Formal Development of a Clock Synchronization Circuit

Paul S. Miner

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

References

Formal Development of a Fault-Tolerant Clock Synchronization Circuit

Paul S. Miner
May 12, 1996

Outline

- Summary of Prior work
- Description of Torres-Pomales' Optimization
- Verification of Optimization
 - Definition of Streams in PVS
 - Proof by Co-Induction

Prior Verification

- Developed verified design of clock synchronization circuit using a combination of formal techniques.
 - Mechanized Proof System (EHDM, PVS)
 - Digital Design Derivation
 - OBDD-based tautology checking

Design Hierarchy—Old
Design Hierarchy—New

- Clock Synchronization Property
 - E1EM
- General Synchronization Algorithm
 - ...
- DDD Specification
 - DDD
- Physical Architecture
 - ISO / PVS
- Geometric Architecture
 - DDD / GDDC / PVS
 - ...
- System Realization (A/G)
 - VLAN Implementation

Informal Description of Algorithm

- Welch & Lynch Algorithm
- System of N clocks designed to tolerate F arbitrary faults
- Completely connected network
- Each Clock periodically
 - Gathers estimates of readings of all other clocks in the system
 - Discards the F largest and F smallest readings
 - Sets self to mid-point of the range of the remaining readings

Intermediate Stage of Previous Derivation

Intermediate Stage

- Circuit implements core function of algorithm
 - Network interconnect in different partition of design
- Independent of number of clocks in the system
- This stage was reached via a combination of standard DDD transformations and an ad hoc refinement verified using PVS
Torres-Pomales' Optimization

Signal Assumptions Justifying Optimization

Signal BD is the output of a counter.

Verification of Optimized Circuit

- Reasoning about Stream Equations using PVS
 - Definition of Streams in PVS
 - Proof by Co-Induction
- Verification Using PVS Streams Package

Streams in PVS

DECLARATIONS

Stream, adt[alpha: TYPE]: THEORY
BEGIN

Stream: TYPE

a: VAR alpha
S, X, Y: VAR Stream

cs?: [Stream -> boolean]

cs: [alpha, Stream -> Stream]
hd: [Stream -> alpha]
tl: [Stream -> Stream]

nth(S:Stream,n:nat):alpha = hd(iterate(tl,n)(S))
Streams in PVS

AXIOMS

Stream_inclusive: AXIOM cs?(S)
Stream_cs_eta: AXIOM cs(hd(S), tl(S)) = S
Stream_hd_cs: AXIOM hd(cs(a, S)) = a
Stream_tl_cs: AXIOM tl(cs(a, S)) = S
Stream_eq: AXIOM X = Y <-> FORALL n: nth(X, n) = nth(Y, n)
END Stream_adt

Proof by Co-Induction

Stream_coinduct[alpha: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt
X, Y: VAR Stream[alpha]
R: VAR PRED[[Stream[alpha], Stream[alpha]]]
Bisimulation: TYPE = {R | FORALL X, Y: R(X, Y) = hd(X) = hd(Y) & R(tl(X), tl(Y))}
co_induct: THEOREM (EXISTS (R: Bisimulation): R(X, Y)) => X = Y
END Stream_coinduct

Defining Streams

Stream_corec[alpha, beta: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt[beta]
f: VAR [alpha -> beta]
g: VAR [alpha -> alpha]
a: VAR alpha
corec(f, g, a): Stream[beta]
corec_def: AXIOM corec(f, g, a) = cs(f(a), corec(f, g, g(a))
[...]
END Stream_corec

Stream Equations for Original Sub-Circuit

\[
\begin{align*}
\text{THETA-F1} &= cs(i, MUX(F1, RD, \text{THETA-F1}) \\
\text{THETA-NF} &= cs(i, MUX(NF, RD, \text{THETA-NF}) \\
\text{CFN} &= \frac{\text{THETA-F1} + \text{THETA-NF}}{2}
\end{align*}
\]
Stream Equations for Optimized Sub-Circuit

\[
\begin{align*}
\text{HOLD} &= \text{cs(false, F1 & \neg\text{HOLD})} \\
\text{CIN} &= \text{HOLD & \neg\text{NF}} \\
\text{OPT} &= \text{cs(i, MUX(F1, RD, INC(OPT, CIN)))}
\end{align*}
\]

Recursive Stream Definitions

\[
\begin{align*}
\text{THETA}(A, I, i) &= \text{cs}(i, \text{MUX}(A, I, \text{THETA}(A, I, i))) \\
\text{HOLD}(A, a) &= \text{cs}(a, A & \neg\text{HOLD}(A, a)) \\
\text{OPT}(A, C, I, i) &= \text{cs}(i, \text{MUX}(A, I, \text{INC}(\text{OPT}(A, C, I, i), C)))
\end{align*}
\]

PVS Definitions for Circuit Verification

\[
\begin{align*}
A, B, C, R &: \text{VAR Stream[bool]} \\
a, b, c, r &: \text{VAR bool} \\
I, J, K &: \text{VAR Stream[int]} \\
i, j, k &: \text{VAR int} \\
\text{THETA}(A, I, i) &: \text{Stream[int]} \quad \text{\%defined using corec} \\
\text{CFN}(A, B, I, i, j) &: \text{Stream[int]} \\
&= \text{DIV2(THETA}(A, I, i) + \text{THETA}(B, I, j)) \\
\text{HOLD}(A, a) &: \text{Stream[bool]} \quad \text{\%defined using corec} \\
\text{CIN}(A, B) &: \text{Stream[bool]} = A \text{ AND NOT B} \\
\text{OPT}(A, C, I, i) &: \text{Stream[int]} \quad \text{\%defined using corec}
\end{align*}
\]

Type Declarations for Assumptions on Input Signals

\[
\begin{align*}
S(R) &: \text{TYPE} = \\
&= \{A | \text{Invariant(IF}} R \\
&\quad \text{THEN NOT t1}(A) \\
&\quad \text{ELSE A } \Rightarrow \text{t1(A)} \\
&\quad \text{ENDIF}\}
\end{align*}
\]

\[
\begin{align*}
C(R) &: \text{TYPE} = \\
&= \{1 | \text{Invariant(NOT R } \Rightarrow \text{EQ(t1(1), INC(1)))}\}
\end{align*}
\]
Correctness Theorem

Define Bisimulation B as:
\[
\{(X,Y)\} \\
\exists R, (RD : C(R)), (F1 : S(R)), (NF : \{A : S(R) | A \Rightarrow F1\}), (i : \text{int}) \\
(j : \text{int}|\text{hd}(F1) \land \neg(\text{hd}(NF)) \Rightarrow \text{hd}(RD) = j + 1), \\
(b : \text{bool}|\text{hd}(F1) \land \neg(\text{hd}(NF)) \Rightarrow \ b = \text{odd}?(i + j)): \\
X = \text{CFN}(F1, NF, RD, i, j) \& \\
Y = \text{OPT}(F1, \text{CIN}(\text{HOLD}(F1, b), NF), RD, [(i + j)/2])
\]

Proof—B is a Bisimulation

Heads: For any $(X, Y) \in B$, $\text{hd}(X) = \text{hd}(Y) = [(i + j)/2]$.

Tails: For any $(X, Y) \in B$, show $(\text{tl}(X), \text{tl}(Y)) \in B$.

\[
\text{tl}(\text{CFN}(F1, NF, RD, i, j)) \\
= \text{CFN}(\text{tl}(F1), \text{tl}(NF), \text{tl}(RD), \\
\text{IF} \ \text{hd}(F1) \ \text{THEN} \ i \ \text{ELSE} \ \text{hd}(RD) \ \text{ENDIF}, \\
\text{IF} \ \text{hd}(NF) \ \text{THEN} \ j \ \text{ELSE} \ \text{hd}(RD) \ \text{ENDIF})
\]

\[
\text{tl}(\text{OPT}(F1, \text{CIN}(\text{HOLD}(F1, b), NF), RD, [(i + j)/2])) \\
= \text{OPT}(\text{tl}(F1), \\
\text{CIN}(\text{HOLD}(\text{tl}(F1), (\text{hd}(F1) \land \neg b)), \text{tl}(NF)), \\
\text{tl}(RD), \\
\text{IF} \ \text{hd}(F1) \ \text{THEN} \ ([(i + j)/2] + [b \land \neg \text{hd}(NF)]) \ \text{ELSE} \ \text{hd}(RD) \ \text{ENDIF})
\]

Concluding Remarks

* Proof by co-induction effective technique for verifying circuit refinements.
 - Possible to exploit circuit context to complete proof
* Developed general Stream library for PVS 2
* Torres-Pomales' optimization verified in PVS using proof by co-induction
* PVS dependent type mechanism useful
* Design implemented in VLSI (hand layout)