel from the engine which increases your mixture ratio and
~at results in a hotter start. This plot shows two tests with a
good size fuel side oscillation, the triangles and the squares. By
oscillation I mean that it goes up, drops off and then starts to go
up again. The current test plotted doesn't show it. The pressure
~evels but it doesn't drop before it begins to rise again. We are
nissing fuel pump discharge temp, but it you look at it at the time
of the oscillation, you will see a 10-12 degree spike. It is a
better indicator of the fuel side oscillation. We can't control

FPOV command - very repeatable, open loop. Conditions are
determined in software spec. Valves are trying to get to desired
Pc Ref. FPOV is trying to maintain a certain amount of fuel flow.
For different pumps, you need more or less fuel to get the same
amount of flow out of your turbine.

Same thing with OPOV - very repeatable up to about 4 sec. This
one is incredibly repeatable considering that we changed all of the
pumps. We changed out 3 of 4 pumps between this and the last test.

~~ext is OPOV and OPOV command. OPOV command keeps the engine from
~nning away on the lox side. If we nave some bias that tries to
open the OPOV by 4% or greater, this limit prevents that. At a
given time it looks at the interaction of the OPOV and MCC PC and
~etermines OPOV command limit from those. This is very important
:luring mainstage. If you have some sort of instrumentation
problem, you don't want your OPOV running away. If the engine
still has problems, it will more than likely shut down from a
=edline on the lox turbine temps. See the little bump here, we
incorporate that for transient overshoot. We know that we get it,
so we account for it here.

~im: Is it important for us to know all of these little variations
in FPOV and OPOV during start?

~rik: I wouldn't get too concerned, the 2 sigma package shows that
is ok. If you are significantly off during the later portion, that
~eing 4 sec on, you want to look at it. If you're off by any thing
in the early portion, you have to look at it, you have a problem.
~r, you have done something with the software. Go back to OPOV
.:::ommand. If you have variation of 1%, you have either done
something to the software or you have a problem, software is wrong,
data is not being read correctly, or you have an anomaly.
~ifferent phases of start cause different concerns associated with
~em.

Go on to HPFP discharge pressure. From. 8 to 1.4 sec we are
looking for fuel side oscillation. Fuel pump discharge is before
~. We think that the 40 degree fuel is coming down and hitting
~he hot nozzle, it gasifies and forms a pressure bubble that comes
~ack here(?) and stops this flow for a second, and that is the
pressure that you see here. It affects the way we see the engine
start. When you get a fuel side oscillation, you usually see a
barder start, hotter lox turbine temps, because you instantaneously
~ob fuel from the engine which increases your mixture ratio and
~at results in a hotter start. This plot shows two tests with a
good size fuel side oscillation, the triangles and the squares. By
oscillation I mean that it goes up, drops off and then starts to go
up again. The current test plotted doesn't show it. The pressure
~evels but it doesn't drop before it begins to rise again. We are
nissing fuel pump discharge temp, but it you look at it at the time
of the oscillation, you will see a 10-12 degree spike. It is a
better indicator of the fuel side oscillation. We can't control

it, we don't know why we get it! It's not necessarily a problem,
it's just that we can't predict or control it.
it, we don't know why we get it! It's not necessarily a problem,
it's just that we can't predict or control it.

Erik Sander (continued)

Start Performance Package, (referenced by plot , on upper LHS)

Q: if you had a hotter start, if you noticed you had a fuel side
oscillation, what would you expect to see during mainstage?

A: No difference, it all washes out by the time you get to
mainstage.

Q: Does it take life away? Why do you analyze this?

A: It's something we analyze in terms of how hard the engine
starts. We have software parameters that we can use to control how
hard the two different systems start - the fuel system and the lox
system. We have to use those because we have to bring up the two
different systems consistently and within certain prime time boxes
- make sure the engine starts properly. If you're on the hairy
edge of one of those boxes, a fuel side oscillation may drive you
over the hairy edge. These are adjustments we make post-test.
Want to make sure we have enough room on our limits so a fuel-side
oscillation doesn't drive us into a problem area.

Q: So if you observe a fuel-side oscillation, do you want to slow
down the fuel side so that it matches the lox side?

A Example: Suppose we had a hot start w/o a fuel-side
oscillation. We're on the edge of determining whether or not we
want to recommend a software change to make the start a little
cooler - there are knobs that can be tweaked to make the start a
little cooler.' The fact that you did not have a fuel-side
oscillation may drive you to making that recommendation, because
you know a fuel-side oscillation will drive you even hotter. This
is an example where a fuel-side oscillation may drive the
recommendations made, even though we have no control over it.

PLOT '7
Here are the fuel turbine temps - A and B channels. You can

initially see some oscillations and then you continue on through
the start. Notice that we're very similar to a previous test (two
tests back) even though we had a different pump. On the lox side
you'll see a very similar trace - even though we had a different
fuel pump and lox pump and everything else. We look at the
repeatability with the comparison tests and look at the
repeatability with the 2-sigma database to make sure you weren't
way out of line with all three tests. As long as you're within
that (we do have variations within the start) we determine we have
a good start.

Q: Even though you're off by an amount towards mainstage, you'd
still call that an ok start?

A: Yes, and the reason is that you have different pumps here.
Two different big pumps with different efficiencies. What we
typically do is note this during start and keep it in mind to look
during mainstage and see how it was reacting there.

During start, we're particularly concerned with this
parameter, because there's an MCF (redline between engine start and
launch) which states that at a certain time (around 4.98 sec) the
fuel turbine temps have to be under a certain limit. You can
actually shutdown on the pad because of that. We've shut down
ground tests because of it.

Primarily what we're doing here is noting differences and
carrying them to mainstage. You have to have a memory between the
phases - system will need one too. You need to remember
differences during mainstage and as you transition to cutoff. If
turbine temps are 70 deg higher here, the first thing you'll look
for in cutoff is if the temps are 70 deg higher there too.

A~-"

Erik Sander (continued)

Start Performance Package, (referenced by plot , on upper LHS)

Q: if you had a hotter start, if you noticed you had a fuel side
oscillation, what would you expect to see during mainstage?

A: No difference, it all washes out by the time you get to
mainstage.

Q: Does it take life away? Why do you analyze this?

A: It's something we analyze in terms of how hard the engine
starts. We have software parameters that we can use to control how
hard the two different systems start - the fuel system and the lox
system. We have to use those because we have to bring up the two
different systems consistently and within certain prime time boxes
- make sure the engine starts properly. If you're on the hairy
edge of one of those boxes, a fuel side oscillation may drive you
over the hairy edge. These are adjustments we make post-test.
Want to make sure we have enough room on our limits so a fuel-side
oscillation doesn't drive us into a problem area.

Q: So if you observe a fuel-side oscillation, do you want to slow
down the fuel side so that it matches the lox side?

A Example: Suppose we had a hot start w/o a fuel-side
oscillation. We're on the edge of determining whether or not we
want to recommend a software change to make the start a little
cooler - there are knobs that can be tweaked to make the start a
little cooler.' The fact that you did not have a fuel-side
oscillation may drive you to making that recommendation, because
you know a fuel-side oscillation will drive you even hotter. This
is an example where a fuel-side oscillation may drive the
recommendations made, even though we have no control over it.

PLOT '7
Here are the fuel turbine temps - A and B channels. You can

initially see some oscillations and then you continue on through
the start. Notice that we're very similar to a previous test (two
tests back) even though we had a different pump. On the lox side
you'll see a very similar trace - even though we had a different
fuel pump and lox pump and everything else. We look at the
repeatability with the comparison tests and look at the
repeatability with the 2-sigma database to make sure you weren't
way out of line with all three tests. As long as you're within
that (we do have variations within the start) we determine we have
a good start.

Q: Even though you're off by an amount towards mainstage, you'd
still call that an ok start?

A: Yes, and the reason is that you have different pumps here.
Two different big pumps with different efficiencies. What we
typically do is note this during start and keep it in mind to look
during mainstage and see how it was reacting there.

During start, we're particularly concerned with this
parameter, because there's an MCF (redline between engine start and
launch) which states that at a certain time (around 4.98 sec) the
fuel turbine temps have to be under a certain limit. You can
actually shutdown on the pad because of that. We've shut down
ground tests because of it.

Primarily what we're doing here is noting differences and
carrying them to mainstage. You have to have a memory between the
phases - system will need one too. You need to remember
differences during mainstage and as you transition to cutoff. If
turbine temps are 70 deg higher here, the first thing you'll look
for in cutoff is if the temps are 70 deg higher there too.

A~-"

Page 2
Q: Does the severity of the fuel side oscillation impact at all
where the turbine temps level out?

A: No. Get back to this in two slides

Plot #8

Here is the B channel -same type of effects.

Plot #9

Good example of effect of fuel side oscillation at around 2
sec mark. Remember on the other two tests we saw that a fuel side
oscillation gives you slightly hotter lox turbine temps,
especially in the beginning, because you're robbing the fuel from
the preburner and raising the MR. By the time you get up in the
later ranges, what's determining these turbine temps is primarily
the efficiency of the pumps and the balance in the system, those
types of things.

Basically, anywhere from four seconds on, your prime
determinant of what's happening in the system is what the
controller is telling it. What the controller is telling
translates thru pump efficiencies and line resistances, etc. into
the data that you see.

Plot UO

Here is the other channel and you can see the early effect of
the fuel-side oscillation (or lack thereof on this test). Slightly
cooler temps because you're not robbing the fuel from the
preburners.

Plot Ul

HPFP discharge pressure - again, looking for general
repeatability. This parameter is different from the turbine
discharge temps in that it is more repeatable towards mainstage
than early in profile. This parameter is driven primarily by
engine resistance. You have a certain amount of fuel flow that
you're trying through drive to a downstream resistance. You've got
the same engine. (You do have different turbines in the preburners
that partially determine resistance, but one of the primary
determinants is the engine and you've got the same engine. That's
why it's so repeatable.)

Q: As you continue to test an engine and it becomes leaky, would
that show up here?

A: Yes. The analyst has in his mind a lot of things that drive
this parameter. You know there are some gains that say if you
change these pumps out, you change the turbines and therefore the
effective resistance since each turbine has its own resistance.
Work your way down the line. If you do things like leak the nozzle
or crack the chamber, (you have fuel pump discharge branches
feeding directly into the nozzle and directly into the chamber) you
lower the downstream resistance. Very important to keep in mind.
The engine is controlling to that flowrate (where engine flowmeter
is) on the fuel side. What happens downstream, the controller
doesn't know. You could be dumping all your fuel out the nozzle
and it wouldn't know. It will just sit there and happily run along
to that given fuel flow. It doesn't know what gets into the
chamber; it's not scheduled to know it. When you have a nozzle
leak, you see the MR go through the roof. We did that on an Al
test. It was sitting there fat, dumb and happy running a certain
amount olf fuel. Meanwhile a considerable amount was leaking
through the nozzle. You lose fuel that was going into the
chamber. Other side realizes it doesn't have enough chamber
pressure and powers up the lox side. That's why the MR was going
through the roof. Controller does nothing to keep up HPFP DS P,
it will let that pressure keep dropping as you leak fuel
downstream.

Plot U2

Page 2
Q: Does the severity of the fuel side oscillation impact at all
where the turbine temps level out?

A: No. Get back to this in two slides

Plot #8

Here is the B channel -same type of effects.

Plot #9

Good example of effect of fuel side oscillation at around 2
sec mark. Remember on the other two tests we saw that a fuel side
oscillation gives you slightly hotter lox turbine temps,
especially in the beginning, because you're robbing the fuel from
the preburner and raising the MR. By the time you get up in the
later ranges, what's determining these turbine temps is primarily
the efficiency of the pumps and the balance in the system, those
types of things.

Basically, anywhere from four seconds on, your prime
determinant of what's happening in the system is what the
controller is telling it. What the controller is telling
translates thru pump efficiencies and line resistances, etc. into
the data that you see.

Plot UO

Here is the other channel and you can see the early effect of
the fuel-side oscillation (or lack thereof on this test). Slightly
cooler temps because you're not robbing the fuel from the
preburners.

Plot Ul

HPFP discharge pressure - again, looking for general
repeatability. This parameter is different from the turbine
discharge temps in that it is more repeatable towards mainstage
than early in profile. This parameter is driven primarily by
engine resistance. You have a certain amount of fuel flow that
you're trying through drive to a downstream resistance. You've got
the same engine. (You do have different turbines in the preburners
that partially determine resistance, but one of the primary
determinants is the engine and you've got the same engine. That's
why it's so repeatable.)

Q: As you continue to test an engine and it becomes leaky, would
that show up here?

A: Yes. The analyst has in his mind a lot of things that drive
this parameter. You know there are some gains that say if you
change these pumps out, you change the turbines and therefore the
effective resistance since each turbine has its own resistance.
Work your way down the line. If you do things like leak the nozzle
or crack the chamber, (you have fuel pump discharge branches
feeding directly into the nozzle and directly into the chamber) you
lower the downstream resistance. Very important to keep in mind.
The engine is controlling to that flowrate (where engine flowmeter
is) on the fuel side. What happens downstream, the controller
doesn't know. You could be dumping all your fuel out the nozzle
and it wouldn't know. It will just sit there and happily run along
to that given fuel flow. It doesn't know what gets into the
chamber; it's not scheduled to know it. When you have a nozzle
leak, you see the MR go through the roof. We did that on an Al
test. It was sitting there fat, dumb and happy running a certain
amount olf fuel. Meanwhile a considerable amount was leaking
through the nozzle. You lose fuel that was going into the
chamber. Other side realizes it doesn't have enough chamber
pressure and powers up the lox side. That's why the MR was going
through the roof. Controller does nothing to keep up HPFP DS P,
it will let that pressure keep dropping as you leak fuel
downstream.

Plot U2

Page 3

HPFP Speed. No speed on this test! The other two tests do
show speed but there's a facility filtering problem on 902-554 -
doesn't pick up the speed until it gets to a certain level.

They've seen this before. Is it an anomaly or is it
instrumentation? In this case you have other things telling you
right off the bat that this can't be real. You have HPFP DS P
coming up. How can you get pressure without speed? Obviously
instrumentation problem. SSC verified that it was instrumentation
problem. We do have a CADS backup to this parameter which they did
in fact look at for this test. They found post-test that the
torque on this pump was very high. They did go in to look at the
CADS speed and compared it to the CADS speeds of other tests.
Since they could barely turn the pump after this test, you want to
look at the data to see if there's an indication in the data as to
when that happened - start, mainstage, shutdown. If it had
happened during start and it was strong enough, you'd expect it to
slow the pump down and you'd need a lot more valve position to get
the pump speed where it should be. Or maybe you'd see it corne down
a lot faster during shutdown. This is a case where a HW inspection
revealed an anomaly and you were glad you had backup for failed
instrumentation. If not, you'd look at other things such as the
pump discharge pressure.

Plot #13
HPOP discharge pressure. Changes early in profile are due to

efficiency variations. This parameter is driven by two things
only: the resistance of the main injector and how much lox you have
going through. Very repeatable near mainstage since you have the
same engine and are trying to pump the same amount of lox.

Plot #14

LPFP speed. See some variations, but we have different pumps.

Plot #15

HPFP inlet pressure. Driven by two primary things: engine
inlet pressure, is it repeatable? and the LPFP speed. Note on the
previous plot LPFP speed was a little low for test 554. If it were
very low, you'd wonder if it was instrumentation or real. So you
look to HPFP inlet pressure; since it is also low LPFP speed low
is real. If it were a green run test, you'd check to see if it were
acceptable.

Plot #16

LPOP speed. Driven by HPOP DS pressure. This pump is
different than the rest of them since the turbine inlet and the
pump inlet both exit through the pump discharge. You can do that
on the lox side because everything is liquid.

Plot #17

HPOP inlet pressure - just LPOP discharge. Very repeatable -
no problems there.

Plot #18

POGO precharge pressure. Because of the way you reconfigure
when you go into MIS, you get a reconfiguration of the valves and
this pressure is actually reading the POGO ullage now. Here you
see the pressure corne up, it gets another shot of helium (around
2.4 sec), maintain it and then the LPOP discharge pressure takes
over. Want to maintain the ullage during start.

Plot #19

HX interface pressure. HX turns lox to gox to go to the
repress. There are actually several measurements in that line.
There's a CADS measurement that's called HX discharge or something
like that. Lox comes out of the pump, goes thru the HX, gassifies
then goes to the orbiter or pond.

A~7

Page 3

HPFP Speed. No speed on this test! The other two tests do
show speed but there's a facility filtering problem on 902-554 -
doesn't pick up the speed until it gets to a certain level.

They've seen this before. Is it an anomaly or is it
instrumentation? In this case you have other things telling you
right off the bat that this can't be real. You have HPFP DS P
coming up. How can you get pressure without speed? Obviously
instrumentation problem. SSC verified that it was instrumentation
problem. We do have a CADS backup to this parameter which they did
in fact look at for this test. They found post-test that the
torque on this pump was very high. They did go in to look at the
CADS speed and compared it to the CADS speeds of other tests.
Since they could barely turn the pump after this test, you want to
look at the data to see if there's an indication in the data as to
when that happened - start, mainstage, shutdown. If it had
happened during start and it was strong enough, you'd expect it to
slow the pump down and you'd need a lot more valve position to get
the pump speed where it should be. Or maybe you'd see it corne down
a lot faster during shutdown. This is a case where a HW inspection
revealed an anomaly and you were glad you had backup for failed
instrumentation. If not, you'd look at other things such as the
pump discharge pressure.

Plot #13
HPOP discharge pressure. Changes early in profile are due to

efficiency variations. This parameter is driven by two things
only: the resistance of the main injector and how much lox you have
going through. Very repeatable near mainstage since you have the
same engine and are trying to pump the same amount of lox.

Plot #14

LPFP speed. See some variations, but we have different pumps.

Plot #15

HPFP inlet pressure. Driven by two primary things: engine
inlet pressure, is it repeatable? and the LPFP speed. Note on the
previous plot LPFP speed was a little low for test 554. If it were
very low, you'd wonder if it was instrumentation or real. So you
look to HPFP inlet pressure; since it is also low LPFP speed low
is real. If it were a green run test, you'd check to see if it were
acceptable.

Plot #16

LPOP speed. Driven by HPOP DS pressure. This pump is
different than the rest of them since the turbine inlet and the
pump inlet both exit through the pump discharge. You can do that
on the lox side because everything is liquid.

Plot #17

HPOP inlet pressure - just LPOP discharge. Very repeatable -
no problems there.

Plot #18

POGO precharge pressure. Because of the way you reconfigure
when you go into MIS, you get a reconfiguration of the valves and
this pressure is actually reading the POGO ullage now. Here you
see the pressure corne up, it gets another shot of helium (around
2.4 sec), maintain it and then the LPOP discharge pressure takes
over. Want to maintain the ullage during start.

Plot #19

HX interface pressure. HX turns lox to gox to go to the
repress. There are actually several measurements in that line.
There's a CADS measurement that's called HX discharge or something
like that. Lox comes out of the pump, goes thru the HX, gassifies
then goes to the orbiter or pond.

A~7

Page 4

Plot #20

HX interface temp - just a tap in the same system. Notice we
start about ambient. Now we have the AFV prestart to keep any lox
from coming into the HX - that's why it's reading about ambient at
start. Pressure starts to build and at about 140 psi the valve
pops open. Drive lox into system and don't have significant heat
in the burner and that's why this T takes a nosedive. You start
getting a flame and that brings it back, and then you start getting
significant heat - truly gassified because you have the hot temps.
Good bit of variation at the start of plot because you have
different temp days, lox down there different amounts of time, etc.

Min and max flowrates on represses. Min is 1.1 lblsec and max
is 2.35 lblsec at RPL. There's a valve system downstream of this
temp that you're opening and closing to vary repress flows. That
won't significantly effect temp you see here but it will
significantly effect pressure. If you see a pressure going high
or low the first thing you ask is if you're comparing to a test
with the same repress conditions.

Plot #21

AFV position. This tells you it opened. This is another LCC.
All these have to be met to launch. If you don't have lox flowing
through there, you'll burn up in nothing flat.

Plot #22

HPOP intermediate seal purge pressure. Slight dropoff around
2.4 sec is when you charge the POGO. Another spike later (around
4.5) when POGO precharge turns off.

Plot #23

Preburner purge pressures. Purges in two preburner domes.
Make sure they're off during start. Turned nitrogen off in purge
sequence 4. Spike later on is a reaction to POGO going off - see
it every test, it's normal.

Plot #24

Fuel purge pressure. Want to make sure it's off - that you're
not trying to put any purge in there during the start.

--END OF START--

--BEGINNING OF MAINSTAGE--

There are certain facets of the analysis that you lock into
your memory for mainstage. Prestart- what kind of biases did we
see in the instrumentation, start- how does it look like we
transitioned into mainstage. If you see a mainstage problem, you
want to keep these things in mind.

Several mainstage packages : GRMAIN, an instrumentation
package where we look mainly at redundancies, and DATACC which is
the basis of the presentation package we do for Otto and the rest
of them.

Plot #1

Current test pc and controller reference - 5 sec and on.
Start to RPL, go to 104, and then bucket down to 65, 64 and 63.
On missions right now we only bucket down to 70%. We do this to
clear the preburner pump of bistability. Come back up to 104%,
throttle up to 109% and then a slow throttle down to 65 again -
this is to simulate the 3g throttle in flight, go back up to 100
and the SID from 100. They didn't use to have to SID from 100, but
this reduces the chance of having bad pops in the preburner. In
flight we SID from 65.

This is called a green run profile. Also called a calibration

Page 4

Plot #20

HX interface temp - just a tap in the same system. Notice we
start about ambient. Now we have the AFV prestart to keep any lox
from coming into the HX - that's why it's reading about ambient at
start. Pressure starts to build and at about 140 psi the valve
pops open. Drive lox into system and don't have significant heat
in the burner and that's why this T takes a nosedive. You start
getting a flame and that brings it back, and then you start getting
significant heat - truly gassified because you have the hot temps.
Good bit of variation at the start of plot because you have
different temp days, lox down there different amounts of time, etc.

Min and max flowrates on represses. Min is 1.1 lblsec and max
is 2.35 lblsec at RPL. There's a valve system downstream of this
temp that you're opening and closing to vary repress flows. That
won't significantly effect temp you see here but it will
significantly effect pressure. If you see a pressure going high
or low the first thing you ask is if you're comparing to a test
with the same repress conditions.

Plot #21

AFV position. This tells you it opened. This is another LCC.
All these have to be met to launch. If you don't have lox flowing
through there, you'll burn up in nothing flat.

Plot #22

HPOP intermediate seal purge pressure. Slight dropoff around
2.4 sec is when you charge the POGO. Another spike later (around
4.5) when POGO precharge turns off.

Plot #23

Preburner purge pressures. Purges in two preburner domes.
Make sure they're off during start. Turned nitrogen off in purge
sequence 4. Spike later on is a reaction to POGO going off - see
it every test, it's normal.

Plot #24

Fuel purge pressure. Want to make sure it's off - that you're
not trying to put any purge in there during the start.

--END OF START--

--BEGINNING OF MAINSTAGE--

There are certain facets of the analysis that you lock into
your memory for mainstage. Prestart- what kind of biases did we
see in the instrumentation, start- how does it look like we
transitioned into mainstage. If you see a mainstage problem, you
want to keep these things in mind.

Several mainstage packages : GRMAIN, an instrumentation
package where we look mainly at redundancies, and DATACC which is
the basis of the presentation package we do for Otto and the rest
of them.

Plot #1

Current test pc and controller reference - 5 sec and on.
Start to RPL, go to 104, and then bucket down to 65, 64 and 63.
On missions right now we only bucket down to 70%. We do this to
clear the preburner pump of bistability. Come back up to 104%,
throttle up to 109% and then a slow throttle down to 65 again -
this is to simulate the 3g throttle in flight, go back up to 100
and the SID from 100. They didn't use to have to SID from 100, but
this reduces the chance of having bad pops in the preburner. In
flight we SID from 65.

This is called a green run profile. Also called a calibration

Page 5

test. If your primary objective is certifying the engine, it's a
calibration test. The primary objective is to run it ~n a
consistent mode with how you've run it before so you can compare
and also to calibrate software constants. Final test in acceptance
series is acceptance test and this is primarily a mission
simulation. Greenrun test - greenrunning pumps. Has to be run
through this series of pI transitions and venting conditions to
certify it for flight. Run pumps thru flight conditions.

This parameter you're making sure you're following a pre­
coded reference. Controller translates reference pressure into
valve positions. Looking for spikes (instrumentation problem with
a pc transducer), wandering (hydraulic lockup), and spikes in
bucket where you're checking for preburner pump bistability.

--BREAK FOR START 2 SIGMA--

Shows mean and plus and minus 2 sigma values. There is no
test data on any of the plots in this package. Valve positions are
tight early on because it's open-loop control. Spreads later on
in reaction to different pumps and engines that are being run.

Q: How do you select what you include in the average and two­
sigma calculations?

A: We go thru a bunch of different starts and see whether it's
nominal in terms of software (look at pre-test). Also, is it
relatively nominal in terms of MiS MR. Everything else they pretty
much keep in there. They're up to about 160 firings.

Q: If the data falls within the bands is it automatically ok and
if it falls outside it is not ok?

A: There are no regions that are just plain ok or not ok. If
you're well within the band you've got experience behind you saying
you've operated there before wlo a problem. If you're right on
band, then you know you're in the 10% range of engines and you
begin looking for clues as to why you're out there. Look at other
related parameters. Let's say you had an FPOV position that was
really high. Know historically that this CADS measurement is
usually good. What's causing it? Could be caused by bad fuel
turbine.

Why is the FPOV sO high - there are several different drivers.
You're interested in pumping the correct amount of fuel flow. Is
the flow unusually high - check other plots - no, flow is ok and
MR is right on, therefore c2 is nominal. To drive flow you have
to supply power to the turbine which turns the pump which drives
the flow. The next question might be do I have a real bad pump or
turbine? Look at turbine temps - they're high. This confirms that
the valve is high - could be that turbine is bad. Now check
discharge pressure - is it low? This is being supplied by the
preburner pump, so now there is a lox system component that's
feeding over and you're seeing the effect in the fuel system. If
turbine temps were very low and FPOV very high that would indicate
that turbine and pump are ok but PBP discharge pressure is so low
that you have to open up valve to get correct amount of flow. Have
seen this several times - PBP discharge pressure is so low that
valves have to scream open to get you there. How much of a problem
that is depends on a lot of things: if you get 3 or 4 sigma high
with this valve (FPOV?), you have a good chance of running into its
limit. This has happened before. Open it way up and you still
don't get enough flow. Valve - turn it and open up window to the
flow. As you get to the end of the range, there's not much window
left. By doing the last 10% there's not much resistance change,
you don't get much out of it, the valve will scream open and you'll
be sitting there without enough fuel flow and controller can't
control properly. You'll run into high MR situation.

If you conclude that turbine is pretty bad, you go back in
history and look at previous run of this turbine on another engine
and confirm that it ran hot there too.

Page 5

test. If your primary objective is certifying the engine, it's a
calibration test. The primary objective is to run it ~n a
consistent mode with how you've run it before so you can compare
and also to calibrate software constants. Final test in acceptance
series is acceptance test and this is primarily a mission
simulation. Greenrun test - greenrunning pumps. Has to be run
through this series of pI transitions and venting conditions to
certify it for flight. Run pumps thru flight conditions.

This parameter you're making sure you're following a pre­
coded reference. Controller translates reference pressure into
valve positions. Looking for spikes (instrumentation problem with
a pc transducer), wandering (hydraulic lockup), and spikes in
bucket where you're checking for preburner pump bistability.

--BREAK FOR START 2 SIGMA--

Shows mean and plus and minus 2 sigma values. There is no
test data on any of the plots in this package. Valve positions are
tight early on because it's open-loop control. Spreads later on
in reaction to different pumps and engines that are being run.

Q: How do you select what you include in the average and two­
sigma calculations?

A: We go thru a bunch of different starts and see whether it's
nominal in terms of software (look at pre-test). Also, is it
relatively nominal in terms of MiS MR. Everything else they pretty
much keep in there. They're up to about 160 firings.

Q: If the data falls within the bands is it automatically ok and
if it falls outside it is not ok?

A: There are no regions that are just plain ok or not ok. If
you're well within the band you've got experience behind you saying
you've operated there before wlo a problem. If you're right on
band, then you know you're in the 10% range of engines and you
begin looking for clues as to why you're out there. Look at other
related parameters. Let's say you had an FPOV position that was
really high. Know historically that this CADS measurement is
usually good. What's causing it? Could be caused by bad fuel
turbine.

Why is the FPOV sO high - there are several different drivers.
You're interested in pumping the correct amount of fuel flow. Is
the flow unusually high - check other plots - no, flow is ok and
MR is right on, therefore c2 is nominal. To drive flow you have
to supply power to the turbine which turns the pump which drives
the flow. The next question might be do I have a real bad pump or
turbine? Look at turbine temps - they're high. This confirms that
the valve is high - could be that turbine is bad. Now check
discharge pressure - is it low? This is being supplied by the
preburner pump, so now there is a lox system component that's
feeding over and you're seeing the effect in the fuel system. If
turbine temps were very low and FPOV very high that would indicate
that turbine and pump are ok but PBP discharge pressure is so low
that you have to open up valve to get correct amount of flow. Have
seen this several times - PBP discharge pressure is so low that
valves have to scream open to get you there. How much of a problem
that is depends on a lot of things: if you get 3 or 4 sigma high
with this valve (FPOV?), you have a good chance of running into its
limit. This has happened before. Open it way up and you still
don't get enough flow. Valve - turn it and open up window to the
flow. As you get to the end of the range, there's not much window
left. By doing the last 10% there's not much resistance change,
you don't get much out of it, the valve will scream open and you'll
be sitting there without enough fuel flow and controller can't
control properly. You'll run into high MR situation.

If you conclude that turbine is pretty bad, you go back in
history and look at previous run of this turbine on another engine
and confirm that it ran hot there too.

Page 6
That's how you use these things. It's not as cut and dried

as if it's outside it's a problem, if it's inside it's not. If we
see it go from minus 2 sigma on one test to average or plus one or
two sigma on the next test, it's still within the band but it
definitely indicates a change. Then you check to see if you
changed the pump or the software, etc.

Q: How would you know if it went from minus to plus two sigma?
Are both tests on the same plot?

A: No,
analyst.
a history
his mind.

they're not. You have to rely on the memory of the data
That's why there's one analyst per stand. That gives him
of the stand and typically a history of that engine in

AN ASIDE
--MAINSTAGE TWO SIGMA-­

(not in our plot packages)

During mainstage we also have a two sigma comparison. They
have a program which compares temps, pressures at certain
conditions to a database average and updates the average, etc.
This is in a table format. It gives you temps, pressures, speeds,
etc. along with the averages, one sigmas (which get updated
automatically), and the sigma that you're at in this test. This
is a good mainstage eyeball of what you just saw in the start two
sigma plots. In the example shown, the HPOP DS pressure was 4.5
sigma high. This is a definite indication to go back and find out
what was going on. On this engine there is a history of a very
high resistance injector. A weld was offset, they didn't iron it
out and therefore a high HPOP ds pressure resulted. This drives
other things in the system. Already get a feeling for mainstage
two sigma performance at the end of start; this is a table for
conditions at some point in the test. That point is max fuel
turbine discharge temps in the tests. Max temps are found at 65%,
100%, 104% and 109%. (Jean wrote this program - looks for max
temps and nominal lox conditions and tabulates all the data.)

HPOP DS Pressure usually means high turbine ds temps. That
wasn't the case here - means pump is pretty good because hpop ds
pressure is what pump has to pump against. Must have a lot of
power at the pump end which is supplied by the turbine which means
hot turbine temps. This table is in all the data review packages.

Going through and analyzing the data in the way that we're
doing here is only the very first step and only takes the first one
to two hours of time. Typically they have 1.5 days to go through
their analysis. Other activities include running the programs,
checking the requirements, etc. That's all part of the job and how
we analyze a test. Looking at the data is not a complete job by
any means.

--BACK TO START TWO SIGMA--

Plot #51

Fuel turbine temps. Start off together and end up with big
spread. This is because we're running different engines, different
resistances, different efficiencies on pumps, etc.

skip the rest of this package

--END OF START TWO SIGMA--

--BACK TO GRMAIN--

Plot #1

PC profile. Make sure you stay with the reference. Look for
overshoots on the transients which they see a lot of - could be a
pump problem, can't control the pumps properly. For the engine
it's a lot easier to maintain things steady state than it is during

Page 6
That's how you use these things. It's not as cut and dried

as if it's outside it's a problem, if it's inside it's not. If we
see it go from minus 2 sigma on one test to average or plus one or
two sigma on the next test, it's still within the band but it
definitely indicates a change. Then you check to see if you
changed the pump or the software, etc.

Q: How would you know if it went from minus to plus two sigma?
Are both tests on the same plot?

A: No,
analyst.
a history
his mind.

they're not. You have to rely on the memory of the data
That's why there's one analyst per stand. That gives him
of the stand and typically a history of that engine in

AN ASIDE
--MAINSTAGE TWO SIGMA-­

(not in our plot packages)

During mainstage we also have a two sigma comparison. They
have a program which compares temps, pressures at certain
conditions to a database average and updates the average, etc.
This is in a table format. It gives you temps, pressures, speeds,
etc. along with the averages, one sigmas (which get updated
automatically), and the sigma that you're at in this test. This
is a good mainstage eyeball of what you just saw in the start two
sigma plots. In the example shown, the HPOP DS pressure was 4.5
sigma high. This is a definite indication to go back and find out
what was going on. On this engine there is a history of a very
high resistance injector. A weld was offset, they didn't iron it
out and therefore a high HPOP ds pressure resulted. This drives
other things in the system. Already get a feeling for mainstage
two sigma performance at the end of start; this is a table for
conditions at some point in the test. That point is max fuel
turbine discharge temps in the tests. Max temps are found at 65%,
100%, 104% and 109%. (Jean wrote this program - looks for max
temps and nominal lox conditions and tabulates all the data.)

HPOP DS Pressure usually means high turbine ds temps. That
wasn't the case here - means pump is pretty good because hpop ds
pressure is what pump has to pump against. Must have a lot of
power at the pump end which is supplied by the turbine which means
hot turbine temps. This table is in all the data review packages.

Going through and analyzing the data in the way that we're
doing here is only the very first step and only takes the first one
to two hours of time. Typically they have 1.5 days to go through
their analysis. Other activities include running the programs,
checking the requirements, etc. That's all part of the job and how
we analyze a test. Looking at the data is not a complete job by
any means.

--BACK TO START TWO SIGMA--

Plot #51

Fuel turbine temps. Start off together and end up with big
spread. This is because we're running different engines, different
resistances, different efficiencies on pumps, etc.

skip the rest of this package

--END OF START TWO SIGMA--

--BACK TO GRMAIN--

Plot #1

PC profile. Make sure you stay with the reference. Look for
overshoots on the transients which they see a lot of - could be a
pump problem, can't control the pumps properly. For the engine
it's a lot easier to maintain things steady state than it is during

Page 7

transients. Look for bistability.

Bistability - the preburner pump can be stable at two points
of operation. Normally with a pump you have a certain flow v. head
coefficient. The thing spins at a certain speed, you put a certain
f~ow through there with resistances it wi~l give you a certain
amount of pressure rise. Some pumps can be bistable at two
different pressures at a given flow; will sometimes bounce between
them. Preburner pump is also called boost pump - it's attached to
the same shaft as the HPOP.

CALC 127

Engine oxidizer inlet NPSP - think of it as pressure (pressure
over the vapor pressure). Vented it down, pressurized it and
vented back down again. Lower ullage in tank -pressurize ullage
again. Must be careful of word repress - this pressurization here
is also called repressurization. This is different from repress
flows coming out of HX. Pump will react to venting and
pressurization drastically. On ground tests we control ullage
though gases (helium-fuel nitrogen-gox) that come in at the top of
the tanks. On flight you see this PID take a nosedive at about 120
sec because you lose the solid rockets. Up to that point you're
just accelerating. If you looked at a g-force plot, the g's go way
down - the astronauts and the lox in the tank feel similar effects.
So you want to run the pump at the low inlet pressure you'd see
during flight. During the rest of the mission you'd see the
pressure go up and then when you hit the 3-g throttle the pressure
holds steady.

You see these inlet changes in the speed of the high pressure
pump, and in the preburner pump discharge pressure. Recall the
HPOP discharge pressure is held constant, but as you change the
engine inlet conditions the high pressure pump powers up and down
to hold the HPOP ds p constant. So you have a constant HPOP DS P,
a varying HPOP speed, this results in a varying PBP ds p - the
valves have to compensate for this. That is what you see the
valves react.

(Three Info packages: an explanation of all LCC's, purge
sequences and purges, and all things that happen in flight and
things you see in the data.)

Back to bistability. The preburner pump usually has no
problems going through all of this mess. We've seen in the past
when we throttle down to 65, 64, 63, that the pump can become
bistable and will actually run at two different operating
conditions. The problem is that these pressure oscillations will
feed all the way through down to the preburner and into the main
chamber. We have a requirement that we can't have bistability in
flight; so we must check on the ground if that particular pump has
bistability. Some pumps do and some don't. It has to do with the
inducer design. If we do hit bistability, the requirement is that
you cannot operate within two percent power level of hitting
bistability. For example, if we're bistable at 63, we can't
operate below 65. We get around this by not flying anymore below
70%.

We power up to RPL. At5 sec, we're still sitting on the pad.
At about 6.6 sec from the first engine starting we blow off the
hold-down bolts, the thing takes off, SRB's light, etc. When you
clear the tower you power up to 104% (requirement). Not all
missions power up to 104% - it depends on the payload weight and
the orbit. When you're about 32 sec into the flight, you do the
bucket - also called the max-q bucket. You're going very fast in
the low atmosphere where you have high density air. There's a
requirement on the tail of the orbiter that you power down;
actually power down the SRB's as well. Run like that until about
67 seconds. Simply to protect the structural integrity of the tail
of the orbiter. Then you power back up to 104% and just go. At
120 sec you drop off the SRB's. This does not effect power level,
just engine inlet pressures. At that point you're basically at the
edge ·of the atmosphere. You don't go up to 109% unless you get
into an abort scenario. Requirement is that you not put more than

Page 7

transients. Look for bistability.

Bistability - the preburner pump can be stable at two points
of operation. Normally with a pump you have a certain flow v. head
coefficient. The thing spins at a certain speed, you put a certain
f~ow through there with resistances it wi~l give you a certain
amount of pressure rise. Some pumps can be bistable at two
different pressures at a given flow; will sometimes bounce between
them. Preburner pump is also called boost pump - it's attached to
the same shaft as the HPOP.

CALC 127

Engine oxidizer inlet NPSP - think of it as pressure (pressure
over the vapor pressure). Vented it down, pressurized it and
vented back down again. Lower ullage in tank -pressurize ullage
again. Must be careful of word repress - this pressurization here
is also called repressurization. This is different from repress
flows coming out of HX. Pump will react to venting and
pressurization drastically. On ground tests we control ullage
though gases (helium-fuel nitrogen-gox) that come in at the top of
the tanks. On flight you see this PID take a nosedive at about 120
sec because you lose the solid rockets. Up to that point you're
just accelerating. If you looked at a g-force plot, the g's go way
down - the astronauts and the lox in the tank feel similar effects.
So you want to run the pump at the low inlet pressure you'd see
during flight. During the rest of the mission you'd see the
pressure go up and then when you hit the 3-g throttle the pressure
holds steady.

You see these inlet changes in the speed of the high pressure
pump, and in the preburner pump discharge pressure. Recall the
HPOP discharge pressure is held constant, but as you change the
engine inlet conditions the high pressure pump powers up and down
to hold the HPOP ds p constant. So you have a constant HPOP DS P,
a varying HPOP speed, this results in a varying PBP ds p - the
valves have to compensate for this. That is what you see the
valves react.

(Three Info packages: an explanation of all LCC's, purge
sequences and purges, and all things that happen in flight and
things you see in the data.)

Back to bistability. The preburner pump usually has no
problems going through all of this mess. We've seen in the past
when we throttle down to 65, 64, 63, that the pump can become
bistable and will actually run at two different operating
conditions. The problem is that these pressure oscillations will
feed all the way through down to the preburner and into the main
chamber. We have a requirement that we can't have bistability in
flight; so we must check on the ground if that particular pump has
bistability. Some pumps do and some don't. It has to do with the
inducer design. If we do hit bistability, the requirement is that
you cannot operate within two percent power level of hitting
bistability. For example, if we're bistable at 63, we can't
operate below 65. We get around this by not flying anymore below
70%.

We power up to RPL. At5 sec, we're still sitting on the pad.
At about 6.6 sec from the first engine starting we blow off the
hold-down bolts, the thing takes off, SRB's light, etc. When you
clear the tower you power up to 104% (requirement). Not all
missions power up to 104% - it depends on the payload weight and
the orbit. When you're about 32 sec into the flight, you do the
bucket - also called the max-q bucket. You're going very fast in
the low atmosphere where you have high density air. There's a
requirement on the tail of the orbiter that you power down;
actually power down the SRB's as well. Run like that until about
67 seconds. Simply to protect the structural integrity of the tail
of the orbiter. Then you power back up to 104% and just go. At
120 sec you drop off the SRB's. This does not effect power level,
just engine inlet pressures. At that point you're basically at the
edge ·of the atmosphere. You don't go up to 109% unless you get
into an abort scenario. Requirement is that you not put more than

Page 8

3 g's on the astronauts. Toward the end of the mission, you have
a lighter vehicle (considerable portion of propellants burned),
don't have to worry about atmosphere anymore, so you just GO.
Right toward end you hit 3 g's so you start to throttle down. This
throttle down will maintain 3 g's.

On ground test you sid from 100% to avoid pops. Can't do that
in "flight.

So these are the basics of bistability -
chamber. Also look for it in other plots that
packages - in special packages that we build.
expansion of this region and we'll plot things
vs the pc.

TAPE 3 - SIDE 2

CALC 127

can feed into main
aren't in the normal
It's just an
like PBP head ratio

LOX inlet NPSP. Pressure is a function of two things - the
weight of the fluid in the tank and the ullage pressure. We can't
control weight of fuel, but we can control ullage pressure. We
vary this inlet pressure by pressurizing and venting the ullage
pressure. Traditionally have some problems when they repressurize
again - could be going too fast.

CALC 126

On the fuel side, all they do is start at a high inlet
pressure and they vent, don't have to repressurize. Always
repressurize on lox before sid. Have more margin on fuel pump than
lox pump - lox pump cavitates more easily. Lower limit is shown
on graph.

CALC 253

Here's the facility fuel mass flow in lb/sec. What you're
looking for here is a nice steady fuel flow - we're holding this
guy constant, pressurizing and venting shouldn't effect this. No
problems in the bucket. A little hashier when it comes out of
bucket but nothing out of the ordinary - very small scale. Looking
for spikes, motion.

Q: What about the overshoot when it goes to 109%1 And why isn't
there an overshoot at other pl transitions.

A: That's how well the system can control. Always seem to get
it when we go to 109%. It may be that the valve is so open that
you're getting less resistance change for a given valve position
change - much harder to control.

The valve is not nearly full open when you're at 109%. In
fact, if you're at 90% open when you're at 109% RPL, you're in
trouble because between 90% and 100% it takes very little to send
it over the edge. At 90% open, you're basically out of resistance.
Cannot operate at "100% open - means you're not getting enough fuel
flow. You're a fixed orifice at that point since you can't open it
anymore. Typically run in mid or low 80's.

CALC 219

MR. Measured by the facility meters shown with ICD
requirements. Very hashy, but you can see that in general we're
within the requirements. You have to be careful, we let the model
guys quote the actual MR since they have all of the correction
factors, etc. This gives you a general idea where you're
operating. It's imp. to recognize this because if you see that
your engine is running uncharacteristically high or low on one side
or the other, for ex ample lox side hot, at first you might surmise
you have a pump problem. But if your MR is way up you expect lox
side to run hot because it has to do a lot of work to get all the
lox through. This is a good indicator of how the fuel and lox
sides should be interacting and running. This is calculated

Page 8

3 g's on the astronauts. Toward the end of the mission, you have
a lighter vehicle (considerable portion of propellants burned),
don't have to worry about atmosphere anymore, so you just GO.
Right toward end you hit 3 g's so you start to throttle down. This
throttle down will maintain 3 g's.

On ground test you sid from 100% to avoid pops. Can't do that
in "flight.

So these are the basics of bistability -
chamber. Also look for it in other plots that
packages - in special packages that we build.
expansion of this region and we'll plot things
vs the pc.

TAPE 3 - SIDE 2

CALC 127

can feed into main
aren't in the normal
It's just an
like PBP head ratio

LOX inlet NPSP. Pressure is a function of two things - the
weight of the fluid in the tank and the ullage pressure. We can't
control weight of fuel, but we can control ullage pressure. We
vary this inlet pressure by pressurizing and venting the ullage
pressure. Traditionally have some problems when they repressurize
again - could be going too fast.

CALC 126

On the fuel side, all they do is start at a high inlet
pressure and they vent, don't have to repressurize. Always
repressurize on lox before sid. Have more margin on fuel pump than
lox pump - lox pump cavitates more easily. Lower limit is shown
on graph.

CALC 253

Here's the facility fuel mass flow in lb/sec. What you're
looking for here is a nice steady fuel flow - we're holding this
guy constant, pressurizing and venting shouldn't effect this. No
problems in the bucket. A little hashier when it comes out of
bucket but nothing out of the ordinary - very small scale. Looking
for spikes, motion.

Q: What about the overshoot when it goes to 109%1 And why isn't
there an overshoot at other pl transitions.

A: That's how well the system can control. Always seem to get
it when we go to 109%. It may be that the valve is so open that
you're getting less resistance change for a given valve position
change - much harder to control.

The valve is not nearly full open when you're at 109%. In
fact, if you're at 90% open when you're at 109% RPL, you're in
trouble because between 90% and 100% it takes very little to send
it over the edge. At 90% open, you're basically out of resistance.
Cannot operate at "100% open - means you're not getting enough fuel
flow. You're a fixed orifice at that point since you can't open it
anymore. Typically run in mid or low 80's.

CALC 219

MR. Measured by the facility meters shown with ICD
requirements. Very hashy, but you can see that in general we're
within the requirements. You have to be careful, we let the model
guys quote the actual MR since they have all of the correction
factors, etc. This gives you a general idea where you're
operating. It's imp. to recognize this because if you see that
your engine is running uncharacteristically high or low on one side
or the other, for ex ample lox side hot, at first you might surmise
you have a pump problem. But if your MR is way up you expect lox
side to run hot because it has to do a lot of work to get all the
lox through. This is a good indicator of how the fuel and lox
sides should be interacting and running. This is calculated

Page 9

parameter. Ignore PID 8 - don't use it for anything! It always
says 6.01 - it only tells you what it's trying to control to.

CALC 254

LOX flow. Want to see that you're nice and steady. See a lot
of hashiness - and this is a much larger scale (these are some
good-sized oscillations). We see this every time we are on A2 and
get to 109% .., something that the system will have to learn. We
think it's uninsulated lines that shoot off. Forming bubbles in
uninsulated l.ines and when you get to 109% you lower the static
pressure so much that you're sucking it down in the line. It's a
previously identified anomaly - analyzed to death. They won't fix
it. You're looking for shifts in lox flow. Sometimes you might
see a shift, particularly in longer tests at about 300 sec. A lot
of times this is due to change in repress flows. Fuel doesn't see
it because it's in front of the repress flows but the lox sees it
because you've lost an extra pound of lox - straight from the
chamber and you have to power up a little.

CALC 88

Controller fuel flow, facility fuel flow, and difference
between the two. This gives an indication of how good Kf is. We
believe the facility fuel flow because we've calibrated it. So we
compare controller flow to it. Typically, if we're within a pound
we're happy. Otherwise we make recommendations to change Kf. One
thing to look for is shifts - could be an indication of a bistable
flowmeter. We've seen that happen.

Calc 8

This tells you the fuel flowmeter speed. This is the engine
flowmeter and has a requirement to run under 3800 rpm at max power
level. You're looking for shifts and that type of thing here.

PLOT 9

This chart may help explain the opov command limit. The
topline is fpov command. If you have a pump problem or a turbine
problem, you'll probably see it in the fpov. This is the control
that you use to modulate the amount of power that you get. If
there's a seal prob, anything that affects the parasitics, a grab
on a bearing, etc., you will see it here because there will
probably be a different power requirement. You see the power up,
a little overshoot on the control (but the scale is very small) .
The level is at 80-85%. If you get up at or near 90%, you have a
problem. You see a power up, the bucket, power up again, and then
very little reaction to the vents. This is mostly the effect of
the fuel side. Then you come down for the 3g throttle, and
throttle back-up. No problem. Typically when we transfer
propellants, we get a little hotter propellants (talking about the
upward curve between 150 and 200 seconds). In a 300 second or less
duration test, we can go without transferring propellants, it just
comes out of the tanks that sit above the engine. Over 300
seconds, we have to transfer from barges that are at down on the
water. During a transfer, the propellant heats up 1 or 2 degrees,
on the fuel; but you definitely see the effect. The lox heats up
too. The engine has to power up because it,has a lower density
fuel. The fuel expands as it is heated, and you need more
volumetric fuel to get the same amount of mass fuel. You'll also
see venting effects. You look for little bumps, less than 1% is
no biggie. The bigger effect is venting on the lox side (lox is
more dense). "Here" you see the same thing, power up, power down,
effects of the vent and repress. Here's the throttle up, a little
more than I'd like to see. You started to repressurize the system
and bring more pressure in up "here". You require the same amount
of discharge pressure "here" but are giving it more pressure "here"
so you're asking the pump to work less hard. As a result you see
this power down here (downward slope on opov command at 150 to 180 _
seconds). It is very important for the system to recognize the
effect of the inlet conditions. Don't forget that when we showed
the lox inlet conditions, there was a real (big) jump right off the
bat when you were repressing. You're all slowly reacting, then

Page 9

parameter. Ignore PID 8 - don't use it for anything! It always
says 6.01 - it only tells you what it's trying to control to.

CALC 254

LOX flow. Want to see that you're nice and steady. See a lot
of hashiness - and this is a much larger scale (these are some
good-sized oscillations). We see this every time we are on A2 and
get to 109% .., something that the system will have to learn. We
think it's uninsulated lines that shoot off. Forming bubbles in
uninsulated l.ines and when you get to 109% you lower the static
pressure so much that you're sucking it down in the line. It's a
previously identified anomaly - analyzed to death. They won't fix
it. You're looking for shifts in lox flow. Sometimes you might
see a shift, particularly in longer tests at about 300 sec. A lot
of times this is due to change in repress flows. Fuel doesn't see
it because it's in front of the repress flows but the lox sees it
because you've lost an extra pound of lox - straight from the
chamber and you have to power up a little.

CALC 88

Controller fuel flow, facility fuel flow, and difference
between the two. This gives an indication of how good Kf is. We
believe the facility fuel flow because we've calibrated it. So we
compare controller flow to it. Typically, if we're within a pound
we're happy. Otherwise we make recommendations to change Kf. One
thing to look for is shifts - could be an indication of a bistable
flowmeter. We've seen that happen.

Calc 8

This tells you the fuel flowmeter speed. This is the engine
flowmeter and has a requirement to run under 3800 rpm at max power
level. You're looking for shifts and that type of thing here.

PLOT 9

This chart may help explain the opov command limit. The
topline is fpov command. If you have a pump problem or a turbine
problem, you'll probably see it in the fpov. This is the control
that you use to modulate the amount of power that you get. If
there's a seal prob, anything that affects the parasitics, a grab
on a bearing, etc., you will see it here because there will
probably be a different power requirement. You see the power up,
a little overshoot on the control (but the scale is very small) .
The level is at 80-85%. If you get up at or near 90%, you have a
problem. You see a power up, the bucket, power up again, and then
very little reaction to the vents. This is mostly the effect of
the fuel side. Then you come down for the 3g throttle, and
throttle back-up. No problem. Typically when we transfer
propellants, we get a little hotter propellants (talking about the
upward curve between 150 and 200 seconds). In a 300 second or less
duration test, we can go without transferring propellants, it just
comes out of the tanks that sit above the engine. Over 300
seconds, we have to transfer from barges that are at down on the
water. During a transfer, the propellant heats up 1 or 2 degrees,
on the fuel; but you definitely see the effect. The lox heats up
too. The engine has to power up because it,has a lower density
fuel. The fuel expands as it is heated, and you need more
volumetric fuel to get the same amount of mass fuel. You'll also
see venting effects. You look for little bumps, less than 1% is
no biggie. The bigger effect is venting on the lox side (lox is
more dense). "Here" you see the same thing, power up, power down,
effects of the vent and repress. Here's the throttle up, a little
more than I'd like to see. You started to repressurize the system
and bring more pressure in up "here". You require the same amount
of discharge pressure "here" but are giving it more pressure "here"
so you're asking the pump to work less hard. As a result you see
this power down here (downward slope on opov command at 150 to 180 _
seconds). It is very important for the system to recognize the
effect of the inlet conditions. Don't forget that when we showed
the lox inlet conditions, there was a real (big) jump right off the
bat when you were repressing. You're all slowly reacting, then

Page 10

takes a big jump at 150 seconds (looking lox inlet condition plot,
can't tell which). Now, if we didn't have a vent on this test,
we'd call this an anomaly. (looking at command limit trace now)
We set the (opov) command limit during start and that's what you
see here. If you had some kind of perturbation in the lox system
that would cause the opov to run up, it would only allow you to
power up until the opov reaches the command limit. If you have to
drop off pc, whatever, you can't run past this point If you hit
this limit, there's something wrong with the engine. If
something's REALLY wrong, we still have the redline on the lox
turbine temps, and will shutdown the engine if the turbine temps
reach that redline. This is still a safe mode (when the opov
command limit is reached). The command limit is set during the
start transient, and is basically based on the pump efficiency.
It modulates the limit with pc. Note that it does not modulate it
with engine inlet conditions.

PLOT 10

Here are my two fuel turbine temps. This is one of maybe
tenparameters on the engine that REALLY indicates how the engine
is operating. 20 seconds into the test, we're still stabilizing
out. A lot of times, these channels will switch when you power
down. You'll also see big spreads in these channels. I've seen
spreads up to 200-300 degrees. The 300 degree spread was unusual,
that was on 0215, with ccv changes and everything else. They will
switch sometimes down near the bucket. Usually, the B channel runs
above the A channel. It's due to fuel dumping out and hitting one
sensor more than it hits the other. This (230-280 seconds) is
normal on the 3g throttle. You're just hitting a different
efficiency. We'll see this more on the low pressure fuel pump.
So, we're looking for a nice, smooth trace, making sure one doesn't
jump without the other one. If one jumps and the other didn't, we
look at the fpov, fuel preburner press, pump speed, and if nothing
else changes we say the coolant flow redistributed. You'll hear
a lot of that. The power req's didn't change, and in reality, the
turbine temps didn't change.

PLOT 11

Here are the lox turbine temps. Note the greater response
toventing and repressurization (denser lox gives greater response) .
We typically get the overshoot on the lox. See it start to rise?
(60 to 150 sec's) This is where you start to vent the lox inlet.
Same press here, lower press here, pump has to power up. Looking
for spikes, shifts, that type of thing, and absolute levels as
well.

PLOT 12

HPFP disch press. This will be very flat because we're
tryingto run a certain amt of fuel thru the engine. This won't be
as flat as HPOP disch press. because the only thing downstream of
this (HPOP) is the injector that's a constant resistance, and a
pressure here with a constant amt of lox flow that's coming thru.
This guy (HPFP) has a whole engine downstream of him. You may see
a little variation (10-30 psi). If you see big shifts, look for
instr., and other problems. This one has a CADS backup. We trust
this one more right now because it has better fidelity, but it
fails more often. Facility PID is less coarse. In general,
facility pids fail more often than CADS pids. CADS has bit toggle
- cannot get anything less than that. This is a problem with CADS.

PLOT 13

HPOP discharge pressure - nice and flat. Overshoot is
expected. Has a CADS backup.

PLOT 14

Here we start getting into test comparisons. Chose 554
because it was the same eigne and same thrust profile. Different
pumps but this gives us a good comparison. Same green run profile.
Comparison test gives you an eyeball indicator.

Page 10

takes a big jump at 150 seconds (looking lox inlet condition plot,
can't tell which). Now, if we didn't have a vent on this test,
we'd call this an anomaly. (looking at command limit trace now)
We set the (opov) command limit during start and that's what you
see here. If you had some kind of perturbation in the lox system
that would cause the opov to run up, it would only allow you to
power up until the opov reaches the command limit. If you have to
drop off pc, whatever, you can't run past this point If you hit
this limit, there's something wrong with the engine. If
something's REALLY wrong, we still have the redline on the lox
turbine temps, and will shutdown the engine if the turbine temps
reach that redline. This is still a safe mode (when the opov
command limit is reached). The command limit is set during the
start transient, and is basically based on the pump efficiency.
It modulates the limit with pc. Note that it does not modulate it
with engine inlet conditions.

PLOT 10

Here are my two fuel turbine temps. This is one of maybe
tenparameters on the engine that REALLY indicates how the engine
is operating. 20 seconds into the test, we're still stabilizing
out. A lot of times, these channels will switch when you power
down. You'll also see big spreads in these channels. I've seen
spreads up to 200-300 degrees. The 300 degree spread was unusual,
that was on 0215, with ccv changes and everything else. They will
switch sometimes down near the bucket. Usually, the B channel runs
above the A channel. It's due to fuel dumping out and hitting one
sensor more than it hits the other. This (230-280 seconds) is
normal on the 3g throttle. You're just hitting a different
efficiency. We'll see this more on the low pressure fuel pump.
So, we're looking for a nice, smooth trace, making sure one doesn't
jump without the other one. If one jumps and the other didn't, we
look at the fpov, fuel preburner press, pump speed, and if nothing
else changes we say the coolant flow redistributed. You'll hear
a lot of that. The power req's didn't change, and in reality, the
turbine temps didn't change.

PLOT 11

Here are the lox turbine temps. Note the greater response
toventing and repressurization (denser lox gives greater response) .
We typically get the overshoot on the lox. See it start to rise?
(60 to 150 sec's) This is where you start to vent the lox inlet.
Same press here, lower press here, pump has to power up. Looking
for spikes, shifts, that type of thing, and absolute levels as
well.

PLOT 12

HPFP disch press. This will be very flat because we're
tryingto run a certain amt of fuel thru the engine. This won't be
as flat as HPOP disch press. because the only thing downstream of
this (HPOP) is the injector that's a constant resistance, and a
pressure here with a constant amt of lox flow that's coming thru.
This guy (HPFP) has a whole engine downstream of him. You may see
a little variation (10-30 psi). If you see big shifts, look for
instr., and other problems. This one has a CADS backup. We trust
this one more right now because it has better fidelity, but it
fails more often. Facility PID is less coarse. In general,
facility pids fail more often than CADS pids. CADS has bit toggle
- cannot get anything less than that. This is a problem with CADS.

PLOT 13

HPOP discharge pressure - nice and flat. Overshoot is
expected. Has a CADS backup.

PLOT 14

Here we start getting into test comparisons. Chose 554
because it was the same eigne and same thrust profile. Different
pumps but this gives us a good comparison. Same green run profile.
Comparison test gives you an eyeball indicator.

Page 11

PLOT 15

This tells us what the vent is doing - two tests! Very
repeatable.

Block I controller has a much bigger bit toggle than block
two.

PLOT 16

HX discharge pressure. It is very unusual that you get such
a good comparison test in terms of power level transients. Looking
for shifts - nothing unusual. This takes a long time to stabilize.

PLOT 17

Fuel pressurization inlet pressure. This is the same thing
but it's on the fuel repressurization line. Looking for any shifts
we don't understand. This one will shift drastically if you do a
repress flow change. If you change from max to min, you'll see
this go way up. The previous parameter will change drastically in
response to a max to min change in the gox flow. This is because
you're changing the downstream resistance by a bunch.

PLOT 18

FPOV actuator position. Why the big delta? 2% is probably
more than 1.5 sigma. It's because you changed the hardware. Have
different pump and turbine efficiencies. A 5% change would
probably cause some alarm because you probably couldn't get two
pumps that were that different. Analyst will verify that other
things such as preburner pc and turbine temps are also high - to
verify that t~e pump is less efficient. Also, the fact that the
difference is not constant from one power level to the next means
that the efficiency delta is a function of power level. The pumps
are more similar at 65% than at 109%. But also remember the valve
window issue. A lot of difference at a larger opening only
represents a small change in resistance. So even if the efficiency
shift were the same at all power levels, you'd expect a larger
spread at larger power levels.

PLOT 19

Fuel turbine temps. These are hotter - correspond to FPOV
more open. B and A channels for both tests. The deltas are
actually a little less between these tests than would normally be
expected.

PLOT 20

FPC pc. It's a little up - this makes sense based on what
we've just seen. This parameter will drift on some tests by 100
or 150 psi. This guy is mounted very close to the engine and is
being thermally effected by the engine. The transducer is chilling
down. We've put it on an isolation block - a barrier between the
engine mount ant the transducer (insulator). We still see a tiny
drift - but not nearly as bad as before. When you see a drift
here, ask two questions : Lis it real? and 2. don't I have an
isolation block on this engine? The isolation block is easy to
figure out because you know the eigne or you call SSC. Verifying
is it real is also pretty easy. If you see a 100 psi drift, that's
a pretty good power change and you'd expect to see it in the fuel
turbine temps, the FPOV, fuel pump speed, etc.

PLOT 21

No speed. Remember that from start? There is a CADS pid if
you want to check it.

PLOT 22

HPFP discharge pressure. Very similar to previous test. No
problems.

Page 11

PLOT 15

This tells us what the vent is doing - two tests! Very
repeatable.

Block I controller has a much bigger bit toggle than block
two.

PLOT 16

HX discharge pressure. It is very unusual that you get such
a good comparison test in terms of power level transients. Looking
for shifts - nothing unusual. This takes a long time to stabilize.

PLOT 17

Fuel pressurization inlet pressure. This is the same thing
but it's on the fuel repressurization line. Looking for any shifts
we don't understand. This one will shift drastically if you do a
repress flow change. If you change from max to min, you'll see
this go way up. The previous parameter will change drastically in
response to a max to min change in the gox flow. This is because
you're changing the downstream resistance by a bunch.

PLOT 18

FPOV actuator position. Why the big delta? 2% is probably
more than 1.5 sigma. It's because you changed the hardware. Have
different pump and turbine efficiencies. A 5% change would
probably cause some alarm because you probably couldn't get two
pumps that were that different. Analyst will verify that other
things such as preburner pc and turbine temps are also high - to
verify that t~e pump is less efficient. Also, the fact that the
difference is not constant from one power level to the next means
that the efficiency delta is a function of power level. The pumps
are more similar at 65% than at 109%. But also remember the valve
window issue. A lot of difference at a larger opening only
represents a small change in resistance. So even if the efficiency
shift were the same at all power levels, you'd expect a larger
spread at larger power levels.

PLOT 19

Fuel turbine temps. These are hotter - correspond to FPOV
more open. B and A channels for both tests. The deltas are
actually a little less between these tests than would normally be
expected.

PLOT 20

FPC pc. It's a little up - this makes sense based on what
we've just seen. This parameter will drift on some tests by 100
or 150 psi. This guy is mounted very close to the engine and is
being thermally effected by the engine. The transducer is chilling
down. We've put it on an isolation block - a barrier between the
engine mount ant the transducer (insulator). We still see a tiny
drift - but not nearly as bad as before. When you see a drift
here, ask two questions : Lis it real? and 2. don't I have an
isolation block on this engine? The isolation block is easy to
figure out because you know the eigne or you call SSC. Verifying
is it real is also pretty easy. If you see a 100 psi drift, that's
a pretty good power change and you'd expect to see it in the fuel
turbine temps, the FPOV, fuel pump speed, etc.

PLOT 21

No speed. Remember that from start? There is a CADS pid if
you want to check it.

PLOT 22

HPFP discharge pressure. Very similar to previous test. No
problems.

Page 12

PLOT 23

Balance cavity pressure. We saw shifts on this test - it was
the only anomaly we noted on this test. Some hashiness. Behind
the third rotor of the HPFP is the balance cavity. We leak some
of the discharge flow back there and it's used to center the rotor.
There's a pressure measurement in there. We look at the delta-p
between this parameter and the discharge to see if there's movement
in the rotor. Pressure is wavering around (see at about 70 sec).
This parameter is driven by two things - the fuel pump discharge
pressure and the rotor position. There's nothing here that
indicates a bad sensor. There's also no backup to this, so for now
you believe it's real. If there's a doubt look at pre-start or
post-test when there'S no fuel in there, then you think you have
a data problem. If there were this type of waviness in the fuel
pump discharge pressure, you'd no longer suspect the rotor but now
reason about the fuel pump discharge pressure.

PLOT 24

MCC coolant discharge pressure. The fuel comes out of the
fuel pump and splits (at the diffuser). Part of it goes throughout
the CCV, part of it goes down the nozzle and then joins the part
that goes through the CCV and goes to the preburners. The other
leg leaves the MFV and goes to cool the chamber jacket. There's
a tremendous pressure loss in the jacket. You might ask why it's
~igher on this test. The high pressure pumps on this test are both
different as is the LPFP.

PLOT 25

Coolant discharge temp. There's very little reaction to power
level changes (notice the small scale). Looking for absolute
levels here. This is a primary indicator of whether or not we're
cracking the mcc. As we put time on the mcc, we'll form cracks and
some of this flow will be dumped into the hotgas area. Coolant
jacket is a piece with about 1036 slots cut in it - run the fuel
through there. With a crack, you open up the fuel to the hotgas
wall, it pours out and adds to the boundary layer flow and you see
this temperature drop off. Primary indicator of chamber health.

PLOT 26

LPFT inlet pressure. This is just downstream of MCC coolant
discharge. Recall that MCC discharge pressure was a little high,
this is a little high - makes sense - just have a more blocked
turbine. Would expect from this that the LPFP speed would be up.

plot 27

LPFP speed - it's up, as expected. You're driving the pump
speed up with higher inlet pressures. These are the kinds of
things you go through to confirm one parameter with another. This
can eliminate a lot of what could otherwise be considered
'anomalies'. If pressure weren't up and speed was, that would be
considered an anomaly and you'd have to resolve it.

You're looking for a nice flat trace. We're looking for two
things that typically give us a change in the pump speed - the
first is a repress flow change. When you change from repress max
to min you drastically change the pressure downstream of the
turbine - change back-pressure. The turbine speed is being driven
by the delta-p across the turbine. When you change the repress
flow you change the turbine discharge pressure and you change the
pump speed by 100-150 rpm (it drops). This must be recognized as
a normal reaction to a change in the repress flow.

There's one other thing - piston ring seal shifts. This is
a previously identified anomaly. In the secondary cavity there's
a piston ring seal which has been known to shift. The LPFT flow
goes out of the pump, does a lot of cooling - around the preburner,
down the walls of the HGM (HGM is double-walled and the fuel goes
through there) and then it dumps into the secondary cavity. From

Page 12

PLOT 23

Balance cavity pressure. We saw shifts on this test - it was
the only anomaly we noted on this test. Some hashiness. Behind
the third rotor of the HPFP is the balance cavity. We leak some
of the discharge flow back there and it's used to center the rotor.
There's a pressure measurement in there. We look at the delta-p
between this parameter and the discharge to see if there's movement
in the rotor. Pressure is wavering around (see at about 70 sec).
This parameter is driven by two things - the fuel pump discharge
pressure and the rotor position. There's nothing here that
indicates a bad sensor. There's also no backup to this, so for now
you believe it's real. If there's a doubt look at pre-start or
post-test when there'S no fuel in there, then you think you have
a data problem. If there were this type of waviness in the fuel
pump discharge pressure, you'd no longer suspect the rotor but now
reason about the fuel pump discharge pressure.

PLOT 24

MCC coolant discharge pressure. The fuel comes out of the
fuel pump and splits (at the diffuser). Part of it goes throughout
the CCV, part of it goes down the nozzle and then joins the part
that goes through the CCV and goes to the preburners. The other
leg leaves the MFV and goes to cool the chamber jacket. There's
a tremendous pressure loss in the jacket. You might ask why it's
~igher on this test. The high pressure pumps on this test are both
different as is the LPFP.

PLOT 25

Coolant discharge temp. There's very little reaction to power
level changes (notice the small scale). Looking for absolute
levels here. This is a primary indicator of whether or not we're
cracking the mcc. As we put time on the mcc, we'll form cracks and
some of this flow will be dumped into the hotgas area. Coolant
jacket is a piece with about 1036 slots cut in it - run the fuel
through there. With a crack, you open up the fuel to the hotgas
wall, it pours out and adds to the boundary layer flow and you see
this temperature drop off. Primary indicator of chamber health.

PLOT 26

LPFT inlet pressure. This is just downstream of MCC coolant
discharge. Recall that MCC discharge pressure was a little high,
this is a little high - makes sense - just have a more blocked
turbine. Would expect from this that the LPFP speed would be up.

plot 27

LPFP speed - it's up, as expected. You're driving the pump
speed up with higher inlet pressures. These are the kinds of
things you go through to confirm one parameter with another. This
can eliminate a lot of what could otherwise be considered
'anomalies'. If pressure weren't up and speed was, that would be
considered an anomaly and you'd have to resolve it.

You're looking for a nice flat trace. We're looking for two
things that typically give us a change in the pump speed - the
first is a repress flow change. When you change from repress max
to min you drastically change the pressure downstream of the
turbine - change back-pressure. The turbine speed is being driven
by the delta-p across the turbine. When you change the repress
flow you change the turbine discharge pressure and you change the
pump speed by 100-150 rpm (it drops). This must be recognized as
a normal reaction to a change in the repress flow.

There's one other thing - piston ring seal shifts. This is
a previously identified anomaly. In the secondary cavity there's
a piston ring seal which has been known to shift. The LPFT flow
goes out of the pump, does a lot of cooling - around the preburner,
down the walls of the HGM (HGM is double-walled and the fuel goes
through there) and then it dumps into the secondary cavity. From

Page 13

there it goes up into the hotgas end and down into the main
chamber. Separating the hotgas area and the secondary area and the
pc area are piston ring seals. These are seals around the outside
and have been known to shift in the past. When they shift they
cause a change in resistance which feeds all the way back to the
LPFT. When seal shifts, a lot more flow can pour down on hot wall.
This will change the speed on the LPFP by about 100 rpm. We've
seen one monster shift one Engine 2032 (or 2034) - 12 sigma shift.
Had never seen anything like it. Have seen 100-200 rpm shifts due
to the piston ring shift. The only way to recognize this is that
you see the downstream pressure change (fuel press interface
pressure) and you don't have a repress flow.

****DANGER ZONE*****

You don't see a pressure upstream change, because this
pressure wave doesn't feed to a great degree through this low
pressure fuel turbine. You see a speed change that's reacting to
this pressure change, and you say, okay system made self check.
It's the only thing downstream that is not metal to metal hard.
It is actually steel that is stuck in there.

Q: If that gives you fuel leaking into the MCC also do you
see a drop in temperature there?

A: On the MCC temps normally you don't, but on this monster
shift I was talking about, you saw a big change on the temperature.
That's why we knew it was a monster shift, because we saw a huge
change in the low pressure fuel pump speed and it actually showed
in the fuel pump discharge condition. Not only did it change
temperature but it changed the fuel pump discharge pressure - to
feed all the way back here was a whopper. The vast majority of
pressure drop was right in here.

PLOT 28

Okay here's your high pump inlet pressure, this is your
discharge from your low pressure fuel pump and it is primarily
driven by the low pressure pump speed and the engine inlet
pressure. You can see the small scale. Again what you are looking
for are reactions to the pump speed changes and in the scenarios
that I just gave you of the piston ring seal shift - you'll see
that in this parameter too. Because you raise that speed or lower
speed by 100 rpm depending on how you are shifting the seal, you'll
see it in here too.

This is the pressure that goes into the density calculation
for the fuel flowmeter.

PLOT 29

Here is the temperature that goes along with it. Let me back
up just one. Remember I was telling you on the three g throttle,
you go through this dip in efficiency island and you see it in the
low pressure fuel pump, that's that guy right there. All you are
doing power level wise is coming right down, but you see it come
back up and curve around and come back down, you're going through
a different efficiency, I think it's on the big fuel pump and you
see this reaction here, it's just the system balance to it. You
see the same thing in temperature. This is the temperature, same
location here - goes into the density calculation. Notice the very
small difference in temperature - small scale here, but you do see
the reaction to all the difference power levels. You're looking
for the same type of thing.

You have seen the OPOV actuator position, again look at how
close it is compared to the comparison test, even though you have
two different pumps. We were amazed by that. Usually there is
some kind of change. This was an anomaly on a previous test, see
how it comes back up here, we look at that as an anomaly on the
previous test - that's the kind of stuff you'll be looking at.

You go through the data until you see something strange. Well
did my lox inlet pressure change to give me that, no. What else

Page 13

there it goes up into the hotgas end and down into the main
chamber. Separating the hotgas area and the secondary area and the
pc area are piston ring seals. These are seals around the outside
and have been known to shift in the past. When they shift they
cause a change in resistance which feeds all the way back to the
LPFT. When seal shifts, a lot more flow can pour down on hot wall.
This will change the speed on the LPFP by about 100 rpm. We've
seen one monster shift one Engine 2032 (or 2034) - 12 sigma shift.
Had never seen anything like it. Have seen 100-200 rpm shifts due
to the piston ring shift. The only way to recognize this is that
you see the downstream pressure change (fuel press interface
pressure) and you don't have a repress flow.

****DANGER ZONE*****

You don't see a pressure upstream change, because this
pressure wave doesn't feed to a great degree through this low
pressure fuel turbine. You see a speed change that's reacting to
this pressure change, and you say, okay system made self check.
It's the only thing downstream that is not metal to metal hard.
It is actually steel that is stuck in there.

Q: If that gives you fuel leaking into the MCC also do you
see a drop in temperature there?

A: On the MCC temps normally you don't, but on this monster
shift I was talking about, you saw a big change on the temperature.
That's why we knew it was a monster shift, because we saw a huge
change in the low pressure fuel pump speed and it actually showed
in the fuel pump discharge condition. Not only did it change
temperature but it changed the fuel pump discharge pressure - to
feed all the way back here was a whopper. The vast majority of
pressure drop was right in here.

PLOT 28

Okay here's your high pump inlet pressure, this is your
discharge from your low pressure fuel pump and it is primarily
driven by the low pressure pump speed and the engine inlet
pressure. You can see the small scale. Again what you are looking
for are reactions to the pump speed changes and in the scenarios
that I just gave you of the piston ring seal shift - you'll see
that in this parameter too. Because you raise that speed or lower
speed by 100 rpm depending on how you are shifting the seal, you'll
see it in here too.

This is the pressure that goes into the density calculation
for the fuel flowmeter.

PLOT 29

Here is the temperature that goes along with it. Let me back
up just one. Remember I was telling you on the three g throttle,
you go through this dip in efficiency island and you see it in the
low pressure fuel pump, that's that guy right there. All you are
doing power level wise is coming right down, but you see it come
back up and curve around and come back down, you're going through
a different efficiency, I think it's on the big fuel pump and you
see this reaction here, it's just the system balance to it. You
see the same thing in temperature. This is the temperature, same
location here - goes into the density calculation. Notice the very
small difference in temperature - small scale here, but you do see
the reaction to all the difference power levels. You're looking
for the same type of thing.

You have seen the OPOV actuator position, again look at how
close it is compared to the comparison test, even though you have
two different pumps. We were amazed by that. Usually there is
some kind of change. This was an anomaly on a previous test, see
how it comes back up here, we look at that as an anomaly on the
previous test - that's the kind of stuff you'll be looking at.

You go through the data until you see something strange. Well
did my lox inlet pressure change to give me that, no. What else

Page 14

could do it, did power level change, no, didn't to that. Then you
start looking at the pump, did the pump turbine power level
requirement change, I don't know, lets go look at the preburner pc.
That is the kind of thought process you go through when you see
something like this. You really just make a mental note of it and
put it down on you sheet. We have a master observation list. It's
a real fancy term for just writing down on paper what you see. As
soon as you write it down you know then that you're looking for it
in lox turbine temps and stuff like that.

PLOT 31

Here are the lox turbine temps.
because you've already seen this PID
humps and jumps you don't understand
trend. No problems here.

PLOT 32

Looking more for comparisons
by itself. Already identified
- looking for the general

Lox preburner pc. This one we don't have on flight, all we've
got is this one facility pid, we don't have cad pid. This has been
known to so something called icing. We have that in some other
parameters. You can see again, the lox side overshoots a little
on the start, you see as it's coming down as it thermally
stabilizes you see the change in the power level, that kind of
thing, you see a very slight change due to the lox inlet condition,
remember you're venting and repressing. You can barely see it
here, but it takes just a little bit of pc (along with the turbine
temps) to give you the power change to overcome that inlet
condition.

TAPE 4, SIDE 1

A: Let me tell you about icing. Icing, we have a preburner,
here's your turbine down here, here's your dome you got lox and
fuel pouring in here. You've got a sensor that is coming out here
to the sense line and the transducer sitting over here. What
happens is sometimes you actually, don't forget the product of
combustion on this thing is basically steam, you got hydrogen and
oxygen from some water some steam whatever, you'll get a little bit
of steam that will build up in here and you actually form a water
block and you'll form an ice block right in here, when you do that
here what the transducer is reading now is only this pressure that
is trapped in here, that's called icing, when you form that block
in there. The typical trace you see power level transient, you see
going like this whatever, and in that there will be some amount of
hash mostly - with icing you'll see it go flat. You won't see any
kind of hash nothing like that, you'll see the power level change
on other parameters and this thing will say flat. Everything out
here in the engine is changing, it's just you've got this block of
ice in here that is trapping the pressure in there. Obviously,
it's not real we have all kinds of other things that tell us that
the preburner pressure has to be changing, but this guy is iced up.
That's called icing.

One way to check for (icing) is post shutdown, sometimes in
the test you'll see the thing come down and all that happens is
that this is melted out and you form a little hole in there and
allow it to come out and it all melts out and you see it come down.
We are seeing a lot of that especially on the lox preburner.

PLOT 33

Here is the HPOP speed, the first thing you notice is you
don't have the data for this test. Let's take a look at the last
test which had the same profile. You see it react to the venting
and the repressurization of the inlet. It's coming up again,
reaction here, as you lower the inlet pressure the lox pump has to
work harder you see the whole lox system power up, you see the pump
speed, let me tell you about this, this is the only-parameter that
is a cads pid that we don't get from the cads, pid 2, I don't know
how they assigned it, they just came out with it, we can actually
get this data from the dynamics guys. They take their
accelerometer data and translate it over to a pump speed and they

Page 14

could do it, did power level change, no, didn't to that. Then you
start looking at the pump, did the pump turbine power level
requirement change, I don't know, lets go look at the preburner pc.
That is the kind of thought process you go through when you see
something like this. You really just make a mental note of it and
put it down on you sheet. We have a master observation list. It's
a real fancy term for just writing down on paper what you see. As
soon as you write it down you know then that you're looking for it
in lox turbine temps and stuff like that.

PLOT 31

Here are the lox turbine temps.
because you've already seen this PID
humps and jumps you don't understand
trend. No problems here.

PLOT 32

Looking more for comparisons
by itself. Already identified
- looking for the general

Lox preburner pc. This one we don't have on flight, all we've
got is this one facility pid, we don't have cad pid. This has been
known to so something called icing. We have that in some other
parameters. You can see again, the lox side overshoots a little
on the start, you see as it's coming down as it thermally
stabilizes you see the change in the power level, that kind of
thing, you see a very slight change due to the lox inlet condition,
remember you're venting and repressing. You can barely see it
here, but it takes just a little bit of pc (along with the turbine
temps) to give you the power change to overcome that inlet
condition.

TAPE 4, SIDE 1

A: Let me tell you about icing. Icing, we have a preburner,
here's your turbine down here, here's your dome you got lox and
fuel pouring in here. You've got a sensor that is coming out here
to the sense line and the transducer sitting over here. What
happens is sometimes you actually, don't forget the product of
combustion on this thing is basically steam, you got hydrogen and
oxygen from some water some steam whatever, you'll get a little bit
of steam that will build up in here and you actually form a water
block and you'll form an ice block right in here, when you do that
here what the transducer is reading now is only this pressure that
is trapped in here, that's called icing, when you form that block
in there. The typical trace you see power level transient, you see
going like this whatever, and in that there will be some amount of
hash mostly - with icing you'll see it go flat. You won't see any
kind of hash nothing like that, you'll see the power level change
on other parameters and this thing will say flat. Everything out
here in the engine is changing, it's just you've got this block of
ice in here that is trapping the pressure in there. Obviously,
it's not real we have all kinds of other things that tell us that
the preburner pressure has to be changing, but this guy is iced up.
That's called icing.

One way to check for (icing) is post shutdown, sometimes in
the test you'll see the thing come down and all that happens is
that this is melted out and you form a little hole in there and
allow it to come out and it all melts out and you see it come down.
We are seeing a lot of that especially on the lox preburner.

PLOT 33

Here is the HPOP speed, the first thing you notice is you
don't have the data for this test. Let's take a look at the last
test which had the same profile. You see it react to the venting
and the repressurization of the inlet. It's coming up again,
reaction here, as you lower the inlet pressure the lox pump has to
work harder you see the whole lox system power up, you see the pump
speed, let me tell you about this, this is the only-parameter that
is a cads pid that we don't get from the cads, pid 2, I don't know
how they assigned it, they just came out with it, we can actually
get this data from the dynamics guys. They take their
accelerometer data and translate it over to a pump speed and they

Page 15

ship it over to our system and we merge it in. We don't actually
measure this pump speed, we don't have a pump speed measurement on
the lox pump. We have it on all the others, but not the lox pump.
Typically we don't get this data right off the bat, 9 times out of
10 this plot doesn't have the current test data entered, because
they plot these things overnight and by that time the pump speed
hasn't been merged in there.

Q: Does this pidtypically help you resolve things?

A: Sometimes it does. If you have a lox side anomaly during
mainstage (that's important) then yeah, it's very useful. During
start and shutdown as it stands right now you can't use this pid
because it steps in 2 thousand rpm increments. It's just the
ability they have to process the pid on the transient. For all
practical purposes we don't have lox speed during startup or
shutdown. What we have used are things like preburner discharge
pressure to give us an indication of what the lox pump speed is
doing.

PLOT 34

The HPOP discharge pressure. If there is a difference, you'd
better look for a lox flow difference. Remember what I told you
about this, two things determine it, lox flow and main injector
resistance. If you assume the main injector resistance hasn't
changed (which it shouldn't because there's nothing in here that
should change). If you see a difference here, you expect to see
a lox flow change. You see it's all very stable, right on top of
each other, this is primarily determined by the engine. This is
determined by the injector resistance which is part of the engine.

PLOT 35

Here is the lox injection pressure, same type of thing except
it is slightly downstream and actually down here in the lox dome.
This area is called the hot dog. It looks like a hotdog. (FYI:
The heat exchanger bifurcation joint. The line going into the heat
exchanger within the exchanger actually breaks off into two lines,
called bifurcation joint or "baby pants".)

PLOT 36

Here is lox injection temperature, .there are two tests (on
this plot) and one temperature. It's in the lox pump. If you
could see this, you could see right off the bat, hey I got a hairy
injection temp here and it looks like a piece of instrumentation
has gone bad. We know this because we know from previous
experience what we should be looking at, in fact we almost see the
other test. It looks like it's the previous test that has failed,
but what you want to do is plot that individually to make sure
which test it is.

PLOT 37

Preburner Pump pressure, you know what it is, and the only
thing you can say about it, you are looking again for a comparison
with the other one in terms of absolute level and you are looking
for the reaction of the vent and repress to make sure nothing else
is going on. Looks fine. Now when I say the only thing, there is
another part, remember I told you that this is the first part of
the job, sitting down and analyzing data. On this test, just as
an example, there were objectives on the test to evaluate three out
of four pumps for greenrun, there are certain requirements that we
have to greenrun and they are all spelled out in the specs. This
is one o·f them, there has to be a certain amount of pressure from
the preburner pump at a certain power level and a certain lox inlet
pressure to pass that pump for flight. We have programs that do
all that, that check all that and make sure we don't have any
problems. If you have too low of pressure you're going to
adversely affect the system, as we said before the valve may run
too high, you may run out of room, the valve may be running at full
open and you can't control the engine anymore the way you want to.

Page 15

ship it over to our system and we merge it in. We don't actually
measure this pump speed, we don't have a pump speed measurement on
the lox pump. We have it on all the others, but not the lox pump.
Typically we don't get this data right off the bat, 9 times out of
10 this plot doesn't have the current test data entered, because
they plot these things overnight and by that time the pump speed
hasn't been merged in there.

Q: Does this pidtypically help you resolve things?

A: Sometimes it does. If you have a lox side anomaly during
mainstage (that's important) then yeah, it's very useful. During
start and shutdown as it stands right now you can't use this pid
because it steps in 2 thousand rpm increments. It's just the
ability they have to process the pid on the transient. For all
practical purposes we don't have lox speed during startup or
shutdown. What we have used are things like preburner discharge
pressure to give us an indication of what the lox pump speed is
doing.

PLOT 34

The HPOP discharge pressure. If there is a difference, you'd
better look for a lox flow difference. Remember what I told you
about this, two things determine it, lox flow and main injector
resistance. If you assume the main injector resistance hasn't
changed (which it shouldn't because there's nothing in here that
should change). If you see a difference here, you expect to see
a lox flow change. You see it's all very stable, right on top of
each other, this is primarily determined by the engine. This is
determined by the injector resistance which is part of the engine.

PLOT 35

Here is the lox injection pressure, same type of thing except
it is slightly downstream and actually down here in the lox dome.
This area is called the hot dog. It looks like a hotdog. (FYI:
The heat exchanger bifurcation joint. The line going into the heat
exchanger within the exchanger actually breaks off into two lines,
called bifurcation joint or "baby pants".)

PLOT 36

Here is lox injection temperature, .there are two tests (on
this plot) and one temperature. It's in the lox pump. If you
could see this, you could see right off the bat, hey I got a hairy
injection temp here and it looks like a piece of instrumentation
has gone bad. We know this because we know from previous
experience what we should be looking at, in fact we almost see the
other test. It looks like it's the previous test that has failed,
but what you want to do is plot that individually to make sure
which test it is.

PLOT 37

Preburner Pump pressure, you know what it is, and the only
thing you can say about it, you are looking again for a comparison
with the other one in terms of absolute level and you are looking
for the reaction of the vent and repress to make sure nothing else
is going on. Looks fine. Now when I say the only thing, there is
another part, remember I told you that this is the first part of
the job, sitting down and analyzing data. On this test, just as
an example, there were objectives on the test to evaluate three out
of four pumps for greenrun, there are certain requirements that we
have to greenrun and they are all spelled out in the specs. This
is one o·f them, there has to be a certain amount of pressure from
the preburner pump at a certain power level and a certain lox inlet
pressure to pass that pump for flight. We have programs that do
all that, that check all that and make sure we don't have any
problems. If you have too low of pressure you're going to
adversely affect the system, as we said before the valve may run
too high, you may run out of room, the valve may be running at full
open and you can't control the engine anymore the way you want to.

Page 16

PLOT 38

PBP Discharge temp. If you see a small deviation, you wonder
what it could be driven by. In our mind, we already know because
we have probably dealt with a problem like that before. Is it
driven by the preburner pump or engine inlet? If I feed hotter lox
to the engine inlet it's going to give me hotter lox all throughout
the engine and we'll see it here as well. So in this case you
would reason, is the preburner pump driving that - is it running
a little harder than it should and therefore giving me a higher
temperature, have I changed my parasitic flows so that at a given
speed and a given engine inlet condition I've got a little hotter
lox coming out of the preburner pump, all those kind of things run
through your mind, just go through scenarios and stack them up and
start running through the data so that you can to eliminate
scenarios.

PLOT 39

Here is heat exchanger interface pressure. This is just
discharge from the heat exchanger. You've seen the data before and
now we're looking at it just with another one. This is the one
you'll see change drastically if you do a repress change: you'll
see it shoot up or down depending on which way you're going. On
this one we were running max repress through the whole thing so if
you saw a drastic shoot up here, let say 150 seconds, first thing
you would think is did we do a repress change here. If you did and
the gain turned out right - you've nailed it.

PLOT 40

And finally in this box, is the heat exchanger interface temp.
Same kind of thing, see how long it takes to stabilize out here.
Remember you have an initially cold system, you've got lox turbine
temps on the outside - long time to stabilize the whole system out.
You see the effect of the venting/repressurization because it
affects the lox turbine temps that are on the outside of the heat
exchanger. That's what's heating the lox that is in there.

PLOT 41

Pogo Precharge pressure - very repeatable, no unusual shifts
anything like that.

PLOT 42

Again I'm .•• not spending a lot of time on this - you're
looking for the same kind of thing. You're looking for levels,
reactions to vents, etc. You're seeing the lox system reacting
much more than the fuel system does to the engine inlet conditions,
which is what you expect.

PLOT 43

Here is your HPOP inlet pressure, remember how your HPOP
discharge pressure was nice and flat through the whole venting and
repressuring and everything else, all this is because you're
changing the conditions here, you're venting initially then
pressurizing and venting again and all it is feeding right through
here •... You actually have two channels on this and you'll see
that as we go through the instrumentation package.

PLOT 44

Last one in this package, here's the MCC hot gas injection
pressure. This is the only pressure measurement of the hot gas
downstream of those turbines. This is actually a measurement
that's in here on the lox side of the main injector. - right in
here measuring gas pressure down here, you would see a shift in pc
and very drastic shifts in turbine efficiency and that type of
thing.

Page 16

PLOT 38

PBP Discharge temp. If you see a small deviation, you wonder
what it could be driven by. In our mind, we already know because
we have probably dealt with a problem like that before. Is it
driven by the preburner pump or engine inlet? If I feed hotter lox
to the engine inlet it's going to give me hotter lox all throughout
the engine and we'll see it here as well. So in this case you
would reason, is the preburner pump driving that - is it running
a little harder than it should and therefore giving me a higher
temperature, have I changed my parasitic flows so that at a given
speed and a given engine inlet condition I've got a little hotter
lox coming out of the preburner pump, all those kind of things run
through your mind, just go through scenarios and stack them up and
start running through the data so that you can to eliminate
scenarios.

PLOT 39

Here is heat exchanger interface pressure. This is just
discharge from the heat exchanger. You've seen the data before and
now we're looking at it just with another one. This is the one
you'll see change drastically if you do a repress change: you'll
see it shoot up or down depending on which way you're going. On
this one we were running max repress through the whole thing so if
you saw a drastic shoot up here, let say 150 seconds, first thing
you would think is did we do a repress change here. If you did and
the gain turned out right - you've nailed it.

PLOT 40

And finally in this box, is the heat exchanger interface temp.
Same kind of thing, see how long it takes to stabilize out here.
Remember you have an initially cold system, you've got lox turbine
temps on the outside - long time to stabilize the whole system out.
You see the effect of the venting/repressurization because it
affects the lox turbine temps that are on the outside of the heat
exchanger. That's what's heating the lox that is in there.

PLOT 41

Pogo Precharge pressure - very repeatable, no unusual shifts
anything like that.

PLOT 42

Again I'm .•• not spending a lot of time on this - you're
looking for the same kind of thing. You're looking for levels,
reactions to vents, etc. You're seeing the lox system reacting
much more than the fuel system does to the engine inlet conditions,
which is what you expect.

PLOT 43

Here is your HPOP inlet pressure, remember how your HPOP
discharge pressure was nice and flat through the whole venting and
repressuring and everything else, all this is because you're
changing the conditions here, you're venting initially then
pressurizing and venting again and all it is feeding right through
here •... You actually have two channels on this and you'll see
that as we go through the instrumentation package.

PLOT 44

Last one in this package, here's the MCC hot gas injection
pressure. This is the only pressure measurement of the hot gas
downstream of those turbines. This is actually a measurement
that's in here on the lox side of the main injector. - right in
here measuring gas pressure down here, you would see a shift in pc
and very drastic shifts in turbine efficiency and that type of
thing.

Page 17

This one is known to go bad quite a bit. It a very nasty
environment in there that it's trying to measure. This is also one
that will ice on occasion. Remember talking about icing on the lox
preburner? Anytime when you're producing the products of
combustion yOU could run into icing.

GRPUMPS Package

Here is GR pumps, again it's the key words, don't worry about
it, says high pressure fuel pump, it's actually both pumps. Now
the component guys, Glen and that gang, they're machinery guys, are
most interested in this package, we also look at it, we are
familiar with what it says and we go through because you got to
understand the and deal with the interactions between the system
and the pumps.

CALC 1

Here's the pumps discharge temp minus the inlet temp. This
gives an idea of a couple of things. One is the level of
efficiency of the pump. This one is running about 57 degrees at
104, it's got a nominal pump maybe a little over. You don't see
any kind of shift that we don't expect from the power level
changes. If you did see a shift, that would mean that the rotor
is maybe moving to a new position that would indicate a massive
shift in the rotor But it's not enough to give us any kind
of significant shift on the delta p, which means it's not massive
enough to give us a change in the parasitic flows.

CALC 2

Here's ••. the Delta P, pump discharge pressure minus the
balance cavity pressure. Remember that fuel comes in here, goes
to the first impeller, second impeller, third impeller. The whole
time it being pumped up. You're increasing'pressure, it comes out
here the majority goes down this duct right here. Little bit goes
down here past an orifice and goes right behind that impeller. In
other words it comes out the front of the impeller and sneaks
around the back of it and runs down the back of it, and that flow
cools this whole turbine area. We measure the pressure back behind
that impeller, we measure the pressure in front and the difference
gives us an idea of what the rotor is doing. That's what you see
here. You can see a shift in the power level, looks like a little
problem here, shift down okay here, we come back up and looks like
we are really moving the rotor around. You can see in here, in
fact, right in here (approx. 170 secs.) somewhere we have a shift
of 109 we don't even see. Don't forget we power up to 109
somewhere, you don't even see that in here, so there is a massive
indication that the rotor hung up.

In fact •.. the throttle transient starts at 220 seconds it's
in here. We start throttling down right about here, it just about
here that the rotor recognizes it. When you're analyzing these
things one second is worth the difference of this happening and
that happening is an infinity. We very often look at, "hey is
everything happening at this data point?" In other words, shift
here to this shift, does this shift, does this shift. A second is
an infinity. This is ten seconds worth. If things happen two data
points later, we account for that in our analysis as well. So
there is a massive indication there you have problem with the rotor
position.

CALC 32

The coolant liner pressure and the upper red line, I won't go
to much into this one, because this is not, the system doesn't
concern itself with this. This feeds off the system but the system
doesn't feed off this. This is just the pressure dG>wn here that
gives you an indication of the coolant going down to the turbine.
Leave it at that, because again if you do a system analysis you
won't be overly concerned with what it has to say.

Page 17

This one is known to go bad quite a bit. It a very nasty
environment in there that it's trying to measure. This is also one
that will ice on occasion. Remember talking about icing on the lox
preburner? Anytime when you're producing the products of
combustion yOU could run into icing.

GRPUMPS Package

Here is GR pumps, again it's the key words, don't worry about
it, says high pressure fuel pump, it's actually both pumps. Now
the component guys, Glen and that gang, they're machinery guys, are
most interested in this package, we also look at it, we are
familiar with what it says and we go through because you got to
understand the and deal with the interactions between the system
and the pumps.

CALC 1

Here's the pumps discharge temp minus the inlet temp. This
gives an idea of a couple of things. One is the level of
efficiency of the pump. This one is running about 57 degrees at
104, it's got a nominal pump maybe a little over. You don't see
any kind of shift that we don't expect from the power level
changes. If you did see a shift, that would mean that the rotor
is maybe moving to a new position that would indicate a massive
shift in the rotor But it's not enough to give us any kind
of significant shift on the delta p, which means it's not massive
enough to give us a change in the parasitic flows.

CALC 2

Here's ••. the Delta P, pump discharge pressure minus the
balance cavity pressure. Remember that fuel comes in here, goes
to the first impeller, second impeller, third impeller. The whole
time it being pumped up. You're increasing'pressure, it comes out
here the majority goes down this duct right here. Little bit goes
down here past an orifice and goes right behind that impeller. In
other words it comes out the front of the impeller and sneaks
around the back of it and runs down the back of it, and that flow
cools this whole turbine area. We measure the pressure back behind
that impeller, we measure the pressure in front and the difference
gives us an idea of what the rotor is doing. That's what you see
here. You can see a shift in the power level, looks like a little
problem here, shift down okay here, we come back up and looks like
we are really moving the rotor around. You can see in here, in
fact, right in here (approx. 170 secs.) somewhere we have a shift
of 109 we don't even see. Don't forget we power up to 109
somewhere, you don't even see that in here, so there is a massive
indication that the rotor hung up.

In fact •.. the throttle transient starts at 220 seconds it's
in here. We start throttling down right about here, it just about
here that the rotor recognizes it. When you're analyzing these
things one second is worth the difference of this happening and
that happening is an infinity. We very often look at, "hey is
everything happening at this data point?" In other words, shift
here to this shift, does this shift, does this shift. A second is
an infinity. This is ten seconds worth. If things happen two data
points later, we account for that in our analysis as well. So
there is a massive indication there you have problem with the rotor
position.

CALC 32

The coolant liner pressure and the upper red line, I won't go
to much into this one, because this is not, the system doesn't
concern itself with this. This feeds off the system but the system
doesn't feed off this. This is just the pressure dG>wn here that
gives you an indication of the coolant going down to the turbine.
Leave it at that, because again if you do a system analysis you
won't be overly concerned with what it has to say.

Page 18

Plot 4

Coolant liner temp - same type of thing. It's just there to
measure the temperature. That's more of a turbomachinery type of
thing.

Plot 5

Here is fuel pump drain pressure and whatnot. Now a lot of
these in doing a system analysis you're not going to be concerned
with at all. Do you want me to go through them or skip over them?

Q: What do you do when you go through them?

A: We go through them and we analyze them mostly for the turbo
pump people. In other words, they look through, we look through
them it like a double check really. But in terms of if we have to
do a system analysis, what I think is being asked right now, we
won't look at this.

Q: When you look at them, are you doing a system analysis of the
pump or are you doing a turbomachinery analysis?

A: If we see massive changes in the pump performance, like the
balance cavity pressure, then it is a pretty good size anomaly.
We will probably look in these, and the reason being this gives you
an indication of the parasitic flow discharge. Everybody knows
what parasitic flows means, when I say parasitics?

I

Parasitics - anything in the engines that comes into the
engine and basically does not go into the main chamber is a
parasitics - it a parasite. It doesn't produce thrust. The
repress flow is parasitic: does not produce thrust, it is
necessary, we need it and it serves a useful function, but it
doesn't produce thrust so by definition it's considered a
parasitic.

A lot of it (parasitics) is leakage passed the seals, leakage
to cool turbine, stuff like that. In general it's anything that
comes through the pump that doesn't go out of the pump that is used
and goes past seals and that type of thing. It will dump out the
fuel drains. This is measuring the pressure in that drain so if
we see a massive shift or whatever at least in the system's data,
it looks like it's being caused by the pump and we theorize we may
have lost the seal in the pump, we'll probably go straight to this
guy. Because if we lost the seal on something like that you would
expect to see massive reaction here, because this is where it's all
coming out. So in that case you would use it in a system analysis,
but really you break it down to "hey, we have an anomaly in the
system", we take the data, we get over here and say it's a fuel
pump anomaly and this is just one step further, saying it's a seal
anomaly in the fuel pump and this confirms it or doesn't confirm
it, one or the other. That's how a piece of data like this is used
in the system analysis.

Plot 6

In the drain temps - same type of thing, but it's the
temperature instead of pressure in the drain line. if you have
massive drain failure, something like that it would go straight
through the floor. It would be dumping liquid hydrogen out of it.

Plot 7

Here's your balance cavity pressure on the HPOP. Pam's module
is doing an analysis on the HPOP balance cavity and quickly tell
you what it is doing. It's looking at these two, but the fuel pump
has fuel basically coming in one end, running through and coming
out the other end. The HPOP has lox coming in, it wraps around
comes in - it has an inducer on both sides - and it comes out
through the middle. The way that you balance this guy out is you
have a balance cavity up here and up here and basically what it

Page 18

Plot 4

Coolant liner temp - same type of thing. It's just there to
measure the temperature. That's more of a turbomachinery type of
thing.

Plot 5

Here is fuel pump drain pressure and whatnot. Now a lot of
these in doing a system analysis you're not going to be concerned
with at all. Do you want me to go through them or skip over them?

Q: What do you do when you go through them?

A: We go through them and we analyze them mostly for the turbo
pump people. In other words, they look through, we look through
them it like a double check really. But in terms of if we have to
do a system analysis, what I think is being asked right now, we
won't look at this.

Q: When you look at them, are you doing a system analysis of the
pump or are you doing a turbomachinery analysis?

A: If we see massive changes in the pump performance, like the
balance cavity pressure, then it is a pretty good size anomaly.
We will probably look in these, and the reason being this gives you
an indication of the parasitic flow discharge. Everybody knows
what parasitic flows means, when I say parasitics?

I

Parasitics - anything in the engines that comes into the
engine and basically does not go into the main chamber is a
parasitics - it a parasite. It doesn't produce thrust. The
repress flow is parasitic: does not produce thrust, it is
necessary, we need it and it serves a useful function, but it
doesn't produce thrust so by definition it's considered a
parasitic.

A lot of it (parasitics) is leakage passed the seals, leakage
to cool turbine, stuff like that. In general it's anything that
comes through the pump that doesn't go out of the pump that is used
and goes past seals and that type of thing. It will dump out the
fuel drains. This is measuring the pressure in that drain so if
we see a massive shift or whatever at least in the system's data,
it looks like it's being caused by the pump and we theorize we may
have lost the seal in the pump, we'll probably go straight to this
guy. Because if we lost the seal on something like that you would
expect to see massive reaction here, because this is where it's all
coming out. So in that case you would use it in a system analysis,
but really you break it down to "hey, we have an anomaly in the
system", we take the data, we get over here and say it's a fuel
pump anomaly and this is just one step further, saying it's a seal
anomaly in the fuel pump and this confirms it or doesn't confirm
it, one or the other. That's how a piece of data like this is used
in the system analysis.

Plot 6

In the drain temps - same type of thing, but it's the
temperature instead of pressure in the drain line. if you have
massive drain failure, something like that it would go straight
through the floor. It would be dumping liquid hydrogen out of it.

Plot 7

Here's your balance cavity pressure on the HPOP. Pam's module
is doing an analysis on the HPOP balance cavity and quickly tell
you what it is doing. It's looking at these two, but the fuel pump
has fuel basically coming in one end, running through and coming
out the other end. The HPOP has lox coming in, it wraps around
comes in - it has an inducer on both sides - and it comes out
through the middle. The way that you balance this guy out is you
have a balance cavity up here and up here and basically what it

- ':".. Page 19

uses is the pressure the pump creates to balance the rotor. All
it is, is two different cavities on either side you pressurize them
and depressurize them to keep the rotor balanced in the middle.
That is what you are seeing here, the pressure on the two sides.
You're looking really for two things.

First, are they nice and flat if you see them both of them
shifting in opposite direction here, mean the rotor has moved over
.for one reason or another then it comes down. The first question
is: is the system driving it or is it the pump driving it. Do we
have a pump problem or is the pump reacting to something the system
is doing to it. Typically what you do is .. , then start working
your way (through). Is the OPOV open up, did we see the preburner
pressure change, that type of thing. That's when you get down to
the nitty gritty of each data point.

Second thing you're looking for is leakage, where one of these
will move and the other won't, it's not real rotor motion. It's
just that one of the sense lines is leaking. Again in a system
analysis sense, really what you're looking for is if you see a
shift you want to know if it's driven by the pump or the system,
so you know which part to go out there and pay special attention
to in the hardware inspection.

Plot B

Intermediate seal pressure - this is the pressure that is the
buffer between the pump end and the turbine end in the HPOP. This
is the one we will always purge, no matter what. This is the only
one that is purged full time, pretest, post-shutdown, everything,
no matter what.

You see it coming up here, the reason it's corning up is that
the seal is actually closing down as the rotor grows. As the seal
closes down you get smaller clearance and the pressure that is
upstream rises and you can see the effect throttle comes up here
still closing down, notice out here at 200 some odd seconds we're
still closing down, it is still stabilizing. The system is not
fully stabilized for at least 300 seconds. Plot 9

Here's the secondary cavity pressure. We can really get into
this if you want .•. It's up to you guys. I would think in building
a systems analysis module, this would be one of the last things you
would look at. Do you want to go into it?

{decision made to skip rest of turbomachinery package}

Again in the system module, what we initially do is, "Is it
the pump, or is it the system?" And then we would break it down,
using this data, as to where in the pump it is, if we determine
it's the pump.

GRINSTR (Instrumentation package)

This again would be in the mainstage, this is basically a
check at this point, if you have followed this sequence through you
have a real good idea of what is right and what wrong on test.
This package is built primarily ... to check the instrumentation.
We built the program in C that goes off and checks all the
instrumentation plus others and it does avery good job, we almost
don't need this package anymore but we are going to use fOr a good
l,eng time until we have full confidence in the program.

Pl-ot 1.

A bunch of this you'll see are dual temps. Here are the anti­
flood valve temps downstream skin temps. You'll see a slight
reaction to the throttle transients and that type of thing.
Remember we have an anti-flood valve right here, prestart doesn't
let ,your lox go down here to the heat exchanger and post shutdown
which will get below about 140 psi, it will shut off. Its only
reason for being (the anti-flood valve temps) is to make sure you
don't have a leak when you're not supposed to be pumping lox

- ':".. Page 19

uses is the pressure the pump creates to balance the rotor. All
it is, is two different cavities on either side you pressurize them
and depressurize them to keep the rotor balanced in the middle.
That is what you are seeing here, the pressure on the two sides.
You're looking really for two things.

First, are they nice and flat if you see them both of them
shifting in opposite direction here, mean the rotor has moved over
.for one reason or another then it comes down. The first question
is: is the system driving it or is it the pump driving it. Do we
have a pump problem or is the pump reacting to something the system
is doing to it. Typically what you do is .. , then start working
your way (through). Is the OPOV open up, did we see the preburner
pressure change, that type of thing. That's when you get down to
the nitty gritty of each data point.

Second thing you're looking for is leakage, where one of these
will move and the other won't, it's not real rotor motion. It's
just that one of the sense lines is leaking. Again in a system
analysis sense, really what you're looking for is if you see a
shift you want to know if it's driven by the pump or the system,
so you know which part to go out there and pay special attention
to in the hardware inspection.

Plot B

Intermediate seal pressure - this is the pressure that is the
buffer between the pump end and the turbine end in the HPOP. This
is the one we will always purge, no matter what. This is the only
one that is purged full time, pretest, post-shutdown, everything,
no matter what.

You see it coming up here, the reason it's corning up is that
the seal is actually closing down as the rotor grows. As the seal
closes down you get smaller clearance and the pressure that is
upstream rises and you can see the effect throttle comes up here
still closing down, notice out here at 200 some odd seconds we're
still closing down, it is still stabilizing. The system is not
fully stabilized for at least 300 seconds. Plot 9

Here's the secondary cavity pressure. We can really get into
this if you want .•. It's up to you guys. I would think in building
a systems analysis module, this would be one of the last things you
would look at. Do you want to go into it?

{decision made to skip rest of turbomachinery package}

Again in the system module, what we initially do is, "Is it
the pump, or is it the system?" And then we would break it down,
using this data, as to where in the pump it is, if we determine
it's the pump.

GRINSTR (Instrumentation package)

This again would be in the mainstage, this is basically a
check at this point, if you have followed this sequence through you
have a real good idea of what is right and what wrong on test.
This package is built primarily ... to check the instrumentation.
We built the program in C that goes off and checks all the
instrumentation plus others and it does avery good job, we almost
don't need this package anymore but we are going to use fOr a good
l,eng time until we have full confidence in the program.

Pl-ot 1.

A bunch of this you'll see are dual temps. Here are the anti­
flood valve temps downstream skin temps. You'll see a slight
reaction to the throttle transients and that type of thing.
Remember we have an anti-flood valve right here, prestart doesn't
let ,your lox go down here to the heat exchanger and post shutdown
which will get below about 140 psi, it will shut off. Its only
reason for being (the anti-flood valve temps) is to make sure you
don't have a leak when you're not supposed to be pumping lox

Page 20

through there. Prestart, post shutdown, (and something
unintelligible). What we're checking here is to make sure the
instrumentation doesn't go south on us. We are not analyzing a
thing with this, all we are doing is checking the instrumentation.
If one of the debonds (debonding just means come off that type of
thing) you'll see it go way up.

Plot 2

Main fuel value downstream skin temps. Same type of thing
except you're downstream of the main fuel valve on the line.
Remember that these are actually taped on the outside of the duct.
They are not measuring the liquid, they are measuring the duct
temperature, the metal temperature. Again you just want to make
sure that one of your pieces of instrumentation doesn't go south
during a test, because the next chance you're going to get to see
it is the beginning of the next test and you'll want to fix it way
before you get it to chill on the next test.

Plot 3

Gox supply line temp. This is the one that's making sure that
the bubble is still here in front of the OPOV - same thing.

I think we will tear through a good part of this package,
because you're going to find that the main theme to this entire
package is redundancy. We check redundancy. That all this thing
is doing is checking multiple channels. OPOV, we've got an A and
B •.. and you're checking to see what is going on here, it's pretty
close it's easily within a half of a percent, no problem.

One thing to say about the OPOV and FPOV A & B. Normally the
controller looks and controls with the A channel, It's got two
bridges coming off that one actuator. It normally uses the A
channel. If the A channel shows a problem, the way the controller
knows that, it knows what it's commanded position is and it can
read the feedback position. If the command and the feedback get
off of each other by 6 percent, the controller declares that
channel is shot, and it will actually come over here and control
on this B channel. If that continues to control within 10 percent
on the B channel, then it's fine - it runs along and is as happy
as can be. At this point when it throws out the A channel, it
declares a FID (failure identification delimiter). It says, "hey,
I'm going over to the B channel." If it fails the B channel by 10
percent it goes into hydraulic lockup, and all that is, it says,
"Forget it, I can't control the valve anymore, I don't have control
of the valve, it's 10 percent off of where I want it to be, lock
up the hydraulics and the valve and let the thing run, and let's
hope to God it stays together."

Q: When it changes channel you'll probably see a shift. (You do
see a shift) How would you know you switched the channels?

A: The first indication is the fid, when we get that quick look,
which is that one page fax sheet, remember it had that section on
there, fids and comments. First thing you do is when you get those
numbers, and you get a bunch of zeros and ones and sometimes you
get the explanation, you look for the explanation, what it is
exactly. Then you can home in and you know what it is at that
point. If not, what you do is actually see these two channels
flip. It's a weird thing to look at, but you'll see the two
running like this, then you fail A, what it will do is clunk and
it will flip. All you will see is this line in between, but all
of a sudden your x's are running on the bottom and your triangles
are running on the top. It's got to do with how the controller
looks at the data. It always looks at it in this A position, so
what it really does is switches the B into the A position and
continues to look at the same position. You will see the system
react to that. For instance, it says the two are half a percent
apart right now, if that half a percent holds true, you'll see it
switch by half a percent.

Plot 5

Page 20

through there. Prestart, post shutdown, (and something
unintelligible). What we're checking here is to make sure the
instrumentation doesn't go south on us. We are not analyzing a
thing with this, all we are doing is checking the instrumentation.
If one of the debonds (debonding just means come off that type of
thing) you'll see it go way up.

Plot 2

Main fuel value downstream skin temps. Same type of thing
except you're downstream of the main fuel valve on the line.
Remember that these are actually taped on the outside of the duct.
They are not measuring the liquid, they are measuring the duct
temperature, the metal temperature. Again you just want to make
sure that one of your pieces of instrumentation doesn't go south
during a test, because the next chance you're going to get to see
it is the beginning of the next test and you'll want to fix it way
before you get it to chill on the next test.

Plot 3

Gox supply line temp. This is the one that's making sure that
the bubble is still here in front of the OPOV - same thing.

I think we will tear through a good part of this package,
because you're going to find that the main theme to this entire
package is redundancy. We check redundancy. That all this thing
is doing is checking multiple channels. OPOV, we've got an A and
B •.. and you're checking to see what is going on here, it's pretty
close it's easily within a half of a percent, no problem.

One thing to say about the OPOV and FPOV A & B. Normally the
controller looks and controls with the A channel, It's got two
bridges coming off that one actuator. It normally uses the A
channel. If the A channel shows a problem, the way the controller
knows that, it knows what it's commanded position is and it can
read the feedback position. If the command and the feedback get
off of each other by 6 percent, the controller declares that
channel is shot, and it will actually come over here and control
on this B channel. If that continues to control within 10 percent
on the B channel, then it's fine - it runs along and is as happy
as can be. At this point when it throws out the A channel, it
declares a FID (failure identification delimiter). It says, "hey,
I'm going over to the B channel." If it fails the B channel by 10
percent it goes into hydraulic lockup, and all that is, it says,
"Forget it, I can't control the valve anymore, I don't have control
of the valve, it's 10 percent off of where I want it to be, lock
up the hydraulics and the valve and let the thing run, and let's
hope to God it stays together."

Q: When it changes channel you'll probably see a shift. (You do
see a shift) How would you know you switched the channels?

A: The first indication is the fid, when we get that quick look,
which is that one page fax sheet, remember it had that section on
there, fids and comments. First thing you do is when you get those
numbers, and you get a bunch of zeros and ones and sometimes you
get the explanation, you look for the explanation, what it is
exactly. Then you can home in and you know what it is at that
point. If not, what you do is actually see these two channels
flip. It's a weird thing to look at, but you'll see the two
running like this, then you fail A, what it will do is clunk and
it will flip. All you will see is this line in between, but all
of a sudden your x's are running on the bottom and your triangles
are running on the top. It's got to do with how the controller
looks at the data. It always looks at it in this A position, so
what it really does is switches the B into the A position and
continues to look at the same position. You will see the system
react to that. For instance, it says the two are half a percent
apart right now, if that half a percent holds true, you'll see it
switch by half a percent.

Plot 5

Page 21

FPOV, again we're looking for redundancy, we have already
looked at the levels, we've looked at trace, we've looked at how
it's reacting and everything else and typically we're ... looking
for redundancy.

P~ot 6

CCV, the same type of thing. Now, this one we point out you
get a little more spread then on the other ones. I have yet to
figure out why, but you always get a little more spread on the CCV
than you do on the other ones. In fact you see the spread get
bigger as you throttle down, that's very normal. You didn't have
a spread here and you do have a spread here so we are thinking that
it is thermally biased.

The CCV is running on a schedule, remember I told you during
main stage there's only two controlling valves the FPOV and OPOV.
The main fuel valve and the main lox valve are full open all the
way during mainstage. The CCV varies dependent on power level,
that's it. If you're at a certain power level, then it's at a
certain position. We've got that schedule if you want it.

It's not controlling inlet conditions, pc, or just anything
else. It's just saying, "Where's my pc reference?" It reads it in
and says, "OK, go to this position with your CCV."

Plot 7

There are dual redundant channels on your MOV, again the same
thing, 6 percent and 10 percent, usually controlling on A. You see
a little bit of change here, notice the small scale - no problem.
It's running full open the whole time.

Plot 8

MFV is the next one, same type of thing: running full open;
small difference here; half a percent of so; no problems. We've
seen in the Past, by the way, with these that come down and come
back up, there's liquid air dripping on that actuator. That's
something to note if it comes back.

Plot 9

This is probably the biggest one in checking the
instrumentation. Remember that your OPOV controls to give the PC
that you want. What you want to do is make sure you're reading PC
correctly, because if you're not, the engine is going to power up
and down to get whatever it thinks the PC is.

The way we do that is we have two PC sensors. Two transducers
that are actually reading the main chamber pressure. They are
approximately 180 degrees apart. Each sensor has a dual bridge,
so we have four main chamber pressure readings. The pids 129, 130,
161, 162. So you've got two pressure transducers with dual
channels readings each. One is identified as A and one identified
as B. You'll see A1, A2, B1, B2. What they do is on the A channel
they take an avera~e of that and on the B channel they take an
average of that. Then, they take an average of the two transducers
and that is what you see when you pull up pid 163, which is pc
average.

This is just taking the reference minus the A average. So
it's looking at "this is where I want to be and this is what I'm
reading." You're looking for spikes and that kind of thing. See
all these? (reference spikes at 17, 27, 41, 52, 65, 167, 217 secs.)
This is the effect of throttle transients. Here you're throttling
up to 104 ... down to 65, 64, 63 .•• 104 .•• 109 ... and here's
your throttle down. The reason these things happen is that when
your engine is sitting at steady state, it's looking at pc
reference and looking at pc on top of each other because it's
making it there. So what happens is, all of a sudden, with pc
ref., you go plunk and you drop it out and it takes the engine a
certain amount of time to realize it and adjust to it. That's why
you see all these individual steps.

Page 21

FPOV, again we're looking for redundancy, we have already
looked at the levels, we've looked at trace, we've looked at how
it's reacting and everything else and typically we're ... looking
for redundancy.

P~ot 6

CCV, the same type of thing. Now, this one we point out you
get a little more spread then on the other ones. I have yet to
figure out why, but you always get a little more spread on the CCV
than you do on the other ones. In fact you see the spread get
bigger as you throttle down, that's very normal. You didn't have
a spread here and you do have a spread here so we are thinking that
it is thermally biased.

The CCV is running on a schedule, remember I told you during
main stage there's only two controlling valves the FPOV and OPOV.
The main fuel valve and the main lox valve are full open all the
way during mainstage. The CCV varies dependent on power level,
that's it. If you're at a certain power level, then it's at a
certain position. We've got that schedule if you want it.

It's not controlling inlet conditions, pc, or just anything
else. It's just saying, "Where's my pc reference?" It reads it in
and says, "OK, go to this position with your CCV."

Plot 7

There are dual redundant channels on your MOV, again the same
thing, 6 percent and 10 percent, usually controlling on A. You see
a little bit of change here, notice the small scale - no problem.
It's running full open the whole time.

Plot 8

MFV is the next one, same type of thing: running full open;
small difference here; half a percent of so; no problems. We've
seen in the Past, by the way, with these that come down and come
back up, there's liquid air dripping on that actuator. That's
something to note if it comes back.

Plot 9

This is probably the biggest one in checking the
instrumentation. Remember that your OPOV controls to give the PC
that you want. What you want to do is make sure you're reading PC
correctly, because if you're not, the engine is going to power up
and down to get whatever it thinks the PC is.

The way we do that is we have two PC sensors. Two transducers
that are actually reading the main chamber pressure. They are
approximately 180 degrees apart. Each sensor has a dual bridge,
so we have four main chamber pressure readings. The pids 129, 130,
161, 162. So you've got two pressure transducers with dual
channels readings each. One is identified as A and one identified
as B. You'll see A1, A2, B1, B2. What they do is on the A channel
they take an avera~e of that and on the B channel they take an
average of that. Then, they take an average of the two transducers
and that is what you see when you pull up pid 163, which is pc
average.

This is just taking the reference minus the A average. So
it's looking at "this is where I want to be and this is what I'm
reading." You're looking for spikes and that kind of thing. See
all these? (reference spikes at 17, 27, 41, 52, 65, 167, 217 secs.)
This is the effect of throttle transients. Here you're throttling
up to 104 ... down to 65, 64, 63 .•• 104 .•• 109 ... and here's
your throttle down. The reason these things happen is that when
your engine is sitting at steady state, it's looking at pc
reference and looking at pc on top of each other because it's
making it there. So what happens is, all of a sudden, with pc
ref., you go plunk and you drop it out and it takes the engine a
certain amount of time to realize it and adjust to it. That's why
you see all these individual steps.

Page 22

So what you're looking for during the steady state portion is
any kind of spikes. You're also looking for drifts; you're looking
for difference from zero. Because difference from zero says one
of your transducers is biased. In other words, if one of your
transducers is biased by 20 psi, then what is going to happen is
the engine is going to power down by 10 psi, because it's rating
the average of the two.

Q: These spikes are always pretty slow?

A: That's how long it takes the engine to get down there and
fully recover. It doesn't look on the pc plot, but that's how long
it actually takes to get down there, and you notice that we're
looking at a pretty small scale when you're looking at 3000 psi
normally on pc.

Plot 10

Same thing except this is the B avg. Again, no differences
here. If you see one of these as 20 psi high, you're going to see
the other 20 psi low because it's averaging the two and using it.

Plot 11

Here's the A1 minus the A2. You can see very small difference
because it's the same transducer. Even in the throttle transients,
you see very small Changes because you've got the dual sensor
that's coming out of the one transducer - it better be the Same.

Q: Do you ever see it reading different?

A: Yes. Sometimes you do because of the way you're processing
the data, or maybe you're dropping liquid air on the sensor. It's
unusual, but we've seen it in the past.

Plot 12

Here's the B1 to B2. Again, what you're looking for,
especially we've seen ones where they've spiked and you'll spike
by 30 psi and the engine will react to it. The engine doesn't know
any better. It's trying to control the pc and it does it. It
moves the OPOV around to try to get it. It doesn't know that it's
spiking or anything else.

We do have disqualification limits on the sensor, I think we
have a 75 psi between channels and a 400 psi overall limit and then
you go into hydraulic lockup. But up to that point, and that is
a big point, it's going to control to it.

With the plotting program that we currently have, you can only
get a 1,000 points on a plot. That's very important because
especially on this parameter on pc you'll have intermediate spiking
you won't see a thing here and if you plot 20 second time slices,
which gives you 1,000 points, you'll see it spiking allover the
place. It's just that you can pick up only 1000 points with this
program. Jean and Jeff have put together a program that works very
well. It gives you every single data point.

Plot 13

Here's the MCC coolant
press. All you're doing is
discharge to turbine inlet.
this duct. That's it.

discharge press. minus the LPFT inlet
measuring from this point, the coolant

This is basically the delta p down

This coolant discharge press, pid 17 has a tendency to drift
in test. Very thermally affected. You'll see this thing drift and
in fact, in a lot of tests, you'll see this thing go negative. You
know right there, that's not reality because if you have negative
delta p, you'll have flow going the other way.

Plot 14

Here is the individual channel to the pc. You can see again

Page 22

So what you're looking for during the steady state portion is
any kind of spikes. You're also looking for drifts; you're looking
for difference from zero. Because difference from zero says one
of your transducers is biased. In other words, if one of your
transducers is biased by 20 psi, then what is going to happen is
the engine is going to power down by 10 psi, because it's rating
the average of the two.

Q: These spikes are always pretty slow?

A: That's how long it takes the engine to get down there and
fully recover. It doesn't look on the pc plot, but that's how long
it actually takes to get down there, and you notice that we're
looking at a pretty small scale when you're looking at 3000 psi
normally on pc.

Plot 10

Same thing except this is the B avg. Again, no differences
here. If you see one of these as 20 psi high, you're going to see
the other 20 psi low because it's averaging the two and using it.

Plot 11

Here's the A1 minus the A2. You can see very small difference
because it's the same transducer. Even in the throttle transients,
you see very small Changes because you've got the dual sensor
that's coming out of the one transducer - it better be the Same.

Q: Do you ever see it reading different?

A: Yes. Sometimes you do because of the way you're processing
the data, or maybe you're dropping liquid air on the sensor. It's
unusual, but we've seen it in the past.

Plot 12

Here's the B1 to B2. Again, what you're looking for,
especially we've seen ones where they've spiked and you'll spike
by 30 psi and the engine will react to it. The engine doesn't know
any better. It's trying to control the pc and it does it. It
moves the OPOV around to try to get it. It doesn't know that it's
spiking or anything else.

We do have disqualification limits on the sensor, I think we
have a 75 psi between channels and a 400 psi overall limit and then
you go into hydraulic lockup. But up to that point, and that is
a big point, it's going to control to it.

With the plotting program that we currently have, you can only
get a 1,000 points on a plot. That's very important because
especially on this parameter on pc you'll have intermediate spiking
you won't see a thing here and if you plot 20 second time slices,
which gives you 1,000 points, you'll see it spiking allover the
place. It's just that you can pick up only 1000 points with this
program. Jean and Jeff have put together a program that works very
well. It gives you every single data point.

Plot 13

Here's the MCC coolant
press. All you're doing is
discharge to turbine inlet.
this duct. That's it.

discharge press. minus the LPFT inlet
measuring from this point, the coolant

This is basically the delta p down

This coolant discharge press, pid 17 has a tendency to drift
in test. Very thermally affected. You'll see this thing drift and
in fact, in a lot of tests, you'll see this thing go negative. You
know right there, that's not reality because if you have negative
delta p, you'll have flow going the other way.

Plot 14

Here is the individual channel to the pc. You can see again

Page 23

this is just another look at is there any spread, this should be
very tight. If you've got a 10 psi spread you've got a problem.

Plot 16

All you see is the redundant channels. This is an average of
the A and the B, 203 and 204, but cads pid (86) here is the
average. The reason that you want to look at these is that this
is what feeds into your fuel flow calculation.

Plot 17

Same thing on the temperature. Here's the temperature A and
B and their average. No problems there.

Plot 18

Lot of the rest of it is redundant. The difference here is
you got a cad.s pid and a facility pid. It kind of sort of
redundant, but not as redundant as the other one. Your looking for
the comparisons.

Remember we lost the HPFP speed on this test. That's going
to be coming up real soon.

Plot 19

Here's the redundancy on the HPFP discharge press.

Plot 20/21

You're doing a double check on the levels and the shifts •..
just to check. the instrumentation. These are all the redundant
channels you have in the system.

Plot 24

Okay, the hot gas pressure. Again you have two facility one
and cads. These are actually measured in different places, so you
see slightly different levels of pressure.

Plot 23

HPOP inlet, same story ... checking for redundancy.

Plot 24

LPOP speed, you'll frequently lose this parameter during
flight, it doesn't hold together very well there is a speed nut
that actually backs out and you loose that a lot.

Plot 25/26/27

HPOP discharge press/preburner pump - we'll skip these because
again they don't tell us anything we don't already know. I'm
looking for one in particular.

Plot 28

Lox dome temp and the ox injection temp: these are measured
in .approximately in the same location, we have always had this
spread and we have never been able to figure out why. It's like
a 2- 2 1/2 degree spread. We tend to believe the facility. From
studies we have done in the past, it tends to be more realistic.

Plot 29

Here's your fuel flow - This is interesting. This is the
engine fuel flow. Both pids are engine fuel flowmeters, but one
is as measured by the engine, that's pid 100, the other one is this
guy as measured by the facility. Same flowmeter on the engine but
one is an engine measurement and one is a facility measurement.

Page 23

this is just another look at is there any spread, this should be
very tight. If you've got a 10 psi spread you've got a problem.

Plot 16

All you see is the redundant channels. This is an average of
the A and the B, 203 and 204, but cads pid (86) here is the
average. The reason that you want to look at these is that this
is what feeds into your fuel flow calculation.

Plot 17

Same thing on the temperature. Here's the temperature A and
B and their average. No problems there.

Plot 18

Lot of the rest of it is redundant. The difference here is
you got a cad.s pid and a facility pid. It kind of sort of
redundant, but not as redundant as the other one. Your looking for
the comparisons.

Remember we lost the HPFP speed on this test. That's going
to be coming up real soon.

Plot 19

Here's the redundancy on the HPFP discharge press.

Plot 20/21

You're doing a double check on the levels and the shifts •..
just to check. the instrumentation. These are all the redundant
channels you have in the system.

Plot 24

Okay, the hot gas pressure. Again you have two facility one
and cads. These are actually measured in different places, so you
see slightly different levels of pressure.

Plot 23

HPOP inlet, same story ... checking for redundancy.

Plot 24

LPOP speed, you'll frequently lose this parameter during
flight, it doesn't hold together very well there is a speed nut
that actually backs out and you loose that a lot.

Plot 25/26/27

HPOP discharge press/preburner pump - we'll skip these because
again they don't tell us anything we don't already know. I'm
looking for one in particular.

Plot 28

Lox dome temp and the ox injection temp: these are measured
in .approximately in the same location, we have always had this
spread and we have never been able to figure out why. It's like
a 2- 2 1/2 degree spread. We tend to believe the facility. From
studies we have done in the past, it tends to be more realistic.

Plot 29

Here's your fuel flow - This is interesting. This is the
engine fuel flow. Both pids are engine fuel flowmeters, but one
is as measured by the engine, that's pid 100, the other one is this
guy as measured by the facility. Same flowmeter on the engine but
one is an engine measurement and one is a facility measurement.

Page 24

·Plot 30

You've got your individual channels of fuel flow. In this
case you only have one fuel flow discharge pressure Let me
skip a bunch of these because it's just the same story over and
over.

Q: When you calibrate the engine fuel flowmeter, do you use this
722 ..• or do you use pid 100?

A: You use pid 100. Well, you calibrate this flowmeter to what
is up there. You don't use 722. You use 100 because you want the
controller to be thinking the right thing. Usually, they're very
close, but if there is a difference, you use the cads pid.

(skip plots 30 - 32)

Plot 33

Lox flowmeter - this guy here. Here is a flowmeter discharge
pressure which is higher up in the line, this is a lox inlet
pressure, see how it's spread out here and it's nice through the
rest of it and we start throttling down. This is not throttling
down but you see the effects of throttling down in here because you
have a different size duct and different static effects at that
point.

Q: That from the inconel, titanium switch?

A: No, that's from throttling down. This is the engine inlet
pressure, this is actually from throttling down in two places, one
is from the engine inlet and the other is up the line where you
have the facility flowmeter. At that point you have a much bigger
duct than you have here and you are measuring static pressure. All
our pressures in the system are static. There is not one total
pressure in the system. In measuring the static pressure you'll
see a much bigger effect at the smaller duct diameter than at the
bigger duct diameter. Because you have a bigger velocity change
and that's what you are seeing there.

(skip plots 33 and 34)

Plot 35

You've got your vertical load cells. You've got three
vertical load cells. We use them primarily in the system analysis
when you have something that you think is affecting the chamber
pressure. If we have chamber pressure anomaly, we want to know if
it's real - go to the load cell and see if the thrust has changing.
A simple way to check a chamber pressure anomaly.

More load cells, more load cells.

Q: Does everyone know what a load cell is?

A load cell is a giant overgrown spring gauge. It's what you
use to measure thrust.

GRSHUT2 (Shutdown performance)

Shutdown-we have two packages in shutdown. First one is this
one. The other is 2-sigma. I don't have that one, ..• but it's
the same type of stuff.

Plot 1

Cutoff times and all these times are referenced from cutoff
on a test. The plotting system allow us to go ahead and line up
different test on their cutoff. We frequently cutoff from RPL,
which is 3,006 chamber pressure, we come down and ... just like
start to look for repeatability.

We see our pressure come down nicely. No problems there. We

Page 24

·Plot 30

You've got your individual channels of fuel flow. In this
case you only have one fuel flow discharge pressure Let me
skip a bunch of these because it's just the same story over and
over.

Q: When you calibrate the engine fuel flowmeter, do you use this
722 ..• or do you use pid 100?

A: You use pid 100. Well, you calibrate this flowmeter to what
is up there. You don't use 722. You use 100 because you want the
controller to be thinking the right thing. Usually, they're very
close, but if there is a difference, you use the cads pid.

(skip plots 30 - 32)

Plot 33

Lox flowmeter - this guy here. Here is a flowmeter discharge
pressure which is higher up in the line, this is a lox inlet
pressure, see how it's spread out here and it's nice through the
rest of it and we start throttling down. This is not throttling
down but you see the effects of throttling down in here because you
have a different size duct and different static effects at that
point.

Q: That from the inconel, titanium switch?

A: No, that's from throttling down. This is the engine inlet
pressure, this is actually from throttling down in two places, one
is from the engine inlet and the other is up the line where you
have the facility flowmeter. At that point you have a much bigger
duct than you have here and you are measuring static pressure. All
our pressures in the system are static. There is not one total
pressure in the system. In measuring the static pressure you'll
see a much bigger effect at the smaller duct diameter than at the
bigger duct diameter. Because you have a bigger velocity change
and that's what you are seeing there.

(skip plots 33 and 34)

Plot 35

You've got your vertical load cells. You've got three
vertical load cells. We use them primarily in the system analysis
when you have something that you think is affecting the chamber
pressure. If we have chamber pressure anomaly, we want to know if
it's real - go to the load cell and see if the thrust has changing.
A simple way to check a chamber pressure anomaly.

More load cells, more load cells.

Q: Does everyone know what a load cell is?

A load cell is a giant overgrown spring gauge. It's what you
use to measure thrust.

GRSHUT2 (Shutdown performance)

Shutdown-we have two packages in shutdown. First one is this
one. The other is 2-sigma. I don't have that one, ..• but it's
the same type of stuff.

Plot 1

Cutoff times and all these times are referenced from cutoff
on a test. The plotting system allow us to go ahead and line up
different test on their cutoff. We frequently cutoff from RPL,
which is 3,006 chamber pressure, we come down and ... just like
start to look for repeatability.

We see our pressure come down nicely. No problems there. We

Page 25
see most of the major parameters in the engine will come down in
the first 6-8 seconds, something like that.

Plot 2

Here are our fuel turbine temps, and you can see even with the
different fuel pumps coming down nicely, no problem; very
repeatable ..

One thing we look for is something called a cracked frisbee.
A frisbee is a diffuser and a lox dome. The lox comes into the
dome, it hit the diffuser and spread around evenly. The frisbee
is hallow except for some ribs inside of it. We formed cracks on
the bottom of the frisbee and the lox gets driven up into through
those cracks and into the cavities that are in the frisbee between
the ribs. So basically, you've got a lox storage area.

What happens is in post shutdown the pressure drops and the
preburner allows the lox to escape and it dribbles out and you see
this .temperature going up. It will swing up like this, This one
doesn't have a cracked frisbee, the ones that do, you'll see them
come up much more quickly. In fact we have a criteria for cracked
frisbee: from 5-10 second after shutdown, if the fuel turbine temp
in either channel comes up 60 degrees a second or greater, we
declare a cracked frisbee. You can go in with a boroscope and
confirm it. We have a program that determines that too.

Q: Is this for both preburners?

A: No, Just for the fuel preburner. The lox preburner also has
a frisbee, but it's much more sturdy, thick and it doesn't crack.

Q: What's the blip there (at about 3 secs.) ?

A: It's a typical characteristic of the way the engine shuts
down.

Plot 3

This is the same thing for the B channel. What you can look
for in these test also, if this temperature come way down here,
down below 200, it's an indication that some kind of a fuel leak
in the system. Recently, we saw several of those on a A1 test
where the main fuel valve was stuck open.

The main fuel valve ••. stuck open and allowed fuel to
continue to come through there and we saw that one of the primary
places you saw was these turbine temps which dropped below 200.

Plot 4/5

Lox turbine temps same kind of thing, you see it will come
down no problem here. Again, if we're really looking for
anomalies, we might analyze this (appr. 1-4 secs); I think this
is when you go off in leakage on the OPov, but I'm not sure, and
all that means is that you've got one with a little more leakage
or little less leakage that normal. But no problems.

Plot 6

High pressure fuel pumps speed and what we all notice about
this is what we remembered from before is that it ain't there -
~t's down there. Again we have the other speed. Remember on this
test just as an example, the post test hardware inspection showed
it was very hard to turn this high pressure pump.

In that case, you would be very interested in "How did this
thing power down?" If it was evident in the test, you would expect
it to power down even sooner, maybe come in at 10-11 or 12 seconds
before it shutdown. On this test I checked the CADS pid and you
couldn't see it - it shutdown way out here. There was no
indication in the data of the high torque, which means we may have
caused the damage after the shutdown or well in to the shutdown.

Page 25
see most of the major parameters in the engine will come down in
the first 6-8 seconds, something like that.

Plot 2

Here are our fuel turbine temps, and you can see even with the
different fuel pumps coming down nicely, no problem; very
repeatable ..

One thing we look for is something called a cracked frisbee.
A frisbee is a diffuser and a lox dome. The lox comes into the
dome, it hit the diffuser and spread around evenly. The frisbee
is hallow except for some ribs inside of it. We formed cracks on
the bottom of the frisbee and the lox gets driven up into through
those cracks and into the cavities that are in the frisbee between
the ribs. So basically, you've got a lox storage area.

What happens is in post shutdown the pressure drops and the
preburner allows the lox to escape and it dribbles out and you see
this .temperature going up. It will swing up like this, This one
doesn't have a cracked frisbee, the ones that do, you'll see them
come up much more quickly. In fact we have a criteria for cracked
frisbee: from 5-10 second after shutdown, if the fuel turbine temp
in either channel comes up 60 degrees a second or greater, we
declare a cracked frisbee. You can go in with a boroscope and
confirm it. We have a program that determines that too.

Q: Is this for both preburners?

A: No, Just for the fuel preburner. The lox preburner also has
a frisbee, but it's much more sturdy, thick and it doesn't crack.

Q: What's the blip there (at about 3 secs.) ?

A: It's a typical characteristic of the way the engine shuts
down.

Plot 3

This is the same thing for the B channel. What you can look
for in these test also, if this temperature come way down here,
down below 200, it's an indication that some kind of a fuel leak
in the system. Recently, we saw several of those on a A1 test
where the main fuel valve was stuck open.

The main fuel valve ••. stuck open and allowed fuel to
continue to come through there and we saw that one of the primary
places you saw was these turbine temps which dropped below 200.

Plot 4/5

Lox turbine temps same kind of thing, you see it will come
down no problem here. Again, if we're really looking for
anomalies, we might analyze this (appr. 1-4 secs); I think this
is when you go off in leakage on the OPov, but I'm not sure, and
all that means is that you've got one with a little more leakage
or little less leakage that normal. But no problems.

Plot 6

High pressure fuel pumps speed and what we all notice about
this is what we remembered from before is that it ain't there -
~t's down there. Again we have the other speed. Remember on this
test just as an example, the post test hardware inspection showed
it was very hard to turn this high pressure pump.

In that case, you would be very interested in "How did this
thing power down?" If it was evident in the test, you would expect
it to power down even sooner, maybe come in at 10-11 or 12 seconds
before it shutdown. On this test I checked the CADS pid and you
couldn't see it - it shutdown way out here. There was no
indication in the data of the high torque, which means we may have
caused the damage after the shutdown or well in to the shutdown.

Page 26

Plot 7

The HPOP discharge pressure. Again no problem. Shutting down
normally.

Plot 8

Fuel pump discharge press. Same kind of thing. Here's where
(2-3 secs) where the pump actually goes into a stall region here ..
So it stays up and comes down here. Now the valves ... all coming
down and shutting down in this region (no ref.) So all you're
doing is spinning down the pumps and basically you're doing that
with no fuel or lox going through the engine. The valve's already
closed.

Plot 9

Here's your LPFP speed. Again, you see very repeatable. You
see a little bit more energy in the system here (approx .• 75 - 1.6
secs), we saw that in the previous plot, but we come down nice and
repeatable.

Plot 10

Most of these have backup cads parameters which we already
saw. Again, remember the speed was up a little (previous charts),
a little more energy coming out of there (.75 - 1.6 secs.)

Plot 11

A lot of these, on the speeds, what we are looking for is
called rotor grab, which is physically you grab the rotor with the
bearing at shutdown you can see it drop down quickly here (ex., by
5 secs.), you don't see a problem here (on this plot).

On these, you're looking for comparisons of that sort. If you
really want an explanation of what blips mean, I'll find someone
to come up and give us an explanation.

Plot 12

Again, very repeatable; no problems.

If you get into a situation where you have a problem, we'll
note it and we'll do the same kind of analysis we did on the
mainstage, basically trying to track it down into other parts of
the engine. In the shutdown phase, especially, it's much more
difficult to do that because you don't have closed loop control on
anything. When you have closed loop control you have a handle or
tool that says "hey, I should have been doing this thing, and in
fact I was doing that with the valves", or whatever. With this you
don't have that, because a lot of this is open loop control.

Q: So from shutdown, from that point is everything strictly open
loop control'?

A: No. What you have is scheduled, and for instance ... The
FPOV isn't allowed to close until of OPOV is 12 percent below it -

those types of things. From there on you run along some fixed
schedules. It's very repeatable in terms of valve positions.

The biggest driver on the differences in the valve positions
in shutdown is where you start - where you come out of mainstage
with the valves. One basic thing to remember on start/shutdown is
you want to start fuel rich and you want shutdown fuel rich. What
that means is that you start the fuel side first and you shutdown
the lox side first. That keeps the engine cool, keeps the mixture
ratio down and keeps the lox from eating things.

Plot 13

Skipped

Plot 14

Page 26

Plot 7

The HPOP discharge pressure. Again no problem. Shutting down
normally.

Plot 8

Fuel pump discharge press. Same kind of thing. Here's where
(2-3 secs) where the pump actually goes into a stall region here ..
So it stays up and comes down here. Now the valves ... all coming
down and shutting down in this region (no ref.) So all you're
doing is spinning down the pumps and basically you're doing that
with no fuel or lox going through the engine. The valve's already
closed.

Plot 9

Here's your LPFP speed. Again, you see very repeatable. You
see a little bit more energy in the system here (approx .• 75 - 1.6
secs), we saw that in the previous plot, but we come down nice and
repeatable.

Plot 10

Most of these have backup cads parameters which we already
saw. Again, remember the speed was up a little (previous charts),
a little more energy coming out of there (.75 - 1.6 secs.)

Plot 11

A lot of these, on the speeds, what we are looking for is
called rotor grab, which is physically you grab the rotor with the
bearing at shutdown you can see it drop down quickly here (ex., by
5 secs.), you don't see a problem here (on this plot).

On these, you're looking for comparisons of that sort. If you
really want an explanation of what blips mean, I'll find someone
to come up and give us an explanation.

Plot 12

Again, very repeatable; no problems.

If you get into a situation where you have a problem, we'll
note it and we'll do the same kind of analysis we did on the
mainstage, basically trying to track it down into other parts of
the engine. In the shutdown phase, especially, it's much more
difficult to do that because you don't have closed loop control on
anything. When you have closed loop control you have a handle or
tool that says "hey, I should have been doing this thing, and in
fact I was doing that with the valves", or whatever. With this you
don't have that, because a lot of this is open loop control.

Q: So from shutdown, from that point is everything strictly open
loop control'?

A: No. What you have is scheduled, and for instance ... The
FPOV isn't allowed to close until of OPOV is 12 percent below it -

those types of things. From there on you run along some fixed
schedules. It's very repeatable in terms of valve positions.

The biggest driver on the differences in the valve positions
in shutdown is where you start - where you come out of mainstage
with the valves. One basic thing to remember on start/shutdown is
you want to start fuel rich and you want shutdown fuel rich. What
that means is that you start the fuel side first and you shutdown
the lox side first. That keeps the engine cool, keeps the mixture
ratio down and keeps the lox from eating things.

Plot 13

Skipped

Plot 14

page 27

The lox preburner PCi again you can see it come down nicely.
This is where we turn on the preburner purges. Let's look at

next plot.

Plot 15

Right around 2 sec (1.8 sec) we turn on the purges - see
effect on preburner pc. This is the preburner shutdown purge we
were talking about on prestart. On prestart we were purging these
domes with pneumatics - we're doing that again to drive all that
out of there. What we initially do we come along here and drive
the pressure up, this is now reading helium pressure. We have a
check valve in the system, it's not on this chart, it's on the peA
schematic but as it opens here, you see it opening and allowing the
pressure to come down to the chamber pressure and at this point we
basically choke and you can see it come along. This (triangle
right around 14 sec.) is an effect of a post shutdown purge - on
the POGO. Then you stop purging the preburner. You'll see the
same type of thing on the lox preburner on your next chart.

PLOT 16

Here's the OPB shutdown purge pressure. You come along,
you're running, you go with the pc and then you sit here purging,
you take a little bit of that helium and you go and purge the pogo,
you hit the pogo with the first charge and you turn the purges off
in 15 seconds. This is at 13.5 seconds. Nothing post shutdown is
done with nitrogen. Everything is done with helium. Reason being,
on flight you don't carry any nitrogen, just helium. On a ground
test, way after post shutdown you will switch over from helium to
nitrogen on the intermediate seal. WAY after shutdown - helium is
expensive, nitrogen is cheap. Everything in the first 20 - 30
second time frame is done with helium, nothing with nitrogen.

PLOT 17

Here's that POGO precharge. You've got a charge here (about
1.8 sec), you actually don't have the data out there but you have
a charge out there. You can see come down here and you charge that
thing, it keeps this ullage in here from collapsing. Again,
prestart we did a charge, during start we did a charge, here on
shutdown we do a charge. Then you come in here and follow the LPOP
discharge on down.

PLOT 18

Anti-flood valve position. The anti-flood valve is down here
in this line leading from the lpop discharge - the valve here is
a pop-it valve that pops at about 140 psi and allows flows through
here. This is just the opposite situation on shutdown, the hpop
(should this be lpop) discharge gets down below 140 psi then
closes. As a .side point, we have had cases just recently where you
will actually see this guy start to open again, reason being we
throw firex (1) on the engine, firex is a system we have to put out
fires, basically a nozzle spray system that is all around the
engine. We have had some instances recently where we've detected
fires post shutdown - you spray the engine and what happens is the
lox that's lock up in this line (the MOV is closed, the two
preburner valves are closed and the lox is locked up in this line)
and when you hit it with that firex it warms it up instantly. It
expands the lox and builds up the pressure and opens the anti­
flood valve again. So we've seen cases on shutdown where this
valve opens back up again.

PLOT 19

The high-pop intermediate pressure, again you can see going
well out past the test and it keeps going. It is all being fed with
helium.

PLOT 20

Here's the lox bleed valve, the fuel bleed valve ... all the

page 27

The lox preburner PCi again you can see it come down nicely.
This is where we turn on the preburner purges. Let's look at

next plot.

Plot 15

Right around 2 sec (1.8 sec) we turn on the purges - see
effect on preburner pc. This is the preburner shutdown purge we
were talking about on prestart. On prestart we were purging these
domes with pneumatics - we're doing that again to drive all that
out of there. What we initially do we come along here and drive
the pressure up, this is now reading helium pressure. We have a
check valve in the system, it's not on this chart, it's on the peA
schematic but as it opens here, you see it opening and allowing the
pressure to come down to the chamber pressure and at this point we
basically choke and you can see it come along. This (triangle
right around 14 sec.) is an effect of a post shutdown purge - on
the POGO. Then you stop purging the preburner. You'll see the
same type of thing on the lox preburner on your next chart.

PLOT 16

Here's the OPB shutdown purge pressure. You come along,
you're running, you go with the pc and then you sit here purging,
you take a little bit of that helium and you go and purge the pogo,
you hit the pogo with the first charge and you turn the purges off
in 15 seconds. This is at 13.5 seconds. Nothing post shutdown is
done with nitrogen. Everything is done with helium. Reason being,
on flight you don't carry any nitrogen, just helium. On a ground
test, way after post shutdown you will switch over from helium to
nitrogen on the intermediate seal. WAY after shutdown - helium is
expensive, nitrogen is cheap. Everything in the first 20 - 30
second time frame is done with helium, nothing with nitrogen.

PLOT 17

Here's that POGO precharge. You've got a charge here (about
1.8 sec), you actually don't have the data out there but you have
a charge out there. You can see come down here and you charge that
thing, it keeps this ullage in here from collapsing. Again,
prestart we did a charge, during start we did a charge, here on
shutdown we do a charge. Then you come in here and follow the LPOP
discharge on down.

PLOT 18

Anti-flood valve position. The anti-flood valve is down here
in this line leading from the lpop discharge - the valve here is
a pop-it valve that pops at about 140 psi and allows flows through
here. This is just the opposite situation on shutdown, the hpop
(should this be lpop) discharge gets down below 140 psi then
closes. As a .side point, we have had cases just recently where you
will actually see this guy start to open again, reason being we
throw firex (1) on the engine, firex is a system we have to put out
fires, basically a nozzle spray system that is all around the
engine. We have had some instances recently where we've detected
fires post shutdown - you spray the engine and what happens is the
lox that's lock up in this line (the MOV is closed, the two
preburner valves are closed and the lox is locked up in this line)
and when you hit it with that firex it warms it up instantly. It
expands the lox and builds up the pressure and opens the anti­
flood valve again. So we've seen cases on shutdown where this
valve opens back up again.

PLOT 19

The high-pop intermediate pressure, again you can see going
well out past the test and it keeps going. It is all being fed with
helium.

PLOT 20

Here's the lox bleed valve, the fuel bleed valve ... all the

Page 28

ones we looked at from start enable to engine start. Saw the two
bleed valves close and the POGO open - this is just the opposite.

We have plots that are typically used in a presentation to the
chief engineer.

Page 28

ones we looked at from start enable to engine start. Saw the two
bleed valves close and the POGO open - this is just the opposite.

We have plots that are typically used in a presentation to the
chief engineer.

Two parts of gains:

ERIK SANDER
Gains Analysis

5-1-92

The controller (What is it doing in tenns of controlling the engine.)
The physics of the engine. (If a pressure changes by x amount and has a

certain resistances then pressure y will change by some amount. If this speed
goes up I would expect this temperature to go up. This type of thing.)

THE CONTROLLER.
· The controller only has a couple of handles on how the engine works.
· If you can understand these you can understand why things change in the
engine.
· Nothing magical about it. A lot of it is just flow, heat transfer and physics.
· Understanding how the controller reacts to certain situations that are going
on in the engine is really the bottom line of gains.
· See Erik's book, Controller/Software.

Mainstage.
· Nonnal operation. The controller is in control of the engine. Does this with
5 valves. 2 are full open during mainstage (MOV and MFV). Full open at all
power levels in mainstage The CCV varies with power level. (See plot of
schedule). It says at this power level you will be at this CCV position. It is a
function of power level.
· Be careful. . Testing with two CCV schedules at present. One is the Phase 2
schedule and the other is the Phase 2+. The 2+ is a new design on the
powerhead which RKD has developed and we have started testing in the last
year or so. A redesign of the powerhead which allows a more stable flow in
the main injector area.
· It does affect CCV schedule. For 2+ we must have a more closed schedule.
· CADS (Control and Data Simulator) simulates a computer on board the orbiter.
It sends Pc reference signal to the controller. The controller does not generate
Pc reference signals. The CADS sends a signal that tells the controller at this
time I want to be at this Pc level(main chamber). The controller will make the
engine operate at that Pc level if it can.
· Electrical Lockup.

· A fixed orifice engine. We are not modulating the valves up and down to
try to control anything.

· If certain criteria are violated we will go into a phase called electrical
lockup The controller will send electrical signals to the valve actuator to hold
the valves at a given position. Still using hydraulics.

· The way the controller works is that it is controlling the engine with 2
preburner valves. The CCV does move when you are throttling but all it is
looking at is Pc. .

· During • electrical lockup the controller sends a signal that says using
hydraulics hold that valve to that given position. For example, my Pc has
deviated from my steady state value by some amount. If the controller is
trying to control and Pc gets away from the reference point by 75 psi it says I
have a big time problem. Electrically hold the valves where they are.

Two parts of gains:

ERIK SANDER
Gains Analysis

5-1-92

The controller (What is it doing in tenns of controlling the engine.)
The physics of the engine. (If a pressure changes by x amount and has a

certain resistances then pressure y will change by some amount. If this speed
goes up I would expect this temperature to go up. This type of thing.)

THE CONTROLLER.
· The controller only has a couple of handles on how the engine works.
· If you can understand these you can understand why things change in the
engine.
· Nothing magical about it. A lot of it is just flow, heat transfer and physics.
· Understanding how the controller reacts to certain situations that are going
on in the engine is really the bottom line of gains.
· See Erik's book, Controller/Software.

Mainstage.
· Nonnal operation. The controller is in control of the engine. Does this with
5 valves. 2 are full open during mainstage (MOV and MFV). Full open at all
power levels in mainstage The CCV varies with power level. (See plot of
schedule). It says at this power level you will be at this CCV position. It is a
function of power level.
· Be careful. . Testing with two CCV schedules at present. One is the Phase 2
schedule and the other is the Phase 2+. The 2+ is a new design on the
powerhead which RKD has developed and we have started testing in the last
year or so. A redesign of the powerhead which allows a more stable flow in
the main injector area.
· It does affect CCV schedule. For 2+ we must have a more closed schedule.
· CADS (Control and Data Simulator) simulates a computer on board the orbiter.
It sends Pc reference signal to the controller. The controller does not generate
Pc reference signals. The CADS sends a signal that tells the controller at this
time I want to be at this Pc level(main chamber). The controller will make the
engine operate at that Pc level if it can.
· Electrical Lockup.

· A fixed orifice engine. We are not modulating the valves up and down to
try to control anything.

· If certain criteria are violated we will go into a phase called electrical
lockup The controller will send electrical signals to the valve actuator to hold
the valves at a given position. Still using hydraulics.

· The way the controller works is that it is controlling the engine with 2
preburner valves. The CCV does move when you are throttling but all it is
looking at is Pc. .

· During • electrical lockup the controller sends a signal that says using
hydraulics hold that valve to that given position. For example, my Pc has
deviated from my steady state value by some amount. If the controller is
trying to control and Pc gets away from the reference point by 75 psi it says I
have a big time problem. Electrically hold the valves where they are.

Hydraulic Lockup.
· A fixed orifice engine.
· Go into hydraulic lockup if we lose hydraulics. The actuator physically
configures itself so the hydraulics are locked into the opening and closing
pistons of the actuator. The valve is hydraulic locked up. It has cavItIes on
either side of the pistons. The hydraulics are stuck in there and you can not
move the valve.
· The controller does not immediately know that the engine is in hydraulic
lockup. It has no pressure access to the hydraulic leg. The controller thinks it
is controlling the engine but in reality the actuator is in hydraulic lockup.
There is a little valve in the actuator that when you take the pressure off of
one side. It will physically shuttle over and lock the hydraulics into the
actuator. The actuator is physically locked up but the controller doesn't know.
It thinks it is still controlling just fine. What eventually happens is that the
actuator will drift off because we don't have a perfect seal on hydraulics.
When actual valve position gets 6% from the controlled position the controller
throws a FlO.
· (TALKING AS THE CONTROLLER). I have a limit of 6% . I am monitoring the
feedback from the valve positions (A and B channel). The A channel says I
am 6% off my command so therefore .I don't trust it any more or I say I don't
have command of the A channel any more. I switch to the B channel. I now
open up my tolerance to 10%. I am now on the B channel and I say now if I
am within 10% of my commanded position I still think I am in control. When
the B channel gets over by 10% I give up. I'm out of control. I obviously can
not control the valves and I declare hydraulic lockup. I throw the FlO for the
second channel that says I am in hydraulic lockup.
· When it declares hydraulic lockup nothing changes in the engine because it
has already lost control and just doesn't know it. We pulled the hydraulics 30-
50 seconds earlier. It visually takes this long for the valves to drift out.
· If you attempt a throttle transient right after you do hydraulic lockup it will
know about it right then. Because you change the Pc reference command you
will change the valve position command and you will very quickly get the
delta between where you are and where the command is. Normally we see it
because of the position drift off while the command is holding steady. But
here we moved the command.
· When you go into hydraulic lockup you shut the engine down with
pneumatics (He). In hydraulic shutdown what you do is electrically contraIl
the hydraulics going into the valves to give you these kinds of valve positions
to shut down the engine.
· Always shut down fuel rich to protect the engine.
· The controller has no control once it goes into hydraulic lockup.
· The engine has no hydraulics which is the arm between the controller and
the engine.

The Controller OpeninJ: a valve
· The controller sends an electrical signal to the actuator that says Open!
· That translates to the actuator as a little wand with a coil on either side.
When it says Open! it energizes this side and pulls the wand over. The
hydraulics are coming into that area and will change the way the hydraulics
are going through different passages. That is what physically moves the
valve. You make it go through passage B rather than passage A. If you don't
have the hydraulics the wand moves over but there is no hydraulics going
through so you have lost your control of the valve. During hydraulic lockup

Hydraulic Lockup.
· A fixed orifice engine.
· Go into hydraulic lockup if we lose hydraulics. The actuator physically
configures itself so the hydraulics are locked into the opening and closing
pistons of the actuator. The valve is hydraulic locked up. It has cavItIes on
either side of the pistons. The hydraulics are stuck in there and you can not
move the valve.
· The controller does not immediately know that the engine is in hydraulic
lockup. It has no pressure access to the hydraulic leg. The controller thinks it
is controlling the engine but in reality the actuator is in hydraulic lockup.
There is a little valve in the actuator that when you take the pressure off of
one side. It will physically shuttle over and lock the hydraulics into the
actuator. The actuator is physically locked up but the controller doesn't know.
It thinks it is still controlling just fine. What eventually happens is that the
actuator will drift off because we don't have a perfect seal on hydraulics.
When actual valve position gets 6% from the controlled position the controller
throws a FlO.
· (TALKING AS THE CONTROLLER). I have a limit of 6% . I am monitoring the
feedback from the valve positions (A and B channel). The A channel says I
am 6% off my command so therefore .I don't trust it any more or I say I don't
have command of the A channel any more. I switch to the B channel. I now
open up my tolerance to 10%. I am now on the B channel and I say now if I
am within 10% of my commanded position I still think I am in control. When
the B channel gets over by 10% I give up. I'm out of control. I obviously can
not control the valves and I declare hydraulic lockup. I throw the FlO for the
second channel that says I am in hydraulic lockup.
· When it declares hydraulic lockup nothing changes in the engine because it
has already lost control and just doesn't know it. We pulled the hydraulics 30-
50 seconds earlier. It visually takes this long for the valves to drift out.
· If you attempt a throttle transient right after you do hydraulic lockup it will
know about it right then. Because you change the Pc reference command you
will change the valve position command and you will very quickly get the
delta between where you are and where the command is. Normally we see it
because of the position drift off while the command is holding steady. But
here we moved the command.
· When you go into hydraulic lockup you shut the engine down with
pneumatics (He). In hydraulic shutdown what you do is electrically contraIl
the hydraulics going into the valves to give you these kinds of valve positions
to shut down the engine.
· Always shut down fuel rich to protect the engine.
· The controller has no control once it goes into hydraulic lockup.
· The engine has no hydraulics which is the arm between the controller and
the engine.

The Controller OpeninJ: a valve
· The controller sends an electrical signal to the actuator that says Open!
· That translates to the actuator as a little wand with a coil on either side.
When it says Open! it energizes this side and pulls the wand over. The
hydraulics are coming into that area and will change the way the hydraulics
are going through different passages. That is what physically moves the
valve. You make it go through passage B rather than passage A. If you don't
have the hydraulics the wand moves over but there is no hydraulics going
through so you have lost your control of the valve. During hydraulic lockup

its not important what the controller is trying to do because it doesn't have the
ability to do it.
· During electrical lock up it is different because we don't drift the valves
because electrically you are holding at a given position.
· More hydraulic lock-up test are done than electrical lock-up.
· Electrical lock-up tests have been done and been shown that it can be done.
· In hydraulic lock up we have problems with the valves drifting.

Normal Operatjon:
· Two handles that the controller has on the engine. (OPOV and FPOV).

OPOV
Controls the PC.
Modulating it increase/decreases lox going into the lox preburner.
That increases/decreases the amount of turbine energy which is
directly linked to the pump.
As the OPOV opens the pump speeds up.

· Speeding up the pump drags in more lox.
· The OPOV can control the MCC Pc by controlling the amount of
· Pressure· that is driving lox into the chamber.

FPOV
Controls the fuel flow.
Fuel also goes into the chamber to provide pressure.
Controls the amount of oxygen going into the fuel prebumer.
Controls the amount of energy that is available to the turbine that
translates into the pump.
As the FPOV opens the pump speeds up.
More fuel flow is dragged past the flow meter.

Mixture Ratio:
Should be 6.011 at the engine inlet.
At all power levels we want this ratio.
Mixture ratio is the mass of the lox over the mass of the fuel.
Do not have a lox flow meter which the engine recognizes.
Each chamber injector is different. Each has its own efficiency. To get a

certain amount of MCC pressure will require different amounts of lox and fuel.
If the fuel flow can be set at some point in the engine where 6.0 II times that
amount of lox flow will give us the right chamber pressure then we have met
all our conditions.

If a given amount of fuel flow can be set (for example at 104% PL 154 lbs of
fuel flow) with the chamber and injector efficiency that is on a engine such
that 6.011 times of lox flow combined with the fuel flow dumped into the
chamber will give you the right amount of pressure then the conditions have
been met. Condition of Pc will always me met. The OPOV is opening or closing
to make that.

If the engine has full control it will always meet the fuel flow requirement
and the Pc requirement.. Pc will equal to Pc reference and fuel flow will
detennined by the C2 schedule(see Erik's book).

/t3-{or

its not important what the controller is trying to do because it doesn't have the
ability to do it.
· During electrical lock up it is different because we don't drift the valves
because electrically you are holding at a given position.
· More hydraulic lock-up test are done than electrical lock-up.
· Electrical lock-up tests have been done and been shown that it can be done.
· In hydraulic lock up we have problems with the valves drifting.

Normal Operatjon:
· Two handles that the controller has on the engine. (OPOV and FPOV).

OPOV
Controls the PC.
Modulating it increase/decreases lox going into the lox preburner.
That increases/decreases the amount of turbine energy which is
directly linked to the pump.
As the OPOV opens the pump speeds up.

· Speeding up the pump drags in more lox.
· The OPOV can control the MCC Pc by controlling the amount of
· Pressure· that is driving lox into the chamber.

FPOV
Controls the fuel flow.
Fuel also goes into the chamber to provide pressure.
Controls the amount of oxygen going into the fuel prebumer.
Controls the amount of energy that is available to the turbine that
translates into the pump.
As the FPOV opens the pump speeds up.
More fuel flow is dragged past the flow meter.

Mixture Ratio:
Should be 6.011 at the engine inlet.
At all power levels we want this ratio.
Mixture ratio is the mass of the lox over the mass of the fuel.
Do not have a lox flow meter which the engine recognizes.
Each chamber injector is different. Each has its own efficiency. To get a

certain amount of MCC pressure will require different amounts of lox and fuel.
If the fuel flow can be set at some point in the engine where 6.0 II times that
amount of lox flow will give us the right chamber pressure then we have met
all our conditions.

If a given amount of fuel flow can be set (for example at 104% PL 154 lbs of
fuel flow) with the chamber and injector efficiency that is on a engine such
that 6.011 times of lox flow combined with the fuel flow dumped into the
chamber will give you the right amount of pressure then the conditions have
been met. Condition of Pc will always me met. The OPOV is opening or closing
to make that.

If the engine has full control it will always meet the fuel flow requirement
and the Pc requirement.. Pc will equal to Pc reference and fuel flow will
detennined by the C2 schedule(see Erik's book).

/t3-{or

Example.
. My chamber is so efficient. I am going to set this amount of fuel flow. We
run the engine and it says I need to set Pc so 5.9 times of lox comes in. We have
met out condition for Pc but we have not met our mixture ratio which is now at
5.9. We crank down the fuel flow a little through C2. We still have the same
chamber efficiency and the lox flow comes up a little. We now have Pc and a
6.011 mixture ratio. Bingo! The whole essence of getting the right mixture
ration is setting the right amount of fuel flow. The lox flow is going to fall out
to give you the right amount of chamber pressure.

How the En~ine Works.
We have a fuel flow meter in the engine. It is between the LPFP discharge

and the HPFP inlet. It is very important to know it is in the duct. because when
we change the duct we change the flowmeter. Each flowmeter has its own
characteristics. This translates to us as Kf. which is a software constant. All it
does is translate the engine flowmeter speed into volumetric flow. This is the
most basic way of looking at Kf. If the duct has been changed then a new Kf
must be used.

You have a preburner pump that is supplying a certain amount of pressure
and flow. That pressure and flow is going to two places(the FPOV and OPOV).
These two modulate off of each other. If you open up one valve a little it opens
the other valve also. The controller is the only thing controlling these
valves. If you open this valve then physically you get a little more flow and
you drop this pressure just a little. Now the other preburner valve has a little
less pressure. It's trying to hold the pump speed up but it has a little less
pressure so it is driving less flow down iot the preburner. The pump will slow
down. the Pc will come down. and it will open up the OPOV to over come it ..

This is part of the Physics of gains. Keep in mind that there are other
things going on in the engine that may overcome this.

Now if you open up the FPOV you are charging up that preburner pressure.
There is also a fuel split that comes down here. As you increase that pressure
your increase this down stream resistance and it sends more fuel to the OPB.
That would make you close the OPOV.

The gains are not typically x drives y. It's x + a + q + c all work together
and they come out with some kind of a y.

We have a pretty good understand of the individual gains. But we must
marry these gains together. The only way we have to marry them is through
the test data that we have experience with and with the model. The model
knows the physics of the engine and it knows what the controller is doing.
The short coming of using the model for gains it that until recently (since TTB
data) there has not been data from internal instrumentation. We have had
limited instrumentation and it has a lot of black holes.

The Facility.
The facility has handles on the engine.
Pc reference
The throttle excursions we tell it to go through are set in the pretest.
Kf and C2 set the mixture ratio.
Engine inlet conditions
. We can to a degree control the temperature and pressure we deliver the

liquid hydrogen and oxygen to the engine. especially the pressure.
. In the pretest we define a vent schedule. This is simply a schedule on a

time basis that tells how we will feed the cryogento the engine.

Example.
. My chamber is so efficient. I am going to set this amount of fuel flow. We
run the engine and it says I need to set Pc so 5.9 times of lox comes in. We have
met out condition for Pc but we have not met our mixture ratio which is now at
5.9. We crank down the fuel flow a little through C2. We still have the same
chamber efficiency and the lox flow comes up a little. We now have Pc and a
6.011 mixture ratio. Bingo! The whole essence of getting the right mixture
ration is setting the right amount of fuel flow. The lox flow is going to fall out
to give you the right amount of chamber pressure.

How the En~ine Works.
We have a fuel flow meter in the engine. It is between the LPFP discharge

and the HPFP inlet. It is very important to know it is in the duct. because when
we change the duct we change the flowmeter. Each flowmeter has its own
characteristics. This translates to us as Kf. which is a software constant. All it
does is translate the engine flowmeter speed into volumetric flow. This is the
most basic way of looking at Kf. If the duct has been changed then a new Kf
must be used.

You have a preburner pump that is supplying a certain amount of pressure
and flow. That pressure and flow is going to two places(the FPOV and OPOV).
These two modulate off of each other. If you open up one valve a little it opens
the other valve also. The controller is the only thing controlling these
valves. If you open this valve then physically you get a little more flow and
you drop this pressure just a little. Now the other preburner valve has a little
less pressure. It's trying to hold the pump speed up but it has a little less
pressure so it is driving less flow down iot the preburner. The pump will slow
down. the Pc will come down. and it will open up the OPOV to over come it ..

This is part of the Physics of gains. Keep in mind that there are other
things going on in the engine that may overcome this.

Now if you open up the FPOV you are charging up that preburner pressure.
There is also a fuel split that comes down here. As you increase that pressure
your increase this down stream resistance and it sends more fuel to the OPB.
That would make you close the OPOV.

The gains are not typically x drives y. It's x + a + q + c all work together
and they come out with some kind of a y.

We have a pretty good understand of the individual gains. But we must
marry these gains together. The only way we have to marry them is through
the test data that we have experience with and with the model. The model
knows the physics of the engine and it knows what the controller is doing.
The short coming of using the model for gains it that until recently (since TTB
data) there has not been data from internal instrumentation. We have had
limited instrumentation and it has a lot of black holes.

The Facility.
The facility has handles on the engine.
Pc reference
The throttle excursions we tell it to go through are set in the pretest.
Kf and C2 set the mixture ratio.
Engine inlet conditions
. We can to a degree control the temperature and pressure we deliver the

liquid hydrogen and oxygen to the engine. especially the pressure.
. In the pretest we define a vent schedule. This is simply a schedule on a

time basis that tells how we will feed the cryogento the engine.

· We will start a test 'at a given pressure. We will usually vent the fuel side
down and run the rest of the test at a lower pressure.

· On the. lox side we typically start at about 80 psi. We will vent down to
about 20 and then pressurize up to about 120-160. We almost always shutdown
at nominal(80 psi).

· If we do a fuel vent we rarely do a repressurization before shutdown. We
can shut down at a lower fuel pressure.

· We can modulate the pressure. We don't have a very good handle on the
temperature. We can set the temperature going into the engine at some given
point. But we don't typically try in the run to increase or decrease the
temperature.

· We do certain things that we know increase the temperature. The most
prevalent one is the transfer. If the test is under 300 seconds we usually don't
have a transfer. This means we have a fuel and lox tank above the engine and
we run the engine off that fuel and lox in those tanks. They have been chilled
before the test and we just drain them off. If the test is longer than 300
seconds we don't have enough lox and fuel to just run off the tanks. We can't
physically hold enough for the test so we must do a transfer. At Stennis it
means there are barges in the canal which are filled with lox and fuel. There
is a line going up to the tank and we are transferring from those barges. The
fuel and lox on the barge is cold. It goes up the line going to the stand it heats
up by maybe I degree. As the fuel comes from the transfer line into the tank
it dilutes. It dumps into the bottom of the tank which has a baffle
arrangement. As it is mixed it slowly but surely heats up the fluids in the
tank. The fluids coming into the engine are a little warmer. If you look at
either the lox or fuel inlet temperature you can see exactly where the transfer
starts. The temps will be nice and flat and then they will begin creeping up.
This means higher temperature at a constant pressure which means lower
density. More volume has to pushed though to get the same mass flow. The
system powers. Can see it in the FPOV and the OPOV. That is the kind of gains
that we know are in the engine.

· Know before if there will be a transfer and start it at about 10 to 20
seconds.

The system needs to know if there is a transfer so it can reason on it.
· The pretest tells us when the transfer starts.
· It is probably a manual input on the test stand.
· We had a recent anomaly on an Al test where we were transferring and

the temperature went through the roof. We drained the tank down to a certain
level and we were getting impurities. nitrogen that is diffused in the tank.
The temperature went sky high. This is something that will have to be
recognized as an anomaly by the system.

Repress flows.
Fuel repress flow.
It goes out just down stream of the LPFT.
Fuel comes into the engine through the LPFP out of the pump end. into the

HPFP and is pumped up and comes down and then splits to different places.
Part goes to cool the nozzle. part to cool the chamber. part ends up at the
preburner from the nozzle.

After it goes in and cools the chamber it comes out and goes into the LPFT
and drives the turbine which spins the pump. Just downstream where it comes
from the turbine it splits off and some goes to the fuel repress line.

· We will start a test 'at a given pressure. We will usually vent the fuel side
down and run the rest of the test at a lower pressure.

· On the. lox side we typically start at about 80 psi. We will vent down to
about 20 and then pressurize up to about 120-160. We almost always shutdown
at nominal(80 psi).

· If we do a fuel vent we rarely do a repressurization before shutdown. We
can shut down at a lower fuel pressure.

· We can modulate the pressure. We don't have a very good handle on the
temperature. We can set the temperature going into the engine at some given
point. But we don't typically try in the run to increase or decrease the
temperature.

· We do certain things that we know increase the temperature. The most
prevalent one is the transfer. If the test is under 300 seconds we usually don't
have a transfer. This means we have a fuel and lox tank above the engine and
we run the engine off that fuel and lox in those tanks. They have been chilled
before the test and we just drain them off. If the test is longer than 300
seconds we don't have enough lox and fuel to just run off the tanks. We can't
physically hold enough for the test so we must do a transfer. At Stennis it
means there are barges in the canal which are filled with lox and fuel. There
is a line going up to the tank and we are transferring from those barges. The
fuel and lox on the barge is cold. It goes up the line going to the stand it heats
up by maybe I degree. As the fuel comes from the transfer line into the tank
it dilutes. It dumps into the bottom of the tank which has a baffle
arrangement. As it is mixed it slowly but surely heats up the fluids in the
tank. The fluids coming into the engine are a little warmer. If you look at
either the lox or fuel inlet temperature you can see exactly where the transfer
starts. The temps will be nice and flat and then they will begin creeping up.
This means higher temperature at a constant pressure which means lower
density. More volume has to pushed though to get the same mass flow. The
system powers. Can see it in the FPOV and the OPOV. That is the kind of gains
that we know are in the engine.

· Know before if there will be a transfer and start it at about 10 to 20
seconds.

The system needs to know if there is a transfer so it can reason on it.
· The pretest tells us when the transfer starts.
· It is probably a manual input on the test stand.
· We had a recent anomaly on an Al test where we were transferring and

the temperature went through the roof. We drained the tank down to a certain
level and we were getting impurities. nitrogen that is diffused in the tank.
The temperature went sky high. This is something that will have to be
recognized as an anomaly by the system.

Repress flows.
Fuel repress flow.
It goes out just down stream of the LPFT.
Fuel comes into the engine through the LPFP out of the pump end. into the

HPFP and is pumped up and comes down and then splits to different places.
Part goes to cool the nozzle. part to cool the chamber. part ends up at the
preburner from the nozzle.

After it goes in and cools the chamber it comes out and goes into the LPFT
and drives the turbine which spins the pump. Just downstream where it comes
from the turbine it splits off and some goes to the fuel repress line.

This fuel repress can be dumping at min repress(.2 lbs per sec) or max
repress(1.2 lbs. per sec). We can change flow rate for any test by up to a pound
a RPL condition. This has an affect on the components in that leg. In the LPFP
speed you will see a shift of about 100-150 rpms. The gains are not very solid.
Different components shift different amounts. We have ranges we have seen
in the past. We can provide you with those ranges.

As we look at the data we may see the LPFP shifted by 150 rpms. First thing
we think. did we do a throttle transient. No. we didn't because we know what
the pretest said and we seen the Pc reference. Look at engine inlet conditions.,
No. we probably can not change them that fast to give that kind of shift.
Throw that one out. Did we change the repress flow at that point? Yes. we did
change it. The shift is attributable to that so it is nominal. We should see a
shift. If we don't we should flag it.

The amount of change is important.
In example above if there had not been a repress change then the shift in

LPFP speed would be an anomaly.
Lox repress flow.

. 1.1 lbs/sec min • 2.35 lbs/sec max at RPL.
No repress flow or nominal.

The three things above. Pc reference. engine inlet conditions and repress
flows • are the only thing we do to the engine. Anything else is an anomaly.

THE PHYSICS OF THE ENGINE.
This pressure should affect other pressures by this amount.
If I see pressure go up and down is it flow related or resistance related.
Two things that can make a pressure change.

The resistance in the line. Similar flow and increase downstream
resistance that pressure goes up. Increase upstream resistance that
pressure goes down.
The flow in the line. Same resistance and increase flow to a point the
pressure will go up.
Fuel split Fuel coming out of the fuel pump splits to the main chamber
and part cools the nozzle and eventually goes to the preburners.
Pressure is determined by the resistance in the line and the downstream

pressure.
Resistance in the line does not change but the pressures do.
The major physical gains ar~ documented in the delta book by M. Alvarez

and model gains by B. Piekarski(these are documented where they are good
and not good).

Important to understand where the gains came from and what kind of
confidence you have in how the gains were built.

In our heads we are updating gains as we go.
Gains in powerlevel and turbine temperatures are pretty consistent.
Delta p across' the HPFP is affected by type of discharge duct.

Pressure went up. is it flow or resistance?
The fact the flowmeter is going to run a given amount of flow is important.
Flow is an anchor point.
Resistance changes are actually hardware changes.
Case study AI-531 is a good example.

This fuel repress can be dumping at min repress(.2 lbs per sec) or max
repress(1.2 lbs. per sec). We can change flow rate for any test by up to a pound
a RPL condition. This has an affect on the components in that leg. In the LPFP
speed you will see a shift of about 100-150 rpms. The gains are not very solid.
Different components shift different amounts. We have ranges we have seen
in the past. We can provide you with those ranges.

As we look at the data we may see the LPFP shifted by 150 rpms. First thing
we think. did we do a throttle transient. No. we didn't because we know what
the pretest said and we seen the Pc reference. Look at engine inlet conditions.,
No. we probably can not change them that fast to give that kind of shift.
Throw that one out. Did we change the repress flow at that point? Yes. we did
change it. The shift is attributable to that so it is nominal. We should see a
shift. If we don't we should flag it.

The amount of change is important.
In example above if there had not been a repress change then the shift in

LPFP speed would be an anomaly.
Lox repress flow.

. 1.1 lbs/sec min • 2.35 lbs/sec max at RPL.
No repress flow or nominal.

The three things above. Pc reference. engine inlet conditions and repress
flows • are the only thing we do to the engine. Anything else is an anomaly.

THE PHYSICS OF THE ENGINE.
This pressure should affect other pressures by this amount.
If I see pressure go up and down is it flow related or resistance related.
Two things that can make a pressure change.

The resistance in the line. Similar flow and increase downstream
resistance that pressure goes up. Increase upstream resistance that
pressure goes down.
The flow in the line. Same resistance and increase flow to a point the
pressure will go up.
Fuel split Fuel coming out of the fuel pump splits to the main chamber
and part cools the nozzle and eventually goes to the preburners.
Pressure is determined by the resistance in the line and the downstream

pressure.
Resistance in the line does not change but the pressures do.
The major physical gains ar~ documented in the delta book by M. Alvarez

and model gains by B. Piekarski(these are documented where they are good
and not good).

Important to understand where the gains came from and what kind of
confidence you have in how the gains were built.

In our heads we are updating gains as we go.
Gains in powerlevel and turbine temperatures are pretty consistent.
Delta p across' the HPFP is affected by type of discharge duct.

Pressure went up. is it flow or resistance?
The fact the flowmeter is going to run a given amount of flow is important.
Flow is an anchor point.
Resistance changes are actually hardware changes.
Case study AI-531 is a good example.

Anchor Points.

HPOP discharge pressure
Fixed by the amount of flow through main injector.
Lox pump doesn't affect HPOP discharge pressure.
If it changes there is a definite reason.
If it doesn't change you can use it to look at other parameters.
A point in the engine that few things feed into.
Same engine. same flow and powerlevel you should have same HPOP
discharge pressure.

HPFP discharge pressure.
Less reliability than lox side.
Has more things feedind into it.
If HPFP goes down it could be a variety of things. For example. the MCC is
leaking. the pre burner pressures change. etc.

Main Injector resistance.
Very good anchor point.
The resistance doesn't change unless you have a hardware change.
If you have ice it will plug things up and cause trouble. This is why we

make sure engine is dry at prestart.

Lox Flow.
Good anchor because it can be measured.
Not so good because we see test to test variation.
A,Il the lox that comes in doesn't go down main injector leg. There are
branches to the prebumers and LPOP.
If you see a shift there are few things that feed into it.

MCCPc
. Pc will always be at Pc reference.

Looking for a one point failure. It is very unusually to get a 2 point failure
at the same time.
. Put higher priority on what the stronger anchor points tell you.

Anchor Points.

HPOP discharge pressure
Fixed by the amount of flow through main injector.
Lox pump doesn't affect HPOP discharge pressure.
If it changes there is a definite reason.
If it doesn't change you can use it to look at other parameters.
A point in the engine that few things feed into.
Same engine. same flow and powerlevel you should have same HPOP
discharge pressure.

HPFP discharge pressure.
Less reliability than lox side.
Has more things feedind into it.
If HPFP goes down it could be a variety of things. For example. the MCC is
leaking. the pre burner pressures change. etc.

Main Injector resistance.
Very good anchor point.
The resistance doesn't change unless you have a hardware change.
If you have ice it will plug things up and cause trouble. This is why we

make sure engine is dry at prestart.

Lox Flow.
Good anchor because it can be measured.
Not so good because we see test to test variation.
A,Il the lox that comes in doesn't go down main injector leg. There are
branches to the prebumers and LPOP.
If you see a shift there are few things that feed into it.

MCCPc
. Pc will always be at Pc reference.

Looking for a one point failure. It is very unusually to get a 2 point failure
at the same time.
. Put higher priority on what the stronger anchor points tell you.

"'C
(I) ...
(')
(I)
::I -2-
JJ
III
(j)
0.

"'C
0

~ ...
r-
CD
<
~

00
o

<0
0

...
o
o

... ...
o

\
\
\
\
\

CCV Position (% of full open)

\
\
\
\

00 o

" 1\
\

\
\
\
\
\
\
\
\
\ ..
\

(') 3l:
o 0
Q..o.

I III =: ::I _.

:~
oen
~ (') =r
-CD
"'Co.
=rc:
Ill-en CD
CDc - ... ;- _.
-5

i
III en
~
3l:
0
0

\

\
\
\
\
\
\

)\
\
\
\
\

-z "'Co
~3 en -.
CD ~
.sen

(')
=r
!

o o

/'
c:
is"

~

\
\
\
\
\
\
\
\

" \
\
\
\

" \
\
\
\
\

\
\
\
\
\
\
\
\
\

. ,

"'C
(I) ...
(')
(I)
::I -2-
JJ
III
(j)
0.

"'C
0

~ ...
r-
CD
<
~

00
o

<0
0

...
o
o

... ...
o

\
\
\
\
\

CCV Position (% of full open)

\
\
\
\

00 o

" 1\
\

\
\
\
\
\
\
\
\
\ ..
\

(') 3l:
o 0
Q..o.

I III =: ::I _.

:~
oen
~ (') =r
-CD
"'Co.
=rc:
Ill-en CD
CDc - ... ;- _.
-5

i
III en
~
3l:
0
0

\

\
\
\
\
\
\

)\
\
\
\
\

-z "'Co
~3 en -.
CD ~
.sen

(')
=r
!

o o

/'
c:
is"

~

\
\
\
\
\
\
\
\

" \
\
\
\

" \
\
\
\
\

\
\
\
\
\
\
\
\
\

. ,

lMay92 Gains - E. Sander

opov is fed by everything in the engine, and each of those feeds
has an individual gain. Some feed to other parts of engine. The
lox inlet pressure feeds to the fuel flow split which feeds the
OPOV. Each of those has a gain. Some gains are based on
consistent pattern of engine operation. others are not, the
characteristic gains may be associated with a hardware change.
This adds more gains to the picture. cumulatively, the gains are
not well defined. When you add, the greater your chance of
inaccuracy. If you are going to use the gains approach, you need
to find a very good anchor, such as the HPOP discharge pressure.
This is much better than the OPOV. The goodness of the gains will
also affect the ranking of the conclusions.

What else do we need to discuss?

Tim: Can we now look at what the controller is doing during start?

Erik: Start is easier to figure than mainstage because it's open­
loop control. Follow valves, because they are what is changing.
We don't effect repress flows or inlet conditions. You can't track
Pc because it. is changing, as is the fuel flow. For mainstage,
these are two good anchors. The physics for start is more
consistent, because there are less facts invol ved. Start is
divided into three regions: 0-.74 with open-loop control, Pc
control which runs .74 through mainstage, mixture ratio control
that runs 2.3 seconds onward. 0-.74 sec has very repeatable valve
sequences. OPOV low means Pc too high. Sigmas are· smaller,
because we run starts consistently, always starting to RPL. In
mainstage, things start to diverge, like the turbine temps. During
the early open-loop phase, the turbine temps will lie on top of one
another. In mainstage, when you start controlling, the turbine
efficiencies start to come into play and your turbine temps start
to diverge. We try to control to a given point with turbines of
different efficiencies. Your sigma spreads in mainstage, you have
more uncertainty in the way the engine will operate. Some things
settle out with the arrival of mainstage, such as main chamber
pressure. This is because we are controlling to that function. In
terms of anomaly resolution we would best illustrate with the CCV
failure. CCV actuator was not coupled with the valve. While we
were trying to control properly, and the data showed that we were
controlling properly, there was a change in the engine. This is
where the physics. comes in. We were reading the actuator position,
not the valve. The two were uncoupled.

In OPOV and FPOV, we had the CCV causing us to run abnormally. The
controller was trying to modulate the two preburners to try to get
back into nominal Pc.

We have alot more instances of gains associated with changes that
help to explain mainstage than we have for start. Start is usually
so consistent, that we don't have the data. It will be tough.

lMay92 Gains - E. Sander

opov is fed by everything in the engine, and each of those feeds
has an individual gain. Some feed to other parts of engine. The
lox inlet pressure feeds to the fuel flow split which feeds the
OPOV. Each of those has a gain. Some gains are based on
consistent pattern of engine operation. others are not, the
characteristic gains may be associated with a hardware change.
This adds more gains to the picture. cumulatively, the gains are
not well defined. When you add, the greater your chance of
inaccuracy. If you are going to use the gains approach, you need
to find a very good anchor, such as the HPOP discharge pressure.
This is much better than the OPOV. The goodness of the gains will
also affect the ranking of the conclusions.

What else do we need to discuss?

Tim: Can we now look at what the controller is doing during start?

Erik: Start is easier to figure than mainstage because it's open­
loop control. Follow valves, because they are what is changing.
We don't effect repress flows or inlet conditions. You can't track
Pc because it. is changing, as is the fuel flow. For mainstage,
these are two good anchors. The physics for start is more
consistent, because there are less facts invol ved. Start is
divided into three regions: 0-.74 with open-loop control, Pc
control which runs .74 through mainstage, mixture ratio control
that runs 2.3 seconds onward. 0-.74 sec has very repeatable valve
sequences. OPOV low means Pc too high. Sigmas are· smaller,
because we run starts consistently, always starting to RPL. In
mainstage, things start to diverge, like the turbine temps. During
the early open-loop phase, the turbine temps will lie on top of one
another. In mainstage, when you start controlling, the turbine
efficiencies start to come into play and your turbine temps start
to diverge. We try to control to a given point with turbines of
different efficiencies. Your sigma spreads in mainstage, you have
more uncertainty in the way the engine will operate. Some things
settle out with the arrival of mainstage, such as main chamber
pressure. This is because we are controlling to that function. In
terms of anomaly resolution we would best illustrate with the CCV
failure. CCV actuator was not coupled with the valve. While we
were trying to control properly, and the data showed that we were
controlling properly, there was a change in the engine. This is
where the physics. comes in. We were reading the actuator position,
not the valve. The two were uncoupled.

In OPOV and FPOV, we had the CCV causing us to run abnormally. The
controller was trying to modulate the two preburners to try to get
back into nominal Pc.

We have alot more instances of gains associated with changes that
help to explain mainstage than we have for start. Start is usually
so consistent, that we don't have the data. It will be tough.

I would try to work with mainstage first. Then try start and
shutdown. Few people understand the start and shutdown transient.
I would say that Dave Seymour understands start better than anyone
around here.

I would try to work with mainstage first. Then try start and
shutdown. Few people understand the start and shutdown transient.
I would say that Dave Seymour understands start better than anyone
around here.

RANDY HURT
4/30/92

CASE Bl-143

This is a walk through of a ground test that has just run. Randy said this is
data analysis that is still in the working.

START:
Interested because it was a ATD lox pump on a regular phase 2 engine.
Interested in the transient because an anomaly was predicted in the

transient.
First 100% start on the ATD lox pump and ran at 100% for an extended

amount of time.
HPOP discharge pressure surge was seen. Vanes are stalled until you get to

a certain powerlevel. Once you get to that power level they become unstaUed
and engine powered up because it was stalled to begin with. Surge is up (Plot
1). Wiggle is usually not there. Apparent because the HPOP discharge
pressure comes up. Actually lower surge than D. Seymour predicted with the
Digital Transient Model. Not a lot of other data analysis to do about this except
compare to DTM and present that.

MAINSTAGE:
Another analyst looked at the data before Randy and said there was an

anomaly about 100 seconds where MCC PC actually went down.
Pc drop during mainstage is pretty bad. Supposed to be able to control it

and keep it right at the reference power level.
(Plot 2) Comparison plot with another test. The Pc drops off and comes

down at 100 seconds. Without the other comparison test the scale would be
much bigger. It would look more drastic.

(Plot 3) Look at the valve positions of the OPOV and FPOV. FPOV has a wiggle
in it also. At about 85 seconds the FPOV trends down a little and then turns
around and trends up causing a delta of about 2%(a real eyebrow raiser).

This is a big performance change. about 2%.
From plot 3 looks like we definitely have a performance change in either

the high pressure fuel or oxidizer pump.
Randy knows it was a development lox pump and he had seen this same

wiggle happen on previous run so his first tendency was to think it was the
lox pump.

Looked at level and it was a constant level with a wiggle that is on the
border of what might be seen under regular engine control. But also we see it
comes up to higher level. That's says we have a bigger energy requirement
after this incident .

Probably have an efficiency change to the lox pump.
With that hunch the next large piece of data looked at was the HPOP speed.
HPOP speed drops at the same time of the wiggle and MCC pressured

dropped. That is what drives MCC pressure so you would expect it to drop. The
speed dropped of and then it came up to the same level.

If the speeds are at the same level and the pressure is at the same level then
pump efficiency has not changed. If pump efficiency had changed it means
more or less speed is required for the same discharge pressure.

Pump had a turbine efficency change in the HPOT. This caused the valve
difference.

RANDY HURT
4/30/92

CASE Bl-143

This is a walk through of a ground test that has just run. Randy said this is
data analysis that is still in the working.

START:
Interested because it was a ATD lox pump on a regular phase 2 engine.
Interested in the transient because an anomaly was predicted in the

transient.
First 100% start on the ATD lox pump and ran at 100% for an extended

amount of time.
HPOP discharge pressure surge was seen. Vanes are stalled until you get to

a certain powerlevel. Once you get to that power level they become unstaUed
and engine powered up because it was stalled to begin with. Surge is up (Plot
1). Wiggle is usually not there. Apparent because the HPOP discharge
pressure comes up. Actually lower surge than D. Seymour predicted with the
Digital Transient Model. Not a lot of other data analysis to do about this except
compare to DTM and present that.

MAINSTAGE:
Another analyst looked at the data before Randy and said there was an

anomaly about 100 seconds where MCC PC actually went down.
Pc drop during mainstage is pretty bad. Supposed to be able to control it

and keep it right at the reference power level.
(Plot 2) Comparison plot with another test. The Pc drops off and comes

down at 100 seconds. Without the other comparison test the scale would be
much bigger. It would look more drastic.

(Plot 3) Look at the valve positions of the OPOV and FPOV. FPOV has a wiggle
in it also. At about 85 seconds the FPOV trends down a little and then turns
around and trends up causing a delta of about 2%(a real eyebrow raiser).

This is a big performance change. about 2%.
From plot 3 looks like we definitely have a performance change in either

the high pressure fuel or oxidizer pump.
Randy knows it was a development lox pump and he had seen this same

wiggle happen on previous run so his first tendency was to think it was the
lox pump.

Looked at level and it was a constant level with a wiggle that is on the
border of what might be seen under regular engine control. But also we see it
comes up to higher level. That's says we have a bigger energy requirement
after this incident .

Probably have an efficiency change to the lox pump.
With that hunch the next large piece of data looked at was the HPOP speed.
HPOP speed drops at the same time of the wiggle and MCC pressured

dropped. That is what drives MCC pressure so you would expect it to drop. The
speed dropped of and then it came up to the same level.

If the speeds are at the same level and the pressure is at the same level then
pump efficiency has not changed. If pump efficiency had changed it means
more or less speed is required for the same discharge pressure.

Pump had a turbine efficency change in the HPOT. This caused the valve
difference.

Going from 104% and back to 100% the valve position is up a little but its
more is in line so the anomaly is almost gone away at the second 100% power
level.

Started looking at some of the pump internal instrumentation that is
available because it is a Pratt Whitney pump.

Nothing stood out and didn't see anything that said this is the problem.
Didn't see anyone parameter with large shifts. The turbine end showed more
effects than the pump end.

Went and talked to model performance person. Tracey Touchton. who had
made plots for each of the development pump test.

(Plot 4) This plot says the most about it (HPOT EFF vs TIME). The efficiency
drops from 75% to about 74% at 100 seconds and stays at the lower efficiency.

Know the anomaly did not cause a redline cutoff or anything like that.
This plot (Plot 4)shows turbine efficiencies have dropped off and have

come up a little bit. That pretty much gets the anomaly. The rest of the data
analysis I will do is what it does do to the rest of the system. What this anomaly
did to the fuel flow. Is it alright to test it again? A 1 % change is not going to
keep us from testing. I'm going to look at preburner pressure balance. This
will give an indication of how the engine is balanced. I will look .at a pressure
balance and a pressure ratio. It will also help me indict the lox side I need to be
able to quantify this.. A lot of what I have been thinking is intuitive.. This
plot pretty much says it is the lox side. I must make sure it is not the fuel side.

TIM: How long did Pc dip down for? Did that come back up to normal again?
RANDY: Yes. it came back up again. It was down for something like 5 seconds.

TIM: Why did it take so long for the engine to adjust to this one sift? Is it the
efficiency dropping off over time?
RANDY: Yes. that was why. From this plot (Plot _) it looks like (turbine
efficiency) a step function.

TIM: If the efficiency had been a true step function. Say at one time frame
and the efficiency dropped by 1 % would Pc have adjusted almost immediately?
RANDY: For 1 % like that it has to drop off and you have to see it in Pc first.
So, Pc has to recognize it. There is a little delay there because of the system
response time. The system responds fast.. The inenia of the pump is low. The
valves open quickly and all that but you still have an over shoot or under
shoot and it just takes a few cycles to get through that. A sudden increase like
that it takes 2 seconds or something like that.

TIM: That is mainly time for the pump to spin up.
RANDY: For the pump to spin up and for the valves to open. All that is real
quick so 2 seconds seems a little long. I would not get real excited if it took 2
seconds.

Right now as far as my data analysis goes I am in the middle of getting my
presentation package together for tomorrow. I will look at these lox
preburner ratios and there is a cross feed gain question that I want to ask
someone about. If you open up the OPOV real quickly the FPOV responds. It
opens before the system sees it. In other words if the OPOV opens then the
FPOV open too. .

TIM: Does that happen also during throttle up?

Going from 104% and back to 100% the valve position is up a little but its
more is in line so the anomaly is almost gone away at the second 100% power
level.

Started looking at some of the pump internal instrumentation that is
available because it is a Pratt Whitney pump.

Nothing stood out and didn't see anything that said this is the problem.
Didn't see anyone parameter with large shifts. The turbine end showed more
effects than the pump end.

Went and talked to model performance person. Tracey Touchton. who had
made plots for each of the development pump test.

(Plot 4) This plot says the most about it (HPOT EFF vs TIME). The efficiency
drops from 75% to about 74% at 100 seconds and stays at the lower efficiency.

Know the anomaly did not cause a redline cutoff or anything like that.
This plot (Plot 4)shows turbine efficiencies have dropped off and have

come up a little bit. That pretty much gets the anomaly. The rest of the data
analysis I will do is what it does do to the rest of the system. What this anomaly
did to the fuel flow. Is it alright to test it again? A 1 % change is not going to
keep us from testing. I'm going to look at preburner pressure balance. This
will give an indication of how the engine is balanced. I will look .at a pressure
balance and a pressure ratio. It will also help me indict the lox side I need to be
able to quantify this.. A lot of what I have been thinking is intuitive.. This
plot pretty much says it is the lox side. I must make sure it is not the fuel side.

TIM: How long did Pc dip down for? Did that come back up to normal again?
RANDY: Yes. it came back up again. It was down for something like 5 seconds.

TIM: Why did it take so long for the engine to adjust to this one sift? Is it the
efficiency dropping off over time?
RANDY: Yes. that was why. From this plot (Plot _) it looks like (turbine
efficiency) a step function.

TIM: If the efficiency had been a true step function. Say at one time frame
and the efficiency dropped by 1 % would Pc have adjusted almost immediately?
RANDY: For 1 % like that it has to drop off and you have to see it in Pc first.
So, Pc has to recognize it. There is a little delay there because of the system
response time. The system responds fast.. The inenia of the pump is low. The
valves open quickly and all that but you still have an over shoot or under
shoot and it just takes a few cycles to get through that. A sudden increase like
that it takes 2 seconds or something like that.

TIM: That is mainly time for the pump to spin up.
RANDY: For the pump to spin up and for the valves to open. All that is real
quick so 2 seconds seems a little long. I would not get real excited if it took 2
seconds.

Right now as far as my data analysis goes I am in the middle of getting my
presentation package together for tomorrow. I will look at these lox
preburner ratios and there is a cross feed gain question that I want to ask
someone about. If you open up the OPOV real quickly the FPOV responds. It
opens before the system sees it. In other words if the OPOV opens then the
FPOV open too. .

TIM: Does that happen also during throttle up?

RANDY: During throttle up I'm sure it happens. Otherwise. you would get off
mixture ratio. Your power requirements would go up. OPOV would open up and
FPOV would lag or go way off mixture ratio.

The things I am going to look at like that are really just to rap it up. I am
going to make. extra charts. prime time charts. start configuration. But really
the data analysis is mostly finished. I talked with the turbo machinery guys
quite a bit and we have been throwing around hypothetical reasons for this
efficiency change. We think we have a handle on it so we are waiting for the
turbopump to come off to look at the hardware. We think it is either turbine
bypass flow or tip seal clearance.

RANDY: During throttle up I'm sure it happens. Otherwise. you would get off
mixture ratio. Your power requirements would go up. OPOV would open up and
FPOV would lag or go way off mixture ratio.

The things I am going to look at like that are really just to rap it up. I am
going to make. extra charts. prime time charts. start configuration. But really
the data analysis is mostly finished. I talked with the turbo machinery guys
quite a bit and we have been throwing around hypothetical reasons for this
efficiency change. We think we have a handle on it so we are waiting for the
turbopump to come off to look at the hardware. We think it is either turbine
bypass flow or tip seal clearance.

S
T
A
R
T

P
E
R
F
0
R
H
A
N
C
E

><X TEST 91340143
M TEST 9040118
(IJ TEST 9040 I 17

334
334
334

HPOP DS PR NFD
HPOP DS PR NFD
HPOP DS PR NFD

7K P
7K P
7K P

4000-r1------------.------------,------------,------------.------------~-------_)(1-· .6&_ .--------

3500

~))/ I ,
3000

2500

2000

1500

1000 I ~ I

500 I //1

a-4--~_r~r_.__+--.__r-.r_,__T--r_-r_,--.__+--._~~--~~_.r-.__.--r_~ ---r-. .,---r-'-_.
I o 00 I 013 2 1313 3 00 4 00 5 OU ti lIlI

VER ~ lllJLJ
/1/\ n- .1.1 "I I' , TIHf ~-.

ENGINE 2206
n If!

S
T
A
R
T

P
E
R
F
0
R
H
A
N
C
E

)¢(TEST 9949143
M TEST 9949118
(IJ TEST 9949117

334
334
334

HPOP DS PR NFD
HPOP DS PR NFD
HPOP DS PR NFD

7K P
7K P
7K P

4999-r------------~----------_.------------._----------_.------------~-------

3S99~------------~------------T_----------_4r_--_n--~~~------------4_-----------~

3999

2599

2999

1509

1009-4--------------~---------E¥-4-------------~-------------r-------------T-------------;

599-4--------------~--~~~----+-------------;--------------r-------------r-------------;

---,---.---,-- ,---
o 00 I 013 2 1313 3 00 4 00 5 OU ti 1I11

VER ~ lI111J
/I A r r II-I "I I' ,

TIHf ~- .
ENGINE 2206

n If!

~
\.}J

) -.:l

M
A
I
N
S
T
A
G
E

><X TEST 913413 143
~ TEST 913413 142

320

-

31313
Y'\ . """" -.v

-

281313

-

261313

-

241313

-

...... /

63
63

• >.0:

I

I
/

HCC PC AVG
MCC PC AVG

.A .. -v..A L .

I
I

eM
(M

.'-L .~ -

P
E
R
F
o
R
M
A
N
C
E

221313

2131313

- I
-

181313

ENGINE 22136
SHUTDO\.JN

~

I

... A .A
'=

I I I I I I

25

1513 132 SEC

I I I I I I I I I I I

513 75 lee

TIME FROM START COMMAND - SECS

-""-

.'L / \

I I I I I I

125

I

1513

VER 4
DATE
TIME

I I I

S
17S)!

131313 M
134/28/92 E
16 413 IS Nf\5/\

M
A
I
N
S
T
A
G
E

P
E
R
F
o
R
M
A
N
C
E

><X TEST 9040143
~ TE5T 9040142

320 0

-

0
Y'\ ,~

....,.

-

2800

-

2600

-

2400

-

2200

-

2000
~~ 1\ .A . -=

-

1800 I , -,

0 25

., ,

63
63

.).l

I

I
7

, I , I

HCC PC AVG
MCC PC AVG

.A ,LA 'L.

!
V

I I I I I I I

50 75

eM
(M

, ,
..,

100

.~

, I I I

ENGINE 2206
SHUTDO\.JN 150 02 SEC TIME FROM START COMMAND - SECS

'\L..

'v' I \

I I I ,

125

I , I ,

150

VER 4
DATE
TIME

000 175~E~
04/28/92
16 40 15 Nf\5/\

M
A
I
N
S
T
A
G
E

P
E
R
F
o
R
M
A
N
C
E

[I] 171

913 -

87
Ei

-
-
- r1 - '-'

85 -
-
-
-

82 5 --

813 13

-
~.r -

-

77 5
-
-
--

75.13

-
-

72 5 -
-
--

713 13 A

OPOV CMD LIMIT

r-o ,...,
......

~A~ oI"T

A
"~ ...,

(R383) PCNT

r1

~
~

,..., ,..., ,.....-.
:/

....,

.. .~

If ... ~ ">T~ ~ . '-L. ~.
"/y

f\
~-~

J

~ I
-
,('-r

r'V'" ~ ...-..A ~--~ - ~ -=-
--

67 5 -
-
--

65 13

TEST 913413143
ENGINE 2206
SHUTDO\JN

V

I I I I I I I I

25 50

150 02 SEC

I I I I I I I I I I I I I I

75 100 125

TIME FROM START COMMAND - SEes

~

\
~

I I I I I

1513

S 175)1
VER 4 0013 M
DATE 04/28/92 E
TIME 16 32 26 NI\S/\

[I] 171 opov CMD LIMIT (R383) PCNT

913 a -

87 5
[j

,...,
I ~

- :/ -
- ,..., l"'"'L = =-,

~ r-. ,...,
- ~ ~ '-' ~

85 a
-

M -
A -

-I 82 5
N
S
T
A 8e a

" .-~

If -----
~ ", .. ~

.'>L ... ~ ~ - .- A~ ,¥T ~.

~ ~~'7' '/y

G --E --
P 77 5
E -

-R
F
0 75.e
R
M
A

72 5 N
C
E

- {\ -
-

~~
J -
~ - I - A A \ 7e €I ,('-- f¥' 'L.>,

~ ~
J).

~ """""" - ~

-
-
-

67 5 -
-
-

65 €I

TEST ge40143
ENGINE 2206
SHUTDO\JN

v

I I I I I I I I

25 5e

15e e2 SEC

I

175A\M~
VER 4 €lee
DATE e4/28/92
TIME 16 32 26 NI\S/\

75 125 1513 le0

TIME FROM START COMMAND - SECS

B1-143 TURBINE PERFORMANCE (ACTUAL & THEORETICAL)

~
\

o .76-r--~
..........

....n

o .75

o .74

H
p o .73
0

T

E o . 72
F

F

o .71

o .70

O. 69-+1-------+-------+-------+-------+-------;------~~----~r-------r-----~

90 92 94 96 98 100 102 104 106 108

, T I ME

Bl-143 TURBINE PERFORMANCE (ACTUAL & THEORETICAL)

o .76

o .75

o .74

H
p o .73
0

T

E o . 72
F
F

o .71

o .70

O. 69~------4-------+-----~r------+------~------4-------+-------r-----~

90 92 94 96 98 100 102 104 106 108

, T I ME

Taylor Hooper Interview - A2-471 1May92

This failure involved the bellows internal structure. It connects
the LPFP to the HPFP. It was the number 3 bellows; which is the
third one here (see figure 8e), which is upstream of the flowmeter.
This is what the internals look like. It's compressed and
connected inside (look at figure 8f). The legs fractured and the
loose piece went flying down the duct (see figure 8g). When the
bellows expanded, you got leakage where the loose piece had
ruptured the duct. The loose piece lodged in the flow straightener
which is upstream of the flowmeter to help create laminar flow
before going into the flowmeter. So the piece got lodged there,
which was good. If it had gotten past the flowmeter into the HPFP,
it could have wasted the engine. This rupture started a fire,
which was what inititated the redline. The ambient powerhead temps
exceeded the redline. That is a synopsis of the anomaly.

Catherine: Was it during Mainstage?

Taylor: Yes, it was during mainstage. There is a piece of film on
it, and you can see when the bellows expand. The whole thing
starts shaking. The acceleration data from the anomaly was
phenomenal. Rick goes through that here in his report.

Catherine: What type of report is this?

Taylor: It is a failure report put together for the anomaly. Rick
Ballard, Dave Vaughan and Larry Leopard were probably the ones that
worked it. I wasn't in the group at the time. I wasn't doing data
analysis at the time. He breaks it into two events. The first was
where they first saw data skew. Where the first phase of the
failure occured. The second was at cutoff. He includes a time
line in here. They were running along at 140 sec, had just
throttled up to 104%, at 146.22 they saw an expansion of the
bellows, that was when the leg broke internally. At 1/100th of a
second later, the accel data indicated a spike. Then the HPFP
inlet pressure started dropping off by about 10 psi.

Catherine: Because of the leak upstream?

Taylor: I believe it was because of the piece that had lodged in
the flow straightener. At the same time of the inlet pressure
drop, the inlet temp increased by .14, which he says was caused by
the heat ~ransfer due to loss of insulation at the rupture point.

Catherine: All of the ducts are insulated?

Taylor: Yes. Valve positions started to move. There was an
increase in the FPOV position. You are losing fuel out because of
a leak, the mixture ratio is dropping off, so you think that you
should power up the fuel side to get your fuel back. But it
actually sensed an increase in fuel flow caused by the piece that
was lodged in the flow straightener. When the piece lodged in the
flow straightener, it affected the dynamic flowrate, flow

Pr'l>- 12/

Taylor Hooper Interview - A2-471 1May92

This failure involved the bellows internal structure. It connects
the LPFP to the HPFP. It was the number 3 bellows; which is the
third one here (see figure 8e), which is upstream of the flowmeter.
This is what the internals look like. It's compressed and
connected inside (look at figure 8f). The legs fractured and the
loose piece went flying down the duct (see figure 8g). When the
bellows expanded, you got leakage where the loose piece had
ruptured the duct. The loose piece lodged in the flow straightener
which is upstream of the flowmeter to help create laminar flow
before going into the flowmeter. So the piece got lodged there,
which was good. If it had gotten past the flowmeter into the HPFP,
it could have wasted the engine. This rupture started a fire,
which was what inititated the redline. The ambient powerhead temps
exceeded the redline. That is a synopsis of the anomaly.

Catherine: Was it during Mainstage?

Taylor: Yes, it was during mainstage. There is a piece of film on
it, and you can see when the bellows expand. The whole thing
starts shaking. The acceleration data from the anomaly was
phenomenal. Rick goes through that here in his report.

Catherine: What type of report is this?

Taylor: It is a failure report put together for the anomaly. Rick
Ballard, Dave Vaughan and Larry Leopard were probably the ones that
worked it. I wasn't in the group at the time. I wasn't doing data
analysis at the time. He breaks it into two events. The first was
where they first saw data skew. Where the first phase of the
failure occured. The second was at cutoff. He includes a time
line in here. They were running along at 140 sec, had just
throttled up to 104%, at 146.22 they saw an expansion of the
bellows, that was when the leg broke internally. At 1/100th of a
second later, the accel data indicated a spike. Then the HPFP
inlet pressure started dropping off by about 10 psi.

Catherine: Because of the leak upstream?

Taylor: I believe it was because of the piece that had lodged in
the flow straightener. At the same time of the inlet pressure
drop, the inlet temp increased by .14, which he says was caused by
the heat ~ransfer due to loss of insulation at the rupture point.

Catherine: All of the ducts are insulated?

Taylor: Yes. Valve positions started to move. There was an
increase in the FPOV position. You are losing fuel out because of
a leak, the mixture ratio is dropping off, so you think that you
should power up the fuel side to get your fuel back. But it
actually sensed an increase in fuel flow caused by the piece that
was lodged in the flow straightener. When the piece lodged in the
flow straightener, it affected the dynamic flowrate, flow

Pr'l>- 12/

character, such that it thought that it was getting more flow than
it actually was (See the report for complete details on this).
O.K., the second driver was the fuel being lost through the hole in
the duct. The cumulative effect was to reduce the FPOV command, Pc
then dropped, the lox side powered up to maintain Pc. Turbine
temps went up as well, by 15-18 degrees. Then the ambient
powerhead temp sensors detected the fires which initiated the
shutdown. He has some good plots in his report. They looked at
every data point on these plots, because of how quickly it occured.
Rocketdyne put together some info in the pre-test report for the
next test. They did a CFD model of the failure and included it in
the package. They also included info about the hardware
inspections which followed the test, assessing the size of the
rupture.

Catherine: Do they normally inspect these ducts?

Taylor: No, we don't normally inspect ducts, because we very
seldom have problems with them. If we change something, we replace
the entire duct, like when we replace a flowmeter, we replace the
entire duct, because they are all one piece. They can remove the
flowmeter from the duct, but they normally don't. It comes
assembled, and they usually leave it that way.

Catherine: o. K., let me read through this report, and I will
probably be back to talk about it some more with you.

character, such that it thought that it was getting more flow than
it actually was (See the report for complete details on this).
O.K., the second driver was the fuel being lost through the hole in
the duct. The cumulative effect was to reduce the FPOV command, Pc
then dropped, the lox side powered up to maintain Pc. Turbine
temps went up as well, by 15-18 degrees. Then the ambient
powerhead temp sensors detected the fires which initiated the
shutdown. He has some good plots in his report. They looked at
every data point on these plots, because of how quickly it occured.
Rocketdyne put together some info in the pre-test report for the
next test. They did a CFD model of the failure and included it in
the package. They also included info about the hardware
inspections which followed the test, assessing the size of the
rupture.

Catherine: Do they normally inspect these ducts?

Taylor: No, we don't normally inspect ducts, because we very
seldom have problems with them. If we change something, we replace
the entire duct, like when we replace a flowmeter, we replace the
entire duct, because they are all one piece. They can remove the
flowmeter from the duct, but they normally don't. It comes
assembled, and they usually leave it that way.

Catherine: o. K., let me read through this report, and I will
probably be back to talk about it some more with you.

MARC NEELY
component/Gains Analysis

4-29-92

First we can look at each component in general
terms and then we will pick the main parameters that
would represent that component. You are familiar with
what controls the engine during formal operation so
we're are not going to look at hydraulic lock up.

During normal operation the main chamber pressure and
fuel flow are your two primary drivers. This is where I
have trouble going to components because these two
things influence everything going on in the engine. If
chamber pressure goes up and goes outside its band versus
its reference command then the OPOV closes down. If the
fuel flow meter says based on Pc I'm getting to much fuel
to maintain the right mixture ration then FPOV closes.

The FPOV has a cross feed gain. It follows the OPOV at a
certain ratio. If the OPOV opens up 10% the FPOV opens
up some percent portion of that. That's because it
realizes its going to open so it goes ahead even though
the mixture ration has not changed. That's the heart of
it.

Now I guess the next way to look at it is on a test to
test comparison. Let's assume we have a baseline engine
and let's change some component. That component is
different in this respect and how does the engine balance
in order to compensate. We have a baseline engine and
for the next test we put in a lox pump that has a lower
turbine efficiency. What that means is we must open up
the OPOV in order to get the same speed out of the
turbine to be able to give the same head you had on the
previous test. When you open up the OPOV that gives
more lox flow into the lox preburner and that will be
registering higher chamber pressure to get the same speed
out of the lower efficient turbine. At the same time the
FPOV will have to open up a little bit for a couple of
reasons. One is this being open more it is not getting
the same amount as previously and the FPB discharge
pressure reads a lower pressure because of lower back
pressure (lower resistance in the system). I think
that's it in a nut shell. I don't think you will see any
other significant deltas. If the pump end is less
efficient I think you will see essential as before but a
higher speed to get the head rise but again that depends
on the relative magnitude of change. You mayor may not
see anything else in the system. If the fuel turbo pump
is less efficient then the opposite happens the OPOV
opens up to get more lox and you see increase in that
pump speed and may see increase in OPOV.

MARC NEELY
component/Gains Analysis

4-29-92

First we can look at each component in general
terms and then we will pick the main parameters that
would represent that component. You are familiar with
what controls the engine during formal operation so
we're are not going to look at hydraulic lock up.

During normal operation the main chamber pressure and
fuel flow are your two primary drivers. This is where I
have trouble going to components because these two
things influence everything going on in the engine. If
chamber pressure goes up and goes outside its band versus
its reference command then the OPOV closes down. If the
fuel flow meter says based on Pc I'm getting to much fuel
to maintain the right mixture ration then FPOV closes.

The FPOV has a cross feed gain. It follows the OPOV at a
certain ratio. If the OPOV opens up 10% the FPOV opens
up some percent portion of that. That's because it
realizes its going to open so it goes ahead even though
the mixture ration has not changed. That's the heart of
it.

Now I guess the next way to look at it is on a test to
test comparison. Let's assume we have a baseline engine
and let's change some component. That component is
different in this respect and how does the engine balance
in order to compensate. We have a baseline engine and
for the next test we put in a lox pump that has a lower
turbine efficiency. What that means is we must open up
the OPOV in order to get the same speed out of the
turbine to be able to give the same head you had on the
previous test. When you open up the OPOV that gives
more lox flow into the lox preburner and that will be
registering higher chamber pressure to get the same speed
out of the lower efficient turbine. At the same time the
FPOV will have to open up a little bit for a couple of
reasons. One is this being open more it is not getting
the same amount as previously and the FPB discharge
pressure reads a lower pressure because of lower back
pressure (lower resistance in the system). I think
that's it in a nut shell. I don't think you will see any
other significant deltas. If the pump end is less
efficient I think you will see essential as before but a
higher speed to get the head rise but again that depends
on the relative magnitude of change. You mayor may not
see anything else in the system. If the fuel turbo pump
is less efficient then the opposite happens the OPOV
opens up to get more lox and you see increase in that
pump speed and may see increase in OPOV.

If the turbine efficiency is down you will see an
increase in the FPOV position to get a higher fuel
preburner chamber pressure to maintain a equivalent speed
to get the same head rise across the high pressure fuel
pump. If the pump efficiency is down its just like the
lox side.

Now let's say we go back to a baseline engine and we
change out a duct. Say we change out the high pressure
fuel duct that runs between the discharge of the high
pressure fuel pump and the MFV. We have two
configuration ducts and as far as I know we are running
both. They have a different inner diameter and you see a
lot of difference in the reading of the HPFP discharge
pressure. It's a static pressure and I believe that the
smaller diameter one is the newer one and it has a lower
static discharge pressure. Assuming we have the same
duct if your put a duct on that has a higher fuel side
resistance that will cause you to have to put more energy
in the fuel preburner to turn the pump faster to get a
little higher head rise across the pump to over come the
increase resistance. That's if you have a smaller
diameter your discharge pressure goes up.

This is something that has happened over on the lox side
in the last year. We put on a lox duct with a 7 sigma
high discharge pressure associated wi th it. It was
because it had MR condition which is a weld condition.
It was just a high resistance duct and it caused the lox
system to work harder to overcome the resistance to
maintain the lox flow.

Going back to the schematic.
The fuel comes in to the low pressure fuel pump

through the 3 stage high pressure fuel pump and after it
leaves the main fuel valve it splits and some of it goes
to the main chamber, runs through the chamber, takes the
heat out of it and is discharged and runs back through
and drives the low pressure fuel turbine which turns the
pump. In flight configuration this pressurizes the fuel
tank and on the stand it is just burned and goes to a
burn stack. But that is only a small proportion and the
rest goes and spl its. It goes into both ends of the
powerhead. The powerhead has a liner, an outer shell and
a liner. This turbine exhaust of the LPFT dumps into the
.liner and cools the whole powerhead and then dumps.
There are two face plates, primary and secondary face
plates and it all dumps out into the liner in between
these two plates. It mixes and goes down into the
chamber through the porous face plate. It also has holes

If the turbine efficiency is down you will see an
increase in the FPOV position to get a higher fuel
preburner chamber pressure to maintain a equivalent speed
to get the same head rise across the high pressure fuel
pump. If the pump efficiency is down its just like the
lox side.

Now let's say we go back to a baseline engine and we
change out a duct. Say we change out the high pressure
fuel duct that runs between the discharge of the high
pressure fuel pump and the MFV. We have two
configuration ducts and as far as I know we are running
both. They have a different inner diameter and you see a
lot of difference in the reading of the HPFP discharge
pressure. It's a static pressure and I believe that the
smaller diameter one is the newer one and it has a lower
static discharge pressure. Assuming we have the same
duct if your put a duct on that has a higher fuel side
resistance that will cause you to have to put more energy
in the fuel preburner to turn the pump faster to get a
little higher head rise across the pump to over come the
increase resistance. That's if you have a smaller
diameter your discharge pressure goes up.

This is something that has happened over on the lox side
in the last year. We put on a lox duct with a 7 sigma
high discharge pressure associated wi th it. It was
because it had MR condition which is a weld condition.
It was just a high resistance duct and it caused the lox
system to work harder to overcome the resistance to
maintain the lox flow.

Going back to the schematic.
The fuel comes in to the low pressure fuel pump

through the 3 stage high pressure fuel pump and after it
leaves the main fuel valve it splits and some of it goes
to the main chamber, runs through the chamber, takes the
heat out of it and is discharged and runs back through
and drives the low pressure fuel turbine which turns the
pump. In flight configuration this pressurizes the fuel
tank and on the stand it is just burned and goes to a
burn stack. But that is only a small proportion and the
rest goes and spl its. It goes into both ends of the
powerhead. The powerhead has a liner, an outer shell and
a liner. This turbine exhaust of the LPFT dumps into the
.liner and cools the whole powerhead and then dumps.
There are two face plates, primary and secondary face
plates and it all dumps out into the liner in between
these two plates. It mixes and goes down into the
chamber through the porous face plate. It also has holes

drilled around the outer circumference where it dumps
fuel down the outer walls of chamber.

The second flow split goes through the chamber coolant
valve. The third one goes down to the nozzle. It goes
all the way down to the end where there is an aft mani­
fold which is a big pipe that runs down the exit. It
dumps and then it runs up 600-900 separate tubes that
comprise the nozzle. It then goes up and mixes with fuel
that goes through the CCV and they burn in the preburner.
It is then exhausted through the turbines and goes
through the injector elements and then burned. The
chamber coolant val ve is kind of in my way of thinking
backwards. If you close this valve you get more coolant
to the main chamber. If you open it you get less
coolant to the main chamber.

On the lox side he lox comes in through the LPOP (let's
set the pogo accumulator aside for a moment, it is just a
suppressant system to take the pressure oscillation out
of the lox flow). If you start pulsing in the lox flow it
can show up as a pulse in the chamber pressure and it can
couple with your control system. Your chamber pressure
can get a pulse of lox and your chamber pressure can go
up and your OPOV can slow down. Then it comes down
because of the pulse and it says speed up and they can
couple and you can get out of control.

The flow goes to the main pump. It is discharged and
some of it spl its off and goes back up and into the
turbine. The drive for the LPOT turbine dumps back into
the discharge of the pump so the turbine inlet and the
pump inlet both go into the pump discharge. Somewhat
like a closed loop. Some of it goes thought the HEX.
There is a check valve (an anti-flood valve). It goes
thought the HEX and is used to pressurize the lox tank.
It is also used to maintain ullage and to pressurize the
pogo accumulator and then some of it splits to the
preburner pump. It enters axially and that is boosted up
to feed the preburner thought the OPOV and FPOV. The
rest goes through the main lox valve is inj ected and
mixes with the fuel.

A lot of times we will see cracks open up in the main
combustion chamber. We've had some that were close to
the face plate where we have lowered the resistance in
the leg and have gotten an increase flow which causes an
increase in LPFTP speed.

drilled around the outer circumference where it dumps
fuel down the outer walls of chamber.

The second flow split goes through the chamber coolant
valve. The third one goes down to the nozzle. It goes
all the way down to the end where there is an aft mani­
fold which is a big pipe that runs down the exit. It
dumps and then it runs up 600-900 separate tubes that
comprise the nozzle. It then goes up and mixes with fuel
that goes through the CCV and they burn in the preburner.
It is then exhausted through the turbines and goes
through the injector elements and then burned. The
chamber coolant val ve is kind of in my way of thinking
backwards. If you close this valve you get more coolant
to the main chamber. If you open it you get less
coolant to the main chamber.

On the lox side he lox comes in through the LPOP (let's
set the pogo accumulator aside for a moment, it is just a
suppressant system to take the pressure oscillation out
of the lox flow). If you start pulsing in the lox flow it
can show up as a pulse in the chamber pressure and it can
couple with your control system. Your chamber pressure
can get a pulse of lox and your chamber pressure can go
up and your OPOV can slow down. Then it comes down
because of the pulse and it says speed up and they can
couple and you can get out of control.

The flow goes to the main pump. It is discharged and
some of it spl its off and goes back up and into the
turbine. The drive for the LPOT turbine dumps back into
the discharge of the pump so the turbine inlet and the
pump inlet both go into the pump discharge. Somewhat
like a closed loop. Some of it goes thought the HEX.
There is a check valve (an anti-flood valve). It goes
thought the HEX and is used to pressurize the lox tank.
It is also used to maintain ullage and to pressurize the
pogo accumulator and then some of it splits to the
preburner pump. It enters axially and that is boosted up
to feed the preburner thought the OPOV and FPOV. The
rest goes through the main lox valve is inj ected and
mixes with the fuel.

A lot of times we will see cracks open up in the main
combustion chamber. We've had some that were close to
the face plate where we have lowered the resistance in
the leg and have gotten an increase flow which causes an
increase in LPFTP speed.

components., observable parameters for that component, and
what drives them:

LPFP:
.. Turbine discharge pressure fuel pressurization

interface pressure
.Turbine inlet pressure
• Discharge temperature from the MCC - close to turbine

inlet temperature
• Speed - delta p across the turbine
• Discharge pressure - changes in speed, changes in inlet

pressure

The delta p changes when you go from max/min on the
repress. Opening a valve controls the repress flow.
This changes the turbine delta p which changes the
speed.

A specific phenomena associated with the piston ring
seal is in the turbine discharge leg where a seal
unseats and gets more flow. Reduces the back pressure on
the turbine changing the turbine delta p.

Things that can go wrong with pump: insufficient head
rise, not enough discharge pressure generated. Low
discharge pressure. (Neither are typically seen)
• Things to consider if pump changed: No significant
changes in the engine. The HPFP is very insensitive to
the discharge of the LPFP until it reaches a point that
it causes it to start cavitating. Must be a pretty bad
pump to do this. The effect of the back pressure of the
turbine on the chamber coolant. Chamber coolant
temperature should be maintained well below 500 degrees.
Turbine can act as a controlling orifice on the chamber
coolant flow. It is not suppose to because there is an
orifice at the discharge of each chamber that is sized to
control how much flow it is getting.
• Performance shifts seen in the LPFT in the past have
only been attributed to piston ring seals in the main
chamber powerhead. It allows more or less turbine
discharge flow which changes the delta p on the turbine.
• Change in the F-7 orifice may affect performance of
this pump.
• LPFP pretty consistent. Problems that have been seen
are attributed to piston ring seal shift. This pump has
very little effect on the performance of the engine.

LPOP:
• Pump discharge pressure
• Pump inlet pressure
. HPOP discharge pressure
.High pressure pump more sensitive to low pressure pump

than on fuel side •
• Tends to cavi tate during shutdown because you back

flow.

components., observable parameters for that component, and
what drives them:

LPFP:
.. Turbine discharge pressure fuel pressurization

interface pressure
.Turbine inlet pressure
• Discharge temperature from the MCC - close to turbine

inlet temperature
• Speed - delta p across the turbine
• Discharge pressure - changes in speed, changes in inlet

pressure

The delta p changes when you go from max/min on the
repress. Opening a valve controls the repress flow.
This changes the turbine delta p which changes the
speed.

A specific phenomena associated with the piston ring
seal is in the turbine discharge leg where a seal
unseats and gets more flow. Reduces the back pressure on
the turbine changing the turbine delta p.

Things that can go wrong with pump: insufficient head
rise, not enough discharge pressure generated. Low
discharge pressure. (Neither are typically seen)
• Things to consider if pump changed: No significant
changes in the engine. The HPFP is very insensitive to
the discharge of the LPFP until it reaches a point that
it causes it to start cavitating. Must be a pretty bad
pump to do this. The effect of the back pressure of the
turbine on the chamber coolant. Chamber coolant
temperature should be maintained well below 500 degrees.
Turbine can act as a controlling orifice on the chamber
coolant flow. It is not suppose to because there is an
orifice at the discharge of each chamber that is sized to
control how much flow it is getting.
• Performance shifts seen in the LPFT in the past have
only been attributed to piston ring seals in the main
chamber powerhead. It allows more or less turbine
discharge flow which changes the delta p on the turbine.
• Change in the F-7 orifice may affect performance of
this pump.
• LPFP pretty consistent. Problems that have been seen
are attributed to piston ring seal shift. This pump has
very little effect on the performance of the engine.

LPOP:
• Pump discharge pressure
• Pump inlet pressure
. HPOP discharge pressure
.High pressure pump more sensitive to low pressure pump

than on fuel side •
• Tends to cavi tate during shutdown because you back

flow.

· Every time you drop inlet pressure even a little it
must maintain the same discharge pressure. Has a
constant resistance, constant flow so pump must speed up
for the loss of inlet pressure •

• During vent the lox pump must make up the extra
pressure, OPOV will open, the lox turbine temps will
increase significantly, and the fuel system will
decrease •

. Efficiency changes are seen when you change out pumps.

HPOTP:
. Turbine efficiences
. Pump efficiences
.Turbine inlet pressure
. Turbine inlet temperatures
• Turbine discharge pressure

Test with ATD development pump.
Looking at a anomaly where it looked like there was a

turbine efficiency change where the discharge pressure
started to falloff which caused the discharge pressure
to falloff on the preburner pump which caused the MCC
pressure to falloff. As soon as all of this happened
the OPOV opened up and caused the pump to speed up. What
happened the speed fell off so OPOV opened and brought
the pump back up to the speed at which it had before the
anomaly but the chamber pressure was higher.

What is the time interval from the time the efficiency
change sifted and the compensation occurred?

This was a dramatic fallout. It was about 5
seconds before it recovered. You would not be able to
tell which happened first, the drop in chamber pressure
or the increase in OPOV. Except you know the OPOV
opened after the chamber pressure dropped. We see any
number of duration of efficiency shifts.

How do you define efficiency?
I was referring to the fact that it required more

power to get the same speed. We were getting same head
rise for the same speed out of the pump end. That is how
I arrived at turbine efficiency increase. It could be
that there is something rubbing at the pump end. It
still could be a hardware anomaly in the pump end. When
you have an increase in the main pump speed you have an
increase in the injection temperature because you put
more energy in the lox. There is only one temp sensor
in the main lox flow which is in the lox dome. You also
have a preburner pump discharge temperature.

This is an ATD pump and not a RKD SSME flight
configuration pump. They are usually more instantaneous.
If it is a true efficiency shift it doesn't return to the
same point as before the shift. We have some where there

· Every time you drop inlet pressure even a little it
must maintain the same discharge pressure. Has a
constant resistance, constant flow so pump must speed up
for the loss of inlet pressure •

• During vent the lox pump must make up the extra
pressure, OPOV will open, the lox turbine temps will
increase significantly, and the fuel system will
decrease •

. Efficiency changes are seen when you change out pumps.

HPOTP:
. Turbine efficiences
. Pump efficiences
.Turbine inlet pressure
. Turbine inlet temperatures
• Turbine discharge pressure

Test with ATD development pump.
Looking at a anomaly where it looked like there was a

turbine efficiency change where the discharge pressure
started to falloff which caused the discharge pressure
to falloff on the preburner pump which caused the MCC
pressure to falloff. As soon as all of this happened
the OPOV opened up and caused the pump to speed up. What
happened the speed fell off so OPOV opened and brought
the pump back up to the speed at which it had before the
anomaly but the chamber pressure was higher.

What is the time interval from the time the efficiency
change sifted and the compensation occurred?

This was a dramatic fallout. It was about 5
seconds before it recovered. You would not be able to
tell which happened first, the drop in chamber pressure
or the increase in OPOV. Except you know the OPOV
opened after the chamber pressure dropped. We see any
number of duration of efficiency shifts.

How do you define efficiency?
I was referring to the fact that it required more

power to get the same speed. We were getting same head
rise for the same speed out of the pump end. That is how
I arrived at turbine efficiency increase. It could be
that there is something rubbing at the pump end. It
still could be a hardware anomaly in the pump end. When
you have an increase in the main pump speed you have an
increase in the injection temperature because you put
more energy in the lox. There is only one temp sensor
in the main lox flow which is in the lox dome. You also
have a preburner pump discharge temperature.

This is an ATD pump and not a RKD SSME flight
configuration pump. They are usually more instantaneous.
If it is a true efficiency shift it doesn't return to the
same point as before the shift. We have some where there

is a shift momentary change and everything returns to be
completely like they were before the event. Then
sometimes they return to a slightly different operating
point. That is what happened here. We are requiring a
little more energy in the turbine end to get the same
speed. But with the same speed we are producing the same
flow. PBP discharge pressure was lower after the event
than before. We had the same lox pump discharge
pressure, a little lower preburner pressure with about
1.5% more open OPOV We didn't have the same back
pressure on the preburner pump.

What do you expect to see if the turbine efficiency
shifted down?

Turbine efficiency down I would expect to see the
OPOV more open, the same speed if it is just a turbine
anomaly, a little higher turbine temperature. Temps are
not real responsive in all situations. Depending on the
magni tude of the shift you may see some effects on the
fuel pump. You may see it back off a little similar to a
vent. If the pump efficiency decreased I would expect to
see the same thing except I would expect to see a pump
increase to maintain the same headrise. This goes for
both the main and preburner pump.

What about the pump inlet pressure?
If it is constant but for some reason had a change

in the efficiency and it started going down the OPOV
would open. It would only be able to do so if we
increase the speed. So increasing the speed would cause
the OPOV to open and increasing the discharge pressure
would cause it to close. Where it would balance I don't
know. It depends on the anomaly.

PUmp Bi-stability.
At lower power levels there is a situtation on the

PBP, a stall point at a certain speed, the flow goes bi­
stable and you can have two different flows for a given
speed. When the flow decreases the pump slows down the
Pc goes down the OPOV opens the pump speed increases and
pushes back beyond that threshold and it has two much
flow. It begins to oscillate between too much and too
little flow. New pumps are screened against this. They
are tested at 65%, 64% and 63% PL at 10 second
intervals.

What happens if the inlet temperatures change?
What you are trying to maintain is mass flow rate.

Increase in temp causes lower density, you have to
increase pump speed to get the same mass for a higher
volumetric flow. Those are not real significant.

Problems seen in the lox pump.

is a shift momentary change and everything returns to be
completely like they were before the event. Then
sometimes they return to a slightly different operating
point. That is what happened here. We are requiring a
little more energy in the turbine end to get the same
speed. But with the same speed we are producing the same
flow. PBP discharge pressure was lower after the event
than before. We had the same lox pump discharge
pressure, a little lower preburner pressure with about
1.5% more open OPOV We didn't have the same back
pressure on the preburner pump.

What do you expect to see if the turbine efficiency
shifted down?

Turbine efficiency down I would expect to see the
OPOV more open, the same speed if it is just a turbine
anomaly, a little higher turbine temperature. Temps are
not real responsive in all situations. Depending on the
magni tude of the shift you may see some effects on the
fuel pump. You may see it back off a little similar to a
vent. If the pump efficiency decreased I would expect to
see the same thing except I would expect to see a pump
increase to maintain the same headrise. This goes for
both the main and preburner pump.

What about the pump inlet pressure?
If it is constant but for some reason had a change

in the efficiency and it started going down the OPOV
would open. It would only be able to do so if we
increase the speed. So increasing the speed would cause
the OPOV to open and increasing the discharge pressure
would cause it to close. Where it would balance I don't
know. It depends on the anomaly.

PUmp Bi-stability.
At lower power levels there is a situtation on the

PBP, a stall point at a certain speed, the flow goes bi­
stable and you can have two different flows for a given
speed. When the flow decreases the pump slows down the
Pc goes down the OPOV opens the pump speed increases and
pushes back beyond that threshold and it has two much
flow. It begins to oscillate between too much and too
little flow. New pumps are screened against this. They
are tested at 65%, 64% and 63% PL at 10 second
intervals.

What happens if the inlet temperatures change?
What you are trying to maintain is mass flow rate.

Increase in temp causes lower density, you have to
increase pump speed to get the same mass for a higher
volumetric flow. Those are not real significant.

Problems seen in the lox pump.

We've seen increase resistances go through the lox
leg and suspected ice in the injector. It causes the
pump to work harder to get the flow out. This shows up
in the discharge pressure, the speed, preburner chamber
pressure, pretty much in everything.

Basically if you increase the resistance in the lox
system or c;iecrease its efficiency, the ability to pump
against a given resistance, then the pump must work
harder. The turbine temps are high the speed is higher
and the fuel system powers down a little.

Problems have been seen wi th the intermediate seal
purge pressure.

What other kinds of things can happen to the pump that
can affect the rest of the engine?

Rotor moving can cause an efficiency shift. Seal
moving with respect to the rotor can cause an efficiency
shift. Hot turbine gas is discharged through 2 stage
turbine disk and there are some by-pass flows. 'If by­
pass flow changes you can get more of less efficiency of
the turbine. We have balance cavatity pressures that
tell us the axial position of the rotor. You would have
to ask the component people about this. And I think
that is more of an art than a science. On either side of
the pump there are cavities that take off high pressure.

After the flow comes in it splits in the center of
the impeller and this is discharged. Some of that which
is discarded is taken into a cavity and put back into the
inlet. It is kind of a circular thing and done on both
sides of the impeller. It is orificed and the orifice
size changes with the moving of the pump so it balances
the axial position of the pump. You can sometimes see
axial movement correlate with efficiency change.

Are turbine and pump efficiencies basically the maj or
thing that will change?

Yes, you may have balance cavity pressures that say
yes physically the rotor shifted or had some movement at
the time we had the efficiency change. This is
especially true if you have a big effect on the discharge
pressure.

HPFT:

• Measured propellant flow on lox and fuel
• Speed
• Preburner Pc
• Turbine discharge temps
• Use preburner discharge pressures and temps to know

what the lox supply inlet pressure is •
• A problem with this you don't know the flow split.

Look at speed vs head rise
• Look at speed vs amount energy put in preburner.

We've seen increase resistances go through the lox
leg and suspected ice in the injector. It causes the
pump to work harder to get the flow out. This shows up
in the discharge pressure, the speed, preburner chamber
pressure, pretty much in everything.

Basically if you increase the resistance in the lox
system or c;iecrease its efficiency, the ability to pump
against a given resistance, then the pump must work
harder. The turbine temps are high the speed is higher
and the fuel system powers down a little.

Problems have been seen wi th the intermediate seal
purge pressure.

What other kinds of things can happen to the pump that
can affect the rest of the engine?

Rotor moving can cause an efficiency shift. Seal
moving with respect to the rotor can cause an efficiency
shift. Hot turbine gas is discharged through 2 stage
turbine disk and there are some by-pass flows. 'If by­
pass flow changes you can get more of less efficiency of
the turbine. We have balance cavatity pressures that
tell us the axial position of the rotor. You would have
to ask the component people about this. And I think
that is more of an art than a science. On either side of
the pump there are cavities that take off high pressure.

After the flow comes in it splits in the center of
the impeller and this is discharged. Some of that which
is discarded is taken into a cavity and put back into the
inlet. It is kind of a circular thing and done on both
sides of the impeller. It is orificed and the orifice
size changes with the moving of the pump so it balances
the axial position of the pump. You can sometimes see
axial movement correlate with efficiency change.

Are turbine and pump efficiencies basically the maj or
thing that will change?

Yes, you may have balance cavity pressures that say
yes physically the rotor shifted or had some movement at
the time we had the efficiency change. This is
especially true if you have a big effect on the discharge
pressure.

HPFT:

• Measured propellant flow on lox and fuel
• Speed
• Preburner Pc
• Turbine discharge temps
• Use preburner discharge pressures and temps to know

what the lox supply inlet pressure is •
• A problem with this you don't know the flow split.

Look at speed vs head rise
• Look at speed vs amount energy put in preburner.

. If fuel pump efficiency changes you must put more
energy in it then the lox pump will throttle back just a
little.

What kind of failures have you seen?
On the backside of impellers there are parasitic

flows which is essentially a cavitity type situtation
where you take a high pressure discharge change and you
flow it to the back of the impeller and then put it back
in so there is circular movement. We seen changes in
that flow when the sealing material (which is very soft)
breaks up and the flow path can change. When that
happens you usually see an indication in the discharge
temp that your discharging more parasitic flow that has
more heat in it. Has a very small effect.

On turbine efficiency shifts we have to increase the
preburner Pc to get the same speed out of the turbine.
Those may occur because of sheet metal problems. You have
a lot of sheet metal in the discharge and have had
situations where the sheet metal had been torn loose and
restricted the discharge flow.

On one test the MFV was mis-clocked on the actuator.
The actuator was saying it was 100% open when it was at
94%. HPFP had a decrease of about 400 psi in discharge
pressure and the pump was spinning fast, increasing the
discharge pressure and the lox pump was throttled down a
little.

We didn't get past the start. It was misclocked
opened and we got too much lox flow in the main chamber
early. The chamber primed but the back pressure and
chamber caused the fuel pump to stall.

We have also had cracked impellers.

Gains for chanqinq out components.
. If you change out your pump the preburner chamber
pressure that is required to drive the pump to get a flow
is part of the back pressure of the fuel and lox system.

There are variations seen with hardware change outs.
The nominal variation is 20 to 40 psi for a pump

change out. This is due to efficiency and back pressure.
Very little difference in combustion efficiency from

one chamber to another.
Almost all chambers as they get older have lox post

pI ugged because they are cracked. When you get up to
around 10 plugged post you begin to see a decrease in
combustion chamber efficiency.

Your main pump efficiency doesn't affect you engine
performance.

Leaks.
If you have a leak down stream of you flow meter

then all the lost fuel flow must be made up in lox.
Because as far as the engine knows the flow meter has
already recorded that fuel. For 1 lb of fuel you lose

. If fuel pump efficiency changes you must put more
energy in it then the lox pump will throttle back just a
little.

What kind of failures have you seen?
On the backside of impellers there are parasitic

flows which is essentially a cavitity type situtation
where you take a high pressure discharge change and you
flow it to the back of the impeller and then put it back
in so there is circular movement. We seen changes in
that flow when the sealing material (which is very soft)
breaks up and the flow path can change. When that
happens you usually see an indication in the discharge
temp that your discharging more parasitic flow that has
more heat in it. Has a very small effect.

On turbine efficiency shifts we have to increase the
preburner Pc to get the same speed out of the turbine.
Those may occur because of sheet metal problems. You have
a lot of sheet metal in the discharge and have had
situations where the sheet metal had been torn loose and
restricted the discharge flow.

On one test the MFV was mis-clocked on the actuator.
The actuator was saying it was 100% open when it was at
94%. HPFP had a decrease of about 400 psi in discharge
pressure and the pump was spinning fast, increasing the
discharge pressure and the lox pump was throttled down a
little.

We didn't get past the start. It was misclocked
opened and we got too much lox flow in the main chamber
early. The chamber primed but the back pressure and
chamber caused the fuel pump to stall.

We have also had cracked impellers.

Gains for chanqinq out components.
. If you change out your pump the preburner chamber
pressure that is required to drive the pump to get a flow
is part of the back pressure of the fuel and lox system.

There are variations seen with hardware change outs.
The nominal variation is 20 to 40 psi for a pump

change out. This is due to efficiency and back pressure.
Very little difference in combustion efficiency from

one chamber to another.
Almost all chambers as they get older have lox post

pI ugged because they are cracked. When you get up to
around 10 plugged post you begin to see a decrease in
combustion chamber efficiency.

Your main pump efficiency doesn't affect you engine
performance.

Leaks.
If you have a leak down stream of you flow meter

then all the lost fuel flow must be made up in lox.
Because as far as the engine knows the flow meter has
already recorded that fuel. For 1 lb of fuel you lose

you have to make up for it with 3 lbs of lox to maintain
chamber pressure. When you have cracks in the chamber
and you dump in fuel you have a lose of fuel and the lox
system has to power to maintain chamber pressure. The
fuel system remains constant because the engine thinks
you are losing lox.

Any leak downstream of the flowmeter or on the lox
side will be assumed by the engine as a lack of lox flow.

When you dump fuel overboard is analogous to a lox
leak. We test at max/min conditions where we have a
valve that open and closes to different flow rates.
(min=.2 max =1.2). For every pound of fuel you dump
overboard you increase the lox by 3 lbs. You see a
change in the lox system when you change the repress on
the fuel side. You don't see much change in the fuel
side with the exception of the LPFP. When you go to
repress it lowers the turbine back -pressure and causes
increase in the delta p on the turbine and the pump
speeds up. Repress on the lox side doesn't show up very
much.

Are there any other efficiency type measurements made in
the powerhead?
Just combustion efficiency.

Do you measure things like resistances?
We look for resistance changes. We look at them in

terms of a discharge pressure compared to an average data
base. This can fool you sometimes. If you have an engine
that has had some changes it is important to look at
delta pes. We have had situations where some type of
foreign particle has gotten into the system, a tool, a
rag or anything else. That's something to look at but we
typically do not clog the data book with delta peS.

Are there any other major components that you change out?
For example are all nozzles the same« are all throat
areas and exit areas the same?
No, they are measured and the measurements are available.
That doesn't effect anything but ISP.

Hypothetically what would happen if you had the same
problem on the lox side as you had with the fuel
valveCpartially closed)?
MARC: If the valve could stand it the lox" side would
burn hotter. It would not know where the resistance came
from. You would look at the delta p across the
inj ectors, look at discharge pressure minus the dome
pressure. We have had test where we had increase
resistance across the injectors and we thought we had ice
in the "injector.

Anything ever happen on the pogo?

ft3-1~1

you have to make up for it with 3 lbs of lox to maintain
chamber pressure. When you have cracks in the chamber
and you dump in fuel you have a lose of fuel and the lox
system has to power to maintain chamber pressure. The
fuel system remains constant because the engine thinks
you are losing lox.

Any leak downstream of the flowmeter or on the lox
side will be assumed by the engine as a lack of lox flow.

When you dump fuel overboard is analogous to a lox
leak. We test at max/min conditions where we have a
valve that open and closes to different flow rates.
(min=.2 max =1.2). For every pound of fuel you dump
overboard you increase the lox by 3 lbs. You see a
change in the lox system when you change the repress on
the fuel side. You don't see much change in the fuel
side with the exception of the LPFP. When you go to
repress it lowers the turbine back -pressure and causes
increase in the delta p on the turbine and the pump
speeds up. Repress on the lox side doesn't show up very
much.

Are there any other efficiency type measurements made in
the powerhead?
Just combustion efficiency.

Do you measure things like resistances?
We look for resistance changes. We look at them in

terms of a discharge pressure compared to an average data
base. This can fool you sometimes. If you have an engine
that has had some changes it is important to look at
delta pes. We have had situations where some type of
foreign particle has gotten into the system, a tool, a
rag or anything else. That's something to look at but we
typically do not clog the data book with delta peS.

Are there any other major components that you change out?
For example are all nozzles the same« are all throat
areas and exit areas the same?
No, they are measured and the measurements are available.
That doesn't effect anything but ISP.

Hypothetically what would happen if you had the same
problem on the lox side as you had with the fuel
valveCpartially closed)?
MARC: If the valve could stand it the lox" side would
burn hotter. It would not know where the resistance came
from. You would look at the delta p across the
inj ectors, look at discharge pressure minus the dome
pressure. We have had test where we had increase
resistance across the injectors and we thought we had ice
in the "injector.

Anything ever happen on the pogo?

ft3-1~1

We don't have any data on the pogo accumulator
itself. We have a pogo precharge pressure transducer
that looks at the pressure of the gox that we are
injecting into the pogo accumulator.

We don't have any data on the pogo accumulator
itself. We have a pogo precharge pressure transducer
that looks at the pressure of the gox that we are
injecting into the pogo accumulator.

Dave Foust 29 April 1992

Delta Book and Hardware Changes

Dave: sometimes we'll change out the LPFP and all that effects
engine balance. Flying a high efficiency Lox Pump drives turbine
temps down which causes fuel turbine temps up. Efficiency of pump
and engine on which it green runs affects flight predictions. Last
flight, the HPOP was green run on an engine with fleet leader
leakage on the MCC, i.e. it dumps lox out through cracks in the
MCC, therefore the Lox flow is increased to maintain the MCC Pc ,
causes all parameters to go up. That pump is then put on a flight
engine (nominal), where the increased lox flows increase HPOP DS P
by -75 psi. After further study, it was determined that all
parameters were running 2 to 3 sigma high, so predictions had to
take all of that out for the flight engine.

John uses the Gains book, say if he sees a decrease in resistance
in HPOP DS P, there is a resulting drop in the HPOP DS P, which
drops turbine temps, affects valve positions, etc. This book was
originally published in 1985 for phase I pumps.

Tim: We have a book at Aerojet called the Delta book. I think that
it is the same thing.

Dave: I can get a hold of John's if necessary. As a matter of
fact, I will be getting an updated version for this next flight.

Tim: Brian was telling me that he also tabulates alot of similar
information from special PBM runs.

Dave: Yes, thats another tool that I use. We predict at 200 sec
in flight.

Tim: Would you please back up and explain what you mean when you
say that you predict something for flight?

Dave: Predict how the engine will perform at 200 sec into flight.
JSC has the flight rules - they monitor engine and vehicle
performance much closer than we do. They will call an abort when
we would not have considered things to be running off nominal.
They need to insure that we have enough lox to complete a mission.
If we're running off mixture ratio, that could happen. Rocketdyne
gives them the official numbers. Ours are mainly a confirmation.

Tim: We're mainly interested in post-flight/test. You get the
data back and from my observations, alot of reasoning is based on
change in direction of parameters. But at some point, this type of
reasoning is no longer sufficient.

Dave: That is correct. We're looking at the data of the 3 engines
plotted simultaneously. On FRF, we noticed from ground-test to
FRF, all fuel pump discharge pressures dropped 100-150 psi. That
is not necessarily a big deal but we investigate it any way. We

Dave Foust 29 April 1992

Delta Book and Hardware Changes

Dave: sometimes we'll change out the LPFP and all that effects
engine balance. Flying a high efficiency Lox Pump drives turbine
temps down which causes fuel turbine temps up. Efficiency of pump
and engine on which it green runs affects flight predictions. Last
flight, the HPOP was green run on an engine with fleet leader
leakage on the MCC, i.e. it dumps lox out through cracks in the
MCC, therefore the Lox flow is increased to maintain the MCC Pc ,
causes all parameters to go up. That pump is then put on a flight
engine (nominal), where the increased lox flows increase HPOP DS P
by -75 psi. After further study, it was determined that all
parameters were running 2 to 3 sigma high, so predictions had to
take all of that out for the flight engine.

John uses the Gains book, say if he sees a decrease in resistance
in HPOP DS P, there is a resulting drop in the HPOP DS P, which
drops turbine temps, affects valve positions, etc. This book was
originally published in 1985 for phase I pumps.

Tim: We have a book at Aerojet called the Delta book. I think that
it is the same thing.

Dave: I can get a hold of John's if necessary. As a matter of
fact, I will be getting an updated version for this next flight.

Tim: Brian was telling me that he also tabulates alot of similar
information from special PBM runs.

Dave: Yes, thats another tool that I use. We predict at 200 sec
in flight.

Tim: Would you please back up and explain what you mean when you
say that you predict something for flight?

Dave: Predict how the engine will perform at 200 sec into flight.
JSC has the flight rules - they monitor engine and vehicle
performance much closer than we do. They will call an abort when
we would not have considered things to be running off nominal.
They need to insure that we have enough lox to complete a mission.
If we're running off mixture ratio, that could happen. Rocketdyne
gives them the official numbers. Ours are mainly a confirmation.

Tim: We're mainly interested in post-flight/test. You get the
data back and from my observations, alot of reasoning is based on
change in direction of parameters. But at some point, this type of
reasoning is no longer sufficient.

Dave: That is correct. We're looking at the data of the 3 engines
plotted simultaneously. On FRF, we noticed from ground-test to
FRF, all fuel pump discharge pressures dropped 100-150 psi. That
is not necessarily a big deal but we investigate it any way. We

discovered that a ground test instrumentation probe being removed
from that duct caused the resistance to drop to effect that kind of
a change. In flight we compare across engines. If we need to
track something further, we'll go back and look at the last time
that orbi tor flew, or maybe even look at the green run for a
particular component. -

We plot alot more data, from tanking to engine cutoff. One concern
on flight is cavitation on the HPOP driven by the LPOP DS P.
Shutdown at Og, where inlet P's are what the ET is providing.
Cavitation is indicated by HPOP spd being high, while the HPOP DS
P is dropping, ie no head. Also look for pops. We had a good
post-shutdown pop last flight. They had to do a hardware
inspection of the faceplate as a result.

Jeff: Prestart is much more regimented in flight than in ground
test. Most is time based. PSN 4 starts at t-4min. You can
recylce if valves aren't cycled. Events must occur, i.e. LCC's
must be met before you can launch.

Dave: You have a 3 min He purge/hour on the fuel side during which
time you are looking for leaks. You should see temps increase
because you are blowing warm He. If temps don't increase, you
suspect leak. Ground launch computer dictates everything. You
start your APU's on the orbitor. You only have a certain amount of
hydrazine to run these, therefore you're limited about how long you
can go into a hold also. If this is violated, you can run out of
hydraulic pressure.

Another phenomenon is drain back. Once we have finished filling
the tank, the lox and fuel that remains in the lines tends to be a
little bit warmer. The bleed valves are still open, so you're
filling a small amount of fuel and lox into the engine. The temps
will begin to warm up because of this. The temps will warm up into
the start box and you have about 1 minute to start once you enter
the start box.

Tim: Do you ever use the delta book to do a diagnosis of say, you
have two problems and you are trying to discriminate between them
but you don't know the amount of changes that they might have
caused?

Dave: I don't think that we have ever used the delta book in our
analysis. NOw, the kind of analysis that we do and the kind of
analysis that John does are kind of separate. John looks strictly
at steady state and the flight rule. We are mainly concerned with
the mixture ratio flight rule that is concerned with lox turbine
temps, HPOP DS P, FPOV and OPOV. We look at those 4 parameters.
If the engine operates far enough out of these bands, then we say
that there is a mixture ratio shift that is caused by a flowmeter
shift or whatever. There are several things that can cause it.
They say based on this shift we may run out of lox or not based on
whether the engine performance shifted high or low. It just
depends on the residuals that we had for that launch. And thats

discovered that a ground test instrumentation probe being removed
from that duct caused the resistance to drop to effect that kind of
a change. In flight we compare across engines. If we need to
track something further, we'll go back and look at the last time
that orbi tor flew, or maybe even look at the green run for a
particular component. -

We plot alot more data, from tanking to engine cutoff. One concern
on flight is cavitation on the HPOP driven by the LPOP DS P.
Shutdown at Og, where inlet P's are what the ET is providing.
Cavitation is indicated by HPOP spd being high, while the HPOP DS
P is dropping, ie no head. Also look for pops. We had a good
post-shutdown pop last flight. They had to do a hardware
inspection of the faceplate as a result.

Jeff: Prestart is much more regimented in flight than in ground
test. Most is time based. PSN 4 starts at t-4min. You can
recylce if valves aren't cycled. Events must occur, i.e. LCC's
must be met before you can launch.

Dave: You have a 3 min He purge/hour on the fuel side during which
time you are looking for leaks. You should see temps increase
because you are blowing warm He. If temps don't increase, you
suspect leak. Ground launch computer dictates everything. You
start your APU's on the orbitor. You only have a certain amount of
hydrazine to run these, therefore you're limited about how long you
can go into a hold also. If this is violated, you can run out of
hydraulic pressure.

Another phenomenon is drain back. Once we have finished filling
the tank, the lox and fuel that remains in the lines tends to be a
little bit warmer. The bleed valves are still open, so you're
filling a small amount of fuel and lox into the engine. The temps
will begin to warm up because of this. The temps will warm up into
the start box and you have about 1 minute to start once you enter
the start box.

Tim: Do you ever use the delta book to do a diagnosis of say, you
have two problems and you are trying to discriminate between them
but you don't know the amount of changes that they might have
caused?

Dave: I don't think that we have ever used the delta book in our
analysis. NOw, the kind of analysis that we do and the kind of
analysis that John does are kind of separate. John looks strictly
at steady state and the flight rule. We are mainly concerned with
the mixture ratio flight rule that is concerned with lox turbine
temps, HPOP DS P, FPOV and OPOV. We look at those 4 parameters.
If the engine operates far enough out of these bands, then we say
that there is a mixture ratio shift that is caused by a flowmeter
shift or whatever. There are several things that can cause it.
They say based on this shift we may run out of lox or not based on
whether the engine performance shifted high or low. It just
depends on the residuals that we had for that launch. And thats

~here JSC can call an abort or scrub.

So John looks at steady state and we look at the transients, the
engine system health and performance more than steady state. We'll
~lot drifts of instrumentation as well as engine health. If we
~ave a situation of something totally off nominal, such as turbine
cischarge temps, more than we predicted then we will be involved.
~~ere have been occurences where pump efficiencies shifted, turbine
~emps have risen a few degrees

~here JSC can call an abort or scrub.

So John looks at steady state and we look at the transients, the
engine system health and performance more than steady state. We'll
~lot drifts of instrumentation as well as engine health. If we
~ave a situation of something totally off nominal, such as turbine
cischarge temps, more than we predicted then we will be involved.
~~ere have been occurences where pump efficiencies shifted, turbine
~emps have risen a few degrees

Dave Foust 29 April 92 Interview cont'd

We have actually had flights where we experienced efficiency shifts
on one of the pumps. Al'l of the sudden the turbine temps will kick
up a ·couple of degrees, the discharge pressure will change, all for
no apparent reason. We finally conclude that it was some kind of
efficiency shift. If that happens before the 200 seconds, then our
predictions will be off.

Tim: Perhaps we should back way up.
responsibility during flight?

What exactly is your

Dave: Helping John to make predictions for flight and then also to
look at the actual flight data and compare it to our predictions
and Rocketdyne's predictions.

~im: And if there is any kind of anomaly, are you then in charge
of investigating it?

~ave: Probably Darrell and I are the primary ones to look at that
data. Everyone looks at it. Darrell and I are the ones in charge
ox putting the package together for the data review. John and
~arrell interact very little. I do work for both of them, like
putting together the 2 sigma charts as well as the standard plots
!or the data review. I do the packages for both people. I also
~eep alot of the flight data bases: the 2-sigma and the flight
database.

Jean: Do you have a hardware change database?

~ave: Yes. I have a hardware change database for flight engines
only.

Jeff: Are you going to port those guys to Ingres?

Dave: I plan to.

Tim: So what do you have in the Hardware change database?

Dave: It's is similar to the hotfire database, with extras. I
track the 4 pumps on each engine, how long each engine has flown,
test date and test number, hex orifice size, C2's and Kf's, as well
as all hardware changes that have occurred after each test or
flight. If they change out a flowmeter or a pump, I track that
because it all has an affect on the performance of the engine.

Tim: Would you track the relative pump efficiencies?

Dave: No, I don't keep track of pump efficiencies. Brian was
doing that at one time. After each test he would input the
efficiencies that had been calculated for each of the pumps. But
I don't know that he is still doing that. He would dump it all
into a spreadsheet.

Dave Foust 29 April 92 Interview cont'd

We have actually had flights where we experienced efficiency shifts
on one of the pumps. Al'l of the sudden the turbine temps will kick
up a ·couple of degrees, the discharge pressure will change, all for
no apparent reason. We finally conclude that it was some kind of
efficiency shift. If that happens before the 200 seconds, then our
predictions will be off.

Tim: Perhaps we should back way up.
responsibility during flight?

What exactly is your

Dave: Helping John to make predictions for flight and then also to
look at the actual flight data and compare it to our predictions
and Rocketdyne's predictions.

~im: And if there is any kind of anomaly, are you then in charge
of investigating it?

~ave: Probably Darrell and I are the primary ones to look at that
data. Everyone looks at it. Darrell and I are the ones in charge
ox putting the package together for the data review. John and
~arrell interact very little. I do work for both of them, like
putting together the 2 sigma charts as well as the standard plots
!or the data review. I do the packages for both people. I also
~eep alot of the flight data bases: the 2-sigma and the flight
database.

Jean: Do you have a hardware change database?

~ave: Yes. I have a hardware change database for flight engines
only.

Jeff: Are you going to port those guys to Ingres?

Dave: I plan to.

Tim: So what do you have in the Hardware change database?

Dave: It's is similar to the hotfire database, with extras. I
track the 4 pumps on each engine, how long each engine has flown,
test date and test number, hex orifice size, C2's and Kf's, as well
as all hardware changes that have occurred after each test or
flight. If they change out a flowmeter or a pump, I track that
because it all has an affect on the performance of the engine.

Tim: Would you track the relative pump efficiencies?

Dave: No, I don't keep track of pump efficiencies. Brian was
doing that at one time. After each test he would input the
efficiencies that had been calculated for each of the pumps. But
I don't know that he is still doing that. He would dump it all
into a spreadsheet.

'Tim: I often hear reference to "Well we have this one pump that
~as on this other engine and we know how it performed ••• " Is that
information that is recorded, or is that something that is carried
around in your head?

:lave: It's not written down. But if you see an engine or pump run
~otally different from the last pump, then you begin to suspect
~hat the pump is bad. You can have poor turbine efficiency, you
=an have poor pump efficiency, you can have a great lox pump but a
~errible preburner pump. Therefore you discharge pressures are·
~ifferent, your valve positions are opened up. There are several
~hings that could be bad. You start to go through each one. You
~et Tracey, Brian or Bil to do a data reduction on that particular
~est. Then we'll look at how those numbers fall within the bands
~f pump efficiencies, suction specific speed, and all of the other
;:.arameters. So we don't go into alot of detail on pump performance
~nless there is a problem.

3ill: I know that you don't use the Delta book for diagnosis. But
~he magnitudes, the ways certain parameters respond, would that
~rive your logic as to how you would diagnose? I mean, if there
~as a hard failure, you wouldn't investigate a sensor failure. If
~t was too small a delta, you wouldn't even know that it was an
~nomaly. Should the magnitudes drive the logic of your diagnosis?
:s that something that would be useful for us to pursue?

~ave: Yeah, it does make a difference. That is a judgement call
~hat varies from person to person. You may see a shift in pressure
~hat may just be a run-to-run variation. Someone else may see it
as a potential problem. For example, there is alot of
~nstrumentation that drifts on flight. Alot of parameters freeze
~p. Those are things that you have to learn from experience. Hot
~as injector pressure is one that we have alot of problems with.
3ut you learn what to expect. Sometimes that measurement doesn't
:=-espond to the bucket or the 3g throttle down. FPB Pc is a typical
:5.rifter. It may drop as much as 7500(?) psi. We don't worry about
it, but just note it as an observation. But that fuel pump
discharge pressure coming up on FRF, that caught our eye. That is
a big shift. You change out a fuel pump on an engine, you are
going to see a change in the fuel pump discharge pressure, 40-50
psi. So you will see some changes based on hardware changes.

~im: So maybe we can talk about some other changes. That was a
=uel pump change, you said?

~ave: Yes, you would expect to see fuel pump discharge pressure
=hange (40-50 psi), you would expect to see the fuel turbine temps
=hange. You expect to see your FPOV change,because you require a
different amount of power to achieve that discharge pressure.

~im: O.K., how much would you expect to see your FPOV change before
:!~ou would worry about it?

::>ave: Oh, about 1-1.5% depending on the efficiency of the turbine.

A3-137

'Tim: I often hear reference to "Well we have this one pump that
~as on this other engine and we know how it performed ••• " Is that
information that is recorded, or is that something that is carried
around in your head?

:lave: It's not written down. But if you see an engine or pump run
~otally different from the last pump, then you begin to suspect
~hat the pump is bad. You can have poor turbine efficiency, you
=an have poor pump efficiency, you can have a great lox pump but a
~errible preburner pump. Therefore you discharge pressures are·
~ifferent, your valve positions are opened up. There are several
~hings that could be bad. You start to go through each one. You
~et Tracey, Brian or Bil to do a data reduction on that particular
~est. Then we'll look at how those numbers fall within the bands
~f pump efficiencies, suction specific speed, and all of the other
;:.arameters. So we don't go into alot of detail on pump performance
~nless there is a problem.

3ill: I know that you don't use the Delta book for diagnosis. But
~he magnitudes, the ways certain parameters respond, would that
~rive your logic as to how you would diagnose? I mean, if there
~as a hard failure, you wouldn't investigate a sensor failure. If
~t was too small a delta, you wouldn't even know that it was an
~nomaly. Should the magnitudes drive the logic of your diagnosis?
:s that something that would be useful for us to pursue?

~ave: Yeah, it does make a difference. That is a judgement call
~hat varies from person to person. You may see a shift in pressure
~hat may just be a run-to-run variation. Someone else may see it
as a potential problem. For example, there is alot of
~nstrumentation that drifts on flight. Alot of parameters freeze
~p. Those are things that you have to learn from experience. Hot
~as injector pressure is one that we have alot of problems with.
3ut you learn what to expect. Sometimes that measurement doesn't
:=-espond to the bucket or the 3g throttle down. FPB Pc is a typical
:5.rifter. It may drop as much as 7500(?) psi. We don't worry about
it, but just note it as an observation. But that fuel pump
discharge pressure coming up on FRF, that caught our eye. That is
a big shift. You change out a fuel pump on an engine, you are
going to see a change in the fuel pump discharge pressure, 40-50
psi. So you will see some changes based on hardware changes.

~im: So maybe we can talk about some other changes. That was a
=uel pump change, you said?

~ave: Yes, you would expect to see fuel pump discharge pressure
=hange (40-50 psi), you would expect to see the fuel turbine temps
=hange. You expect to see your FPOV change,because you require a
different amount of power to achieve that discharge pressure.

~im: O.K., how much would you expect to see your FPOV change before
:!~ou would worry about it?

::>ave: Oh, about 1-1.5% depending on the efficiency of the turbine.

A3-137

It may take more FPOV position, more lox flow to get the same
performance out of that pump as was on there before.

=eff: What defines a bad turbine?

~ave: I guess you would have to look at the 2 sigma's. If you
:ook at the FPOV 2-sigma and it's outside, then it must be a pretty
~ad turbine, or pump, it may be the pump because it requires more
pump speed to achieve that same discharge pressure. Typically, we
~se our 2 sigma stuff to determine if something is a bad performer.

7im: And in that case you would be looking at speed?

~ave: You would look at fuel pump speed. If it was really high,
~-ou would determine that it wasn't that good. Or you would look at
~alve position. If the preburner valve position was really high,
~hen that is a really good indication that it is a bad pump. If
~he fuel pump discharge pressure was really low, that would be a
=eally good indicator. Same thing on the lox side, if you have a
=eally bad lox pump, you may have a really efficient main impeller
=n you lox pump. Since you have an efficient impeller, your lox
F~mp discharge pressure will be down a little. But your preburner
F~mp impeller is on the same shaft as your main impeller. So
::-ou've got a lower speed and not that great of a preburner pump
~mpeller. So you're putting out a lower preburner pump discharge
F~essure. That's the pressure that feeds into your FPOV and your
=?OV. Since your pressure is down there, you're going to crank
~our valves higher. It all feeds together. You can't change one
~!1ing without it affecting just about everything else in the
system. So any time you change either of your 2 big pumps, you're
S"oing to affect the system quite a bit. Change your LPOP, you
~ight affect the lox side some, but you won't ever see it on the
!uel side. Change your LPFP, you might see it somewhat on the fuel
side, just because it's in the coolant leg. Your MCC coolant flow
=rom the discharge drivesthe low pressure fuel turbine. So if you
cave a different turbine in there, you can have a different
=esistance, your flows could change and that affects turbine temps
and a few other things. But any time you change your big pumps,
you see major changes. That is the hard thing about predicting.
You have to predict how much the turbine temps are going to change.
~-nother big problem is the delta between the A and B channel. We
con't know if its engine driven or pump driven. We have theories
en both, and neither one seems to hold true all of the time. And
that can make a big difference, especially on this flight rule,
because turbine temps are one of the things that they are trying to
look at. And if you mispredict the delta, say you're predicting
the A to be cooler than B by 20 degrees, but it ends up being
cooler by 70 degrees, that makes a big difference. We can hit the
average pretty well, but miss the delta completely, which makes
your predictions completely wrong. That is another thing hard to
F~edict, and it changes from engine to engine. Generally speaking,
t-~e fuel side is engine driven and the lox side is pump driven.

7im: So these numbers that you have in you head, e.g., this 40-50

It may take more FPOV position, more lox flow to get the same
performance out of that pump as was on there before.

=eff: What defines a bad turbine?

~ave: I guess you would have to look at the 2 sigma's. If you
:ook at the FPOV 2-sigma and it's outside, then it must be a pretty
~ad turbine, or pump, it may be the pump because it requires more
pump speed to achieve that same discharge pressure. Typically, we
~se our 2 sigma stuff to determine if something is a bad performer.

7im: And in that case you would be looking at speed?

~ave: You would look at fuel pump speed. If it was really high,
~-ou would determine that it wasn't that good. Or you would look at
~alve position. If the preburner valve position was really high,
~hen that is a really good indication that it is a bad pump. If
~he fuel pump discharge pressure was really low, that would be a
=eally good indicator. Same thing on the lox side, if you have a
=eally bad lox pump, you may have a really efficient main impeller
=n you lox pump. Since you have an efficient impeller, your lox
F~mp discharge pressure will be down a little. But your preburner
F~mp impeller is on the same shaft as your main impeller. So
::-ou've got a lower speed and not that great of a preburner pump
~mpeller. So you're putting out a lower preburner pump discharge
F~essure. That's the pressure that feeds into your FPOV and your
=?OV. Since your pressure is down there, you're going to crank
~our valves higher. It all feeds together. You can't change one
~!1ing without it affecting just about everything else in the
system. So any time you change either of your 2 big pumps, you're
S"oing to affect the system quite a bit. Change your LPOP, you
~ight affect the lox side some, but you won't ever see it on the
!uel side. Change your LPFP, you might see it somewhat on the fuel
side, just because it's in the coolant leg. Your MCC coolant flow
=rom the discharge drivesthe low pressure fuel turbine. So if you
cave a different turbine in there, you can have a different
=esistance, your flows could change and that affects turbine temps
and a few other things. But any time you change your big pumps,
you see major changes. That is the hard thing about predicting.
You have to predict how much the turbine temps are going to change.
~-nother big problem is the delta between the A and B channel. We
con't know if its engine driven or pump driven. We have theories
en both, and neither one seems to hold true all of the time. And
that can make a big difference, especially on this flight rule,
because turbine temps are one of the things that they are trying to
look at. And if you mispredict the delta, say you're predicting
the A to be cooler than B by 20 degrees, but it ends up being
cooler by 70 degrees, that makes a big difference. We can hit the
average pretty well, but miss the delta completely, which makes
your predictions completely wrong. That is another thing hard to
F~edict, and it changes from engine to engine. Generally speaking,
t-~e fuel side is engine driven and the lox side is pump driven.

7im: So these numbers that you have in you head, e.g., this 40-50

psi change, are things that you are looking for in the data that
you will flag? If you know you have changed your pump and you see
a change greater than that?

Dave: Then you start questioning. Is there something else going
en here? That is why we questioned on that FRF thing, we had 100
psi difference on 2 engines and 150 psi difference on the 3rd
engine. That was alot to see a fuel pump discharge pressure change
from the ground test of that engine. That is why we started
~nvestigating it. We just did not expect that big of a fuel pump
discharge. We had changed out the big pumps on all 3 of the
engines, but we did not expect that much of a pressure change. So
that is when we started investigating it.

':'im: Last time I was here, I walked through an analysis with
Randy, and there was a high turbine discharge temp on the fuel
side. He came up with 2 hypotheses. One was that the pump was
c~anged, we went from a Pratt to a Rocketdyne, and the other was
-:.hat the F7 orifice was changed. Both of those could have effected
~hat change. I then went and talked to Brian and asked him what
effects changing the F7 orifice would have on the turbine discharge
-:.emps, and he said it would only affect it by about 50 degrees.
7hey saw a much bigger change on this particular test so Randy
~led that hypothesis out as a possible cause. Is that something
~ypical of what you would do?

Cave: Yea, that's pretty typical. with an F7 change, if you are
~unning hot on your chamber, and you get back from flight and see
t~at your chambers are blanching, cracking, you would have changed
your coolant flow by changing your F7. That is a possible driver.
Eowever is you saw a turbine temp shift that you were not
expecting, you would look at F7 orifice, LPFT or LPFP that would
change the resistance in that line. What they do is block passages
in the LPFT, to try and balance out the speed for the discharge
pressure that they want. If you have more blocked passages on one
than another, you have changed the resistance on that line,
therefore the flow going through that line is going to change.
That dumps into your fuel turbine and changes your fuel turbine
temps, and that is probably where Randy was coming from. Going
from a Pratt to Rocketdyne fuel pump, or either way, those two are
alot different. I am not that familiar with that type of hardware
changes but I know that the resistances are alot different, the
1:: leed flows are different, there are alot of changes that are
going to rebalance the engine, with that one change. We interact
weith Brian's group alot when we see something that we don't
~derstaRd. For example, on this last flight prediction, when I
s·aw the 75 psi difference on the discharge pressure from the green
run of the lox pump (which is alot different from the 15-20 psi
delta that you might expect), we tried to determine if it was an
engine driven parameter, because our predictions were really off.
Because generally, even if you change the lox pump, the lox pump
discharge pressure will stay the same. So when we green ran the
pump, it was running 75 psi high on the lox pump discharge
~ressure, from what we usually fly. That is a big change for that

psi change, are things that you are looking for in the data that
you will flag? If you know you have changed your pump and you see
a change greater than that?

Dave: Then you start questioning. Is there something else going
en here? That is why we questioned on that FRF thing, we had 100
psi difference on 2 engines and 150 psi difference on the 3rd
engine. That was alot to see a fuel pump discharge pressure change
from the ground test of that engine. That is why we started
~nvestigating it. We just did not expect that big of a fuel pump
discharge. We had changed out the big pumps on all 3 of the
engines, but we did not expect that much of a pressure change. So
that is when we started investigating it.

':'im: Last time I was here, I walked through an analysis with
Randy, and there was a high turbine discharge temp on the fuel
side. He came up with 2 hypotheses. One was that the pump was
c~anged, we went from a Pratt to a Rocketdyne, and the other was
-:.hat the F7 orifice was changed. Both of those could have effected
~hat change. I then went and talked to Brian and asked him what
effects changing the F7 orifice would have on the turbine discharge
-:.emps, and he said it would only affect it by about 50 degrees.
7hey saw a much bigger change on this particular test so Randy
~led that hypothesis out as a possible cause. Is that something
~ypical of what you would do?

Cave: Yea, that's pretty typical. with an F7 change, if you are
~unning hot on your chamber, and you get back from flight and see
t~at your chambers are blanching, cracking, you would have changed
your coolant flow by changing your F7. That is a possible driver.
Eowever is you saw a turbine temp shift that you were not
expecting, you would look at F7 orifice, LPFT or LPFP that would
change the resistance in that line. What they do is block passages
in the LPFT, to try and balance out the speed for the discharge
pressure that they want. If you have more blocked passages on one
than another, you have changed the resistance on that line,
therefore the flow going through that line is going to change.
That dumps into your fuel turbine and changes your fuel turbine
temps, and that is probably where Randy was coming from. Going
from a Pratt to Rocketdyne fuel pump, or either way, those two are
alot different. I am not that familiar with that type of hardware
changes but I know that the resistances are alot different, the
1:: leed flows are different, there are alot of changes that are
going to rebalance the engine, with that one change. We interact
weith Brian's group alot when we see something that we don't
~derstaRd. For example, on this last flight prediction, when I
s·aw the 75 psi difference on the discharge pressure from the green
run of the lox pump (which is alot different from the 15-20 psi
delta that you might expect), we tried to determine if it was an
engine driven parameter, because our predictions were really off.
Because generally, even if you change the lox pump, the lox pump
discharge pressure will stay the same. So when we green ran the
pump, it was running 75 psi high on the lox pump discharge
~ressure, from what we usually fly. That is a big change for that

parameter. When you take out that 75 psi, it's going to change lox
pump speed, turbine temps, preburner pump discharge pressure , valve
positions, etc. Here we go to Brian and say how is this change
going to affect our engine system. He will do a PBM run, which is
really a gains run. That is what that Delta book is really, a
bunch of gains, John could go in and say, ok for this 75· psi
change, we see it affect the engine this way. The PBM does good on
some things and not on others. It doesn't do good on speed, I
don't believe the speeds that it calculates. Delta gains are
pretty good. Valve positions aren't that great either. We're
trying to use 3001 data to improve the data.

Jeff: What do you consider to be a good prediction, within 5% or
10%?

Dave: Probably on turbine temps, a good prediction would be within
10-15 degrees, and when you're talking temps that run around 800
degrees, that is pretty tight. On the speeds, I have a looser
interpretation than John, you are talking 35000 rpm, I figure that
if you get within 100-150 rpm you have done pretty good. John
likes them a little tighter. The same on the lox pump speed, it's
~nning about 28000 rpm. The LPFP speed is only running about
15000 rpm so you should be able to get within about 50 rpm there.
~OP is about 5000 rpm, so you have to be even tighter there. For
valve positions, you need to be really close. The flight rule on
valve positions is real tight, you need to be within .5%. So your
predictions need to be pretty close. For the flight rule you can
violate up to 4 criteria, and usually the valve positions are the
ones that you are closest on, because it's really hard to predict
't.hem. They are transient, adjusting to Pc changes as well as other
changes. Even if you hit it right at 200 sec and it happened to
shift down, then you have to go back and look at all of the data
for the entire flight. LPOP discharge pressure you ought to be
able to hit within about 10-20 psi, LPFP will vary a little more,
say 20-30 psi. They like them as close as possible. The sigmas
don't float in my head. We have a database of all of this, but
only for flight. We have been keeping it since Challenger, so now
it's data is beginning to be pretty representative. We have
changed alot of things for flight. For example, we now have fixed
orifice on lox side for repress. We used to have a valve to
shuttle max to min repress, now its fixed. It changes things a
little bit as far as how you feed back in with you inlet pressures.
We have a different hex orifice, we have changed to inconel ducts
.. -i th smaller diameters which changes your fuel pump discharge
pressure. These are all changes to account for. The new hardware
changes things.

Jean: Do you include all hardware changes in your database?

Dave: I try to, flowmeters, pump changes, orifice changes, duct
changes.

Tim: Now you are talking flight engines, so the change would be
from between acceptance test to flight?

parameter. When you take out that 75 psi, it's going to change lox
pump speed, turbine temps, preburner pump discharge pressure , valve
positions, etc. Here we go to Brian and say how is this change
going to affect our engine system. He will do a PBM run, which is
really a gains run. That is what that Delta book is really, a
bunch of gains, John could go in and say, ok for this 75· psi
change, we see it affect the engine this way. The PBM does good on
some things and not on others. It doesn't do good on speed, I
don't believe the speeds that it calculates. Delta gains are
pretty good. Valve positions aren't that great either. We're
trying to use 3001 data to improve the data.

Jeff: What do you consider to be a good prediction, within 5% or
10%?

Dave: Probably on turbine temps, a good prediction would be within
10-15 degrees, and when you're talking temps that run around 800
degrees, that is pretty tight. On the speeds, I have a looser
interpretation than John, you are talking 35000 rpm, I figure that
if you get within 100-150 rpm you have done pretty good. John
likes them a little tighter. The same on the lox pump speed, it's
~nning about 28000 rpm. The LPFP speed is only running about
15000 rpm so you should be able to get within about 50 rpm there.
~OP is about 5000 rpm, so you have to be even tighter there. For
valve positions, you need to be really close. The flight rule on
valve positions is real tight, you need to be within .5%. So your
predictions need to be pretty close. For the flight rule you can
violate up to 4 criteria, and usually the valve positions are the
ones that you are closest on, because it's really hard to predict
't.hem. They are transient, adjusting to Pc changes as well as other
changes. Even if you hit it right at 200 sec and it happened to
shift down, then you have to go back and look at all of the data
for the entire flight. LPOP discharge pressure you ought to be
able to hit within about 10-20 psi, LPFP will vary a little more,
say 20-30 psi. They like them as close as possible. The sigmas
don't float in my head. We have a database of all of this, but
only for flight. We have been keeping it since Challenger, so now
it's data is beginning to be pretty representative. We have
changed alot of things for flight. For example, we now have fixed
orifice on lox side for repress. We used to have a valve to
shuttle max to min repress, now its fixed. It changes things a
little bit as far as how you feed back in with you inlet pressures.
We have a different hex orifice, we have changed to inconel ducts
.. -i th smaller diameters which changes your fuel pump discharge
pressure. These are all changes to account for. The new hardware
changes things.

Jean: Do you include all hardware changes in your database?

Dave: I try to, flowmeters, pump changes, orifice changes, duct
changes.

Tim: Now you are talking flight engines, so the change would be
from between acceptance test to flight?

Dave: Or from the last flight of that engine. Once you acceptance
test the engine it will fly 6,7 times. Then they may go rebuild
it. For example, 2017 is one we are going to fly next, it last
flew before Challenger, and they have since rebuilt it, but it
still has the same engine number. since is has completely new
hardware, they had to acceptance test the engine again. Alot of
engines will fly 4 or 5 times and then they will change the
hardware.

Catherine: Do we have this same type of database for ground test?

Dave: Yes, in Tracer. But locally, we don't have any of it.
Tracer tracks pumps, seals, builds, everything. There is too much
diversity in ground test engines, you have 2 vs 3 duct engines, you
have the work going on B1, the ATD work, A2 is the only one devoted
to flight and green runs.

Tim: When you talked about changing a fuel pump out, you talked
about seeing changes up to a certain amount. Are those limits
reported anywhere, or do you infer them from your database?

~ave: You could probably infer some from your 2 sigma database.
Based on hardware changes you could probably pullout some numbers.
But alot of it just depends on what you have seen in the past for
particular parameters. For the types of things that you guys
need, we could probably put together some numbers, but we haven't
done it before. It's mostly in peoples heads. When we had that
fuel pump discharge pressure change, we did go back to the 2 sigma
database. We tried to see what kind of average value you would get
from that hardware changeout. You want to backup your feelings
about what is causing the changes.

Tim: So when you initially look at the data and note that the
discharge pressure was high, and you know that you changed the pump
from pre-test, when you first pass through the data, is that enough
of a mental note, to say that you will go take a look at the actual
numbers to see if they fit that?

Dave: Yes, we all look at the data and we compile a list .Qf all
the things that we have seen. Then we start looking at the
individual things, why each thing happened. The fuel pump
discharge pressure was off, why? Then we go back and look at the
green run and see how it ran there. We go see all of the hardware
changes that were made, was there a shift in performance during
the flight, did turbine temps drop for any unexpected reason? You
start doing this type of reasoning after you have gone through all
of the data. Then you start investigating, making special plots to
examine.

Tim: But if you changed a pump and you only saw the discharge
pressure go up by 20 psi, would you make a note of that?

Dave: Probably not, because it's not enough of a change. That is
a gut feel type of call. Those types of calls vary based on how

Dave: Or from the last flight of that engine. Once you acceptance
test the engine it will fly 6,7 times. Then they may go rebuild
it. For example, 2017 is one we are going to fly next, it last
flew before Challenger, and they have since rebuilt it, but it
still has the same engine number. since is has completely new
hardware, they had to acceptance test the engine again. Alot of
engines will fly 4 or 5 times and then they will change the
hardware.

Catherine: Do we have this same type of database for ground test?

Dave: Yes, in Tracer. But locally, we don't have any of it.
Tracer tracks pumps, seals, builds, everything. There is too much
diversity in ground test engines, you have 2 vs 3 duct engines, you
have the work going on B1, the ATD work, A2 is the only one devoted
to flight and green runs.

Tim: When you talked about changing a fuel pump out, you talked
about seeing changes up to a certain amount. Are those limits
reported anywhere, or do you infer them from your database?

~ave: You could probably infer some from your 2 sigma database.
Based on hardware changes you could probably pullout some numbers.
But alot of it just depends on what you have seen in the past for
particular parameters. For the types of things that you guys
need, we could probably put together some numbers, but we haven't
done it before. It's mostly in peoples heads. When we had that
fuel pump discharge pressure change, we did go back to the 2 sigma
database. We tried to see what kind of average value you would get
from that hardware changeout. You want to backup your feelings
about what is causing the changes.

Tim: So when you initially look at the data and note that the
discharge pressure was high, and you know that you changed the pump
from pre-test, when you first pass through the data, is that enough
of a mental note, to say that you will go take a look at the actual
numbers to see if they fit that?

Dave: Yes, we all look at the data and we compile a list .Qf all
the things that we have seen. Then we start looking at the
individual things, why each thing happened. The fuel pump
discharge pressure was off, why? Then we go back and look at the
green run and see how it ran there. We go see all of the hardware
changes that were made, was there a shift in performance during
the flight, did turbine temps drop for any unexpected reason? You
start doing this type of reasoning after you have gone through all
of the data. Then you start investigating, making special plots to
examine.

Tim: But if you changed a pump and you only saw the discharge
pressure go up by 20 psi, would you make a note of that?

Dave: Probably not, because it's not enough of a change. That is
a gut feel type of call. Those types of calls vary based on how

much you look at the data, how recently you have looked at the
data. That is why we have several people look at the data, rather
than just one or two people. If you don't look at flight data
alot, you may flag things that would be investigated for ground
test. Darrell and I would more than likely pass it over. There
are certain things on flight that you don't see on ground. Flight
data tends to be cleaner, because you have really good hardware.
~e tend to kni~ pick it, because we generally don't have anomalies,
.e can't. So we pick out some really small things to investigate.
One interesting one, epoxy resin got into one of the MCC sense
:ines. We have 4 lines. There was a delta between the A to B
channel, which caused to engine to run off nominal because it
-�OO-asn't sensing pressure correctly. We noticed it, and analyzed it,
:.:new that it was real, and flagged it. In the post-flight
~nspection they found residue and were able to explain it. You
~ave to take into account the accuracy of the instrumentation. To
=easure the 3500 psi in the chamber you use a 5000 lb transducer.
~ne percent accuracy on this causes a flag for 5-10 psi delta, is
~his significant? The same thing is true for the speeds, when
you're talking 35000 rpm, is a one or two percent shift
significant?

~im: So briefly, I know you change every piece of hardware. What
are the biggies?

:)ave: Hex orifice is changed to affect hex interface temp. We are
~equired to provide a certain pressure and temp to tank ullage, the
=uel and lox have certain temps and pressures that they cannot
exceed, they also have mins. F7 orifice is to change the amount
of coolant flow going through MCC as well as LPFP speed, there is
a speed limit on that. Actually it is a flowmeter speed that is
sensed in that line. Those are the main ones: Inconel duct, 4
pumps, hex orifice and F7 orifice. They change tons of other
~ings that we aren't interested in.

Jean: What about seals?

Dave: We aren't generally concerned, except for the Intermediate
Seal, it has an LCC on it. It is one of only two seals that have
an LeC on them. They try to keep lox and fuel from mixing, so they
):eep a He purge on them all of the time. It's N2 in PSN1,2 and
they switch to He in PSN3. There is some minimum value that it
lIIlUSt maintain, 170 psi. You can't launch if its lower than that on
that seal. You want to insure there isn't any mixing going on
around that seal. And that also depends on how old the seal is.
A. brand new seal will run at a higher pressure 'because it is
tighter. If it's been run alot, it will have a lower pressure.
You have to meet those on green run too. Typically, for a
questionable pump, this would have been addressed on the green run
of that pump. Rocketdyne would have answered a RID (Review Item
Discrepancy) from NASA. They would have to justify why it had
occurred before that pump would be accepted for flight. So flight
personnel get involved in green run and acceptance tests for the
engines and pumps.

much you look at the data, how recently you have looked at the
data. That is why we have several people look at the data, rather
than just one or two people. If you don't look at flight data
alot, you may flag things that would be investigated for ground
test. Darrell and I would more than likely pass it over. There
are certain things on flight that you don't see on ground. Flight
data tends to be cleaner, because you have really good hardware.
~e tend to kni~ pick it, because we generally don't have anomalies,
.e can't. So we pick out some really small things to investigate.
One interesting one, epoxy resin got into one of the MCC sense
:ines. We have 4 lines. There was a delta between the A to B
channel, which caused to engine to run off nominal because it
-�OO-asn't sensing pressure correctly. We noticed it, and analyzed it,
:.:new that it was real, and flagged it. In the post-flight
~nspection they found residue and were able to explain it. You
~ave to take into account the accuracy of the instrumentation. To
=easure the 3500 psi in the chamber you use a 5000 lb transducer.
~ne percent accuracy on this causes a flag for 5-10 psi delta, is
~his significant? The same thing is true for the speeds, when
you're talking 35000 rpm, is a one or two percent shift
significant?

~im: So briefly, I know you change every piece of hardware. What
are the biggies?

:)ave: Hex orifice is changed to affect hex interface temp. We are
~equired to provide a certain pressure and temp to tank ullage, the
=uel and lox have certain temps and pressures that they cannot
exceed, they also have mins. F7 orifice is to change the amount
of coolant flow going through MCC as well as LPFP speed, there is
a speed limit on that. Actually it is a flowmeter speed that is
sensed in that line. Those are the main ones: Inconel duct, 4
pumps, hex orifice and F7 orifice. They change tons of other
~ings that we aren't interested in.

Jean: What about seals?

Dave: We aren't generally concerned, except for the Intermediate
Seal, it has an LCC on it. It is one of only two seals that have
an LeC on them. They try to keep lox and fuel from mixing, so they
):eep a He purge on them all of the time. It's N2 in PSN1,2 and
they switch to He in PSN3. There is some minimum value that it
lIIlUSt maintain, 170 psi. You can't launch if its lower than that on
that seal. You want to insure there isn't any mixing going on
around that seal. And that also depends on how old the seal is.
A. brand new seal will run at a higher pressure 'because it is
tighter. If it's been run alot, it will have a lower pressure.
You have to meet those on green run too. Typically, for a
questionable pump, this would have been addressed on the green run
of that pump. Rocketdyne would have answered a RID (Review Item
Discrepancy) from NASA. They would have to justify why it had
occurred before that pump would be accepted for flight. So flight
personnel get involved in green run and acceptance tests for the
engines and pumps.

Tim: Would seal changes be noted on the pre-test?

Dave: It would be noted in the Pump build letter. Typically when
you do something like that, they roll the revision number on that
pump and that's how you know something has happened. It's the R
part of the number, 0810R2. Every time you change out a non­
rotating part, you roll the revision number.

~eff: So when you note a revision number change, you have to go to
another piece of documentation to find out what exactly happened?

~ave: Yes.

catherine: Do those build letters also record leakage rates for
~hose pumps? Or any torque testing, etc?

~ave: Yes. They also do post-test inspections where they do this
~ype of testing where they record leakage, running torque and
=reaking torque. They have to explain why if they get odd values
=or any of these. You have to pass alot of criteria on the green
~n before you're accepted. Then Rocketdyne puts together a pump
acceptance review package that they present to NASA at which time
~t is accepted or sent back for more testing or any RID's
satisfactorily answered.

7im: Any other hardware changes that are of interest?

~ave: Those are the major ones, but they may change the nozzle,
~hat doesn't affect engine performance that much. It will affect
:sp, that is specific to throat and nozzle areas. It won't affect
~urbine temps or whatever, but it will affect overall engine
performance.

~hey can change out MCC's, that changes your combustion efficiency.
~hey change out powerheads, but that is a very rare changeout.
l\ozzles aren't that uncommon between acceptance test and flight.
Flowmeters are changed. If they are calibrated, that won't affect
you, but if not, it will affect your engine. Flowmeters are
sensitive to engines, to stands. We can calibrate it on A2 and run
it on Ai and it will run off nominal. We then get a new C2 and Kf.

~im: Why is that?

Dave: We think that it's because of the different stand
configurations. But no one really knows. They change out
flowmeters fairly regularly. But you will get C2 and Kf changes to
go along with it.

~im: will instrumentation changes affect you?

Dave: They are pretty transparent. There is one pressure
transducer, the Staped(?) vs CC, and it tends to run low. otto is
adamant that only CC's fly. The Staped's tend to drop your
pressure by 7 to 15 psi. If you are already running on the low end

Tim: Would seal changes be noted on the pre-test?

Dave: It would be noted in the Pump build letter. Typically when
you do something like that, they roll the revision number on that
pump and that's how you know something has happened. It's the R
part of the number, 0810R2. Every time you change out a non­
rotating part, you roll the revision number.

~eff: So when you note a revision number change, you have to go to
another piece of documentation to find out what exactly happened?

~ave: Yes.

catherine: Do those build letters also record leakage rates for
~hose pumps? Or any torque testing, etc?

~ave: Yes. They also do post-test inspections where they do this
~ype of testing where they record leakage, running torque and
=reaking torque. They have to explain why if they get odd values
=or any of these. You have to pass alot of criteria on the green
~n before you're accepted. Then Rocketdyne puts together a pump
acceptance review package that they present to NASA at which time
~t is accepted or sent back for more testing or any RID's
satisfactorily answered.

7im: Any other hardware changes that are of interest?

~ave: Those are the major ones, but they may change the nozzle,
~hat doesn't affect engine performance that much. It will affect
:sp, that is specific to throat and nozzle areas. It won't affect
~urbine temps or whatever, but it will affect overall engine
performance.

~hey can change out MCC's, that changes your combustion efficiency.
~hey change out powerheads, but that is a very rare changeout.
l\ozzles aren't that uncommon between acceptance test and flight.
Flowmeters are changed. If they are calibrated, that won't affect
you, but if not, it will affect your engine. Flowmeters are
sensitive to engines, to stands. We can calibrate it on A2 and run
it on Ai and it will run off nominal. We then get a new C2 and Kf.

~im: Why is that?

Dave: We think that it's because of the different stand
configurations. But no one really knows. They change out
flowmeters fairly regularly. But you will get C2 and Kf changes to
go along with it.

~im: will instrumentation changes affect you?

Dave: They are pretty transparent. There is one pressure
transducer, the Staped(?) vs CC, and it tends to run low. otto is
adamant that only CC's fly. The Staped's tend to drop your
pressure by 7 to 15 psi. If you are already running on the low end

of your acceptable pressure, as on the Intermediate Seal Purge
pressure, then the pressure transducer will put you below the
acceptable limit. The pump won't be accepted. The redline
parameters all fly wi th CC transducers. That is the only
instrumentation that we are sensitive to.

~im: Do they ever screw up on the calibration constants?

~ave: Oh yea, very often on ground-test, very seldom on flight.
You get garbage data. sometimes you can put in the correct
=onstantsand recover the data, other times its non-recoverable.
~e've had fuel turbine temp and lox turbine temp transducers go bad
~n us during flight. Some of the temp sensors will debond during
=light, so we start getting erratic data and then it goes to
ambient.

3ill: You said that when you change out a nozzle, you don't see
~hat many effects. Would the resistance in the coolant circuit be
.affected?

~ave: Yes, you would see it a little. Where you would really see
~t is the MCC coolant discharge pressure and te~p, because it is in
~hat coolant leg. But you won't see a big difference. Mainly, you
see Isp shifts, unless you have a real leaky nozzle, but you
-.·ouldn't put that on a flight engine. A leaky nozzle is the same
~hing as dumping fuel overboard. It would cause increased lox
=low. Nozzles on flight are usually in pretty good shape.

~im: Well, we wanted to get a feel for two major topics: one, the
::elta book, gains type of reasoning, when you really become
=oncerned about magnitudes of changes in the diagnostic process,
and the second was hardware changes.

~ave: Yea, as far as that Delta book is concerned, we don't use it
~hat much in diagnosis, we use it more for predictions. John uses
~t, Brian may Use it. It's basically hundreds of power balance
runs that were compiled years ago.

Tim: In analysis, you prefer to use your 2-sigma database?

~ave: Yes. There isn't alot of confidence associated with the
?BM. There are alot of empirical equations that don't match up.
::It is literally a power balance. The power may balance, but the
~ass doesn't balance out. They don't use all of the fundamental
equations. And the mass numbers won't make sense when you do that.
Speeds don't predict very well. John is trying to do that with
3001 data.

Bill: But didn't you say that it does all right with the deltas?

Dave: Yes.

Bill: So you can rely on the relative values? Would you feel
comfortable with the relative efficiency values?

of your acceptable pressure, as on the Intermediate Seal Purge
pressure, then the pressure transducer will put you below the
acceptable limit. The pump won't be accepted. The redline
parameters all fly wi th CC transducers. That is the only
instrumentation that we are sensitive to.

~im: Do they ever screw up on the calibration constants?

~ave: Oh yea, very often on ground-test, very seldom on flight.
You get garbage data. sometimes you can put in the correct
=onstantsand recover the data, other times its non-recoverable.
~e've had fuel turbine temp and lox turbine temp transducers go bad
~n us during flight. Some of the temp sensors will debond during
=light, so we start getting erratic data and then it goes to
ambient.

3ill: You said that when you change out a nozzle, you don't see
~hat many effects. Would the resistance in the coolant circuit be
.affected?

~ave: Yes, you would see it a little. Where you would really see
~t is the MCC coolant discharge pressure and te~p, because it is in
~hat coolant leg. But you won't see a big difference. Mainly, you
see Isp shifts, unless you have a real leaky nozzle, but you
-.·ouldn't put that on a flight engine. A leaky nozzle is the same
~hing as dumping fuel overboard. It would cause increased lox
=low. Nozzles on flight are usually in pretty good shape.

~im: Well, we wanted to get a feel for two major topics: one, the
::elta book, gains type of reasoning, when you really become
=oncerned about magnitudes of changes in the diagnostic process,
and the second was hardware changes.

~ave: Yea, as far as that Delta book is concerned, we don't use it
~hat much in diagnosis, we use it more for predictions. John uses
~t, Brian may Use it. It's basically hundreds of power balance
runs that were compiled years ago.

Tim: In analysis, you prefer to use your 2-sigma database?

~ave: Yes. There isn't alot of confidence associated with the
?BM. There are alot of empirical equations that don't match up.
::It is literally a power balance. The power may balance, but the
~ass doesn't balance out. They don't use all of the fundamental
equations. And the mass numbers won't make sense when you do that.
Speeds don't predict very well. John is trying to do that with
3001 data.

Bill: But didn't you say that it does all right with the deltas?

Dave: Yes.

Bill: So you can rely on the relative values? Would you feel
comfortable with the relative efficiency values?

Dave: I would feel more comfortable. For a flight, if we changed
out the fuel and lox pump, I would use the pump multipliers. We
have one for the for the fuel pump and the head coefficient, we
h~ve one for the LPFP, the LPOP, head coefficients and efficiencies
c: the main impeller and the preburner pump impeller. There are
t:.e 4 multipliers that we use. We get the green run info and the
F'~P multiplier for that particular pump then we get a number for
t:le pump that flew the last time. We then put the old pump and
i~'s multiplier, the new pump and it's multiplier into the PBM and
C~ two different runs. We will then get two different speeds,
c.alculate the delta between then. I am real comfortable with that
f~r making flight predictions. It's a little bit different if the
e.:-lgine has not flown before, or you have changed out a pump. We
aijust those numbers as necessary.

T~m: I have a better feel for this.

r·ave: I know that you are going to need specific numbers for your
F~oject. We will have to sit down and work those out for you.
I~/s not something that we currently have written down.

A3-14)"

Dave: I would feel more comfortable. For a flight, if we changed
out the fuel and lox pump, I would use the pump multipliers. We
have one for the for the fuel pump and the head coefficient, we
h~ve one for the LPFP, the LPOP, head coefficients and efficiencies
c: the main impeller and the preburner pump impeller. There are
t:.e 4 multipliers that we use. We get the green run info and the
F'~P multiplier for that particular pump then we get a number for
t:le pump that flew the last time. We then put the old pump and
i~'s multiplier, the new pump and it's multiplier into the PBM and
C~ two different runs. We will then get two different speeds,
c.alculate the delta between then. I am real comfortable with that
f~r making flight predictions. It's a little bit different if the
e.:-lgine has not flown before, or you have changed out a pump. We
aijust those numbers as necessary.

T~m: I have a better feel for this.

r·ave: I know that you are going to need specific numbers for your
F~oject. We will have to sit down and work those out for you.
I~/s not something that we currently have written down.

A3-14)"

Page 1

{Tape 5 after Marc Neely conversation}

{Begin conversation with Dave Foust, June and Claudia}
{Comparison tests}

..•. is a thermally affected measurement that tends to drift down.
They have a remote mount that's supposed to solve the problem. We
can go through a databook or flight review or whatever. Typically
on a flight review we'll pullout all the instr. that are drifting
or erratic, whatever.

Q: What would be ___ ?

A: We can go through a flight review, ground, whatever.

Q: Ground would be better.

{June is showing the system architecture and explaining the
modules}

A: As far as the feature extractor, it's probably easier to go
through a databook and have someone point out what drifts, etc.
We could talk about the comparitor now. On a ground test, we
typically compare to the same engine. A lot of times the choice
of comparison tests depends on the stand. For example, Al is right
now dedicated to the phase2+ powerhead. So, for this stand we
always compare that engine with itself or a prior phase2+ engine.
Otherwise you wouldn't have a good comparison.

Q: In general, will all parameters be different?

A: Phase2+ dramatically affects the fuel turbine temp
distribution (the spread between the A and B channel) because
you're changing the way the flow is coming out of the turbine and
going into the hot gas manifold. Also, the coolant circuit.
Phase2+ has a history of burning up chambers because of this. We
open up the f7 orifice (in the cooling line that goes through the
MCC). The flow comes into the chamber wall, goes through this f7
orifice, and that flow goes down and drives the LPFT which powers
the LPFP. Once through the LFFT, some is bled off to the repress
system. The rest of the flow goes to cool the bearings, FB wall,
etc. and eventually dumps into the turbine discharge and down into
the hot gas manifold where it's burned up.

Q: They open up the orifice to reduce the resistance?

A: Correct. To increase the flow, you open up the orifice and
cool down the MCC. The other thing they do is open up boundary
layer coolant flows. You have a primary and secondary face plate
on all injectors. On the main injector, your lox post sticks
through the primary. The primary face plate is down here where the
actual combustion takes place. The hot gas manifold flow comes in
between the face plates. This is H2 rich gas, going into some
holes inside the lox pumps. Then the lox comes down through the
post and the H2 swirls on the outside edge, and they mix at the tip
in the actual combustion chamber. What happens is they have holes
all around the circumference of the primary face plate, they dump
H2 in there to cool the inside walls of the chamber. When you
crack the MCC, you're not getting enough coolant flow on the inside
as well as through the jackets. They enlarge these boundary layer
coolant holes to allow more H2 to go down for film surface cooling
on the inside wall of the MCC.

Q: How do they enlarge them?

A: I think do it electrically. These are very small holes.
Electrical discharge machining (EDM), Maybe?

Q: This is something they would do before the next time they'd
run (the engine)?

A: Right, if they were cracking real bad in one area (typically
don't crack uniformally) they would enlarge the coolant holes above
that area to allow more boundary layer flow to come and cool that A7>-/Y -;;

Page 1

{Tape 5 after Marc Neely conversation}

{Begin conversation with Dave Foust, June and Claudia}
{Comparison tests}

..•. is a thermally affected measurement that tends to drift down.
They have a remote mount that's supposed to solve the problem. We
can go through a databook or flight review or whatever. Typically
on a flight review we'll pullout all the instr. that are drifting
or erratic, whatever.

Q: What would be ___ ?

A: We can go through a flight review, ground, whatever.

Q: Ground would be better.

{June is showing the system architecture and explaining the
modules}

A: As far as the feature extractor, it's probably easier to go
through a databook and have someone point out what drifts, etc.
We could talk about the comparitor now. On a ground test, we
typically compare to the same engine. A lot of times the choice
of comparison tests depends on the stand. For example, Al is right
now dedicated to the phase2+ powerhead. So, for this stand we
always compare that engine with itself or a prior phase2+ engine.
Otherwise you wouldn't have a good comparison.

Q: In general, will all parameters be different?

A: Phase2+ dramatically affects the fuel turbine temp
distribution (the spread between the A and B channel) because
you're changing the way the flow is coming out of the turbine and
going into the hot gas manifold. Also, the coolant circuit.
Phase2+ has a history of burning up chambers because of this. We
open up the f7 orifice (in the cooling line that goes through the
MCC). The flow comes into the chamber wall, goes through this f7
orifice, and that flow goes down and drives the LPFT which powers
the LPFP. Once through the LFFT, some is bled off to the repress
system. The rest of the flow goes to cool the bearings, FB wall,
etc. and eventually dumps into the turbine discharge and down into
the hot gas manifold where it's burned up.

Q: They open up the orifice to reduce the resistance?

A: Correct. To increase the flow, you open up the orifice and
cool down the MCC. The other thing they do is open up boundary
layer coolant flows. You have a primary and secondary face plate
on all injectors. On the main injector, your lox post sticks
through the primary. The primary face plate is down here where the
actual combustion takes place. The hot gas manifold flow comes in
between the face plates. This is H2 rich gas, going into some
holes inside the lox pumps. Then the lox comes down through the
post and the H2 swirls on the outside edge, and they mix at the tip
in the actual combustion chamber. What happens is they have holes
all around the circumference of the primary face plate, they dump
H2 in there to cool the inside walls of the chamber. When you
crack the MCC, you're not getting enough coolant flow on the inside
as well as through the jackets. They enlarge these boundary layer
coolant holes to allow more H2 to go down for film surface cooling
on the inside wall of the MCC.

Q: How do they enlarge them?

A: I think do it electrically. These are very small holes.
Electrical discharge machining (EDM), Maybe?

Q: This is something they would do before the next time they'd
run (the engine)?

A: Right, if they were cracking real bad in one area (typically
don't crack uniformally) they would enlarge the coolant holes above
that area to allow more boundary layer flow to come and cool that A7>-/Y -;;

Page 2

area.

Q: They know where they've cracked it because they've looked at
it visually?

A: Yes, they do visual inspections after each test. They map out
where the cracking is in relation to circumferential locations.
On some bad ones, they'll even go in and try to close the cracks
up manually. This is called pening them shut. Like a pening
hammer.

Q: Can they see that in the data at all?

A: You see the results of it in the data. You really don't see
"it" because it's essentially burned up and spit out the nozzle.
The way you do see it is that it's downstream of the flowmeter, so
you're not burning this fuel efficiently (not getting ISP and
chamber press). It's the same thing as a nozzle leak, the MCC pc
has to be maintained, so they increase the lox flow to compensate
for the fuel dumped overboard.

Q: That's the fuel that's doing the film cooling?

A: That's part of it, some is the channel cracks. It's pretty
high pressure, about 4000 psi.

Q: So you can distinguish between nozzle leakage and an MCC
crack?

A: Basically, you do it by inspection. It's about a 3 to 1
ratio. If you're leaking a pound of fuel, either through the
nozzle or MCC, that equates to approximately 3 pounds of LOX. If
you have a 9 crack chamber and ten tests later the LOX flow has
gone up about 6 pounds, you can estimate that about 2 pounds of
fuel is leaking (whether it's through the nozzle or MCC).

Q: If there's more flow going through "this" leg, is it going to
affect the shaft, etc?

A: Yes, the LPFP speed will increase, thereby increasing the HPFP
inlet press. It goes all the way down and even affects the turbine
temps because you take the bleed flow off to the repress, this
other flow goes into the PB chamber walls into the bearings, cool
"this stuff" and dumps back into this flow downstream of the
turbine. So, if. that flow happens to hit right on a turbine
discharge temp sensor, it can actually cool it quite a bit. You
have a lot of swirl and turbulant flow so it's not simple, but it
can cool down the turbine temps and cause problems there.

As far as phase2+, other things that might be different .•.

{Recapping what he told people earlier in the day about h/ware
changes ... a philosophical discussion}

A2 stand is used for a development engine, or an acceptance
test for a flight engine. On a development engine, we typically
green run flight h/ware (The four pumps, actuators, valves, etc).
For comparison tests on a green run, you want to pick the same
engine. Engines have their own set of built in resistances and
you're trying to use those. So, typically on a green run, you pick
either the last time that pump ran or (if they rebuilt a pump) you
want to compare this pump vs. the last pump. If it's the same
engine, fine, otherwise you have to use a different engine.

Q: You want to compare a rebuilt pump to the last time the pump
ran before it was rebuilt?

A: Correct.

Q: On that same test stand?

A: If possible, and on that same engine if possible. But
sometimes you'll green run a pump on AI, sometimes on B1. Right

Page 2

area.

Q: They know where they've cracked it because they've looked at
it visually?

A: Yes, they do visual inspections after each test. They map out
where the cracking is in relation to circumferential locations.
On some bad ones, they'll even go in and try to close the cracks
up manually. This is called pening them shut. Like a pening
hammer.

Q: Can they see that in the data at all?

A: You see the results of it in the data. You really don't see
"it" because it's essentially burned up and spit out the nozzle.
The way you do see it is that it's downstream of the flowmeter, so
you're not burning this fuel efficiently (not getting ISP and
chamber press). It's the same thing as a nozzle leak, the MCC pc
has to be maintained, so they increase the lox flow to compensate
for the fuel dumped overboard.

Q: That's the fuel that's doing the film cooling?

A: That's part of it, some is the channel cracks. It's pretty
high pressure, about 4000 psi.

Q: So you can distinguish between nozzle leakage and an MCC
crack?

A: Basically, you do it by inspection. It's about a 3 to 1
ratio. If you're leaking a pound of fuel, either through the
nozzle or MCC, that equates to approximately 3 pounds of LOX. If
you have a 9 crack chamber and ten tests later the LOX flow has
gone up about 6 pounds, you can estimate that about 2 pounds of
fuel is leaking (whether it's through the nozzle or MCC).

Q: If there's more flow going through "this" leg, is it going to
affect the shaft, etc?

A: Yes, the LPFP speed will increase, thereby increasing the HPFP
inlet press. It goes all the way down and even affects the turbine
temps because you take the bleed flow off to the repress, this
other flow goes into the PB chamber walls into the bearings, cool
"this stuff" and dumps back into this flow downstream of the
turbine. So, if. that flow happens to hit right on a turbine
discharge temp sensor, it can actually cool it quite a bit. You
have a lot of swirl and turbulant flow so it's not simple, but it
can cool down the turbine temps and cause problems there.

As far as phase2+, other things that might be different .•.

{Recapping what he told people earlier in the day about h/ware
changes ... a philosophical discussion}

A2 stand is used for a development engine, or an acceptance
test for a flight engine. On a development engine, we typically
green run flight h/ware (The four pumps, actuators, valves, etc).
For comparison tests on a green run, you want to pick the same
engine. Engines have their own set of built in resistances and
you're trying to use those. So, typically on a green run, you pick
either the last time that pump ran or (if they rebuilt a pump) you
want to compare this pump vs. the last pump. If it's the same
engine, fine, otherwise you have to use a different engine.

Q: You want to compare a rebuilt pump to the last time the pump
ran before it was rebuilt?

A: Correct.

Q: On that same test stand?

A: If possible, and on that same engine if possible. But
sometimes you'll green run a pump on AI, sometimes on B1. Right

Page 3

now Bl is dedicated to the PW pump. They'll also run the Pratt
pumps on TTB.

Q: How long is it going to be before the phase2+ •••

A: I think the phase2+ has been accepted and certified for
flight, but there's concern about it - is it going to burn up
chambers. Chambers take a long time to make and there aren't a lot
of chambers to burn up. They're trying to make fixes to alleviate
that problem. Eventually I assume the Pratt-Whitney pump will make
it to all the stands, any engine. That may be a good way away,
however.

If I was going to make a comparison for a LOX or fuel pump
that we were going to green run, I'd ask how that pump ran last
time. I'd take a test with that pump (it could be rebuilt, it may
be another one) I try to compare it back to the test it was run on
before. If it's the first time it's ever run I'll compare it to
the last time the engine ran. You try and get as much in common
as you can. The second consideration is profile. Most of the
green runs are fairly standard. The engine acceptance profile is
550 seconds, and is primarily to simulate flight as much as
possible. So, we pick comparison tests based on the pumps, the
test objectives, the pumps that are going to be tested, the engine
that is going to be tested, the profile of past tests for that
engine or pump. Sometimes we run a special test, like hydraulic
lockup (Al has been doing a lot of those). We don't do those
often, so we go back and pick a hydraulic lockup test in the past,
so we have a one-to-one comparison on the primary objective of the
test.

Q: What other objectives would you consider?

A: For example, DCUA or CDUB halts. This is where you fail one
controller channel. The controller switches to the backup channel
and you see blips in the data. The pc momentarily takes a spike.
We have a bunch of those, so if we ever do a DCUA halt, we'll
compare it to one of the tests we've done in the past.

Sometimes you'll shut down from a lower power level (90%,
etc). That has a little bit different trend on the shutdown.
We'll compare the shutdown portion (we sometimes have different
comparisons for start, etc). For start, when we first started
testing the PW pumps, they wanted to start at 65%. So, we had to
go way back in history to get some 65% starts to compare to. If
you couldn't find it you would just compare it up to 65% and ignore
where the one test went up and the other one stayed down. Same
thing for shutdown. You try to pick a comparable test where you
shut down from a comparable power level.

Or, for example, on TTB they're doing different ccv schedules
during shutdown and start to try and smooth out some of the bumps
and spikes in starts and shutdowns. Trying to make them less
deteorating to the turbine. You'd want to compare like CCV
schedules so you'd compare to the last time you did a CCV schedule
l.ike that.

{End of side A}

{Beginning side B of Tape 5 Neely/Dave Foust}

That would be a pretty main objective for TTB so you'd try to
compare to other tests with comparable CCV schedules.

Green run of h/ware is always a major objective, also CCV
scheduling, hydraulic lockup, pneumatic shutdown, based on the
engine's history - whether or not you have a prior run you can
compare to, and starting and shutting down to a funny power level.

Q: During the start, you have see if there is any·thing different.
Then you have to choose a test with a similar profile. That would
be your main concern.

A: Engine starts are pretty common. If it was a normal start

Page 3

now Bl is dedicated to the PW pump. They'll also run the Pratt
pumps on TTB.

Q: How long is it going to be before the phase2+ •••

A: I think the phase2+ has been accepted and certified for
flight, but there's concern about it - is it going to burn up
chambers. Chambers take a long time to make and there aren't a lot
of chambers to burn up. They're trying to make fixes to alleviate
that problem. Eventually I assume the Pratt-Whitney pump will make
it to all the stands, any engine. That may be a good way away,
however.

If I was going to make a comparison for a LOX or fuel pump
that we were going to green run, I'd ask how that pump ran last
time. I'd take a test with that pump (it could be rebuilt, it may
be another one) I try to compare it back to the test it was run on
before. If it's the first time it's ever run I'll compare it to
the last time the engine ran. You try and get as much in common
as you can. The second consideration is profile. Most of the
green runs are fairly standard. The engine acceptance profile is
550 seconds, and is primarily to simulate flight as much as
possible. So, we pick comparison tests based on the pumps, the
test objectives, the pumps that are going to be tested, the engine
that is going to be tested, the profile of past tests for that
engine or pump. Sometimes we run a special test, like hydraulic
lockup (Al has been doing a lot of those). We don't do those
often, so we go back and pick a hydraulic lockup test in the past,
so we have a one-to-one comparison on the primary objective of the
test.

Q: What other objectives would you consider?

A: For example, DCUA or CDUB halts. This is where you fail one
controller channel. The controller switches to the backup channel
and you see blips in the data. The pc momentarily takes a spike.
We have a bunch of those, so if we ever do a DCUA halt, we'll
compare it to one of the tests we've done in the past.

Sometimes you'll shut down from a lower power level (90%,
etc). That has a little bit different trend on the shutdown.
We'll compare the shutdown portion (we sometimes have different
comparisons for start, etc). For start, when we first started
testing the PW pumps, they wanted to start at 65%. So, we had to
go way back in history to get some 65% starts to compare to. If
you couldn't find it you would just compare it up to 65% and ignore
where the one test went up and the other one stayed down. Same
thing for shutdown. You try to pick a comparable test where you
shut down from a comparable power level.

Or, for example, on TTB they're doing different ccv schedules
during shutdown and start to try and smooth out some of the bumps
and spikes in starts and shutdowns. Trying to make them less
deteorating to the turbine. You'd want to compare like CCV
schedules so you'd compare to the last time you did a CCV schedule
l.ike that.

{End of side A}

{Beginning side B of Tape 5 Neely/Dave Foust}

That would be a pretty main objective for TTB so you'd try to
compare to other tests with comparable CCV schedules.

Green run of h/ware is always a major objective, also CCV
scheduling, hydraulic lockup, pneumatic shutdown, based on the
engine's history - whether or not you have a prior run you can
compare to, and starting and shutting down to a funny power level.

Q: During the start, you have see if there is any·thing different.
Then you have to choose a test with a similar profile. That would
be your main concern.

A: Engine starts are pretty common. If it was a normal start

Page 4

without a modified ccv or power level, then I'd pick the last test
of that engine.

Q: SO for start, you pick the last test of the engine unless
there's an alternate CCV schedule, or you start to a different
power level, and then you try to search on that.

A: Right.

Q: And you can tell that from the pretest?

A: Yes. The pretest has a thrust profile, except for the 1.5
second tests.

Q: During mainstage, then green run? Or you go to the last time
the engine ran on that stand?

A: If you're green running h/ware, then you try and pick the last
time that particular h/ware was run, if it's a similar profile.
If not, then I'd go to the last time the engine was ran and compare
it at least to the same engine. Then you'll just get pump to pump
changes in your comparison.

Q: What if it's not a green run, then what would you compare
mainstage to?

A: It would depend on the test objectives. If you're still in
certification they'll have different profiles so you'll compare to
the last similar profile of that engine. It's hard to compare a
long duration test with a short duration test because you lose a
lot of resolution in the data. You might want to go back 2 or 3
tests of the same engine to get a similar thrust profile of a
similar length.

You want to at least match up a couple of power levels within
the profile so you can say "ok, the turbine temps at 100% are here
on this test and here on the other." They may not be exact
profiles, but at least you get similar power levels and similar
inlet conditions that you can compare and see that the turbine
temps are running about the same as they were on a similar test.
It's not necessarily an identical profile.

Q: Inlet conditions?

A: On green runs they are pretty standard. Inlet conditions are
a secondary effect. They affect the lox and fuel turbine temps,
which will trend depending on the lox inlet press. The fuel inlet
press doesn't affect as much. The lox is heavier and when you
pressurize and depressurize it, it will have an effect. If you
cavitate a pump, you'll cavitate the HPOP typically. When they do
a vent to try and simulate flight they're trying to see whether Or
not the lox pump is cavitating and things like that. In some tests
they don't ,run vents. Primarily the power level will be the main
effect, and vents will be a secondary effect. If you could line
up 100% with the same vent conditions or 104%, or 109% with the
same vents, fine; if not, you'd at least compare 109% to 109%, and
say, "well this one was vented and this one wasn't." You know the
vent causes some effect. Mostly the lox vent would be a
consideration.

Q: If you were at 104% and then 109% on one test, and on the
other test you didn't go from 104% to 109%, maybe you went from
100% to 109%. Can I compare the 109%'s and expect the same
characteristics on the engine?

A: Roughly, depending on if the vent condition is dramatically
different Or something else has changed. That would be a good
comparison change, and they don't have to be both at the same time.

Q: So, it doesn't matter if it's the same time in the profile,
you're really looking at specifically power level.

A: Power level is primary, and inlet conditions second.

Page 4

without a modified ccv or power level, then I'd pick the last test
of that engine.

Q: SO for start, you pick the last test of the engine unless
there's an alternate CCV schedule, or you start to a different
power level, and then you try to search on that.

A: Right.

Q: And you can tell that from the pretest?

A: Yes. The pretest has a thrust profile, except for the 1.5
second tests.

Q: During mainstage, then green run? Or you go to the last time
the engine ran on that stand?

A: If you're green running h/ware, then you try and pick the last
time that particular h/ware was run, if it's a similar profile.
If not, then I'd go to the last time the engine was ran and compare
it at least to the same engine. Then you'll just get pump to pump
changes in your comparison.

Q: What if it's not a green run, then what would you compare
mainstage to?

A: It would depend on the test objectives. If you're still in
certification they'll have different profiles so you'll compare to
the last similar profile of that engine. It's hard to compare a
long duration test with a short duration test because you lose a
lot of resolution in the data. You might want to go back 2 or 3
tests of the same engine to get a similar thrust profile of a
similar length.

You want to at least match up a couple of power levels within
the profile so you can say "ok, the turbine temps at 100% are here
on this test and here on the other." They may not be exact
profiles, but at least you get similar power levels and similar
inlet conditions that you can compare and see that the turbine
temps are running about the same as they were on a similar test.
It's not necessarily an identical profile.

Q: Inlet conditions?

A: On green runs they are pretty standard. Inlet conditions are
a secondary effect. They affect the lox and fuel turbine temps,
which will trend depending on the lox inlet press. The fuel inlet
press doesn't affect as much. The lox is heavier and when you
pressurize and depressurize it, it will have an effect. If you
cavitate a pump, you'll cavitate the HPOP typically. When they do
a vent to try and simulate flight they're trying to see whether Or
not the lox pump is cavitating and things like that. In some tests
they don't ,run vents. Primarily the power level will be the main
effect, and vents will be a secondary effect. If you could line
up 100% with the same vent conditions or 104%, or 109% with the
same vents, fine; if not, you'd at least compare 109% to 109%, and
say, "well this one was vented and this one wasn't." You know the
vent causes some effect. Mostly the lox vent would be a
consideration.

Q: If you were at 104% and then 109% on one test, and on the
other test you didn't go from 104% to 109%, maybe you went from
100% to 109%. Can I compare the 109%'s and expect the same
characteristics on the engine?

A: Roughly, depending on if the vent condition is dramatically
different Or something else has changed. That would be a good
comparison change, and they don't have to be both at the same time.

Q: So, it doesn't matter if it's the same time in the profile,
you're really looking at specifically power level.

A: Power level is primary, and inlet conditions second.

Page 5

Q: And it doesn't matter what came before?

A: No, not usually.

Q: The data analysts don't shift thrust profiles thought, do
they?

A: You can mentally, or you can on the plot program that we have.
Typically, if the 100% portion on test A is here, on test Bit's
here, you're basically looking at a level. If you see that it's
running at 1300 degrees here and 1350 here and we expect that
because of venting, etc, then you can eyeball it. If it's way over
here, then you can do a time shift to reference them together just
for comparison purposes.

Q: Even on a green run, you'd like the pumps but only if the
thrust profile is similar. If the profile is not similar, then
you're willing to settle for the same engine. So, even in that
case, thrust profile takes precedence over h/ware?

A: Well, if the main objective of the test was to green run a lox
pump, my first priority would be to get the same build of the lox
pump, if not then a prior build with a similar profile. If this
is the first time this pump's ever been run then you don't have a
choice.

Q: So, you want the last time the pump was ran with a similar
profile, it doesn't have to be exact, just has to at least have the
same power levels included.

A: Some way where you can at least get a close one-to-one
comparison on performance. If you're looking for pump performance
changes, it's hard to compare 100% at nominal vent vs. 109% at min
vent. Trying to work the vent and power level out of it is harder.
If you can get close power levels and close vent conditions to try
and get a one-to-one comparison.

Q: So you also take venting or inlet conditions into account?

A: As a secondary effect.

Q: What about when you green run pumps, for example, do you have
to pay attention to how you shutdown?

A: Typically, if you're doing a flight h/ware green run, you're
not going to do anything that's not done on flight. Otto's very
firm about that. There shouldn't be any strange shutdowns or
starts.

Q: Is flight h/ware different from other h/ware?

A: Flight h/ware is built strictly to current flight
configurations. It's typically very new, very good h/ware. There
is a requirement that no flight h/ware exceeds 50% of the fleet
leader. For example, if there's a fuel pump who's turbine end
bearings have more time on them than any other fuel pump in the
fleet (ground, flight, anywhere). They call that fleet leader.
The bearing on a fuel pump that they're going to fly cannot have
more than 50% of the fleet leader time on it. Including the RTLS
abort (the longest abort scenario which is 753 seconds?). The
current amount of time plus 753 seconds may not exceed 50% of the
time on the fleet leader. So, it's newer h/ware and is typically
the best that we have.

Q: What about h/ware that has already past 50% of the fleet
leader?

A: It would probably go to development.

{More examples of things that have gone to the development program}

Q: Did those eventually become fleet leaders?

A: It might. Engine 2206, the engine that we just ran, had a

Page 5

Q: And it doesn't matter what came before?

A: No, not usually.

Q: The data analysts don't shift thrust profiles thought, do
they?

A: You can mentally, or you can on the plot program that we have.
Typically, if the 100% portion on test A is here, on test Bit's
here, you're basically looking at a level. If you see that it's
running at 1300 degrees here and 1350 here and we expect that
because of venting, etc, then you can eyeball it. If it's way over
here, then you can do a time shift to reference them together just
for comparison purposes.

Q: Even on a green run, you'd like the pumps but only if the
thrust profile is similar. If the profile is not similar, then
you're willing to settle for the same engine. So, even in that
case, thrust profile takes precedence over h/ware?

A: Well, if the main objective of the test was to green run a lox
pump, my first priority would be to get the same build of the lox
pump, if not then a prior build with a similar profile. If this
is the first time this pump's ever been run then you don't have a
choice.

Q: So, you want the last time the pump was ran with a similar
profile, it doesn't have to be exact, just has to at least have the
same power levels included.

A: Some way where you can at least get a close one-to-one
comparison on performance. If you're looking for pump performance
changes, it's hard to compare 100% at nominal vent vs. 109% at min
vent. Trying to work the vent and power level out of it is harder.
If you can get close power levels and close vent conditions to try
and get a one-to-one comparison.

Q: So you also take venting or inlet conditions into account?

A: As a secondary effect.

Q: What about when you green run pumps, for example, do you have
to pay attention to how you shutdown?

A: Typically, if you're doing a flight h/ware green run, you're
not going to do anything that's not done on flight. Otto's very
firm about that. There shouldn't be any strange shutdowns or
starts.

Q: Is flight h/ware different from other h/ware?

A: Flight h/ware is built strictly to current flight
configurations. It's typically very new, very good h/ware. There
is a requirement that no flight h/ware exceeds 50% of the fleet
leader. For example, if there's a fuel pump who's turbine end
bearings have more time on them than any other fuel pump in the
fleet (ground, flight, anywhere). They call that fleet leader.
The bearing on a fuel pump that they're going to fly cannot have
more than 50% of the fleet leader time on it. Including the RTLS
abort (the longest abort scenario which is 753 seconds?). The
current amount of time plus 753 seconds may not exceed 50% of the
time on the fleet leader. So, it's newer h/ware and is typically
the best that we have.

Q: What about h/ware that has already past 50% of the fleet
leader?

A: It would probably go to development.

{More examples of things that have gone to the development program}

Q: Did those eventually become fleet leaders?

A: It might. Engine 2206, the engine that we just ran, had a

Page 6
more cracks in it than any that I've seen. It had something like
13 pounds of leaks.

Q: That was still labeled a green run, like an oxidizer
turbopump? Wouldn't you have to dump a lot more lox through and
have hotter turbine discharge temps?

A: I was talking to them this morning about that. It makes
flight predictions almost impossible because you're trying to green
run a pump on an engine that runs off nominal, and trying to see
how that pump would run on a nominal engine. It's very hard. 2107
is in a lot better shape, but it has a problem in the discharge
duct in the HPOP. There's a bad weld with a burr on the interior
of a duct. There's a 4-sigma high HPOP discharge press. This
makes everything on the LOX side run different. It jacks the disch
press up, which makes the turbine temps go up, which makes valve
pos's go up, makes speeds go up which changes the press going to
the valves, which changes theses valves here. Then you have to try
and back out - "well, it ran this way on 2107, but the HPOP disch
press was this high. On this flight it will run 100 psi lower, so
what does that do to me." It's really hard to do that.

Q: If they went in and removed that burr, would that do anything
for you?

A: It would help, but they'll never do it. That's a power head
problem and it would take forever to fix that.

Q: How did you notice that the burr was there?

A: We noticed how high the HPOP discharge press was, like 3-
sigma higher than the average. They went in and inspected it and
looked at the weld xrays, and saw the burr.

Q: Which test stand has that 13 pounds/sec leak? Would that show
up in all of the post-test summary sheets on the engine and instr
problems section?

A: I doubt it. It would probably be in ... The combustion devices
people would probably keep track of it (Don Charcl). We have
some of it because Bill Green and Tracy, and Brian also trace that
stuff because it affects the performance of the whole engine. If
you've increased lox flow to make up for fuel leakage, isp drops
down - because you're not getting anymore thrust, but you're
dumping in more fuel and lox. That was engine 2206. We've been
green running pumps on that engine for about two years. When you
run an engine like that for 2 years, hard, it will start
deteorating rapidly. There are a lot of recent tests on that
engine where they have probably been tracking leakage. They could
probably show you a chart showing the leakage.

Q: SO you knew that every time you got 2206, it was leaking and
you took that into account.

A: It ran on mixture ratio, they changed c2 to make it do that.
But, the lox flow was increased, it affects everything. It runs
mixture ratio but it's not really a nominal run. Anything recent
on 2206 is guaranteed to be a little bit unusual.

Q: That should show up in the 2-sigma comparison when you compare
engines without massive leaks like that, but not if you compared
it to the last time that engine ran?

{Claudia and June discus the comparitor vs. the 2-sigma stuff}

A: It wouldn't (show up in comparison to the previous run on that
engine) unless you had something significant change.

If you compare 2107 to just the last couple flights, the HPOP
disch press's will be on top of one another. That's where we use
2-sigma. If you compare it to the rest of the fleet, in HPOP disch
press, you notice that it's high. You can mask a problem that way.
That's why we have start 2-sigma's and mainstage 2-sigma's. It
gives us a better feel for how a normal engine would run and what

Page 6
more cracks in it than any that I've seen. It had something like
13 pounds of leaks.

Q: That was still labeled a green run, like an oxidizer
turbopump? Wouldn't you have to dump a lot more lox through and
have hotter turbine discharge temps?

A: I was talking to them this morning about that. It makes
flight predictions almost impossible because you're trying to green
run a pump on an engine that runs off nominal, and trying to see
how that pump would run on a nominal engine. It's very hard. 2107
is in a lot better shape, but it has a problem in the discharge
duct in the HPOP. There's a bad weld with a burr on the interior
of a duct. There's a 4-sigma high HPOP discharge press. This
makes everything on the LOX side run different. It jacks the disch
press up, which makes the turbine temps go up, which makes valve
pos's go up, makes speeds go up which changes the press going to
the valves, which changes theses valves here. Then you have to try
and back out - "well, it ran this way on 2107, but the HPOP disch
press was this high. On this flight it will run 100 psi lower, so
what does that do to me." It's really hard to do that.

Q: If they went in and removed that burr, would that do anything
for you?

A: It would help, but they'll never do it. That's a power head
problem and it would take forever to fix that.

Q: How did you notice that the burr was there?

A: We noticed how high the HPOP discharge press was, like 3-
sigma higher than the average. They went in and inspected it and
looked at the weld xrays, and saw the burr.

Q: Which test stand has that 13 pounds/sec leak? Would that show
up in all of the post-test summary sheets on the engine and instr
problems section?

A: I doubt it. It would probably be in ... The combustion devices
people would probably keep track of it (Don Charcl). We have
some of it because Bill Green and Tracy, and Brian also trace that
stuff because it affects the performance of the whole engine. If
you've increased lox flow to make up for fuel leakage, isp drops
down - because you're not getting anymore thrust, but you're
dumping in more fuel and lox. That was engine 2206. We've been
green running pumps on that engine for about two years. When you
run an engine like that for 2 years, hard, it will start
deteorating rapidly. There are a lot of recent tests on that
engine where they have probably been tracking leakage. They could
probably show you a chart showing the leakage.

Q: SO you knew that every time you got 2206, it was leaking and
you took that into account.

A: It ran on mixture ratio, they changed c2 to make it do that.
But, the lox flow was increased, it affects everything. It runs
mixture ratio but it's not really a nominal run. Anything recent
on 2206 is guaranteed to be a little bit unusual.

Q: That should show up in the 2-sigma comparison when you compare
engines without massive leaks like that, but not if you compared
it to the last time that engine ran?

{Claudia and June discus the comparitor vs. the 2-sigma stuff}

A: It wouldn't (show up in comparison to the previous run on that
engine) unless you had something significant change.

If you compare 2107 to just the last couple flights, the HPOP
disch press's will be on top of one another. That's where we use
2-sigma. If you compare it to the rest of the fleet, in HPOP disch
press, you notice that it's high. You can mask a problem that way.
That's why we have start 2-sigma's and mainstage 2-sigma's. It
gives us a better feel for how a normal engine would run and what

Page;

kind of variations you would see.

Q: Then you wouldn't you put the info from the into your 2-
sigma database, would you?

A: We have strict criteria on those. If an engine runs way off
mixture ratio, or any of the phase2+ data into the 2-sigma. We're
building a database strictly for the phase2+. Until that database
gets big enough we'll compare it to our normal 2-sigma, but we
we#ll not include that data into the 2-sigma database. We also
have some databases just for flight.

Q: If you green run a pump on a particular engine and then put
it on another engine for flight, do you just visually inspect that
pump after it comes off the green run engine?

A: They visually inspect, do torque checks, leak checks, etc.
Typically after a green run, it's ready to fly, they don't run it
again.

Q: Does it experience anything before green run?

A: It can, sometimes it doesn't. Sometimes when they get a new
pump they'll dd a lot of inspections when they build it. Then
they'll green run. If it passes green run, they'll stick it on the
flight, and not run it on any other engine.

Q: SO it's never tested in any turbopump stand or anything before
this?

A: Not usually.

{Dave pulls out a databook for a Pratt-Whitney pump and everyone
shout'S "let's not do this one"}

{End of conversation}

(End of 1st half of side B on Tape 5 Neely/Foust}

Page;

kind of variations you would see.

Q: Then you wouldn't you put the info from the into your 2-
sigma database, would you?

A: We have strict criteria on those. If an engine runs way off
mixture ratio, or any of the phase2+ data into the 2-sigma. We're
building a database strictly for the phase2+. Until that database
gets big enough we'll compare it to our normal 2-sigma, but we
we#ll not include that data into the 2-sigma database. We also
have some databases just for flight.

Q: If you green run a pump on a particular engine and then put
it on another engine for flight, do you just visually inspect that
pump after it comes off the green run engine?

A: They visually inspect, do torque checks, leak checks, etc.
Typically after a green run, it's ready to fly, they don't run it
again.

Q: Does it experience anything before green run?

A: It can, sometimes it doesn't. Sometimes when they get a new
pump they'll dd a lot of inspections when they build it. Then
they'll green run. If it passes green run, they'll stick it on the
flight, and not run it on any other engine.

Q: SO it's never tested in any turbopump stand or anything before
this?

A: Not usually.

{Dave pulls out a databook for a Pratt-Whitney pump and everyone
shout'S "let's not do this one"}

{End of conversation}

(End of 1st half of side B on Tape 5 Neely/Foust}

Interview Session Date: 4/29/92
Darrel Gaddy

DG - He and the Martin people pretty much do the same job, he's just NASA. His
main responsibility is flight.

Difference between the stands ...
TTB A development stand and can't have long test on it because we don't hav

big propellant tanks. We have gone to 205 seconds duration.
Al An open [atmospheric] stand and have long test capabilities, [because

e can transfer propellants during the test. We have done 1000+ second duration
test before.

A2 Where most of the flight engines are green run. We have a diffuse
he stand to simulate conditions 80,000 ft up in the atmosphere, so we can thrott
Ie down. On TTB and A1 we can't throttle down because of flow separation in the
nozzle will destroy the nozzle.

B1 Just like A2, it has a diffuser. Then we can go down to 65% power 1
Fairly new stand.

When we had a new engine, we used to do 1.5 second test (a big burp of the e
ne) to do a system checkouts. We do not do that anymore. In looking at the dat
a from all of the 1.5 second tests, only 2 engines out of 100 had any problems a
nd even these problems would not have prevented the engine from going on to main
stage. The next test is a calibration test (where you go in and make your softw
are adjustments). The next test is a flight simulation (acceptance) test where
we throttle down.

* Initial Test (not performed anymore) - 1.5 sec duration
* Calibration Test - 250 second

* Acceptance Test - 520 second

Test Case - B1-099 Engine 0213
Programmed 771 duration, but was cutoff at 1.66 secs. due to a failure OP

ge. We have purges that come into the preburner domes that flush out through th
e turbines and just goes out the nozzle. [During] prestart the purge is nitroge
n and [during] post shutdown we run helium through the engine. There is check v
alves in the lines, so you can flow into it once you have your nitrogen or heliu
m up to pressure, but once your engine is started you don't want hot gases flowi
ng back out of the purge lines. There was a check value which leaked during thi
s test firing. There is a pressure transducer upstream of the check valve. The

check valve is monitored at engine start to 2.3 seconds, so if the check valve
is going to leak, it will do so by 2.3 seconds. After that we don't look at the
measurement.

This is what we did. We suspected a leaky check valve, based on that the purge
pressure follows MCC PC trace. That means we have an OPB purge, FPB purge and

MCC purge all at the same time and they each have their check valves. And we ha
vesensors for OPB purge and FPB purge and not on MCC purge, but if you have a 1
eak on the MCC it can work it way back up and show up on OPB pressure transducer

Goes to plots from package }
These [parameters] are plotted from engine start to 6 secs. The other two t

S are 1.5 sec tests that we did on fight engines. The shut down [1.66 sec] was
so close to 1.S sec. that we went ahead and compared it to 1.5 second tests. FP
B shutdown purge pressure (PID 148) and OPB shutdown purge pressure [PID 149] fr
om time zero to 2 seconds. Both pressures should stay down at atmospheric press
ure for the whole test, but they started going up. The redline is set at 50 psi

The redline cut here {pointing at plot where values exceeded 50 psi} and then
the engine shutdown. We did "tap data" here showing when data went above the r

edline.
{ Goes to the pneumatic schematic }
These are the check valves we are talking about here. This is your OPB purge a

nd your FPB purge. And we have these orifices here to control the flowrate, onc
e we do apply the pneumatics to here. And then we have these check valves here.

These are the things that can leak. This {he is pointing out blocks on the sc
hematic labeled "pressure transducer"} is the pressure transducer that relates b
ack to this measurement, OPB shutdown purge pressure and this pressure transduce
r here [is] PID 149 for the fuel.

But on this one [test case] you'd think that if you'd had an OPB purge pressure
cut off here exceeding, you'd have this check valve or this check valve leak {he
is pointing to the two check valves downstream of the OPB pressure transducer g

oing to the oxidizer side of the power head} coming up to get to this pressure t
ransducer. But on this one [test case] we had a main chamber oxidizer dome purg

Interview Session Date: 4/29/92
Darrel Gaddy

DG - He and the Martin people pretty much do the same job, he's just NASA. His
main responsibility is flight.

Difference between the stands ...
TTB A development stand and can't have long test on it because we don't hav

big propellant tanks. We have gone to 205 seconds duration.
Al An open [atmospheric] stand and have long test capabilities, [because

e can transfer propellants during the test. We have done 1000+ second duration
test before.

A2 Where most of the flight engines are green run. We have a diffuse
he stand to simulate conditions 80,000 ft up in the atmosphere, so we can thrott
Ie down. On TTB and A1 we can't throttle down because of flow separation in the
nozzle will destroy the nozzle.

B1 Just like A2, it has a diffuser. Then we can go down to 65% power 1
Fairly new stand.

When we had a new engine, we used to do 1.5 second test (a big burp of the e
ne) to do a system checkouts. We do not do that anymore. In looking at the dat
a from all of the 1.5 second tests, only 2 engines out of 100 had any problems a
nd even these problems would not have prevented the engine from going on to main
stage. The next test is a calibration test (where you go in and make your softw
are adjustments). The next test is a flight simulation (acceptance) test where
we throttle down.

* Initial Test (not performed anymore) - 1.5 sec duration
* Calibration Test - 250 second

* Acceptance Test - 520 second

Test Case - B1-099 Engine 0213
Programmed 771 duration, but was cutoff at 1.66 secs. due to a failure OP

ge. We have purges that come into the preburner domes that flush out through th
e turbines and just goes out the nozzle. [During] prestart the purge is nitroge
n and [during] post shutdown we run helium through the engine. There is check v
alves in the lines, so you can flow into it once you have your nitrogen or heliu
m up to pressure, but once your engine is started you don't want hot gases flowi
ng back out of the purge lines. There was a check value which leaked during thi
s test firing. There is a pressure transducer upstream of the check valve. The

check valve is monitored at engine start to 2.3 seconds, so if the check valve
is going to leak, it will do so by 2.3 seconds. After that we don't look at the
measurement.

This is what we did. We suspected a leaky check valve, based on that the purge
pressure follows MCC PC trace. That means we have an OPB purge, FPB purge and

MCC purge all at the same time and they each have their check valves. And we ha
vesensors for OPB purge and FPB purge and not on MCC purge, but if you have a 1
eak on the MCC it can work it way back up and show up on OPB pressure transducer

Goes to plots from package }
These [parameters] are plotted from engine start to 6 secs. The other two t

S are 1.5 sec tests that we did on fight engines. The shut down [1.66 sec] was
so close to 1.S sec. that we went ahead and compared it to 1.5 second tests. FP
B shutdown purge pressure (PID 148) and OPB shutdown purge pressure [PID 149] fr
om time zero to 2 seconds. Both pressures should stay down at atmospheric press
ure for the whole test, but they started going up. The redline is set at 50 psi

The redline cut here {pointing at plot where values exceeded 50 psi} and then
the engine shutdown. We did "tap data" here showing when data went above the r

edline.
{ Goes to the pneumatic schematic }
These are the check valves we are talking about here. This is your OPB purge a

nd your FPB purge. And we have these orifices here to control the flowrate, onc
e we do apply the pneumatics to here. And then we have these check valves here.

These are the things that can leak. This {he is pointing out blocks on the sc
hematic labeled "pressure transducer"} is the pressure transducer that relates b
ack to this measurement, OPB shutdown purge pressure and this pressure transduce
r here [is] PID 149 for the fuel.

But on this one [test case] you'd think that if you'd had an OPB purge pressure
cut off here exceeding, you'd have this check valve or this check valve leak {he
is pointing to the two check valves downstream of the OPB pressure transducer g

oing to the oxidizer side of the power head} coming up to get to this pressure t
ransducer. But on this one [test case] we had a main chamber oxidizer dome purg

Page 2

e [check valve] leak and it came back, work its way around this way {tracing the
path on the schematic to the pressure transducers} to pressurize this transduce

r.

Question: So really you could have anyone of those check valves leak and you w
ould see it in anyone (of the pressure transducers], so you really couldn't dis
tinguish or could you distinguish which check valve, besides with a visual inspe
ction?

DG - That's the best way, after the test they go through and leak check them and
they will leak, but sometimes they don't do that. We had one of these check va

Ives leak on a stand. We thought it was the preburner check valve. We went in
and replaced that check valve and in the next test the same thing happened again
• And so the way we are looking to see which check valve leaked, is we're takin
g this trace (the trace of the shutdown purge pressures] and comparing it to eit
her the MCC pressure, FPB pressure or OPB pressure (which] can drive this pressu
re [shutdown purge pressure]. And so we're looking at when these pressures· [shu
tdown purge pressure] increase, if they correlate good with these other pressure
increases. And that's the best way, to go back to the pneumatic schematic to s

ee which check valve is actually leaking is to see which one of these pressures
(preburner or main chamber] increases at the same time this one (shutdown purge
pressures] is [increasing].

Question: Which is what they meant by "follows the MCC trace"?

DG - Yes

Question: "Follows" didn't have anything to do with time by how well the graphs
meshed?

DG - (Meshed] with time.

For with the check valve leaks, what we're trying to do is, if I was going to 10
ok at the data and [wanted to] tell which one of the valves leaked, I would comp
are the actual trace of the one that cut me [caused the engine cutoff] to each 0
ne of these [the three chamber pressures, OPB,FPB and MeC] and see which one it
correlates to. Then I would say that check valve leaked. It [is] really hard t
o say that too because we have this pressure transducer over here called OPB pur
ge pressure transducer, but we have this one leg which comes over here and looks
at the fuel preburner. So we only have this one [pointing at the fuel pressure
transducer] that looks at this check valve, but this one [the oxidizer pressure
transducer] goes to both of these two [pneumatic legs to both the fuel and oxid

izer preburner oxidizer domes], so you could have a fuel preburner check valve t
hat (effects] oxidizer [shutdown purge pressure]. It gets kind of messy just tr
ying to find out which check valve actually leaks. And you could have this one
(MCC oxidizer dome check valve leak] coming in the back door and get that one (0
xidizer shutdown purge pressure]. It takes awhile to look at these things to te
11 which one, [and even then] your really not sure. And then so the best thing
is to go back and inspect the engine by doing leak checks and you can tell [for
sure) usually by the leak checks.

So that's what happened. We had this check valve [MCC oxidizer dome] leaked and
we started building up chamber pressure here (in the MCC chamber] and it worked
its way back over and down this way {he is again following through the schemati

c path} and we had to cut [engine shutdown] and we had to cut on OPB (shutdown p
urge) pressure transducer.

Question: Do you have to look upstream of the pressure transducer that is readi
ng anomalies?

DG - Yes anything that will feed into it.

Question: These chambers start [their respective pressure climbs] at [different
) times too don't they?

DG - Yes, they do. First we want to start they engine fuel rich. That way [sin
ce] LOX is really nasty stuff, you get a LOX rich [start, and] the engine is jus
t melted. So what we do is we start the fuel side first. That way we just flus
h the whole engine with hydrogen and we have a cooler start. We prime the fuel
pump [actually the igniter faceplate is primed] first get it rolling and they we
prime the main chamber and then we prime the OPB.

~he way we [define] prime times is ... In the fuel side we are looking at the fue
1 pump speed, so we can actually see a slope change. The fuel pump will start t

Page 2

e [check valve] leak and it came back, work its way around this way {tracing the
path on the schematic to the pressure transducers} to pressurize this transduce

r.

Question: So really you could have anyone of those check valves leak and you w
ould see it in anyone (of the pressure transducers], so you really couldn't dis
tinguish or could you distinguish which check valve, besides with a visual inspe
ction?

DG - That's the best way, after the test they go through and leak check them and
they will leak, but sometimes they don't do that. We had one of these check va

Ives leak on a stand. We thought it was the preburner check valve. We went in
and replaced that check valve and in the next test the same thing happened again
• And so the way we are looking to see which check valve leaked, is we're takin
g this trace (the trace of the shutdown purge pressures] and comparing it to eit
her the MCC pressure, FPB pressure or OPB pressure (which] can drive this pressu
re [shutdown purge pressure]. And so we're looking at when these pressures· [shu
tdown purge pressure] increase, if they correlate good with these other pressure
increases. And that's the best way, to go back to the pneumatic schematic to s

ee which check valve is actually leaking is to see which one of these pressures
(preburner or main chamber] increases at the same time this one (shutdown purge
pressures] is [increasing].

Question: Which is what they meant by "follows the MCC trace"?

DG - Yes

Question: "Follows" didn't have anything to do with time by how well the graphs
meshed?

DG - (Meshed] with time.

For with the check valve leaks, what we're trying to do is, if I was going to 10
ok at the data and [wanted to] tell which one of the valves leaked, I would comp
are the actual trace of the one that cut me [caused the engine cutoff] to each 0
ne of these [the three chamber pressures, OPB,FPB and MeC] and see which one it
correlates to. Then I would say that check valve leaked. It [is] really hard t
o say that too because we have this pressure transducer over here called OPB pur
ge pressure transducer, but we have this one leg which comes over here and looks
at the fuel preburner. So we only have this one [pointing at the fuel pressure
transducer] that looks at this check valve, but this one [the oxidizer pressure
transducer] goes to both of these two [pneumatic legs to both the fuel and oxid

izer preburner oxidizer domes], so you could have a fuel preburner check valve t
hat (effects] oxidizer [shutdown purge pressure]. It gets kind of messy just tr
ying to find out which check valve actually leaks. And you could have this one
(MCC oxidizer dome check valve leak] coming in the back door and get that one (0
xidizer shutdown purge pressure]. It takes awhile to look at these things to te
11 which one, [and even then] your really not sure. And then so the best thing
is to go back and inspect the engine by doing leak checks and you can tell [for
sure) usually by the leak checks.

So that's what happened. We had this check valve [MCC oxidizer dome] leaked and
we started building up chamber pressure here (in the MCC chamber] and it worked
its way back over and down this way {he is again following through the schemati

c path} and we had to cut [engine shutdown] and we had to cut on OPB (shutdown p
urge) pressure transducer.

Question: Do you have to look upstream of the pressure transducer that is readi
ng anomalies?

DG - Yes anything that will feed into it.

Question: These chambers start [their respective pressure climbs] at [different
) times too don't they?

DG - Yes, they do. First we want to start they engine fuel rich. That way [sin
ce] LOX is really nasty stuff, you get a LOX rich [start, and] the engine is jus
t melted. So what we do is we start the fuel side first. That way we just flus
h the whole engine with hydrogen and we have a cooler start. We prime the fuel
pump [actually the igniter faceplate is primed] first get it rolling and they we
prime the main chamber and then we prime the OPB.

~he way we [define] prime times is ... In the fuel side we are looking at the fue
1 pump speed, so we can actually see a slope change. The fuel pump will start t

Page 3
urning just from being pressure feed from the facility, then when your injector
ignites it will start spinning that pump faster and there is a slope change in t
hat trace. And that is what we look for [to determine when] the fuel prime [occ
urs,] is that slope change.

Question: Do you know what that slope change is?

DG - We've got a program that calculates it.

Question: This [MCC prime time] is was under 200 psi right?

DG - MCC [prime time] is when you get above 100 psi in the chamber.

Question: And this [OPB prime time] is actually the slope changes from negative
to positive?

DG - On Lox turbine temps, because we don't have a speed on the LOX pump, so whe·
never your turbine temps go from negative to nonnegative slope we say the ignite
r faceplate is lit. If you are going to do a prime module or logic, I'd recomme
nd [that since] we have already coded it and you take what code we have, because

we already have a database based on that one and I'd like to keep it the same,
so it's repeatable from running on the PE4.

Question: Does that code include all controller phases?

DG - It does alot of them. That's their ENGSYS (ENGine SYStem) [program]. It'
s written in C on the SUN station, but we have the same code on the PE4 [written
] in FORTRAN.

Prime time for the main chamber is here. That's about 1.4 seconds. And that's j
ust when it goes above 100 [psi]. That ones real easy to calculate. Fuel pump
is the slope change {Looking at the startup fuel pump speed trace}. It is reall
y hard to make it out, but can you make out the slope change right there. It's
rolling up at this slope and then it changes over to that steeper slope. That's

what we call the [FPB] prime time. And then for the LOX turbine temps {looking
at the LOX turbine temps startup trace}, this one we would say it primed when i

t started to turn around there, thats where it primed. It would be the latter 0
f the two channels, so you'd have to have both of them turned around to get a pr
ime time [DG not real sure about that].

What I'd to see if we have this shutdown from this OPB purge pressure, is that y
ou would know that we had this shutdown due to a violation of this redline and t
hen it would come back and tell me that it that most probably it is a check valv
e on the OPB side or FPB side or it follows the trace of the MCC PC. And that w
ay we can go and ask for an inspection on those check valves to try to isolate t
hem.

Response: That's why I was trying to find out how they figured out it was the M
CC check valve or whichever check valve it was, how they were distinguishing tha
t. That's what we're trying to flush out in these case analysis.

DG - I think what we did by hand, we made a plot where we had the preburner [sh
utdown purge pressure] trace and we followed it on the same plot with MCC PC to
see how close they were and they looked really relatable and scalable. But if y
ou look at the FPB [chamber pressure] versus this one [the shutdown purge pressu
re] it didn't look the same. The pressure [shutdown purge pressure] did not sta
rt rising at the same time.

Question: And you looked for something that the pressure started rising a littl
e bit before, as opposed to the FPB .• ?

DG - No. It would be the same time if it were. If it were the MCC PC, the pre
ssure rise, whenever this pressure increased, the purge pressure would increase.

Response: Simultaneously

DG - Yeah

We have two different things here. This one's [the anomaly summary] saying that
it was the MCC PC trace and this one's [the post-test review] saying that it wa

s OPB purge line check valve. I think that this was the test where we had them
back to back. We thought it was an OPB purge line check valve because it was a
violation of the OPB purge and then we tested the next test and it did the same

Page 3
urning just from being pressure feed from the facility, then when your injector
ignites it will start spinning that pump faster and there is a slope change in t
hat trace. And that is what we look for [to determine when] the fuel prime [occ
urs,] is that slope change.

Question: Do you know what that slope change is?

DG - We've got a program that calculates it.

Question: This [MCC prime time] is was under 200 psi right?

DG - MCC [prime time] is when you get above 100 psi in the chamber.

Question: And this [OPB prime time] is actually the slope changes from negative
to positive?

DG - On Lox turbine temps, because we don't have a speed on the LOX pump, so whe·
never your turbine temps go from negative to nonnegative slope we say the ignite
r faceplate is lit. If you are going to do a prime module or logic, I'd recomme
nd [that since] we have already coded it and you take what code we have, because

we already have a database based on that one and I'd like to keep it the same,
so it's repeatable from running on the PE4.

Question: Does that code include all controller phases?

DG - It does alot of them. That's their ENGSYS (ENGine SYStem) [program]. It'
s written in C on the SUN station, but we have the same code on the PE4 [written
] in FORTRAN.

Prime time for the main chamber is here. That's about 1.4 seconds. And that's j
ust when it goes above 100 [psi]. That ones real easy to calculate. Fuel pump
is the slope change {Looking at the startup fuel pump speed trace}. It is reall
y hard to make it out, but can you make out the slope change right there. It's
rolling up at this slope and then it changes over to that steeper slope. That's

what we call the [FPB] prime time. And then for the LOX turbine temps {looking
at the LOX turbine temps startup trace}, this one we would say it primed when i

t started to turn around there, thats where it primed. It would be the latter 0
f the two channels, so you'd have to have both of them turned around to get a pr
ime time [DG not real sure about that].

What I'd to see if we have this shutdown from this OPB purge pressure, is that y
ou would know that we had this shutdown due to a violation of this redline and t
hen it would come back and tell me that it that most probably it is a check valv
e on the OPB side or FPB side or it follows the trace of the MCC PC. And that w
ay we can go and ask for an inspection on those check valves to try to isolate t
hem.

Response: That's why I was trying to find out how they figured out it was the M
CC check valve or whichever check valve it was, how they were distinguishing tha
t. That's what we're trying to flush out in these case analysis.

DG - I think what we did by hand, we made a plot where we had the preburner [sh
utdown purge pressure] trace and we followed it on the same plot with MCC PC to
see how close they were and they looked really relatable and scalable. But if y
ou look at the FPB [chamber pressure] versus this one [the shutdown purge pressu
re] it didn't look the same. The pressure [shutdown purge pressure] did not sta
rt rising at the same time.

Question: And you looked for something that the pressure started rising a littl
e bit before, as opposed to the FPB .• ?

DG - No. It would be the same time if it were. If it were the MCC PC, the pre
ssure rise, whenever this pressure increased, the purge pressure would increase.

Response: Simultaneously

DG - Yeah

We have two different things here. This one's [the anomaly summary] saying that
it was the MCC PC trace and this one's [the post-test review] saying that it wa

s OPB purge line check valve. I think that this was the test where we had them
back to back. We thought it was an OPB purge line check valve because it was a
violation of the OPB purge and then we tested the next test and it did the same

Page 4
thing after we replaced the check and we then looked at the MCC trace.

Response: It says there [on the anomaly summary] on the action item that it did
replace the OPB purge line [check valve] .

DG - I think these were back to back tests and this was whenever we started 100
king at the traces to see which one it is. This one [post-test review] says its

an OPB purge [check valve failure], but I don't believe it, I think its MCC [ch
eck valve failure].

I said something about PIOs, are you familiar with PIOs? MSIOs?

Response: Yes, PIOS basically for CADs are 1 to 301 and anything greater is fac
ility.

DG - MSIOs are CADs. Are another way of calling a CADs PIO except its [a] flig
ht orientation. We used to, we recently fixed it, on flight data all we have is

CADs, we have no facility measurements, so everything under 300 we had, but we
couldn't use PIOs we had MSIOs, which are E41P{its engine number}0270. Recently

we switched that over, so now we do have PIOs on flight data also, so you can j
ust work with PIOs, instead of MSIOs.

Questions: 00 the data files now contain MSIOs?

DG - Yes, they contain both of them so you can use either one. I think its on
the header on the file, which cross references the PIO and the MSIO to the same
whatever in the database.

Response: I know they have the MSFC format to work with now. And it seems to h
ave more header information and I remember there was an extra column there and I
couldn't remember exactly what it was telling me, but maybe it was the MSIOs.

DG - Yeah, it was not all flights, it's the last flight and the FRF that have t
hat {PIO information] in it, but everything before you have to use MSIOs.

Response: OK, so if you were looking at the test data file, you wouldn't find t
he MSIOs in the header?

DG - You would. It would be assumed it was engine 1 MSIO for that PIO ground t
est. But you can [use] PIOs, [so] why waste [time using] MSIOs.

Questions: The oxidizer preburner purge line is between the MCC and OPB right?

DG - How this works ••• This is the PCA [pneumatic control assembly] on the eng
ine. [It can do the following control functions] it can turn all the servo valv
e and pressure operator valves for the pneumatic assembly and it bolts along the
side of the engine. Bring helium in here and the if we were going to purge the
OPB or FPB and we do this after shutdown, like at shutdown plus so many seconds
we turn on the purge. And we have helium here and it runs over to this shutdow

n purge solenoid valve and comes up to the valve and stops. And then whenever w
e energize this solenoid, it allows it to go in~the-in and out-the-out and it co
mes down here to PAV4 and PAV5 and it goes in the c-port which is the control po
rt. And it allows this 750 psi helium to compress this spring and that allows t
he helium which comes in this way to go through in and out-the-out and to go thr
ough the check valve and out that way. So we control it this way it goes to the
control port and we flow that way.

Question: Why couldn't [this failure] have been detected before start?

DG - You mean the leak? Because we had no pressure in the preburner. As the p
reburner pressure increased, the leak went back this way. We did a leak check b
efore the test and it did not leak, but during the test [firing] it leaked.

Question: Ooes the check valve prevent the flow from going in the reverse direc
tion?

DG - Yeah. It allows the helium to flow this way, but no flow the opposite way

Question: And then in post-test is the flow [check-out for the check vbalves] d
one every test.

OG - No we don't do it for every test, but we had a problem so we looked at it.

Page 4
thing after we replaced the check and we then looked at the MCC trace.

Response: It says there [on the anomaly summary] on the action item that it did
replace the OPB purge line [check valve] .

DG - I think these were back to back tests and this was whenever we started 100
king at the traces to see which one it is. This one [post-test review] says its

an OPB purge [check valve failure], but I don't believe it, I think its MCC [ch
eck valve failure].

I said something about PIOs, are you familiar with PIOs? MSIOs?

Response: Yes, PIOS basically for CADs are 1 to 301 and anything greater is fac
ility.

DG - MSIOs are CADs. Are another way of calling a CADs PIO except its [a] flig
ht orientation. We used to, we recently fixed it, on flight data all we have is

CADs, we have no facility measurements, so everything under 300 we had, but we
couldn't use PIOs we had MSIOs, which are E41P{its engine number}0270. Recently

we switched that over, so now we do have PIOs on flight data also, so you can j
ust work with PIOs, instead of MSIOs.

Questions: 00 the data files now contain MSIOs?

DG - Yes, they contain both of them so you can use either one. I think its on
the header on the file, which cross references the PIO and the MSIO to the same
whatever in the database.

Response: I know they have the MSFC format to work with now. And it seems to h
ave more header information and I remember there was an extra column there and I
couldn't remember exactly what it was telling me, but maybe it was the MSIOs.

DG - Yeah, it was not all flights, it's the last flight and the FRF that have t
hat {PIO information] in it, but everything before you have to use MSIOs.

Response: OK, so if you were looking at the test data file, you wouldn't find t
he MSIOs in the header?

DG - You would. It would be assumed it was engine 1 MSIO for that PIO ground t
est. But you can [use] PIOs, [so] why waste [time using] MSIOs.

Questions: The oxidizer preburner purge line is between the MCC and OPB right?

DG - How this works ••• This is the PCA [pneumatic control assembly] on the eng
ine. [It can do the following control functions] it can turn all the servo valv
e and pressure operator valves for the pneumatic assembly and it bolts along the
side of the engine. Bring helium in here and the if we were going to purge the
OPB or FPB and we do this after shutdown, like at shutdown plus so many seconds
we turn on the purge. And we have helium here and it runs over to this shutdow

n purge solenoid valve and comes up to the valve and stops. And then whenever w
e energize this solenoid, it allows it to go in~the-in and out-the-out and it co
mes down here to PAV4 and PAV5 and it goes in the c-port which is the control po
rt. And it allows this 750 psi helium to compress this spring and that allows t
he helium which comes in this way to go through in and out-the-out and to go thr
ough the check valve and out that way. So we control it this way it goes to the
control port and we flow that way.

Question: Why couldn't [this failure] have been detected before start?

DG - You mean the leak? Because we had no pressure in the preburner. As the p
reburner pressure increased, the leak went back this way. We did a leak check b
efore the test and it did not leak, but during the test [firing] it leaked.

Question: Ooes the check valve prevent the flow from going in the reverse direc
tion?

DG - Yeah. It allows the helium to flow this way, but no flow the opposite way

Question: And then in post-test is the flow [check-out for the check vbalves] d
one every test.

OG - No we don't do it for every test, but we had a problem so we looked at it.

Page 5

[End Of Tape]

DG - [Discussing the post-test information in the package]
... 50 we were green running the duct in the MFV actuator. We're doing a certifi
cation of a LOX pump which is trying to get this design of the flight time on it

so we can fly it. All this junk on there is what we were doing.

And then we have some valves and some configuration on the facility that effects
engine performance. Fuel repress flow control valve, on flight we take part of
the hydrogen flow that comes through the pump that goes through the MCC [coolan

t circuit}, that [then] goes to drive the LPFT. At its exhaust, we tap off here
and then in flight we take this and stick it back in the ET [external tank] to

pressurize the ET. We can have a flowrate here {pointing to the schematic} of 1
.3 Ibs/sec maximum or 0.2 Ibs/sec minimum. We are going to go from max to min a
t 300 seconds. And this effects the LPFT power and so it will so it will effect
the speed on the pump end, it will increase the energy to that pump. And so we

'11 see that in the data ...

Page 5

[End Of Tape]

DG - [Discussing the post-test information in the package]
... 50 we were green running the duct in the MFV actuator. We're doing a certifi
cation of a LOX pump which is trying to get this design of the flight time on it

so we can fly it. All this junk on there is what we were doing.

And then we have some valves and some configuration on the facility that effects
engine performance. Fuel repress flow control valve, on flight we take part of
the hydrogen flow that comes through the pump that goes through the MCC [coolan

t circuit}, that [then] goes to drive the LPFT. At its exhaust, we tap off here
and then in flight we take this and stick it back in the ET [external tank] to

pressurize the ET. We can have a flowrate here {pointing to the schematic} of 1
.3 Ibs/sec maximum or 0.2 Ibs/sec minimum. We are going to go from max to min a
t 300 seconds. And this effects the LPFT power and so it will so it will effect
the speed on the pump end, it will increase the energy to that pump. And so we

'11 see that in the data ...

Page 1

User Interfaces with Erik Sander

4/30/92

Disclaimer: It may look like direct quotes, but it's not -
exactly.

(tape: 000)

Erik: On the output, I would like to see it broken up into three
categories. The first would be what I, the system, consider an
anomaly. The second is what I consider instrumentation.

Q: Bad instrumentation anomaly?

A: No, just bad instrumentation. You can call it instrumentation
anomaly, whatever. I've seen an event, I've determined it's not
in the engine it's just a piece of instrumentation that's gone
south on us.

And the last is what I call observations. They're real phenomena
going on in the engine but it's something maybe we've seen in the
past or something like everything reacting to a slow start. That
would be under observations. My turbine temps come up slow because
I have a slow start. My lox pump speed comes up slow because of
my turbine temps. That's under observations. We have a lot of
those.

You'll find that as we go through these tests, ... you get very few
real anom. Maybe one or two a test. In terms of observations, you
can get 20 per test. In our mind we quickly delineate what's an
observation -what's an anomaly based mostly on history. We've seen
this before ... analyzed it ... figured it out ... not a problem
with the engine therefore it's an observation. A lot of times in
the data review we'll point those out. That's one of the first
things I'd like to see on the user interface (UI).

Q: How do you like to see that ... do want to see three boxes?
••• Three buttons in case you see those things you can click on
them?

A: No, I'd like to see one button because I want one block that
says, "Here's our observations."

Q: One button for observations, one button for

A: No, one button for all three of them ... one block. I'd like
to see them ordered within that block. The top would be anomalies,
the second would be observations, the third would be
instrumentation. For instance, if I have two anomalies in a test
•.. I want one big box on the screen and the first two lines being,
"'Here's anomaly #1, here'S anomaly 12."

Q: ••• Kind of like her (present user interface's) observations
screens.

A: Yes.

Q: Up at the top? You like that?

A: For ex., lets use this test right here (683) ... it's (the UI)
thinking - could you give us something that tells us it's thinking?
••• (choosing another test that has postulates) ... Click on the
box, that's not bad ... This is the kind of thing I'm talking
about.

Q: You like that.

A: I like the box that says, "Here's what I picked out.

Q: It seems that if you have three like this right next to each

Page 1

User Interfaces with Erik Sander

4/30/92

Disclaimer: It may look like direct quotes, but it's not -
exactly.

(tape: 000)

Erik: On the output, I would like to see it broken up into three
categories. The first would be what I, the system, consider an
anomaly. The second is what I consider instrumentation.

Q: Bad instrumentation anomaly?

A: No, just bad instrumentation. You can call it instrumentation
anomaly, whatever. I've seen an event, I've determined it's not
in the engine it's just a piece of instrumentation that's gone
south on us.

And the last is what I call observations. They're real phenomena
going on in the engine but it's something maybe we've seen in the
past or something like everything reacting to a slow start. That
would be under observations. My turbine temps come up slow because
I have a slow start. My lox pump speed comes up slow because of
my turbine temps. That's under observations. We have a lot of
those.

You'll find that as we go through these tests, ... you get very few
real anom. Maybe one or two a test. In terms of observations, you
can get 20 per test. In our mind we quickly delineate what's an
observation -what's an anomaly based mostly on history. We've seen
this before ... analyzed it ... figured it out ... not a problem
with the engine therefore it's an observation. A lot of times in
the data review we'll point those out. That's one of the first
things I'd like to see on the user interface (UI).

Q: How do you like to see that ... do want to see three boxes?
••• Three buttons in case you see those things you can click on
them?

A: No, I'd like to see one button because I want one block that
says, "Here's our observations."

Q: One button for observations, one button for

A: No, one button for all three of them ... one block. I'd like
to see them ordered within that block. The top would be anomalies,
the second would be observations, the third would be
instrumentation. For instance, if I have two anomalies in a test
•.. I want one big box on the screen and the first two lines being,
"'Here's anomaly #1, here'S anomaly 12."

Q: ••• Kind of like her (present user interface's) observations
screens.

A: Yes.

Q: Up at the top? You like that?

A: For ex., lets use this test right here (683) ... it's (the UI)
thinking - could you give us something that tells us it's thinking?
••• (choosing another test that has postulates) ... Click on the
box, that's not bad ... This is the kind of thing I'm talking
about.

Q: You like that.

A: I like the box that says, "Here's what I picked out.

Q: It seems that if you have three like this right next to each

Page 2

other, that you would know immediately to go to the one and scroll
up or down.

A: The problem with that is that it cuts it down. The other thing
I want is wrap-around.

Q: Would you like some kind of indication saying what's an anomaly
••• ?

A: Yes, write "A" for anomaly. PUt the first two anomalies up ...
anomaly, anomaly then "0" for observation, "I" for instrumentation.

Q: What about a break between - like a line between areas ...

A: That's fine. Anything like that just as long as I know what's
declared an anomaly, what's declared an observation, what's
declared instrumentation. And I do want them all, if I can ... I
want to do as little scrolling as possible. I want it put up there
and I go, "oh, OK", because sometimes I'll look at one and relate
it to another.

You could call it "double checking." YOu could have an anomaly
here but here's an observation that's feeding it.

Q: But you have an explanation of that. You don't want it to just
sit there and say, "we have a slow start.", you want it to say, "we
have a slow start because of this and this and it's confirmed with
this and this and this."

A: That's right. I want as much explanation as possible as to why
it came to that conclusion, without getting ridiculous. What I
want it to give me is, "Here's what I think, here's the parameters
I looked at, and here's why I think that thing." If there's some
histories behind it then here's the histories.

Q: You don't expect though that the bad instrumentation and
observations and the actual engine anomalies start to be able to
confirm one another.

A: No. They shouldn't I just want to make sure that the
program isn't feeding into itself - that it says, "I've got this
anomaly based on this, this and this" and later on I see a piece
of instrumentation that's bad, that it's using something like that.

Q: What do you think about .•. how do I get back?

A: ANother point. There's several things that you've got to close
this thing to get back to this one to get around to that one. I
would like it so that you can get around to the different sections
as quickly as possible without going through a bunch of closes.
In other words, a network instead of a hierarchal type of thing.

Q: SO right now we should be able to click on this back here and
bring it up.

A: Yes. This guys up front and I want to go over here and ... just
click on it ... I'd rather just click on that and keep this one up
in the background ... keep the close button in case you want to
lose it.

I'd like a screen like this ... to be pretty sizable.

Q: If you want the idea that you can click on it, click on this,
you can't make the screen too big, but it can be bigger.

A: OK. Titles up here would be nice because then you can see
which screen is what you could increase the size out here and
leave the titles up here so ... you can see the titles and
bounce them on top

Q: The only problem is that if you bring this one on top .,.

A: Change the sizes ... if you can do it.

Page 2

other, that you would know immediately to go to the one and scroll
up or down.

A: The problem with that is that it cuts it down. The other thing
I want is wrap-around.

Q: Would you like some kind of indication saying what's an anomaly
••• ?

A: Yes, write "A" for anomaly. PUt the first two anomalies up ...
anomaly, anomaly then "0" for observation, "I" for instrumentation.

Q: What about a break between - like a line between areas ...

A: That's fine. Anything like that just as long as I know what's
declared an anomaly, what's declared an observation, what's
declared instrumentation. And I do want them all, if I can ... I
want to do as little scrolling as possible. I want it put up there
and I go, "oh, OK", because sometimes I'll look at one and relate
it to another.

You could call it "double checking." YOu could have an anomaly
here but here's an observation that's feeding it.

Q: But you have an explanation of that. You don't want it to just
sit there and say, "we have a slow start.", you want it to say, "we
have a slow start because of this and this and it's confirmed with
this and this and this."

A: That's right. I want as much explanation as possible as to why
it came to that conclusion, without getting ridiculous. What I
want it to give me is, "Here's what I think, here's the parameters
I looked at, and here's why I think that thing." If there's some
histories behind it then here's the histories.

Q: You don't expect though that the bad instrumentation and
observations and the actual engine anomalies start to be able to
confirm one another.

A: No. They shouldn't I just want to make sure that the
program isn't feeding into itself - that it says, "I've got this
anomaly based on this, this and this" and later on I see a piece
of instrumentation that's bad, that it's using something like that.

Q: What do you think about .•. how do I get back?

A: ANother point. There's several things that you've got to close
this thing to get back to this one to get around to that one. I
would like it so that you can get around to the different sections
as quickly as possible without going through a bunch of closes.
In other words, a network instead of a hierarchal type of thing.

Q: SO right now we should be able to click on this back here and
bring it up.

A: Yes. This guys up front and I want to go over here and ... just
click on it ... I'd rather just click on that and keep this one up
in the background ... keep the close button in case you want to
lose it.

I'd like a screen like this ... to be pretty sizable.

Q: If you want the idea that you can click on it, click on this,
you can't make the screen too big, but it can be bigger.

A: OK. Titles up here would be nice because then you can see
which screen is what you could increase the size out here and
leave the titles up here so ... you can see the titles and
bounce them on top

Q: The only problem is that if you bring this one on top .,.

A: Change the sizes ... if you can do it.

· s10: Page 3

Q: ... could we prioritize that?

A: yes, give it lowest priority.

Q: Can you take it where you would click on an icon ... where you
doub~e c~ick to bring it up ... to go back ... just click it.

A: That's fine. All that stuff is lowest priority. The
highest priority to me is quickly seeing everything this thing has
to tell me. Probably the second highest is to bounce around w/o
closing three screens to get to another one.

Q: Now, if we go back to here (main 'ds' screen) ." What about
this? ... Do you like the screen coming up so there's something
anomalous it splits it per ... LRU.

A: Yes, but you'll have to have something says 'SYSTEM' or
something like that. Right now, this is an intermediate step
because anything wrong is going to be in this box If anything,
take off the words, ... we've dealt with the HPOTP, LPOTP (to know
where they are) ... again it's a low priority.

(Tape: 100)

Q: What about this (losing titles across the top as scrolling
down) I thought it was a problem ... however it only goes to this
one (the latest test received).

A: I'd rather ... if it gave me an extra test lose it, but it
doesn't do anything extra for me give me more room to see
tests ... , All this is wasted area to me. it looks nice, but I'd
rather be able to see 4-5 more tests at a given time.

Q: I almost wonder though, you see the way this goes across to
tell me it's complete, that's only for your current test. So
that's all you need to know and everything else is completed. So,
could we have a window which just shows a list of tests.

A: You could put down test,test, test, test, something like this.

Q: Maybe a pulldown menu which lists all the tests. Or keep this
test line just like it is, and then put a bar there, ... a separate
menu, and then put all the tests there.

A: How about above the bar, put any tests that don't have checks
in all the boxes. So you know whats running or what isn't complete
or what you can't run right off the bat.

What I'd like to see is all the tests ordered in terms of ...
here'S all the 'A1' tests, here's all the 'B1' tests, here's all
the 'A2' tests.

Q: How about a button: 'A1', 'B1', 'A2' and you just click on it
and it gives you a popup or pulldown menu with all the tests
listed.

A: That's fine, because then we're searching for an A1 test and
we're plowing through a bunch of these.

Q: How important is the option of not actually going through the
list an searching, but (instead) typing in what you want.

(tape: 125)

A: Either one. As long as I've got a list telling me what's
available Have it pull up a list and put it numerically, 625,
624, that way it's easy to find.

Q: Reverse order?

A: Yes, with most current first a box A1, B1, A2 , TTB.

Q: You want to get to the plot package easily.

· s10: Page 3

Q: ... could we prioritize that?

A: yes, give it lowest priority.

Q: Can you take it where you would click on an icon ... where you
doub~e c~ick to bring it up ... to go back ... just click it.

A: That's fine. All that stuff is lowest priority. The
highest priority to me is quickly seeing everything this thing has
to tell me. Probably the second highest is to bounce around w/o
closing three screens to get to another one.

Q: Now, if we go back to here (main 'ds' screen) ." What about
this? ... Do you like the screen coming up so there's something
anomalous it splits it per ... LRU.

A: Yes, but you'll have to have something says 'SYSTEM' or
something like that. Right now, this is an intermediate step
because anything wrong is going to be in this box If anything,
take off the words, ... we've dealt with the HPOTP, LPOTP (to know
where they are) ... again it's a low priority.

(Tape: 100)

Q: What about this (losing titles across the top as scrolling
down) I thought it was a problem ... however it only goes to this
one (the latest test received).

A: I'd rather ... if it gave me an extra test lose it, but it
doesn't do anything extra for me give me more room to see
tests ... , All this is wasted area to me. it looks nice, but I'd
rather be able to see 4-5 more tests at a given time.

Q: I almost wonder though, you see the way this goes across to
tell me it's complete, that's only for your current test. So
that's all you need to know and everything else is completed. So,
could we have a window which just shows a list of tests.

A: You could put down test,test, test, test, something like this.

Q: Maybe a pulldown menu which lists all the tests. Or keep this
test line just like it is, and then put a bar there, ... a separate
menu, and then put all the tests there.

A: How about above the bar, put any tests that don't have checks
in all the boxes. So you know whats running or what isn't complete
or what you can't run right off the bat.

What I'd like to see is all the tests ordered in terms of ...
here'S all the 'A1' tests, here's all the 'B1' tests, here's all
the 'A2' tests.

Q: How about a button: 'A1', 'B1', 'A2' and you just click on it
and it gives you a popup or pulldown menu with all the tests
listed.

A: That's fine, because then we're searching for an A1 test and
we're plowing through a bunch of these.

Q: How important is the option of not actually going through the
list an searching, but (instead) typing in what you want.

(tape: 125)

A: Either one. As long as I've got a list telling me what's
available Have it pull up a list and put it numerically, 625,
624, that way it's easy to find.

Q: Reverse order?

A: Yes, with most current first a box A1, B1, A2 , TTB.

Q: You want to get to the plot package easily.

0: Page 4

A: Yes.

Q: Do you want it to be a part of this screen, or to be on a third
button pulldown, like this middle button which comes up with
certain things. Do you want the plot package under here (middle
button) or under "options" (on 'ds' main window)?

A: put it on the options menu. If you can put the plot
package there. Put access to databases; what I understood was
that you could run everything from this screen once it's done

I envision that one day I could sit at my desk and be able to run
everything from this program. That's why I want plot, databases,
history bases whatever.

Q: Is it set up so that the person in the middle of the night can
actually enter the unit numbers? How are we going to do that.
How are we going to get the information we need? Right now we have
to run 'new_data' to get that info in.

A: That's probably how it's going to have to be for a while. We
don't have any fast way to do that. . .. It is automated in one
system, 'TRACER', it's a Rocketdyne system, but we don't have
access to it.

Q: Right, and I got the impression yesterday from talking to Mark
Neely, that that's just a hard core (??) tracking system so they
don't update it immediately, and if they don't update it
immediately, or before the test is ran, it doesn't help us.

A: We can get Boeing people to do that.

Q: Do you want (new_data) to be separate?

A: Yes. . .. bring up the screen, enter the data, hit 'go' and
you're done With that, we ought to have a check so that when
they hit go, it tells them it's going.

Q: Do you want a screen to stay up and say, "Loading Data", and
when it's done, say, "Finished", in case there's a problem, then
they'll have to restart it.

A: Yes. Or have it tell us first thing in the morning that there
was a problem, or whatever.

Q: Do we want them to be able to enter multiple tests?

A: Yes. What I want is, you can enter these things, hit the go
button and then you can do that connectively or whatever, you
can't do two test now at the same time from what I understand
anyway, you wait for one to finish then you kick off the other one .
•.. I would like to enter the info for the two of them and that way
when it finishes on the first one you can kick off the other one.
And then another screen which says so much completed or whatever
••. pretty much what you have here.

Q: This stuff you need under new data (first 4-6 ? columns of main
'ds' screen) this (last 1-2 columns) belongs under this ('ds').

A: The only thing I care about on this screen is the end block.
I assume if I have a check there, all these other ones are done.
This is nifty since it tells me where we are.

Q: But this stuff is dbload stuff •.. this stuff is for the
diagnostic system, so leave this and maybe split or something like
that. Like you said, you don't care, if you got the care, you've
got that.

A: When you get a system you're going to have to replace these
boxes with ones that say system.

If we get into this (selecting an LRU) I like the buttons that have
all the PIDS on them What I would like is the option to click
on mUltiple PlDS for plotting.

0: Page 4

A: Yes.

Q: Do you want it to be a part of this screen, or to be on a third
button pulldown, like this middle button which comes up with
certain things. Do you want the plot package under here (middle
button) or under "options" (on 'ds' main window)?

A: put it on the options menu. If you can put the plot
package there. Put access to databases; what I understood was
that you could run everything from this screen once it's done

I envision that one day I could sit at my desk and be able to run
everything from this program. That's why I want plot, databases,
history bases whatever.

Q: Is it set up so that the person in the middle of the night can
actually enter the unit numbers? How are we going to do that.
How are we going to get the information we need? Right now we have
to run 'new_data' to get that info in.

A: That's probably how it's going to have to be for a while. We
don't have any fast way to do that. . .. It is automated in one
system, 'TRACER', it's a Rocketdyne system, but we don't have
access to it.

Q: Right, and I got the impression yesterday from talking to Mark
Neely, that that's just a hard core (??) tracking system so they
don't update it immediately, and if they don't update it
immediately, or before the test is ran, it doesn't help us.

A: We can get Boeing people to do that.

Q: Do you want (new_data) to be separate?

A: Yes. . .. bring up the screen, enter the data, hit 'go' and
you're done With that, we ought to have a check so that when
they hit go, it tells them it's going.

Q: Do you want a screen to stay up and say, "Loading Data", and
when it's done, say, "Finished", in case there's a problem, then
they'll have to restart it.

A: Yes. Or have it tell us first thing in the morning that there
was a problem, or whatever.

Q: Do we want them to be able to enter multiple tests?

A: Yes. What I want is, you can enter these things, hit the go
button and then you can do that connectively or whatever, you
can't do two test now at the same time from what I understand
anyway, you wait for one to finish then you kick off the other one .
•.. I would like to enter the info for the two of them and that way
when it finishes on the first one you can kick off the other one.
And then another screen which says so much completed or whatever
••. pretty much what you have here.

Q: This stuff you need under new data (first 4-6 ? columns of main
'ds' screen) this (last 1-2 columns) belongs under this ('ds').

A: The only thing I care about on this screen is the end block.
I assume if I have a check there, all these other ones are done.
This is nifty since it tells me where we are.

Q: But this stuff is dbload stuff •.. this stuff is for the
diagnostic system, so leave this and maybe split or something like
that. Like you said, you don't care, if you got the care, you've
got that.

A: When you get a system you're going to have to replace these
boxes with ones that say system.

If we get into this (selecting an LRU) I like the buttons that have
all the PIDS on them What I would like is the option to click
on mUltiple PlDS for plotting.

-slO: Page 5

Q: but if you scroll 'down (the plot screens), you get the other
ones that are important ...

A: that's for an observation If I double click on that, then
bring up that one PID, if not I want the ability to go click,
click, click and the last time, I double click.

Q: Like a 'go' button.

A: No, it's just that last one I want, I double click on. If I
just want 234, I double click. If I want 233 and 234 I go click,
double-click. Double clicking just means " I'm done putting in
data".

Q: If MOTIF won't allow clicking/double-clicking objects to
select, could you make a go button, and click on that.

A: That WOUld. be second choice though •..• the other thing is
that we'll plugged into PV-Wave or some plotting package so I could
go off and plot on that. But this is convenient because here's my
observations, here's my picture, while I've got the observations
up there I can look at what we're talking about.

Q: I've heard that we want hard copy plots.

A: Yes.

Q: directly from it.

A: Yes. If I go in here and click on that, whatever and I find
exactly whatever it is I want, ••. I want to be able to go 'clunk'
and get a hard copy.

(tape: 220)

Q: ... you looking for one time period to plot all the PIDS
against?

A: I talked about this with Pam. She basically set this up from
some time scale 0 to whatever. I want the ability, and I think she
did it here, .•. If I rescale this from there to there, and I
decide this is the area I really want to look at, I want to be able
to just hit the button and globally rescale the whole thing, so
that any plot I look at from now on will only be in that time
frame.

That's important to us because what we'll do is go in and say, "I
wonder what the heck happened here?", and we'll want to plot data
from this time point to this time point. The way her system was
set up, I'll plot that time frame of data, but when I go up to
another plot, to maybe investigate what's causing this, I've got
that original time scale again and I've got to go in there and
shift my time scale. That's a very important thing to us because
it saves a lot of time.

Q: Do you want that global rescale if you had a plot?

A: No, give me the plots the way they are now •... She set it up
so that if you want it from here to here, I hit global rescale.

Q: SHe set it up to global rescale that you have to go and type
it in. Is that OK.

A: I've got to tell the machine at some point I'm looking at this
time frame to this time frame.

Q: But it seems you want to go in and click hit that, and then it
does it?

A: Right.

Q: That would be your druthers.

-slO: Page 5

Q: but if you scroll 'down (the plot screens), you get the other
ones that are important ...

A: that's for an observation If I double click on that, then
bring up that one PID, if not I want the ability to go click,
click, click and the last time, I double click.

Q: Like a 'go' button.

A: No, it's just that last one I want, I double click on. If I
just want 234, I double click. If I want 233 and 234 I go click,
double-click. Double clicking just means " I'm done putting in
data".

Q: If MOTIF won't allow clicking/double-clicking objects to
select, could you make a go button, and click on that.

A: That WOUld. be second choice though •..• the other thing is
that we'll plugged into PV-Wave or some plotting package so I could
go off and plot on that. But this is convenient because here's my
observations, here's my picture, while I've got the observations
up there I can look at what we're talking about.

Q: I've heard that we want hard copy plots.

A: Yes.

Q: directly from it.

A: Yes. If I go in here and click on that, whatever and I find
exactly whatever it is I want, ••. I want to be able to go 'clunk'
and get a hard copy.

(tape: 220)

Q: ... you looking for one time period to plot all the PIDS
against?

A: I talked about this with Pam. She basically set this up from
some time scale 0 to whatever. I want the ability, and I think she
did it here, .•. If I rescale this from there to there, and I
decide this is the area I really want to look at, I want to be able
to just hit the button and globally rescale the whole thing, so
that any plot I look at from now on will only be in that time
frame.

That's important to us because what we'll do is go in and say, "I
wonder what the heck happened here?", and we'll want to plot data
from this time point to this time point. The way her system was
set up, I'll plot that time frame of data, but when I go up to
another plot, to maybe investigate what's causing this, I've got
that original time scale again and I've got to go in there and
shift my time scale. That's a very important thing to us because
it saves a lot of time.

Q: Do you want that global rescale if you had a plot?

A: No, give me the plots the way they are now •... She set it up
so that if you want it from here to here, I hit global rescale.

Q: SHe set it up to global rescale that you have to go and type
it in. Is that OK.

A: I've got to tell the machine at some point I'm looking at this
time frame to this time frame.

Q: But it seems you want to go in and click hit that, and then it
does it?

A: Right.

Q: That would be your druthers.

0: Page 6

A: Right.

Q: Right now it's set up that you say, "I want global rescale",
and I want it from ... you have to start filling out this seconds.

then you've got to turn it on ... then close .•. and replot.

A: I would rather just go, "look here and here."

It's easier to me if I could go click, click. NOw in that,
how about an option, - I've got several buttons when I do that.
The default is I want exactly the times that I specified with that
pointer, but then give me an option to give me the times to the
nearest second or the nearest five seconds, the reason I say that
is if you do this, you may have 100.374 (from the pointer) to
260.32

Q: looking at this plot here, you can't really pick up seconds
anyway, so do you want it to go to the nearest second
(tape: 262)

A: You look at a plot like this there are some anomalies in
something like a ten second time frame, I want to look at 10.5 or
10.3.

But on something like this, I'm just trying to get a rough estimate
from there to there in terms of time. So have it round to the
nearest second or five seconds or whatever.

Q: So perhaps on a full plot, you round off to a second

A: yes

Q: And as you start zeroing in you start wanting to go to tenths
of seconds.

A: Exactly. So have the default that if I click here and here it
rounds off, for me, to the nearest second. But then have a button
out here that says I'll actually want those particular times
because when I get to the small ones, it's not going to round off
to the nearest second.

Q: What's considered "small". A time scale under what?

A: Let me worry about that by just putting up the button that says
"round to the nearest second? Yes or no?"

Q: OK, it's click, click, pop a button, round second, round what?
and maybe you'd have a button under "round?".

A: I would put it as "Don't round" because then as the default
it's going to round to the nearest second. That's what I'm usually
going to want to do. That way, when I exactly want these points,
I just hit that button and it doesn't round.

(tape: 279)

Q: I'm with you. So you click, click, automatically pop up a
button ...

A: Right, I go clunk, clunk and a button pops up and it says,
"Don't Round to the nearest second?". Now if I leave that alone
and I hit plot, then it goes, "Erik picked 100.34 so therefore I'm
going to round to 100." If I hit that button, it says, " Erik
picked 100.34 so I'm going to 100.34."

Q: Do you always want it rounded down or rounded up ... ?

A: Closest second.

Now, while I'm on that, and this is a high priority one, don't give
me goofy scales.

Q: What do you mean by "goofy scales"?

0: Page 6

A: Right.

Q: Right now it's set up that you say, "I want global rescale",
and I want it from ... you have to start filling out this seconds.

then you've got to turn it on ... then close .•. and replot.

A: I would rather just go, "look here and here."

It's easier to me if I could go click, click. NOw in that,
how about an option, - I've got several buttons when I do that.
The default is I want exactly the times that I specified with that
pointer, but then give me an option to give me the times to the
nearest second or the nearest five seconds, the reason I say that
is if you do this, you may have 100.374 (from the pointer) to
260.32

Q: looking at this plot here, you can't really pick up seconds
anyway, so do you want it to go to the nearest second
(tape: 262)

A: You look at a plot like this there are some anomalies in
something like a ten second time frame, I want to look at 10.5 or
10.3.

But on something like this, I'm just trying to get a rough estimate
from there to there in terms of time. So have it round to the
nearest second or five seconds or whatever.

Q: So perhaps on a full plot, you round off to a second

A: yes

Q: And as you start zeroing in you start wanting to go to tenths
of seconds.

A: Exactly. So have the default that if I click here and here it
rounds off, for me, to the nearest second. But then have a button
out here that says I'll actually want those particular times
because when I get to the small ones, it's not going to round off
to the nearest second.

Q: What's considered "small". A time scale under what?

A: Let me worry about that by just putting up the button that says
"round to the nearest second? Yes or no?"

Q: OK, it's click, click, pop a button, round second, round what?
and maybe you'd have a button under "round?".

A: I would put it as "Don't round" because then as the default
it's going to round to the nearest second. That's what I'm usually
going to want to do. That way, when I exactly want these points,
I just hit that button and it doesn't round.

(tape: 279)

Q: I'm with you. So you click, click, automatically pop up a
button ...

A: Right, I go clunk, clunk and a button pops up and it says,
"Don't Round to the nearest second?". Now if I leave that alone
and I hit plot, then it goes, "Erik picked 100.34 so therefore I'm
going to round to 100." If I hit that button, it says, " Erik
picked 100.34 so I'm going to 100.34."

Q: Do you always want it rounded down or rounded up ... ?

A: Closest second.

Now, while I'm on that, and this is a high priority one, don't give
me goofy scales.

Q: What do you mean by "goofy scales"?

-s10: Page 7

A: Goofy scales is like 17 seconds per tick ... Some programs say
I'm going to have 10 tick marks per plot and all it does is

take the endpoints and divide by ten and I get 5.37 sees. per tick.
That makes life tough for us. Invariably what happens is you're
looking at a plot and you start looking "I wonder where this point
is?", and you go down here and what it looks like is 4/10 ths of
the way from there to there. That's easy to do an a second but
impossible to do on 5.37 seconds.

Q: SO it should be multiples of 5, 10 .. ?

A: The point is to vary the number of tick marks on the plot so
that it gives me a reasonable scale on the X and the Y axis. The
Y has seen the same thing. It'll start at 1137.63 and it'll end
up at 1547.64. You got ten tick marks in between and you're
sitting there with your calculator trying to figure out how level
this thing is.

Q: Is it all right that you have more graph here than data. So
instead of this scale being 600 could it go to like 650 even though
it (data) stops at 600?

A: I'd rather not and the reason is typically what I've been
seeing is you get the same size graph and you just compress you're
data more. I'd rather you just change the number of tick marks to
get something that's reasonable. In fact, .•. I've seen a lot of
programs that instead of rounding off to the nearest second rounded
off to the nearest two seconds to get a reasonable # tick marks and
reasonable division between ticks.

Q: That may be something we just end up playing with and then send
it to you if you're happy.

A: That's fine. If you want to round off to the nearest two
seconds, that's fine, or three seconds, whatever. Just give me a
reasonable number of tick marks. That's anywhere between 8 an 15.
Put the tick marks so you get a reasonable interval between the
tick marks and that's something I can divide by easily.

Q: Would it help if we put grids on it or would that make it too
busy.

A: A lot of plots that helps. You can do major grids if you want.
Again that could be something we can play with. It should be easy
for you to change. I would start out with major grids.

Q: How about labels? Size?

A: I need them bigger than that.

Q: How about if that means a smaller graph?

A: That's fine.. The reason for having the bigger labels is that
we have to turn these into view graphs that management has to see
on the board.

Q: How small of a graph is acceptable on the screen.

A: On a typical paper you want to fill up most of the paper with
the graph. By the way, we like rectangular graphs. It's a
cultural thing Put the labels on top because it's the
easiest way to show me where we are. I don't care about logos on
the plots. I don't care about the time the plot was made; I don't
care about any of that stuff. If you want, you can throw the date
the plot was made down here.

Q: What about the test number, not .at the bottom. You want it at
the top?

A: I like the way the PE does it right now, where for a single
test, it puts it at the bottom left. If it's a multiple test, .•.
puts the test number and then the PID.

Q: Well, if ycu have a key over here, wouldn't you just put the

-s10: Page 7

A: Goofy scales is like 17 seconds per tick ... Some programs say
I'm going to have 10 tick marks per plot and all it does is

take the endpoints and divide by ten and I get 5.37 sees. per tick.
That makes life tough for us. Invariably what happens is you're
looking at a plot and you start looking "I wonder where this point
is?", and you go down here and what it looks like is 4/10 ths of
the way from there to there. That's easy to do an a second but
impossible to do on 5.37 seconds.

Q: SO it should be multiples of 5, 10 .. ?

A: The point is to vary the number of tick marks on the plot so
that it gives me a reasonable scale on the X and the Y axis. The
Y has seen the same thing. It'll start at 1137.63 and it'll end
up at 1547.64. You got ten tick marks in between and you're
sitting there with your calculator trying to figure out how level
this thing is.

Q: Is it all right that you have more graph here than data. So
instead of this scale being 600 could it go to like 650 even though
it (data) stops at 600?

A: I'd rather not and the reason is typically what I've been
seeing is you get the same size graph and you just compress you're
data more. I'd rather you just change the number of tick marks to
get something that's reasonable. In fact, .•. I've seen a lot of
programs that instead of rounding off to the nearest second rounded
off to the nearest two seconds to get a reasonable # tick marks and
reasonable division between ticks.

Q: That may be something we just end up playing with and then send
it to you if you're happy.

A: That's fine. If you want to round off to the nearest two
seconds, that's fine, or three seconds, whatever. Just give me a
reasonable number of tick marks. That's anywhere between 8 an 15.
Put the tick marks so you get a reasonable interval between the
tick marks and that's something I can divide by easily.

Q: Would it help if we put grids on it or would that make it too
busy.

A: A lot of plots that helps. You can do major grids if you want.
Again that could be something we can play with. It should be easy
for you to change. I would start out with major grids.

Q: How about labels? Size?

A: I need them bigger than that.

Q: How about if that means a smaller graph?

A: That's fine.. The reason for having the bigger labels is that
we have to turn these into view graphs that management has to see
on the board.

Q: How small of a graph is acceptable on the screen.

A: On a typical paper you want to fill up most of the paper with
the graph. By the way, we like rectangular graphs. It's a
cultural thing Put the labels on top because it's the
easiest way to show me where we are. I don't care about logos on
the plots. I don't care about the time the plot was made; I don't
care about any of that stuff. If you want, you can throw the date
the plot was made down here.

Q: What about the test number, not .at the bottom. You want it at
the top?

A: I like the way the PE does it right now, where for a single
test, it puts it at the bottom left. If it's a multiple test, .•.
puts the test number and then the PID.

Q: Well, if ycu have a key over here, wouldn't you just put the

Page 8

PID and test separate?

A: ! would rather have the rectangularness and I would lose this
area over here.

Q: You would put it at the top.

A: Yes.

Q: But you would still have the line type?

A: Yes. ... If I could have dashes and lines and stuff like that

Q: ANd different colors?

A: Yes.

Q: That would only help on here (screen) but not the plots.

It wouldn't help on the plots, but you would have different line
types on the plots.

A: Yes, Give me the different colors because of analysis. You
won't be able to use it in the presentation, because even if we
have a color printer, we don't have a color copier, but it helps
a lot on analysis. I can see much better with line colors than
anything else. Give me line types if you can. Give me symbols if
you can. Lose these bars.

Q: You don't like those? Why not.

A: Because I want to see every data point.

Q: But you have a good idea if you see the error get really big
then you know you really want to see a data point. If the error
bars are about the same size, then you don't want to see it.

A: I want to see every data point. You're asking what I want.

Q: Can I have it as an option?

A: Yes, but make the default every data point.

Q: Fine, I'll compromise.

(tape: 360)

A: ... Keep in mind that if you have one spike, it won't change
your sigma that much. You can have a horrendous spike out of 50
data points ...

Q: If you have a horrendous spike you will. If you have a tiny
spike it won't.

A: To us, 20 psi on mcc pressure is horrendous.

Q: what is it's variation normally?

A: 2-3 psi .. " (much more discussion, incl. resolution. Bottom
line, full data plots with option for 1 sec/avg with error bars.)

.•• What I would do, is that whichever mode I switch to, keep it
there. So if you switch to error bars, keep that on till whenever
you switch it off again.

Q: A global thing.

A: yes. A lot of the stuff we
spread. You're only interested
so you want that globally.
you see them the same way .•..

do is really global. Like the time
in looking at this one thing now
A lot of times it's easier ... if

Identify the parameter on top - that's fine.

Page 8

PID and test separate?

A: ! would rather have the rectangularness and I would lose this
area over here.

Q: You would put it at the top.

A: Yes.

Q: But you would still have the line type?

A: Yes. ... If I could have dashes and lines and stuff like that

Q: ANd different colors?

A: Yes.

Q: That would only help on here (screen) but not the plots.

It wouldn't help on the plots, but you would have different line
types on the plots.

A: Yes, Give me the different colors because of analysis. You
won't be able to use it in the presentation, because even if we
have a color printer, we don't have a color copier, but it helps
a lot on analysis. I can see much better with line colors than
anything else. Give me line types if you can. Give me symbols if
you can. Lose these bars.

Q: You don't like those? Why not.

A: Because I want to see every data point.

Q: But you have a good idea if you see the error get really big
then you know you really want to see a data point. If the error
bars are about the same size, then you don't want to see it.

A: I want to see every data point. You're asking what I want.

Q: Can I have it as an option?

A: Yes, but make the default every data point.

Q: Fine, I'll compromise.

(tape: 360)

A: ... Keep in mind that if you have one spike, it won't change
your sigma that much. You can have a horrendous spike out of 50
data points ...

Q: If you have a horrendous spike you will. If you have a tiny
spike it won't.

A: To us, 20 psi on mcc pressure is horrendous.

Q: what is it's variation normally?

A: 2-3 psi .. " (much more discussion, incl. resolution. Bottom
line, full data plots with option for 1 sec/avg with error bars.)

.•• What I would do, is that whichever mode I switch to, keep it
there. So if you switch to error bars, keep that on till whenever
you switch it off again.

Q: A global thing.

A: yes. A lot of the stuff we
spread. You're only interested
so you want that globally.
you see them the same way .•..

do is really global. Like the time
in looking at this one thing now
A lot of times it's easier ... if

Identify the parameter on top - that's fine.

--s10: Page 9

Q: give reasonable suggestions as to what you want when there's
more than one graph. We have some limitations.

A: One thing I like is the multiscale fcn. we have now on the PEe
That means on one plot, you can build multiple scales to put
multiple data on there. e.g lox turbo temp. a pc and something
else that have vastly diff. scales on the same plot.

THe reason we use that is allows us in one plot to look at exactly
when things are changing. That's what it's really used for.

0: like this one.

A: Yes, though this one is confusing because it has too much data
on there.

(tape: 420)

0: Can you shadow things when you have more than one graph
and hold it up to the light ... can you do something similar on the
plot. Would that be reasonable? Would you ever want to see one
right behind the other?

A: That's good for analysis, the problem is when you want to
present this stuff. We'll spend a lot of time analyzing then we'll
get the final plot that says, 'heh, here's the answer", what you
want to do is punch the print button. Then you could take if off
to your boss and say, "Heh, here's the answer in one plot."

Almost anything that we look at, we want the ability to print.
with the exception of the up-front figures and schematics. ANy
data, any plots we want to look at because a lot of times you plow
through the data and you finally get to that one thing that you
say, "Oh my God, this changed and therefore caused this." You've
got it in front of you and you don't have time to get your boss to
look at the screen. You've got to get a plot, FAX it off to Calif.
something like that.

0: What happens when you have ... the option that you have a
scroll bar to view different graphs ... do you want 4 graphs at once
on a page?

A: The problem is you lose the accuracy. Maybe one graph here and
a little thing down here that tells you here's your other graphs
that it's already pulled up or whatever. You're talking about the
anomalies I assume .. click on an anom. and it says here'S a graph.

Q: How about the one where you click on several PIDS and double
click the last one. Now you have 4 pids you want to see.

A: On one graph.

0: You really want to see them on one graph.

A: Yes, we normally won't put four on unless it's something like
prestart because the scales get horrendous.

Q: The way the individual detailed graphs are being brought up are
by LRUs. Are any of these graphs, where you want multiple pids
on, across LRUs?

A: yes.

Q: How are you going to do this.

A: You're going to have to have a system block which will list all
the pids on it - not all the pids but I could give you a good defn.
of all the pids that we look at.

0: how do you want those listed? in a pulldown.

A: I like the way she's got them with the schematic.

--s10: Page 9

Q: give reasonable suggestions as to what you want when there's
more than one graph. We have some limitations.

A: One thing I like is the multiscale fcn. we have now on the PEe
That means on one plot, you can build multiple scales to put
multiple data on there. e.g lox turbo temp. a pc and something
else that have vastly diff. scales on the same plot.

THe reason we use that is allows us in one plot to look at exactly
when things are changing. That's what it's really used for.

0: like this one.

A: Yes, though this one is confusing because it has too much data
on there.

(tape: 420)

0: Can you shadow things when you have more than one graph
and hold it up to the light ... can you do something similar on the
plot. Would that be reasonable? Would you ever want to see one
right behind the other?

A: That's good for analysis, the problem is when you want to
present this stuff. We'll spend a lot of time analyzing then we'll
get the final plot that says, 'heh, here's the answer", what you
want to do is punch the print button. Then you could take if off
to your boss and say, "Heh, here's the answer in one plot."

Almost anything that we look at, we want the ability to print.
with the exception of the up-front figures and schematics. ANy
data, any plots we want to look at because a lot of times you plow
through the data and you finally get to that one thing that you
say, "Oh my God, this changed and therefore caused this." You've
got it in front of you and you don't have time to get your boss to
look at the screen. You've got to get a plot, FAX it off to Calif.
something like that.

0: What happens when you have ... the option that you have a
scroll bar to view different graphs ... do you want 4 graphs at once
on a page?

A: The problem is you lose the accuracy. Maybe one graph here and
a little thing down here that tells you here's your other graphs
that it's already pulled up or whatever. You're talking about the
anomalies I assume .. click on an anom. and it says here'S a graph.

Q: How about the one where you click on several PIDS and double
click the last one. Now you have 4 pids you want to see.

A: On one graph.

0: You really want to see them on one graph.

A: Yes, we normally won't put four on unless it's something like
prestart because the scales get horrendous.

Q: The way the individual detailed graphs are being brought up are
by LRUs. Are any of these graphs, where you want multiple pids
on, across LRUs?

A: yes.

Q: How are you going to do this.

A: You're going to have to have a system block which will list all
the pids on it - not all the pids but I could give you a good defn.
of all the pids that we look at.

0: how do you want those listed? in a pulldown.

A: I like the way she's got them with the schematic.

0: Page 10

Q: So we have to have a first level schematic with all of them up
there.

A: yes. just an engine schematic with all the pids up there.
(looking at first ds screen.)

Q: (garbled) ... huge?

A: just shrink it down. we know what the pids are and where they
are.

Many times, we'll pull up pids from over here and compare it to
pids from there. Again, I understand we're going to have a
plotting program dedicated to plotting what we want. If we can't
do it up here, just give me the option to hit that button and use
the plot program right away. I don't want to duplicate it ... on
here.

ON this one, if we could use this engine schem. format to just run
pv-wave, then do that. IF not, if you could only give me one pid
per plot, that's fine too because I still have the tool in front
of me to do multiple pids and multo scales.

Q: Coloring things all right.

A: Red = anomaly; yellow = observation;

Q: what's instrumentation

A: mauve - I don't know.

Q: She has this thing where she doesn't list some things, like
observations. Do want everything listed and forget priorities.

A: She's got some things in her observations database that say,
"these two are ok not using it for further reasoning". But
if something is determined by the system to be OK, I don't want to
know about it. I'm going to assume that anything not flagged
by the system is OK

(tape: 504)

In terms of listing things by priority, that's ok, if you get a
chance, but I wouldn't put a whole lot of effort into because
usually there are only two ore three anomalies in a test, and in
our mind we will quickly know what we consider a high priority.

I like the ability to click on an anomaly and pull up the two or
three parameters.

Q: ok. Here's one. I click on LRU and up comes the schem. - no
test number - now I'm lost. no importance to you.

A: If you have some extra room, put the test number up there.
Typically if we're going through an analysis like this, we know it.

Q: Before we were talking about pulling up several pids from
different LRUS, how about other tests?

A: Again, we need to talk about where we're going to over-run the
plot program. If you don't you're going to do a lot of work
they've already done or have plans to do.

What I would really like if for this to give me the history where
this pump has been run before. That's where I talked about options
before. ONe being database, or hardware database, being able to
access the database quickly and say I've got this fuel pump on here
and it's run on these previous tests. and tell me which tests.

(tape: 536)

Q: Do you want to see the hw unit #s that are on this test?

0: Page 10

Q: So we have to have a first level schematic with all of them up
there.

A: yes. just an engine schematic with all the pids up there.
(looking at first ds screen.)

Q: (garbled) ... huge?

A: just shrink it down. we know what the pids are and where they
are.

Many times, we'll pull up pids from over here and compare it to
pids from there. Again, I understand we're going to have a
plotting program dedicated to plotting what we want. If we can't
do it up here, just give me the option to hit that button and use
the plot program right away. I don't want to duplicate it ... on
here.

ON this one, if we could use this engine schem. format to just run
pv-wave, then do that. IF not, if you could only give me one pid
per plot, that's fine too because I still have the tool in front
of me to do multiple pids and multo scales.

Q: Coloring things all right.

A: Red = anomaly; yellow = observation;

Q: what's instrumentation

A: mauve - I don't know.

Q: She has this thing where she doesn't list some things, like
observations. Do want everything listed and forget priorities.

A: She's got some things in her observations database that say,
"these two are ok not using it for further reasoning". But
if something is determined by the system to be OK, I don't want to
know about it. I'm going to assume that anything not flagged
by the system is OK

(tape: 504)

In terms of listing things by priority, that's ok, if you get a
chance, but I wouldn't put a whole lot of effort into because
usually there are only two ore three anomalies in a test, and in
our mind we will quickly know what we consider a high priority.

I like the ability to click on an anomaly and pull up the two or
three parameters.

Q: ok. Here's one. I click on LRU and up comes the schem. - no
test number - now I'm lost. no importance to you.

A: If you have some extra room, put the test number up there.
Typically if we're going through an analysis like this, we know it.

Q: Before we were talking about pulling up several pids from
different LRUS, how about other tests?

A: Again, we need to talk about where we're going to over-run the
plot program. If you don't you're going to do a lot of work
they've already done or have plans to do.

What I would really like if for this to give me the history where
this pump has been run before. That's where I talked about options
before. ONe being database, or hardware database, being able to
access the database quickly and say I've got this fuel pump on here
and it's run on these previous tests. and tell me which tests.

(tape: 536)

Q: Do you want to see the hw unit #s that are on this test?

510: Page 11

A: Yes.
already.

and where it's run before.
We upkeep that.

We've got that database

Q: I thought you only did that for flight.

A: No. we do that for all tests. We've got that database
together. It's only a matter of getting it over to Ingres or
something and for you guys it means having an option that says I
can go off and search it and find out what previous tests I've got
and then at the same time in the options I've got aplot so I can
go off and get the plot program to pull up that test

Q: Well most often though, there's going to be that one part which
tells us which comparison tests you would normally compare to based
on (what D. Foust gave us for criteria.) The normal one you would
pick would automatically be there. If you wanted something
different, then that's what we would have to coordinate with Jeff.

Erik: When you say it'll be there, when I pull up the plots, will
it be on the plots?

June: I would imagine so.

Erik: Could I have an option to take that off?

Q: you don't want that there?

A: Sometimes I do, sometimes I don't.
want it there because I want to see how
but then I'll see a specific anomaly at
that I know wasn't on the other test.

There's a)t of times I
it compare~ with whatever,
a time zone in this test

Q: Ok. Another Global thing A show/not show option.

A: yes. using a default to show the comparison tests is a good
idea but give me the option to take it off because I see an anomaly
on this test, I know it's not there (on the other test) and
our graphs are a lot cleaner from that point on.

Again you'll have to talk to ... Jeff or Jean to make sure we're
not over-running what they're doing or have done. I just want the
ability in one place.

The thing I want to stress is ... I would like to have more working
room.

Q: Can you think of anything else.

A: I like the clicking and pointing. throw as much of that as
possible.

In terms of the plots, ... You know how you could pull up one plot,
can I have ... the ability to have another little window in here
(on the major plot.) and have a plot of something else? ... PC
or whatever from that test?

Q: Why?

A: A lot of times we're showing perturbations of the turbine
temps. The first thing that everyone asks is, "what are the power
level changes?" So you would want a little guy in there that says
what the pwr. lvl. chgs. were like.

Q: Why wouldn't that be the same thing as a double scale and r1.ot
it?

A: Because for presentation purposes ... it's clearer. Again, low
priority. If you get it fine. if not, fine.

Q: What about if the Y axis on this one was this big (about 1/2)
and you put the PC underneath it.

A: No, I've seen those & I'd rather

510: Page 11

A: Yes.
already.

and where it's run before.
We upkeep that.

We've got that database

Q: I thought you only did that for flight.

A: No. we do that for all tests. We've got that database
together. It's only a matter of getting it over to Ingres or
something and for you guys it means having an option that says I
can go off and search it and find out what previous tests I've got
and then at the same time in the options I've got aplot so I can
go off and get the plot program to pull up that test

Q: Well most often though, there's going to be that one part which
tells us which comparison tests you would normally compare to based
on (what D. Foust gave us for criteria.) The normal one you would
pick would automatically be there. If you wanted something
different, then that's what we would have to coordinate with Jeff.

Erik: When you say it'll be there, when I pull up the plots, will
it be on the plots?

June: I would imagine so.

Erik: Could I have an option to take that off?

Q: you don't want that there?

A: Sometimes I do, sometimes I don't.
want it there because I want to see how
but then I'll see a specific anomaly at
that I know wasn't on the other test.

There's a)t of times I
it compare~ with whatever,
a time zone in this test

Q: Ok. Another Global thing A show/not show option.

A: yes. using a default to show the comparison tests is a good
idea but give me the option to take it off because I see an anomaly
on this test, I know it's not there (on the other test) and
our graphs are a lot cleaner from that point on.

Again you'll have to talk to ... Jeff or Jean to make sure we're
not over-running what they're doing or have done. I just want the
ability in one place.

The thing I want to stress is ... I would like to have more working
room.

Q: Can you think of anything else.

A: I like the clicking and pointing. throw as much of that as
possible.

In terms of the plots, ... You know how you could pull up one plot,
can I have ... the ability to have another little window in here
(on the major plot.) and have a plot of something else? ... PC
or whatever from that test?

Q: Why?

A: A lot of times we're showing perturbations of the turbine
temps. The first thing that everyone asks is, "what are the power
level changes?" So you would want a little guy in there that says
what the pwr. lvl. chgs. were like.

Q: Why wouldn't that be the same thing as a double scale and r1.ot
it?

A: Because for presentation purposes ... it's clearer. Again, low
priority. If you get it fine. if not, fine.

Q: What about if the Y axis on this one was this big (about 1/2)
and you put the PC underneath it.

A: No, I've seen those & I'd rather

0: Page 12

Q: If you can't do it (with the little screen) don't do it at all.

A: Right. If you do it that way, all you do is squash the data
down.

Q: I don't think that's a pv-wave command, but I don't see why you
couldn't write that in C and write it to another viewport and open
it up.

A: Again low priority.

That's about it. Again the colors are pretty important, especially
when we're analyzing. You may not be able to print out the colors
on plots but to us they're important because sometimes the data's
right on top of each other and you're going which one that is .••
different line types will help too

Q: Different line types will help too when you pull it off.

(tape: 615)

A: on scales like this you can't tell line types apart and if you
have a little bump here, even if you have diff. line types, you
can't tell.

Q: Ok. when you press on the pid by itself, ... you want to show
the full plot 0 to cut off or whatever. HOw do you want that
defined.

A: You have to default to something. I would default from 5 to
cut.

Q: Always default from 5 to cut?

A: Yes.

Q: How are you going to want to handle ... ????

A: I guess you're going to have an option to enter the time.
We're going to always want to look at things in different time
frames, but we got to pick out something to start out with.

If we want to go to prestart, give me an option that ... allows me
to change the time frame. (thinks we have one)

Q: How about a button that say's "prestart", "shut"

A: you can do that. define start as 0-6 (sees.): default to
mainstage which will be defined five seconds from engine start to
engine cutoff; and engine cutoff is always defined in the header:
start phase is defined as 0 to 6 secs. from engine start: shutdown
you can initially define as the engine cutoff command to cutoff +
10.

Q: ten seconds.

A: yes, some things we look at a smaller range, some things 20-
30-40 seconds:

Prestart - lets go from -8000 to O. That one is the one that
varies the most. Not only do you have diff. chill times on the
diff. tests, but you're looking at diff. things in diff. time
frames but you have to choose something as a default.

Q: What I was thinking was up here we could have a buttons that
could say, "PRESTART", "START", "SHUT", "MAINSTAGE". You have to
have mainstage, ... and he'd click on that one first and then he'd
come down here and click what he wanted he wanted, and however that
was, we would default to how we plot.

A: I'd like to keep the option to enter in the manual time.

Q: We could keep the range as it is.

0: Page 12

Q: If you can't do it (with the little screen) don't do it at all.

A: Right. If you do it that way, all you do is squash the data
down.

Q: I don't think that's a pv-wave command, but I don't see why you
couldn't write that in C and write it to another viewport and open
it up.

A: Again low priority.

That's about it. Again the colors are pretty important, especially
when we're analyzing. You may not be able to print out the colors
on plots but to us they're important because sometimes the data's
right on top of each other and you're going which one that is .••
different line types will help too

Q: Different line types will help too when you pull it off.

(tape: 615)

A: on scales like this you can't tell line types apart and if you
have a little bump here, even if you have diff. line types, you
can't tell.

Q: Ok. when you press on the pid by itself, ... you want to show
the full plot 0 to cut off or whatever. HOw do you want that
defined.

A: You have to default to something. I would default from 5 to
cut.

Q: Always default from 5 to cut?

A: Yes.

Q: How are you going to want to handle ... ????

A: I guess you're going to have an option to enter the time.
We're going to always want to look at things in different time
frames, but we got to pick out something to start out with.

If we want to go to prestart, give me an option that ... allows me
to change the time frame. (thinks we have one)

Q: How about a button that say's "prestart", "shut"

A: you can do that. define start as 0-6 (sees.): default to
mainstage which will be defined five seconds from engine start to
engine cutoff; and engine cutoff is always defined in the header:
start phase is defined as 0 to 6 secs. from engine start: shutdown
you can initially define as the engine cutoff command to cutoff +
10.

Q: ten seconds.

A: yes, some things we look at a smaller range, some things 20-
30-40 seconds:

Prestart - lets go from -8000 to O. That one is the one that
varies the most. Not only do you have diff. chill times on the
diff. tests, but you're looking at diff. things in diff. time
frames but you have to choose something as a default.

Q: What I was thinking was up here we could have a buttons that
could say, "PRESTART", "START", "SHUT", "MAINSTAGE". You have to
have mainstage, ... and he'd click on that one first and then he'd
come down here and click what he wanted he wanted, and however that
was, we would default to how we plot.

A: I'd like to keep the option to enter in the manual time.

Q: We could keep the range as it is.

-s10: Page 13

A: That's fine.

Q: This would be an example of the graphical reasoning explanation
that Tim thought you might want. DO you want something like that?

A: I would come out with some words like this (current display)
and then when I click on it, give me the option to pull something
~ike this up (Tim's proposed display). THe only thing is - I would
also quantify the amounts. WHen you say Fuel side turbine temp is
low - how much low? Because that could be a big thing. Low could
be just a little bit in which case it doesn't matter much. If it's
determined that it's low, it's determined that quantitatively so
give me the number.

Q: I'm looking funny because it may have determined it
quantitatively, it's (garbled) using that term qualitatively.

Erik: what does that mean.

June: that means that when the program is reasoning, it's just
saying it's low, not by how much. and then later, it reasons
whether that low, is a significant low, or insignificant low.

Erik: but if it's not a significant low, it shouldn't be printing
out there, right.

June: No, I think it still prints it out as a significant symptom,
it just doesn't see how it gets stopped. This is the leg that is
correct, this one isn't.

(Tape: 684)

Maybe what we should do is let you see it like this first, then if
you like something like this, we continue. If you don't then we
don't have to.

Erik: Ok, but I still the idea of the logic path because it allows
us to go down and say "oh this is how it got to the final answer."
and that's going to be a big thing because we're going to go back
and say, "what if I change this or change that". I've got to be
able to backtrack somehow whether it's by words or diagrams, I've
got to be able to backtrack to exactly what it reasoned to get the
final answer. In the future what I want to be able to do is change
hypotheses.

I want to be able to say, "What if the low pressure fuel pump speed
wasn't low?" - I may have thought it was bad instrumentation or
whatever, and have it recalculate the whole thing.

Q: you want to do "what-ifs?"

A: yeaahhhh •..• as a first step, all I want it to do is tell me
here's the answer I got and here's how I got it. The step beyond
that •.. is what-ifs.

(tape: 720)

June: that would be a great mechanism for what-ifs. If you had
this observation here, if you double clicked on it, you bring up
the graphs. BUt if you single clicked on it would open up or pull
down a menu for you that would have something like this graph
(Tim's idea) so you could see it and if you wanted to change it
then you could edit one of those boxes and •••

EriK: I like that.

June: Don't like it right off the bat.

Erik: I've got to have something like that because I've got to
find out how it reasons to get it's answer. Because it may realize
something I don't realize and I'll go, "Oh my God! I didn't even
know that."

-s10: Page 13

A: That's fine.

Q: This would be an example of the graphical reasoning explanation
that Tim thought you might want. DO you want something like that?

A: I would come out with some words like this (current display)
and then when I click on it, give me the option to pull something
~ike this up (Tim's proposed display). THe only thing is - I would
also quantify the amounts. WHen you say Fuel side turbine temp is
low - how much low? Because that could be a big thing. Low could
be just a little bit in which case it doesn't matter much. If it's
determined that it's low, it's determined that quantitatively so
give me the number.

Q: I'm looking funny because it may have determined it
quantitatively, it's (garbled) using that term qualitatively.

Erik: what does that mean.

June: that means that when the program is reasoning, it's just
saying it's low, not by how much. and then later, it reasons
whether that low, is a significant low, or insignificant low.

Erik: but if it's not a significant low, it shouldn't be printing
out there, right.

June: No, I think it still prints it out as a significant symptom,
it just doesn't see how it gets stopped. This is the leg that is
correct, this one isn't.

(Tape: 684)

Maybe what we should do is let you see it like this first, then if
you like something like this, we continue. If you don't then we
don't have to.

Erik: Ok, but I still the idea of the logic path because it allows
us to go down and say "oh this is how it got to the final answer."
and that's going to be a big thing because we're going to go back
and say, "what if I change this or change that". I've got to be
able to backtrack somehow whether it's by words or diagrams, I've
got to be able to backtrack to exactly what it reasoned to get the
final answer. In the future what I want to be able to do is change
hypotheses.

I want to be able to say, "What if the low pressure fuel pump speed
wasn't low?" - I may have thought it was bad instrumentation or
whatever, and have it recalculate the whole thing.

Q: you want to do "what-ifs?"

A: yeaahhhh •..• as a first step, all I want it to do is tell me
here's the answer I got and here's how I got it. The step beyond
that •.. is what-ifs.

(tape: 720)

June: that would be a great mechanism for what-ifs. If you had
this observation here, if you double clicked on it, you bring up
the graphs. BUt if you single clicked on it would open up or pull
down a menu for you that would have something like this graph
(Tim's idea) so you could see it and if you wanted to change it
then you could edit one of those boxes and •••

EriK: I like that.

June: Don't like it right off the bat.

Erik: I've got to have something like that because I've got to
find out how it reasons to get it's answer. Because it may realize
something I don't realize and I'll go, "Oh my God! I didn't even
know that."

Page 14

.•. Calculations - good point. I want something to give me
calculations.

Q: what do you mean by calculations.

A: PID Y + PID z/ 17 (etc) = plot it.
to do that

I think pv-wave is going

Q: you mean the plot package. pv-wave doesn't do that. We'll have
to check with Jeff and Jean.

A: I just want the ability somewhere.

Q: No more druthers?

A: '3-d plots ... but don't want to get crazy.

Q: How about waterfall plots instead of multiscale plots.

A: NO, because on one plot, a lot of the changes we're looking at
are from one data point to the next data point. I need them
exactly lined up and the waterfall time shifts them.

If I could at all scale things with the pointer, I want to do that.

(tape: 783)

One other possibility. When it comes out with observations on the
basis of certain pieces of data, is there a way to get the system,
when it runs this thing, to give me hard copies of the data
overnight as it runs.

In other words, it says, 'I've observed these things"

Q: I could imagine that as we go through the rules for that part
of reasoning, that we could just start writing to a file that are
impt. to that and then plot it out.

A: I like that because it gives me that backup capability that
I've got hardcopy of the stuff that I could look at right away.
I could page through that lot faster than I could bring up the
system.

The other thing is if the system works through the night and is
dead in the morning. power goes down ... system crashes
I've got something.

(tape: 809)

Q: What kind of mechanism do you want built in so that it would
automatically update the anomaly database? and how do you want to
populate the database?

A: I want to be able to get to the anomaly database. In terms of
populating the anomaly database, at least at first, don't let it
update the anomaly database.

Q: So you want the anomaly, but you want only one person with the
specific option to actually update it.

A: No. You could put the option on there I guess I'd have
a separate screen. and on it is test A10695 and here'S the anomaly
and observations that were noted. And then have a button next to
each one to add to anomaly database.

Q: The same way that we use ... in the anomaly database ... to
build graphs ... click on it and it jumps to the other side but
instead of graphs we're using anomalies and when you hit go, it
adds to the database.

A: yes, that's fine.

Page 14

.•. Calculations - good point. I want something to give me
calculations.

Q: what do you mean by calculations.

A: PID Y + PID z/ 17 (etc) = plot it.
to do that

I think pv-wave is going

Q: you mean the plot package. pv-wave doesn't do that. We'll have
to check with Jeff and Jean.

A: I just want the ability somewhere.

Q: No more druthers?

A: '3-d plots ... but don't want to get crazy.

Q: How about waterfall plots instead of multiscale plots.

A: NO, because on one plot, a lot of the changes we're looking at
are from one data point to the next data point. I need them
exactly lined up and the waterfall time shifts them.

If I could at all scale things with the pointer, I want to do that.

(tape: 783)

One other possibility. When it comes out with observations on the
basis of certain pieces of data, is there a way to get the system,
when it runs this thing, to give me hard copies of the data
overnight as it runs.

In other words, it says, 'I've observed these things"

Q: I could imagine that as we go through the rules for that part
of reasoning, that we could just start writing to a file that are
impt. to that and then plot it out.

A: I like that because it gives me that backup capability that
I've got hardcopy of the stuff that I could look at right away.
I could page through that lot faster than I could bring up the
system.

The other thing is if the system works through the night and is
dead in the morning. power goes down ... system crashes
I've got something.

(tape: 809)

Q: What kind of mechanism do you want built in so that it would
automatically update the anomaly database? and how do you want to
populate the database?

A: I want to be able to get to the anomaly database. In terms of
populating the anomaly database, at least at first, don't let it
update the anomaly database.

Q: So you want the anomaly, but you want only one person with the
specific option to actually update it.

A: No. You could put the option on there I guess I'd have
a separate screen. and on it is test A10695 and here'S the anomaly
and observations that were noted. And then have a button next to
each one to add to anomaly database.

Q: The same way that we use ... in the anomaly database ... to
build graphs ... click on it and it jumps to the other side but
instead of graphs we're using anomalies and when you hit go, it
adds to the database.

A: yes, that's fine.

-s10: Page 15

Q: Only one person or very few people should have that option?

A: Probably. Right now, we have access to the anomaly database
if you want to, put in an option for a password ... (have the)

option to deactivate it if we want .•.

(tape: 879)

Q: I was thinking that whoever logged in to start the session
would have the capability to write to the database.

A: I wouldn't do that. I may log in but it may be Randy that
determines what goes into the database.

Q: we could limit it to group ids.

A: That's fine. On that same screen, you have to give us the
ability to put in anomalies that the system doesn't recognize.

Another thing is, ... when you call up new data .•• through the
info entered into the hardware database. I think that's done right
now, but I'm not sure.

Q: and you want the ability to actually display what the data is.
YOu only got 5 or 6 numbers, do you want them written on this
(first ds screen)?

A: No ...• All I care about is where has that thing run before?
••. What engine? - what test stand?

A-3-17~

-s10: Page 15

Q: Only one person or very few people should have that option?

A: Probably. Right now, we have access to the anomaly database
if you want to, put in an option for a password ... (have the)

option to deactivate it if we want .•.

(tape: 879)

Q: I was thinking that whoever logged in to start the session
would have the capability to write to the database.

A: I wouldn't do that. I may log in but it may be Randy that
determines what goes into the database.

Q: we could limit it to group ids.

A: That's fine. On that same screen, you have to give us the
ability to put in anomalies that the system doesn't recognize.

Another thing is, ... when you call up new data .•• through the
info entered into the hardware database. I think that's done right
now, but I'm not sure.

Q: and you want the ability to actually display what the data is.
YOu only got 5 or 6 numbers, do you want them written on this
(first ds screen)?

A: No ...• All I care about is where has that thing run before?
••. What engine? - what test stand?

A-3-17~

Page 1
KA Session with Erik Sander

Phases (4/29/92)

Tape: 000

Q: Help us out with controller phases, what you consider unique
time slices - what is a phase;

A: one easy way to determine what phase the engine is in ... the
Engine Status Word, that's PID 293 •.. That's the easiest way.
It has certain levels telling you you're in this phase or this
phase etc. Have a program in C which does this already. We could
give you a copy if you want it Also, this program tells you
when you drop LOX, or fuel, when you got presses. The best way to
tell that is the LOX inlet press, the fuel inlet press. the LOX
and fuel inlet temp.

If you want exact, ... you want the press. When you drop LOX, it
gives you good amount of head. (20 psi) ... drop the fuel and you
get 1-2 psi Not as clear as on the lox side.

Q: are the engine controller phases on this FlD subjective or they
always the same.

A: Certain levels are set, e.g. Eng. Stat. Wrd goes to 333,
that's purge seq. number such and such, don't remember off the top
of my head.

Q: when you're in Hydraulic lockup, is that an engine status?

A: I think your engine status changes for control modes in main
stage, but I'm not sure - can find out for you. Another parameter
that you may find useful is a FlO counter in the controller that
counts the # of pids that have been posted. If you ever need a pid
number, ask Taylor. He knows them all.

Q: Failure IDS, does each one have a associated control action?

A: yes. and it ranges from no action taken to shutdown. A listing
in the SW. spec.

Q: After Shutdown the controllers is down. Are there any phases
associated with shutdown.

A: After shutdown the controller isn't really done. it's still
determining when to do the purges.

Q: That's not Facility controlled then?

A: no.

Q: When in prestart, you said "so and so pushes the button" they
decide in real time when to start the purges?

a: Yes, they will go ahead and ... decide when to go through
purges 1,2,3 4. They give the signal to the controller to switch
over to purge 1,2,3,4. When they're ready to start the engine,
they will give the signal which is actually the engine enable. To
do that, you have to be in "engine ready".

Engine ready is basically meeting all purge 4 conditions plus you
also have extras such as LOX inlet Press, fuel inlet press - which
all have to be within given ranges. When the controller senses
that, it'll give signal saying Engine Ready. You can see that in
the Engine Status Word.

Q: Do you ever double check the controller if something went
wrong ..

A: We will on occasion Usually the controller always knows
what it is doing. But you have the potential for programming A3-/77

Page 1
KA Session with Erik Sander

Phases (4/29/92)

Tape: 000

Q: Help us out with controller phases, what you consider unique
time slices - what is a phase;

A: one easy way to determine what phase the engine is in ... the
Engine Status Word, that's PID 293 •.. That's the easiest way.
It has certain levels telling you you're in this phase or this
phase etc. Have a program in C which does this already. We could
give you a copy if you want it Also, this program tells you
when you drop LOX, or fuel, when you got presses. The best way to
tell that is the LOX inlet press, the fuel inlet press. the LOX
and fuel inlet temp.

If you want exact, ... you want the press. When you drop LOX, it
gives you good amount of head. (20 psi) ... drop the fuel and you
get 1-2 psi Not as clear as on the lox side.

Q: are the engine controller phases on this FlD subjective or they
always the same.

A: Certain levels are set, e.g. Eng. Stat. Wrd goes to 333,
that's purge seq. number such and such, don't remember off the top
of my head.

Q: when you're in Hydraulic lockup, is that an engine status?

A: I think your engine status changes for control modes in main
stage, but I'm not sure - can find out for you. Another parameter
that you may find useful is a FlO counter in the controller that
counts the # of pids that have been posted. If you ever need a pid
number, ask Taylor. He knows them all.

Q: Failure IDS, does each one have a associated control action?

A: yes. and it ranges from no action taken to shutdown. A listing
in the SW. spec.

Q: After Shutdown the controllers is down. Are there any phases
associated with shutdown.

A: After shutdown the controller isn't really done. it's still
determining when to do the purges.

Q: That's not Facility controlled then?

A: no.

Q: When in prestart, you said "so and so pushes the button" they
decide in real time when to start the purges?

a: Yes, they will go ahead and ... decide when to go through
purges 1,2,3 4. They give the signal to the controller to switch
over to purge 1,2,3,4. When they're ready to start the engine,
they will give the signal which is actually the engine enable. To
do that, you have to be in "engine ready".

Engine ready is basically meeting all purge 4 conditions plus you
also have extras such as LOX inlet Press, fuel inlet press - which
all have to be within given ranges. When the controller senses
that, it'll give signal saying Engine Ready. You can see that in
the Engine Status Word.

Q: Do you ever double check the controller if something went
wrong ..

A: We will on occasion Usually the controller always knows
what it is doing. But you have the potential for programming A3-/77

-510: Page 2

errors.

Q: would you think it would be worthwhile ..• to model what the
controller needs to reach a particular FID I don't think we
would need it.

A: Typically, the controller declares a FlO, it's real, or the
instrumentation has gone out of range .•.. In terms of
programming errors, that comes more in terms of setting the sw
constants C2, kf. by accident .•.. it's been known to happen.
(after conferring with Tracy.)

Q: Any qualitative differences other than faster sampling rate. or
cleaner data between block 1 and 2.

A: Yes, there's differences in the way it controls and takes
responses, whatever. The Controls and NASA people would have to
give you info on that. In terms of engine systems viewpoint,
that's all we see - not much else. You may get different reactions
when you get into a failure scenario something like that. but
nothing that I've found that major.

Q: You don't really keep in back of your mind the controller you're
dealing with.

A: No, not really. In the back of my mind you only keep the
controller as a Block I or Block II because of (1) the bit toggle
(2) if we get into some crazy thing .••• e.g. On a recent test we
had a hydraulic lockup and we failed the A channel on one of our
preburner valves. It was toggling back and forth. The immediate
response is to call the controller guys because they're the guys
that know about this. They then get into, "Well, we had this Block
I software and we now have this Block II configuration .•• " and
we get into these kinds of things.

Q: We have to get into the things that can't be identified by the
PIDS which sounds like they would all be in Prestart. Is there
something from Prestart where you can get these times. How can
you find, when you're looking at the data, when you're in a certain
phase?

A: Again, the most obvious thing is the Engine Status Word.
because it will always tell you what Purge Sequence you're in and
it will tell you're in Engine Ready and it will tell you when you
hit Start Enable.

Q: Is there a significant lag when they see conditions are OK to
start purge two.

A: A lot of times, they won't get data for Purge one or two.
Purge one and two are five minutes apiece. They're very small.
(Showing SSME pocket data, pg 1-11.) Tells here is a ground
nitrogen this is what they call the vehicle helium. On development
tests on the ground that comes from the stand. Grnd. Nitrogen
comes from the ground for flight and the helium comes from helium
bottles on the vehicle and this is one of the other •...

(TAPE: 100)

In addition there is a package here •••. (summary of eng. purges,
lcc and flight.) •.. Description of where, why, what to do, where
to look. etc. Typical events on launch ••.

Purges 1&2 are typically small 5-10 mins. Purge 3 can be hours.
When we're in flight, on the pad, purge 3 is the vast maj. of time.
8-10-12 hours. Just sitting there - that's when the engine is
really content. Cryogenics are down and we're purging as we should
be and then 4 mins before flight we go into purge 4. We can hold
in purge 4 for 12 mins. but we typically launch at 4 mins •...

This (summary book) also has schematics of PCA Pneumatic Control
Assembly ...

The peA contains the valves that allow the shuttle bay to work them

-510: Page 2

errors.

Q: would you think it would be worthwhile ..• to model what the
controller needs to reach a particular FID I don't think we
would need it.

A: Typically, the controller declares a FlO, it's real, or the
instrumentation has gone out of range .•.. In terms of
programming errors, that comes more in terms of setting the sw
constants C2, kf. by accident .•.. it's been known to happen.
(after conferring with Tracy.)

Q: Any qualitative differences other than faster sampling rate. or
cleaner data between block 1 and 2.

A: Yes, there's differences in the way it controls and takes
responses, whatever. The Controls and NASA people would have to
give you info on that. In terms of engine systems viewpoint,
that's all we see - not much else. You may get different reactions
when you get into a failure scenario something like that. but
nothing that I've found that major.

Q: You don't really keep in back of your mind the controller you're
dealing with.

A: No, not really. In the back of my mind you only keep the
controller as a Block I or Block II because of (1) the bit toggle
(2) if we get into some crazy thing .••• e.g. On a recent test we
had a hydraulic lockup and we failed the A channel on one of our
preburner valves. It was toggling back and forth. The immediate
response is to call the controller guys because they're the guys
that know about this. They then get into, "Well, we had this Block
I software and we now have this Block II configuration .•• " and
we get into these kinds of things.

Q: We have to get into the things that can't be identified by the
PIDS which sounds like they would all be in Prestart. Is there
something from Prestart where you can get these times. How can
you find, when you're looking at the data, when you're in a certain
phase?

A: Again, the most obvious thing is the Engine Status Word.
because it will always tell you what Purge Sequence you're in and
it will tell you're in Engine Ready and it will tell you when you
hit Start Enable.

Q: Is there a significant lag when they see conditions are OK to
start purge two.

A: A lot of times, they won't get data for Purge one or two.
Purge one and two are five minutes apiece. They're very small.
(Showing SSME pocket data, pg 1-11.) Tells here is a ground
nitrogen this is what they call the vehicle helium. On development
tests on the ground that comes from the stand. Grnd. Nitrogen
comes from the ground for flight and the helium comes from helium
bottles on the vehicle and this is one of the other •...

(TAPE: 100)

In addition there is a package here •••. (summary of eng. purges,
lcc and flight.) •.. Description of where, why, what to do, where
to look. etc. Typical events on launch ••.

Purges 1&2 are typically small 5-10 mins. Purge 3 can be hours.
When we're in flight, on the pad, purge 3 is the vast maj. of time.
8-10-12 hours. Just sitting there - that's when the engine is
really content. Cryogenics are down and we're purging as we should
be and then 4 mins before flight we go into purge 4. We can hold
in purge 4 for 12 mins. but we typically launch at 4 mins •...

This (summary book) also has schematics of PCA Pneumatic Control
Assembly ...

The peA contains the valves that allow the shuttle bay to work them

0: Page 3
and provide purges to different parts of the engine. (referencing
ssme orientation handbook) That's the piece that translates from
the electrical controller signals to allow the signals to go to
other parts of the engine. It's Pretty complicated.

Q: Other than control modes, are there any other things that you
think are significant when you're analyzing data.

A: Prestart, we're looking for a couple of things. FIrst, do any
of the valves leak? You tell that by the skin temps and the
internal temps of the engine - the turbine temps, MFV skin temp,
the OPOV skin temp. Those tell us if those valves are leaking.
You'll see those temps drop drastically.

Additionally, you're looking to make sure that the engine is being
purged properly. That means that (they run) according to that
schedule in the (pocket data book.)

During purge 3, which is the majority of the time, you've got
several things going on. You've always got the intermediate seal
being purged and you have ??? being purged with nitrogen. You've
got two preburners being purged with nitrogen and you've got the
three minute purge every hour just downstream of the Main fuel
Valve ..•. and you got pressure transducers to show us that we've
got those things going on. In addition you've got the valves being
held shut by pneumatics as well as hydraulics. When we go into
purge four, we pull the pneumatics off the valves. In fact
there's an LCC reqt. that the valves shift by .1% because up to
that point, we have the valves being rammed into the seat and now
they're being released just a bit ••••

The HPOP intermediate seal switches over from nitrogen to helium.
Remember that yesterday, when all pressures related to helium
shifted down a bit because now we're feeding the intermediate seal
as well, any thing associated with nitrogen pressure you saw raise
just a little. Basically that was just the two preburners.

Then when you get into purge 4, and on the ground, it's not at a
specified time, you cut the nitrogen to the preburners.
(referencing the Countdown Key Vent Schedule.) this thing is very
rigidly set on launch. Basically anything from t-9 mins to launch
is very rigidly set because it's controlled by the ground
controller. That's not the case on development testing. That's
why we don't compare prestart info to another test. Prestart
varies so widely and you can't plan on it •.• (facility people)
work this problem, work that problem •••. THey're going to keep
working things until they think it's safe and ready to run.

On flight everything is rigidly controlled so (e.g.) nitrogen is
turned off at a given time. The launch is much more repeatable and
is much more comparable between launches. But in terms of ground
the only thing you fix in time is when you (they in facility) send
the signal to the engine start. What they're really doing is
sending the Start Enable. 4 seconds later, assuming the two bleed
valves close and the POGO RIV opens, we'll get the engine start
signal and the engine will start.

Q: Are there other identifiable phases, perhaps even in mainstage,
- e.g, if something goes into pump cavitation, would you look at
that as "oh, I'm cavitating now" and keep that info when you look
through the rest.

A: We wouldn't consider that a phase. The only phase in mainstage
are electrical or hydraulic lockup.

If we can still control the valves but have some kind of a problem,
we'll declare a phase called an "electrical lockup". What we're
doing then is locking up the valves at their current position.
We're doing it electrically. In other words, the controller is
still sending signals to the actuators to tell them to hold the
valves at this given position.

If we lose hydraulics (if we lose an AP or something like that)

0: Page 3
and provide purges to different parts of the engine. (referencing
ssme orientation handbook) That's the piece that translates from
the electrical controller signals to allow the signals to go to
other parts of the engine. It's Pretty complicated.

Q: Other than control modes, are there any other things that you
think are significant when you're analyzing data.

A: Prestart, we're looking for a couple of things. FIrst, do any
of the valves leak? You tell that by the skin temps and the
internal temps of the engine - the turbine temps, MFV skin temp,
the OPOV skin temp. Those tell us if those valves are leaking.
You'll see those temps drop drastically.

Additionally, you're looking to make sure that the engine is being
purged properly. That means that (they run) according to that
schedule in the (pocket data book.)

During purge 3, which is the majority of the time, you've got
several things going on. You've always got the intermediate seal
being purged and you have ??? being purged with nitrogen. You've
got two preburners being purged with nitrogen and you've got the
three minute purge every hour just downstream of the Main fuel
Valve ..•. and you got pressure transducers to show us that we've
got those things going on. In addition you've got the valves being
held shut by pneumatics as well as hydraulics. When we go into
purge four, we pull the pneumatics off the valves. In fact
there's an LCC reqt. that the valves shift by .1% because up to
that point, we have the valves being rammed into the seat and now
they're being released just a bit ••••

The HPOP intermediate seal switches over from nitrogen to helium.
Remember that yesterday, when all pressures related to helium
shifted down a bit because now we're feeding the intermediate seal
as well, any thing associated with nitrogen pressure you saw raise
just a little. Basically that was just the two preburners.

Then when you get into purge 4, and on the ground, it's not at a
specified time, you cut the nitrogen to the preburners.
(referencing the Countdown Key Vent Schedule.) this thing is very
rigidly set on launch. Basically anything from t-9 mins to launch
is very rigidly set because it's controlled by the ground
controller. That's not the case on development testing. That's
why we don't compare prestart info to another test. Prestart
varies so widely and you can't plan on it •.• (facility people)
work this problem, work that problem •••. THey're going to keep
working things until they think it's safe and ready to run.

On flight everything is rigidly controlled so (e.g.) nitrogen is
turned off at a given time. The launch is much more repeatable and
is much more comparable between launches. But in terms of ground
the only thing you fix in time is when you (they in facility) send
the signal to the engine start. What they're really doing is
sending the Start Enable. 4 seconds later, assuming the two bleed
valves close and the POGO RIV opens, we'll get the engine start
signal and the engine will start.

Q: Are there other identifiable phases, perhaps even in mainstage,
- e.g, if something goes into pump cavitation, would you look at
that as "oh, I'm cavitating now" and keep that info when you look
through the rest.

A: We wouldn't consider that a phase. The only phase in mainstage
are electrical or hydraulic lockup.

If we can still control the valves but have some kind of a problem,
we'll declare a phase called an "electrical lockup". What we're
doing then is locking up the valves at their current position.
We're doing it electrically. In other words, the controller is
still sending signals to the actuators to tell them to hold the
valves at this given position.

If we lose hydraulics (if we lose an AP or something like that)

s10: Page 4
where we don't have control of the valve because we don't have
hydraulics, we go into a phase 4 type "hydraulic lockup" All that
does is within the actuator we have a couple of valves and one of
them will shuttle over and literally lock the hydraulics into the
open and closing piston on the valve itself so ... then the valve
shouldn't move. It's important to note that in hydraulic lockup,
the valve does move - it drifts because of leakage out the open
pistons sides. The valve will slowly drift down.

Q: In both cases, the engine is no longer in closed loop control?

A: that's right. You've got basically a fixed orifice engine. and
you should have that fixed orifice at a given point, but you don't
because of the clearances you have on the valves •.. allow some
hydraulics to leak out and the valve to close slowly.

(TAPE: 202)

Q: You mentioned that you want to make sure the pumps are primed
at a certain time from each other. Is that controller controlled?

A: The only handles the controller has on the engine at that time
are the valve positions. We set the controller valve schedule to
try to prime us at the right times and the right sequence with the
right deltas between the primes. That's how we control the prime
times.

Q: Does that change test to test?

A: Sometimes it does. Especially some parameters, one parameter
called the OPOV open loop command. If you look at the sw spec,
there are different positions that the valve goes to. One of
those, we pretty often change. We move the OPOV command at a given
time up or down to try to speed up or slow down the LOX side a bit.
It has an effect on the prime times.

Q: Can you tell if something is primed by a certain parameter.

A: Yes.

Q: If you did and noticed that they were shorter ... than some time
that you want, you would notice that?

A: Right. The spec has a prime time rqt. for each preburner.
We've got those documented as well .•. It says that the fuel
preburner will prime ••. at this time, the main chamber so much
after that and then the LOX preburner at this given time.

Q: Is the only thing that causes them to be primed the valve
position or if they're at a higher temp. or pressure?

A: No. Which pump you have on there; which engine; what are the
resistances in the engine. All of that.

Q: If the schedule went according to what you had set, would there
be anything happening in the engine to cause you to prime early?

A: Yes. You could have hot or cold LOX; hot or cold fuel. The
prime time is a fcn. of many different things: the LOX; engine
resistances; turbopump performance; all that kind of stuff. The
software is the best handle we have on controlling the prime times.

Q: If we were to try to break down and code when the engine had
primed, the best thing to be would to look at a certain combination
of parameters.

A: We look at the parameters specified in the sw spec. It's
arguable that these are the best parameters. But they are the most
repeatable in terms of we got the history on those parameters. Now
the fuel preburner is the first to prime and we look at a given
time slice and when we see the rate of change of fuel preburner
change by a certain amount, ..• (we have all this in code) ..• we
declare the fuel preburner primed because that's when we're getting
real energy to the fuel turbine and the pump really begins to pick

s10: Page 4
where we don't have control of the valve because we don't have
hydraulics, we go into a phase 4 type "hydraulic lockup" All that
does is within the actuator we have a couple of valves and one of
them will shuttle over and literally lock the hydraulics into the
open and closing piston on the valve itself so ... then the valve
shouldn't move. It's important to note that in hydraulic lockup,
the valve does move - it drifts because of leakage out the open
pistons sides. The valve will slowly drift down.

Q: In both cases, the engine is no longer in closed loop control?

A: that's right. You've got basically a fixed orifice engine. and
you should have that fixed orifice at a given point, but you don't
because of the clearances you have on the valves •.. allow some
hydraulics to leak out and the valve to close slowly.

(TAPE: 202)

Q: You mentioned that you want to make sure the pumps are primed
at a certain time from each other. Is that controller controlled?

A: The only handles the controller has on the engine at that time
are the valve positions. We set the controller valve schedule to
try to prime us at the right times and the right sequence with the
right deltas between the primes. That's how we control the prime
times.

Q: Does that change test to test?

A: Sometimes it does. Especially some parameters, one parameter
called the OPOV open loop command. If you look at the sw spec,
there are different positions that the valve goes to. One of
those, we pretty often change. We move the OPOV command at a given
time up or down to try to speed up or slow down the LOX side a bit.
It has an effect on the prime times.

Q: Can you tell if something is primed by a certain parameter.

A: Yes.

Q: If you did and noticed that they were shorter ... than some time
that you want, you would notice that?

A: Right. The spec has a prime time rqt. for each preburner.
We've got those documented as well .•. It says that the fuel
preburner will prime ••. at this time, the main chamber so much
after that and then the LOX preburner at this given time.

Q: Is the only thing that causes them to be primed the valve
position or if they're at a higher temp. or pressure?

A: No. Which pump you have on there; which engine; what are the
resistances in the engine. All of that.

Q: If the schedule went according to what you had set, would there
be anything happening in the engine to cause you to prime early?

A: Yes. You could have hot or cold LOX; hot or cold fuel. The
prime time is a fcn. of many different things: the LOX; engine
resistances; turbopump performance; all that kind of stuff. The
software is the best handle we have on controlling the prime times.

Q: If we were to try to break down and code when the engine had
primed, the best thing to be would to look at a certain combination
of parameters.

A: We look at the parameters specified in the sw spec. It's
arguable that these are the best parameters. But they are the most
repeatable in terms of we got the history on those parameters. Now
the fuel preburner is the first to prime and we look at a given
time slice and when we see the rate of change of fuel preburner
change by a certain amount, ..• (we have all this in code) ..• we
declare the fuel preburner primed because that's when we're getting
real energy to the fuel turbine and the pump really begins to pick

0: Page 5

up speed.

The main chamber is declared primed when the main chamber PC
crosses 100 psi. When we saw it yesterday it crawled up and then
it all of a sudden it will go "clunk" and it spikes up there.

The LOX preburner is declared primed when the LOX turbine temps, ...
either of them .,. first occurrence, go from a decreasing rate to
an increasing rate. That means you've got fire basically.

That sets by definition when you've primed the different chambers.
Again it may not be the best indicator. There'S questions out
there like, "instead of the LOX turbine temps do you want to use
the LOX turbine discharge pressure coming up quickly?", something
like that. But it's at least consistent with what we got in the
past and what we've got in the spec.

Q: Whenever either of these things have occurred, the chamber
would have had to been primed?

A: Pretty much.

Q: And the same, it couldn't have primed if this didn't happen.

A: Right. They're real good indicators of when it's primed and
then again we have all that in software already built in.

Q: Are there any other phases that you're concerned about?

A: On shutdown, there are two different phases. We normally
hydraulically shutdown the engine. What that means is that simply
we control the valve through hydraulics. What we'll do is send the
valve to given positions during the first 4-5-6 seconds of shutdown
and what we're trying to do is shutdown fuel rich. The last two
valve to close are the MFV and FPOV which run the fuel pump and
allowing fuel to go through the engine.

When we feel we don't have control of the hydraulics, or we can't
control the valves hydraulically, one or the other, we shut down
in the mode called pneumatic shutdown. In that, what we do is
... let's look at a schematic ...

Q: Are they mutually exclusive?

A: Yes, you have either one or the other Here are the valves
here are the actuators .•.. There's the main fuel valve

actuator .,. it's a good sized piece ... The actuator itself has
an open piston side and a closed piston side Normally there's
a piston contained in this cylinder. It's got a little arm, and
if you want, think of the valve as being right below them ...
You've also got a little ram back here which is really another
little piston that's in here. It's what we call the pneumatic
shutdown

(TAPE: 281)

piston. What happens is that when you go into pneumatic shutdown,
you assume you don't have control of hydraulics anymore. SO you
actually allow hydraulics to escape from this side and you apply
pneumatics to ram that thing closed. what that does to you is that
where you normally have a shutdown, the valves are modulating back
and forth. Now you have one where you have the valves coming down
in a straight line fashion. It gives a much different trace on
shutdown. It's still a safe shutdown, but it's a much different
shutdown than what you get hydraulically .•..

Q: Could you also detect this through a FID •.. PID 2931

A: Again, I don't know that PID 293 will tell you if you're in
lockup. I think it will, but I'm not sure.

Q: Is the FlO different for each of the phases like Prestart,
Start shutdown ... ? It ~· ... (gl

0: Page 5

up speed.

The main chamber is declared primed when the main chamber PC
crosses 100 psi. When we saw it yesterday it crawled up and then
it all of a sudden it will go "clunk" and it spikes up there.

The LOX preburner is declared primed when the LOX turbine temps, ...
either of them .,. first occurrence, go from a decreasing rate to
an increasing rate. That means you've got fire basically.

That sets by definition when you've primed the different chambers.
Again it may not be the best indicator. There'S questions out
there like, "instead of the LOX turbine temps do you want to use
the LOX turbine discharge pressure coming up quickly?", something
like that. But it's at least consistent with what we got in the
past and what we've got in the spec.

Q: Whenever either of these things have occurred, the chamber
would have had to been primed?

A: Pretty much.

Q: And the same, it couldn't have primed if this didn't happen.

A: Right. They're real good indicators of when it's primed and
then again we have all that in software already built in.

Q: Are there any other phases that you're concerned about?

A: On shutdown, there are two different phases. We normally
hydraulically shutdown the engine. What that means is that simply
we control the valve through hydraulics. What we'll do is send the
valve to given positions during the first 4-5-6 seconds of shutdown
and what we're trying to do is shutdown fuel rich. The last two
valve to close are the MFV and FPOV which run the fuel pump and
allowing fuel to go through the engine.

When we feel we don't have control of the hydraulics, or we can't
control the valves hydraulically, one or the other, we shut down
in the mode called pneumatic shutdown. In that, what we do is
... let's look at a schematic ...

Q: Are they mutually exclusive?

A: Yes, you have either one or the other Here are the valves
here are the actuators .•.. There's the main fuel valve

actuator .,. it's a good sized piece ... The actuator itself has
an open piston side and a closed piston side Normally there's
a piston contained in this cylinder. It's got a little arm, and
if you want, think of the valve as being right below them ...
You've also got a little ram back here which is really another
little piston that's in here. It's what we call the pneumatic
shutdown

(TAPE: 281)

piston. What happens is that when you go into pneumatic shutdown,
you assume you don't have control of hydraulics anymore. SO you
actually allow hydraulics to escape from this side and you apply
pneumatics to ram that thing closed. what that does to you is that
where you normally have a shutdown, the valves are modulating back
and forth. Now you have one where you have the valves coming down
in a straight line fashion. It gives a much different trace on
shutdown. It's still a safe shutdown, but it's a much different
shutdown than what you get hydraulically .•..

Q: Could you also detect this through a FID •.. PID 2931

A: Again, I don't know that PID 293 will tell you if you're in
lockup. I think it will, but I'm not sure.

Q: Is the FlO different for each of the phases like Prestart,
Start shutdown ... ? It ~· ... (gl

-s10: Page 6
A: It's different for them, but for mainstage itself, between
start and shutdown, I'm not sure if it will change when you go into
hydraulic lock up. There's other ways to find out. You declare
a FID that's probably the primary way to know.

Be aware that you can actually pull hydraulics off the engine, and
the ••. controller has no control on the valve but it won't know
it. It won't declare hydraulic lockup. We normally do that
because what happens is we pull the hydraulics off the valve is
just sitting there. When you pull the hydraulics off the engine,

what I mean is you drop the hydraulic supply pressure. You
just kill the hydraulics from the facility. The valve will
physically lock up but the controller doesn't know it. And the
reason is that the valve hasn't drifted 6% off from it's commanded
position yet. So we'll spend a good amount of time, 30-40-50
seconds, depending on the drift rate, at a given position when
we're actually in hydraulic lockup and the controller doesn't know
it and it hasn't declared it.

Q: And you can tell that from a valve position being stuck and
then all of a sudden acting normally?

A: No. If you pull the hydraulics off, up to the point that you
pull the hydraulics off, the valves will be controlling normally.
Controlling normally means controlling to power level transients
and inlet conditions and that type of thing. When you pull the
hydraulics off, the valve will essentially just sit there. It will
start to drift a little. When you declare hydraulic lockup, it
·could have either drifted off 6% in which case it would go to the
"B" channel .•.. It still hasn't declared hydraulic lockup. You
have to get 10% error on the "B" channel.

(TAPE: 318)

Q: I'm wondering if this is significant because when you're
looking over the data, you know when you're in hydraulic lockup.

A: You pretty much know it. One of the first reasons we know it
is that we usually schedule pulling hydraulics off the engine.
We're doing the test and check that so we know when hydraulics are
off the engine. Another way to know is to see the valves start to
drift and stop controlling.

Q: If we put into a computer that if a valve starts drifting for
a while and •.. I'm assuming that once a valve goes into pneumatic,
it starts controlling

A: No, ••• once you pull hydraulics off the engine, you will not
get normal control again. The only time when you switch to
pneumatics is when you physically shut it down. That's the only
thing the pneumatics can do. That's the only thing the pneumatics
can do is shut the valves down.

Q: And they schedule this sometimes and it drifts and then what?

A: It depends. Usually it sits there and drifts away and you just
run the engine and the engine will start drifting in performance -

it'll run to a different Mixture Ratio - that type of thing.
What we've seen lately, especially with the high leaking valves is,
that is that the LOX side will invariably power up and you may hit
the LOX turbine temp limit, which is what we did on the last type
of lockup test. The lox side just powered up and up because you
weren't controlling it anymore and you just ran it to the lox
turbine temp limit and then you shutdown and then you pneumatically
shutdown because by then you had declared hydraulic lockup. But
the pneumatics cannot control the valves on mainstage. The only
things the pneumatics can do is shut the engine down.

As an example. Here's the normal valve schedule for shutdown
during hydraulic lockup. We bring the MVF out; we start closing
the MOV we start closing the OPOV. The CCV is way out here, the
MFV is way out here. We don't close the MFV or CCV until after 5
secs. Where with the lox side valves, the OPOV and MOV were closed
before 3 secs.

-s10: Page 6
A: It's different for them, but for mainstage itself, between
start and shutdown, I'm not sure if it will change when you go into
hydraulic lock up. There's other ways to find out. You declare
a FID that's probably the primary way to know.

Be aware that you can actually pull hydraulics off the engine, and
the ••. controller has no control on the valve but it won't know
it. It won't declare hydraulic lockup. We normally do that
because what happens is we pull the hydraulics off the valve is
just sitting there. When you pull the hydraulics off the engine,

what I mean is you drop the hydraulic supply pressure. You
just kill the hydraulics from the facility. The valve will
physically lock up but the controller doesn't know it. And the
reason is that the valve hasn't drifted 6% off from it's commanded
position yet. So we'll spend a good amount of time, 30-40-50
seconds, depending on the drift rate, at a given position when
we're actually in hydraulic lockup and the controller doesn't know
it and it hasn't declared it.

Q: And you can tell that from a valve position being stuck and
then all of a sudden acting normally?

A: No. If you pull the hydraulics off, up to the point that you
pull the hydraulics off, the valves will be controlling normally.
Controlling normally means controlling to power level transients
and inlet conditions and that type of thing. When you pull the
hydraulics off, the valve will essentially just sit there. It will
start to drift a little. When you declare hydraulic lockup, it
·could have either drifted off 6% in which case it would go to the
"B" channel .•.. It still hasn't declared hydraulic lockup. You
have to get 10% error on the "B" channel.

(TAPE: 318)

Q: I'm wondering if this is significant because when you're
looking over the data, you know when you're in hydraulic lockup.

A: You pretty much know it. One of the first reasons we know it
is that we usually schedule pulling hydraulics off the engine.
We're doing the test and check that so we know when hydraulics are
off the engine. Another way to know is to see the valves start to
drift and stop controlling.

Q: If we put into a computer that if a valve starts drifting for
a while and •.. I'm assuming that once a valve goes into pneumatic,
it starts controlling

A: No, ••• once you pull hydraulics off the engine, you will not
get normal control again. The only time when you switch to
pneumatics is when you physically shut it down. That's the only
thing the pneumatics can do. That's the only thing the pneumatics
can do is shut the valves down.

Q: And they schedule this sometimes and it drifts and then what?

A: It depends. Usually it sits there and drifts away and you just
run the engine and the engine will start drifting in performance -

it'll run to a different Mixture Ratio - that type of thing.
What we've seen lately, especially with the high leaking valves is,
that is that the LOX side will invariably power up and you may hit
the LOX turbine temp limit, which is what we did on the last type
of lockup test. The lox side just powered up and up because you
weren't controlling it anymore and you just ran it to the lox
turbine temp limit and then you shutdown and then you pneumatically
shutdown because by then you had declared hydraulic lockup. But
the pneumatics cannot control the valves on mainstage. The only
things the pneumatics can do is shut the engine down.

As an example. Here's the normal valve schedule for shutdown
during hydraulic lockup. We bring the MVF out; we start closing
the MOV we start closing the OPOV. The CCV is way out here, the
MFV is way out here. We don't close the MFV or CCV until after 5
secs. Where with the lox side valves, the OPOV and MOV were closed
before 3 secs.

0: Page 7

In pneumatic shutdown, you see these all as a straight line. All
you're really doing is ramming it on one side and releasing the
hydraulics on the other side. YOu don't have any variable control
to hold the valve in one position or anything like that.

Q: You pull the hydraulics down ... the controller still thinks
it has hydraulics and is still trying to control, so we might have
some indication from the controller that it will still be trying
to manipulate the valve.

A: That's right. And what happens is if the valve starts to drift
closed it will send the command to open. For example on the FPOV,
let's say the PC starts to drift down. It'll say, "Hey I don't
have PC" and electrically it will continue to try to open the
valves. But electrically all it is doing is sending a little wand
back and forth to the actuator. It doesn't have hydraulics to work
with. So it's doing it's best to open the valves but nothing is
happening. Pretty soon you have a 6% difference and you switch
over to "B" channel. When you switch over to B channel, and this
is important, you don't start at the 6% miscompare. What it'll
actually do is reset the command to the point where B is at right
now and then when you get 10% from that it says," I'm gone."

Q: ... Both controllers?

A: Yes. In terms of post shutdown phases, when you're doing
pneumatic shutdown, you'll affect the way the purges are put on
the preburners - that sort of thing. So you can tell that.

If you really want to know when you're in hydraulic lockup, there's
"real life" hydraulic lockup and "controller knows it" hydraulics
lockup. As I said, you can pull the hydraulics off the engine and
for practical purposes, you are in hydraulic lockup.

Q: The only way the controller knows that is, if it commanded it.

A: No, if it failed the valves. Once the valves drift 6%, and
then 10%, then it say's it's in hydraulic lockup. In reality, it's
already been there for some time. In terms of the engine
operational changes nothing happens, because you've already lost
hydraulics and you've taken its "arm" away, it's ability to
communicate to the engine. By pulling the hydraulics off of the
valves, the controller has no control over the valves anymore. We
do that back here at time "A".

Q: They're pulled off all valves?

A: Yes. You can't pull them off just one valve. You pull the
hydraulics, you pull all the hydraulics off; the valves go into
lockup, that's down here at time A. At that point, you've taken
away the controllers ability to modulate the valves and control the
way the engine operates. The controller still thinks it has
control, but you taken away it's arm to the engine. The thing is
still sitting there electrically - it's still controlling away, but
nothing's happening. The valve's start to drift. The controller
starts to see 2%, 3%, 4%, 5% and tops at 6% and switches over to
B. NOthing happens in the engine because again it has no control.
Then it goes 10% on B and a flag goes up - hydraulic lockup. The
only way that affects the engine operation is if it does not
declare a hydraulic lockup before engine shutdown command, it will
try to shutdown hydraulically. That's very important because what
it will do is give a very slight delay in your shutdown and if
you're trying to do a shutdown comparison vs. other tests you'll
see this slight delay because what it'll do is command the valves
closed and it will take about .2 secs for it to realize that the
valves aren't following the cOmmand. It could take more than that
depending on how far the valves have drifted.

Let's say the valve is 9% below the command, then you hit the
shutdown command. Then the command has time to go 9% plus another
10% on the other side ... before it realizes it has a problem and
declares a hydraulic lockup. At that point it'll ram the
pneumatics into the closing piston and shutdown pneumatically.

0: Page 7

In pneumatic shutdown, you see these all as a straight line. All
you're really doing is ramming it on one side and releasing the
hydraulics on the other side. YOu don't have any variable control
to hold the valve in one position or anything like that.

Q: You pull the hydraulics down ... the controller still thinks
it has hydraulics and is still trying to control, so we might have
some indication from the controller that it will still be trying
to manipulate the valve.

A: That's right. And what happens is if the valve starts to drift
closed it will send the command to open. For example on the FPOV,
let's say the PC starts to drift down. It'll say, "Hey I don't
have PC" and electrically it will continue to try to open the
valves. But electrically all it is doing is sending a little wand
back and forth to the actuator. It doesn't have hydraulics to work
with. So it's doing it's best to open the valves but nothing is
happening. Pretty soon you have a 6% difference and you switch
over to "B" channel. When you switch over to B channel, and this
is important, you don't start at the 6% miscompare. What it'll
actually do is reset the command to the point where B is at right
now and then when you get 10% from that it says," I'm gone."

Q: ... Both controllers?

A: Yes. In terms of post shutdown phases, when you're doing
pneumatic shutdown, you'll affect the way the purges are put on
the preburners - that sort of thing. So you can tell that.

If you really want to know when you're in hydraulic lockup, there's
"real life" hydraulic lockup and "controller knows it" hydraulics
lockup. As I said, you can pull the hydraulics off the engine and
for practical purposes, you are in hydraulic lockup.

Q: The only way the controller knows that is, if it commanded it.

A: No, if it failed the valves. Once the valves drift 6%, and
then 10%, then it say's it's in hydraulic lockup. In reality, it's
already been there for some time. In terms of the engine
operational changes nothing happens, because you've already lost
hydraulics and you've taken its "arm" away, it's ability to
communicate to the engine. By pulling the hydraulics off of the
valves, the controller has no control over the valves anymore. We
do that back here at time "A".

Q: They're pulled off all valves?

A: Yes. You can't pull them off just one valve. You pull the
hydraulics, you pull all the hydraulics off; the valves go into
lockup, that's down here at time A. At that point, you've taken
away the controllers ability to modulate the valves and control the
way the engine operates. The controller still thinks it has
control, but you taken away it's arm to the engine. The thing is
still sitting there electrically - it's still controlling away, but
nothing's happening. The valve's start to drift. The controller
starts to see 2%, 3%, 4%, 5% and tops at 6% and switches over to
B. NOthing happens in the engine because again it has no control.
Then it goes 10% on B and a flag goes up - hydraulic lockup. The
only way that affects the engine operation is if it does not
declare a hydraulic lockup before engine shutdown command, it will
try to shutdown hydraulically. That's very important because what
it will do is give a very slight delay in your shutdown and if
you're trying to do a shutdown comparison vs. other tests you'll
see this slight delay because what it'll do is command the valves
closed and it will take about .2 secs for it to realize that the
valves aren't following the cOmmand. It could take more than that
depending on how far the valves have drifted.

Let's say the valve is 9% below the command, then you hit the
shutdown command. Then the command has time to go 9% plus another
10% on the other side ... before it realizes it has a problem and
declares a hydraulic lockup. At that point it'll ram the
pneumatics into the closing piston and shutdown pneumatically.

s10: Page 8

Whereas if it has already declared hydraulic lockup in mainstage,
it'll immediately know when you declare the shutdown command it
doesn't have any hydraulics, therefore shutdown pneumatically.

Q: In shutdown is there anything significant? - or in post­
shutdown?

A: In teoms of phases. The only thing is whether you shutdown
hydraulically or pneumatically.

Q: You don't care what goes on with the post-test purging or

A: No. Post-test drawing and stuff like that, we don't even get
the data. We typically only get data 300-400 seconds after the
test after the shutdown command.

(TAPE: 422) (end of interview)

s10: Page 8

Whereas if it has already declared hydraulic lockup in mainstage,
it'll immediately know when you declare the shutdown command it
doesn't have any hydraulics, therefore shutdown pneumatically.

Q: In shutdown is there anything significant? - or in post­
shutdown?

A: In teoms of phases. The only thing is whether you shutdown
hydraulically or pneumatically.

Q: You don't care what goes on with the post-test purging or

A: No. Post-test drawing and stuff like that, we don't even get
the data. We typically only get data 300-400 seconds after the
test after the shutdown command.

(TAPE: 422) (end of interview)

Page 1
Interview Session Date: 5/1/92

Brian Piekarsky

BP - You set the fuel flow and then the lox flow. In reality the
controller would be [set up to] whatever MCC chamber pressure [is
at], and so there is a correct fuel flow for your particular
hardware such that your lox flow to MCC PC would give the right
mixture ratio. What we will do [is], we'll look at the mixture
ratio and whatever is up from 6.011 is a C2 correction that will
change the fuel flow. The right fuel flow so whatever lox flow is
required MCC PC with that fuel flow will be the right mixture
ratio. Models of all that stuff will use a form of these equations
to figure out the C2 details. You can do it by hand along with all
the other stuff.

Question: Yesterday, somebody showed me approximations Rocketdyne
had come up with to approximate hydrogen property tables of certain
pressure and temperature ranges. Do you use those Or actually use
huge [property tables].

BP - There are property tables in the model. The bad thing about
that is they probably go back to 1970 or earlier. They haven't
really been updated, but there is property data in the model.

Question: We have a version of tip 88A. Is there a more recent
version of the model?

BP - They came out PBM90A. Then they came out with PBM91A. We are
currently implementing PBM91A. [They are) suppose to come out with
a 92 model, but in reality they won't make it until 93, but it will
still be called 92. It will probably come in the spring next year.
The 90 [model) was a good one to have. It had enough changes, and
we [have) been using that one for quite a while. The 91 [model]
has some specific stuff on how they tag engines. We sort of came
out with some new procedures for tagging engines over long time
slots. They made some changes to the model to facilitate that.

What we do for a flight engine is; they will run an engine, run a
standard acceptance test, and we take that data and reduce it over
a particular time. In the past its only been (a) 10 second time
(section from which the engine would be tagged]. The particular
time in the test [would be selected] and [we would] get all its
performance and stuff [from that time section]. From that
information we [would] make a prediction out of standard conditions
and that is it's [the engine's] tag values. We do that with all
the flight engines and we predict them at the standard conditions
so now we can compare "apples and apples". So if a particular
acceptance test's ran way off mixture ratio we can still make a
prediction [about] what it would do at a nominal mixture ratio and
we compare all these flight engine performances at that condition.

You may hear [the] term, rating. We rate [an] engine to standard
condition so we [can] see where it lines up with all the other
flight engines. Now we always had heartburn with that 10 second
slice that they chose. It took a while, but we found some reasons
why that particular small 10 second slice can be affected by
certain things in a non-repeatable way. So what we asked for was
a longer time slice to get your [engine] performance from. Mostly
there are two different kinds of acceptance tests still run, I
think one of 165 [time) slices [where] we take data at 165 seconds
and average that to get one point. That averages out the affect
we were seeing previously.

There were some other real intricacies that require some changes.
Some of it was stuff like since your averaging so much data you
needed double precision variable versus single precision, and we
started averaging some redundant PIDs rather than counting on one.
Even though there are real subtle differences between two
measurements, there is really no logic to say this one is any
better than that one. They had come up with a spec change for the
new way of tagging it, therefore they had to change them all. That
was 91A [model).

Page 1
Interview Session Date: 5/1/92

Brian Piekarsky

BP - You set the fuel flow and then the lox flow. In reality the
controller would be [set up to] whatever MCC chamber pressure [is
at], and so there is a correct fuel flow for your particular
hardware such that your lox flow to MCC PC would give the right
mixture ratio. What we will do [is], we'll look at the mixture
ratio and whatever is up from 6.011 is a C2 correction that will
change the fuel flow. The right fuel flow so whatever lox flow is
required MCC PC with that fuel flow will be the right mixture
ratio. Models of all that stuff will use a form of these equations
to figure out the C2 details. You can do it by hand along with all
the other stuff.

Question: Yesterday, somebody showed me approximations Rocketdyne
had come up with to approximate hydrogen property tables of certain
pressure and temperature ranges. Do you use those Or actually use
huge [property tables].

BP - There are property tables in the model. The bad thing about
that is they probably go back to 1970 or earlier. They haven't
really been updated, but there is property data in the model.

Question: We have a version of tip 88A. Is there a more recent
version of the model?

BP - They came out PBM90A. Then they came out with PBM91A. We are
currently implementing PBM91A. [They are) suppose to come out with
a 92 model, but in reality they won't make it until 93, but it will
still be called 92. It will probably come in the spring next year.
The 90 [model) was a good one to have. It had enough changes, and
we [have) been using that one for quite a while. The 91 [model]
has some specific stuff on how they tag engines. We sort of came
out with some new procedures for tagging engines over long time
slots. They made some changes to the model to facilitate that.

What we do for a flight engine is; they will run an engine, run a
standard acceptance test, and we take that data and reduce it over
a particular time. In the past its only been (a) 10 second time
(section from which the engine would be tagged]. The particular
time in the test [would be selected] and [we would] get all its
performance and stuff [from that time section]. From that
information we [would] make a prediction out of standard conditions
and that is it's [the engine's] tag values. We do that with all
the flight engines and we predict them at the standard conditions
so now we can compare "apples and apples". So if a particular
acceptance test's ran way off mixture ratio we can still make a
prediction [about] what it would do at a nominal mixture ratio and
we compare all these flight engine performances at that condition.

You may hear [the] term, rating. We rate [an] engine to standard
condition so we [can] see where it lines up with all the other
flight engines. Now we always had heartburn with that 10 second
slice that they chose. It took a while, but we found some reasons
why that particular small 10 second slice can be affected by
certain things in a non-repeatable way. So what we asked for was
a longer time slice to get your [engine] performance from. Mostly
there are two different kinds of acceptance tests still run, I
think one of 165 [time) slices [where] we take data at 165 seconds
and average that to get one point. That averages out the affect
we were seeing previously.

There were some other real intricacies that require some changes.
Some of it was stuff like since your averaging so much data you
needed double precision variable versus single precision, and we
started averaging some redundant PIDs rather than counting on one.
Even though there are real subtle differences between two
measurements, there is really no logic to say this one is any
better than that one. They had come up with a spec change for the
new way of tagging it, therefore they had to change them all. That
was 91A [model).

-s10: Page 2
. [Model] 92A should have some changes based on TTB data. What they
typically do is take the power model's generic prediction code and
they make it predict the average of all your flight engines at
nominal performance at nominal conditions. So your nominal
parameters give you that average temps and since they released the
model there are seven or eight more flight engines to
put in the database. So that [is] one reason they want to release
a new model And the other one [reason] is the information from the
TTB, some of the internal stuff of the engines are not what we
thought they were. [And] we never had certain information, [so]
we were bound to be off somewhat on somethings. We are trying to
take as much as we can learn from [TTB] and stick that in the model
too. That is what they are shooting for in model 92.

TIP88A isn't a bad version of the model though, if you go back a
couple years before that then your in trouble. I wouldn't
recommend you use that anymore, but if you're using TIP88A you're
not far off.

Question: Do you only tag and rate acceptance tests? Or do you
also tag all the other engines too?

BP - It depends, sometimes we get requests to tag other engines.
Especially these funny configurations that [they have] been coming
out with lately; baffles, phase 11+ and large throat. They want
to know how its performance compares to the typical flight engines,
so we'll rate those.

We're getting ready [to] recreate all our databases with 91A. One
thing that we decided to do is to create a sort of ready database
for more of the tests. So what we actually do when we have a new
version [of the model] in, we have an automated way [of] rerunning
all the tests with the new model and recreating databases. So with
time what we're going to do, in addition to what we normally do,
is rate a number of tests as well, other than [just] acceptance
tests. Any tests that had significant 104% power level mainstage,
[that] we can run [the] extended time slice [calculations for], we
can come up with some rated performance and have a database for
that [engine].

Question: One of the things that maybe a problem is trying to
figure out if you have a [efficiency] change between [a] component
in one test and [the component] in the current test that your
working on, is it do to venting conditions or is something else
going on in the test that [causes the] change in efficiency. Do
you feel real comfortable with delta [values] you would get from
running the model with the different efficiency change?

BP - Unfortunately, the answer I have to give you is that I've
been here for five years and it has taken that long to know how to
answer that question. It depends on the parameter, and that's what
has taken five years. There are some things I trust in the model
and somethings I don't. I don't trust valve position analyses in
the model. I trust pump efficiency, especially in the fuel side.
I don't trust turbine efficiency. A lot of this is not the model's
fault, we don't have a lot of instrumentation on the turbine end.
So you don't know what the inlet temps are, the inlet flow rates
or the discharge pressure, and even the turbine discharge temps you
have coolant mixed in there. It not very repeatable so its hard
to get an accurate assessment of what's really going on in there.

One of the things we are often asked to do when we see shifts and
changes and stuff, is [to] do our best to explain [them].
50methings [we] are more comfortable with [than others]. We
express [our explanations] in confident levels, [so] we can suggest
this change is do to this, but [we are] not real confident that it
could just as well could be two or three other things. There are
other times [where we've been] pretty sure that something is caused
by certain things. In the last two years we have learned a lot
about two effects, venting, lox venting in particular, and
propellant transfer, [and their] affects [on] engine performance.
We have always known it [venting] affect the pumps, but its
surprising how much it affects the whole system. It depends on
what it is [occuring], sometimes we can give a much more confident

-s10: Page 2
. [Model] 92A should have some changes based on TTB data. What they
typically do is take the power model's generic prediction code and
they make it predict the average of all your flight engines at
nominal performance at nominal conditions. So your nominal
parameters give you that average temps and since they released the
model there are seven or eight more flight engines to
put in the database. So that [is] one reason they want to release
a new model And the other one [reason] is the information from the
TTB, some of the internal stuff of the engines are not what we
thought they were. [And] we never had certain information, [so]
we were bound to be off somewhat on somethings. We are trying to
take as much as we can learn from [TTB] and stick that in the model
too. That is what they are shooting for in model 92.

TIP88A isn't a bad version of the model though, if you go back a
couple years before that then your in trouble. I wouldn't
recommend you use that anymore, but if you're using TIP88A you're
not far off.

Question: Do you only tag and rate acceptance tests? Or do you
also tag all the other engines too?

BP - It depends, sometimes we get requests to tag other engines.
Especially these funny configurations that [they have] been coming
out with lately; baffles, phase 11+ and large throat. They want
to know how its performance compares to the typical flight engines,
so we'll rate those.

We're getting ready [to] recreate all our databases with 91A. One
thing that we decided to do is to create a sort of ready database
for more of the tests. So what we actually do when we have a new
version [of the model] in, we have an automated way [of] rerunning
all the tests with the new model and recreating databases. So with
time what we're going to do, in addition to what we normally do,
is rate a number of tests as well, other than [just] acceptance
tests. Any tests that had significant 104% power level mainstage,
[that] we can run [the] extended time slice [calculations for], we
can come up with some rated performance and have a database for
that [engine].

Question: One of the things that maybe a problem is trying to
figure out if you have a [efficiency] change between [a] component
in one test and [the component] in the current test that your
working on, is it do to venting conditions or is something else
going on in the test that [causes the] change in efficiency. Do
you feel real comfortable with delta [values] you would get from
running the model with the different efficiency change?

BP - Unfortunately, the answer I have to give you is that I've
been here for five years and it has taken that long to know how to
answer that question. It depends on the parameter, and that's what
has taken five years. There are some things I trust in the model
and somethings I don't. I don't trust valve position analyses in
the model. I trust pump efficiency, especially in the fuel side.
I don't trust turbine efficiency. A lot of this is not the model's
fault, we don't have a lot of instrumentation on the turbine end.
So you don't know what the inlet temps are, the inlet flow rates
or the discharge pressure, and even the turbine discharge temps you
have coolant mixed in there. It not very repeatable so its hard
to get an accurate assessment of what's really going on in there.

One of the things we are often asked to do when we see shifts and
changes and stuff, is [to] do our best to explain [them].
50methings [we] are more comfortable with [than others]. We
express [our explanations] in confident levels, [so] we can suggest
this change is do to this, but [we are] not real confident that it
could just as well could be two or three other things. There are
other times [where we've been] pretty sure that something is caused
by certain things. In the last two years we have learned a lot
about two effects, venting, lox venting in particular, and
propellant transfer, [and their] affects [on] engine performance.
We have always known it [venting] affect the pumps, but its
surprising how much it affects the whole system. It depends on
what it is [occuring], sometimes we can give a much more confident

0: Page 3

answer than other times.

Question: Are you uncomfortable with the absolute value in
efficiency that you get, [as] opposed to [an] incremental change?
[In other words],do you feel more comfortable with not so much the
absolute value but the [incremental changes] that the model gives
you?

BP - A lot of the things we are asked to do is not speak in terms
of absolutes so much. Some of the measured parameters, like when
we have to do predictions for turbine temps and stuff, we'll have
to give our best shot at what the temperature is going to be, it's
absolute temperature. But allot of the time they'll see a
temperature change in a test, say turbine temps changed 40 degrees,
and they will want to know what brought about the 40 degree change.
So we play with things in the model and try to give us [that] gain.
We are more confident in gains with the model than we are with
absolutes in a number of cases. TTB gave us some information that
should help us a little bit with some gains [in order) to know how
far the power balance [model] is off on some of these things. We
are often asked to look at things in terms of deltas rather than
in absolute [values]. And people pretty much know that around
here. Something that we are often asked to do is, what is the gain
versus going to max to min lox pressure on discharge pressure.
Pretty confident in those. The answer we can give is a reasonable
one [and] we're not going to be off or in the wrong direction.

Some people would probably ask the question too, what is the gain
of switching it, having a new [component]. They wouldn't get into
the LRU number or anything.

Question: You would have a gain in general in switching a pump.
What would be the maximum [gain value) you could accept?

BP - It depends, that's my answer to everything. What we can do
sometimes is take the last [test firing], and we have to do this
for flight all the time. They will test a pump over on another
engine and bring it over here to this engine and want to know what
it does. The same way we tag engines, [we] will reduce the test
[data], get some hardware characteristics and use that to make
prediction. What we'll do is reduce the test over here and get
some characteristics as much as we can from that pump, put that
into a prediction with new hardware. So if we know a pump is
pretty much a dog, we can use the information and predict how its
going to do with another unit.

The fuel and lox turbopumps offset each other somewhat and you'll
have a real hot burning fuel turbine [that] can drive the lox
turbine temps down. The model has a way [of] using the hardware
characteristics to sort of match this thing. Because the turbine
efficiency and the turbine ends stuff is so hard to really deal
with, [since] we don't have allot of measurements, that usually
accounts for our [low] confidence level. What we are trying to do
is we have different confidence limits. Typically flight
predictions, even though we grab one pump over here grab another
pump other there and bring them together for the first time, we
still tend to predict within 50-60 degrees on turbine temps.
People sort of know that by now, we [have] been doing it for 4-5
years. Every now or then one will be off more than that, but
typically they are within that [range), and sometimes they are even
real close.

If the hardware was all tested together with the engine, prediction
tend to be really good. Sometimes that's not saying allot though,
people tend to look at how the test performed and they have gains
in their head. They can do a pretty good job to guessing how its
going to do anyway. The only time it really helps you is if you
are going to change operating positions quite a bit. If you were
off the mixture ratio, it [will help change the value of) C2 to get
you back on mixture ratio. That kind of thing.

Question: I think I have a very thin user manual for TIP88. Do
you have a procedure of how you set up the data reduction routine
for a typical test? In what your looking for? parameters? ;43-187

0: Page 3

answer than other times.

Question: Are you uncomfortable with the absolute value in
efficiency that you get, [as] opposed to [an] incremental change?
[In other words],do you feel more comfortable with not so much the
absolute value but the [incremental changes] that the model gives
you?

BP - A lot of the things we are asked to do is not speak in terms
of absolutes so much. Some of the measured parameters, like when
we have to do predictions for turbine temps and stuff, we'll have
to give our best shot at what the temperature is going to be, it's
absolute temperature. But allot of the time they'll see a
temperature change in a test, say turbine temps changed 40 degrees,
and they will want to know what brought about the 40 degree change.
So we play with things in the model and try to give us [that] gain.
We are more confident in gains with the model than we are with
absolutes in a number of cases. TTB gave us some information that
should help us a little bit with some gains [in order) to know how
far the power balance [model] is off on some of these things. We
are often asked to look at things in terms of deltas rather than
in absolute [values]. And people pretty much know that around
here. Something that we are often asked to do is, what is the gain
versus going to max to min lox pressure on discharge pressure.
Pretty confident in those. The answer we can give is a reasonable
one [and] we're not going to be off or in the wrong direction.

Some people would probably ask the question too, what is the gain
of switching it, having a new [component]. They wouldn't get into
the LRU number or anything.

Question: You would have a gain in general in switching a pump.
What would be the maximum [gain value) you could accept?

BP - It depends, that's my answer to everything. What we can do
sometimes is take the last [test firing], and we have to do this
for flight all the time. They will test a pump over on another
engine and bring it over here to this engine and want to know what
it does. The same way we tag engines, [we] will reduce the test
[data], get some hardware characteristics and use that to make
prediction. What we'll do is reduce the test over here and get
some characteristics as much as we can from that pump, put that
into a prediction with new hardware. So if we know a pump is
pretty much a dog, we can use the information and predict how its
going to do with another unit.

The fuel and lox turbopumps offset each other somewhat and you'll
have a real hot burning fuel turbine [that] can drive the lox
turbine temps down. The model has a way [of] using the hardware
characteristics to sort of match this thing. Because the turbine
efficiency and the turbine ends stuff is so hard to really deal
with, [since] we don't have allot of measurements, that usually
accounts for our [low] confidence level. What we are trying to do
is we have different confidence limits. Typically flight
predictions, even though we grab one pump over here grab another
pump other there and bring them together for the first time, we
still tend to predict within 50-60 degrees on turbine temps.
People sort of know that by now, we [have] been doing it for 4-5
years. Every now or then one will be off more than that, but
typically they are within that [range), and sometimes they are even
real close.

If the hardware was all tested together with the engine, prediction
tend to be really good. Sometimes that's not saying allot though,
people tend to look at how the test performed and they have gains
in their head. They can do a pretty good job to guessing how its
going to do anyway. The only time it really helps you is if you
are going to change operating positions quite a bit. If you were
off the mixture ratio, it [will help change the value of) C2 to get
you back on mixture ratio. That kind of thing.

Question: I think I have a very thin user manual for TIP88. Do
you have a procedure of how you set up the data reduction routine
for a typical test? In what your looking for? parameters? ;43-187

-510: Page 4

BP - Not what we're looking for, but what we have is a standard
checklist of the things we do. I'll get you a copy of that. What
we may want to do is probably try to explain a few things before,
the checklist might be a little too personalized for us. We may
know some of the slang words, I haven't seen in a while. But it
is all the steps we go through from finding out a test ran to what
we presented the data review. Someone not too long ago did a TQM,
where we flow charted all stuff we were supposed to do. That is
Martin Marietta's activities, what we do for data reviews. What
we did is tried to flow chart or at least put together a step by
step type of thing of everything the data guys do [and the] model
guys do to support a data review. We tried to put it in order, I
haven't seen the final form of it, and I'm not sure exactly how it
came out. Last I saw of it, it had even detailed steps, like it
would pick a pretest package [and] give a copy to the model people,
but it doesn't tend to over look anything. It will tell you
everything we know.

Question: Do you think it would be worth while to get a new
version of the TIP model? We may have some people in our group
that might work with gains.

BP - What are you running on?

Response: Right now running on a VAX. We have some unix systems
too.

BP - We go through some headaches because Rocketdyne runs theirs
on Perkin Elmer [computer], so we have to do all kinds of crazy
things to get working on the IBM, and if you had an IBM we could
probably arrange to give you our latest and greatest, without much
of a headache. Well, allot of things you have to do, when we first
compiled the model we get from Rocketdyne, we get anywhere from
1,000-2,000 errors. Some of them are things you can fix and it
will eliminate .a couple hundred errors at a time. They
[Rocketdyne] have a compiler that's is very generous. They have
syntax errors I've been trying to get out of the program for a
while, and their compiler will let them go [through]. If you got
if from John and it originated from the IBM then probably all those
things were fixed. We had to put in our own I/O routines.

I wouldn't think there would be any problem getting the newest
model. As a matter of fact, we could probably get you PBM91A. It
would be worthwhile to have, but you would have to go through that
headache again. We had to do [that] every time a new model comes
out. If you talk to John, you could probably get a copy of PBM91A
and that's [what] we are about to start using for everything.
That's about as current as it gets.

Question: Did they come out with any new user manuals?

BP - There is one for PBM90A. There's a users guide thing that
has a list of all the variables, there is about 1,350 of them. And
for some reason they didn't update that for 91A, but they did put
out user requirement document that shows some of the description
of the changes they made, and from that you can figure out the
changes they made to the A array [This is an array, a rather large
array, in the PBM], which you need to know about. It let you know
how the users guide changed. What you can do is take the copy of
PBM90 users guide and a copy of PBM91 requirements documents and
thumb back and forth between the two, that's what we have to do.

Question: The only other question I have maybe to deeply involved
[for this interview], because I did do a little [work] with TIP88.
There are some parameters in the input deck, I think they are
called multipliers. Is there a nominal value for each one of those
multipliers? Or is 1.0 the nominal value, because some of them
came in at .97 and some came in at 1.02.

BP - Probably a long time ago, 1.0 was the nominal value, but what
they have done is as they have reba sed the generic power balance.
They baseline it, give the average value of the flight engines.

-510: Page 4

BP - Not what we're looking for, but what we have is a standard
checklist of the things we do. I'll get you a copy of that. What
we may want to do is probably try to explain a few things before,
the checklist might be a little too personalized for us. We may
know some of the slang words, I haven't seen in a while. But it
is all the steps we go through from finding out a test ran to what
we presented the data review. Someone not too long ago did a TQM,
where we flow charted all stuff we were supposed to do. That is
Martin Marietta's activities, what we do for data reviews. What
we did is tried to flow chart or at least put together a step by
step type of thing of everything the data guys do [and the] model
guys do to support a data review. We tried to put it in order, I
haven't seen the final form of it, and I'm not sure exactly how it
came out. Last I saw of it, it had even detailed steps, like it
would pick a pretest package [and] give a copy to the model people,
but it doesn't tend to over look anything. It will tell you
everything we know.

Question: Do you think it would be worth while to get a new
version of the TIP model? We may have some people in our group
that might work with gains.

BP - What are you running on?

Response: Right now running on a VAX. We have some unix systems
too.

BP - We go through some headaches because Rocketdyne runs theirs
on Perkin Elmer [computer], so we have to do all kinds of crazy
things to get working on the IBM, and if you had an IBM we could
probably arrange to give you our latest and greatest, without much
of a headache. Well, allot of things you have to do, when we first
compiled the model we get from Rocketdyne, we get anywhere from
1,000-2,000 errors. Some of them are things you can fix and it
will eliminate .a couple hundred errors at a time. They
[Rocketdyne] have a compiler that's is very generous. They have
syntax errors I've been trying to get out of the program for a
while, and their compiler will let them go [through]. If you got
if from John and it originated from the IBM then probably all those
things were fixed. We had to put in our own I/O routines.

I wouldn't think there would be any problem getting the newest
model. As a matter of fact, we could probably get you PBM91A. It
would be worthwhile to have, but you would have to go through that
headache again. We had to do [that] every time a new model comes
out. If you talk to John, you could probably get a copy of PBM91A
and that's [what] we are about to start using for everything.
That's about as current as it gets.

Question: Did they come out with any new user manuals?

BP - There is one for PBM90A. There's a users guide thing that
has a list of all the variables, there is about 1,350 of them. And
for some reason they didn't update that for 91A, but they did put
out user requirement document that shows some of the description
of the changes they made, and from that you can figure out the
changes they made to the A array [This is an array, a rather large
array, in the PBM], which you need to know about. It let you know
how the users guide changed. What you can do is take the copy of
PBM90 users guide and a copy of PBM91 requirements documents and
thumb back and forth between the two, that's what we have to do.

Question: The only other question I have maybe to deeply involved
[for this interview], because I did do a little [work] with TIP88.
There are some parameters in the input deck, I think they are
called multipliers. Is there a nominal value for each one of those
multipliers? Or is 1.0 the nominal value, because some of them
came in at .97 and some came in at 1.02.

BP - Probably a long time ago, 1.0 was the nominal value, but what
they have done is as they have reba sed the generic power balance.
They baseline it, give the average value of the flight engines.

0: Page 5

So [for example] turbine temps, lets say for instance average
turbine temps 50 degrees are higher than what you make [simulate
with] the power balance. What they do is change the nominal
multipliers to get you that 50 degrees [difference]. they play with
all these multipliers. They'll play with some resistances, (and]
some other things in the model, to match the data and baseline the
data to it, to a particular data set. So that's why they [the
multipliers] are not 1.0 anymore. You get these weird numbers like
1.0287 and (end of tape)

0: Page 5

So [for example] turbine temps, lets say for instance average
turbine temps 50 degrees are higher than what you make [simulate
with] the power balance. What they do is change the nominal
multipliers to get you that 50 degrees [difference]. they play with
all these multipliers. They'll play with some resistances, (and]
some other things in the model, to match the data and baseline the
data to it, to a particular data set. So that's why they [the
multipliers] are not 1.0 anymore. You get these weird numbers like
1.0287 and (end of tape)

Page 1

{Tape 4, SVl Side B}

{Marc Neely on Sensor Validation}

Side B: Sensor validation

{June explaining to Marc that this session is for sensor
validation}

Q: ... If you can maybe cover the philosophy on sensor validation
and how you go about doing it, would be helpful.

A: I don't think you would try to validate all the sensors.

Q: Up front you mean?

A: Right, unless we note something is significant. I'm not sure
if that is the right way to do it. The model group validates all
their sensors before they run the model.

Q: Do you know how they do it?

A: I think that they apply a zero shift program to it, but I'm
not sure about that either.

Q: Who would know about that?

A: Brian Piekarsi, , or Bill Green or maybe Tracy. There
some sense of validation.

Q: They probably only have to validate all the PIDs that they
need to go through their model?

A: Right.

Q: So, it's probably a subset of the total sensor suite?

A: Right. There is a little different approach on (TTB), I think
they try to validate sensors. A lot of them are unique, one of a
kind instrumentation so they have a different objective there. Our
objective is making sure there is nothing in the engine that would
keep it from running again; that there is no bad condition or
damage caused by that test, or something that could fail in
subsequent tests. That's our primary objective. Looking at the
data here, this is more data acquisition then research/ technology.

Q: They are trying to measure things that have never been
measured before ...

A: Exactly. When we do have an anomaly that we are trying to
work and it's not obvious, then I guess you could always ask the
question; "Is it the instrumentation or is it the engine, or real
physical phenomenon?" We have several options, depending on which
parameter we are looking at. Where we have redundant channels we
can just clear the two data screens. By redundant channels I mean
that we have a lot of instrumentation that have one sensor (one
transducer) with a dual bridge. That's an easy way to do it. But
you have to have a feel for what is an acceptable delta between
bridges ...

Q: Is that (the acceptable deltas) tabulated somewhere? or do
they just know it?

A: There is not much delta, the only time I got concerned with
that was when I was looking at low pressure fuel pump discharge
temp. With this PID, an average delta is about .2 degrees that an
acceptable delta of around .5, these are just examples, and the
only reason I cared about that is it is used in a density
calculation to control engine flows. But if we had a delta of 10,
20 psi on two channels of a 3400 psi transducer, ... ?

Q: Now that you have two fuel pump discharge temps and lets say

Page 1

{Tape 4, SVl Side B}

{Marc Neely on Sensor Validation}

Side B: Sensor validation

{June explaining to Marc that this session is for sensor
validation}

Q: ... If you can maybe cover the philosophy on sensor validation
and how you go about doing it, would be helpful.

A: I don't think you would try to validate all the sensors.

Q: Up front you mean?

A: Right, unless we note something is significant. I'm not sure
if that is the right way to do it. The model group validates all
their sensors before they run the model.

Q: Do you know how they do it?

A: I think that they apply a zero shift program to it, but I'm
not sure about that either.

Q: Who would know about that?

A: Brian Piekarsi, , or Bill Green or maybe Tracy. There
some sense of validation.

Q: They probably only have to validate all the PIDs that they
need to go through their model?

A: Right.

Q: So, it's probably a subset of the total sensor suite?

A: Right. There is a little different approach on (TTB), I think
they try to validate sensors. A lot of them are unique, one of a
kind instrumentation so they have a different objective there. Our
objective is making sure there is nothing in the engine that would
keep it from running again; that there is no bad condition or
damage caused by that test, or something that could fail in
subsequent tests. That's our primary objective. Looking at the
data here, this is more data acquisition then research/ technology.

Q: They are trying to measure things that have never been
measured before ...

A: Exactly. When we do have an anomaly that we are trying to
work and it's not obvious, then I guess you could always ask the
question; "Is it the instrumentation or is it the engine, or real
physical phenomenon?" We have several options, depending on which
parameter we are looking at. Where we have redundant channels we
can just clear the two data screens. By redundant channels I mean
that we have a lot of instrumentation that have one sensor (one
transducer) with a dual bridge. That's an easy way to do it. But
you have to have a feel for what is an acceptable delta between
bridges ...

Q: Is that (the acceptable deltas) tabulated somewhere? or do
they just know it?

A: There is not much delta, the only time I got concerned with
that was when I was looking at low pressure fuel pump discharge
temp. With this PID, an average delta is about .2 degrees that an
acceptable delta of around .5, these are just examples, and the
only reason I cared about that is it is used in a density
calculation to control engine flows. But if we had a delta of 10,
20 psi on two channels of a 3400 psi transducer, ... ?

Q: Now that you have two fuel pump discharge temps and lets say

0: Page 2

an, for just this example, acceptable delta is .5 and you observed
.6 how would you know which one was wrong?

A: I don't know, unless you could back it out, if you
recalculated the density and the flow rate, I don't know. On a
flight engine you couldn't, you wouldn't have any independent data.

Q: From the facility ...

A: For the facility, you may have some independent data that you
could use to calculate a mass flow rate, but you have to rely on
previous test experience, because even then you wouldn't know if
it was the facility or the engine. Again, I have to stress that
there is a threshold where it doesn't matter.

Q: In other words, it's almost normal?

A: Yes.

I was talking about anomalies, when we see an anomalous
condition and we don't have the two bridges, one of the most basic
ways is related to physical parameters, (in other words, if I have
see a rise in 20w pressure fue2 pump discharge pressure) I
immediately look at the speed. If I see a rise in the speed and
the discharge pressure, I feel comfortable that it is real. They
are independent parameters, from an instrumentation standpoint, and
they're related from a physical stand point. Another thing that
we don't do a very good job of is when we see an anomaly that we
can't verify with another parameter (we have some of those) is go
back and look at pretest and post test to see if there is anomalous
behavior in the parameters. It's a lot easier to tell when
something is acting up when nothing is going on. And that's very
easy to do.

The types of problems you can have is with sensors that are
not calibrated properly. In other words, instead of reading 7,000
psi it's reading 4,000, really you just validate that by looking
at related parameters. The more subtle calibration errors, I don't
know how you get those errors.

Q: When you check redundant channels does that include CADs and
facility comparisons? Is the facility measurement just another
bridge off the same sensor?

A: Yes, but depending on the anomaly. If the anomaly takes place
over milliseconds or 20-40 milliseconds you get into a timing
problem. The facility data is not recorded with the same timing
system as the engine controller data. That is not really a factor,
our major incidences all take place over 10 milliseconds, that
becomes a problem {I don't think this is what he wanted to say}.
That could be a next step {in our development of the sensor val.
module}, first look at general engine performance and then major
incidences where you've obviously got a problem. The time issue
is a big deal, when you get into a real small timeframe and
comparing facility and CADs data. In fact, comparing the CADs to
CADs data on real small timeframes is a little bit of a problem,
because they are not all measured at the same time, but they are
posted with the same time stamp.

Are you aware of stale data?

Q: Could you tell us which ones at stale?

A: Yes, I've got a list. Generally, when you have a stale and
non-stale parameter the one with a "1" on it is stale. If you have
a 40 and a 140, the 140 is stale.

Q: But not always?

A: It's not always, because p2, (average of two bridges in the
transducer, then the averages are averaged), two of those, either
AI, A2, B1 or B2, is stale. If you need a stale table, I think
I've got a stale PID table.

0: Page 2

an, for just this example, acceptable delta is .5 and you observed
.6 how would you know which one was wrong?

A: I don't know, unless you could back it out, if you
recalculated the density and the flow rate, I don't know. On a
flight engine you couldn't, you wouldn't have any independent data.

Q: From the facility ...

A: For the facility, you may have some independent data that you
could use to calculate a mass flow rate, but you have to rely on
previous test experience, because even then you wouldn't know if
it was the facility or the engine. Again, I have to stress that
there is a threshold where it doesn't matter.

Q: In other words, it's almost normal?

A: Yes.

I was talking about anomalies, when we see an anomalous
condition and we don't have the two bridges, one of the most basic
ways is related to physical parameters, (in other words, if I have
see a rise in 20w pressure fue2 pump discharge pressure) I
immediately look at the speed. If I see a rise in the speed and
the discharge pressure, I feel comfortable that it is real. They
are independent parameters, from an instrumentation standpoint, and
they're related from a physical stand point. Another thing that
we don't do a very good job of is when we see an anomaly that we
can't verify with another parameter (we have some of those) is go
back and look at pretest and post test to see if there is anomalous
behavior in the parameters. It's a lot easier to tell when
something is acting up when nothing is going on. And that's very
easy to do.

The types of problems you can have is with sensors that are
not calibrated properly. In other words, instead of reading 7,000
psi it's reading 4,000, really you just validate that by looking
at related parameters. The more subtle calibration errors, I don't
know how you get those errors.

Q: When you check redundant channels does that include CADs and
facility comparisons? Is the facility measurement just another
bridge off the same sensor?

A: Yes, but depending on the anomaly. If the anomaly takes place
over milliseconds or 20-40 milliseconds you get into a timing
problem. The facility data is not recorded with the same timing
system as the engine controller data. That is not really a factor,
our major incidences all take place over 10 milliseconds, that
becomes a problem {I don't think this is what he wanted to say}.
That could be a next step {in our development of the sensor val.
module}, first look at general engine performance and then major
incidences where you've obviously got a problem. The time issue
is a big deal, when you get into a real small timeframe and
comparing facility and CADs data. In fact, comparing the CADs to
CADs data on real small timeframes is a little bit of a problem,
because they are not all measured at the same time, but they are
posted with the same time stamp.

Are you aware of stale data?

Q: Could you tell us which ones at stale?

A: Yes, I've got a list. Generally, when you have a stale and
non-stale parameter the one with a "1" on it is stale. If you have
a 40 and a 140, the 140 is stale.

Q: But not always?

A: It's not always, because p2, (average of two bridges in the
transducer, then the averages are averaged), two of those, either
AI, A2, B1 or B2, is stale. If you need a stale table, I think
I've got a stale PID table.

-s10: Page 3

{C~audia asking questions about this}

It's the same data, the controller just holds "it" for 20
milliseconds, ... {can't hear}

There are some hard limits for sensor validation, the controller
has what amounts to sensor validation for all the redline
parameters and launch commit criteria. They're automated, it
doesn't let any parameter exceed a reasonable max or min value
prior to the test. You would have to reconstruct the controller
qualification limits in your model.

Q: Wouldn't that come out of the fids, we would probably have to
trans~ate those codes?

A: Yes, it would come out of the fids and if you're watching the
fids, there are a couple of fids that give you failures, engine
status word, etc., that you could pick up, it gives an integer
representation of a octal, which you would have to translate into
what the fid is on, it may be just as easy to reproduce the
controller limits.

Q: When it comes back on the quick look sheet, it lists the fid
on the top, does it just list the number?

{Agreeing type sound from Marc}

good its just the number.

A: Well unless the guy that recorded it looks it up.

Q: Those numbers are in the controller document.

A: There is a better copy of that. This may be an old Block I
copy.

{I have that}

The ED people have a 40 page break out of all the sensor
qualification criteria and redline criteria.

Q: What is ED?

A: They are the controller software people and the controller
hardware people, instrumentation is over in ED.

Sensor validation, the last thing I can think of is that you'd
need it to have an experience database. We have some sensors that
have characteristics that do not operate correctly; they've done
it forever and we understand why they do it, we just disregard it.
For example, fuel preburner chamber pressure used to steadily drift
down when we knew the pressure was constant, because of thermal
effects. Some engines have an insulator block, a remote mount on
the sensor so it doesn't drift.

Another example would be main chamber ••.

Q: Hot gas injection pressure, PID 24?

A: No, it's real.

Q: It read 14.7 a lot of the time.

A: That's when it's not hooked up. You could look at sensor
validation, one part of it, is as knowing what instrumentation is
there. {Can't hear}

Q: That would be listed somewhere in the pretest document that
that instrumentation wasn't going to be hooked up?

A: Yeah, a lot of the times you have to go back to the first test
of the engine, because that's where they give you an engine
configuration. -A3--1C73

-s10: Page 3

{C~audia asking questions about this}

It's the same data, the controller just holds "it" for 20
milliseconds, ... {can't hear}

There are some hard limits for sensor validation, the controller
has what amounts to sensor validation for all the redline
parameters and launch commit criteria. They're automated, it
doesn't let any parameter exceed a reasonable max or min value
prior to the test. You would have to reconstruct the controller
qualification limits in your model.

Q: Wouldn't that come out of the fids, we would probably have to
trans~ate those codes?

A: Yes, it would come out of the fids and if you're watching the
fids, there are a couple of fids that give you failures, engine
status word, etc., that you could pick up, it gives an integer
representation of a octal, which you would have to translate into
what the fid is on, it may be just as easy to reproduce the
controller limits.

Q: When it comes back on the quick look sheet, it lists the fid
on the top, does it just list the number?

{Agreeing type sound from Marc}

good its just the number.

A: Well unless the guy that recorded it looks it up.

Q: Those numbers are in the controller document.

A: There is a better copy of that. This may be an old Block I
copy.

{I have that}

The ED people have a 40 page break out of all the sensor
qualification criteria and redline criteria.

Q: What is ED?

A: They are the controller software people and the controller
hardware people, instrumentation is over in ED.

Sensor validation, the last thing I can think of is that you'd
need it to have an experience database. We have some sensors that
have characteristics that do not operate correctly; they've done
it forever and we understand why they do it, we just disregard it.
For example, fuel preburner chamber pressure used to steadily drift
down when we knew the pressure was constant, because of thermal
effects. Some engines have an insulator block, a remote mount on
the sensor so it doesn't drift.

Another example would be main chamber ••.

Q: Hot gas injection pressure, PID 24?

A: No, it's real.

Q: It read 14.7 a lot of the time.

A: That's when it's not hooked up. You could look at sensor
validation, one part of it, is as knowing what instrumentation is
there. {Can't hear}

Q: That would be listed somewhere in the pretest document that
that instrumentation wasn't going to be hooked up?

A: Yeah, a lot of the times you have to go back to the first test
of the engine, because that's where they give you an engine
configuration. -A3--1C73

Page 4

Q: What's the component that tracks the engine? A component that
stays with the engine, doesn't get switched out?

A: There's really not one. In general, the powerhead, but that's
not always true.

{can't hear}

On the lox preburner we had an icing problem, where the data
always looks like this then it goes into a straight line, during
a shutdown it may go like this and may come back in •• now that's one
that has happened over and over in the past. I don't know if it
does it now. Now, we've also had other parameters where we've seen
this, and we rationalized that it was the same sort of phenomena
that we saw in this parameter. In short, there may be a way to
database sensor failure problems for future use that can be
referred back to.

Q: So I care about a sensor going flat at about the same
magnitude, it could also go flat if there were hard failures so
that we could assume ..•

A: In those hard rules in the qualification criteria, what they
do is set the criteria at (maybe) the upper range of the sensor.
The turbine discharge, the redline parameters, they have mostly an
upper limit (but the lox side also has a low one) and the way they
are set up they have qualification criteria that bracket the
redline, so that if you come up in here and dwell in this point and
this band or this band or three major cycles it will shut down, if
you pass through that band and come up here then you disqualify the
sensor. I can't figure out how a this could be real and "it" still
be in one piece. So that's how that qualification criteria works.
There are other, and its in the software also, the bit toggle on
the sensor, which gets back into the data characteristics, is there
the range is there, and if you see one do this {scribbling}, than
it is out of range or that it is topped out. That happens, in
fact, it happens with the fuel bleed valve position on almost every
pretest, when you chill, the valve is open to 100% and you start
loading propellants and the temps dropped and the valve position
creeps up and then it changes data characteristics and its reading,
and its bit toggling like this, across a flat line. Its at 106%,
its just topped out, its full open and the thermal effect causes
an electronics to read the top of the range to the sensors. But
it doesn't have an upper qualification limit.

Q: Is there a select group of PIOs that you normally validate and
others that you don't? For instance, when they get through a data
book in the instrumentation package and that seems to concentrate
on these redundant channels A and B, and also CADs vs. Facility.
Do we just look at the PIDs in the package and say that if we
validate these, these are sufficient?

A: I think that the logic behind that is when I was setting ? was
to validate to redline and launch commit and the engine ready,
those types of parameters that we don't look at once we start the
engine, but we that have to rely on to start the engine for the
next test. In other words, there are a lot of parameters that are
not used during mainstage that are used just in prest art to check
through leaks, purges, those type of things, and if they were to
fail completely during mainstage, you wouldn't know it,

Q: Because you wouldn't care? You don't look at them during
mainstage?

A: You wouldn't care as far as that test goes but for the next
test, you would. Or, you would get into an engine test where you
would probably do an instrumentation checkout before you even try
to test again, but just knowing that there was an instrumentation
problem would give "them" a big lead time. The parameters that
have a direct influence on the engine I guess (the ones that we
have the requirements on them) are the ones that we look at and

Page 4

Q: What's the component that tracks the engine? A component that
stays with the engine, doesn't get switched out?

A: There's really not one. In general, the powerhead, but that's
not always true.

{can't hear}

On the lox preburner we had an icing problem, where the data
always looks like this then it goes into a straight line, during
a shutdown it may go like this and may come back in •• now that's one
that has happened over and over in the past. I don't know if it
does it now. Now, we've also had other parameters where we've seen
this, and we rationalized that it was the same sort of phenomena
that we saw in this parameter. In short, there may be a way to
database sensor failure problems for future use that can be
referred back to.

Q: So I care about a sensor going flat at about the same
magnitude, it could also go flat if there were hard failures so
that we could assume ..•

A: In those hard rules in the qualification criteria, what they
do is set the criteria at (maybe) the upper range of the sensor.
The turbine discharge, the redline parameters, they have mostly an
upper limit (but the lox side also has a low one) and the way they
are set up they have qualification criteria that bracket the
redline, so that if you come up in here and dwell in this point and
this band or this band or three major cycles it will shut down, if
you pass through that band and come up here then you disqualify the
sensor. I can't figure out how a this could be real and "it" still
be in one piece. So that's how that qualification criteria works.
There are other, and its in the software also, the bit toggle on
the sensor, which gets back into the data characteristics, is there
the range is there, and if you see one do this {scribbling}, than
it is out of range or that it is topped out. That happens, in
fact, it happens with the fuel bleed valve position on almost every
pretest, when you chill, the valve is open to 100% and you start
loading propellants and the temps dropped and the valve position
creeps up and then it changes data characteristics and its reading,
and its bit toggling like this, across a flat line. Its at 106%,
its just topped out, its full open and the thermal effect causes
an electronics to read the top of the range to the sensors. But
it doesn't have an upper qualification limit.

Q: Is there a select group of PIOs that you normally validate and
others that you don't? For instance, when they get through a data
book in the instrumentation package and that seems to concentrate
on these redundant channels A and B, and also CADs vs. Facility.
Do we just look at the PIDs in the package and say that if we
validate these, these are sufficient?

A: I think that the logic behind that is when I was setting ? was
to validate to redline and launch commit and the engine ready,
those types of parameters that we don't look at once we start the
engine, but we that have to rely on to start the engine for the
next test. In other words, there are a lot of parameters that are
not used during mainstage that are used just in prest art to check
through leaks, purges, those type of things, and if they were to
fail completely during mainstage, you wouldn't know it,

Q: Because you wouldn't care? You don't look at them during
mainstage?

A: You wouldn't care as far as that test goes but for the next
test, you would. Or, you would get into an engine test where you
would probably do an instrumentation checkout before you even try
to test again, but just knowing that there was an instrumentation
problem would give "them" a big lead time. The parameters that
have a direct influence on the engine I guess (the ones that we
have the requirements on them) are the ones that we look at and

-s10: Page 5

make sure that they are still okay. A good example is the main
fuel valve skin temps. We used to have problems with it but we
don't anymore, but it is just bonded to the outside of the duct and
wrapped and taped. We used to detects leaks and it used to be
bonded flight a lot. When it didn't bond, it just read ambient,
we lost it. It doesn't have any affect on flight, once it is
started you don't care ..• the main fuel valve is open.

Q: Before, we started talking about the CADs and facility
comparison, and you were a little concerned about the different
sampling rates ..•

A: Again, that is just for a small time slice.

Q: We were looking at it not from an engine anomaly standpoint,
we are still trying to figure out if we should screen some of this
stuff (or if we ought to screen some of the this stuff) before any
of the other models look at it. Because if there is a gross
difference between a CADs and facility measurement, maybe we could
eliminate one of those, so instead of looking at 754 they can use
the CADs speed measurement.

A: Yeah, there won't be any real gross differences, maybe 40 psi
in mainstage up, and you've got to have some sort of logic gives
you some leeway during the transient. One way that the controller
handles that for main chamber qualification is that it allows a
delta between the commanded pc and the measured pc of 200 psi
whenever the command is changing. It knows when the changing the
command it looks at the previous cycle and if its a different
command it puts the delta limit at 200. And then it says when the
command is not changed or 50 major cycles (which would be for one
second) then I change the limit to 75 psi. You're going to have
something similar to that in a lot of your rules.

Q: Doesn't it do that also to the turbine discharge temps, A
minus B?

A: No, that is two step redlines ...

Q: What does a two step redline mean?

A: A lot of parameters have redlines that are different for
different power levels. There are only five or six parameters that
have redlines, but there is a start redline on the turbine
discharge temp that is lower, this only lasts for a brief period
of time. That .because we always start at 100% power level. The
logic here is you want to make sure that it's cold enough at 100%
so that after you lift off and you go to the higher power level
that you have a margin to your real redline. That's not really
sensor validation.

There is a difference in the facility and CADs as far as (I
can't get into the electronics or the way the data is handled), but
there are filters that cause the data characteristics in a real
transient condition to look a lot different. I don't know if
that's anything you guys will have to worry about. We'll get into
a major incident where you have a huge change in a very short
amount of time. We had one where we boiled off the lox pump and
the ? speed went from 26 to 44 thousand rpm in ten (mils or minutes
7). The difference is, I think the cads data had characteristics
like "this" and the facility data was more like "that" {drawing
things}. We did different some sample rates, they are filtered
differently is all I'm trying to say is that I don't know how you
account for that in a changing condition. For most normal changes
transients doesn't matter. It all comes down that you have to know
the characteristics of instrumentation. We've had two different
types of temperature sensors in the turbine discharge, the start
transient, the RTD, the resistance? would do more like "this",
during the one second, and with thermocouple in, there would be a
response like "that". If we saw it on an RTD it would be a big
problem.

Q: Do the use RTDs all the time now?

-s10: Page 5

make sure that they are still okay. A good example is the main
fuel valve skin temps. We used to have problems with it but we
don't anymore, but it is just bonded to the outside of the duct and
wrapped and taped. We used to detects leaks and it used to be
bonded flight a lot. When it didn't bond, it just read ambient,
we lost it. It doesn't have any affect on flight, once it is
started you don't care ..• the main fuel valve is open.

Q: Before, we started talking about the CADs and facility
comparison, and you were a little concerned about the different
sampling rates ..•

A: Again, that is just for a small time slice.

Q: We were looking at it not from an engine anomaly standpoint,
we are still trying to figure out if we should screen some of this
stuff (or if we ought to screen some of the this stuff) before any
of the other models look at it. Because if there is a gross
difference between a CADs and facility measurement, maybe we could
eliminate one of those, so instead of looking at 754 they can use
the CADs speed measurement.

A: Yeah, there won't be any real gross differences, maybe 40 psi
in mainstage up, and you've got to have some sort of logic gives
you some leeway during the transient. One way that the controller
handles that for main chamber qualification is that it allows a
delta between the commanded pc and the measured pc of 200 psi
whenever the command is changing. It knows when the changing the
command it looks at the previous cycle and if its a different
command it puts the delta limit at 200. And then it says when the
command is not changed or 50 major cycles (which would be for one
second) then I change the limit to 75 psi. You're going to have
something similar to that in a lot of your rules.

Q: Doesn't it do that also to the turbine discharge temps, A
minus B?

A: No, that is two step redlines ...

Q: What does a two step redline mean?

A: A lot of parameters have redlines that are different for
different power levels. There are only five or six parameters that
have redlines, but there is a start redline on the turbine
discharge temp that is lower, this only lasts for a brief period
of time. That .because we always start at 100% power level. The
logic here is you want to make sure that it's cold enough at 100%
so that after you lift off and you go to the higher power level
that you have a margin to your real redline. That's not really
sensor validation.

There is a difference in the facility and CADs as far as (I
can't get into the electronics or the way the data is handled), but
there are filters that cause the data characteristics in a real
transient condition to look a lot different. I don't know if
that's anything you guys will have to worry about. We'll get into
a major incident where you have a huge change in a very short
amount of time. We had one where we boiled off the lox pump and
the ? speed went from 26 to 44 thousand rpm in ten (mils or minutes
7). The difference is, I think the cads data had characteristics
like "this" and the facility data was more like "that" {drawing
things}. We did different some sample rates, they are filtered
differently is all I'm trying to say is that I don't know how you
account for that in a changing condition. For most normal changes
transients doesn't matter. It all comes down that you have to know
the characteristics of instrumentation. We've had two different
types of temperature sensors in the turbine discharge, the start
transient, the RTD, the resistance? would do more like "this",
during the one second, and with thermocouple in, there would be a
response like "that". If we saw it on an RTD it would be a big
problem.

Q: Do the use RTDs all the time now?

Page 6

A: Yeah.

Q: When did this take place?

A: We were switching back and forth. On test data you're going
to get some thermocouple.

Q: This may be important if those two tests were being used as
the comparison tests. This may decide whether or not you had a
thermocouple or RTD, but it still would need to be flagged up
front.

A: That's the point, as long as it says that we had a significant
change in this parameter at this time, along with a footnote which
said that we went from a RTD to a thermocouple, then the engineer
would see immediately why the change is there.

Another example, though, of something that is a sensor
validation problem is that we have two different brands of
temperature transducers (ccv's and Stathan?). They have a 20 psi
(I think) delta. One of them is not allowed for flight engine
redline parameters, but the other is. But, you'll see a pressure
(mainly the intermediate seal purge pressure) that is close to the

min. limit during prestart •.. {can't hear}.

Q: {can't hear the question}

A: Tracer. It's the engine configuration.

Q: You mean that you can only tell from tracer? Would it show
up in the pretest package, like in h/ware changes?

A: It should show up in the engine configuration portion of the
original pretest (package). But, I'm not sure.

{Conversation about the tracer transfer problem}

Q: I understood (about Tracer) that the information didn't get
into it in a timely enough manner.

A: Right now it's not being used in that (time crunch) type of
mode.

Q: Maybe if something's off always by 20 psi, you could just
assume, and post a question?

A: I think that that's a good idea. Postulate and ask the data
analysts to try to verify. That's what we do.

Q: Would it be good to go through each of the data books and look
at every single plot or every single transducer or list of the cads
pids and facility pids and see that if this one exhibits this type
of historical behavior we could switch this out? I'm trying to
find out what the best way is to go about getting this.

{Asking how to best go about getting our needed sensor validation
info}

A: The last part is the tricky part ... I don't know how methodical
it would be, I've looked at 5-600 tests before that. You need data
that exhibits nominal behavior routinely, or pretty often.

Q: What would be nice in this case, is data that exhibits sensor
problems so we know, well you were able to give quite a few example
as you were going through, but the only way, we need to get as much
of that as possible.

A: Maybe going through a pid list would be the best way to it.
You should be able to get the zero shifts from the model people.

For now, I'll just tell you what I can think of:

The bleed valves have LVDT's that have, {two different
lots ... } {can't hear} ... the cryogenics and when the bleed valve

Page 6

A: Yeah.

Q: When did this take place?

A: We were switching back and forth. On test data you're going
to get some thermocouple.

Q: This may be important if those two tests were being used as
the comparison tests. This may decide whether or not you had a
thermocouple or RTD, but it still would need to be flagged up
front.

A: That's the point, as long as it says that we had a significant
change in this parameter at this time, along with a footnote which
said that we went from a RTD to a thermocouple, then the engineer
would see immediately why the change is there.

Another example, though, of something that is a sensor
validation problem is that we have two different brands of
temperature transducers (ccv's and Stathan?). They have a 20 psi
(I think) delta. One of them is not allowed for flight engine
redline parameters, but the other is. But, you'll see a pressure
(mainly the intermediate seal purge pressure) that is close to the

min. limit during prestart •.. {can't hear}.

Q: {can't hear the question}

A: Tracer. It's the engine configuration.

Q: You mean that you can only tell from tracer? Would it show
up in the pretest package, like in h/ware changes?

A: It should show up in the engine configuration portion of the
original pretest (package). But, I'm not sure.

{Conversation about the tracer transfer problem}

Q: I understood (about Tracer) that the information didn't get
into it in a timely enough manner.

A: Right now it's not being used in that (time crunch) type of
mode.

Q: Maybe if something's off always by 20 psi, you could just
assume, and post a question?

A: I think that that's a good idea. Postulate and ask the data
analysts to try to verify. That's what we do.

Q: Would it be good to go through each of the data books and look
at every single plot or every single transducer or list of the cads
pids and facility pids and see that if this one exhibits this type
of historical behavior we could switch this out? I'm trying to
find out what the best way is to go about getting this.

{Asking how to best go about getting our needed sensor validation
info}

A: The last part is the tricky part ... I don't know how methodical
it would be, I've looked at 5-600 tests before that. You need data
that exhibits nominal behavior routinely, or pretty often.

Q: What would be nice in this case, is data that exhibits sensor
problems so we know, well you were able to give quite a few example
as you were going through, but the only way, we need to get as much
of that as possible.

A: Maybe going through a pid list would be the best way to it.
You should be able to get the zero shifts from the model people.

For now, I'll just tell you what I can think of:

The bleed valves have LVDT's that have, {two different
lots ... } {can't hear} ... the cryogenics and when the bleed valve

-510: Page 7

closes at 100% and it tappers off and it does something like this
and it gradually closes. It starts to close at start enable, at
2.3 seconds engine start and at start enable plus 2 sec., the
controller checks it to be below 20 degrees and one of the lots
plateau out right at 20, in fact we can cut if off right on an FRS
pad. So they disallow use of those on the fuel side and they only
use them on the lox side, because the lox side is warmer than the
fuel side, about 120 degree. We are using one of these out on test
bed, and we just raised the limit to 30% max position. You would
see 10-15 percent delta in the position, depending on which LVDT
you use. It is important in that you have two different levels
depending on what sensor you use. That may just be a limit check.

0: You said this was done by different lots?

A: A certain lot of them had displayed the different
characteristics.

Q: I'm confused, is the lot all gone now, you don't have that
problem anymore?

A: They still exist, they built certain bleed valves, and those
bleed valves come out use a certain lot of LVDTs and they are in
the program. And we try to separate them and use those on the lox
side for flight engines. And what we do on the test end is address
the concern, we can raise the limit or we can take our chances.
You wouldn't want your program or model to say there was a problem
because it was close to 20 if it knew it had one of those LVDTs.

Q: So, what your saying is that at start enable plus 2 seconds
for this parameter, there is a check below 20, but on all tests you
could say its below 30 and be okay, it just flight that absolutely
needs to be below 201

A: Well, the limit's in there all the time. You're checking
against the limit, your program will check against the hard limit
and will probably also look for changes, and, the level that it
settles down at, even if it is below the limit. The limit is the
last, the hard limit. I guess I see what you guys are doing, you
have data here and your checking here against what it's expected
to be at, here is your historical two sigma, type bands, bracketing
those or hard limits. {Scribbling wildly} Maybe layers of checks,
with maybe in "here" a tight band that calls out a potential
problem. What the model has to do is tell us that we are moving
towards a situation.

An example would be where we had a purge pressure (we purge
with nitrogen) until some time past purge sequence number four,
it's a nitrogen purge in the preburner, we turn the purge off and
check that to be below 50 psi, that's the 50 psi max limit. When
you cut it off and met other requirements you get engine ready,
then you get engine start. We've got a violation in this limit,
at engine start on one test it went like this {drawing} and broke
the 50 psi limit, we went back and looked at the test and instead
of coming down here to 14.7 it was hanging up around here and
gradually going down, which told us we had a leak in a check valve
that we didn't catch because it was well within these limits. We
then started looking at that parameter to make sure it was going
down "here". I assume what you guys are going to do is check
against the numbers of different criteria and have various levels
of concern.

You could have a similar situation if a sensor is going bad
and you still want to qualify it. You'll want a tighter check on
it to give you an indication that it is going bad before it
actually goes bad.

Going back to the bleed value, if I had one of the bleed
valves that was supposed to be at 6 and it was reading 20, then
that wouldn't be good. I couldn't say that that was OK.

0: How do you know that it was supposed to read 61

A: You have two different databases. {I think he's trying to

-510: Page 7

closes at 100% and it tappers off and it does something like this
and it gradually closes. It starts to close at start enable, at
2.3 seconds engine start and at start enable plus 2 sec., the
controller checks it to be below 20 degrees and one of the lots
plateau out right at 20, in fact we can cut if off right on an FRS
pad. So they disallow use of those on the fuel side and they only
use them on the lox side, because the lox side is warmer than the
fuel side, about 120 degree. We are using one of these out on test
bed, and we just raised the limit to 30% max position. You would
see 10-15 percent delta in the position, depending on which LVDT
you use. It is important in that you have two different levels
depending on what sensor you use. That may just be a limit check.

0: You said this was done by different lots?

A: A certain lot of them had displayed the different
characteristics.

Q: I'm confused, is the lot all gone now, you don't have that
problem anymore?

A: They still exist, they built certain bleed valves, and those
bleed valves come out use a certain lot of LVDTs and they are in
the program. And we try to separate them and use those on the lox
side for flight engines. And what we do on the test end is address
the concern, we can raise the limit or we can take our chances.
You wouldn't want your program or model to say there was a problem
because it was close to 20 if it knew it had one of those LVDTs.

Q: So, what your saying is that at start enable plus 2 seconds
for this parameter, there is a check below 20, but on all tests you
could say its below 30 and be okay, it just flight that absolutely
needs to be below 201

A: Well, the limit's in there all the time. You're checking
against the limit, your program will check against the hard limit
and will probably also look for changes, and, the level that it
settles down at, even if it is below the limit. The limit is the
last, the hard limit. I guess I see what you guys are doing, you
have data here and your checking here against what it's expected
to be at, here is your historical two sigma, type bands, bracketing
those or hard limits. {Scribbling wildly} Maybe layers of checks,
with maybe in "here" a tight band that calls out a potential
problem. What the model has to do is tell us that we are moving
towards a situation.

An example would be where we had a purge pressure (we purge
with nitrogen) until some time past purge sequence number four,
it's a nitrogen purge in the preburner, we turn the purge off and
check that to be below 50 psi, that's the 50 psi max limit. When
you cut it off and met other requirements you get engine ready,
then you get engine start. We've got a violation in this limit,
at engine start on one test it went like this {drawing} and broke
the 50 psi limit, we went back and looked at the test and instead
of coming down here to 14.7 it was hanging up around here and
gradually going down, which told us we had a leak in a check valve
that we didn't catch because it was well within these limits. We
then started looking at that parameter to make sure it was going
down "here". I assume what you guys are going to do is check
against the numbers of different criteria and have various levels
of concern.

You could have a similar situation if a sensor is going bad
and you still want to qualify it. You'll want a tighter check on
it to give you an indication that it is going bad before it
actually goes bad.

Going back to the bleed value, if I had one of the bleed
valves that was supposed to be at 6 and it was reading 20, then
that wouldn't be good. I couldn't say that that was OK.

0: How do you know that it was supposed to read 61

A: You have two different databases. {I think he's trying to

0: Page 8

explain that it's in his head, this part is hard to hear}

The MCC coolant discharge pressure, PID #17: I think that the
discharge pressure and temps are here (PIDs 17, 18?) and it goes
down and goes into the low pressure turbine inlet. Before it goes
in here you have to get 436, which is pressure. If you plot them
both together, 436 might be like "that" {drawing things} and 17 is
a higher pressure. There is one example of something where you can
go back and compare another parameter in the system to validate.

Q: Does it normally drift because there is a sensor problem
there?

A: I assume that it's a sensor problem. Low parameters: I don't
put a lot of weight on them.

Q: Really if 17 was moving around and 436 wasn't you should be
pretty suspicious?

A: That's right. It doesn't necessarily have to be the sensor,
but at that point I would assume it. The reason I say that is if
you look at the hot gas manifold pressure (and that parameter just
goes allover), they have an acrylic vinyl power head and they can
introduce bubbles into it so you can see the flow. The exhaust
from the fuel turbine goes all the way to the power head(?) .

Q: Are they working now with 2 ducts?

A: They're running them.

Q: Weren't they eating up the chambers?

A: Well, I'm not sure if they've resolves that yet or not, but
that's what they're going to be flying.

{Commentary on the 2 duct stuff}

Anyway, you have your injectors here, and the flow from the
fuel side is coming all the way over here. I have always been told
that the stagnation point is something like this, it probably
varies with power levels. My point is, any pressure taken in here
is subject to the flow dynamics in a very complex system. You just
have to understand what the physical conditions are that reach
instrumentation.

{End of Tape4, SV#l}

{Conversation with Marc Neely continued on TapeS, Neely/Foust}

{Marc Neely continued}

{Tape marked tape S Neely/Dave Foust}

Q: Is it because this it's unclear where the stagnation point is
that the hot gas manifold press jumps allover the place?

A: Yes. Depending on the power level and the balance between the
pumps, the pump efficiencies can cause a difference in this. You
couldn't have a very high efficiency fuel turbine and a low
efficiency lox turbine that requires more hot gas flow to drive it
to maintain the mixture ratio. This changes that stagnation point.
If the stagnation point is right on the transducer then ...

That's not a sensor prob, that's a question of how valid the
reading is.

The pump speeds, mostly the low press pump but sometimes the
high press pump, they tend to have a problem. At times they
display a real wide band of data.

Q: pid 30 does this often.

A: There is a probe that reads something on the shaft (a magnetic

0: Page 8

explain that it's in his head, this part is hard to hear}

The MCC coolant discharge pressure, PID #17: I think that the
discharge pressure and temps are here (PIDs 17, 18?) and it goes
down and goes into the low pressure turbine inlet. Before it goes
in here you have to get 436, which is pressure. If you plot them
both together, 436 might be like "that" {drawing things} and 17 is
a higher pressure. There is one example of something where you can
go back and compare another parameter in the system to validate.

Q: Does it normally drift because there is a sensor problem
there?

A: I assume that it's a sensor problem. Low parameters: I don't
put a lot of weight on them.

Q: Really if 17 was moving around and 436 wasn't you should be
pretty suspicious?

A: That's right. It doesn't necessarily have to be the sensor,
but at that point I would assume it. The reason I say that is if
you look at the hot gas manifold pressure (and that parameter just
goes allover), they have an acrylic vinyl power head and they can
introduce bubbles into it so you can see the flow. The exhaust
from the fuel turbine goes all the way to the power head(?) .

Q: Are they working now with 2 ducts?

A: They're running them.

Q: Weren't they eating up the chambers?

A: Well, I'm not sure if they've resolves that yet or not, but
that's what they're going to be flying.

{Commentary on the 2 duct stuff}

Anyway, you have your injectors here, and the flow from the
fuel side is coming all the way over here. I have always been told
that the stagnation point is something like this, it probably
varies with power levels. My point is, any pressure taken in here
is subject to the flow dynamics in a very complex system. You just
have to understand what the physical conditions are that reach
instrumentation.

{End of Tape4, SV#l}

{Conversation with Marc Neely continued on TapeS, Neely/Foust}

{Marc Neely continued}

{Tape marked tape S Neely/Dave Foust}

Q: Is it because this it's unclear where the stagnation point is
that the hot gas manifold press jumps allover the place?

A: Yes. Depending on the power level and the balance between the
pumps, the pump efficiencies can cause a difference in this. You
couldn't have a very high efficiency fuel turbine and a low
efficiency lox turbine that requires more hot gas flow to drive it
to maintain the mixture ratio. This changes that stagnation point.
If the stagnation point is right on the transducer then ...

That's not a sensor prob, that's a question of how valid the
reading is.

The pump speeds, mostly the low press pump but sometimes the
high press pump, they tend to have a problem. At times they
display a real wide band of data.

Q: pid 30 does this often.

A: There is a probe that reads something on the shaft (a magnetic

-s10: Page. 9

reading) as it's rotating. If the probe gets too close to the
(shaft) and the shaft has some axial or radial movement, then the
signal can be distorted.

{can't hear}

Q: There you'd check for excessive noise'? Typically there's some
fluctuation but not on the order of 1000 rpm?

A: Yes.

{June asking something}

A: We don't look at a speed that's real erratic. We don't look
at the pump discharge press, for example, we just assume there is
something wrong with that parameter.

Q: The sensor is really not bad there. Don't you use the average
as the correct value?

A: You could. Maybe you'd need a correction.

Q: Does the thing go back to normal?

A: It can, typically it doesn't. If it's bad, it's bad.

There's a similar problem with the fuel flowmeter speed where
there's a synchronous frequency oscillation in the data. This is
a function of the sampling rate vs. the controller cycle. I
wouldn't worry about that. It has an effect on the engine
performance, but it's very, very Slight. It could cause valve
position commands to "do that" {drawing} but not to a magnitude
such that it affects the actual (valve) position.

Q: If the fuel flowmeter is calibrated and Kf is off, when you
plot out the actual parameter, do you know what those pids are for
and how we can use them to validate (Kf)?

A:
is

Q:

The model people may be the better people to ask. The Kf pid
just a constant, I don't know what plotting it does for you.

Well, it definetly varies with power level.

A: The Kf is just a constant that you use in the calculation of
volumetric flow that says if the flowmeter turns at this speed,
then the volumetric flow is whatever.

The only way to make sure that flowrate is correct is to do
data reduction. That's the primary function of the modelling
group: to validate Kf and C2. They have a process to do that, it
gets to be very small adjustments, like exit plane pressure. It's
all ISP.

I can't think of any other instrumentation that you'd have a
problem with. Other than failure characteristics.

Q: Failure characteristics of the sensors?

A: No, of the engine.

{Long conversation on who we're interviewing during the week}

{Question not recorded}

As long as you have hard limits in, I think you'll be ok. The
limits that the controller as, is for failure. Anything outside
those limits is a failure. You may want less stringent limits.
We've had situations where the data changes slightly over a series
o£ tests, without a significant change from one test to its
previous test. You have to catch these kinds of trends.

Q:Wouldn'c that show up in the 2-sigma comparison?

A: Your 2-sigma is going to tend to grow. We just apply 2-sigma

-s10: Page. 9

reading) as it's rotating. If the probe gets too close to the
(shaft) and the shaft has some axial or radial movement, then the
signal can be distorted.

{can't hear}

Q: There you'd check for excessive noise'? Typically there's some
fluctuation but not on the order of 1000 rpm?

A: Yes.

{June asking something}

A: We don't look at a speed that's real erratic. We don't look
at the pump discharge press, for example, we just assume there is
something wrong with that parameter.

Q: The sensor is really not bad there. Don't you use the average
as the correct value?

A: You could. Maybe you'd need a correction.

Q: Does the thing go back to normal?

A: It can, typically it doesn't. If it's bad, it's bad.

There's a similar problem with the fuel flowmeter speed where
there's a synchronous frequency oscillation in the data. This is
a function of the sampling rate vs. the controller cycle. I
wouldn't worry about that. It has an effect on the engine
performance, but it's very, very Slight. It could cause valve
position commands to "do that" {drawing} but not to a magnitude
such that it affects the actual (valve) position.

Q: If the fuel flowmeter is calibrated and Kf is off, when you
plot out the actual parameter, do you know what those pids are for
and how we can use them to validate (Kf)?

A:
is

Q:

The model people may be the better people to ask. The Kf pid
just a constant, I don't know what plotting it does for you.

Well, it definetly varies with power level.

A: The Kf is just a constant that you use in the calculation of
volumetric flow that says if the flowmeter turns at this speed,
then the volumetric flow is whatever.

The only way to make sure that flowrate is correct is to do
data reduction. That's the primary function of the modelling
group: to validate Kf and C2. They have a process to do that, it
gets to be very small adjustments, like exit plane pressure. It's
all ISP.

I can't think of any other instrumentation that you'd have a
problem with. Other than failure characteristics.

Q: Failure characteristics of the sensors?

A: No, of the engine.

{Long conversation on who we're interviewing during the week}

{Question not recorded}

As long as you have hard limits in, I think you'll be ok. The
limits that the controller as, is for failure. Anything outside
those limits is a failure. You may want less stringent limits.
We've had situations where the data changes slightly over a series
o£ tests, without a significant change from one test to its
previous test. You have to catch these kinds of trends.

Q:Wouldn'c that show up in the 2-sigma comparison?

A: Your 2-sigma is going to tend to grow. We just apply 2-sigma

0: Page 10

database to the max lox turbine temp condition and max fuel turbine
temp condition, and those are generally opposite. They take place
at different times. If you don't have similar test profiles, it's
very hard to construct a 2-sigma database. I don't know how you'd
do it in real time.

Q: Right now the data package contains certain start and shutdown
2-sigma comparisons.

A: But it's only valid during certain time frames.

Q: You mentioned before that if one of those bleed valves was
reading 6% for several test firings and then all of a sudden it
read 19%, it's still below the limit, but you'd be suspicious if
it's the same valve and nothing else has been changed out.

A: Right.

Q: Can you break up this type of reasoning by component?

A: I'd break it up per parameter.

Q: Aren't there several measurements that indicate directly the
health of a particular component?

A: All of them ought to.

Q: Do the modelling people trend, say, pump efficiency?

A: Yes, but there's a lot of leniency on that. There shouldn't
be much leniency at all on ... I don't know how you can put
importance on that.

{Catherine is ordering pizza}

I have limits in my head, bands, that I reason with.

Q: Is this a delta from another test?

A: No, these bands are built up of my experience, what I've seen
before, what I know from reading the pretest, what I expect, and
these are very tight bands because a data analyst must be
conservative. You don't want to think it's ok when it's not. Then
you have these bands (may be 2-sigma bands) which may be looser.
Then you have the hard limits (controller limits?). You're
probably looking for something that, for instance, doesn't matter
if it's not nominal if we expected it. I don't know how you'd do
that except on a parameter by parameter level.

Q: Intelligent limits.

Q: The High Pot system has a table of tolerances based on the
experts' views of what to expect. They are also tied to the
statistics (mean, standard deviation). The idea would be to update
this table based on any new. information.

A: You're going to compare what's expected to what'S taking
place?

{We flag things that are outside of a delta compared to previous
tests. Starting with the tightest delta}

You can compare two anomalous test, they can both be the same and
still both be wrong. We had a situation where we turn off the
purge, and have a 50 psi limit which is supposed to come down to
14.7. Over a series of tests it came down and stayed up a little
high, gradually tailoring off at engine start. On one test it came
in below 50 psi and on engine start, it started up. This was a
check valve that gradually leaked more and more and eventually cut
the test. You have to be careful about this type of thing. I hope
we're not looking to see if it looks exactly like it did last time.

{Defensive action by Tim}

0: Page 10

database to the max lox turbine temp condition and max fuel turbine
temp condition, and those are generally opposite. They take place
at different times. If you don't have similar test profiles, it's
very hard to construct a 2-sigma database. I don't know how you'd
do it in real time.

Q: Right now the data package contains certain start and shutdown
2-sigma comparisons.

A: But it's only valid during certain time frames.

Q: You mentioned before that if one of those bleed valves was
reading 6% for several test firings and then all of a sudden it
read 19%, it's still below the limit, but you'd be suspicious if
it's the same valve and nothing else has been changed out.

A: Right.

Q: Can you break up this type of reasoning by component?

A: I'd break it up per parameter.

Q: Aren't there several measurements that indicate directly the
health of a particular component?

A: All of them ought to.

Q: Do the modelling people trend, say, pump efficiency?

A: Yes, but there's a lot of leniency on that. There shouldn't
be much leniency at all on ... I don't know how you can put
importance on that.

{Catherine is ordering pizza}

I have limits in my head, bands, that I reason with.

Q: Is this a delta from another test?

A: No, these bands are built up of my experience, what I've seen
before, what I know from reading the pretest, what I expect, and
these are very tight bands because a data analyst must be
conservative. You don't want to think it's ok when it's not. Then
you have these bands (may be 2-sigma bands) which may be looser.
Then you have the hard limits (controller limits?). You're
probably looking for something that, for instance, doesn't matter
if it's not nominal if we expected it. I don't know how you'd do
that except on a parameter by parameter level.

Q: Intelligent limits.

Q: The High Pot system has a table of tolerances based on the
experts' views of what to expect. They are also tied to the
statistics (mean, standard deviation). The idea would be to update
this table based on any new. information.

A: You're going to compare what's expected to what'S taking
place?

{We flag things that are outside of a delta compared to previous
tests. Starting with the tightest delta}

You can compare two anomalous test, they can both be the same and
still both be wrong. We had a situation where we turn off the
purge, and have a 50 psi limit which is supposed to come down to
14.7. Over a series of tests it came down and stayed up a little
high, gradually tailoring off at engine start. On one test it came
in below 50 psi and on engine start, it started up. This was a
check valve that gradually leaked more and more and eventually cut
the test. You have to be careful about this type of thing. I hope
we're not looking to see if it looks exactly like it did last time.

{Defensive action by Tim}

S~O: Page ~1

The other thing you'll run into is if there aren't comparison
tests. (i.e. the first fun of an engine, or new pumps, valves ...)

{Defensive action by Claudia}

{Jean explains phases}

Then you miss anomalies.

{Jean explains events}

Even if I'm looking at 100% rpl, 30 npsp on the lox, 8 on the fuel,
and that's a phase with nominal repress conditions, I may not have
a similar point or similar phase on a comparison test. Then I'd
have to apply gains, that gets subjective.

{End of conversation with Marc Neely}

S~O: Page ~1

The other thing you'll run into is if there aren't comparison
tests. (i.e. the first fun of an engine, or new pumps, valves ...)

{Defensive action by Claudia}

{Jean explains phases}

Then you miss anomalies.

{Jean explains events}

Even if I'm looking at 100% rpl, 30 npsp on the lox, 8 on the fuel,
and that's a phase with nominal repress conditions, I may not have
a similar point or similar phase on a comparison test. Then I'd
have to apply gains, that gets subjective.

{End of conversation with Marc Neely}

Page 1

Begins middle of tape marked "5" in Claudia's collection

{Amy is currently working on this. She will mail out a revised
version as soon as she can figure out what plot packages Mr. Foust
is referring to, and mark the pages in the text. This is
anticipated to take a few days.}

4-30-92 conversation with David Foust about sensor validation,
phases, and features. Going over data packages from test 902-551,
engine 2017.

A: This is the calibration test for quad engine 2017, it does
have venting, is a flight engine, and has a couple green run pumps
on it. I'll point out what's normal in terms of instrumentation
and point out ranges of what we look for as what's normal or
abnormal.

{Looking through ??? package}

This is the pcv actuator position A & B. There's a 3/4 of a
percent delta between A & B channels. That's a little bit high.
Usually it's less than about 1/2 of a percent.

Fl?B pc: (NFD is "non-flight data" that means its a facility
measurement) it drifts and is erratic during mainstage. We tend
to see Fl?B pc drift. This is pretty common. It being erratic -
that means that the cable is bad or something along those lines.
OPB pc goes bad at start plus 236 seconds. l?B pump discharge
pressure (NFD) drops 120 psi from engine start plus 95 to 125
seconds. The hpop discharge pressure NFD shifts and spikes
throughout mainstage. The hpop primary seal drain pressure *3
(there's three measurements on that) is high/erratic throughout the
test. HPFP disch pressure channel A is low from engine start plus
5 to 63 sec and then **** facility l?ID.

{Looking through instrumentation stuff, don't know what package
yet}

CCV actuator position (page 55) has a delta early in the
test, before the bucket which is fairly small and starts growing
throughout the test. You can see it in the 3g throttle and when
they cut off. I don't think it was the magnitude so much as they
were calling out that it's zero here, and came to be a delta later.
This is kind of unusual.

Q: So, a certain delta could be expected but you would expect it
to be the same throughout the test?

A: Yes. The delta is not really all that big on this particular
plot. We've seen it as much as 1 percent between the A and the B.
But, the fact that it was zero here and have a delta of 3/4% to a
percent out here, that's kind of unusual. Typically it will stay
constant throughout pre-start, mainstage, and shutdown.

Q: Unusual for any actuator position?

A: Yes. They should stay fairly constant if there's a delta
between them.

Next one, this is a calculation of the delta. A minus B.

Here is fpb chamber pressure. This is a typical measurement
where we see drift a lot. I mean by drift that it tends to, say,
start up out here at say 104% and by the end of the test at 104%
you might be 50-150 psi lower. (He points to erratic behavior in
the data and says that this is not a drift). It's a thermal drift
that they had a fix for called a remote mount transducer.
Typically, the pressure transducer is right there where the
pressure measurement is. They put a little sense line that remote
mounts the transducer from where the pressure is measured. This

Page 1

Begins middle of tape marked "5" in Claudia's collection

{Amy is currently working on this. She will mail out a revised
version as soon as she can figure out what plot packages Mr. Foust
is referring to, and mark the pages in the text. This is
anticipated to take a few days.}

4-30-92 conversation with David Foust about sensor validation,
phases, and features. Going over data packages from test 902-551,
engine 2017.

A: This is the calibration test for quad engine 2017, it does
have venting, is a flight engine, and has a couple green run pumps
on it. I'll point out what's normal in terms of instrumentation
and point out ranges of what we look for as what's normal or
abnormal.

{Looking through ??? package}

This is the pcv actuator position A & B. There's a 3/4 of a
percent delta between A & B channels. That's a little bit high.
Usually it's less than about 1/2 of a percent.

Fl?B pc: (NFD is "non-flight data" that means its a facility
measurement) it drifts and is erratic during mainstage. We tend
to see Fl?B pc drift. This is pretty common. It being erratic -
that means that the cable is bad or something along those lines.
OPB pc goes bad at start plus 236 seconds. l?B pump discharge
pressure (NFD) drops 120 psi from engine start plus 95 to 125
seconds. The hpop discharge pressure NFD shifts and spikes
throughout mainstage. The hpop primary seal drain pressure *3
(there's three measurements on that) is high/erratic throughout the
test. HPFP disch pressure channel A is low from engine start plus
5 to 63 sec and then **** facility l?ID.

{Looking through instrumentation stuff, don't know what package
yet}

CCV actuator position (page 55) has a delta early in the
test, before the bucket which is fairly small and starts growing
throughout the test. You can see it in the 3g throttle and when
they cut off. I don't think it was the magnitude so much as they
were calling out that it's zero here, and came to be a delta later.
This is kind of unusual.

Q: So, a certain delta could be expected but you would expect it
to be the same throughout the test?

A: Yes. The delta is not really all that big on this particular
plot. We've seen it as much as 1 percent between the A and the B.
But, the fact that it was zero here and have a delta of 3/4% to a
percent out here, that's kind of unusual. Typically it will stay
constant throughout pre-start, mainstage, and shutdown.

Q: Unusual for any actuator position?

A: Yes. They should stay fairly constant if there's a delta
between them.

Next one, this is a calculation of the delta. A minus B.

Here is fpb chamber pressure. This is a typical measurement
where we see drift a lot. I mean by drift that it tends to, say,
start up out here at say 104% and by the end of the test at 104%
you might be 50-150 psi lower. (He points to erratic behavior in
the data and says that this is not a drift). It's a thermal drift
that they had a fix for called a remote mount transducer.
Typically, the pressure transducer is right there where the
pressure measurement is. They put a little sense line that remote
mounts the transducer from where the pressure is measured. This

-s10: Page 2

way you don't get the big thermal effect on the transducer itself.

Q: Do you not see this in current tests?

A: You still do because they haven't gotten them on all engines
yet. There are still flight and ground test engines that don't
have them yet. But, if you see it you know it's thermal drift.

Q: You see this only during mainstage?

A: Typically, yes. Because that's when your propellants are
flowing and you're nice and cold right there.

Q: And then you would see the signal recover?

A: You would see it recover during post-shutdown. You're still
pretty cold after test. We pretty much don't look at it after
shutdown, but it's going to warm back up.

Q: When you see this drift, do you actually find what the
configuration is for that sensor (new or not)?

A: Typically, we'll just ask "them" during the data reviews if
this was remote mount or not.

Q: If that were remote mount and yo saw this, would you be
worried?

A: It still wouldn't be that big a concern. We actually have
seen a couple of tests, that are kind of outlyers, that have it.
They don't have a consistent way of doing remote mount. Sometimes
you'll have alot of special instrumentation and you can't do it the
same way.

Q: The drift is only for PID 410, not PID 158?

A: Right. This one's more than drift. It's actually a little
bit erratic {looking at a plot}. A drift has a smoother
characteristic, a slow, gradual drop. I wouldn't expect any kind
of "bumping around" like this.

Q; You just expect 158 with the slope?

A: Right. a very slight slope on it.

The fact that they're right on top of one another, and
starting to get a delta in the bucket ... that delta gets pretty big
(about 250 psi). I've seen as much as about 150 psi on a drift and
that's pretty high. So, this is more than just a drift. You can
see that the CAD's measurement is flat - so that's probably a
remote mount. The facility and CADS are both off the same
transducer, they just tee off each line. The drift is common in
flight also, if their isn't a remote mount.

This FPB pc. They have three different tests here and are
showing the trend. The main thing is that it's now negative.
Obviously, then, the sensor is off. It's significantly lower, like
a constant delta off. They probably had a vacuum reference leak
or something along those lines. We can check the next pre-test to
see what they actually found.

{Don't understand what we were talking about here. May want to
ignore this section}

Q: Does that partially explain that 250 psi on the previous
graph?

A: Right

That's just showing it post-shutdown, saying that we saw it

-s10: Page 2

way you don't get the big thermal effect on the transducer itself.

Q: Do you not see this in current tests?

A: You still do because they haven't gotten them on all engines
yet. There are still flight and ground test engines that don't
have them yet. But, if you see it you know it's thermal drift.

Q: You see this only during mainstage?

A: Typically, yes. Because that's when your propellants are
flowing and you're nice and cold right there.

Q: And then you would see the signal recover?

A: You would see it recover during post-shutdown. You're still
pretty cold after test. We pretty much don't look at it after
shutdown, but it's going to warm back up.

Q: When you see this drift, do you actually find what the
configuration is for that sensor (new or not)?

A: Typically, we'll just ask "them" during the data reviews if
this was remote mount or not.

Q: If that were remote mount and yo saw this, would you be
worried?

A: It still wouldn't be that big a concern. We actually have
seen a couple of tests, that are kind of outlyers, that have it.
They don't have a consistent way of doing remote mount. Sometimes
you'll have alot of special instrumentation and you can't do it the
same way.

Q: The drift is only for PID 410, not PID 158?

A: Right. This one's more than drift. It's actually a little
bit erratic {looking at a plot}. A drift has a smoother
characteristic, a slow, gradual drop. I wouldn't expect any kind
of "bumping around" like this.

Q; You just expect 158 with the slope?

A: Right. a very slight slope on it.

The fact that they're right on top of one another, and
starting to get a delta in the bucket ... that delta gets pretty big
(about 250 psi). I've seen as much as about 150 psi on a drift and
that's pretty high. So, this is more than just a drift. You can
see that the CAD's measurement is flat - so that's probably a
remote mount. The facility and CADS are both off the same
transducer, they just tee off each line. The drift is common in
flight also, if their isn't a remote mount.

This FPB pc. They have three different tests here and are
showing the trend. The main thing is that it's now negative.
Obviously, then, the sensor is off. It's significantly lower, like
a constant delta off. They probably had a vacuum reference leak
or something along those lines. We can check the next pre-test to
see what they actually found.

{Don't understand what we were talking about here. May want to
ignore this section}

Q: Does that partially explain that 250 psi on the previous
graph?

A: Right

That's just showing it post-shutdown, saying that we saw it

0: Page 3

erratic here in mainstage, looked good in start, I don't know what
it looked like in pre-start, but in post-shutdown and it's
definetly because you can't have a negative pressure.

Q: But it's still up at post-shutdown, then that wasn't thermal
drift, right?

A: No, I don't think it was drift. On this one {flips pages}
the CADS measurement is flat, so I think this one had a remote
mount. I think this is instrumentation. It was not thermal
drift.

{flips to another graph and points out ... } That's just a
confirmation that it was bad and stayed bad after shutdown.

LOX PB pc: don't really see drift on this, see it react to
the vent a little. You can see the delta, then it starts to go
erratic on the 3g throttle.

Q: What is an acceptable delta?

A: They should be pretty close. This is a little on the high
side.

Q: Why did you say that it was reacting to the vent?

A: The OPB pc tends to react. The lox turbine temps really show
how the lox side reacts to the vents. Here's the lox vent. they
vent down and then repressurize the system. {looking at lox
turbine temps now} See how they're increasing and then start to
decrease. This is a Power level change. Then they continue to
decrease. That's just a reaction to the vent.

Q: This is comparing the same PIO's from 2 different tests. So,
is this delta still acceptable?

A:
alot
each
near

I'd say there's different pumps or engines. That explains
of that. So, you're right, they shouldn't be right on top of
other. The spread being called out as instrumentation occurs
the 3g throttle.

Q: Without looking at any other parameters, you called this out
as instrumentation problems?

A: Yes. The 3g throttle is a nice, 5% per second throttle down
and is real consistent. You can see it stepping down normally here
{pointing at graph}. In this you see it doing something kind of
unusual. We don't have a CADS measurement on OPBP.

{looking at another graph}

This is facility meas. vs. CADS. You see here that the
facility was bad and CADS was good.

Q: What causes this to drop and then come back up?

A: Could be a loose cable on the connector to the sensor ...

Q: Do you still use this measurement in "these" ranges?

A: I'd say that it's probably still pretty good. If I had a
choice I'd pick the CADs measurement because it's nice and steady.
You obviously don't have a power level change in this area so you
know it's not real.

Q: Would you first make sure there weren't some other shifts
going on?

A: Sure. That's the first thing you check: Do I have some power
level shift or repress change or something unusual.Typically on a
test like this, we're going to repress out here around 200 seconds
{*may have been saying we won't typically ... }.

Q: But why would one see it and not the other, if they're

0: Page 3

erratic here in mainstage, looked good in start, I don't know what
it looked like in pre-start, but in post-shutdown and it's
definetly because you can't have a negative pressure.

Q: But it's still up at post-shutdown, then that wasn't thermal
drift, right?

A: No, I don't think it was drift. On this one {flips pages}
the CADS measurement is flat, so I think this one had a remote
mount. I think this is instrumentation. It was not thermal
drift.

{flips to another graph and points out ... } That's just a
confirmation that it was bad and stayed bad after shutdown.

LOX PB pc: don't really see drift on this, see it react to
the vent a little. You can see the delta, then it starts to go
erratic on the 3g throttle.

Q: What is an acceptable delta?

A: They should be pretty close. This is a little on the high
side.

Q: Why did you say that it was reacting to the vent?

A: The OPB pc tends to react. The lox turbine temps really show
how the lox side reacts to the vents. Here's the lox vent. they
vent down and then repressurize the system. {looking at lox
turbine temps now} See how they're increasing and then start to
decrease. This is a Power level change. Then they continue to
decrease. That's just a reaction to the vent.

Q: This is comparing the same PIO's from 2 different tests. So,
is this delta still acceptable?

A:
alot
each
near

I'd say there's different pumps or engines. That explains
of that. So, you're right, they shouldn't be right on top of
other. The spread being called out as instrumentation occurs
the 3g throttle.

Q: Without looking at any other parameters, you called this out
as instrumentation problems?

A: Yes. The 3g throttle is a nice, 5% per second throttle down
and is real consistent. You can see it stepping down normally here
{pointing at graph}. In this you see it doing something kind of
unusual. We don't have a CADS measurement on OPBP.

{looking at another graph}

This is facility meas. vs. CADS. You see here that the
facility was bad and CADS was good.

Q: What causes this to drop and then come back up?

A: Could be a loose cable on the connector to the sensor ...

Q: Do you still use this measurement in "these" ranges?

A: I'd say that it's probably still pretty good. If I had a
choice I'd pick the CADs measurement because it's nice and steady.
You obviously don't have a power level change in this area so you
know it's not real.

Q: Would you first make sure there weren't some other shifts
going on?

A: Sure. That's the first thing you check: Do I have some power
level shift or repress change or something unusual.Typically on a
test like this, we're going to repress out here around 200 seconds
{*may have been saying we won't typically ... }.

Q: But why would one see it and not the other, if they're

s10: Page 4

measuring the same thing?

A: You tee one wire off the pressure transducer to the facility
measurement system, and one wire off to the CADs measurement
system. You may have a loose wire, cable shaking, water in the
sense ~ine going to the faci~ity, ...

Q: If you saw one jump down, but didn't see the other one jump
down, would you still track it and see if there was a power level
shift?

A: Sure.

Q: So, really, you don't know if this sensor is bad, or the other
one at first?

A: Sure, anytime you see two measurements that are different, you
don't know which is bad. Now, I know a calibration test profile
and I know that there's no (power level change). I know that it's
the facility measurement that's bad. If you didn't know that for
sure you'd have to see if they did a power level change, did
something else go on, a repress change, something else in the
facility, you would investigate other parameters in that time
frame. If you don't see anything else moving, then you can say
that the facility measurement has the problem.

On the ground we usually have the CADs vs. facility on alot
of measurements which gives us a good way to check out what's bad.

Q: Do you have normal delta's anyplace stored for CADs vs.
facility?

A: No, there's nothing really hard and fast written down.

Q: How far would be too far apart?

A: I would say, typically on the OPB or FPB (preburner pump),
you're talking about a transducer that's probably about an 8000
pound transducer. The accuracy is probably about 15 psi. If it's
much more than 25 psi, than I would probably start looking at it
a little closer. But even on that, it's a pretty big transducer,
this comes into engineering judgement.

This is the HPOP disch. pressure CADs vs. facility and you see
here that the CAD is good and the facility is a little bit erratic.

Q: Is there something wrong with the facility data collection
here?

A: It may be they have some kind of problem with the facility.
This is unusual to have this many facility measurements going bad.

Once again, you see if you had any power level changes. Here
you see a delta here where you didn't see a delta early on. You
can double check but it looks like the facility measurement getting
erratic.

Q: This small rise here? They're both doing it ...

A: Then it's probably real.

Q: Would you check that? Does it mean anything to you?

A: On a scale of 250 psi, this is maybe 50. That's maybe a
little on the CADs but on facility it's only about 25 psi.

Q: So, you actually think about what your transducer's
capabilities are when you go through this?

A: Yes, you have to be careful because sometimes the scale is
really tight and something may look enormous when it is really
tiny. The HPOP disch. pressure is about 5000 pounds, pretty good
sized.

s10: Page 4

measuring the same thing?

A: You tee one wire off the pressure transducer to the facility
measurement system, and one wire off to the CADs measurement
system. You may have a loose wire, cable shaking, water in the
sense ~ine going to the faci~ity, ...

Q: If you saw one jump down, but didn't see the other one jump
down, would you still track it and see if there was a power level
shift?

A: Sure.

Q: So, really, you don't know if this sensor is bad, or the other
one at first?

A: Sure, anytime you see two measurements that are different, you
don't know which is bad. Now, I know a calibration test profile
and I know that there's no (power level change). I know that it's
the facility measurement that's bad. If you didn't know that for
sure you'd have to see if they did a power level change, did
something else go on, a repress change, something else in the
facility, you would investigate other parameters in that time
frame. If you don't see anything else moving, then you can say
that the facility measurement has the problem.

On the ground we usually have the CADs vs. facility on alot
of measurements which gives us a good way to check out what's bad.

Q: Do you have normal delta's anyplace stored for CADs vs.
facility?

A: No, there's nothing really hard and fast written down.

Q: How far would be too far apart?

A: I would say, typically on the OPB or FPB (preburner pump),
you're talking about a transducer that's probably about an 8000
pound transducer. The accuracy is probably about 15 psi. If it's
much more than 25 psi, than I would probably start looking at it
a little closer. But even on that, it's a pretty big transducer,
this comes into engineering judgement.

This is the HPOP disch. pressure CADs vs. facility and you see
here that the CAD is good and the facility is a little bit erratic.

Q: Is there something wrong with the facility data collection
here?

A: It may be they have some kind of problem with the facility.
This is unusual to have this many facility measurements going bad.

Once again, you see if you had any power level changes. Here
you see a delta here where you didn't see a delta early on. You
can double check but it looks like the facility measurement getting
erratic.

Q: This small rise here? They're both doing it ...

A: Then it's probably real.

Q: Would you check that? Does it mean anything to you?

A: On a scale of 250 psi, this is maybe 50. That's maybe a
little on the CADs but on facility it's only about 25 psi.

Q: So, you actually think about what your transducer's
capabilities are when you go through this?

A: Yes, you have to be careful because sometimes the scale is
really tight and something may look enormous when it is really
tiny. The HPOP disch. pressure is about 5000 pounds, pretty good
sized.

0: Page 5

Q: Do you have a list of the sensitivities and ranges?

A: Probably the PID list lists this.

Q: If you saw chamber pressures and other parameters rising by
the same types of percentages, would you look for an anomaly?

A: If I saw everything in the system reacting, I'd have to look
at it a little bit. You're going to see a little bit of bumping
around. HPOP disch. pressure is typically really flat. If you see
any kind of bumps or drifts in the HPOP disch. pressure, that's
unusual. That's what the engine controls to and it does not change
alot in one engine from test to test. This engine is running at
104% at 4025 psi, you can consistently expect that engine to run
at that pressure, +/- about 10-15 psi. If it changes, then there's
something unusual going on. We try to anchor our predictions on
HPOP disch. pressure because it's consistent.

This is the HPOP primary seal drain pressure. You have 3
pressure measurements, p1 p2 and p3. Typically, they are right on
top of each other. This is a small scale. This is gauge pressure.
I've seen them spread as much as maybe 0.2 psi apart and that
wouldn't bother me. The thing that caught there eye is that it's
erratic .. "this guy is bouncing around, and shifting" which tells
you there's something odd going on in that one measurement.
They're all in the drain line so they all should be pretty
consistent.

Q: Are these three different sensors?

A: I believe these are three separate transducers.

Q: Is there a delta that you'd worry about?

A: I'd say if it got up to around a half psi I'd be concerned.

{End of Tape}

{David Foust 3 side A: David Foust 2 had nothing on it!}

A: So, I've seen the deltas, I would say if I say one here at
-.4, -.2 and zero, that would be a pretty good size spread but it's
a pretty small pressure difference, so I wouldn't be too concerned
about it. You might mention it to them and recommend that they
check it out, but Stennis is not going to be able to do alot. I'd
maybe call it out, but if I saw about .5 psi (delta) I'd start
getting a little concerned. Now, if all 3 of them were high (3
or 4 psi) then you'd probably have a slight leak down that drain.

Q: Both these traces are drifting around in time. Is that a real
engine phenomenon?

A: Yeah, that's kind of a response to the bucket. You can see
the power level response. It also responds to the LOX vent. WE
peaked out on min. vent and are repressurizing in "this area here."
The whole LOX side responds to a LOX vent - even the fuel turbine
temps.

Q: So if this was really consistent here, a constant line but
shifted up, would you have a problem?

A: It depends on how big the shift was. If it's about .2, that's
not too bad. If it was "up here" then you might expect a scaling
constant on the transducer to be off.

Q: How closely would this trace follow "it". Would this bother
you where the delta is changing slightly?

A: That's a little unusual. Typically the drain line traces are
pretty consistent. That's a pretty small drain line so the 3
pressures should be doing about the same thing.

0: Page 5

Q: Do you have a list of the sensitivities and ranges?

A: Probably the PID list lists this.

Q: If you saw chamber pressures and other parameters rising by
the same types of percentages, would you look for an anomaly?

A: If I saw everything in the system reacting, I'd have to look
at it a little bit. You're going to see a little bit of bumping
around. HPOP disch. pressure is typically really flat. If you see
any kind of bumps or drifts in the HPOP disch. pressure, that's
unusual. That's what the engine controls to and it does not change
alot in one engine from test to test. This engine is running at
104% at 4025 psi, you can consistently expect that engine to run
at that pressure, +/- about 10-15 psi. If it changes, then there's
something unusual going on. We try to anchor our predictions on
HPOP disch. pressure because it's consistent.

This is the HPOP primary seal drain pressure. You have 3
pressure measurements, p1 p2 and p3. Typically, they are right on
top of each other. This is a small scale. This is gauge pressure.
I've seen them spread as much as maybe 0.2 psi apart and that
wouldn't bother me. The thing that caught there eye is that it's
erratic .. "this guy is bouncing around, and shifting" which tells
you there's something odd going on in that one measurement.
They're all in the drain line so they all should be pretty
consistent.

Q: Are these three different sensors?

A: I believe these are three separate transducers.

Q: Is there a delta that you'd worry about?

A: I'd say if it got up to around a half psi I'd be concerned.

{End of Tape}

{David Foust 3 side A: David Foust 2 had nothing on it!}

A: So, I've seen the deltas, I would say if I say one here at
-.4, -.2 and zero, that would be a pretty good size spread but it's
a pretty small pressure difference, so I wouldn't be too concerned
about it. You might mention it to them and recommend that they
check it out, but Stennis is not going to be able to do alot. I'd
maybe call it out, but if I saw about .5 psi (delta) I'd start
getting a little concerned. Now, if all 3 of them were high (3
or 4 psi) then you'd probably have a slight leak down that drain.

Q: Both these traces are drifting around in time. Is that a real
engine phenomenon?

A: Yeah, that's kind of a response to the bucket. You can see
the power level response. It also responds to the LOX vent. WE
peaked out on min. vent and are repressurizing in "this area here."
The whole LOX side responds to a LOX vent - even the fuel turbine
temps.

Q: So if this was really consistent here, a constant line but
shifted up, would you have a problem?

A: It depends on how big the shift was. If it's about .2, that's
not too bad. If it was "up here" then you might expect a scaling
constant on the transducer to be off.

Q: How closely would this trace follow "it". Would this bother
you where the delta is changing slightly?

A: That's a little unusual. Typically the drain line traces are
pretty consistent. That's a pretty small drain line so the 3
pressures should be doing about the same thing.

-s10: Page 6

Q: Is this one of the parameters where you could confirm if
there's a leak by looking at prestart?

A: Yes. You would see it leak.

Q: So, you would go back to prestart and check it?

A: Chances are that you're not going to see anything in prestart
because you're not flowing anything through the pump. But if you
were leaking through there and it did get in there, you'd see it
in prestart. The LOX system is pressurized to about 110 psi, which
would be enough to push it through the drain. The drain temps are
the key. If they drop like a rock, then you know you have a leak.

This is CADs vs. facility HPOP disch. pressure. It looks like
it's drifting. You have a delta here, but not out here. It's low
from engine start plus 5-63 seconds *** degrees. The fact that it
drifts a little is not too unusual, although typically it is fairly
consistent. This a fairly small scale, it's only drifting 25-30
psi. That's not too bad.

Q: Over what time are you saying this?

A: From here to here. You're venting during that time, at 109%
so that's not too unusual to see a little bit of a drift in that
measurement. The main thing is that you have a delta during start,
right after start, before the bucket and even during the bucket.
Once you come out of the bucket you're delta goes away. This is
what they're calling out.

Fuel vent doesn't have as much of an effect on everything like
LOX venting does. The mainstage is compared to 537, another
calibration test with the same duration and same power level
profile.

Q: Would they have thought that "this" delta is to wide, because
"this one" is right on.

A: Not really, these are valve positions. FPOV A and B side, for
each test compared against each other. You have to be careful with
the scale. This is maybe 0.5% which is getting kind of high
between the A and B channel on FPOV. It is consistent throughout
the test, but is a little bit large of a delta. The fact that one
test is here and the other here doesn't concern me because of
different engines, different pumps. You would expect that.

Q: Does the high delta between the A and B channels on one test
concern you about the engine or the instrumentation?

A: The instrumentation because it's consistent.

Q: So if you have a constant delta, you;re not concerned unless
the delta's too high. And if it's too high you suspect
instrumentation?

A: Maybe instrumentation, maybe the engine is running funny. You
have to check everything out. Typically when you have an instr.
problem, you check prestart. If you have a delta in mainstage, did
you have it in prestart? post-shutdown, did it continue through
shutdown and post.

If it didn't, check other things. For example if we suspected
FPOV, did we see the FPB pc spike at that time? Did FP speed go
up at that time? If it's a real valve shift we would expect a
reaction throughout the system, if it's instr., then nothing would
react. It's nice if you have CADs vs. facility but this is a CADs
only measurement.

Q: Let's say you called out that 0.5 % delta, I'm assuming the
modelling group uses alot of that data. Do you know which one they
would use?

-s10: Page 6

Q: Is this one of the parameters where you could confirm if
there's a leak by looking at prestart?

A: Yes. You would see it leak.

Q: So, you would go back to prestart and check it?

A: Chances are that you're not going to see anything in prestart
because you're not flowing anything through the pump. But if you
were leaking through there and it did get in there, you'd see it
in prestart. The LOX system is pressurized to about 110 psi, which
would be enough to push it through the drain. The drain temps are
the key. If they drop like a rock, then you know you have a leak.

This is CADs vs. facility HPOP disch. pressure. It looks like
it's drifting. You have a delta here, but not out here. It's low
from engine start plus 5-63 seconds *** degrees. The fact that it
drifts a little is not too unusual, although typically it is fairly
consistent. This a fairly small scale, it's only drifting 25-30
psi. That's not too bad.

Q: Over what time are you saying this?

A: From here to here. You're venting during that time, at 109%
so that's not too unusual to see a little bit of a drift in that
measurement. The main thing is that you have a delta during start,
right after start, before the bucket and even during the bucket.
Once you come out of the bucket you're delta goes away. This is
what they're calling out.

Fuel vent doesn't have as much of an effect on everything like
LOX venting does. The mainstage is compared to 537, another
calibration test with the same duration and same power level
profile.

Q: Would they have thought that "this" delta is to wide, because
"this one" is right on.

A: Not really, these are valve positions. FPOV A and B side, for
each test compared against each other. You have to be careful with
the scale. This is maybe 0.5% which is getting kind of high
between the A and B channel on FPOV. It is consistent throughout
the test, but is a little bit large of a delta. The fact that one
test is here and the other here doesn't concern me because of
different engines, different pumps. You would expect that.

Q: Does the high delta between the A and B channels on one test
concern you about the engine or the instrumentation?

A: The instrumentation because it's consistent.

Q: So if you have a constant delta, you;re not concerned unless
the delta's too high. And if it's too high you suspect
instrumentation?

A: Maybe instrumentation, maybe the engine is running funny. You
have to check everything out. Typically when you have an instr.
problem, you check prestart. If you have a delta in mainstage, did
you have it in prestart? post-shutdown, did it continue through
shutdown and post.

If it didn't, check other things. For example if we suspected
FPOV, did we see the FPB pc spike at that time? Did FP speed go
up at that time? If it's a real valve shift we would expect a
reaction throughout the system, if it's instr., then nothing would
react. It's nice if you have CADs vs. facility but this is a CADs
only measurement.

Q: Let's say you called out that 0.5 % delta, I'm assuming the
modelling group uses alot of that data. Do you know which one they
would use?

Page 7

A: Typically, we always use the A channel. It there's a
question, we check each vs. FPOV commanded value. We always have
the command to fall back on.

{end of this package, start with next}

{**started marking pages here***}

{Flipping through package marked "pretest" with no cover in our
set}

This is pretest, they give thrust profile, h/ware changes,
etc., times where we have min. lox vents, max lox repress, fuel
vents, doesn't show a repress change on here. The fuel has a min.
max repress cycle.

Q: The lox doesn't have repress anymore?

A: The lox has a fixed orifice on flight now.

The pretest comes in real handy, we also have the test
request. Some things are in here that aren't in the pretest.

{End of pretest package stuff}

{Going over GRPUMPS high pressure fuel pump package}

{calc 1}

This is for HPFP, most the parameters in this package are
geared toward the HPFP. This is FP disch. temp minus FP inlet temp
(delta temp. across HPFP). We look for any kind of shifts other
than power level shifts.

Q: Would that indicate an efficiency change?

A: Could be, also could be some kind of leakage. Could be instr.

Q: What would you consider a shift?

A: A shift up and down, or just shift up. We've seen that a few
times.

Q: More than 2 standard deviations?

A: Anything you'd catch by eye. You're not changing power level
or doing anything at that time, so you'd catch any change. On the
average you'd expect a delta temp of between 48 and 50. That's an
average pump.

{calc 2}

This is FP discharge pressure minus balance cavity pressure.
The balance cavity pressure is an indication of axial rotor motion.
Looking for shifts. You'll see a little drift, that's not unusual.

Q: The drift {downward slope from 65 sec to 170 sec} is
consistent from test to test?

A: I don't look at it too often from test to test. I would think
it would be consistent.

Q: Does it always drift down, and then up when you're going up
{upward slope from 1 to 60 seconds}?

A: This is start overshoot. You'll see alot of things in the
first 15 or 20 sec's that you won't see anywhere else. That's just
thermal transient, start overshoot ... This may be reacting a
little to the fuel vent. A downward drift is in the right 1\ \/"".,-
direction. 1"1 :3 -.:r-'c...-(

Page 7

A: Typically, we always use the A channel. It there's a
question, we check each vs. FPOV commanded value. We always have
the command to fall back on.

{end of this package, start with next}

{**started marking pages here***}

{Flipping through package marked "pretest" with no cover in our
set}

This is pretest, they give thrust profile, h/ware changes,
etc., times where we have min. lox vents, max lox repress, fuel
vents, doesn't show a repress change on here. The fuel has a min.
max repress cycle.

Q: The lox doesn't have repress anymore?

A: The lox has a fixed orifice on flight now.

The pretest comes in real handy, we also have the test
request. Some things are in here that aren't in the pretest.

{End of pretest package stuff}

{Going over GRPUMPS high pressure fuel pump package}

{calc 1}

This is for HPFP, most the parameters in this package are
geared toward the HPFP. This is FP disch. temp minus FP inlet temp
(delta temp. across HPFP). We look for any kind of shifts other
than power level shifts.

Q: Would that indicate an efficiency change?

A: Could be, also could be some kind of leakage. Could be instr.

Q: What would you consider a shift?

A: A shift up and down, or just shift up. We've seen that a few
times.

Q: More than 2 standard deviations?

A: Anything you'd catch by eye. You're not changing power level
or doing anything at that time, so you'd catch any change. On the
average you'd expect a delta temp of between 48 and 50. That's an
average pump.

{calc 2}

This is FP discharge pressure minus balance cavity pressure.
The balance cavity pressure is an indication of axial rotor motion.
Looking for shifts. You'll see a little drift, that's not unusual.

Q: The drift {downward slope from 65 sec to 170 sec} is
consistent from test to test?

A: I don't look at it too often from test to test. I would think
it would be consistent.

Q: Does it always drift down, and then up when you're going up
{upward slope from 1 to 60 seconds}?

A: This is start overshoot. You'll see alot of things in the
first 15 or 20 sec's that you won't see anywhere else. That's just
thermal transient, start overshoot ... This may be reacting a
little to the fuel vent. A downward drift is in the right 1\ \/"".,-
direction. 1"1 :3 -.:r-'c...-(

s10: Page 8

Q: You can expect a downward drift on the order of 50?

A: This is typical.

Q: Any spikes?

A: It would be more of a shift. Sometimes a sine wave, that
would be something bouncing around. The lox pump has alot more
anomalies (balance cavity-wise) than the fuel pump does.

Q: It's still drifting upward in the bucket.

A: You're going from 104% to 65%, that's a big change in power
level and thermals. Then you only stay there for 10-12 seconds.
That's not unusual.

You're running on mixture ratio control, so everything is
normal around 104%, 109%, at 65% the engine is not running peak
performance. You might see some unusual things like B channel
higher than A channel in turbine temps here, then they flip-flop
in the bucket.

Q: Do they flip up again when they go back up?

A: Yes. Occasionally the lox, but usually we see the flip-flop
in the fuel. The fuel is more sensitive. The swirl coming out
changes because of powering down the turbine and the coolant flow
may react differently. You may have coolant hit a sensor ...

{calc ~2 or 3?}

This is coolant liner pressure. It's mostly a steady
pressure. Looking not to exceed redline, make sure the pressure
stays high enough to get enough coolant in the fuel pump. Looking
for erratic motion that might indicate ice build-up, etc.

Q: Is this the measurement that ices alot?

A: Yes.

Q: Do you look for erratic motion or a flat line?

A: If it totally got blocked, it wouldn't respond to a power
level.

Q: Do these tend to follow each other closely?

A: This is a red line, so this is calculated.

Q: Aren't there A and B both here?

A: Yes. That's one pressure transducer with a bridge so they
should be pretty close.

Q: So, if you saw that they were drifting you'd be concerned?

A: Yes. If I saw a good size delta or a drift in one, I'd be
concerned.

Q: On the icing, is that and instr. prob or ice forming in the
line?

A: That would be an anomaly.

Q: Does it mean much?

A: Well, it means you're blocking coolant flow? Could be icing
in the line or in the actual coolant flow. The main concern of
this parameter is the coolant flow, make sure you'~e not getting
a reduction in coolant flow that could overheat the turbine and
bearings, etc ...

{I think responding to the fact that there's is or isn't a lower

s10: Page 8

Q: You can expect a downward drift on the order of 50?

A: This is typical.

Q: Any spikes?

A: It would be more of a shift. Sometimes a sine wave, that
would be something bouncing around. The lox pump has alot more
anomalies (balance cavity-wise) than the fuel pump does.

Q: It's still drifting upward in the bucket.

A: You're going from 104% to 65%, that's a big change in power
level and thermals. Then you only stay there for 10-12 seconds.
That's not unusual.

You're running on mixture ratio control, so everything is
normal around 104%, 109%, at 65% the engine is not running peak
performance. You might see some unusual things like B channel
higher than A channel in turbine temps here, then they flip-flop
in the bucket.

Q: Do they flip up again when they go back up?

A: Yes. Occasionally the lox, but usually we see the flip-flop
in the fuel. The fuel is more sensitive. The swirl coming out
changes because of powering down the turbine and the coolant flow
may react differently. You may have coolant hit a sensor ...

{calc ~2 or 3?}

This is coolant liner pressure. It's mostly a steady
pressure. Looking not to exceed redline, make sure the pressure
stays high enough to get enough coolant in the fuel pump. Looking
for erratic motion that might indicate ice build-up, etc.

Q: Is this the measurement that ices alot?

A: Yes.

Q: Do you look for erratic motion or a flat line?

A: If it totally got blocked, it wouldn't respond to a power
level.

Q: Do these tend to follow each other closely?

A: This is a red line, so this is calculated.

Q: Aren't there A and B both here?

A: Yes. That's one pressure transducer with a bridge so they
should be pretty close.

Q: So, if you saw that they were drifting you'd be concerned?

A: Yes. If I saw a good size delta or a drift in one, I'd be
concerned.

Q: On the icing, is that and instr. prob or ice forming in the
line?

A: That would be an anomaly.

Q: Does it mean much?

A: Well, it means you're blocking coolant flow? Could be icing
in the line or in the actual coolant flow. The main concern of
this parameter is the coolant flow, make sure you'~e not getting
a reduction in coolant flow that could overheat the turbine and
bearings, etc ...

{I think responding to the fact that there's is or isn't a lower

0: Page 9

limit on the parameter marked on the chart}

There's probably a sensor qualification limit saying that if
it reads so low, the transducer's probably messed up. That would
be the lower limit.

Q: When you say erratic motion again, you're talking about a
wave?

A: A wave or a step.

{June's drawing things on a graph and he's commenting whether or
not the variations are normal. See plot package}

U4}

This is coolant liner temp. This is also an indicator if you
have a problem. {looking through pretest package} From
system's level, we just say we saw something, and Glenn would
analyze it. Ask Glenn about pump limits.

Q: Is "that" spike normal {l0 seconds, 20 degree spike}?

A: That's start transient, yes.

Q: What would be abnormal?

A: Looking for erratic temperatures, shift down and back up, and
overall level, 300-310 at 104% is about normal. If. you got really
hot or cold, then that's an indication that something is going on.
Typically look for cold.

Q: Average is like 280-320? Of tighter than that?

A: I'd have to ask Glenn. See reacting to vent here as well.

Q: Who looks at it close?

A: Typically Glenn.

U5}

This is FP drain pressure, looking for low pressure indicating
no leaks. On Al they don't have a diffuser so you'd expect a
higher pressure on A2 and Bl they do which drop the press's down
to several hundred thousand feet altitude. Have to be careful
comparing Al to other stands. Al would be around 14.7. Sometimes
the stands will read psi, or psig.

{#6}

Here's drain temperature {HPFP}. A leak would be a drop of
several hundred degrees.

Q: {pointing at plot, can't tell what at} Is "this" normal?

A: Yes, just looking for levels.

U7}

This is lox pump bal. cav. pressure. There's a la and 2a.
Looking for rotor motion. One thing we see fairly common is one
channel shift up but the other channel will not move at all. This
is not real rotor motion. You'd expect to see one to go up and the
other go in the opposite direction for real rotor motion.

Q: When it's not real rotor motion, is it instr?

A: Probably, have to talk to Glenn. I think it's some kind of
seal leakage.

Q: What if they both shift in the same direction?

0: Page 9

limit on the parameter marked on the chart}

There's probably a sensor qualification limit saying that if
it reads so low, the transducer's probably messed up. That would
be the lower limit.

Q: When you say erratic motion again, you're talking about a
wave?

A: A wave or a step.

{June's drawing things on a graph and he's commenting whether or
not the variations are normal. See plot package}

U4}

This is coolant liner temp. This is also an indicator if you
have a problem. {looking through pretest package} From
system's level, we just say we saw something, and Glenn would
analyze it. Ask Glenn about pump limits.

Q: Is "that" spike normal {l0 seconds, 20 degree spike}?

A: That's start transient, yes.

Q: What would be abnormal?

A: Looking for erratic temperatures, shift down and back up, and
overall level, 300-310 at 104% is about normal. If. you got really
hot or cold, then that's an indication that something is going on.
Typically look for cold.

Q: Average is like 280-320? Of tighter than that?

A: I'd have to ask Glenn. See reacting to vent here as well.

Q: Who looks at it close?

A: Typically Glenn.

U5}

This is FP drain pressure, looking for low pressure indicating
no leaks. On Al they don't have a diffuser so you'd expect a
higher pressure on A2 and Bl they do which drop the press's down
to several hundred thousand feet altitude. Have to be careful
comparing Al to other stands. Al would be around 14.7. Sometimes
the stands will read psi, or psig.

{#6}

Here's drain temperature {HPFP}. A leak would be a drop of
several hundred degrees.

Q: {pointing at plot, can't tell what at} Is "this" normal?

A: Yes, just looking for levels.

U7}

This is lox pump bal. cav. pressure. There's a la and 2a.
Looking for rotor motion. One thing we see fairly common is one
channel shift up but the other channel will not move at all. This
is not real rotor motion. You'd expect to see one to go up and the
other go in the opposite direction for real rotor motion.

Q: When it's not real rotor motion, is it instr?

A: Probably, have to talk to Glenn. I think it's some kind of
seal leakage.

Q: What if they both shift in the same direction?

-s10: Page 10
A: I've not seen that, if I did I'd probably go talk to Glenn
about it.

I would flag one shifting as an observation.

Q: The deltas are changing, does that concern you {laO to 230
seconds, upward shift in delta}?

A: This one's corning right out of a power shift, that is a little
unusual. It tends to be bigger down in the bucket, that's typical.
The 1A channel here is dragging, I might bring that to Glenn's
attention. Every once in a while you see one drag (react slower).
It may be the rotor moving slower, etc. You expect the rotor to
change a little on a power level shift. You are speeding things
up, putting more power to the turbine, and will push it towards the
pump end.

Q: Is the fact that when you're in the bucket and the delta
doesn't concern you hold true for most pressures?

A: I know it's typical for HPOP bal. cav., I'll have to look as
we go.

Q: Do you look at the fuel side as a delta?

A: You only have one bal cav measurement on the fuel side so you
look at the FP disch pressure minus bal cav pressure. Also look
at 1A minus 2A. Then the shift will be just a straight shift.

Q: What about for sensor problems?

A: Look for a spike or any type of erratic behavior.

{is}

This is HPOP inter. seal purge pressure (redline). This is
a flight LCC. Basically, look for on mainstage, erratic motion in
the nature of corning up, then you see some kind of wiggle and it
straightens back out. That indicates some kind of rubbing of the
seal. This thing varies alot during mainstage, I've seen some that
had a nice dome shape and some that corne up and almost be straight
and flat. Really, you are just looking for is an erratic wiggle
or bump. Prestart, you look at levels. The flight limit is 175
(7) at engine start and when the purges corne on which take some of
the Helium away, it will drop down to 170.

Q: If you got the erratic behavior, but all the time, would you
suspect the instr?

A: If it was consistent, I would think it was instr. but we'd
have to check it out.

Q: How would you do that?

A: It's hard. Sometimes if it's significant rubbing, you might
see it in the dynamic data (accelerometers on the pump). If it's
minor, you never know for sure. Might see an indication down the
drain line, in the form of significant pressure shifts or
oscillations.

{#9}

This is turbine secondary seal cavity pressure. Looking for
a nice low pressure. If the turbines run at a high press, that's
after 2 seals and means you have a pretty good seal leakage.
{pointing to 10 to 40 sec spike} This is the typical start spike,
then comes down in response to the bucket. That's a little bit
low, spike-wise. Glenn looks at the spike level, and the overall
level.

Q: What'S important about the spike level?

A: It's just a characteristic we monitor, I don't know if it's

-s10: Page 10
A: I've not seen that, if I did I'd probably go talk to Glenn
about it.

I would flag one shifting as an observation.

Q: The deltas are changing, does that concern you {laO to 230
seconds, upward shift in delta}?

A: This one's corning right out of a power shift, that is a little
unusual. It tends to be bigger down in the bucket, that's typical.
The 1A channel here is dragging, I might bring that to Glenn's
attention. Every once in a while you see one drag (react slower).
It may be the rotor moving slower, etc. You expect the rotor to
change a little on a power level shift. You are speeding things
up, putting more power to the turbine, and will push it towards the
pump end.

Q: Is the fact that when you're in the bucket and the delta
doesn't concern you hold true for most pressures?

A: I know it's typical for HPOP bal. cav., I'll have to look as
we go.

Q: Do you look at the fuel side as a delta?

A: You only have one bal cav measurement on the fuel side so you
look at the FP disch pressure minus bal cav pressure. Also look
at 1A minus 2A. Then the shift will be just a straight shift.

Q: What about for sensor problems?

A: Look for a spike or any type of erratic behavior.

{is}

This is HPOP inter. seal purge pressure (redline). This is
a flight LCC. Basically, look for on mainstage, erratic motion in
the nature of corning up, then you see some kind of wiggle and it
straightens back out. That indicates some kind of rubbing of the
seal. This thing varies alot during mainstage, I've seen some that
had a nice dome shape and some that corne up and almost be straight
and flat. Really, you are just looking for is an erratic wiggle
or bump. Prestart, you look at levels. The flight limit is 175
(7) at engine start and when the purges corne on which take some of
the Helium away, it will drop down to 170.

Q: If you got the erratic behavior, but all the time, would you
suspect the instr?

A: If it was consistent, I would think it was instr. but we'd
have to check it out.

Q: How would you do that?

A: It's hard. Sometimes if it's significant rubbing, you might
see it in the dynamic data (accelerometers on the pump). If it's
minor, you never know for sure. Might see an indication down the
drain line, in the form of significant pressure shifts or
oscillations.

{#9}

This is turbine secondary seal cavity pressure. Looking for
a nice low pressure. If the turbines run at a high press, that's
after 2 seals and means you have a pretty good seal leakage.
{pointing to 10 to 40 sec spike} This is the typical start spike,
then comes down in response to the bucket. That's a little bit
low, spike-wise. Glenn looks at the spike level, and the overall
level.

Q: What'S important about the spike level?

A: It's just a characteristic we monitor, I don't know if it's

Page 11

significant. We always see a start overshoot in this parameter.
Typically it's around 28-30.

Q: This spike "here" doesn't mean anything? {pointing to spikes
within the overall start overshoot}

A: That's a little unusual. I wouldn't be too concerned about
it. I might point it out if I saw any kind of spiky trend in the
rest of the data.

Q: Do you look for the rubbing trend in this parameter also?

A: Not so much rubbing, basically the overall pressure level in
that cavity.

Q: Do they normally lie so close on top of each other so you'd
get worried if the delta was high?

A: They're pretty close. It's a pretty small scale. If they
were much more than 1 psi, I might call that out. Once again, it's
one sensor with bridge. They're usually right on top of each
other.

Q: When you say small scale, are you referencing this to the
range on the sensor?

A: No, just talking about a few psi. Have to pay attention to
the scale.

Q: If the parameter went way above "this" would you be concerned?

A: Yes, if it did then that would be a real concern.

{lO}

This is the secondary seal drain temp. Don't want this too
high. If you're leaking around the turbine seals into this cavity,
the turbines are running at 1300-1400 R, it would be hot. You
expect a decent temp. drop by the time you get to the secondary
turbine seal. Don't want to be too hot.

Q: When comparing to a nominal test, what would be high?

A: If it got up to 950-1000 degrees. On an old pump, you'd
expect it to be a little high because it's warn.

Q: Why don't you plot against past tests?

A: Don't know. Glenn keeps track of levels in his head over
tests.

Q: Does he make recommendation about pump condition?

A: Yes.

Q: This side has an increase in variation {after 200 seconds}
does that bother you? Looks like it's maybe 5 or so times bigger
than the peak-to-peak oscillations here?

A: I wouldn't call that out.

Q: Is it typical to get some more high frequency stuff toward the
end?

A: Going through 3g throttle during this time, then a big power
level shift. You're a lot more thermally stabilized toward the
end. May be thermal effect, may be vent effect.

{Ul}

This is primary turbine seal drain pressure. Same thing. A3-~/)

Page 11

significant. We always see a start overshoot in this parameter.
Typically it's around 28-30.

Q: This spike "here" doesn't mean anything? {pointing to spikes
within the overall start overshoot}

A: That's a little unusual. I wouldn't be too concerned about
it. I might point it out if I saw any kind of spiky trend in the
rest of the data.

Q: Do you look for the rubbing trend in this parameter also?

A: Not so much rubbing, basically the overall pressure level in
that cavity.

Q: Do they normally lie so close on top of each other so you'd
get worried if the delta was high?

A: They're pretty close. It's a pretty small scale. If they
were much more than 1 psi, I might call that out. Once again, it's
one sensor with bridge. They're usually right on top of each
other.

Q: When you say small scale, are you referencing this to the
range on the sensor?

A: No, just talking about a few psi. Have to pay attention to
the scale.

Q: If the parameter went way above "this" would you be concerned?

A: Yes, if it did then that would be a real concern.

{lO}

This is the secondary seal drain temp. Don't want this too
high. If you're leaking around the turbine seals into this cavity,
the turbines are running at 1300-1400 R, it would be hot. You
expect a decent temp. drop by the time you get to the secondary
turbine seal. Don't want to be too hot.

Q: When comparing to a nominal test, what would be high?

A: If it got up to 950-1000 degrees. On an old pump, you'd
expect it to be a little high because it's warn.

Q: Why don't you plot against past tests?

A: Don't know. Glenn keeps track of levels in his head over
tests.

Q: Does he make recommendation about pump condition?

A: Yes.

Q: This side has an increase in variation {after 200 seconds}
does that bother you? Looks like it's maybe 5 or so times bigger
than the peak-to-peak oscillations here?

A: I wouldn't call that out.

Q: Is it typical to get some more high frequency stuff toward the
end?

A: Going through 3g throttle during this time, then a big power
level shift. You're a lot more thermally stabilized toward the
end. May be thermal effect, may be vent effect.

{Ul}

This is primary turbine seal drain pressure. Same thing. A3-~/)

s10: Page 12

This is a typical start
you're in steady state,
where you'd want to be.
indicating a leak.

overshoot {O to 20 seconds spike}. Once
you're in the 15 psi range. That's about

Looking for a higher overall pressure

Q: If you saw a little shift upward, would you worry?

A: A slope change? Yes, that would catch my eye.

Q: How repeatable are these oscillations.

A: I'd expect anything within a certain amount. If I had a big
overshoot, that would be unusual. The drift down is typical.

{#l2}

This is the same thing, but for temperature. The level is
higher than the secondary temp was. This is the drain line temp.
Basically, look for this to get really hot. Right after primary
seal so if you had a leak from

turbine, it would be several hundred degrees higher. 900 is about
where we expect it.

Q: Do you expect temperature sensors to react slower, so if you
saw high frequency oscillations, you'd suspect the instrumentation?

A: The temps are pretty slow to respond. The pressures aren't
that high frequency either.

Q: Do you ever decide that a spike couldn't be real because the
sensor is unable to pick up a change that fast?

A: We could think along those lines. Also only sampling at 25
or 50 samples per second.

{calc 3 or 13}

This is HPOT disch. temp minus primary seal temp.
across primary seal). Looking for levels.

Q: What levels are too low or too high?

(delta t

A: If the delta was zero, you have no seal. Want to be in the
400-500 range to be a good seal. Typically see a higher delta t
on higher turbine temps. If the turbine temps are cold, running
at 1300 degrees, the delta t would be lower on this plot than for
the case where the turbines are running at 1400 degrees.

Q: Would you go back and look at the actual values for turbine
temps?

A: If I were concerned, yes.

Q: If this delta is high, you know that the turbine temps are
high?

A: You'd suspect it. High is good, means a good seal.

Q: If this were too low, it could mean either a bad turbine temp,
or a bad seal?

A: Typically would mean a bad seal. Turbines run pretty
consistent. Won't run that cool. Maybe will be cool in the
bucket, but not at 104%. If they are, you're running off MR or
something.

{skip #14, primary seal plot, saw in instr. package}

{#15}

This is Pump end drain temp.
this would be cold (lox leaks in).

If you had significant leakage,
This would normally be about

s10: Page 12

This is a typical start
you're in steady state,
where you'd want to be.
indicating a leak.

overshoot {O to 20 seconds spike}. Once
you're in the 15 psi range. That's about

Looking for a higher overall pressure

Q: If you saw a little shift upward, would you worry?

A: A slope change? Yes, that would catch my eye.

Q: How repeatable are these oscillations.

A: I'd expect anything within a certain amount. If I had a big
overshoot, that would be unusual. The drift down is typical.

{#l2}

This is the same thing, but for temperature. The level is
higher than the secondary temp was. This is the drain line temp.
Basically, look for this to get really hot. Right after primary
seal so if you had a leak from

turbine, it would be several hundred degrees higher. 900 is about
where we expect it.

Q: Do you expect temperature sensors to react slower, so if you
saw high frequency oscillations, you'd suspect the instrumentation?

A: The temps are pretty slow to respond. The pressures aren't
that high frequency either.

Q: Do you ever decide that a spike couldn't be real because the
sensor is unable to pick up a change that fast?

A: We could think along those lines. Also only sampling at 25
or 50 samples per second.

{calc 3 or 13}

This is HPOT disch. temp minus primary seal temp.
across primary seal). Looking for levels.

Q: What levels are too low or too high?

(delta t

A: If the delta was zero, you have no seal. Want to be in the
400-500 range to be a good seal. Typically see a higher delta t
on higher turbine temps. If the turbine temps are cold, running
at 1300 degrees, the delta t would be lower on this plot than for
the case where the turbines are running at 1400 degrees.

Q: Would you go back and look at the actual values for turbine
temps?

A: If I were concerned, yes.

Q: If this delta is high, you know that the turbine temps are
high?

A: You'd suspect it. High is good, means a good seal.

Q: If this were too low, it could mean either a bad turbine temp,
or a bad seal?

A: Typically would mean a bad seal. Turbines run pretty
consistent. Won't run that cool. Maybe will be cool in the
bucket, but not at 104%. If they are, you're running off MR or
something.

{skip #14, primary seal plot, saw in instr. package}

{#15}

This is Pump end drain temp.
this would be cold (lox leaks in).

If you had significant leakage,
This would normally be about

0: Page 13

375-400, maybe warmer.
If it went below 300, I'd be concerned that there was a decent
sized leak.

Q: Are you concerned with the slopes of the curves, if it's
coming up too slow?

A: I don't really look at that. More of a level check for leaks.

{1 or calc l4}

This is start. MCC pc.

{end of side A}

(David Foust 3, side B}

This is the ICD (interface control document) spec that says
MCC pc has to run within those boundaries. We were right outside
the ICD on this one, which is a serious problem.

Q: If it ran outside the ICD, would the controller automatically
fl.ag it?

A: NO, the controller doesn't recognize the ICD. The ICD is a
paper spec.

Q: How do you get that?

A: We have one upstairs.

U2}

This is MCC pc compared to other calibration test starts. (I
would guess). This is an odd start, slow for some reason.
Typically, for a slow start, the pc drags out into 1.5-2 sec's then
take off because the valves open up and it takes off like a rocket
and eventually come in line.

Q: What you're looking for here is what?

A: The pc was a little bit lower, then the engine compensates.

Q: It always comes back in line? If this continued to be the same
level off, would you be concerned?

A: Yes, at 3.5 or 4 sec you should be back in line, pretty much
should have the engine started, if not you have problems.

Q: Should we expect a pretty close delta for test-to-test
variations?

A: Yes Should be about 3006 psi.

Q: But variations "here" are reasonable {l.4 to 4.4 seconeds}?

A: Right. The OPOV command can be set to take care of the
undershoot.

Q: These comparison tests for start, are you looking at the
controller document to see if you have the same valve schedules?

A: The only schedule that might be weird is the CCV. These are
all flight engines so we'd have consistent CCV schedules. The OPOV
can vary on the open loop command (set higher or lower depending
on the slow starts). Fuel side oscillation also affects slow
starts. If you have fuel side oscillation, you typically have a
stronger start. We've had contradictions to that rule.

Q: Could a slow start lead you to check to see if you had a fuel
side oscillation?

A: If we had a slow start, that would be one of the first things
we'd check.

0: Page 13

375-400, maybe warmer.
If it went below 300, I'd be concerned that there was a decent
sized leak.

Q: Are you concerned with the slopes of the curves, if it's
coming up too slow?

A: I don't really look at that. More of a level check for leaks.

{1 or calc l4}

This is start. MCC pc.

{end of side A}

(David Foust 3, side B}

This is the ICD (interface control document) spec that says
MCC pc has to run within those boundaries. We were right outside
the ICD on this one, which is a serious problem.

Q: If it ran outside the ICD, would the controller automatically
fl.ag it?

A: NO, the controller doesn't recognize the ICD. The ICD is a
paper spec.

Q: How do you get that?

A: We have one upstairs.

U2}

This is MCC pc compared to other calibration test starts. (I
would guess). This is an odd start, slow for some reason.
Typically, for a slow start, the pc drags out into 1.5-2 sec's then
take off because the valves open up and it takes off like a rocket
and eventually come in line.

Q: What you're looking for here is what?

A: The pc was a little bit lower, then the engine compensates.

Q: It always comes back in line? If this continued to be the same
level off, would you be concerned?

A: Yes, at 3.5 or 4 sec you should be back in line, pretty much
should have the engine started, if not you have problems.

Q: Should we expect a pretty close delta for test-to-test
variations?

A: Yes Should be about 3006 psi.

Q: But variations "here" are reasonable {l.4 to 4.4 seconeds}?

A: Right. The OPOV command can be set to take care of the
undershoot.

Q: These comparison tests for start, are you looking at the
controller document to see if you have the same valve schedules?

A: The only schedule that might be weird is the CCV. These are
all flight engines so we'd have consistent CCV schedules. The OPOV
can vary on the open loop command (set higher or lower depending
on the slow starts). Fuel side oscillation also affects slow
starts. If you have fuel side oscillation, you typically have a
stronger start. We've had contradictions to that rule.

Q: Could a slow start lead you to check to see if you had a fuel
side oscillation?

A: If we had a slow start, that would be one of the first things
we'd check.

-s10: Page 14

Q: Is hotter better?

A: Stronger, hotter, better. It's all saying the same thing.
A hot start would be a turbine temp overshooting. On a slow start,
the LOX turbine temps will drag way out "here". It's very
dramatic, we can't miss it.

Q: So you want a fuel side osc?

A: Yes, it makes starts better.

{ensuing long discussion on slow starts and fuel side osc's that's
not transcribed}

Q: Does a slow start affect component wear or life?

A: Only if you have a significant overshoot. There is a redline
on start overshoot.

{Another long discussion}

Q: Do you use words like hot or cold at data reviews?

A: No, we use good or strong.

Q: Is a fast or slow start reflected in your prime times?

A: Yes. OPB prime is reflected in the time your lox turbine
temps turn around, so it's definetly reflected.

{still trying to figure out what's good or bad}

Flights tend to start slower than ground tests. There's nothing
wrong with that. The controller will abort an extremely slow start.

Q: What causes it to be slow?

A: Fuel side osc, temp of propellants.
a little stranger or faster than hot lox.
generalizations. I only remember one test
slow that we thought we had a problem.

Q: This needs to be noted?

Colder lox tends to start
These are
where the start was so

A: Definitely have to mention at a data review.

Q: How much is too much and is this spreading "here" of some
significance?

A: Have to look at your valve positions. The valve may have geen
a little more closed here. There is a lot of variation on the
start.

Q: Do you try to track down the variations?

A: We see them so often that probably not.

Probably different engines, but if this was 3 consecutive
tests of same engine, we might flag it.

Q: As far as analyzing mainstage, whether it starts fast or slow
doesn't have and affect?

A: Right.

{break in tape, seem to have shut off for a small amount of time}

It's indicated here on the pc on A20537, then you really see
it in the lox turbine temps and you start looking for fuel side
oscillations.

Q: It's indicated here because of this delta?

-s10: Page 14

Q: Is hotter better?

A: Stronger, hotter, better. It's all saying the same thing.
A hot start would be a turbine temp overshooting. On a slow start,
the LOX turbine temps will drag way out "here". It's very
dramatic, we can't miss it.

Q: So you want a fuel side osc?

A: Yes, it makes starts better.

{ensuing long discussion on slow starts and fuel side osc's that's
not transcribed}

Q: Does a slow start affect component wear or life?

A: Only if you have a significant overshoot. There is a redline
on start overshoot.

{Another long discussion}

Q: Do you use words like hot or cold at data reviews?

A: No, we use good or strong.

Q: Is a fast or slow start reflected in your prime times?

A: Yes. OPB prime is reflected in the time your lox turbine
temps turn around, so it's definetly reflected.

{still trying to figure out what's good or bad}

Flights tend to start slower than ground tests. There's nothing
wrong with that. The controller will abort an extremely slow start.

Q: What causes it to be slow?

A: Fuel side osc, temp of propellants.
a little stranger or faster than hot lox.
generalizations. I only remember one test
slow that we thought we had a problem.

Q: This needs to be noted?

Colder lox tends to start
These are
where the start was so

A: Definitely have to mention at a data review.

Q: How much is too much and is this spreading "here" of some
significance?

A: Have to look at your valve positions. The valve may have geen
a little more closed here. There is a lot of variation on the
start.

Q: Do you try to track down the variations?

A: We see them so often that probably not.

Probably different engines, but if this was 3 consecutive
tests of same engine, we might flag it.

Q: As far as analyzing mainstage, whether it starts fast or slow
doesn't have and affect?

A: Right.

{break in tape, seem to have shut off for a small amount of time}

It's indicated here on the pc on A20537, then you really see
it in the lox turbine temps and you start looking for fuel side
oscillations.

Q: It's indicated here because of this delta?

0: Page 15

A: Yes.

Q: How much is too much?

A: That's about what I would expect (about 100 psi, 100-150).

Q: Is "this" combustion phenomena?

A: This is probably the prime time on this guy is a little
slower.

Q: Do the models guys model the combustion?

A: Not transiently, but combustion efficiency. PBM does not do
transients.

Q: Would the delta start to decrease "here" or up "here"?

A: I would expect that at 3.5 - 4 sec it should be out of there.
This is pc, you'd expect pc to be more stable than the turbine
temps.

Q: You'd look for a delta of less than what?

A: You have to consider that you're on a much steeper slope here,
you can expect a bigger variation on a steeper slope than on a
flatter slope. That doesn't concern me. This delta up here is
about the same as here.

Q: Up here it's kind of level.

A: Yes, within 8-10 psi.

ff3, FPOV command}

Here's a reaction to the slow start. You can see the valve
pos opened up more to speed that slow start. In the 1.5 to 2 sec
range you're dragging. By 2.5 the valve kicks open and you see it
start to shut down at about 2.8 seconds because you're starting to
overtake the other ones.

Q: Down here on valving you'd expect it to be pretty consistent?

A: FPOV ought to be real consistent. That's about as big a
variation as I'd want to see and it's probably about .5 to 1 %.
At around 4 sec you really can't compare. That's where the actual
efficiencies and health of the pump come into affect, more than the
actual start sequences.

Q: If you saw a huge variation you'd think it was a sensor?

A: Right. If it was something really large, then I would.

U4}

Same thing on the OPOV. This is the open loop command where
you can increase the levels early in the start which gives you more
lox flow and a stronger start.

Q: Would that be in the test objectives or prestart?

A: Yes. I wouldn't be surprised if for this test they increased
the OPOV command .5 to 1 % for the next test.

Q: This is commanded so it's not actual measurements?

A: Right.

US}

0: Page 15

A: Yes.

Q: How much is too much?

A: That's about what I would expect (about 100 psi, 100-150).

Q: Is "this" combustion phenomena?

A: This is probably the prime time on this guy is a little
slower.

Q: Do the models guys model the combustion?

A: Not transiently, but combustion efficiency. PBM does not do
transients.

Q: Would the delta start to decrease "here" or up "here"?

A: I would expect that at 3.5 - 4 sec it should be out of there.
This is pc, you'd expect pc to be more stable than the turbine
temps.

Q: You'd look for a delta of less than what?

A: You have to consider that you're on a much steeper slope here,
you can expect a bigger variation on a steeper slope than on a
flatter slope. That doesn't concern me. This delta up here is
about the same as here.

Q: Up here it's kind of level.

A: Yes, within 8-10 psi.

ff3, FPOV command}

Here's a reaction to the slow start. You can see the valve
pos opened up more to speed that slow start. In the 1.5 to 2 sec
range you're dragging. By 2.5 the valve kicks open and you see it
start to shut down at about 2.8 seconds because you're starting to
overtake the other ones.

Q: Down here on valving you'd expect it to be pretty consistent?

A: FPOV ought to be real consistent. That's about as big a
variation as I'd want to see and it's probably about .5 to 1 %.
At around 4 sec you really can't compare. That's where the actual
efficiencies and health of the pump come into affect, more than the
actual start sequences.

Q: If you saw a huge variation you'd think it was a sensor?

A: Right. If it was something really large, then I would.

U4}

Same thing on the OPOV. This is the open loop command where
you can increase the levels early in the start which gives you more
lox flow and a stronger start.

Q: Would that be in the test objectives or prestart?

A: Yes. I wouldn't be surprised if for this test they increased
the OPOV command .5 to 1 % for the next test.

Q: This is commanded so it's not actual measurements?

A: Right.

US}

-s10: Page 16

This is the OPOV command limit. You're looking to see if it
get's much less than 3% between the commanded pos and the limit
than I'd be concerned. Not really a problem but a concern.

Q: Do you look at the actuator pos?

A: You could, but the command is what you really look at.

Q: The command limit is set in prestart?

A: It is actually calculated during the start for mainstage.
It varies with power level.

{i6 through 10}

This is the fuel side osc. {trend in HPFP ds prJ What you're
looking for is this little osc. or bump and this is the slow
starting test where there's very little osc.

Q: How much does it have to "wiggle" for you to call it a fuel
side oscillation?

A: "This" is essentially no fuel side osc.

Q: There is always an osc. but it's a question of to which
degree?

A: Right.

Q: Do you look at the temp then?

A: Temp doesn't always show it. We typically get a large
pressure osc and don't really see much temperature. It's not
always consistent, usually it is, but not always.

Q: If I saw this happening a little more, would I suspect inst?

A: I wouldn't suspect 'instr until I got into mainstage because
this is such a transient.

Q: I would be inclined to flag this as normal since there's
really no diagnostics to be done. Is there any engine anomaly that
would show up in this graph?

A: You might see a really erratic signal or a definite shift.
That might be a sensor scaling problem.

Q: A shift at the start?

A: Or anywhere during the mainstage.

Q: And you would be comparing to a test with a similar osc.
profile?

A: You'd probably be comparing to whatever osc's you're
comparison tests happen to have. Fuel side osc. is not one of the
things I consider when I pick a comparison test.

Q: These look like pretty big level changes, how big would you
flag?

{i6} {Careful for plots 6-11, I had a hard time figuring out what
was being pointed to, will probably need a closer look}

A: This is FP disch pres. it will depend on how fast the FPB
primes. Here, this one didn't have much of a fuel side osc. It
will also depend on the temp and pressure of the fuel coming in.

Q: You consider all of this to decide what is a reasonable level
change?

A: Yes. This change out here doesn't bother me.

Q: When you say "down here", do you mean below .8 sec?

-s10: Page 16

This is the OPOV command limit. You're looking to see if it
get's much less than 3% between the commanded pos and the limit
than I'd be concerned. Not really a problem but a concern.

Q: Do you look at the actuator pos?

A: You could, but the command is what you really look at.

Q: The command limit is set in prestart?

A: It is actually calculated during the start for mainstage.
It varies with power level.

{i6 through 10}

This is the fuel side osc. {trend in HPFP ds prJ What you're
looking for is this little osc. or bump and this is the slow
starting test where there's very little osc.

Q: How much does it have to "wiggle" for you to call it a fuel
side oscillation?

A: "This" is essentially no fuel side osc.

Q: There is always an osc. but it's a question of to which
degree?

A: Right.

Q: Do you look at the temp then?

A: Temp doesn't always show it. We typically get a large
pressure osc and don't really see much temperature. It's not
always consistent, usually it is, but not always.

Q: If I saw this happening a little more, would I suspect inst?

A: I wouldn't suspect 'instr until I got into mainstage because
this is such a transient.

Q: I would be inclined to flag this as normal since there's
really no diagnostics to be done. Is there any engine anomaly that
would show up in this graph?

A: You might see a really erratic signal or a definite shift.
That might be a sensor scaling problem.

Q: A shift at the start?

A: Or anywhere during the mainstage.

Q: And you would be comparing to a test with a similar osc.
profile?

A: You'd probably be comparing to whatever osc's you're
comparison tests happen to have. Fuel side osc. is not one of the
things I consider when I pick a comparison test.

Q: These look like pretty big level changes, how big would you
flag?

{i6} {Careful for plots 6-11, I had a hard time figuring out what
was being pointed to, will probably need a closer look}

A: This is FP disch pres. it will depend on how fast the FPB
primes. Here, this one didn't have much of a fuel side osc. It
will also depend on the temp and pressure of the fuel coming in.

Q: You consider all of this to decide what is a reasonable level
change?

A: Yes. This change out here doesn't bother me.

Q: When you say "down here", do you mean below .8 sec?

0: Page 17

A: Yes, 0 to .8 sec.

Q: By mainstage you'd expect this parameter to be pretty close?

A: To where it's going to run in mainstage. FP disch pressure
will vary if I change a fuel pump.

Q: Is the main reason why you're plotting these starts against
one another because you want to see if the engine is starting the
same as it did the last time?

A: In this case, no. Usually that is the case, but we don't have
a previous start of this engine. We're just looking to see if we
had fuel side osc.

We sometimes look at the HPOP disch temp. It will see a spike
up.

U7, #8}

The time frame here is about 1.1 sec, you can look at the fuel
turbine temps and see whether it has fuel side osc or not.
Obviously this is a tighter scale, this is A channel. This is a
pretty typical start.

U9}

Q: What do you want to flag here?

A: You might pick out a slow start, or a significant delta right
at engine start which would indicate that the sensor was reading
bad at prestart. Same thing on the B channel. You'll sometimes
see different trends between A and B, that's not unusual. They are
at different circumferential locations on the duct so B sometimes
will run hotter than A.

They will pretty much oscillate in the same way but, for
example, on a slow start {flips to lox side} this one actually gets
lower.

Q: But you're not plotting channel to channel?

A: No, but we look at a and b on different plots.

Q: Is it fair to say that if I have a dual bridge, and one
channel is off from another, that maybe it's an instr. problem, and
when they are different sensors I can expect a little more
variation?

A: Yes.

Q: But you'd still compare them?

A: Yes.

Q: And what is a reasonable delta from A to B?

A: In start? {yes} In mainstage, I've
degree difference in fuel turbine temps.
Don't look at it all that hard during the
I would say 50-100 is normal.

Q: Do you have to bring this up?

seen as much as 150
In start, I don't recall.
start as far as delta.

A: We flag it, if they question it, we try to explain. If you
see a huge turbine temp A to B delta, we may want to go back and
compare it to the last 5 times the pump or engine has run and see
if you can come up with any correlations. I've seen as much as 100
degrees on the lox. Lox tends to run, A to B, alot closer
together.

{#IO}

0: Page 17

A: Yes, 0 to .8 sec.

Q: By mainstage you'd expect this parameter to be pretty close?

A: To where it's going to run in mainstage. FP disch pressure
will vary if I change a fuel pump.

Q: Is the main reason why you're plotting these starts against
one another because you want to see if the engine is starting the
same as it did the last time?

A: In this case, no. Usually that is the case, but we don't have
a previous start of this engine. We're just looking to see if we
had fuel side osc.

We sometimes look at the HPOP disch temp. It will see a spike
up.

U7, #8}

The time frame here is about 1.1 sec, you can look at the fuel
turbine temps and see whether it has fuel side osc or not.
Obviously this is a tighter scale, this is A channel. This is a
pretty typical start.

U9}

Q: What do you want to flag here?

A: You might pick out a slow start, or a significant delta right
at engine start which would indicate that the sensor was reading
bad at prestart. Same thing on the B channel. You'll sometimes
see different trends between A and B, that's not unusual. They are
at different circumferential locations on the duct so B sometimes
will run hotter than A.

They will pretty much oscillate in the same way but, for
example, on a slow start {flips to lox side} this one actually gets
lower.

Q: But you're not plotting channel to channel?

A: No, but we look at a and b on different plots.

Q: Is it fair to say that if I have a dual bridge, and one
channel is off from another, that maybe it's an instr. problem, and
when they are different sensors I can expect a little more
variation?

A: Yes.

Q: But you'd still compare them?

A: Yes.

Q: And what is a reasonable delta from A to B?

A: In start? {yes} In mainstage, I've
degree difference in fuel turbine temps.
Don't look at it all that hard during the
I would say 50-100 is normal.

Q: Do you have to bring this up?

seen as much as 150
In start, I don't recall.
start as far as delta.

A: We flag it, if they question it, we try to explain. If you
see a huge turbine temp A to B delta, we may want to go back and
compare it to the last 5 times the pump or engine has run and see
if you can come up with any correlations. I've seen as much as 100
degrees on the lox. Lox tends to run, A to B, alot closer
together.

{#IO}

-s10: Page 18

This is B channel, same story.

FP disch pressure. Fairly typical. This variation is the slow
start.

Q: That same variation "here" would be a problem?

A: You could see as much as 50 psi difference for test to test
with the same pump and that would be normal.

Q: I would flag that, and then say "Oh yeah, I had a slow start",?

A: Right.

Q: How much is to much'?

A: It's not unusual to have on a slow start as high as 800-100.
Normal is about 300. Something at 800-1000 indicated a problem,
in this case a slow start.

Q: And what about between 300 and 800?

A: Then flag it and point out that you see a difference, but not
anywhere else.

Fuel pump speed is a reflection of fuel pump discharge
pressure. It's a one-to-one relationship. Going from 0 to 35000
rpm.

{flO is same thing, channel B}

Ull}

HPOT disch pressure. This will reflect it alot more. You'll
see a slow start more on the lox than on the fuel side.

Q: Would you have flagged this in the other test?

A: Probably not. Scale of 300 psi.

Q: Because this is the ox side and the ox side reacts more? If
this was on the fuel side would you flag it?

U14}

A: I might. This is your LPFP speed. Same reaction. The LPFP
is driven from the coolant flow coming from the MCC which is a
function of the HPFP disch pressure.

Q: Do you expect them to be pretty tight?

A: Fairly tight. They are about 15000 rpm and fairly consistent.

Q: Tight is 100 off?

A: Yeah, you probably have 3 different pumps.

{Eric enters and calls us all knot-heads}

Ul5}

This is LPFP disch pressure or HPFP inlet pres, you'll see it
sometimes on flight with a different name.

Q: This is not flagged as erratic {after 3 seconds}?

A: No, small time frame. If you looked at 0 to 20 sec's you
wouldn't see it.

Q: What about this spike {at 1 sec}?

A: That's a typical spike that we see. You're slower start is
flatted out. The spike is normal. It may be when you're priming

-s10: Page 18

This is B channel, same story.

FP disch pressure. Fairly typical. This variation is the slow
start.

Q: That same variation "here" would be a problem?

A: You could see as much as 50 psi difference for test to test
with the same pump and that would be normal.

Q: I would flag that, and then say "Oh yeah, I had a slow start",?

A: Right.

Q: How much is to much'?

A: It's not unusual to have on a slow start as high as 800-100.
Normal is about 300. Something at 800-1000 indicated a problem,
in this case a slow start.

Q: And what about between 300 and 800?

A: Then flag it and point out that you see a difference, but not
anywhere else.

Fuel pump speed is a reflection of fuel pump discharge
pressure. It's a one-to-one relationship. Going from 0 to 35000
rpm.

{flO is same thing, channel B}

Ull}

HPOT disch pressure. This will reflect it alot more. You'll
see a slow start more on the lox than on the fuel side.

Q: Would you have flagged this in the other test?

A: Probably not. Scale of 300 psi.

Q: Because this is the ox side and the ox side reacts more? If
this was on the fuel side would you flag it?

U14}

A: I might. This is your LPFP speed. Same reaction. The LPFP
is driven from the coolant flow coming from the MCC which is a
function of the HPFP disch pressure.

Q: Do you expect them to be pretty tight?

A: Fairly tight. They are about 15000 rpm and fairly consistent.

Q: Tight is 100 off?

A: Yeah, you probably have 3 different pumps.

{Eric enters and calls us all knot-heads}

Ul5}

This is LPFP disch pressure or HPFP inlet pres, you'll see it
sometimes on flight with a different name.

Q: This is not flagged as erratic {after 3 seconds}?

A: No, small time frame. If you looked at 0 to 20 sec's you
wouldn't see it.

Q: What about this spike {at 1 sec}?

A: That's a typical spike that we see. You're slower start is
flatted out. The spike is normal. It may be when you're priming

0: Page 19

the PB and get a big surge in FP disch pressure. That will send
the same pressure source up here.

Q: Fuel primes first, then MCC, then lox?

A: Think so.

Q: What do I want my delta's below?

A: This is average, so I would say about 10 psi during the start.

Q: If it went in a different direction that would be a problem?

A: It would definitely stand out.

{U6}

This is the LPOP speed, a reflection of HPOP disch pressure.
The coolant flow coming through drives the turbine here, coming off
main impeller, tapping off, driving turbine on LPOP.

Q: What's normal variation here?

{End of tape}

{David Foust - Tape 4}

This is just a reflection of the HPOP discharge pressure;
because, the discharge pressure is what feeds into your turbine.
So, pretty much its going to reflect what the HPOP discharge
pressure shows.

Q: What are normal deltas?

A: I would say probably on this, on the starter range I would say
probably 150-200 psi and then this is obviously that slow start
as we were discussing earlier.

Q:Q:O.K., So 150-250 psi is a normal delta?

A: Yes, its probably within the normal range.

Q: During the start transient?

A: Yes, during the start trans'ient.

Q: {question}

That's going to depend on the pump, the big pump, the little
pump, the whole engine system. I mean, its going to depend on how
the main stage is totally dependent on how the engine ...

Well we'll get to that in mainstage when we hit it.

Low pop speed is a facility measurement that is notorious for
being very erratic.

Q: What do you mean?

A: I mean huge spikes, it's a very noisy parameter.

Q: Will we see an example later on?

A: If there's an instrumentation package in here it will probably
be in there.

Q: O.K., So the variance is really large.

A: A:And that's just a bad parameter ...

Q: It's a bad PID?

A: No, its a good PID, I'm just saying its just bad notorious
being noisy.

0: Page 19

the PB and get a big surge in FP disch pressure. That will send
the same pressure source up here.

Q: Fuel primes first, then MCC, then lox?

A: Think so.

Q: What do I want my delta's below?

A: This is average, so I would say about 10 psi during the start.

Q: If it went in a different direction that would be a problem?

A: It would definitely stand out.

{U6}

This is the LPOP speed, a reflection of HPOP disch pressure.
The coolant flow coming through drives the turbine here, coming off
main impeller, tapping off, driving turbine on LPOP.

Q: What's normal variation here?

{End of tape}

{David Foust - Tape 4}

This is just a reflection of the HPOP discharge pressure;
because, the discharge pressure is what feeds into your turbine.
So, pretty much its going to reflect what the HPOP discharge
pressure shows.

Q: What are normal deltas?

A: I would say probably on this, on the starter range I would say
probably 150-200 psi and then this is obviously that slow start
as we were discussing earlier.

Q:Q:O.K., So 150-250 psi is a normal delta?

A: Yes, its probably within the normal range.

Q: During the start transient?

A: Yes, during the start trans'ient.

Q: {question}

That's going to depend on the pump, the big pump, the little
pump, the whole engine system. I mean, its going to depend on how
the main stage is totally dependent on how the engine ...

Well we'll get to that in mainstage when we hit it.

Low pop speed is a facility measurement that is notorious for
being very erratic.

Q: What do you mean?

A: I mean huge spikes, it's a very noisy parameter.

Q: Will we see an example later on?

A: If there's an instrumentation package in here it will probably
be in there.

Q: O.K., So the variance is really large.

A: A:And that's just a bad parameter ...

Q: It's a bad PID?

A: No, its a good PID, I'm just saying its just bad notorious
being noisy.

510: Page 20

Q: Do you know what the number is?

A: I should probably bring my data review folder, I really don't
know what the PID is off the top of my head.

{f1?}

O.K., This is pretty much ??? with low pop speed, this is your
high pop inlet pressure or low pop discharge pressure. Same sort
of thing here probably you're talking maybe 10-20 psi probably
normal on the range, then this is your slower start here. There
is usually not too much to say about that.

This is your pogo precharge pressure. That's where the helium
comes on during start {2.4 seconds}. This is where the oxygen
starts again {4.4 seconds}. Pretty much, it's like a valve that's
controlled by spring and once the pressure gets high it forces that
spring the other way and then the oxygen takes over.

Q: Is this normal? What about the delta here anything in
particular?

A: This is going to vary a whole lot, this parameter is not one
that is consistent and you can tell that here in the mainstage
portion. It depends a lot on the repress flows, it depends on the
high-pop discharge pressure, it depends on a lot of different
things, but, we're really not all that consistent. 'This is not one
of those parameters that's going to lie around one on top of
another, your going to get a pretty good variation of pressures in
mainstage. I'd say this is a typical variation for starts, that's
probably about 50 psi.

Q: Anything else?

A: No, not really.

Q: Part of a slow start?

A: Yes, definitely.

Q: What about this ? ... here?

A: O.K., that's pretty much like an overshoot. You see how your
dragging pretty slow, then all of a sudden the valves open and it
kicks in and it takes over and that's how it will slow back down.
This pressure and the temperature on the heat exchanger tend to lag
a little bit cause they're further down-stream.

Q: What do you mean .•• ?

{Jl9}

A: This is the interface pressure. Here is your heat exchanger,
you're coming in here and here is your anti-flood valve. You come
in here and go through your heat exchanger core, your coming out.
Now the heat exchanger discharge pressure is like in this vicinity
here, but, the interface pressure is where it interfaces with the
vehicle or testing and whatever and its further downstream, so it
takes longer to get there so therefore, the temperatures and the
pressures tend to lag and the engine parameters a little bit.

Q: By how much?

A: The heat exchanger interface temp. for example that we look
at, the high-pop turbine temps. come up fairly fast and it takes
probably an additional 50 or 60 seconds for the heat exchanger in
the first temp. to level out?

Q: I thought everything was considered to happen almost
instantaneously.

510: Page 20

Q: Do you know what the number is?

A: I should probably bring my data review folder, I really don't
know what the PID is off the top of my head.

{f1?}

O.K., This is pretty much ??? with low pop speed, this is your
high pop inlet pressure or low pop discharge pressure. Same sort
of thing here probably you're talking maybe 10-20 psi probably
normal on the range, then this is your slower start here. There
is usually not too much to say about that.

This is your pogo precharge pressure. That's where the helium
comes on during start {2.4 seconds}. This is where the oxygen
starts again {4.4 seconds}. Pretty much, it's like a valve that's
controlled by spring and once the pressure gets high it forces that
spring the other way and then the oxygen takes over.

Q: Is this normal? What about the delta here anything in
particular?

A: This is going to vary a whole lot, this parameter is not one
that is consistent and you can tell that here in the mainstage
portion. It depends a lot on the repress flows, it depends on the
high-pop discharge pressure, it depends on a lot of different
things, but, we're really not all that consistent. 'This is not one
of those parameters that's going to lie around one on top of
another, your going to get a pretty good variation of pressures in
mainstage. I'd say this is a typical variation for starts, that's
probably about 50 psi.

Q: Anything else?

A: No, not really.

Q: Part of a slow start?

A: Yes, definitely.

Q: What about this ? ... here?

A: O.K., that's pretty much like an overshoot. You see how your
dragging pretty slow, then all of a sudden the valves open and it
kicks in and it takes over and that's how it will slow back down.
This pressure and the temperature on the heat exchanger tend to lag
a little bit cause they're further down-stream.

Q: What do you mean .•• ?

{Jl9}

A: This is the interface pressure. Here is your heat exchanger,
you're coming in here and here is your anti-flood valve. You come
in here and go through your heat exchanger core, your coming out.
Now the heat exchanger discharge pressure is like in this vicinity
here, but, the interface pressure is where it interfaces with the
vehicle or testing and whatever and its further downstream, so it
takes longer to get there so therefore, the temperatures and the
pressures tend to lag and the engine parameters a little bit.

Q: By how much?

A: The heat exchanger interface temp. for example that we look
at, the high-pop turbine temps. come up fairly fast and it takes
probably an additional 50 or 60 seconds for the heat exchanger in
the first temp. to level out?

Q: I thought everything was considered to happen almost
instantaneously.

0: Page 21

A: You can start to see it to rise. If you plotted up the
turbine temps, then the heat exchanger interface temp. on one ... ,
it would take quite a while for that heat exchanger to catch up to
the

Q: So, in that case, if you saw something really high here you
wouldn't look at three seconds somewhere else.

A: You might want to look back a little bit in time on that one.
Pressure obviously reacts faster than temperatures. But in
general, this is further downstream, it is the interface between
the engine and the facility ..•

Q: Anything bigger than this to expect or would that be normal?

A: That's probably normal and that's probably ...

Q: Anything larger than that, you need worry about?

A: Yes.

O.K., I can probab2y do this and then we can eye-ba22 it. If you
think that is normal.

Yes, that is normal.

U19}

This overshoot here, that's due to the slower start, you're coming
in here your valves are opening to catch up and then all of a
sudden you've gone to far and you've turned them back down.

Q: In any case no matter how high this overshoot was you'd never
flag it?

A: If it got really hot, I mean like if the level here were main
stage level {careful with this interpretation, may not be correct}
and it went way up here, that would be something different. But,
you know just a 100 psi overshoot that's not going to be that bad.

U20}

Q: What about "this guy?"

A: This is the interface temp.

Q: Is this a normal delta?

A: Yes.

Q: It's wider up here than it is down there is that O.K.?

{Flips to LOX turbine temperature plots}

A: Yes, let's look at the lox turbine temps, that'll give you a
feel.
You can see here that the lox turbine temps are there starting to
go up, you see the slope change here about 2.5 seconds roughly.
And they really don't start kicking in untill about over here and
that slope change here. It's kind of hard to tell, the trend is
a little bit different but, I think this roughly corresponds to
that as far as the initial kick-on. You can see here the turbine
temps here have been flat for a good two seconds. You're still in
the climbing mode here. You're still running up.

{#2071? }

This is kind of a hard one because you have not only your
turbine temps, you have what's called heat exchanger bypass
orifice, which is in there, which bypasses flow around the heat
exchanger and then it dumps it back in downstream of the heat
exchanger and cools the flow down. It's going to depend on the
size of the orifice and the engine. I'd say engine to engine it's

0: Page 21

A: You can start to see it to rise. If you plotted up the
turbine temps, then the heat exchanger interface temp. on one ... ,
it would take quite a while for that heat exchanger to catch up to
the

Q: So, in that case, if you saw something really high here you
wouldn't look at three seconds somewhere else.

A: You might want to look back a little bit in time on that one.
Pressure obviously reacts faster than temperatures. But in
general, this is further downstream, it is the interface between
the engine and the facility ..•

Q: Anything bigger than this to expect or would that be normal?

A: That's probably normal and that's probably ...

Q: Anything larger than that, you need worry about?

A: Yes.

O.K., I can probab2y do this and then we can eye-ba22 it. If you
think that is normal.

Yes, that is normal.

U19}

This overshoot here, that's due to the slower start, you're coming
in here your valves are opening to catch up and then all of a
sudden you've gone to far and you've turned them back down.

Q: In any case no matter how high this overshoot was you'd never
flag it?

A: If it got really hot, I mean like if the level here were main
stage level {careful with this interpretation, may not be correct}
and it went way up here, that would be something different. But,
you know just a 100 psi overshoot that's not going to be that bad.

U20}

Q: What about "this guy?"

A: This is the interface temp.

Q: Is this a normal delta?

A: Yes.

Q: It's wider up here than it is down there is that O.K.?

{Flips to LOX turbine temperature plots}

A: Yes, let's look at the lox turbine temps, that'll give you a
feel.
You can see here that the lox turbine temps are there starting to
go up, you see the slope change here about 2.5 seconds roughly.
And they really don't start kicking in untill about over here and
that slope change here. It's kind of hard to tell, the trend is
a little bit different but, I think this roughly corresponds to
that as far as the initial kick-on. You can see here the turbine
temps here have been flat for a good two seconds. You're still in
the climbing mode here. You're still running up.

{#2071? }

This is kind of a hard one because you have not only your
turbine temps, you have what's called heat exchanger bypass
orifice, which is in there, which bypasses flow around the heat
exchanger and then it dumps it back in downstream of the heat
exchanger and cools the flow down. It's going to depend on the
size of the orifice and the engine. I'd say engine to engine it's

-s10: Page 22

about average (about 30 degrees or so) .

Q: Does the delta need to stay constant?

A: No. They're going to float around depending on the engine,
etc.

{f21}

This is the anti-flood valve pOSe That's the spring operated
valve in front of the heat exchanger. As soon as the pressure gets
up high enough, it'll open that valve up.

Q: Do you ever look at this time with respect to when the
pressure got high enough to see if the valve was sticking, etc?

A: If it looks like a valve was sticking, we would. Otherwise
it's pretty consistent on when it opens.

Q: Is that important {blip at .3 seconds}?

A: I wouldn't have called it out, it may be some kind of pressure
blip.

Q: Does this pop if it's higher than 120?

A: This is percent open, not pressure.

Q: These variations are normal?

A: Yes. Some valves read greater than 100%, that's just the
RVDT. The ccv and anti-flood valve often read 101 or negative, the
mov and mfv will sometimes read over 100%.

Q: What's a normal delta and is that important?

A: Not really, we don't look much at the anti-flood valve unless
there's a sticking valve or something. I'd say about 3% is about
normal.

{f22}

This is the intermediate seal purge pressure.
to look at in the engine start time frame is level.
is about 175 at engine start and that's an LCC.

Q: Do you care what goes on here?

The main thing
The flight min

A: We really don't look at it much during start. You'll see that
these blips are fairly consistent. This dip and surge is when the
pogo precharge kicks up and goes off {dip at 2.4 sec, surge at 4.4
sec}. It should line up exactly.

0: How about this upward trending?

A: Remember mainstage? It's just starting to come up.

Q: If I saw a downward shift, would I worry?

A: Yes. I've never seen that because you're powering up,
everything should be going up.

{423}

These are bit toggles. That's normal, just the accuracy.
These are the shutdown purge pressures. Basically, after shutdown,
you blow in a helium purge to blowout any residual gasses that are
in the combustion chamber so you don't keep burning after shutdown.
It blows them out the hot gas manifold and out the nozzle. The
requirement is they have to be less than 50 psi du~ing mainstage
to guarantee that they're off. So, they're about 120 on FPB and
450 on OPB during prestart and post-shutdown.

Q: Do you give a block I parameter twice the leeway for in

-s10: Page 22

about average (about 30 degrees or so) .

Q: Does the delta need to stay constant?

A: No. They're going to float around depending on the engine,
etc.

{f21}

This is the anti-flood valve pOSe That's the spring operated
valve in front of the heat exchanger. As soon as the pressure gets
up high enough, it'll open that valve up.

Q: Do you ever look at this time with respect to when the
pressure got high enough to see if the valve was sticking, etc?

A: If it looks like a valve was sticking, we would. Otherwise
it's pretty consistent on when it opens.

Q: Is that important {blip at .3 seconds}?

A: I wouldn't have called it out, it may be some kind of pressure
blip.

Q: Does this pop if it's higher than 120?

A: This is percent open, not pressure.

Q: These variations are normal?

A: Yes. Some valves read greater than 100%, that's just the
RVDT. The ccv and anti-flood valve often read 101 or negative, the
mov and mfv will sometimes read over 100%.

Q: What's a normal delta and is that important?

A: Not really, we don't look much at the anti-flood valve unless
there's a sticking valve or something. I'd say about 3% is about
normal.

{f22}

This is the intermediate seal purge pressure.
to look at in the engine start time frame is level.
is about 175 at engine start and that's an LCC.

Q: Do you care what goes on here?

The main thing
The flight min

A: We really don't look at it much during start. You'll see that
these blips are fairly consistent. This dip and surge is when the
pogo precharge kicks up and goes off {dip at 2.4 sec, surge at 4.4
sec}. It should line up exactly.

0: How about this upward trending?

A: Remember mainstage? It's just starting to come up.

Q: If I saw a downward shift, would I worry?

A: Yes. I've never seen that because you're powering up,
everything should be going up.

{423}

These are bit toggles. That's normal, just the accuracy.
These are the shutdown purge pressures. Basically, after shutdown,
you blow in a helium purge to blowout any residual gasses that are
in the combustion chamber so you don't keep burning after shutdown.
It blows them out the hot gas manifold and out the nozzle. The
requirement is they have to be less than 50 psi du~ing mainstage
to guarantee that they're off. So, they're about 120 on FPB and
450 on OPB during prestart and post-shutdown.

Q: Do you give a block I parameter twice the leeway for in

Page 23

determining it's meaningful range because it has twice the bit
toggle'?

A: No, the controller has the same limits. I look at the
average, and the bit toggle doesn't make much of a difference.

U24}

This is fuel system purge pressure. It has to be <50 psi
during mainstage. That comes on for 3 min. every hour during
prestart. We normally don't see any drifting on these kinds of
things.

{End of Start package}

{shutdown package}

{#1}

Let's go into shutdown. This is the pc. It's a 100%
shutdown. You will see a different trend if you shut down from 90%
or 104%, etc. It tends to change the trace slightly, but these are
pretty consistent. This is a typical shutdown.

Q: Are these the same comparison tests that you used for start?

A: I think so.

Q: Could you use a different test for shutdown.

A: You could.

Q: Do you'?

A: No. I wouldn't if I know I was going to shutdown from a
different power level. otherwise, I like to keep things
consistent.

This is a pretty consistent MCC pc for shutdown.

Q: Normal delta?

A: This is pretty average. They should fallon top of one
another in "this range here".

U2}

These are fuel turbine disch. temps. Nothing significant.
We look for leaks during shutdown. Make sure all the turbine temps
warm up. If you're leaking past the turbine seals, the turbine
temps would stay cold. We look out to 300 sec's after shutdown.

This is an average delta. I've seen some bigger. It get's a
little tighter "here". Another thing to keep in mind is that
sometimes, depending on the engine, MR, etc, the fuel turbine temps
may be really hot. This will affect how long it takes to get
down. Some thing if the turbines are running cold - it will come
down a little faster.

U3}

This is a typical delta on the B channel also. Here's a good
example of the variations you can expect.

Q: No significance about the pattern?

A: Not really. It will vary from channel to channel. You tend
to get a bump in channel A, B is smoother. That's fairly uniform.

Q: As big of a delta on this one as on the last?

A: A little smaller on the lox pump. Fuel pump tends to have a
bigger delta.

Page 23

determining it's meaningful range because it has twice the bit
toggle'?

A: No, the controller has the same limits. I look at the
average, and the bit toggle doesn't make much of a difference.

U24}

This is fuel system purge pressure. It has to be <50 psi
during mainstage. That comes on for 3 min. every hour during
prestart. We normally don't see any drifting on these kinds of
things.

{End of Start package}

{shutdown package}

{#1}

Let's go into shutdown. This is the pc. It's a 100%
shutdown. You will see a different trend if you shut down from 90%
or 104%, etc. It tends to change the trace slightly, but these are
pretty consistent. This is a typical shutdown.

Q: Are these the same comparison tests that you used for start?

A: I think so.

Q: Could you use a different test for shutdown.

A: You could.

Q: Do you'?

A: No. I wouldn't if I know I was going to shutdown from a
different power level. otherwise, I like to keep things
consistent.

This is a pretty consistent MCC pc for shutdown.

Q: Normal delta?

A: This is pretty average. They should fallon top of one
another in "this range here".

U2}

These are fuel turbine disch. temps. Nothing significant.
We look for leaks during shutdown. Make sure all the turbine temps
warm up. If you're leaking past the turbine seals, the turbine
temps would stay cold. We look out to 300 sec's after shutdown.

This is an average delta. I've seen some bigger. It get's a
little tighter "here". Another thing to keep in mind is that
sometimes, depending on the engine, MR, etc, the fuel turbine temps
may be really hot. This will affect how long it takes to get
down. Some thing if the turbines are running cold - it will come
down a little faster.

U3}

This is a typical delta on the B channel also. Here's a good
example of the variations you can expect.

Q: No significance about the pattern?

A: Not really. It will vary from channel to channel. You tend
to get a bump in channel A, B is smoother. That's fairly uniform.

Q: As big of a delta on this one as on the last?

A: A little smaller on the lox pump. Fuel pump tends to have a
bigger delta.

-s10: Page 24

Q: How much?

A: This is about average.

Q: It's really high here, do you disregard that?

A: The delta kind of goes out as you shut down. That's not
unusual, depending on the engines and pumps you're comparing, to
have a variation in starting point. This is typical, considering
that the turbine temps are starting out at a fairly decent delta.
Slightly different trend on B channel but same story.

Q: Other than sensor stuff, is there much in shutdown that can
help explain what happened during mainstage?

A: There are some things we look for strictly at shutdown. Rotor
grab is one example, you'll see a significant drop off in speed -
it will all of a sudden shut down and be flat. Sometimes you'll
see it in the discharge press's and speeds, depending on the pumps.
You look for cavitation during shutdown. Especially during flight,
you'll look for lox pump cavitation. As far as the transient
shutdown, you might see some parameters recover from being frozen.
It might be frozen and not respond to the 3g throttle, then it will
kick back in to normal during shutdown. Mostly you'll look for bad
sensors or erratic sensors. If it was erratic in mainstage, is it
still bad during shutdown. Looking to see that the speeds and
temps come down normal. Also the amount of time it takes to spin
down.

{#6}

Q: "This" is no problem? It cutting off early there? and this
one going out?

A: That looks like extra energy in the fuel PB. That's a little
abnormal to go out as far as it is. "This" is more typical, on
these two. Fine preburner pc and that'll tell you if it's abnormal
or not. You really don't see it in the pc.

Q: If something starts slow, does it stop slow?

A: No. That's more prime time and how the fuel is getting there.
This is strictly a matter of how much momentum is in the pumps.
That's a little long, but there's not anything we could do about
it. They do torque checks after the engine is run anyway. That's
something to note however.

Q: When does it usually cut off?

A: Usually between 15-18 seconds is typical. Anything over 18-20
is starting to get long. They aren't going to do much about, it's
just unusual.

Q: Is this the only time when pumps spin down?

A: Yes. Throttling, but this is the only major speed change.

Q: "This" kind of a delta is normal?

A: That's a little big. It looks like it's got more energy in
here that I don't understand. I didn't see it in the FPB pc.

Q: Looks like it got a boost of energy "there".

A: Yes. It looks like something bumped it at about 6 seconds.

Q: What's "that"?

A: This is not too abnormal to have a little variation "here"
during spin down. Alot of that may be in the pc (we'll take a
closer look at pc). That's about normal. This is a little
abnormal - it hanging out like that. We'll take a look at the
turbine temps as we go on too.

-s10: Page 24

Q: How much?

A: This is about average.

Q: It's really high here, do you disregard that?

A: The delta kind of goes out as you shut down. That's not
unusual, depending on the engines and pumps you're comparing, to
have a variation in starting point. This is typical, considering
that the turbine temps are starting out at a fairly decent delta.
Slightly different trend on B channel but same story.

Q: Other than sensor stuff, is there much in shutdown that can
help explain what happened during mainstage?

A: There are some things we look for strictly at shutdown. Rotor
grab is one example, you'll see a significant drop off in speed -
it will all of a sudden shut down and be flat. Sometimes you'll
see it in the discharge press's and speeds, depending on the pumps.
You look for cavitation during shutdown. Especially during flight,
you'll look for lox pump cavitation. As far as the transient
shutdown, you might see some parameters recover from being frozen.
It might be frozen and not respond to the 3g throttle, then it will
kick back in to normal during shutdown. Mostly you'll look for bad
sensors or erratic sensors. If it was erratic in mainstage, is it
still bad during shutdown. Looking to see that the speeds and
temps come down normal. Also the amount of time it takes to spin
down.

{#6}

Q: "This" is no problem? It cutting off early there? and this
one going out?

A: That looks like extra energy in the fuel PB. That's a little
abnormal to go out as far as it is. "This" is more typical, on
these two. Fine preburner pc and that'll tell you if it's abnormal
or not. You really don't see it in the pc.

Q: If something starts slow, does it stop slow?

A: No. That's more prime time and how the fuel is getting there.
This is strictly a matter of how much momentum is in the pumps.
That's a little long, but there's not anything we could do about
it. They do torque checks after the engine is run anyway. That's
something to note however.

Q: When does it usually cut off?

A: Usually between 15-18 seconds is typical. Anything over 18-20
is starting to get long. They aren't going to do much about, it's
just unusual.

Q: Is this the only time when pumps spin down?

A: Yes. Throttling, but this is the only major speed change.

Q: "This" kind of a delta is normal?

A: That's a little big. It looks like it's got more energy in
here that I don't understand. I didn't see it in the FPB pc.

Q: Looks like it got a boost of energy "there".

A: Yes. It looks like something bumped it at about 6 seconds.

Q: What's "that"?

A: This is not too abnormal to have a little variation "here"
during spin down. Alot of that may be in the pc (we'll take a
closer look at pc). That's about normal. This is a little
abnormal - it hanging out like that. We'll take a look at the
turbine temps as we go on too.

0: Page 25

{f7}

This is HPOP disch press, you don't have HPOP speed on flight.
You have to get it from the dynamic data and they only get it for
mainstage. You never have HPOP speed during shutdown. This is a
typical shutdown.

Q: This gap is typical?

A: Yes. That's about average.

(fS}

This is FP disch. pressure. This is more typical on the top
two, this one is probably (the triangles) the slow one.

Q: Is that corresponding with that?

A: This is about 2.5 seconds.

Q: So, that's probably normal?

A: Yes.

Q: The cut-off of those speeds, is this the normal range to expect
that?

A: Yes, that's about the normal range and then this guy is
probably, ???? part this is due to the fuel pump that's kind of
spinning down slower. Its probably pumping a little more flow
through the coolant leg, which is powering your low pressure fuel
pump. Typically, when things in your big pumps are going to run
then your little pumps kind of reflect it, because they are being
powered by the big pumps.

Q: Normal the pump and everything?

A: Yes.

Q: Normal gap up here?

A: Yes, you're starting at a higher speed.

Q: Would I expect any bigger delta?

A: That's about average.

(flO}

O.K., this is the fuel pump inlet pressure or the low pressure
fuel pump discharge pressure and that's pretty typical. We saw it
fallen off about 6 seconds, 7 seconds and you really don't ...

I really don't know which one that is.

That's kind of hard to see, but you can see here it doesn't vary
a lot and you're already down here below 50 psi, so your getting
down there where its spinning down. That's pretty average as far
as the shutdown.

Q: Right, that's the normal delta, what would be too big?

A: That's probably that one spot we saw before.
about 2.5 and this is a little earlier than that.
average.

Q: From here to here?

A: Yes, that's not unusual.

Q: Normally it spikes up?

That's probably
This is about

0: Page 25

{f7}

This is HPOP disch press, you don't have HPOP speed on flight.
You have to get it from the dynamic data and they only get it for
mainstage. You never have HPOP speed during shutdown. This is a
typical shutdown.

Q: This gap is typical?

A: Yes. That's about average.

(fS}

This is FP disch. pressure. This is more typical on the top
two, this one is probably (the triangles) the slow one.

Q: Is that corresponding with that?

A: This is about 2.5 seconds.

Q: So, that's probably normal?

A: Yes.

Q: The cut-off of those speeds, is this the normal range to expect
that?

A: Yes, that's about the normal range and then this guy is
probably, ???? part this is due to the fuel pump that's kind of
spinning down slower. Its probably pumping a little more flow
through the coolant leg, which is powering your low pressure fuel
pump. Typically, when things in your big pumps are going to run
then your little pumps kind of reflect it, because they are being
powered by the big pumps.

Q: Normal the pump and everything?

A: Yes.

Q: Normal gap up here?

A: Yes, you're starting at a higher speed.

Q: Would I expect any bigger delta?

A: That's about average.

(flO}

O.K., this is the fuel pump inlet pressure or the low pressure
fuel pump discharge pressure and that's pretty typical. We saw it
fallen off about 6 seconds, 7 seconds and you really don't ...

I really don't know which one that is.

That's kind of hard to see, but you can see here it doesn't vary
a lot and you're already down here below 50 psi, so your getting
down there where its spinning down. That's pretty average as far
as the shutdown.

Q: Right, that's the normal delta, what would be too big?

A: That's probably that one spot we saw before.
about 2.5 and this is a little earlier than that.
average.

Q: From here to here?

A: Yes, that's not unusual.

Q: Normally it spikes up?

That's probably
This is about

-s10: Page 26

A: Yes.

Q: Why?

A: It's got to be a change in your delta p across from your
turbine on the low pressure fuel pump. I am trying to think of
what would drive that. You're shutting down your big pump, so,
your main fuel valve is closing. Its probably due to the fact your
high pressure pump is going down fast and therefore its ... Lets
see downstream your coming in here and then your dumping down
eventually into your turbine discharge. That's a good question.
I'm trying to think of what would drive that. This valve's already
shut now.

Q: So nothing is going past here anymore?

A: Right.

Q: So, its whatever is left.

A: It's your delta between here and here that's driving your fuel
pump, your low pressure fuel pump, and your driving pressure is
actually dropped down, but your resistance is probably still in
here. So it is a greater delta p, that's probably what's driving
it just for a second.

Q: So for ... you don't have as much going through here get warmer
and get hotter. because, there is not as much film. You know
because you only have that residual that was left in the line so
that makes it hotter or no?

A: Yes, it would get a little warmer, but your combustion has
pretty much stopped. I'll have to look into that. I don't know
what draws it up. Low top speed is a pretty typical shutdown.

Q: SO its best to shutdown between 12.5 and 15 or even tighter?

A: That's about right 12.5 to 15 seconds. Its going to follow
your high-pop discharge pressure because that's the driving
pressure in your low-pop.
This is just the discharge pressure from the low-pop. Your going
to see a lot of variation here. This in not untypical for
variation. A lot of valves are closing and you see a lot of water
hammer effect in your valves. Its just where a valve closes and
you get a pressure wave back up through the flow. That's pretty
typical and its going to vary a little from engine to engine so,
that's not unusual and your going to see variations in the spikes.
This is pretty typical for a low pump shutdown.

Q: SO this would be normal?

A: Yes, that would be normal.

Q: Alright spikes should occur in these places.

A: Yes, they should pretty much occur in same places, but the
level of them can vary. That's not unusual for them to vary that
much. O.K., that's the bad fuel ... that was bad, its gone below
o psi, so, that's the one we talked about from the data review
package.

Q: What's normal delta then? It seems pretty tight.

A: That's about right. You could see you're starting from
different levels. This one was one that was bad, but you can see
you can vary a little bit up here at the starting point. There's
a bad point measurement.

That's the OPB pc that was bad.

Q: What's the normal delta? This is really tight. Is it a little

-s10: Page 26

A: Yes.

Q: Why?

A: It's got to be a change in your delta p across from your
turbine on the low pressure fuel pump. I am trying to think of
what would drive that. You're shutting down your big pump, so,
your main fuel valve is closing. Its probably due to the fact your
high pressure pump is going down fast and therefore its ... Lets
see downstream your coming in here and then your dumping down
eventually into your turbine discharge. That's a good question.
I'm trying to think of what would drive that. This valve's already
shut now.

Q: So nothing is going past here anymore?

A: Right.

Q: So, its whatever is left.

A: It's your delta between here and here that's driving your fuel
pump, your low pressure fuel pump, and your driving pressure is
actually dropped down, but your resistance is probably still in
here. So it is a greater delta p, that's probably what's driving
it just for a second.

Q: So for ... you don't have as much going through here get warmer
and get hotter. because, there is not as much film. You know
because you only have that residual that was left in the line so
that makes it hotter or no?

A: Yes, it would get a little warmer, but your combustion has
pretty much stopped. I'll have to look into that. I don't know
what draws it up. Low top speed is a pretty typical shutdown.

Q: SO its best to shutdown between 12.5 and 15 or even tighter?

A: That's about right 12.5 to 15 seconds. Its going to follow
your high-pop discharge pressure because that's the driving
pressure in your low-pop.
This is just the discharge pressure from the low-pop. Your going
to see a lot of variation here. This in not untypical for
variation. A lot of valves are closing and you see a lot of water
hammer effect in your valves. Its just where a valve closes and
you get a pressure wave back up through the flow. That's pretty
typical and its going to vary a little from engine to engine so,
that's not unusual and your going to see variations in the spikes.
This is pretty typical for a low pump shutdown.

Q: SO this would be normal?

A: Yes, that would be normal.

Q: Alright spikes should occur in these places.

A: Yes, they should pretty much occur in same places, but the
level of them can vary. That's not unusual for them to vary that
much. O.K., that's the bad fuel ... that was bad, its gone below
o psi, so, that's the one we talked about from the data review
package.

Q: What's normal delta then? It seems pretty tight.

A: That's about right. You could see you're starting from
different levels. This one was one that was bad, but you can see
you can vary a little bit up here at the starting point. There's
a bad point measurement.

That's the OPB pc that was bad.

Q: What's the normal delta? This is really tight. Is it a little

0: Page 27

bigger than that?

A: Probably a little bigger than that. That is a little bit
tight. That's probably 75 psi, that's probably not too bad during
the shutdown.

{tlS}

This is your fuel PB pressure for shutdown purge. It kicks
on at almost two seconds and then you come down here and this is
another purge. It is all helium.

Q: Is this due to the helium?

A: Yes, due to
pretty typical.
different tests
purge.

Q: ?

the helium being used in other places and that's
That's about an average shutdown with three

and three different pumps. This is the lox ...

A: That is 16., that's where the pogo precharge shuts off and
causes that little ... We'll take a look at the pogo ... All that
stuff is driven by helium, so, anytime you turn off one purge and
turn another purge, your going to see a little blip in the other
parameters.

Q: ?

A: That's just the valve opening up. I think it's a spring loaded
valve and there are a lot of lines that you have to fill in those
valves, so that's pretty typical. You can see here that's pretty
consistent, with 23 different engines and three different pumps.

Q: What's normal?

A: That's pretty typical right there.

Q: Any bigger?

A: Maybe slightly, but, that's about right. Here's your pogo
precharge.

Q: How about these things normal?

A: Yes, those are normal. Its helium. Everything is pretty much
helium.

Q: Delta normal?

A: Yes, you see a little variation in the ... that shutdown, just
like you do here in mainstage.

Q: But, it's supposed to be much tighter here, or if I had
something that big
here it's fine?

A: Yes, this is helium through here.

Q: SO, it's real tight?

A: Yes. This is the same kind of ... during shutdown.

{tlS}

This is your spring-loaded anti-flood valve. Its going to
close whenever the pressure drops off enough for the valves to
close and you can see that's about the same that it was during
Little over 100 percent.

Q: So, that was something like two-percent.

A: Under three-Percent. O.K., this is your intermittent seal

0: Page 27

bigger than that?

A: Probably a little bigger than that. That is a little bit
tight. That's probably 75 psi, that's probably not too bad during
the shutdown.

{tlS}

This is your fuel PB pressure for shutdown purge. It kicks
on at almost two seconds and then you come down here and this is
another purge. It is all helium.

Q: Is this due to the helium?

A: Yes, due to
pretty typical.
different tests
purge.

Q: ?

the helium being used in other places and that's
That's about an average shutdown with three

and three different pumps. This is the lox ...

A: That is 16., that's where the pogo precharge shuts off and
causes that little ... We'll take a look at the pogo ... All that
stuff is driven by helium, so, anytime you turn off one purge and
turn another purge, your going to see a little blip in the other
parameters.

Q: ?

A: That's just the valve opening up. I think it's a spring loaded
valve and there are a lot of lines that you have to fill in those
valves, so that's pretty typical. You can see here that's pretty
consistent, with 23 different engines and three different pumps.

Q: What's normal?

A: That's pretty typical right there.

Q: Any bigger?

A: Maybe slightly, but, that's about right. Here's your pogo
precharge.

Q: How about these things normal?

A: Yes, those are normal. Its helium. Everything is pretty much
helium.

Q: Delta normal?

A: Yes, you see a little variation in the ... that shutdown, just
like you do here in mainstage.

Q: But, it's supposed to be much tighter here, or if I had
something that big
here it's fine?

A: Yes, this is helium through here.

Q: SO, it's real tight?

A: Yes. This is the same kind of ... during shutdown.

{tlS}

This is your spring-loaded anti-flood valve. Its going to
close whenever the pressure drops off enough for the valves to
close and you can see that's about the same that it was during
Little over 100 percent.

Q: So, that was something like two-percent.

A: Under three-Percent. O.K., this is your intermittent seal

-s10: Page 28
purge pressure That's what shuts off. That's your 16 •.•• You
can see here they vary during mainstage, so they kind of hold that
••• and they all shut off at the same time and kind of all go down
to about the same level; Which is psi, I think.

{U9}

Q: Is that delta normal?

A: Yes, that'.s fine, its just the operating level.

Q: So, what you need to do is check the difference there?

A: Yes, and if you have a huge difference in mainstage, you're
probably going to have a huge difference in shutdown and probably
during the start as well. They are going to be pretty consistent.
It depends how tight the seal is. A tighter seal is going to have
a newer pump, where a tighter seal is going to higher pressure than
an older pump with a little bit more worn seal.

{:It 2 0 }

Q: Is this normal.

A: Yes. O.K. this is whole bunch of different valves that we show
and they are kind of confusing. When you're starting your engines,
or before you start your engines, your bleed valves are open. As
soon as you go to engine start your bleed valves close. Actually,
its a little before engine starts that the bleed valves close. So,
after shutdown, they open back up. They are your x's and your
triangles. You can see they are close to your and then they open
up about 16 seconds.

Q: What do I want to check, the delta's need to be the same?

A: That's just two different tasks. This is going to be the same
kind of thing with your anti-flood valve. You probably have two
or three percent delta up here would be O.K. The thing your really
keying off on this thing here is to make sure the proper valves
close and the other valves open up.

Q: Do you ever check these •.. here and go back and put the
mainstage ... ?

A: We really don't flag it out unless its pretty significant.
Because, its just that how the ..• reads or it depends on rotary
valve or a linear top valve.

Q: Do they tend to shift?

A: Not usually. You will see sometimes on a mainstage if you look
at your main fuel valve and your lox valve. You know right as an
engine starts, they are going to open up and then they will be at
100 percent. During mainstage it will go up from 100-102 for no
apparent reason it just go's up and that may be some kind of
thermal transit; but, the main indications your looking for is that
the valves are opening and closing when they should be at 16
seconds.

Q: Why did delta, during the main stage that I said was normal,
because it was in that three percent you said and then I looked and
maybe it closed way negative. I could look back at mainstage and
I was back by seven percent and I didn't know it. Would that be
reasonable.

A: Yes, that would be reasonable. If the delta changed .
significantly from mainstage to shutdown or from start to mainstage
or whatever.

Q: If this went negative and it was a wee bit high during the
mainstage than we thought what you said was as high kind of takes

{4t21}

-s10: Page 28
purge pressure That's what shuts off. That's your 16 •.•• You
can see here they vary during mainstage, so they kind of hold that
••• and they all shut off at the same time and kind of all go down
to about the same level; Which is psi, I think.

{U9}

Q: Is that delta normal?

A: Yes, that'.s fine, its just the operating level.

Q: So, what you need to do is check the difference there?

A: Yes, and if you have a huge difference in mainstage, you're
probably going to have a huge difference in shutdown and probably
during the start as well. They are going to be pretty consistent.
It depends how tight the seal is. A tighter seal is going to have
a newer pump, where a tighter seal is going to higher pressure than
an older pump with a little bit more worn seal.

{:It 2 0 }

Q: Is this normal.

A: Yes. O.K. this is whole bunch of different valves that we show
and they are kind of confusing. When you're starting your engines,
or before you start your engines, your bleed valves are open. As
soon as you go to engine start your bleed valves close. Actually,
its a little before engine starts that the bleed valves close. So,
after shutdown, they open back up. They are your x's and your
triangles. You can see they are close to your and then they open
up about 16 seconds.

Q: What do I want to check, the delta's need to be the same?

A: That's just two different tasks. This is going to be the same
kind of thing with your anti-flood valve. You probably have two
or three percent delta up here would be O.K. The thing your really
keying off on this thing here is to make sure the proper valves
close and the other valves open up.

Q: Do you ever check these •.. here and go back and put the
mainstage ... ?

A: We really don't flag it out unless its pretty significant.
Because, its just that how the ..• reads or it depends on rotary
valve or a linear top valve.

Q: Do they tend to shift?

A: Not usually. You will see sometimes on a mainstage if you look
at your main fuel valve and your lox valve. You know right as an
engine starts, they are going to open up and then they will be at
100 percent. During mainstage it will go up from 100-102 for no
apparent reason it just go's up and that may be some kind of
thermal transit; but, the main indications your looking for is that
the valves are opening and closing when they should be at 16
seconds.

Q: Why did delta, during the main stage that I said was normal,
because it was in that three percent you said and then I looked and
maybe it closed way negative. I could look back at mainstage and
I was back by seven percent and I didn't know it. Would that be
reasonable.

A: Yes, that would be reasonable. If the delta changed .
significantly from mainstage to shutdown or from start to mainstage
or whatever.

Q: If this went negative and it was a wee bit high during the
mainstage than we thought what you said was as high kind of takes

{4t21}

0: Page 29

A: O.K. that is your emergency shutdown pressure. What that is,
is pressure that is given to the controller in case there is a
problem and they have to shut down pneumatically. Its just the
pressure that allows the pneumatics to override the hydraulics.

Q: So anything important here?

A: It has to be less than 50 during mainstage and comes on in
about 14 seconds. That is a facility, its actually a interface
pressure measurement, but, that's pretty typical in an emergency
shutdown.

Q: How corne ... ?

A: That may be that the helium is getting used somewhere else and
it kicks back up. I'll have to take a flip back through. It goes
up at 15 seconds. There is probably another purge or something
that's kicking off right at that time. See it kicks up here in the
intermediate seal.

Q: So, that's normal?

A: Yes, that's normal, it happens all the time. Main thing you
look for in a manifold?? discharge temp is your looking for leaks
past the manifold. This is prestart. I think the limit is 320
degrees that indicates a leak.

Q: It has to be greater than 320 degrees?

Q: Is there anything marked in prestart package as far as limits?

A: Looking in here you're about 460 to 0 degrees fahrenheit, so
your running about 9 degrees 80 degrees or so. This is where that
fuel system purge comes on, its always going to warm you up
slightly. This is a fuel system purge here, right there, then you
have a fuel system purge, it comes on continually. Its three
minutes every hour, but, when you get into purge 4 it comes on
continually and stays on that's why it comes up and warms up.
Basically your looking for the minimum level. If you got down to
the 300 range and you could be talking maybe about a slight leak
past your main flood valve, you would be considered about that.

This is your anti-flood valve basically your looking to see
to make sure both the Tl and the T2, these are temperatures, its
a leak protection as well.

Q: Is delta normal here?

A: Yes, its about average for delta.

Q: Could I expect this kind of delta, in this area too.

A: Yes. Same thing you're looking for anything to be really cold.
You Know you're lox is around 100.

{looking through a package}

Q: Is it all in there, so, we would have to go through there and
they would have all those limits for us?

A: Most of them should be in here.

Then that is fine, because, we could do that.

Here it is, anything greater than 380 degrees range. Main flood
valve has to be greater than 260 that was the pop before.

Q: Are you looking for any kind of spikes?

A: Not really in this stuff. You're looking for leaks, that's
strictly what your looking for.

0: Page 29

A: O.K. that is your emergency shutdown pressure. What that is,
is pressure that is given to the controller in case there is a
problem and they have to shut down pneumatically. Its just the
pressure that allows the pneumatics to override the hydraulics.

Q: So anything important here?

A: It has to be less than 50 during mainstage and comes on in
about 14 seconds. That is a facility, its actually a interface
pressure measurement, but, that's pretty typical in an emergency
shutdown.

Q: How corne ... ?

A: That may be that the helium is getting used somewhere else and
it kicks back up. I'll have to take a flip back through. It goes
up at 15 seconds. There is probably another purge or something
that's kicking off right at that time. See it kicks up here in the
intermediate seal.

Q: So, that's normal?

A: Yes, that's normal, it happens all the time. Main thing you
look for in a manifold?? discharge temp is your looking for leaks
past the manifold. This is prestart. I think the limit is 320
degrees that indicates a leak.

Q: It has to be greater than 320 degrees?

Q: Is there anything marked in prestart package as far as limits?

A: Looking in here you're about 460 to 0 degrees fahrenheit, so
your running about 9 degrees 80 degrees or so. This is where that
fuel system purge comes on, its always going to warm you up
slightly. This is a fuel system purge here, right there, then you
have a fuel system purge, it comes on continually. Its three
minutes every hour, but, when you get into purge 4 it comes on
continually and stays on that's why it comes up and warms up.
Basically your looking for the minimum level. If you got down to
the 300 range and you could be talking maybe about a slight leak
past your main flood valve, you would be considered about that.

This is your anti-flood valve basically your looking to see
to make sure both the Tl and the T2, these are temperatures, its
a leak protection as well.

Q: Is delta normal here?

A: Yes, its about average for delta.

Q: Could I expect this kind of delta, in this area too.

A: Yes. Same thing you're looking for anything to be really cold.
You Know you're lox is around 100.

{looking through a package}

Q: Is it all in there, so, we would have to go through there and
they would have all those limits for us?

A: Most of them should be in here.

Then that is fine, because, we could do that.

Here it is, anything greater than 380 degrees range. Main flood
valve has to be greater than 260 that was the pop before.

Q: Are you looking for any kind of spikes?

A: Not really in this stuff. You're looking for leaks, that's
strictly what your looking for.

-s10: Page 30

Q: So, you're just looking for levels in major? If this was
really bad, then you would think it was a sensor?

A: Well it depends on what the measurements in or what the spike
is in. Typically spikes are going to be instrumentation. You
don't see a whole bunch of spikes that are real and there are
things that happen so fast that the engine can't react. They are
so small with the engine that reacts.

Q: They wouldn't tell you the company.

A: Mostly in the ? but you could have them in the engineer
area as well. -----

Q: Normal, wouldn't flag?

A: No, that's not that bad. This is another leak detection. What
it is
that there is actually a little bubble the lox go all the way to
the O.P.
When you're pressurized, you come in here you have lox all the way
in here you have lox all the way in here, you have lox all the way
down to the main oxidizer valve. You also have it going through
all the way preburner and you have it all the way to the OPOVCS
schematic loss, so, its not really accurate, and all the way to
fpov and those valves are closed. Actually, the way the OPOV is
oriented, is kind of pulling it up and there is a little room for
a bubble, and there actually is a bubble in there. If its leaking
that bubble will bleed through and it will actually be cold and
then these temp censors will drop down. These are outside like
skin tents.

Q: Will the bubble pop?

A: No, if the bubble went through and it leaked. You'd have
liquid lox you'd be dropping down in the hundreds.

Q: Any kind of normal?

A: That's about average.

Q: No more?

A: It wouldn't concern me even if it got as big as two or three
degrees. That really wouldn't bother me that much. It just
depends on why we want to overlook at that except prestart
basically, strictly for late detection. O.K., these are your fuel
turbine temps and lox turbine temps prestart. This is the result
of a purge coming on. A lox dome type purge that comes on and
basically warms it up a little bit, warmed helium. Your main
concern is the levels, you want them to be around ambient. 530 is
what? 70 degrees or something like that, 70 degrees fahrenheit,
so, that's about ambient. That's fairly what your looking for,
that should track fairly close to one another, cause there is no
flow going through them, so, the turbine temp should be fairly
close.

Q: ?

A: Not necessarily.

Q: This is (?)one's lox from one's fuel.

A: Right.

Q: So, how big.

A: I would say, you are talking five degrees here, that's pretty
tight. I'd say if they were much warmer like five degrees off of
them I might start looking a little harder.

Q: So, If you were closer to watch one, There wasn't say a big
difference .. ?

-s10: Page 30

Q: So, you're just looking for levels in major? If this was
really bad, then you would think it was a sensor?

A: Well it depends on what the measurements in or what the spike
is in. Typically spikes are going to be instrumentation. You
don't see a whole bunch of spikes that are real and there are
things that happen so fast that the engine can't react. They are
so small with the engine that reacts.

Q: They wouldn't tell you the company.

A: Mostly in the ? but you could have them in the engineer
area as well. -----

Q: Normal, wouldn't flag?

A: No, that's not that bad. This is another leak detection. What
it is
that there is actually a little bubble the lox go all the way to
the O.P.
When you're pressurized, you come in here you have lox all the way
in here you have lox all the way in here, you have lox all the way
down to the main oxidizer valve. You also have it going through
all the way preburner and you have it all the way to the OPOVCS
schematic loss, so, its not really accurate, and all the way to
fpov and those valves are closed. Actually, the way the OPOV is
oriented, is kind of pulling it up and there is a little room for
a bubble, and there actually is a bubble in there. If its leaking
that bubble will bleed through and it will actually be cold and
then these temp censors will drop down. These are outside like
skin tents.

Q: Will the bubble pop?

A: No, if the bubble went through and it leaked. You'd have
liquid lox you'd be dropping down in the hundreds.

Q: Any kind of normal?

A: That's about average.

Q: No more?

A: It wouldn't concern me even if it got as big as two or three
degrees. That really wouldn't bother me that much. It just
depends on why we want to overlook at that except prestart
basically, strictly for late detection. O.K., these are your fuel
turbine temps and lox turbine temps prestart. This is the result
of a purge coming on. A lox dome type purge that comes on and
basically warms it up a little bit, warmed helium. Your main
concern is the levels, you want them to be around ambient. 530 is
what? 70 degrees or something like that, 70 degrees fahrenheit,
so, that's about ambient. That's fairly what your looking for,
that should track fairly close to one another, cause there is no
flow going through them, so, the turbine temp should be fairly
close.

Q: ?

A: Not necessarily.

Q: This is (?)one's lox from one's fuel.

A: Right.

Q: So, how big.

A: I would say, you are talking five degrees here, that's pretty
tight. I'd say if they were much warmer like five degrees off of
them I might start looking a little harder.

Q: So, If you were closer to watch one, There wasn't say a big
difference .. ?

0: Page 31

A: These might fall right on top of one another, that would be
your concern. They are all in the hot gas manifold. So, they
probably wouldn't be a whole lot different. Typically, your going
to see a delta, but, it wouldn't concern me a lot if I sawall the
lox ... laying around on top of the fuel.

Q: But, they also have to have the same trend.

A: You are going to see that trend, because that's a heated purge
that comes along, If you don't see this rise in here, then
something is' kind of unusual.

Q: This is all normal?

A: Yes. O.K., this is your loxdome temp, same kind of deal as far
as the ... here, its just a heated cartridge that comes into the
logstone. The logstone is just up in here, its where your lox
comes down into your, they call it the hotdog. Its just the
temperature up in this area, kind of a leak check also, because
your range loc valve is closed. If anything would leak and pass
it, the temperature would drop like a rock. So, its kind of
another way to check a leak.

Q: If you saw a spike, ..• ?

A: If you saw a spike prestart, because there is really nothing
going on other than a purge blowing in. If you did see a spike,
I would probably tlag it and go look at the helium supply pressure,
to see if for some reason it was spike in the pressure that would
drive this.

Q: The level checks are found in that one package?

A: Yes, they should be in there. They call it a leak detect
package and that's what you are looking for.

Q: What size frequency are actual?

A: That's the recording rate of the data. They changed the
recording rate, you can see here it picks up out here. This is
probably like one sample a second, it may be one every ten seconds,
and then over here its probably higher frequency; because, there
is probably something going on. Its higher out here toward engine
start. They do that all the time in prestarts. O.K., these are
facility measurements, do we need to go into those?

Yes. This is a bad sensor, because, it is so erotic.

These are gloclogs, there thermacople. What you try to do here is
piCk up, they are for fire detection.

Q: Yes. He explained that there is supposed to be allowed a large
variation?

A: Yes.

Q: How large? Can you give me a handle?

A: That is pretty erotic.

Q: That's only that particular sensor too?

A: Yes, I would say those things 10-15 degrees, really wouldn't
bother me as far as the variation between positions. This is
northstate, northsouth, east and west. If you pick a fireup its
going to go through the rOof. Unless it drops down with wind you
don't worry about it. These are amnia-power attempts. The
difference is the position in the stand and where they are, these
are the glocarts are there in case you have a hydrogen leak. This
is like a little lighter that will ignite that leak and go ahead
and set it off, so, it won't build up and cause a large explosion.
It will just go ahead and ignite it and then it will let it burn.
Then, the thermal couple will pick it up at temperature and the
facility will cut you off. This is more for a fire that's up

0: Page 31

A: These might fall right on top of one another, that would be
your concern. They are all in the hot gas manifold. So, they
probably wouldn't be a whole lot different. Typically, your going
to see a delta, but, it wouldn't concern me a lot if I sawall the
lox ... laying around on top of the fuel.

Q: But, they also have to have the same trend.

A: You are going to see that trend, because that's a heated purge
that comes along, If you don't see this rise in here, then
something is' kind of unusual.

Q: This is all normal?

A: Yes. O.K., this is your loxdome temp, same kind of deal as far
as the ... here, its just a heated cartridge that comes into the
logstone. The logstone is just up in here, its where your lox
comes down into your, they call it the hotdog. Its just the
temperature up in this area, kind of a leak check also, because
your range loc valve is closed. If anything would leak and pass
it, the temperature would drop like a rock. So, its kind of
another way to check a leak.

Q: If you saw a spike, ..• ?

A: If you saw a spike prestart, because there is really nothing
going on other than a purge blowing in. If you did see a spike,
I would probably tlag it and go look at the helium supply pressure,
to see if for some reason it was spike in the pressure that would
drive this.

Q: The level checks are found in that one package?

A: Yes, they should be in there. They call it a leak detect
package and that's what you are looking for.

Q: What size frequency are actual?

A: That's the recording rate of the data. They changed the
recording rate, you can see here it picks up out here. This is
probably like one sample a second, it may be one every ten seconds,
and then over here its probably higher frequency; because, there
is probably something going on. Its higher out here toward engine
start. They do that all the time in prestarts. O.K., these are
facility measurements, do we need to go into those?

Yes. This is a bad sensor, because, it is so erotic.

These are gloclogs, there thermacople. What you try to do here is
piCk up, they are for fire detection.

Q: Yes. He explained that there is supposed to be allowed a large
variation?

A: Yes.

Q: How large? Can you give me a handle?

A: That is pretty erotic.

Q: That's only that particular sensor too?

A: Yes, I would say those things 10-15 degrees, really wouldn't
bother me as far as the variation between positions. This is
northstate, northsouth, east and west. If you pick a fireup its
going to go through the rOof. Unless it drops down with wind you
don't worry about it. These are amnia-power attempts. The
difference is the position in the stand and where they are, these
are the glocarts are there in case you have a hydrogen leak. This
is like a little lighter that will ignite that leak and go ahead
and set it off, so, it won't build up and cause a large explosion.
It will just go ahead and ignite it and then it will let it burn.
Then, the thermal couple will pick it up at temperature and the
facility will cut you off. This is more for a fire that's up

-510: Page 32
around the power head, so, this is actually up around the engine,
that's more of a facility type. This more of an engine run the
power head. Its the same thing, its temperature sensors, probably
the same range as you see here its a pretty tight scale. But, this
whole spike here, looks pretty big, but, your only going from
530-520, so your only about 15 degrees.

Q: So, I still say 15 degrees, I wouldn't flag anything?

A: No, Now, these are the north
west lower, these are the upper.
lower range, to pick up fires up
engine.

lower, east lower, south lower,
So, they have an upper range, and

on the engine or down on the

Q: Anything interesting that this is spiking at the same time that
this is spiking?

A: I can't see the time scale, so, I don't know what could
possibly be going on at that time, but, it could be that they are
pressurizing the system. This is another leak detector that we
use. This is the Venturi inlet temperature on the fuel
pressurization line. We come through here and you have fuel
through here all the way to your big pump and you stop here. What
they are checking is that you are not leaking past the seals that
are in between the fuel turbine and fuel pump on the low pressure
pump. If you leak here, you come here, here's your repress line.
It goes of to a burned stock on the ground and it goes to the
external tie. If you were leaking past the seals and stuff, you
would probably cooling this down quite a bit, because its liquid
hydrogen. So, what they are doing is looking for anything below
anbiano or significant here and its just a venturi inlet
temperature that's probably downstream a little bit.

Q: So, its a level thing?

A: Yes, its strictly leaks. In the 550 range.

Q: Nothing important about the ... ?

A: Right. O.K. this is your eminent seal pressure.

Q: Isn't this like a bad data point?

A: Yes. There is when you go from purge one to purge three, there
is like a quick little blip of data or purge, actually nitrogen
back here. Anytime you go into purge three, they have like a ten
second shot of flow going into your intermediate seal, as a
protection. Because, the reason that came about is not only a
couple of years ago, we were in purge four and we had to go back
to purge three. Well, in purge four we were using helium bottles
on the orbiter and purge three we were using nitre-ground nitrogen.
Well, when we were in purge four, they shut down the ground
nitrogen pressure with a rubber back from four to three. It took
them several seconds for them to bring back the nitrogen, so, your
sitting there with no purge in your intermidium .•. So, what they
decided to do in the controller was anytime you go into purge
three, whether its from two, three, or from four to three, leave
the helium on for an additional ten seconds, that will allow you
time for you to get your hydrogen back up. That maybe what this
is, it may not. I don't know.

Q: ?

A: Should be a .•.

Q: We can get it if we need it. The other ... don't have
anything, they are all screwed up too. So, I guess the best thing
to do is leave it with this one.

A: You can pull this test and see when the data starts and that
will give you a feel for a scale.

-510: Page 32
around the power head, so, this is actually up around the engine,
that's more of a facility type. This more of an engine run the
power head. Its the same thing, its temperature sensors, probably
the same range as you see here its a pretty tight scale. But, this
whole spike here, looks pretty big, but, your only going from
530-520, so your only about 15 degrees.

Q: So, I still say 15 degrees, I wouldn't flag anything?

A: No, Now, these are the north
west lower, these are the upper.
lower range, to pick up fires up
engine.

lower, east lower, south lower,
So, they have an upper range, and

on the engine or down on the

Q: Anything interesting that this is spiking at the same time that
this is spiking?

A: I can't see the time scale, so, I don't know what could
possibly be going on at that time, but, it could be that they are
pressurizing the system. This is another leak detector that we
use. This is the Venturi inlet temperature on the fuel
pressurization line. We come through here and you have fuel
through here all the way to your big pump and you stop here. What
they are checking is that you are not leaking past the seals that
are in between the fuel turbine and fuel pump on the low pressure
pump. If you leak here, you come here, here's your repress line.
It goes of to a burned stock on the ground and it goes to the
external tie. If you were leaking past the seals and stuff, you
would probably cooling this down quite a bit, because its liquid
hydrogen. So, what they are doing is looking for anything below
anbiano or significant here and its just a venturi inlet
temperature that's probably downstream a little bit.

Q: So, its a level thing?

A: Yes, its strictly leaks. In the 550 range.

Q: Nothing important about the ... ?

A: Right. O.K. this is your eminent seal pressure.

Q: Isn't this like a bad data point?

A: Yes. There is when you go from purge one to purge three, there
is like a quick little blip of data or purge, actually nitrogen
back here. Anytime you go into purge three, they have like a ten
second shot of flow going into your intermediate seal, as a
protection. Because, the reason that came about is not only a
couple of years ago, we were in purge four and we had to go back
to purge three. Well, in purge four we were using helium bottles
on the orbiter and purge three we were using nitre-ground nitrogen.
Well, when we were in purge four, they shut down the ground
nitrogen pressure with a rubber back from four to three. It took
them several seconds for them to bring back the nitrogen, so, your
sitting there with no purge in your intermidium .•. So, what they
decided to do in the controller was anytime you go into purge
three, whether its from two, three, or from four to three, leave
the helium on for an additional ten seconds, that will allow you
time for you to get your hydrogen back up. That maybe what this
is, it may not. I don't know.

Q: ?

A: Should be a .•.

Q: We can get it if we need it. The other ... don't have
anything, they are all screwed up too. So, I guess the best thing
to do is leave it with this one.

A: You can pull this test and see when the data starts and that
will give you a feel for a scale.

Page 1

Darryl Gaddy on Sensor Validation interviewed by Claudia and Tim.

A: Performance has changed or the instrumentation has gone bad,
if you have a redundant measurement like 2 sensors measuring the
same pressure you can compare them to two difference measurement
is a good way to see if one of them has gone bad. Or if you have
another one downstream or upstream you can compare high-pressure
lox pump discharge pressure we also have injection pressures, you
can compare those two to see which one is bad or see if one is
drifting.

Q: Do you have these flow diagrams? (Katherine was trying to get
us colored copies •.• Does it have the instrumentation locations?) ••

A: Yes, it has the flight instrumentations, it has the antiflood
valve, it has position A and B, and MSID numbers and the pid
numbers. Like if we see high-pop discharge pressure sensor here,
if we have cad measurement we also have facility measurements, so
there is a cad and facility so if you compare the cad and facility
measurements together and one of them is going bad it says it the
cads part of the measurement or the facility part of it. Or high­
pop discharge pressure here you also have a lox injection pressure
that is down here, I don't see it here but we do have it, so this
pressure and this pressure should be the same and if one pressure
is increasing then it should be increasing.

There are a couple difference categories of instrumentation
failure that you can have, one where you go completely off range
within one measured time that is good, within 20 milliseconds or
40 milliseconds is bad on the next one and that just a thermocouple
or a sensor failure, or something breaks in the thing. There is no
good way off scale or below scale. The other failure you can have
is like a drifting measurement, you can have a measurements that
just drift. This is on the last flight we have pid grid on PC the
measurement and the fuel preburner chamber pressure, see it comes
up here nice and steady, then it just drifts down like this. This
is characteristically what we call a thermal drift, it gets longer
and longer and the temperature of the engine affects the
measurement. This one we have a fix for it, we have offset valves,
we have the pressure tap come up, we put a formal isolator on there
and we ran a little sense line around in a circle above the
isolator.

Q: That wasn't the case here though?

A: This one did not have the isolator on the offset valve so it
drifts but the ones that do have the offset mounts are nice and
flat and like for this one the fuel preburner chamber pressure, to
look and see if it is really drifting, I would look at fuel pump
speed, something that this pressure is driving the system to make
sure that it is actually drifting.

Q: What kind of pre and post test measurement do you look at?
Do you use those too?

A: Right now we don't look at it, or they might have program that
looks at it. Looking through the data package, this one is
drifting I'll go back and look at prestart post shutdown to make
sure it is reasonable or where they are suppose to be. (okay) This
one i would expect it to drift below 0 psia. All the cads
measurements there are sensor qualification documents where we will
get a fid if the sensor goes above a certain value.

Q: The other thing that we need is a translation on those fids,
do you have that?

A: Someone that worked over in the controller group gave it to
me, its a wordstar/ascii format and I working out and we are going
to put it on the SUN station. I'll have it resident on the SUN
station as INGRESS database, whenever I get it? This is the
database, this is block two, and you get a fid and it will post out
a fid and this is the measurement in the data stream like pid. No
its a failure id. Its word number four, which is pid number 4,

Page 1

Darryl Gaddy on Sensor Validation interviewed by Claudia and Tim.

A: Performance has changed or the instrumentation has gone bad,
if you have a redundant measurement like 2 sensors measuring the
same pressure you can compare them to two difference measurement
is a good way to see if one of them has gone bad. Or if you have
another one downstream or upstream you can compare high-pressure
lox pump discharge pressure we also have injection pressures, you
can compare those two to see which one is bad or see if one is
drifting.

Q: Do you have these flow diagrams? (Katherine was trying to get
us colored copies •.• Does it have the instrumentation locations?) ••

A: Yes, it has the flight instrumentations, it has the antiflood
valve, it has position A and B, and MSID numbers and the pid
numbers. Like if we see high-pop discharge pressure sensor here,
if we have cad measurement we also have facility measurements, so
there is a cad and facility so if you compare the cad and facility
measurements together and one of them is going bad it says it the
cads part of the measurement or the facility part of it. Or high­
pop discharge pressure here you also have a lox injection pressure
that is down here, I don't see it here but we do have it, so this
pressure and this pressure should be the same and if one pressure
is increasing then it should be increasing.

There are a couple difference categories of instrumentation
failure that you can have, one where you go completely off range
within one measured time that is good, within 20 milliseconds or
40 milliseconds is bad on the next one and that just a thermocouple
or a sensor failure, or something breaks in the thing. There is no
good way off scale or below scale. The other failure you can have
is like a drifting measurement, you can have a measurements that
just drift. This is on the last flight we have pid grid on PC the
measurement and the fuel preburner chamber pressure, see it comes
up here nice and steady, then it just drifts down like this. This
is characteristically what we call a thermal drift, it gets longer
and longer and the temperature of the engine affects the
measurement. This one we have a fix for it, we have offset valves,
we have the pressure tap come up, we put a formal isolator on there
and we ran a little sense line around in a circle above the
isolator.

Q: That wasn't the case here though?

A: This one did not have the isolator on the offset valve so it
drifts but the ones that do have the offset mounts are nice and
flat and like for this one the fuel preburner chamber pressure, to
look and see if it is really drifting, I would look at fuel pump
speed, something that this pressure is driving the system to make
sure that it is actually drifting.

Q: What kind of pre and post test measurement do you look at?
Do you use those too?

A: Right now we don't look at it, or they might have program that
looks at it. Looking through the data package, this one is
drifting I'll go back and look at prestart post shutdown to make
sure it is reasonable or where they are suppose to be. (okay) This
one i would expect it to drift below 0 psia. All the cads
measurements there are sensor qualification documents where we will
get a fid if the sensor goes above a certain value.

Q: The other thing that we need is a translation on those fids,
do you have that?

A: Someone that worked over in the controller group gave it to
me, its a wordstar/ascii format and I working out and we are going
to put it on the SUN station. I'll have it resident on the SUN
station as INGRESS database, whenever I get it? This is the
database, this is block two, and you get a fid and it will post out
a fid and this is the measurement in the data stream like pid. No
its a failure id. Its word number four, which is pid number 4,

-s10: Page 2
data work 5 pid number four, it spits it out as decimal you convert
that to octal and you get the fide That how you get that one and
you just come down this listing. Come down to the 015s and come
down 041 which is FPOV channel A first failure. This even tells
you during the check out phase the response that the engine is
going to take, it will say disqualify channel A and inhibit start.
This one will do actuator channel disqualification and inhibit
start and if your start you will disqualify that actuator.

The controller can tell you whenever we have failures on certain
measurements, not all the controller measurements have
qualification on them.

Q: Just ones like for redlining control?

A: Right. Another good way to look at comparisons for
instrumentation failure if you don't have any hardware changes and
your in the same inlet conditions of power level you can compare
to the previous tests.

Q: That's a good way to figure out your engine are pretty well
tuned right

A: Yes, you have to know the engine performance is the same here
too.

Q: A lot of people mention the drift on the fuel preburner, and
in a couple other places, is that listed somewhere or written down?

A: Of what measurements are bad? I don't think so, I could tell
you, like the fuel preburner it always drifts, I think it's pids 17
or 18 MCC coolant discharge pressure, it drifts a lot, we don't
believe it. There is a measurement that comes about here this pid
17 measured here also on the ground test have a ground test over
here before we go into the turbine and these two partly agree.
This one is pretty steady and this one is the best. We've having
a lot of problems lox discharge on certain stands but that not one
you expect to drift all the time, that pid 334. No may of them you
expect to drift.

0: And what about ones, like I think pid 30 is often bad?

A: Yeah, that a really bad speed measurement on the low pot, and
pid 260 and 261 which is fuel big pump speed, they have a really
big band to them, like a couple thousand RPM toggle, where the pid
facility? 764 is really tight.

0: Okay, so you would use?

A: Yes.

Q: The other thing is you do a lot of comparison between cad and
facility, sometimes they are right on top of each other, sometime
they're not and in either case it could be acceptable, those are
not databased somewhere either?

A: ENGSYST program Martin Marietta has written, have you seen
that, it has a p? in the program.

Q: I've never heard of that program, what is it?

(too many talking at same time/can't make it out)

A: This is a really good code. They have it here with the
tolerance, down here and you have to go back up here and get your
pid number.

Q: To interpret what the pid is •.•

A: I think if you run the program it puts it on the screen, what
the tolerance is and the pids.

Q: You mean not all the redundant ones are included in there?

-s10: Page 2
data work 5 pid number four, it spits it out as decimal you convert
that to octal and you get the fide That how you get that one and
you just come down this listing. Come down to the 015s and come
down 041 which is FPOV channel A first failure. This even tells
you during the check out phase the response that the engine is
going to take, it will say disqualify channel A and inhibit start.
This one will do actuator channel disqualification and inhibit
start and if your start you will disqualify that actuator.

The controller can tell you whenever we have failures on certain
measurements, not all the controller measurements have
qualification on them.

Q: Just ones like for redlining control?

A: Right. Another good way to look at comparisons for
instrumentation failure if you don't have any hardware changes and
your in the same inlet conditions of power level you can compare
to the previous tests.

Q: That's a good way to figure out your engine are pretty well
tuned right

A: Yes, you have to know the engine performance is the same here
too.

Q: A lot of people mention the drift on the fuel preburner, and
in a couple other places, is that listed somewhere or written down?

A: Of what measurements are bad? I don't think so, I could tell
you, like the fuel preburner it always drifts, I think it's pids 17
or 18 MCC coolant discharge pressure, it drifts a lot, we don't
believe it. There is a measurement that comes about here this pid
17 measured here also on the ground test have a ground test over
here before we go into the turbine and these two partly agree.
This one is pretty steady and this one is the best. We've having
a lot of problems lox discharge on certain stands but that not one
you expect to drift all the time, that pid 334. No may of them you
expect to drift.

0: And what about ones, like I think pid 30 is often bad?

A: Yeah, that a really bad speed measurement on the low pot, and
pid 260 and 261 which is fuel big pump speed, they have a really
big band to them, like a couple thousand RPM toggle, where the pid
facility? 764 is really tight.

0: Okay, so you would use?

A: Yes.

Q: The other thing is you do a lot of comparison between cad and
facility, sometimes they are right on top of each other, sometime
they're not and in either case it could be acceptable, those are
not databased somewhere either?

A: ENGSYST program Martin Marietta has written, have you seen
that, it has a p? in the program.

Q: I've never heard of that program, what is it?

(too many talking at same time/can't make it out)

A: This is a really good code. They have it here with the
tolerance, down here and you have to go back up here and get your
pid number.

Q: To interpret what the pid is •.•

A: I think if you run the program it puts it on the screen, what
the tolerance is and the pids.

Q: You mean not all the redundant ones are included in there?

0: Page 3

A: These are the redundant ones.

Q: I'm talking about deltas between A and B.

A: ... right, I think they did put that in here.

Q: Sometimes it bothers them when they're slight off set, the
times can be quite a bit off?

A: Turbine is sure to start the temperatures, that can be 250
degrees apart, the fuel flow meter discharge temperature is a 100th
degree it would bother me.

Q: What are they based on?

A: I think, our experience, we looked at the data and then they
coded it into the program and it spit out errors and then went back
and looked at the data to see if it really looked bad. I think,
but I didn't write the code, I'm not sure.

Q: More like a trial and error thing?

A: Yeah, I'm not sure what it is based on.

Any questions:

Q: Other examples, like there is the icing up problem where you
can get water and MC2s, hot gas injection?

A: Yeah, pressure it ices up a lot.

Q: Is it a cads or facility?

A: Its a cads, its the 24, its also a facility that is 367 and
another facility that is 371. I'm impressed with your pid
knowledge. (24 doesn't often times does seem to be) often times
its hanging on, it doesn't respond, they just don't have the
measurement hooked up, they've used it for something else.

Q: Something that David Foust was talking about this morning,
that I had never head before, there's a redline parameter for 53
and 54, the coolant liner pressure. He said they ice up, because
it's sensor, because its actually in the line.

A: Here is coolant water discharge orifices which are down this
way and that is where the hydrogen dumps back into the turbine
drain, and you get mixing of the hydrogen with the hot gas coming
through there and it icing up the discharge orifices and that
drives the pressure up, so its really the sensor reading a real
phenomena.

Q: That is what I understood he meant this morning too.

A: It is not a sensor icing up as in the MCC hot gas injection
pressure, that is something wrong with the sensor, the coolant liner
is actually a coolant liner anomaly.

A: Are you not worried than there won't be enough coolant going
through?

A: Yeah, that is the big worry that you'll ice up the orifices
and then you won't have any coolant to go through the coolant liner
and you'll have a burn through.

Q: Is there lower, I know there is an upper limit the redline is
an upper limit, so is there a lower limit that would shut it down
too?

A: They usually break up on every icing, they do trip up on every
icing up orifice, because it is getting pressure from the fuel
system, that is a higher supply of pressure, so every icing
pressure is kind of low. And that redline is based on pc.

There are a lot more coolant liner on flight than on ground

0: Page 3

A: These are the redundant ones.

Q: I'm talking about deltas between A and B.

A: ... right, I think they did put that in here.

Q: Sometimes it bothers them when they're slight off set, the
times can be quite a bit off?

A: Turbine is sure to start the temperatures, that can be 250
degrees apart, the fuel flow meter discharge temperature is a 100th
degree it would bother me.

Q: What are they based on?

A: I think, our experience, we looked at the data and then they
coded it into the program and it spit out errors and then went back
and looked at the data to see if it really looked bad. I think,
but I didn't write the code, I'm not sure.

Q: More like a trial and error thing?

A: Yeah, I'm not sure what it is based on.

Any questions:

Q: Other examples, like there is the icing up problem where you
can get water and MC2s, hot gas injection?

A: Yeah, pressure it ices up a lot.

Q: Is it a cads or facility?

A: Its a cads, its the 24, its also a facility that is 367 and
another facility that is 371. I'm impressed with your pid
knowledge. (24 doesn't often times does seem to be) often times
its hanging on, it doesn't respond, they just don't have the
measurement hooked up, they've used it for something else.

Q: Something that David Foust was talking about this morning,
that I had never head before, there's a redline parameter for 53
and 54, the coolant liner pressure. He said they ice up, because
it's sensor, because its actually in the line.

A: Here is coolant water discharge orifices which are down this
way and that is where the hydrogen dumps back into the turbine
drain, and you get mixing of the hydrogen with the hot gas coming
through there and it icing up the discharge orifices and that
drives the pressure up, so its really the sensor reading a real
phenomena.

Q: That is what I understood he meant this morning too.

A: It is not a sensor icing up as in the MCC hot gas injection
pressure, that is something wrong with the sensor, the coolant liner
is actually a coolant liner anomaly.

A: Are you not worried than there won't be enough coolant going
through?

A: Yeah, that is the big worry that you'll ice up the orifices
and then you won't have any coolant to go through the coolant liner
and you'll have a burn through.

Q: Is there lower, I know there is an upper limit the redline is
an upper limit, so is there a lower limit that would shut it down
too?

A: They usually break up on every icing, they do trip up on every
icing up orifice, because it is getting pressure from the fuel
system, that is a higher supply of pressure, so every icing
pressure is kind of low. And that redline is based on pc.

There are a lot more coolant liner on flight than on ground

slO: Page 4
testing, because everybody likes to look at them. Rocketdyne gave
us summary of coolant liner shifts, and I made a table up.

You only have to worry about the icing when it is exposed to the
hot gas.

Q: One thing that we have heard about several times is oxidizing
preburner chamber pressure that facility pid that icing up and that
seems to be a sensing problem?

a: We don't have a cad measurement there.

Q: Where else would icing up like that happen?

A: You never have anything icing up with anything unless its
exposed hot gas, like your OBB PC, we have a big problem out here
because we .are heavily instrumental on test bed and hot gas area,
like the pressure going in here all these measurements we have to
purge them befo.re start, purges the line to get all the water or
whatever out and then between power level changes we purge them,
that way we don't have the chance to getting a delta P that drives
the all the gas up there. We have a lot more on test bed than
anywhere else.

Q: A lot more icing problems or purging to prevent?

A: Well we purge to prevent but we have more instrumentation on
this region. I think that all the instrumentation we do have,
there unless its special instrumentation. I don't ever remember
fuel burner pc ever icing. Anything in the hot gas can ice, and
the reason it ices, is that we sense it, we don't have the
transducer in so we send a sense line through and the power head
has a shell in it so we are running hydrogen on the out cut cooler,
but we have to run this little sense line through to get the
pressure outside, so you have this little line with hydrogen
running.
I wanted to show you we had a flight done on instrumentation
anomaly. On this test 44, we had a MCC PC bias where we have
channel, on MCC PC we actually have four measurements measure the
PC and then we have Al, A2, average of this one - channel A average
and we average these two for channel B average and we take the two
averages and average them for a real PC. On this flight we were
there is a 35 psi difference between channel A and channel B
difference. One is really higher than the other one, the
measurement was way out here we sense it through the acoustic
cavity, this is the main combustion chamber over here, we have a
little purge system on the shuttle engine where we take fuel, warm
fuel, and purge it back this way, to keep this line from icing up,
and afterwards they found the green gel around this orifice and
apparently it clogged it up, for a while then we just blew it out.

Q: So when you first saw this data, did you know immediately it
was an instrumentation problem?

A: Yeah, because we knew we had a PC bias, but we didn't know why
and we didn't know which one was right.

Q: How did you know you had a PC bias?

A: We saw this one in real time as it was flying, we get data
sent over and we have a channel like MCC PC and we have a plot next
to it the deltas between to the channels and usually it lessen by
psi and it was reading 35.

Q: But how far apart are the transducers and were you confident
it was some physical phenomena that was occurring?

A: They're right on top of each other.

Q: No I mean, physically located.

A: They are 90 degrees apart, it is not a location problem, its
a transducer problem, if they're not reading the same thing, there

slO: Page 4
testing, because everybody likes to look at them. Rocketdyne gave
us summary of coolant liner shifts, and I made a table up.

You only have to worry about the icing when it is exposed to the
hot gas.

Q: One thing that we have heard about several times is oxidizing
preburner chamber pressure that facility pid that icing up and that
seems to be a sensing problem?

a: We don't have a cad measurement there.

Q: Where else would icing up like that happen?

A: You never have anything icing up with anything unless its
exposed hot gas, like your OBB PC, we have a big problem out here
because we .are heavily instrumental on test bed and hot gas area,
like the pressure going in here all these measurements we have to
purge them befo.re start, purges the line to get all the water or
whatever out and then between power level changes we purge them,
that way we don't have the chance to getting a delta P that drives
the all the gas up there. We have a lot more on test bed than
anywhere else.

Q: A lot more icing problems or purging to prevent?

A: Well we purge to prevent but we have more instrumentation on
this region. I think that all the instrumentation we do have,
there unless its special instrumentation. I don't ever remember
fuel burner pc ever icing. Anything in the hot gas can ice, and
the reason it ices, is that we sense it, we don't have the
transducer in so we send a sense line through and the power head
has a shell in it so we are running hydrogen on the out cut cooler,
but we have to run this little sense line through to get the
pressure outside, so you have this little line with hydrogen
running.
I wanted to show you we had a flight done on instrumentation
anomaly. On this test 44, we had a MCC PC bias where we have
channel, on MCC PC we actually have four measurements measure the
PC and then we have Al, A2, average of this one - channel A average
and we average these two for channel B average and we take the two
averages and average them for a real PC. On this flight we were
there is a 35 psi difference between channel A and channel B
difference. One is really higher than the other one, the
measurement was way out here we sense it through the acoustic
cavity, this is the main combustion chamber over here, we have a
little purge system on the shuttle engine where we take fuel, warm
fuel, and purge it back this way, to keep this line from icing up,
and afterwards they found the green gel around this orifice and
apparently it clogged it up, for a while then we just blew it out.

Q: So when you first saw this data, did you know immediately it
was an instrumentation problem?

A: Yeah, because we knew we had a PC bias, but we didn't know why
and we didn't know which one was right.

Q: How did you know you had a PC bias?

A: We saw this one in real time as it was flying, we get data
sent over and we have a channel like MCC PC and we have a plot next
to it the deltas between to the channels and usually it lessen by
psi and it was reading 35.

Q: But how far apart are the transducers and were you confident
it was some physical phenomena that was occurring?

A: They're right on top of each other.

Q: No I mean, physically located.

A: They are 90 degrees apart, it is not a location problem, its
a transducer problem, if they're not reading the same thing, there

0: Page 5

is a problem. Tney normally run right on top of each other like
here. So we saw we had a difference between the two, so to get the
engine to run to the same position, one of these is actual pc, so
that the real pc maybe reading or maybe reading here. Maybe
running a lower or higher thrust and based on that effect your
residuals and your ability to make orbit. JSC has gains for
different failures that affect performance and they can tell if
your running high or low. I've got this table if you want copies
(yes) like if your running at a lower pc your lox pump discharge
pressure are going to be lower because your going to have to pump
up higher, and they have different stages, like they call it a step
one MPC PC high real low, its reading higher over here but really
its driving the real pc. Another real good one on how this one
recovered is whenever it recovered we were reading down here and
this measurement came all the way down here and then it controlled
back up together that's a pretty dead give away. Like we changed
lox pumps before to the last flight so you couldn't tell the lox
pump discharge pressure if your engine was running high or low.

Q: But if you hadn't changed the pump you could have told?

A: Yeah, it was a really small it didn't affect performance its
less than a power level, one percent power, 103.2 percent instead
of 104 percent power level.

Q: Sort of recap •. some of the stuff we may do and see how
reasonable you think it sounds. One of the first things is take
advantage of the hardware we done, or A and B channels cads versus
facility.

A: Or cads versus cads or facility versus cads.

Q: Take differences and compare them to ? in that programs, and
with those we understand that they may have to be refined. For
sensors, maybe for all sensors, the modeling group looks like some
zero shift check and maybe be able to incorporate that into the c
codes, check for those kind of problems and then there are quite
number of sensors that don't have any hardware with them, we have
to use reasoning to related parameters also shift at that time?

A: There is also looking for different signals and
characteristics, like the skin temperature where it gets noisy and
then goes upscale.

Q: Okay, and the low-pot speed is erratic, for excessive noise,
that would be something interesting, sometimes you say it, like
except for pid 260 you expect a 1,000 RPM?

A: Or even 2,000.

Q: How, do you just know that or is it written somewhere?-is that
in that ensign program?

A: No, its not in there, that how we are trying to write this
system module, so many people's brain around here they are starting
to walk out the door. No that's not written down, but I think if
you asked us for it we could write it down.

Q: Most of the sensors we have tables of accurately for them,
most of them are two percent full scale, is that about the right
ballpark that you use?

A: Most of them were better than one percent, most of them are
about half percent. This is something we knew we were going to do
a year ago when we started doing this documentation and on main
chamber combustion pressure we were trying to list all those
requirements that we have on these measurements. Like prestart
between purge control and engine ready it has to be between zero
and 37, and if not there is something wrong, but we'll get a fid
on that one because it is a controller. We have all these things,
and we were going to go through and put all the sensor value and
that stuff but we never did.

0: Page 5

is a problem. Tney normally run right on top of each other like
here. So we saw we had a difference between the two, so to get the
engine to run to the same position, one of these is actual pc, so
that the real pc maybe reading or maybe reading here. Maybe
running a lower or higher thrust and based on that effect your
residuals and your ability to make orbit. JSC has gains for
different failures that affect performance and they can tell if
your running high or low. I've got this table if you want copies
(yes) like if your running at a lower pc your lox pump discharge
pressure are going to be lower because your going to have to pump
up higher, and they have different stages, like they call it a step
one MPC PC high real low, its reading higher over here but really
its driving the real pc. Another real good one on how this one
recovered is whenever it recovered we were reading down here and
this measurement came all the way down here and then it controlled
back up together that's a pretty dead give away. Like we changed
lox pumps before to the last flight so you couldn't tell the lox
pump discharge pressure if your engine was running high or low.

Q: But if you hadn't changed the pump you could have told?

A: Yeah, it was a really small it didn't affect performance its
less than a power level, one percent power, 103.2 percent instead
of 104 percent power level.

Q: Sort of recap •. some of the stuff we may do and see how
reasonable you think it sounds. One of the first things is take
advantage of the hardware we done, or A and B channels cads versus
facility.

A: Or cads versus cads or facility versus cads.

Q: Take differences and compare them to ? in that programs, and
with those we understand that they may have to be refined. For
sensors, maybe for all sensors, the modeling group looks like some
zero shift check and maybe be able to incorporate that into the c
codes, check for those kind of problems and then there are quite
number of sensors that don't have any hardware with them, we have
to use reasoning to related parameters also shift at that time?

A: There is also looking for different signals and
characteristics, like the skin temperature where it gets noisy and
then goes upscale.

Q: Okay, and the low-pot speed is erratic, for excessive noise,
that would be something interesting, sometimes you say it, like
except for pid 260 you expect a 1,000 RPM?

A: Or even 2,000.

Q: How, do you just know that or is it written somewhere?-is that
in that ensign program?

A: No, its not in there, that how we are trying to write this
system module, so many people's brain around here they are starting
to walk out the door. No that's not written down, but I think if
you asked us for it we could write it down.

Q: Most of the sensors we have tables of accurately for them,
most of them are two percent full scale, is that about the right
ballpark that you use?

A: Most of them were better than one percent, most of them are
about half percent. This is something we knew we were going to do
a year ago when we started doing this documentation and on main
chamber combustion pressure we were trying to list all those
requirements that we have on these measurements. Like prestart
between purge control and engine ready it has to be between zero
and 37, and if not there is something wrong, but we'll get a fid
on that one because it is a controller. We have all these things,
and we were going to go through and put all the sensor value and
that stuff but we never did.

-s10: Page 6

Q: Can we get a copy of that then?

A: Yes, it goes through most of the cad measurements and it tells
you where the specification, what requires it and what the value,
does explain a lot. A lot' of this is so much experience looking
at the data.

Q: On a lot of the Martin reports, it says "miscalibrated", that
might be something the sensor validation module should screen ...

A: You have two flowmeters on the facility and on the engine and
the facility and engine mass flow rate should be within 1/4 of a
psi.

Q: But it senses volumetric flow right? Do you have the
equations to calculate this from t's and p's? And, do you use
codes with hydrogen property tables?

A: On the PE (perkin elmer) we have a routine that goes out and
has tables on? Right now I have an equation that may be available
in Cosmic. (Gasplus). Rockwell people go thru tables and try to
curve fit them to the ranges that we use.

Q: Do these work pretty well?

A: I don't know.

This states that "it" is as good as +/- .003 pounds per cubic
foot for densities between 1400 psi (?). We'll either have lookup
tables or equations on the SUN. Maybe we'll have it in an INGRESS
table for you. If not, we can give you the equations.

You talk about the flowmeters being uncalibrated, we talk
about the engine fuel flowmeter ... we always assume the facility is
right. They know the volume of the tank, and can calculate the
flow pretty accurately. Every like 6 months, you have to calibrate
the facility flowmeters, so if the engine mass does not equal the
facility mass flow rate then we adjust the engine flow rate.

Q: What do you adjust?

A: The software constant, Kf.

Q: That means that you had misjudged the efficiency of the
flowmeter?

A: Yes. We usually do a water calibration. We've also seen the
flowmeter change from engine to engine. Changing out a calibrated
flowmeter can change it because of the new engine.

Q: This is being calculated down here anyway, right?

A: Right now it's not being done, on the SUN. I'd say there will
be some kind of table look up or you can use the equations.

Q: Are these the Martin tables?

A: No, this is the controller document. Somewhere in here it had
the accuracies of the sensors.

{looking for a list in ICD of sensor accuracies and ranges}

Q: Are most the accuracies about 2% of full scale?

A: I thought we were supposed to be better than 1% of full scale.

{End of Tape}

-s10: Page 6

Q: Can we get a copy of that then?

A: Yes, it goes through most of the cad measurements and it tells
you where the specification, what requires it and what the value,
does explain a lot. A lot' of this is so much experience looking
at the data.

Q: On a lot of the Martin reports, it says "miscalibrated", that
might be something the sensor validation module should screen ...

A: You have two flowmeters on the facility and on the engine and
the facility and engine mass flow rate should be within 1/4 of a
psi.

Q: But it senses volumetric flow right? Do you have the
equations to calculate this from t's and p's? And, do you use
codes with hydrogen property tables?

A: On the PE (perkin elmer) we have a routine that goes out and
has tables on? Right now I have an equation that may be available
in Cosmic. (Gasplus). Rockwell people go thru tables and try to
curve fit them to the ranges that we use.

Q: Do these work pretty well?

A: I don't know.

This states that "it" is as good as +/- .003 pounds per cubic
foot for densities between 1400 psi (?). We'll either have lookup
tables or equations on the SUN. Maybe we'll have it in an INGRESS
table for you. If not, we can give you the equations.

You talk about the flowmeters being uncalibrated, we talk
about the engine fuel flowmeter ... we always assume the facility is
right. They know the volume of the tank, and can calculate the
flow pretty accurately. Every like 6 months, you have to calibrate
the facility flowmeters, so if the engine mass does not equal the
facility mass flow rate then we adjust the engine flow rate.

Q: What do you adjust?

A: The software constant, Kf.

Q: That means that you had misjudged the efficiency of the
flowmeter?

A: Yes. We usually do a water calibration. We've also seen the
flowmeter change from engine to engine. Changing out a calibrated
flowmeter can change it because of the new engine.

Q: This is being calculated down here anyway, right?

A: Right now it's not being done, on the SUN. I'd say there will
be some kind of table look up or you can use the equations.

Q: Are these the Martin tables?

A: No, this is the controller document. Somewhere in here it had
the accuracies of the sensors.

{looking for a list in ICD of sensor accuracies and ranges}

Q: Are most the accuracies about 2% of full scale?

A: I thought we were supposed to be better than 1% of full scale.

{End of Tape}

Page 1

Interview Session Date: 4/29/92
Darrel Gaddy

(Discussing the post-test info~ation in the package]
DG - This is a green run test. We were green running the duct and
the MFV actuator. We were doing a certification of the LOX pump,
which is trying to get this (pump] design, (tested for] the flight
timeline, so we could fly it. And then we have some valves and
configurations of the facility that effects engine perfo~ance.

Fuel repress flow control valve on flight, we take part of the
hydrogen flow that comes through the pump, goes through the MCC
(cooling circuit] and goes to drive the low pressure fuel turbine,
[and] we tap off here. And in flight we take this (the tapped off
fuel] and stick it back ET [external tank] to pressurize the ET.
We can have a flow rate here {pointing to the schematic the engine}
of 1.3 lbs/second maximum or 0.2 lbs/second minimum. We were going
to go for max. to min. at 300 seconds. And this effects the low
pressure fuel turbine power and so it will effect the speed on the
pump end, it will increase the energy to the pump. And so we will
see that in the data.

And we will also do the same thing on the GOX repress flow. The
GOX repress flow we get from the heat exchanger. We tap off a
little bit after we go through LOX main impeller. We will go
through the heat exchanger. We warm it, (so it becomes] it's
gaseous and then we send it off to pressurize the LOX tank. But
on the stand we just dump to overboard.

Question: Is there a valve upstream of this branch? On the
facility side?

DG - There are no PIDs that tell you the valve position. No. We
do have access to it, it called Facility D which is a vent
(parameter] that will spit out a time in that this valve went from
closed to open at this time, but we don't have a PID that goes from
open to closed.

Also, the helium interface pressure we at 750 [psi] plus or minus
50 [psi] and obviously we are within that.

Hardwarewise we changed out the high pressure fuel duct which is
running from the pump to the main fuel valves. We changed this
duct out and [it is] likely to change perfo~ance a little bit.
Also we changed some software and [this pre-test] tells you [what]
change is [done].

We were looking here at HPOTP inte~ediate seal purge pressure
which is a PID on the LOX pump, [it] was running a little bit low.
It was low but the helium interface pressure which drives it was
up so there was something in the pump that we were showing. That's
a pre-start package.

Then we go into the start package where the data [is] from 0-6
seconds. We compare the current tests to the two previous tests
with [the same] engine configuration, if we have it. If not we get
the best comparison that we can arid we choose the current and the
two previous [test fires] for start and shutdown. This shows starts
of PC going up and this is a phenomenon of fuel side oscillation.
Fuel side oscillation effects the start. And we show the fuel
turbine temps channel A to channel B. [We] show the fuel pump
speed taking off here, [and] the lox turbine temps with its two
channels, and the HPOP discharge pressure. We show the pressure
since we don't have a speed and the pressure is [the] best
indicator of speed.

Then a shutdown package here [is] trying to show the shutdown
[process], but it pretty useless on a 1.5 second test, we can show
it all during the start. Then we go through the anomalies that we
have and instrumentation problems. That is usually what we present
to the chief engineer.

Test Case A1591 A3·-a:Yt)

Page 1

Interview Session Date: 4/29/92
Darrel Gaddy

(Discussing the post-test info~ation in the package]
DG - This is a green run test. We were green running the duct and
the MFV actuator. We were doing a certification of the LOX pump,
which is trying to get this (pump] design, (tested for] the flight
timeline, so we could fly it. And then we have some valves and
configurations of the facility that effects engine perfo~ance.

Fuel repress flow control valve on flight, we take part of the
hydrogen flow that comes through the pump, goes through the MCC
(cooling circuit] and goes to drive the low pressure fuel turbine,
[and] we tap off here. And in flight we take this (the tapped off
fuel] and stick it back ET [external tank] to pressurize the ET.
We can have a flow rate here {pointing to the schematic the engine}
of 1.3 lbs/second maximum or 0.2 lbs/second minimum. We were going
to go for max. to min. at 300 seconds. And this effects the low
pressure fuel turbine power and so it will effect the speed on the
pump end, it will increase the energy to the pump. And so we will
see that in the data.

And we will also do the same thing on the GOX repress flow. The
GOX repress flow we get from the heat exchanger. We tap off a
little bit after we go through LOX main impeller. We will go
through the heat exchanger. We warm it, (so it becomes] it's
gaseous and then we send it off to pressurize the LOX tank. But
on the stand we just dump to overboard.

Question: Is there a valve upstream of this branch? On the
facility side?

DG - There are no PIDs that tell you the valve position. No. We
do have access to it, it called Facility D which is a vent
(parameter] that will spit out a time in that this valve went from
closed to open at this time, but we don't have a PID that goes from
open to closed.

Also, the helium interface pressure we at 750 [psi] plus or minus
50 [psi] and obviously we are within that.

Hardwarewise we changed out the high pressure fuel duct which is
running from the pump to the main fuel valves. We changed this
duct out and [it is] likely to change perfo~ance a little bit.
Also we changed some software and [this pre-test] tells you [what]
change is [done].

We were looking here at HPOTP inte~ediate seal purge pressure
which is a PID on the LOX pump, [it] was running a little bit low.
It was low but the helium interface pressure which drives it was
up so there was something in the pump that we were showing. That's
a pre-start package.

Then we go into the start package where the data [is] from 0-6
seconds. We compare the current tests to the two previous tests
with [the same] engine configuration, if we have it. If not we get
the best comparison that we can arid we choose the current and the
two previous [test fires] for start and shutdown. This shows starts
of PC going up and this is a phenomenon of fuel side oscillation.
Fuel side oscillation effects the start. And we show the fuel
turbine temps channel A to channel B. [We] show the fuel pump
speed taking off here, [and] the lox turbine temps with its two
channels, and the HPOP discharge pressure. We show the pressure
since we don't have a speed and the pressure is [the] best
indicator of speed.

Then a shutdown package here [is] trying to show the shutdown
[process], but it pretty useless on a 1.5 second test, we can show
it all during the start. Then we go through the anomalies that we
have and instrumentation problems. That is usually what we present
to the chief engineer.

Test Case A1591 A3·-a:Yt)

s10: Page 2

DG - Another test we had was A1591. This test was a hydraulic
lockup test. That is where we somehow remove the hydraulics from
the engine and the valves are designed, so that as you remove the
supply they will stay where they are. You can't command them open
or closed. They lock up where they are. Then if you vary the
inlet conditions, like the oxidizer inlet going into the low
pressure pump you can't open up any of your control valves, FPOV
or OPov. So what you are going to see is main chamber pressure
change for inlet pressures or the engine won't be able to keep PC
with the inlet pressure changing.

(He is going through the test package)
This is an older test that shows allot more stuff [about] what the
history of the components, we don't show that stuff anymore. This
is what we were planning to do start up to 109% and then initiate
hydraulic lockup here toward the end of the test. This is A1
gimble where the engine hangs and can spin it around like that (he
is demonstrating a gimble procedure with his hands). We did two
sets of gimbles. This is the software we put into the controller
to get the right fuel flow or lox flow. This pre-start we used to
show all the time, we don't have any need to show that anymore.

(Looking at the startup plots) [From these plots, it] looks like
our start was fine. We compared it the two previous tests that we
have on this engine and we can look at that [comparison] for tends.
Or we have two sigma database, we like to see within the two sigma
database. And this is a OPOV command and the OPOV command limit.
You have your command, your command limit, and your actual two
positions [for .the OPOV]. The [OPOV] command at one place in your
position tries to command [the valve to open], but your can't
command above your limit. Your command limit is to keep you from
[causing a] lox turbine [discharge temp] cutoff due to fuel leaks
on flight.

Question: When you see something approaching that limit do you
classify that as an anomaly.

DG - No.

We're running pretty close at this time [during start]. We don't
think in flight, we don't want to lift off the pad with another
margin there. [The controller] should bump it up out here once we
[achieve the steady power level]. This [OPOV command limit]
increases [changes] whenever you throttle.

Show fuel turbine temps versus the two sigma and LOX turbine temps
versus the two sigma here.

(Now looking at shutdown plots) This one is the MCC PC, PID 63,
went straight to zero after shutdown and these others [MCC PC
traces] are real [hydraulically shutdown trace] measurements and
I believe this one [the one that went straight down to zero] is an
electrical lockup. You have different the controller of the
different data, different places for different phases of operation,
like hydraulic lockup. If there is truly hydraulic lockup you
won't keep [maintain] PC, PID 63, but if its electrical lockup
you'll substitute zero [value for PC at shutdown] at shutdown.
Electrical lockup is where you still have control of the valves,
but your not going to change the command, the command going to stay
the same to the valve.

Question: Is this how you knew it went into electrical lockup?

DG - No, there is a report we get that the controller spits out,
and it will say [at such a] time electrical lockup.

Question: Okay, is it that on the PID 287?

DG - No, I think it is on engine status word.

Response: I'm just trying to identify electrical lockup.

DG - It should be in the engine status work, [it] should tell you
what phase of operation your in.

s10: Page 2

DG - Another test we had was A1591. This test was a hydraulic
lockup test. That is where we somehow remove the hydraulics from
the engine and the valves are designed, so that as you remove the
supply they will stay where they are. You can't command them open
or closed. They lock up where they are. Then if you vary the
inlet conditions, like the oxidizer inlet going into the low
pressure pump you can't open up any of your control valves, FPOV
or OPov. So what you are going to see is main chamber pressure
change for inlet pressures or the engine won't be able to keep PC
with the inlet pressure changing.

(He is going through the test package)
This is an older test that shows allot more stuff [about] what the
history of the components, we don't show that stuff anymore. This
is what we were planning to do start up to 109% and then initiate
hydraulic lockup here toward the end of the test. This is A1
gimble where the engine hangs and can spin it around like that (he
is demonstrating a gimble procedure with his hands). We did two
sets of gimbles. This is the software we put into the controller
to get the right fuel flow or lox flow. This pre-start we used to
show all the time, we don't have any need to show that anymore.

(Looking at the startup plots) [From these plots, it] looks like
our start was fine. We compared it the two previous tests that we
have on this engine and we can look at that [comparison] for tends.
Or we have two sigma database, we like to see within the two sigma
database. And this is a OPOV command and the OPOV command limit.
You have your command, your command limit, and your actual two
positions [for .the OPOV]. The [OPOV] command at one place in your
position tries to command [the valve to open], but your can't
command above your limit. Your command limit is to keep you from
[causing a] lox turbine [discharge temp] cutoff due to fuel leaks
on flight.

Question: When you see something approaching that limit do you
classify that as an anomaly.

DG - No.

We're running pretty close at this time [during start]. We don't
think in flight, we don't want to lift off the pad with another
margin there. [The controller] should bump it up out here once we
[achieve the steady power level]. This [OPOV command limit]
increases [changes] whenever you throttle.

Show fuel turbine temps versus the two sigma and LOX turbine temps
versus the two sigma here.

(Now looking at shutdown plots) This one is the MCC PC, PID 63,
went straight to zero after shutdown and these others [MCC PC
traces] are real [hydraulically shutdown trace] measurements and
I believe this one [the one that went straight down to zero] is an
electrical lockup. You have different the controller of the
different data, different places for different phases of operation,
like hydraulic lockup. If there is truly hydraulic lockup you
won't keep [maintain] PC, PID 63, but if its electrical lockup
you'll substitute zero [value for PC at shutdown] at shutdown.
Electrical lockup is where you still have control of the valves,
but your not going to change the command, the command going to stay
the same to the valve.

Question: Is this how you knew it went into electrical lockup?

DG - No, there is a report we get that the controller spits out,
and it will say [at such a] time electrical lockup.

Question: Okay, is it that on the PID 287?

DG - No, I think it is on engine status word.

Response: I'm just trying to identify electrical lockup.

DG - It should be in the engine status work, [it] should tell you
what phase of operation your in.

0: Page 3

Question: So you weren't surprised to see this?

DG - The reason we do this is in actual flight, the orbiter looks
at MCC PC to see if the engine is shutdown. And if you have
electrical lockup, to get into electrical lockup you don't believe
your MCC PC measurements or field flow meter measurement. You
can't trust those, (so you] lock the engine up at the last place
(sensor values] . (Since] you lock it (the engine] up, you can't
trust them (the sensor measurements], so you don't know what the
measurements are for PC. It could be way off or even high. Then
if the orbiter comes back and tries to confirm shutdown, a failed
sensor would tell it that the engine is still running when it's
not. So we substitute a zero (value], so when the orbiter comes
back to look at us we say we're shut down. That's why that (an
electrical shutdown] substitutes zero (value for PC]. Then the
hydraulic lockup we keep real MCC PC in here, because we believe
the sensors. Any time you don't believe the sensors you set this
[value] to zero. And that [is] the difference between electrical
lockup (and hydraulic lockup]. Whenever you fail your pc sensor
or fuel flow meter sensors, [it is an electrical lockup], and then
the hydraulic lockup is when fail your FPOV and OPOV valves. Its
really tricky to get it to go into electrical lockup or hydraulic
lockup because whenever you remove hydraulics from the engine you
lock everything up. The valves don't move and then the engine can
be actually hydraulically lockup, but not know it until you have
a 75 psi (difference] between PC reference and average of channel
A measurement. When you get that 75 psi difference, it will send
you into electrical lockup. Or, say the valve is locked-up and you
start seeing PC dropoff. [You] try to open it and you can't open
it and you're still commanding it open but it stays at the same
position. Then if you have 6% difference on there [between the
command value and valve position]. It is a race to see when you
move hydraulics if PC 75 psi violates first or the valve position
6% violates. They have worked out little schemes that note how
engine responded, so that they can send it into electrical lockup
or hydraulic lockup.

Electrical lockup is the PC or fuel flow and you don't believe the
measurements. And your looking for a 75 psi difference between PC
reference and channel A average. The hydraulic lockup is when you
don't think you can control your valve, your not sure where the
position is. Your looking for, your command versus the actual
position of 6% difference.

This is mainstage, we started at 100%, and we went up to 109%, and
we throttled back down. Then you can see, this throttle difference
here locked-up the engine and it started drifting.

Question: Now for this scheduled lockup you actually sent a
command?

DG - No, they pulled a you actually fiddled with the pressure from
hydraulic. They cut the hydraulic motor, that supplies 3000 psi
hydraulics supply to the engine and [they] just shut it off.

Question: What are you testing here? How safe it is for the
controller to order a hydraulic lockup?

DG - I think they were testing the design of the valve to make
sure the valve would lock up and not drift, because they are not
perfect. You lock them up and they leak a little bit and it allows
them to close just a little bit and they drift while they are
closing. We don't want them to drift. We're testing to see how
much it would drift. So this one drifted a little bit and we lost
some PC. Mixture ratios are already increasing.

This is something we do to the engine, we make the engine work
harder by decreasing the pressure here. So it has to get the fuel
flow up to this pressure and the more it has to pump (the pressure]
up, the harder the engine has to work. So we vent this one down,
to make it (the engine] work harder to pump the same pressure. And
that's what we did there, we just vented the fuel tank down to make
the engine work a little harder. And this is what we did on LOX

0: Page 3

Question: So you weren't surprised to see this?

DG - The reason we do this is in actual flight, the orbiter looks
at MCC PC to see if the engine is shutdown. And if you have
electrical lockup, to get into electrical lockup you don't believe
your MCC PC measurements or field flow meter measurement. You
can't trust those, (so you] lock the engine up at the last place
(sensor values] . (Since] you lock it (the engine] up, you can't
trust them (the sensor measurements], so you don't know what the
measurements are for PC. It could be way off or even high. Then
if the orbiter comes back and tries to confirm shutdown, a failed
sensor would tell it that the engine is still running when it's
not. So we substitute a zero (value], so when the orbiter comes
back to look at us we say we're shut down. That's why that (an
electrical shutdown] substitutes zero (value for PC]. Then the
hydraulic lockup we keep real MCC PC in here, because we believe
the sensors. Any time you don't believe the sensors you set this
[value] to zero. And that [is] the difference between electrical
lockup (and hydraulic lockup]. Whenever you fail your pc sensor
or fuel flow meter sensors, [it is an electrical lockup], and then
the hydraulic lockup is when fail your FPOV and OPOV valves. Its
really tricky to get it to go into electrical lockup or hydraulic
lockup because whenever you remove hydraulics from the engine you
lock everything up. The valves don't move and then the engine can
be actually hydraulically lockup, but not know it until you have
a 75 psi (difference] between PC reference and average of channel
A measurement. When you get that 75 psi difference, it will send
you into electrical lockup. Or, say the valve is locked-up and you
start seeing PC dropoff. [You] try to open it and you can't open
it and you're still commanding it open but it stays at the same
position. Then if you have 6% difference on there [between the
command value and valve position]. It is a race to see when you
move hydraulics if PC 75 psi violates first or the valve position
6% violates. They have worked out little schemes that note how
engine responded, so that they can send it into electrical lockup
or hydraulic lockup.

Electrical lockup is the PC or fuel flow and you don't believe the
measurements. And your looking for a 75 psi difference between PC
reference and channel A average. The hydraulic lockup is when you
don't think you can control your valve, your not sure where the
position is. Your looking for, your command versus the actual
position of 6% difference.

This is mainstage, we started at 100%, and we went up to 109%, and
we throttled back down. Then you can see, this throttle difference
here locked-up the engine and it started drifting.

Question: Now for this scheduled lockup you actually sent a
command?

DG - No, they pulled a you actually fiddled with the pressure from
hydraulic. They cut the hydraulic motor, that supplies 3000 psi
hydraulics supply to the engine and [they] just shut it off.

Question: What are you testing here? How safe it is for the
controller to order a hydraulic lockup?

DG - I think they were testing the design of the valve to make
sure the valve would lock up and not drift, because they are not
perfect. You lock them up and they leak a little bit and it allows
them to close just a little bit and they drift while they are
closing. We don't want them to drift. We're testing to see how
much it would drift. So this one drifted a little bit and we lost
some PC. Mixture ratios are already increasing.

This is something we do to the engine, we make the engine work
harder by decreasing the pressure here. So it has to get the fuel
flow up to this pressure and the more it has to pump (the pressure]
up, the harder the engine has to work. So we vent this one down,
to make it (the engine] work harder to pump the same pressure. And
that's what we did there, we just vented the fuel tank down to make
the engine work a little harder. And this is what we did on LOX

s10: Page 4
side, we vented it down to make it work really hard, then we
pressurized it to help it out some, and we came back to a nominal
80 psi.

These are the valve positions coming along here, the throttle here
and showing this test versus another test. And they're reading
different because its different engines, because each engine
balances out little different.

This one [test fire], we were command limiting on the OPOV. That's
why we saw a dip in [MCC] PC. Whenever we vented down this way,
not far away from 200 seconds, we were making the engine work
harder here and this is where starting repressurize. We had a
little bit of margin, actually we didn't until we came down to this
point. I think this is a start overshoot, comes to here. And this
is where we starting venting and came back up that way. But
anyway, we wouldn't open OPOV higher than this [the command limit],
and so we couldn't send anymore power to the LOX pump. [So it's]
not going to pump any harder, so it's going to drop off MCC PC.
Then when we pressurize the inlet up, it [the pump] said "okay, I
don't have to pump so hard, so I'm going to drift off a little bit,
as long as I keep MCC PC here". This is called thrust limit
whenever we bump this command versus command limit.
Question: And that's what causes the deviations between the
reference and actual chamber pressure?

DG - Yes. That's what causes this difference here. You can see
whenever we're not on a [OPOV] command limit, [MCC] PC is in
control but whenever we're thrust-limited, [MCC] PC drops off. So
that's thrust limiting, when you go up to that [OPOV] command limit
and [you] cannot open this one [valve] anymore, so you can decrease
pressure there. Usually the reason why we thrust limit is we have
fuel leaks. [During] fuel leaks, your flowing the same fuel
through the fuel flow meter and it all has to come here. But if
you have nozzle leaks that dumps the fuel out here [in the nozzle
area], [so it] never makes it up here [MCC chamber], so you don't
get as much thrust out of it. You get the most thrust if you dump
it here [MCC chamber], but if you dump it down here will lose
thrust or chamber pressure. We are controlling the chamber
pressure, so if we're dumping fuel here [the nozzle area], it's not
making it here [MCC chamber]. We have to make up [the lost chamber
pressure] with LOX. That's why we thrust limit on the oxidizer
preburner valve.

This is an old two sigma, we used to plot the two signal values
during the main stage versus actual data.

Question: What trends would you see during hydraulic lockup, that
you would not see before hydraulic lockup occurred?

DG - I'd see things like this. This is your CCV, which is the
coolant control valve. It's command versus two positions. You can
see the command staying the same but the position shifts.

Question: That is the bi-stability?

DG - No. That is that you're losing hydraulic pressure. On this
one you have hydraulic forces that squeeze the valve wide open and
you loose the hydraulic pressure and it's going to come off just
a little bit.

Something on the hydraulic lockup, your valve position drifting
away from command or command moving actual valve position, this is
called valve drift.

Question: How would other then the main combustion chamber
pressure lower where then any other engine phenomena that ..• ?

DG - Mixture ratio changed. This is something that would happen
[when] lockup the engine. The engine would see this pressure
dropping off, [the engine would think it] needs more lox to make
up pressure. So you start commanding the oxidizer valve open but
it wouldn't move, so the command it open more.

s10: Page 4
side, we vented it down to make it work really hard, then we
pressurized it to help it out some, and we came back to a nominal
80 psi.

These are the valve positions coming along here, the throttle here
and showing this test versus another test. And they're reading
different because its different engines, because each engine
balances out little different.

This one [test fire], we were command limiting on the OPOV. That's
why we saw a dip in [MCC] PC. Whenever we vented down this way,
not far away from 200 seconds, we were making the engine work
harder here and this is where starting repressurize. We had a
little bit of margin, actually we didn't until we came down to this
point. I think this is a start overshoot, comes to here. And this
is where we starting venting and came back up that way. But
anyway, we wouldn't open OPOV higher than this [the command limit],
and so we couldn't send anymore power to the LOX pump. [So it's]
not going to pump any harder, so it's going to drop off MCC PC.
Then when we pressurize the inlet up, it [the pump] said "okay, I
don't have to pump so hard, so I'm going to drift off a little bit,
as long as I keep MCC PC here". This is called thrust limit
whenever we bump this command versus command limit.
Question: And that's what causes the deviations between the
reference and actual chamber pressure?

DG - Yes. That's what causes this difference here. You can see
whenever we're not on a [OPOV] command limit, [MCC] PC is in
control but whenever we're thrust-limited, [MCC] PC drops off. So
that's thrust limiting, when you go up to that [OPOV] command limit
and [you] cannot open this one [valve] anymore, so you can decrease
pressure there. Usually the reason why we thrust limit is we have
fuel leaks. [During] fuel leaks, your flowing the same fuel
through the fuel flow meter and it all has to come here. But if
you have nozzle leaks that dumps the fuel out here [in the nozzle
area], [so it] never makes it up here [MCC chamber], so you don't
get as much thrust out of it. You get the most thrust if you dump
it here [MCC chamber], but if you dump it down here will lose
thrust or chamber pressure. We are controlling the chamber
pressure, so if we're dumping fuel here [the nozzle area], it's not
making it here [MCC chamber]. We have to make up [the lost chamber
pressure] with LOX. That's why we thrust limit on the oxidizer
preburner valve.

This is an old two sigma, we used to plot the two signal values
during the main stage versus actual data.

Question: What trends would you see during hydraulic lockup, that
you would not see before hydraulic lockup occurred?

DG - I'd see things like this. This is your CCV, which is the
coolant control valve. It's command versus two positions. You can
see the command staying the same but the position shifts.

Question: That is the bi-stability?

DG - No. That is that you're losing hydraulic pressure. On this
one you have hydraulic forces that squeeze the valve wide open and
you loose the hydraulic pressure and it's going to come off just
a little bit.

Something on the hydraulic lockup, your valve position drifting
away from command or command moving actual valve position, this is
called valve drift.

Question: How would other then the main combustion chamber
pressure lower where then any other engine phenomena that ..• ?

DG - Mixture ratio changed. This is something that would happen
[when] lockup the engine. The engine would see this pressure
dropping off, [the engine would think it] needs more lox to make
up pressure. So you start commanding the oxidizer valve open but
it wouldn't move, so the command it open more.

Page 5

Question: This is the command your looking at?

DG - Yes, it's the little squares and that's the command line.
It says open me more, until it finally gets to about 6%
[difference] and thEm says, "it's not moving, I'm not doing any
good - lock me up".

Question: Do you actually see that PC dropping here?

DG - No. It's not in control because the valve is not moving, but
you're trying to move it. Back here you can see the PC moving a
little bit. The engine is trying to keep it up to this line, but
it is falling off, so it's [the engine's] saying, "open me up, open
me up".

Question: If an anomaly occurred other than what you expected in
a crack or whatever, would hydraulic lockup would it be easy to see
that type of thing happening?

DG - You mean if we have a crack here increase?

Response: Yeah.

DG - The crack is not associated with hydraulic lockup to the
thrust movement. The way we look for cracks is if we're not sure
if we have cracks that begin in start transient or shutdown
transient, because you have the two transients you can crack here
but you don't know if you have cracks from off performance, but you
don't measure between the two with the engine operating. So if you
have a crack here, the engine is going to try to make it up what
LOX flow, and we can see the increase of LOX flow by increasing
this power HPOP discharge pressure. And that how we look for leaks
is by an increase in LOX flow. Usually takes about three pounds
of LOX to make up a pound of fuel leaking out of here.

That's what we do whenever a gimble. [Pointing at the plot] We
start in the middle and we just plot x versus y, and go out and
rotate the engine. Randy usually makes it oblong this way.

These are some of the anomalies that we can see. Like this one ...
Question: Anomalies unassociated with the fact your in hydraulic
lockup?

DG - Yes. This is instrumentation anomaly where the [sensor]
might be reading steady here, but this not real (he is pointing at
a position on the plot), it looks like it come back in.

We have LOX injector pump pressure, we usually look at this
pressure versus, LOX pump discharge pressure and we also have [MCC]
PC. This one should be driving PC, so PC stays the same here there
is no way its going to move, it should be driving PC. That's one
of the logic [strategies] we look for in instrumentation problems,
[to see if] anything else in the system is doing this.

Question:
DG - Yes.

So you went and looked at PC and saw that is was flat,
And we also looked at HPOP discharge pressure.

[end-of-tape]

~3'-d '-I.r-

Page 5

Question: This is the command your looking at?

DG - Yes, it's the little squares and that's the command line.
It says open me more, until it finally gets to about 6%
[difference] and thEm says, "it's not moving, I'm not doing any
good - lock me up".

Question: Do you actually see that PC dropping here?

DG - No. It's not in control because the valve is not moving, but
you're trying to move it. Back here you can see the PC moving a
little bit. The engine is trying to keep it up to this line, but
it is falling off, so it's [the engine's] saying, "open me up, open
me up".

Question: If an anomaly occurred other than what you expected in
a crack or whatever, would hydraulic lockup would it be easy to see
that type of thing happening?

DG - You mean if we have a crack here increase?

Response: Yeah.

DG - The crack is not associated with hydraulic lockup to the
thrust movement. The way we look for cracks is if we're not sure
if we have cracks that begin in start transient or shutdown
transient, because you have the two transients you can crack here
but you don't know if you have cracks from off performance, but you
don't measure between the two with the engine operating. So if you
have a crack here, the engine is going to try to make it up what
LOX flow, and we can see the increase of LOX flow by increasing
this power HPOP discharge pressure. And that how we look for leaks
is by an increase in LOX flow. Usually takes about three pounds
of LOX to make up a pound of fuel leaking out of here.

That's what we do whenever a gimble. [Pointing at the plot] We
start in the middle and we just plot x versus y, and go out and
rotate the engine. Randy usually makes it oblong this way.

These are some of the anomalies that we can see. Like this one ...
Question: Anomalies unassociated with the fact your in hydraulic
lockup?

DG - Yes. This is instrumentation anomaly where the [sensor]
might be reading steady here, but this not real (he is pointing at
a position on the plot), it looks like it come back in.

We have LOX injector pump pressure, we usually look at this
pressure versus, LOX pump discharge pressure and we also have [MCC]
PC. This one should be driving PC, so PC stays the same here there
is no way its going to move, it should be driving PC. That's one
of the logic [strategies] we look for in instrumentation problems,
[to see if] anything else in the system is doing this.

Question:
DG - Yes.

So you went and looked at PC and saw that is was flat,
And we also looked at HPOP discharge pressure.

[end-of-tape]

~3'-d '-I.r-

SSME Post-Test Diagnostic System
Systems Section

Final Report
Attachment #4

GENERIC Features Description and
TKCLIPS Users' Guide

SSME Post-Test Diagnostic System
Systems Section

Final Report
Attachment #4

GENERIC Features Description and
TKCLIPS Users' Guide

I. Introduction

PTDS Feature Integration

T.W. Bickmore
Intelligent Software Associates, Inc.

3(27/95

Most of the feature extraction routines have been modified so that they can be called as
subroutines from any application. Routines which can only return zero or one feature were
implemented as simple functions which return a flag indicating whether a feature was found
or not. Routines which simply compute statistics were implemented as simple functions
which just return the desired values. Routines which can return more than one feature on a
given call do so via a callback function which is passed to them when they are invoked. As
each feature is found, the callback function is called with a description of the feature. In this
way, the application is free to do whatever it wants with information (e.g., update a
database, or assert facts into an expert system shell).

In general, a generic feature function is called with the arrays of data and time samples and
all parameters required by the feature, in addition to any descriptive infonnation required by
the callback function. Generic feature functions operate on one or more data arrays
covering a single contiguous time interval, so if features need to be computed for several
time intervals it is the responsibility of the caller to make separate calls for each such
interval. Generic feature functions do not have any knowledge of how to access test data,
nor do they have any knowledge of application-specific data structures. This is intended to
make the features routines as adaptable as possible to future applications. All generic
feature functions return FALSE if any problems were encountered, TRUE if all went well.

II. File Layout
GENERIC_features.c -.Contains all generic features as described in the next section.
GENERICjeaturefits.c - Statistical routines used in the generic features, and made

available for general use.
GENERIC_features.h - Header for above two files. These 3 should be stand-alone.
FEAT _features.c - The FEA TURES executive and interfaces to the generic features.
CLIPS_features.c - The TKCLIPS interfaces to the generic functions.

Ill. Generic Feature Functions
In all cases integral values are 'int', floating point values are 'float'.

int GF _NoisyPid(time,sigmas,numpts,expert,testid,desc,thrust,pidstr,
gross_sigma,fine_sigma,callback)

Note: This is the FEATURES version.
Callback: void cf(expert, testid,start,end,desc,thrust,pidstr)
Feat callback fun: EHMS_ WriteNoiseResults

int GF _IsFlat(time,data,sigmas,num_points,expert,testid,descrip,thrust,pidstr,callback)
Note: This is the FEATURES version.
Callback: void cf(expert,testid,descrip,start,end,slope,thrust,pidstr)
Feat callback fun: EHMS_ WriteIsFlatResults

int GF _FindSpike(data,time, stddevs, numpts,bictoggle,pid_range,percencrange,
rate,expert, testid,descrip,thrust,pidstr,callback)

Note: This is the FEATURES version.
Callback: void cf(expert,testid,descrip,start,end,mag, thrust,pidstr)
Feat callback fun: EHMS_ WriteSpikeResults

Generic Features Page 1

I. Introduction

PTDS Feature Integration

T.W. Bickmore
Intelligent Software Associates, Inc.

3(27/95

Most of the feature extraction routines have been modified so that they can be called as
subroutines from any application. Routines which can only return zero or one feature were
implemented as simple functions which return a flag indicating whether a feature was found
or not. Routines which simply compute statistics were implemented as simple functions
which just return the desired values. Routines which can return more than one feature on a
given call do so via a callback function which is passed to them when they are invoked. As
each feature is found, the callback function is called with a description of the feature. In this
way, the application is free to do whatever it wants with information (e.g., update a
database, or assert facts into an expert system shell).

In general, a generic feature function is called with the arrays of data and time samples and
all parameters required by the feature, in addition to any descriptive infonnation required by
the callback function. Generic feature functions operate on one or more data arrays
covering a single contiguous time interval, so if features need to be computed for several
time intervals it is the responsibility of the caller to make separate calls for each such
interval. Generic feature functions do not have any knowledge of how to access test data,
nor do they have any knowledge of application-specific data structures. This is intended to
make the features routines as adaptable as possible to future applications. All generic
feature functions return FALSE if any problems were encountered, TRUE if all went well.

II. File Layout
GENERIC_features.c -.Contains all generic features as described in the next section.
GENERICjeaturefits.c - Statistical routines used in the generic features, and made

available for general use.
GENERIC_features.h - Header for above two files. These 3 should be stand-alone.
FEAT _features.c - The FEA TURES executive and interfaces to the generic features.
CLIPS_features.c - The TKCLIPS interfaces to the generic functions.

Ill. Generic Feature Functions
In all cases integral values are 'int', floating point values are 'float'.

int GF _NoisyPid(time,sigmas,numpts,expert,testid,desc,thrust,pidstr,
gross_sigma,fine_sigma,callback)

Note: This is the FEATURES version.
Callback: void cf(expert, testid,start,end,desc,thrust,pidstr)
Feat callback fun: EHMS_ WriteNoiseResults

int GF _IsFlat(time,data,sigmas,num_points,expert,testid,descrip,thrust,pidstr,callback)
Note: This is the FEATURES version.
Callback: void cf(expert,testid,descrip,start,end,slope,thrust,pidstr)
Feat callback fun: EHMS_ WriteIsFlatResults

int GF _FindSpike(data,time, stddevs, numpts,bictoggle,pid_range,percencrange,
rate,expert, testid,descrip,thrust,pidstr,callback)

Note: This is the FEATURES version.
Callback: void cf(expert,testid,descrip,start,end,mag, thrust,pidstr)
Feat callback fun: EHMS_ WriteSpikeResults

Generic Features Page 1

int GF FindErratic(data,time,stddevs,numpts,expert,expected_sigma,step_size,
- testid,descrip,thrust,pidstr,callback)

Note: This is the FEATURES version.
Note: The above nm.st be called only for periods of linear LOX inlet pressure.
Callback: void cf(expert,testid,descrip,start,end, thrust,pidstr)
Feat callback fun: EHMS_ WriteErraticResults

int GF FindErratic2(data,time,stddevs,numpts,expert,sigma_threshold,
- testid,descrip,thrust,pidstr,callback)

Note: This is the TKCLIPS version.
Note: The above !llll.St be called only for periods of linear LOX inlet pressure.
Callback: void cf(expert,testid,descrip,start,end,thrust,pidstr)

int G F FindPeak(data,time,numpts,min_peak,min_ width,expert,testid,descrip, thrust,
- pidstr,peakht,taph,fwhm,offset,callback)

Note: This is the PEA TURES version.
Callback: void cf(expert,testid,descrip,thrust,pidstr,peakht,taph,fwhm,offset)
Feat callback fun: EHMS_ WritePeakRecord

int GF FindConstantThrust(data,time,numpts,expert,testid,callback)
Note: The above.must be called with I-second averaged data for 287 from 5 to cut.
Note: This is the PEA TURES version.
Callback: void cf(expert,testid,starttime,endtime,thrustlevel)
Feat callback fun: EHMS_FindConstantThrusCCallback

int GF RedundChanneIChk(datal,timel,numptsl,dat2,time2,numpts2,
- threshold,index_per_time_seg,

expert, testid,pidl ,pid2,callback)
Note: Assumes signals have been start-aligned; datal and data2 may have different rates.
Note: This is the PEA TURES version.
Callback: void cf(expert,testid,pidl,pid2,start,end)
Feat callback fun: EHMS_ WriteRedundResults

int GF _ ZeroShiftCheck(time,data,numpts,low _limit,uppeclimit,
*average, *is_high, *is_Iow, * offsechigh , *offseclow)

Note: This is the PEA TURES version.
No callback function.

int GF _DifferentThan(timel,datal,sigmasl,time2,data2,sigmas2,num_points,
num_comparison_sigmas,
*is_different, *prob, *coeffs_ within_bars,
*differ_by _offset, *offset, *offsecsigma)

Note: The above must be called with data signals of the same rate which have already been
aligned (num_points must be valid for both).
Note: This is the FEATURES version(?)
No callback used, since this either returns zero (is_different=FALSE) or one
(is_different=TRUE) features.

int GF _Stats(data,time,numpts,*mean,*stddev,*min,*max)
Note: This is the TKCLIPS version.
No callback (doesn't make sense-always return just one set of values).
No FEATURES integration (don't know what to call with or where to put results).

Generic Features Page 2

int GF FindErratic(data,time,stddevs,numpts,expert,expected_sigma,step_size,
- testid,descrip,thrust,pidstr,callback)

Note: This is the FEATURES version.
Note: The above nm.st be called only for periods of linear LOX inlet pressure.
Callback: void cf(expert,testid,descrip,start,end, thrust,pidstr)
Feat callback fun: EHMS_ WriteErraticResults

int GF FindErratic2(data,time,stddevs,numpts,expert,sigma_threshold,
- testid,descrip,thrust,pidstr,callback)

Note: This is the TKCLIPS version.
Note: The above !llll.St be called only for periods of linear LOX inlet pressure.
Callback: void cf(expert,testid,descrip,start,end,thrust,pidstr)

int G F FindPeak(data,time,numpts,min_peak,min_ width,expert,testid,descrip, thrust,
- pidstr,peakht,taph,fwhm,offset,callback)

Note: This is the PEA TURES version.
Callback: void cf(expert,testid,descrip,thrust,pidstr,peakht,taph,fwhm,offset)
Feat callback fun: EHMS_ WritePeakRecord

int GF FindConstantThrust(data,time,numpts,expert,testid,callback)
Note: The above.must be called with I-second averaged data for 287 from 5 to cut.
Note: This is the PEA TURES version.
Callback: void cf(expert,testid,starttime,endtime,thrustlevel)
Feat callback fun: EHMS_FindConstantThrusCCallback

int GF RedundChanneIChk(datal,timel,numptsl,dat2,time2,numpts2,
- threshold,index_per_time_seg,

expert, testid,pidl ,pid2,callback)
Note: Assumes signals have been start-aligned; datal and data2 may have different rates.
Note: This is the PEA TURES version.
Callback: void cf(expert,testid,pidl,pid2,start,end)
Feat callback fun: EHMS_ WriteRedundResults

int GF _ ZeroShiftCheck(time,data,numpts,low _limit,uppeclimit,
*average, *is_high, *is_Iow, * offsechigh , *offseclow)

Note: This is the PEA TURES version.
No callback function.

int GF _DifferentThan(timel,datal,sigmasl,time2,data2,sigmas2,num_points,
num_comparison_sigmas,
*is_different, *prob, *coeffs_ within_bars,
*differ_by _offset, *offset, *offsecsigma)

Note: The above must be called with data signals of the same rate which have already been
aligned (num_points must be valid for both).
Note: This is the FEATURES version(?)
No callback used, since this either returns zero (is_different=FALSE) or one
(is_different=TRUE) features.

int GF _Stats(data,time,numpts,*mean,*stddev,*min,*max)
Note: This is the TKCLIPS version.
No callback (doesn't make sense-always return just one set of values).
No FEATURES integration (don't know what to call with or where to put results).

Generic Features Page 2

int GF PiecewiseLinear(data,tirne,numpts,testidl,pidl,testid2,pid2,step,
- threshold,directionaConly,expert,callback)

Callback: void cf(expert,testidl,pidl,testid2,pid2,starttime,endtirne,startdata,enddata)
Note: This is the TKCLIPS version.
No FEATURES integration (don't know what to call with or where to put results).

int GF FindLeveIShift(data,time,stddevs,numpts,data_range,
- testid,pid,expert,callback)

Callback: void cf(expert,testid,pid,starttirne,endtime,
start_magnitude,shifcmagnitude)

Note: This is the TKCLIPS version.
No FEATURES integration.

Note that the following FEAnJRES routines were not implemented as generic feature
functions because they could not be resolved into analyses of single contiguous time
segments (Le., they appear to reason across multiple periods of LOX inlet pressure),
FindDrift - Try OF _PieceWiseLinear.
FindLevelShift - Try GF_FindLevelShift (old method).

IV. GF featurefits
The follOWing functions have been "genericized" from EHMS_featurefits. In almost all
cases this simply involved changing the name of the function. This was done to make the
modules OF_features and OF _featurefits stand-alone from the rest of the PTDS system.

OF_MakeFit
OF _GetMRQMemory
OF SetThreePointWindow
OF=fit
OF _ OetFitIntervalForSpikeCheck
GF _calc_stddev

GF _GetNumberBasisFuncs
GF _FreeMRQMemory
GF _GetFitInterval
GF _fitline (new)
GF _calculate_av!Lsigma

The result of this process is that the files FEAT_featurefits (FEATURES) and
DA T Ajeaturefits (TKCLIPS), and nrutil are now obsolete.

v. TKCLIPS User Functions
The following tkclips User Functions are now available:

V.I. TekBase Interface
(DB_connect) -- Connects to TekBase. Returns 0 if the connection could not be made, 1 if

successful.

(DB_exec <TQLcommand» -- Executes an arbitrary TQL command. The command
CANNOT involve the transfer of data to or from the TQL server. Returns 1 if
successful, 0 otherwise.

(DB_put <table> <fields> <values» -- Adds a row of data to the specified table. Fields
and values must each be a multi-field value. Currently, all fields must be specified for
this to work properly. Returns 1 if successful, 0 otherwise.

(DB-&et <table> <fields> <condition» -- Retrieves rows of data into facts whose relation
is the table name. Fields specifies the fields to be imported. Condition is a string
specifying a valid TQL 'WHERE' clause. Returns 1 if successful, 0 otherwise.

Generic Features Page 3

int GF PiecewiseLinear(data,tirne,numpts,testidl,pidl,testid2,pid2,step,
- threshold,directionaConly,expert,callback)

Callback: void cf(expert,testidl,pidl,testid2,pid2,starttime,endtirne,startdata,enddata)
Note: This is the TKCLIPS version.
No FEATURES integration (don't know what to call with or where to put results).

int GF FindLeveIShift(data,time,stddevs,numpts,data_range,
- testid,pid,expert,callback)

Callback: void cf(expert,testid,pid,starttirne,endtime,
start_magnitude,shifcmagnitude)

Note: This is the TKCLIPS version.
No FEATURES integration.

Note that the following FEAnJRES routines were not implemented as generic feature
functions because they could not be resolved into analyses of single contiguous time
segments (Le., they appear to reason across multiple periods of LOX inlet pressure),
FindDrift - Try OF _PieceWiseLinear.
FindLevelShift - Try GF_FindLevelShift (old method).

IV. GF featurefits
The follOWing functions have been "genericized" from EHMS_featurefits. In almost all
cases this simply involved changing the name of the function. This was done to make the
modules OF_features and OF _featurefits stand-alone from the rest of the PTDS system.

OF_MakeFit
OF _GetMRQMemory
OF SetThreePointWindow
OF=fit
OF _ OetFitIntervalForSpikeCheck
GF _calc_stddev

GF _GetNumberBasisFuncs
GF _FreeMRQMemory
GF _GetFitInterval
GF _fitline (new)
GF _calculate_av!Lsigma

The result of this process is that the files FEAT_featurefits (FEATURES) and
DA T Ajeaturefits (TKCLIPS), and nrutil are now obsolete.

v. TKCLIPS User Functions
The following tkclips User Functions are now available:

V.I. TekBase Interface
(DB_connect) -- Connects to TekBase. Returns 0 if the connection could not be made, 1 if

successful.

(DB_exec <TQLcommand» -- Executes an arbitrary TQL command. The command
CANNOT involve the transfer of data to or from the TQL server. Returns 1 if
successful, 0 otherwise.

(DB_put <table> <fields> <values» -- Adds a row of data to the specified table. Fields
and values must each be a multi-field value. Currently, all fields must be specified for
this to work properly. Returns 1 if successful, 0 otherwise.

(DB-&et <table> <fields> <condition» -- Retrieves rows of data into facts whose relation
is the table name. Fields specifies the fields to be imported. Condition is a string
specifying a valid TQL 'WHERE' clause. Returns 1 if successful, 0 otherwise.

Generic Features Page 3

(DB_disconnect) -- Disconnects from the current database, committing any actions taken
during the session. This does not return any value.

V.2. Environment Access
(get-param [<n>]) -- If called with no argument returns the the 1 st command line parameter

used when CLIPS was invoked, otherwise NIL. If called with an integer argument,
returns the Nth command line argument if there is one (where N=l for the first
argument), otherwise NIL.

(gecenv <variable» -- Returns the value of the specified variable in the S un environment,
or "".

(gecdate) -- Returns the current date in a string.

(geclogin) -- Returns the current user ID or '"'.

V.3. SSME DataFile Access and Feature Extraction
The following all attempt to access SSME data flatfIles directly and return their results as
asserted facts. AU return 1 if successful, 0 if any error occured in processing. The
environment variable 'NASA_TEST_DATA' must define a colon-separated list of paths to
search for the datafiles (e.g., setenv NASA_TEST_DATA /datal:/data2:/hdl:/hd2). All
input and output parameters are floats, except as specified below:

Parameters
<descr>, <units>, <testid>, <pid>
<label>

Type
String
Symbol
Integer <windowsize>, <minPts>, <smoothWinSiz>, <stepSize>,

<thrusClevel>
"True "J"False"
"either_pid" J"difference"
"upper" J "lower"
o (Full Sample) J
1 (lsec Averaged) J
2+ (Smoothed,

value=windowsize)

<withinErrorBars>, <DiffbyOffset>
<checkType>
<limitType>
<dataType>

Information about a sensor:*
(DATA_info <testid> <pid»

-> (pIDINFO <testid> <pid> <start> <end> <descr> <units> <rate> <shutdown»

Import raw data:*
(DA TA~et <testid> <pid> <start> <end> <label»

-> (DATA <label> <val> <sensor_reading>*)
-> (TIME <label> <val> <time_ value>*)

Import averaged data:*
(DATA_average <testid> <pid> <start> <end> <label»

-> (DATA <label> <val> ...)
(TIME <label> <val> ...)
(STDDEV <label> <val> ...)

Generic Features Page 4

(DB_disconnect) -- Disconnects from the current database, committing any actions taken
during the session. This does not return any value.

V.2. Environment Access
(get-param [<n>]) -- If called with no argument returns the the 1 st command line parameter

used when CLIPS was invoked, otherwise NIL. If called with an integer argument,
returns the Nth command line argument if there is one (where N=l for the first
argument), otherwise NIL.

(gecenv <variable» -- Returns the value of the specified variable in the S un environment,
or "".

(gecdate) -- Returns the current date in a string.

(geclogin) -- Returns the current user ID or '"'.

V.3. SSME DataFile Access and Feature Extraction
The following all attempt to access SSME data flatfIles directly and return their results as
asserted facts. AU return 1 if successful, 0 if any error occured in processing. The
environment variable 'NASA_TEST_DATA' must define a colon-separated list of paths to
search for the datafiles (e.g., setenv NASA_TEST_DATA /datal:/data2:/hdl:/hd2). All
input and output parameters are floats, except as specified below:

Parameters
<descr>, <units>, <testid>, <pid>
<label>

Type
String
Symbol
Integer <windowsize>, <minPts>, <smoothWinSiz>, <stepSize>,

<thrusClevel>
"True "J"False"
"either_pid" J"difference"
"upper" J "lower"
o (Full Sample) J
1 (lsec Averaged) J
2+ (Smoothed,

value=windowsize)

<withinErrorBars>, <DiffbyOffset>
<checkType>
<limitType>
<dataType>

Information about a sensor:*
(DATA_info <testid> <pid»

-> (pIDINFO <testid> <pid> <start> <end> <descr> <units> <rate> <shutdown»

Import raw data:*
(DA TA~et <testid> <pid> <start> <end> <label»

-> (DATA <label> <val> <sensor_reading>*)
-> (TIME <label> <val> <time_ value>*)

Import averaged data:*
(DATA_average <testid> <pid> <start> <end> <label»

-> (DATA <label> <val> ...)
(TIME <label> <val> ...)
(STDDEV <label> <val> ...)

Generic Features Page 4

Import smoothed data:*
(DATA_smooth <testid> <pid> <start> <end> <windowsize> <label»
-> (DATA <label> <val> ...)

(TIME <label> <val> ...)

Compute statistical summary:*
(DATA_stats <testid> <pid> <start> <end» ;;Full sample only

-> (ST ATS <testid> <pid> <start> <end> <mean> <stddev> <min> <max»

Compute statistical summary of the difference between two signals:*
(DA TA_DeltaStats <testid> <pidl><pid2> <start> <end» ;;Full sample only
-> (DSTATS <testid> <pidl> <pid2><start> <end> <mean> <stddev> <min> <max»

Just fit a line through a signal:*
(DA TA_FitLine <testid> <pid> <dataType> <start> <end»
-> (LINE <testid> <pid> <start> <end> <offset> <slope»

Determine thrust profile:*
(DATA_FindConstantThrust <testid»
-> (F _ THLEDE <testid> <start> <end> <thrusclevel»

Find erratic features:*
Note: Must only be called for perdiods of linear LOX inlet pressure.
(DA TA_FindErratic <testid> <pid> <start> <end> <absStdDevThresh» ;;Full sample only
-> (F _ERRA T <testid> <pid> <start> <end»

Find level shift features:*
(DA T A_FindLevelShift <testid> <pid> <dataType> <start> <end> <pidRange»
-> (F _LEVSH <testid> <pid> <start> <end> <lastmag> <delta»

Find peak features:*
(DAT A_FindPeak <testid> <pid> <dataType> <start> <end> <minPeak> <minPts»
-> (F _PEAK <testid> <pid> <time> <peak> <width(fwhm» <offset»

Find different than features:*
(DATA_FindDifferentThan <testidl> <pid!> <start!> <end!>

<testid2> <pid2> <start2> <end2>
<dataType> <numSigmasThresh»

-> (F _DIFfHA <testid!> <pid!> <start!> <end!> <testid2> <pid2>
<withinErrorBars> <DiffbyOffset> <offset> <offsecsigma»

Compute piece-wise linear model:*
(DATA_FindPieceWise <testid> <pid> <dataType> <start> <end> <stepSize>

<threshold> <directional_only»
-> (SEGMENT <testid> <pid> <start> <end> <startval> <endval» ;;Full sample only
;;If <directional_only> is O. then any signficant change in slope is noted.
;;EIse. only changes through zero are noted.
;;Recommend: <step>=5. <datType>=25. <thresh>=l/3range

Generic Features PageS

Import smoothed data:*
(DATA_smooth <testid> <pid> <start> <end> <windowsize> <label»
-> (DATA <label> <val> ...)

(TIME <label> <val> ...)

Compute statistical summary:*
(DATA_stats <testid> <pid> <start> <end» ;;Full sample only

-> (ST ATS <testid> <pid> <start> <end> <mean> <stddev> <min> <max»

Compute statistical summary of the difference between two signals:*
(DA TA_DeltaStats <testid> <pidl><pid2> <start> <end» ;;Full sample only
-> (DSTATS <testid> <pidl> <pid2><start> <end> <mean> <stddev> <min> <max»

Just fit a line through a signal:*
(DA TA_FitLine <testid> <pid> <dataType> <start> <end»
-> (LINE <testid> <pid> <start> <end> <offset> <slope»

Determine thrust profile:*
(DATA_FindConstantThrust <testid»
-> (F _ THLEDE <testid> <start> <end> <thrusclevel»

Find erratic features:*
Note: Must only be called for perdiods of linear LOX inlet pressure.
(DA TA_FindErratic <testid> <pid> <start> <end> <absStdDevThresh» ;;Full sample only
-> (F _ERRA T <testid> <pid> <start> <end»

Find level shift features:*
(DA T A_FindLevelShift <testid> <pid> <dataType> <start> <end> <pidRange»
-> (F _LEVSH <testid> <pid> <start> <end> <lastmag> <delta»

Find peak features:*
(DAT A_FindPeak <testid> <pid> <dataType> <start> <end> <minPeak> <minPts»
-> (F _PEAK <testid> <pid> <time> <peak> <width(fwhm» <offset»

Find different than features:*
(DATA_FindDifferentThan <testidl> <pid!> <start!> <end!>

<testid2> <pid2> <start2> <end2>
<dataType> <numSigmasThresh»

-> (F _DIFfHA <testid!> <pid!> <start!> <end!> <testid2> <pid2>
<withinErrorBars> <DiffbyOffset> <offset> <offsecsigma»

Compute piece-wise linear model:*
(DATA_FindPieceWise <testid> <pid> <dataType> <start> <end> <stepSize>

<threshold> <directional_only»
-> (SEGMENT <testid> <pid> <start> <end> <startval> <endval» ;;Full sample only
;;If <directional_only> is O. then any signficant change in slope is noted.
;;EIse. only changes through zero are noted.
;;Recommend: <step>=5. <datType>=25. <thresh>=l/3range

Generic Features PageS

Compute piece-wise linear model of the difference of two signals:*
(DATA_DeltaPieceWise <testidl> <pidl> <startl> <endl>

<testid.2> <pid.2> <start2> <end.2>
<dataType> <stepSize> <threshold> <directional_only»

-> (DSEGMENT <testidl> <pidl> <testid.2> <pid.2>
<start> <end> <startval> <endva1»

;;If <directional_only> is 0, then any signficant change in slope is noted.
;;Else, only changes through zero are noted.

Find spike features:*
(DATA_FindS pike <testid> <pid> <start> <end> <bitToggle> <Range> <perCent»

;;Full sample only
-> (F _SPIKE <testid> <pid> <start> <end> <magnitude»
;;<perCent> is portion of <Range> to use as a threshold.

SAle method for Bistability:*
(DATA_DetectBistability <testid> <start> <end» ;;Only call for PLs 65% or below.
-> (F _BIST AB <testid> <start> <end»

New, improved method for Bistability:*
(DATA_DetectGreenBistability <testid> <start> <end> "209"1"210" "140"1"141")
-> (F_GREENBISTAB <testid> <start> <end»

Check hard Iimits:*
(DAT A_ CheckUpperLimit <testid> <pid> <start> <end> <limit> <minPts» ;;All full

sample only
(DATA_CheckLowerLimit <testid> <pid> <start> <end> <limit> <minPts»
(DATA_CheckDifference <testid> <pid> <pid.2> <start> <end>

<limit> <minPts> <is_max»
-> (F _RL VIOL <testid> <pid> {<pid2>lnil} <start> <end>

<checkType> <limitType> <redline»
;;<is_max> = 1 indicates that threshold is on maximum deviation, else minimum.
;;<minPts> is minimum number of consecutive data points which must exceed limit before

report.

Tell when a PID is within specified bounds:*
(DAT A_FindInRange <testid> <pid> <start> <end> <low> <high> <minPts> <label»
-> (F _INRANGE <testid> <pid> <start> <end> <label»

Find IsFlat features:*
(DATA_IsFlat <testid> <pid> <dataType> <start> <end> <NumSigmasForFlat»

-> (F _IS FLAT <testid> <pid> <start> <end> <slope>)
Note: EHMS_NumSigmasForFlat is 3.0

Find DeltaLevelShift features:*
(DATA_DeltaLeveIShift <testidl> <pidl> <startl> <endl> <testid.2> <pid2> <start2>

<end2> <dataType»
-> (F _LEVSH <testid> <pidl-pid2> <start> <end> <lastmag> <delta»
;;Recommend: <dataType>=(int)rate if pids have same rate.

Generic Features Page 6

Compute piece-wise linear model of the difference of two signals:*
(DATA_DeltaPieceWise <testidl> <pidl> <startl> <endl>

<testid.2> <pid.2> <start2> <end.2>
<dataType> <stepSize> <threshold> <directional_only»

-> (DSEGMENT <testidl> <pidl> <testid.2> <pid.2>
<start> <end> <startval> <endva1»

;;If <directional_only> is 0, then any signficant change in slope is noted.
;;Else, only changes through zero are noted.

Find spike features:*
(DATA_FindS pike <testid> <pid> <start> <end> <bitToggle> <Range> <perCent»

;;Full sample only
-> (F _SPIKE <testid> <pid> <start> <end> <magnitude»
;;<perCent> is portion of <Range> to use as a threshold.

SAle method for Bistability:*
(DATA_DetectBistability <testid> <start> <end» ;;Only call for PLs 65% or below.
-> (F _BIST AB <testid> <start> <end»

New, improved method for Bistability:*
(DATA_DetectGreenBistability <testid> <start> <end> "209"1"210" "140"1"141")
-> (F_GREENBISTAB <testid> <start> <end»

Check hard Iimits:*
(DAT A_ CheckUpperLimit <testid> <pid> <start> <end> <limit> <minPts» ;;All full

sample only
(DATA_CheckLowerLimit <testid> <pid> <start> <end> <limit> <minPts»
(DATA_CheckDifference <testid> <pid> <pid.2> <start> <end>

<limit> <minPts> <is_max»
-> (F _RL VIOL <testid> <pid> {<pid2>lnil} <start> <end>

<checkType> <limitType> <redline»
;;<is_max> = 1 indicates that threshold is on maximum deviation, else minimum.
;;<minPts> is minimum number of consecutive data points which must exceed limit before

report.

Tell when a PID is within specified bounds:*
(DAT A_FindInRange <testid> <pid> <start> <end> <low> <high> <minPts> <label»
-> (F _INRANGE <testid> <pid> <start> <end> <label»

Find IsFlat features:*
(DATA_IsFlat <testid> <pid> <dataType> <start> <end> <NumSigmasForFlat»

-> (F _IS FLAT <testid> <pid> <start> <end> <slope>)
Note: EHMS_NumSigmasForFlat is 3.0

Find DeltaLevelShift features:*
(DATA_DeltaLeveIShift <testidl> <pidl> <startl> <endl> <testid.2> <pid2> <start2>

<end2> <dataType»
-> (F _LEVSH <testid> <pidl-pid2> <start> <end> <lastmag> <delta»
;;Recommend: <dataType>=(int)rate if pids have same rate.

Generic Features Page 6

Find DeltaDifferentThan features:
(DATA_DeltaDifferentThan <testidl> <pidla> <pidlb> <Startl> <endl>

<testid2> <pid2a> <pid2b> <start2> <end2>
<dataType> <numSigmasThresh»

-> (F _DIFfHA <testidl> <pid> <startl> <endl> <testid2> <compPid2>
<withinErrorBars> <DiftbyOffset> <offset> <offsecsigma»

Fit a line to the difference between two signals:*
(DATA_DeltaLine <testidl> <pidl> <startl> <endl> <testid2> <pid2> <start2> <end2»
-> (DLINE <testidl> <pidl> <startl> <testid2> <pid2> <start2> <offset> <slope»

Find Noise features:*
(DATA_FindNoise <testid> <pid> <start> <end> <sigmaThresh» ;;ls Avg only
-> (F _NOISE <testid> <pid> <start> <end»

Zero shift check:*
(DATA_ZeroShiftCheck <testid> <pid> <start><end><lower><upper»

-> (F _ZEROSC <testid> <pid> <start> <end> <offset»

Redundant channel check:
(DATA_RedundantChanneICheck <testid> <pidl> <pid2> <start> <end>

<threshold> <index_pectime_seg»
-> (F _RD_CC <testid> <pidl> <pid2> <start> <end»

VI. Unix Command-Line Utilities
In addition to testinfo, listpids, getpid, plot, plotdiff, and twoplot, the following command­

line utilities have been implemented to test out the generic features:

stats <testid> <pid> <start> <end> - Prints out statistics for the signal described.

deltatstats <testid> <pidl> <pid2> <start> <end> - Prints out statistics for the difference
between the two described signals (1 - 2).

thrust <testid> - Prints out the thrust profIle for the indicated test

Generic Features Page 7

Find DeltaDifferentThan features:
(DATA_DeltaDifferentThan <testidl> <pidla> <pidlb> <Startl> <endl>

<testid2> <pid2a> <pid2b> <start2> <end2>
<dataType> <numSigmasThresh»

-> (F _DIFfHA <testidl> <pid> <startl> <endl> <testid2> <compPid2>
<withinErrorBars> <DiftbyOffset> <offset> <offsecsigma»

Fit a line to the difference between two signals:*
(DATA_DeltaLine <testidl> <pidl> <startl> <endl> <testid2> <pid2> <start2> <end2»
-> (DLINE <testidl> <pidl> <startl> <testid2> <pid2> <start2> <offset> <slope»

Find Noise features:*
(DATA_FindNoise <testid> <pid> <start> <end> <sigmaThresh» ;;ls Avg only
-> (F _NOISE <testid> <pid> <start> <end»

Zero shift check:*
(DATA_ZeroShiftCheck <testid> <pid> <start><end><lower><upper»

-> (F _ZEROSC <testid> <pid> <start> <end> <offset»

Redundant channel check:
(DATA_RedundantChanneICheck <testid> <pidl> <pid2> <start> <end>

<threshold> <index_pectime_seg»
-> (F _RD_CC <testid> <pidl> <pid2> <start> <end»

VI. Unix Command-Line Utilities
In addition to testinfo, listpids, getpid, plot, plotdiff, and twoplot, the following command­

line utilities have been implemented to test out the generic features:

stats <testid> <pid> <start> <end> - Prints out statistics for the signal described.

deltatstats <testid> <pidl> <pid2> <start> <end> - Prints out statistics for the difference
between the two described signals (1 - 2).

thrust <testid> - Prints out the thrust profIle for the indicated test

Generic Features Page 7

REPORT DOCUMENTATION PAGE
Form Approved

OMBNo.0704-0188
Public reporting burden for this collection of Information Is eslimated 10 average 1 hour per response, Including the time for reviewin~ Instructions, searching existing dala sources,
gathering and inaJntalnln~ the data needed, and cofTllleling and reviewing the collection of Information. Send comments regarding 1 Is burden estimate or any other aspect of this
collection of Information, ncludlng sug~stions for reducing this burden, to Washington Headquarters SelVlces, Directorate for Information Operations and Reports. 1215 Jefferson
Davis Highway, Suite 1204, Arlington, A 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704·0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) r' REPORT DATE J 3. REPORT TYPE AND DATES COVERED

August 1995 Final Contractor Report
4_ nTLE AND SUBTITLE 5. FUNDING NUMBERS

55MB Post Test Diagnostic System
Systems Section

WU-584-03-11
6. AUTHOR(S) C-NAS3-25883

TImothy Bickmore

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Aerojet Propulsion Systems
P.O. Box 13222 E-9829
Sacramento, California 95813-6000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center NASA CR-198375
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES

Project Manager, June F. Zakrajsek, Space Propulsion Technology Division, NASA Lewis Research Center, organization
code 5310, (216) 433-7470.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified -Unlimited
Subject Categories IS, 16, and 20

This publication is available from the NASA Center for Aerospace Infonnation. (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

An assessment of engine and component health is routinely made after each test firing or flight firing of a Space Shuttle
Main Engine (SSMB). Currently, this health assessment is done by teams of engineers who manually review sensor data,
performance data, and engine and component operating histories. Based on review of information from these various
sources, an evaluation is made as to the health of each component of the 55MB and the preparedness of the engine for
another test or flight. The objective of this project-the 55MB Post-Test Diagnostic System (PTDS)-is to develop a
computer program which automates the analysis of test data from the 55MB in order to detect and diagnose anomalies.
This report primarily covers work on the Systems Section of the PTDS, which automates the analyses performed by the
systems/performance group at the Propulsion Branch of NASA Marshal Space Flight Center (MSFC). This group is
responsible for assessing the overall health and performance of the engine, and detecting and diagnosing anomalies which
involve multiple components (other groups are responsible for analyzing the behavior of specific components). The PTDS
utilizes several advanced software technologies to perform its analyses. Raw test data is analyzed using signal processing
routines which detect features in the data, such as spikes, shifts, peaks, and drifts. Component analyses are performed by
expert systems, which use "rules-of-thumb" obtained from interviews with the MSFC data analysts to detect and diagnose
anomalies. The systems analysis is performed using case-based reasoning. Results of all analyses are stored in a relational
database and displayed via an X-window-based graphical user interface which provides ranked lists of anomalies and
observations by engine component, along with supporting data plots for each.

14. SUBJECT TERMS

Space shuttle main engine; Expert systems; Data reduction; Systems analysis

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

420
16. PRICE CODE

Al8
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2·89)
Prescribed by ANSI Std. Z39-18
298·102

REPORT DOCUMENTATION PAGE
Form Approved

OMBNo.0704-0188
Public reporting burden for this collection of Information Is eslimated 10 average 1 hour per response, Including the time for reviewin~ Instructions, searching existing dala sources,
gathering and inaJntalnln~ the data needed, and cofTllleling and reviewing the collection of Information. Send comments regarding 1 Is burden estimate or any other aspect of this
collection of Information, ncludlng sug~stions for reducing this burden, to Washington Headquarters SelVlces, Directorate for Information Operations and Reports. 1215 Jefferson
Davis Highway, Suite 1204, Arlington, A 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704·0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) r' REPORT DATE J 3. REPORT TYPE AND DATES COVERED

August 1995 Final Contractor Report
4_ nTLE AND SUBTITLE 5. FUNDING NUMBERS

55MB Post Test Diagnostic System
Systems Section

WU-584-03-11
6. AUTHOR(S) C-NAS3-25883

TImothy Bickmore

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Aerojet Propulsion Systems
P.O. Box 13222 E-9829
Sacramento, California 95813-6000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Lewis Research Center NASA CR-198375
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARY NOTES

Project Manager, June F. Zakrajsek, Space Propulsion Technology Division, NASA Lewis Research Center, organization
code 5310, (216) 433-7470.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified -Unlimited
Subject Categories IS, 16, and 20

This publication is available from the NASA Center for Aerospace Infonnation. (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

An assessment of engine and component health is routinely made after each test firing or flight firing of a Space Shuttle
Main Engine (SSMB). Currently, this health assessment is done by teams of engineers who manually review sensor data,
performance data, and engine and component operating histories. Based on review of information from these various
sources, an evaluation is made as to the health of each component of the 55MB and the preparedness of the engine for
another test or flight. The objective of this project-the 55MB Post-Test Diagnostic System (PTDS)-is to develop a
computer program which automates the analysis of test data from the 55MB in order to detect and diagnose anomalies.
This report primarily covers work on the Systems Section of the PTDS, which automates the analyses performed by the
systems/performance group at the Propulsion Branch of NASA Marshal Space Flight Center (MSFC). This group is
responsible for assessing the overall health and performance of the engine, and detecting and diagnosing anomalies which
involve multiple components (other groups are responsible for analyzing the behavior of specific components). The PTDS
utilizes several advanced software technologies to perform its analyses. Raw test data is analyzed using signal processing
routines which detect features in the data, such as spikes, shifts, peaks, and drifts. Component analyses are performed by
expert systems, which use "rules-of-thumb" obtained from interviews with the MSFC data analysts to detect and diagnose
anomalies. The systems analysis is performed using case-based reasoning. Results of all analyses are stored in a relational
database and displayed via an X-window-based graphical user interface which provides ranked lists of anomalies and
observations by engine component, along with supporting data plots for each.

14. SUBJECT TERMS

Space shuttle main engine; Expert systems; Data reduction; Systems analysis

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

420
16. PRICE CODE

Al8
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2·89)
Prescribed by ANSI Std. Z39-18
298·102

