Formal Development of a Clock Synchronization Circuit

Paul S. Miner

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales’ optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

References

Formal Development of a Fault-Tolerant Clock Synchronization Circuit

Paul S. Miner
May 12, 1995

Outline

- Summary of Prior work
- Description of Torres-Pomales' Optimization
- Verification of Optimization
 - Definition of Streams in PVS
 - Proof by Co-Induction

Prior Verification

- Developed verified design of clock synchronization circuit using a combination of formal techniques.
 - Mechanized Proof System (EHDM, PVS)
 - Digital Design Derivation
 - OBDD-based tautology checking

Design Hierarchy—Old
Design Hierarchy—New

Informal Description of Algorithm

- Welch & Lynch Algorithm
- System of N clocks designed to tolerate F arbitrary faults
- Completely connected network
- Each Clock periodically
 - Gathers estimates of readings of all other clocks in the system
 - Discards the F largest and F smallest readings
 - Sets self to mid-point of the range of the remaining readings

Intermediate Stage of Previous Derivation

Intermediate Stage

- Circuit implements core function of algorithm
 - Network interconnect in different partition of design
- Independent of number of clocks in the system
- This stage was reached via a combination of standard DDD transformations and an ad hoc refinement verified using PVS
Torres-Pomales' Optimization

Signal Assumptions Justifying Optimization

Signal RD is the output of a counter.

Verification of Optimized Circuit

- Reasoning about Stream Equations using PVS
 - Definition of Streams in PVS
 - Proof by Co-Induction
- Verification Using PVS Streams Package

Streams in PVS

DEKLARATIONS

Stream_4dt[alpha: TYPE]: THEORY
BEGIN
Stream: TYPE
a: VAR alpha
S, X, Y: VAR Stream

csp: [Stream -> boolean]
csp: [alpha, Stream -> Stream]
hd: [Stream -> alpha]
tl: [Stream -> Stream]
nth(S:Stream,n:nat):alpha = hd(iterate(tl,n)(S))
Streams in PVS

AXIOMS

Stream_inclusive: AXIOM cs?(S)
Stream_cs_eta: AXIOM cs(hd(S), tl(S)) = S
Stream_hd_cs: AXIOM hd(cs(a, S)) = a
Stream_tl_cs: AXIOM tl(cs(a, S)) = S
Stream_eq: AXIOM X = Y <-> FORALL n: nth(X, n) = nth(Y, n)
END Stream_adt

Defining Streams

Stream_corec[alpha, beta: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt[beta]
f: VAR [alpha -> beta]
g: VAR [alpha -> alpha]
a: VAR alpha

corec(f, g, a): Stream[beta]
corec_def: AXIOM corec(f, g, a) = cs(f(a), corec(f, g, g(a)))
[...]
END Stream_corec

Proof by Co-Induction

Stream_coinduct[alpha: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt
X, Y: VAR Stream[alpha]
R: VAR PRED[[Stream[alpha], Stream[alpha]]]

Bisimulation: TYPE = {R | FORALL X, Y: R(X, Y) = hd(X) = hd(Y) & R(tl(X), tl(Y))}
co_induct: THEOREM (EXISTS (R: Bisimulation): R(X, Y)) => X = Y
END Stream_coinduct

Stream Equations for Original Sub-Circuit

THETA-F1 = cs(i, MUX(F1, RD, THETA-F1))
THETA-NF = cs(i, MUX(NF, RD, THETA-NF))
CFN = [THETA-F1 + THETA-NF] / 2
Stream Equations for Optimized Sub-Circuit

\[
\begin{align*}
\text{HOLD} &= cs(\text{false}, F_1 \& \neg \text{HOLD}) \\
\text{CIN} &= \text{HOLD} \& \neg \text{NF} \\
\text{OPT} &= cs(i, \text{MUX}(F_1, \text{RD}, \text{INC}(\text{OPT}, \text{CIN})))
\end{align*}
\]

PVS Definitions for Circuit Verification

\[
\begin{align*}
A, B, C, R &: \text{VAR Stream[bool]} \\
a, b, c, r &: \text{VAR bool} \\
I, J, K &: \text{VAR Stream[int]} \\
i, j, k &: \text{VAR int} \\
\text{THETA}(A, I, i) &: \text{Stream[int]} \quad \%	ext{defined using corec} \\
\text{CFN}(A, B, I, i, j) &: \text{Stream[int]} \\
&= \text{DIV2}(\text{THETA}(A, I, i) + \text{THETA}(B, I, j)) \\
\text{HOLD}(A, a) &: \text{Stream[bool]} \quad \%	ext{defined using corec} \\
\text{CIN}(A, B) &: \text{Stream[bool]} = A \text{ AND NOT } B \\
\text{OPT}(A, C, I, i) &: \text{Stream[int]} \quad \%	ext{defined using corec}
\end{align*}
\]

Recursive Stream Definitions

\[
\begin{align*}
\text{THETA}(A, I, i) &= cs(i, \text{MUX}(A, I, \text{THETA}(A, I, i))) \\
\text{HOLD}(A, a) &= cs(a, A \& \neg \text{HOLD}(A, a)) \\
\text{OPT}(A, C, I, i) &= cs(i, \text{MUX}(A, I, \text{INC}(\text{OPT}(A, C, I, i), C)))
\end{align*}
\]

Type Declarations for Assumptions on Input Signals

\[
\begin{align*}
S(R) &: \text{TYPE} = \\
&\{A \mid \text{Invariant(\text{IF} R \text{ THEN NOT} t1(A) \text{ ELSE} A \Rightarrow t1(A) \text{ ENDIF})}\}
\end{align*}
\]

\[
\begin{align*}
C(R) &: \text{TYPE} = \\
&\{1 \mid \text{Invariant(\text{NOT} R \Rightarrow \text{EQ}(t1(1), \text{INC}(1)))}\}
\end{align*}
\]
Correctness Theorem

Optimize_correct: THEOREM

∀ R, (RD : C(R)), (F1 : S(R)| ~hd(F1)),
(NF : S(R)|Invariant(NF => F1)), (i : int):

CFN(F1, NF, RD, i, i) = OPT(F1, CIN(HOLD(F1, false), NF), RD, i)

Proof—B is a Bisimulation

Heads: For any (X, Y) ∈ B, hd(X) = hd(Y) = [(i + j)/2].
Tails: For any (X, Y) ∈ B, show (tl(X), tl(Y)) ∈ B.

tl(CFN(F1, NF, RD, i, j))
= CFN(tl(F1), tl(NF), tl(RD),
 IF hd(F1) THEN i ELSE hd(RD) ENDIF,
 IF hd(NF) THEN j ELSE hd(RD) ENDIF)

tl(OPT(F1, CIN(HOLD(F1, b), NF), RD, [(i + j)/2]))
= OPT(tl(F1),
 CIN(HOLD(tl(F1), (hd(F1) ∧ ¬ b)), tl(NF)),
 tl(RD),
 IF hd(F1) THEN ((i + j)/2) + b ∧ ¬hd(NF)
 ELSE hd(RD)
 ENDIF)

Proof of Optimize_correct by co-induction

Define Bisimulation B as:

{(X, Y)|
 ∃ R, (RD : C(R)), (F1 : S(R)), (NF : {A : S(R)| A ⇒ F1}), (i : int)
 (j : int|hd(F1) ∧ ¬(hd(NF)) ⇒ hd(RD) = j + 1),
 (b : bool|hd(F1) ∧ ¬(hd(NF)) ⇒ b = odd?(i + j)):
 X = CFN(F1, NF, RD, i, j) &
 Y = OPT(F1, CIN(HOLD(F1, b), NF), RD, [(i + j)/2])

Concluding Remarks

• Proof by co-induction effective technique for verifying circuit refinements.
 - Possible to exploit circuit context to complete proof
• Developed general Stream library for PVS 2
• Torres-Pomales’ optimization verified in PVS using proof by co-induction
• PVS dependent type mechanism useful
• Design implemented in VLSI (hand layout)