Formal Development of a Clock Synchronization Circuit

Paul S. Miner

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization circuit. The development spans from a high-level specification of the required properties to a circuit realizing the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

References

Formal Development of a Fault-Tolerant Clock Synchronization Circuit

Paul S. Miner
May 12, 1995

Outline

- Summary of Prior work
- Description of Torres-Pomales' Optimization
- Verification of Optimization
 - Definition of Streams in PVS
 - Proof by Co-Induction

Prior Verification

- Developed verified design of clock synchronization circuit using a combination of formal techniques.
 - Mechanized Proof System (EHDM, PVS)
 - Digital Design Derivation
 - OBDD-based tautology checking

Design Hierarchy—Old
Design Hierarchy—New

Informal Description of Algorithm

- Welch & Lynch Algorithm
- System of N clocks designed to tolerate F arbitrary faults
- Completely connected network
- Each Clock periodically
 - Gathers estimates of readings of all other clocks in the system
 - Discards the F largest and F smallest readings
 - Sets self to mid-point of the range of the remaining readings

Intermediate Stage of Previous Derivation

Intermediate Stage

- Circuit implements core function of algorithm
 - Network interconnect in different partition of design
- Independent of number of clocks in the system
- This stage was reached via a combination of standard DDD transformations and an *ad hoc* refinement verified using PVS
Torres-Pomales' Optimization

Signal Assumptions Justifying Optimization

Verification of Optimized Circuit

- Reasoning about Stream Equations using PVS
 - Definition of Streams in PVS
 - Proof by Co-Induction
- Verification Using PVS Streams Package

Streams in PVS

DEclarations

Stream_adt[alpha: TYPE]: THEORY
BEGIN
Stream: TYPE
a: VAR alpha
S, X, Y: VAR Stream
cs?: [Stream -> boolean]
cs: [alpha, Stream -> Stream]
hd: [Stream -> alpha]
tl: [Stream -> Stream]

nth(S:Stream,n:nat): alpha = hd(iterate(tl,n)(S))
Streams in PVS

AXIOMS

Stream_inclusive: AXIOM cs?(S)
Stream_cs_eta: AXIOM cs(hd(S), tl(S)) = S
Stream_hd_cs: AXIOM hd(cs(a, S)) = a
Stream_tl_cs: AXIOM tl(cs(a, S)) = S
Stream_eq: AXIOM $X = Y \iff \forall n: \text{nth}(X, n) = \text{nth}(Y, n)$

END Stream_adt

Defining Streams

Stream_corec[alpha, beta: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt[beta]

f: VAR [alpha -> beta]
g: VAR [alpha -> alpha]
a: VAR alpha

corec(f, g, a): Stream[beta]
corec_def: AXIOM corec(f, g, a) = cs(f(a), corec(f, g, g(a)))

[...]
END Stream_corec

Proof by Co-Induction

Stream_coinduct[alpha: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt

X, Y: VAR Stream[alpha]
R: VAR PRED[[Stream[alpha], Stream[alpha]]]

Bisimulation: TYPE =
{R | \forall X, Y: R(X, Y) = \text{hd}(X) = \text{hd}(Y) \& R(tl(X), tl(Y))}

co_induct: THEOREM (EXISTS (R: Bisimulation): R(X, Y)) => X = Y

END Stream_coinduct

Stream Equations for Original Sub-Circuit

THETA-F1 = cs(i, MUX(F1, RD, THETA-F1))
THETA-NF = cs(i, MUX(NF, RD, THETA-NF))
CFN = \left[\frac{\text{THETA-F1} + \text{THETA-NF}}{2}\right]
Stream Equations for Optimized Sub-Circuit

\[
\begin{align*}
\text{HOLD} &= \text{cs} (\text{false}, \text{F1} \land \neg \text{HOLD}) \\
\text{CIN} &= \text{HOLD} \land \neg \text{NF} \\
\text{OPT} &= \text{cs} (i, \text{MUX}(\text{F1}, \text{RD}, \text{INC} (\text{OPT}, \text{CIN})))
\end{align*}
\]

PVS Definitions for Circuit Verification

\[
\begin{align*}
A, B, C, R &\colon \text{VAR Stream[bool]} \\
a, b, c, r &\colon \text{VAR bool} \\
I, J, K &\colon \text{VAR Stream[int]} \\
i, j, k &\colon \text{VAR int} \\
\text{THETA}(A, I, i) &\colon \text{Stream[int]} \quad \text{\%defined using corec} \\
\text{CFN}(A, B, I, i, j) &\colon \text{Stream[int]} \\
&\quad = \text{DIV2} (\text{THETA}(A, I, i) + \text{THETA}(B, I, j)) \\
\text{HOLD}(A, a) &\colon \text{Stream[bool]} \quad \text{\%defined using corec} \\
\text{CIN}(A, B) &\colon \text{Stream[bool]} = A \land \neg \text{NOT B} \\
\text{OPT}(A, C, I, i) &\colon \text{Stream[int]} \quad \text{\%defined using corec}
\end{align*}
\]

Recursive Stream Definitions

\[
\begin{align*}
\text{THETA}(A, I, i) &= \text{cs} (i, \text{MUX}(A, I, \text{THETA}(A, I, i))) \\
\text{HOLD}(A, a) &= \text{cs} (a, A \land \neg \text{HOLD}(A, a)) \\
\text{OPT}(A, C, I, i) &= \text{cs} (i, \text{MUX}(A, I, \text{INC} (\text{OPT}(A, C, I, i), C)))
\end{align*}
\]

Type Declarations for Assumptions on Input Signals

\[
\begin{align*}
\text{S}(R) &\colon \text{TYPE} = \\
&\quad \{ \text{A} \text{ Invariant} (\text{IF} R \\
&\quad \text{THEN NOT} \ t1(A) \\
&\quad \text{ELSE} \ A \Rightarrow \ t1(A) \\
&\quad \text{ENDIF} \} \\
\text{C}(R) &\colon \text{TYPE} = \\
&\quad \{ \text{I} \text{ Invariant} (\text{NOT} \ R \Rightarrow \ \text{EQ}(t1(I), \text{INC}(I))) \}
\end{align*}
\]
Correctness Theorem

Optimize_correct: THEOREM

∀ R, (RD : C(R)), (F1 : S(R) | ~hd(F1)),
(NF : S(R) | Invariant(NF → F1)), (i : int):

CFN(F1, NF, RD, i, i) = OPT(F1, CIN(HOLD(F1, false), NF), RD, i)

Proof of Optimize_correct by co-induction

Define Bisimulation B as:

\{(X, Y)\} |
\[\exists R, (RD : C(R)), (F1 : S(R)), \{NF : \{A : S(R) | A \Rightarrow F1\}\}, (i : \text{int}) \]
\[(j : \text{int}) \mid \text{hd}(F1) \land \neg \text{hd}(NF) \Rightarrow \text{hd}(RD) = j + 1, \]
\[(b : \text{bool}) \mid \text{hd}(F1) \land \neg \text{hd}(NF) \Rightarrow b = \text{odd}(i + j) : \]
\[X = \text{CFN}(F1, NF, RD, i, j) \& \]
\[Y = \text{OPT}(F1, CIN(HOLD(F1, b), NF), RD, [(i + j)/2]) \]

Proof—B is a Bisimulation

Heads: For any \((X, Y) \in B\), \(\text{hd}(X) = \text{hd}(Y) = [(i + j)/2]\).

Tails: For any \((X, Y) \in B\), show \(\text{tl}(X), \text{tl}(Y)) \in B\).

\[
\begin{align*}
\text{tl}(&\text{CFN}(F1, NF, RD, i, j)) \\
&= \text{CFN}(\text{tl}(F1), \text{tl}(NF), \text{tl}(RD)) \\
&\quad \text{IF } \text{hd}(F1) \text{ THEN } i \text{ ELSE } \text{hd}(RD) \text{ ENDIF} \\
&\quad \text{IF } \text{hd}(NF) \text{ THEN } j \text{ ELSE } \text{hd}(RD) \text{ ENDIF}
\end{align*}
\]

\[
\begin{align*}
\text{tl}(&\text{OPT}(F1, CIN(HOLD(F1, b), NF), RD, [(i + j)/2]))) \\
&= \text{OPT}(\text{tl}(F1), \\
&\quad \text{CIN}(\text{HOLD}(\text{tl}(F1), \text{hd}(F1) \land \neg b)), \text{tl}(NF)), \\
&\quad \text{tl}(RD), \\
&\quad \text{IF } \text{hd}(F1) \text{ THEN } [(i + j)/2] + [b \land \neg \text{hd}(NF)] \text{ ELSE } \text{hd}(RD) \text{ ENDIF})
\end{align*}
\]

Concluding Remarks

- Proof by co-induction effective technique for verifying circuit refinements.
 - Possible to exploit circuit context to complete proof
- Developed general stream library for PVS 2
- Torres-Pomales' optimization verified in PVS using proof by co-induction
- PVS dependent type mechanism useful
- Design implemented in VLSI (hand layout)