Formal Development of a Clock Synchronization Circuit

Paul S. Miner

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales’ optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

References

Formal Development of a Fault-Tolerant Clock Synchronization Circuit

Paul S. Miner
May 12, 1995

Outline

- Summary of Prior work
- Description of Torres-Pomales' Optimization
- Verification of Optimization
 - Definition of Streams in PVS
 - Proof by Co-Induction

Prior Verification

- Developed verified design of clock synchronization circuit using a combination of formal techniques.
 - Mechanized Proof System (EHDM, PVS)
 - Digital Design Derivation
 - OBDD-based tautology checking

Design Hierarchy—Old

[Diagram of design hierarchy]
Design Hierarchy—New

Informal Description of Algorithm

- Welch & Lynch Algorithm
- System of N clocks designed to tolerate F arbitrary faults
- Completely connected network
- Each Clock periodically
 - Gathers estimates of readings of all other clocks in the system
 - Discards the F largest and F smallest readings
 - Sets self to mid-point of the range of the remaining readings

Intermediate Stage of Previous Derivation

Intermediate Stage

- Circuit implements core function of algorithm
 - Network interconnect in different partition of design
- Independent of number of clocks in the system
- This stage was reached via a combination of standard DDD transformations and an ad hoc refinement verified using PVS
Torres-Pomales' Optimization

Signal Assumptions Justifying Optimization

Signal RD is the output of a counter.

Verification of Optimized Circuit

- Reasoning about Stream Equations using PVS
 - Definition of Streams in PVS
 - Proof by Co-Induction
- Verification Using PVS Streams Package

Streams in PVS

DEclarations

Stream_adt[alpha: TYPE]: THEORY
BEGIN
Stream: TYPE
a: VAR alpha
S, X, Y: VAR Stream

cs?: [Stream -> boolean]
cs: [alpha, Stream -> Stream]
hd: [Stream -> alpha]
tl: [Stream -> Stream]

nth(S:Stream,n:nat):alpha = hd(iterate(tl,n)(S))
Streams in PVS

AXIOMS

Stream_inclusive: AXIOM cs?(S)

Stream_ratio_cons: AXIOM cs(hd(S), tl(S)) = S

Stream_zero: AXIOM hd(cs(a, S)) = a

Stream_t1_cons: AXIOM tl(cs(a, S)) = S

Stream_eq: AXIOM X = Y <=> FORALL n: nth(X, n) = nth(Y, n)

END Stream_adt

Defining Streams

Stream_corec[alpha, beta: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt[beta]

f: VAR [alpha -> beta]
g: VAR [alpha -> alpha]
a: VAR alpha

corec(f, g, a): Stream[beta]

coercions: AXIOM corec(f, g, a) = cs(f(a), corec(f, g, g(a)))

END Stream_corec

Proof by Co-Induction

Stream_coinduct[alpha: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt

X, Y: VAR Stream[alpha]

R: VAR PRED[[Stream[alpha], Stream[alpha]]]

Bisimulation: TYPE =
{R | FORALL X, Y: R(X, Y) => hd(X) = hd(Y) & R(tl(X), tl(Y))}

c_coinduct: THEOREM (EXISTS (R: Bisimulation): R(X, Y)) => X = Y

END Stream_coinduct

Stream Equations for Original Sub-Circuit

\[
\begin{align*}
\Theta_1 &= cs(i, \text{MUX}(F_1, \text{RD}, \Theta_1)) \\
\Theta_{NF} &= cs(i, \text{MUX}(\text{NF}, \text{RD}, \Theta_{NF})) \\
\text{CFN} &= \frac{\Theta_1 + \Theta_{NF}}{2}
\end{align*}
\]
Stream Equations for Optimized Sub-Circuit

\begin{align*}
\text{HOLD} &= \text{cs}(\text{false}, F1 \land \neg \text{HOLD}) \\
\text{CIN} &= \text{HOLD} \land \neg \text{NF} \\
\text{OPT} &= \text{cs}(i, \text{MUX}(F1, \text{RD}, \text{INC}(\text{OPT}, \text{CIN})))
\end{align*}

PVS Definitions for Circuit Verification

\begin{align*}
A, B, C, R: & \text{VAR Stream[bool]} \\
a, b, c, r: & \text{VAR bool} \\
I, J, K: & \text{VAR Stream[int]} \\
i, j, k: & \text{VAR int} \\
\text{THETA}(A, i, i): & \text{Stream[int]} \quad \%\text{defined using corec} \\
\text{CFN}(A, B, i, j): & \text{Stream[int]} \\
& = \text{DIV2}(\text{THETA}(A, i, i) + \text{THETA}(B, I, j)) \\
\text{HOLD}(A, a): & \text{Stream[bool]} \quad \%\text{defined using corec} \\
\text{CIN}(A, B): & \text{Stream[bool]} = A \land \neg B \\
\text{OPT}(A, C, I, i): & \text{Stream[int]} \quad \%\text{defined using corec}
\end{align*}

Recursive Stream Definitions

\begin{align*}
\text{THETA}(A, i, i) &= \text{cs}(i, \text{MUX}(A, I, \text{THETA}(A, I, i))) \\
\text{HOLD}(A, a) &= \text{cs}(a, A \land \neg \text{HOLD}(A, a)) \\
\text{OPT}(A, C, I, i) &= \text{cs}(i, \text{MUX}(A, I, \text{INC}(\text{OPT}(A, C, I, i)), C))
\end{align*}

Type Declarations for Assumptions on Input Signals

\begin{align*}
S(R): & \text{TYPE} = \{A \mid \text{Invariant(IF } R \\
& \quad \text{THEN NOT t1(A)} \\
& \quad \text{ELSE A } \Rightarrow \text{ t1(A)} \\
& \quad \text{ENDIF})
\}

C(R): & \text{TYPE} = \{1 \mid \text{Invariant(NOT R } \Rightarrow \text{ EQ(t1(I), INC(I)))}
\}
\end{align*}
Correctness Theorem

\textbf{Optimize_correct: \textsc{THEOREM}}

\(\forall R, (R : C(R)), (F_1 : S(R)|\neg\text{hd}(F_1)),
 (\text{NF} : S(R)|\text{Invariant(}\text{NF} \Rightarrow F_1)), (i : \text{int}):
 \text{CFN}(F_1, \text{NF}, RD, i, i) = \text{OPT}(F_1, \text{CIN(}\text{HOLD}(F_1, \text{false}), \text{NF}), RD, i) \)

Proof of \texttt{Optimize_correct} by co-induction

Define Bisimulation \(B \) as:

\(\{(X, Y)\} \)

\(\exists R, (R : C(R)), (F_1 : S(R)), (\text{NF} : \{A : S(R) | A \Rightarrow F_1\}), (i : \text{int})
 (j : \text{int}) \neg(\text{hd}(\text{NF})) \Rightarrow \text{hd}(RD) = j + 1),
 b : \text{bool} | \neg(\text{hd}(\text{NF})) \Rightarrow b = \text{odd}(i + j) :
 X = \text{CFN}(F_1, \text{NF}, RD, i, j) \land
 Y = \text{OPT}(F_1, \text{CIN(}\text{HOLD}(F_1, b), \text{NF}), RD, [(i + j)/2]) \)

Proof—B is a Bisimulation

Heads: For any \((X, Y) \in B \), \(\text{hd}(X) = \text{hd}(Y) = [(i + j)/2] \).

Tails: For any \((X, Y) \in B \), show \(\text{tl}(X), \text{tl}(Y)) \in B \).

\text{tl}(\text{CFN}(F_1, \text{NF}, RD, i, j))
 = \text{CFN}(\text{tl}(F_1), \text{tl}(\text{NF}), \text{tl}(RD),
 \text{IF} \text{hd}(F_1) \text{ THEN } i \text{ ELSE } \text{hd}(RD) \text{ ENDIF},
 \text{IF} \text{hd}(\text{NF}) \text{ THEN } j \text{ ELSE } \text{hd}(RD) \text{ ENDIF})

\text{tl}((\text{OPT}(F_1, \text{CIN(}\text{HOLD}(F_1, b), \text{NF}), RD, [(i + j)/2])))
 = \text{OPT}(\text{tl}(F_1),
 \text{CIN(}\text{HOLD(}\text{tl}(F_1), (\text{hd}(F_1) \wedge \neg b)), \text{tl}(\text{NF}),
 \text{tl}(RD),
 \text{IF} \text{hd}(F_1) \text{ THEN } ((i+j)/2) + b \wedge \neg(\text{hd}(\text{NF})) \text{ ELSE } \text{hd}(RD) \text{ ENDIF})
"

Concluding Remarks

- Proof by co-induction effective technique for verifying circuit refinements.
 - Possible to exploit circuit context to complete proof
- Developed general Stream library for PVS 2
- Torres-Pomales' optimization verified in PVS using proof by co-induction
- PVS dependent type mechanism useful
- Design implemented in VLSI (hand layout)