Formal Development of a Clock Synchronization Circuit

Paul S. Miner

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales’ optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

References

Formal Development of a Fault-Tolerant Clock Synchronization Circuit

Paul S. Miner
May 12, 1996

Outline

- Summary of Prior work
- Description of Torres-Pomales' Optimization
- Verification of Optimization
 - Definition of Streams in PVS
 - Proof by Co-Induction

Prior Verification

- Developed verified design of clock synchronization circuit using a combination of formal techniques.
 - Mechanized Proof System (EHDM, PVS)
 - Digital Design Derivation
 - OBDD-based tautology checking

Design Hierarchy—Old
Design Hierarchy—New

Informal Description of Algorithm

- Welch & Lynch Algorithm
- System of \(N \) clocks designed to tolerate \(F \) arbitrary faults
- Completely connected network
- Each Clock periodically
 - Gathers estimates of readings of all other clocks in the system
 - Discards the \(F \) largest and \(F \) smallest readings
 - Sets self to mid-point of the range of the remaining readings

Intermediate Stage of Previous Derivation

Intermediate Stage

- Circuit implements core function of algorithm
 - Network interconnect in different partition of design
- Independent of number of clocks in the system
- This stage was reached via a combination of standard DDD transformations and an *ad hoc* refinement verified using PVS
Torres-Pomales' Optimization

Signal Assumptions Justifying Optimization

Signal BD is the output of a counter.

Verification of Optimized Circuit

- Reasoning about Stream Equations using PVS
 - Definition of Streams in PVS
 - Proof by Co-Induction
- Verification Using PVS Streams Package

Streams in PVS

DECLARATIONS

Stream_adt[alpha: TYPE]: THEORY
BEGIN
Stream: TYPE

a: VAR alpha
S, X, Y: VAR Stream

cs?: [Stream -> boolean]

cs: [alpha, Stream -> Stream]
hd: [Stream -> alpha]
tl: [Stream -> Stream]

nth(S:Stream,n:nat):alpha = hd(iterate(tl,n)(S))
Streams in PVS

AXIOMS

Stream_inclusive: AXIOM cs? (S)
Stream_cs_eta: AXIOM cs(hd(S), tl(S)) = S
Stream_hd_cs: AXIOM hd(cs(a, S)) = a
Stream_tl_cs: AXIOM tl(cs(a, S)) = S
Stream_eq: AXIOM X = Y <-> FORALL n: nth(X, n) = nth(Y, n)
END Stream_adt

Defining Streams

Stream_corec[alpha, beta: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt[beta]
f: VAR [alpha -> beta]
g: VAR [alpha -> alpha]
a: VAR alpha

corec(f, g, a): Stream[beta]

corec_def: AXIOM corec(f, g, a) = cs(f(a), corec(f, g, g(a)))
[...]
END Stream_corec

Proof by Co-Induction

Stream_coinduct[alpha: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt
X, Y: VAR Stream[alpha]
R: VAR PRED[[Stream[alpha], Stream[alpha]]]

Bisimulation: TYPE =
{ R | FORALL X, Y: R(X, Y) => hd(X) = hd(Y) & R(tl(X), tl(Y)) }

c_coinduct: THEOREM (EXISTS (R: Bisimulation): R(X, Y)) => X = Y
END Stream_coinduct

Stream Equations for Original Sub-Circuit

\[
\begin{align*}
\text{THETA-F1} &= \text{cs}(i, \text{MUX}(F1, \text{RD}, \text{THETA-F1})) \\
\text{THETA-NF} &= \text{cs}(i, \text{MUX}(\text{NF}, \text{RD}, \text{THETA-NF})) \\
\text{CFN} &= \frac{\text{THETA-F1} + \text{THETA-NF}}{2}
\end{align*}
\]
Stream Equations for Optimized Sub-Circuit

HOLD = cs(false, F1 & ~HOLD)
CIN = HOLD & ~NF
OPT = cs(i, MUX(F1, RD, INC(OPT, CIN)))

Recursive Stream Definitions

THETA(A, I, i) = cs(i, MUX(A, I, THETA(A, I, i)))
HOLD(A, a) = cs(a, A & ~HOLD(A, a))
OPT(A, C, I, i) = cs(i, MUX(A, I, INC(OPT(A, C, I, i), C)))

PVS Definitions for Circuit Verification

A, B, C, R: VAR Stream[bool]
a, b, c, r: VAR bool
I, J, K: VAR Stream[int]
i, j, k: VAR int

THETA(A, I, i): Stream[int] %defined using corec
CFN(A, B, I, i, j): Stream[int]
 = DIV2(THETA(A, I, i) + THETA(B, I, j))
HOLD(A, a): Stream[bool] %defined using corec
OPT(A, C, I, i): Stream[int] %defined using corec

Type Declarations for Assumptions on Input Signals

S(R): TYPE =
 \{ A | Invariant(IF R
 THEN NOT t1(A)
 ELSE A \Rightarrow t1(A)
 ENDIF) \}

C(R): TYPE =
 \{ I | Invariant(NOT R \Rightarrow EQ(t1(I), INC(I))) \}
Correctness Theorem

Optimize_correct: THEOREM

\[\forall R,(RD:C(R)),(F1:S(R)\neghd(F1)), \]
\[(NF:S(R)\text{Invariant}(NF \Rightarrow F1)),(i:\text{int}); \]
\[\text{CFN}(F1,NF,RD,i,i) = \text{OPT}(F1,\text{CIN}(\text{HOLD}(F1,\text{false}),NF),RD,i) \]

Proof of Optimize_correct by co-induction

Define Bisimulation \(B \) as:

\[\{(X,Y)\} \]
\[\exists R,(RD:C(R)),(F1:S(R)),(NF:\{A:S(R)\Rightarrow F1\}), (i:\text{int}) \]
\[(j:\text{int}) \neghd(F1) \land \neghd(NF) \Rightarrow \text{hd}(RD) = j+1, \]
\[(b:\text{bool}) \neghd(F1) \land \neghd(NF) \Rightarrow b = \text{odd}(i+j) : \]
\[X = \text{CFN}(F1,NF,RD,i,j) \land \]
\[Y = \text{OPT}(F1,\text{CIN}(\text{HOLD}(F1,b),NF),RD,[(i+j)/2]) \]

Proof—B is a Bisimulation

Heads: For any \((X,Y)\in B\), \(\text{hd}(X) = \text{hd}(Y) = [(i+j)/2]\).

Tails: For any \((X,Y)\in B\), show \(\text{tl}(X),\text{tl}(Y))\in B\).

\[\text{tl}(\text{CFN}(F1,NF,RD,i,j)) \]
\[= \text{CFN}(\text{tl}(F1),\text{tl}(NF),\text{tl}(RD), \]
\[\text{IF} \neghd(F1) \text{ THEN } i \text{ ELSE } \text{hd}(RD) \text{ ENDP}, \]
\[\text{IF} \neghd(NF) \text{ THEN } j \text{ ELSE } \text{hd}(RD) \text{ ENDP}, \]
\[\text{tl}(\text{OPT}(F1,\text{CIN}(\text{HOLD}(F1,b),NF),RD,[(i+j)/2]))) \]
\[= \text{OPT}(\text{tl}(F1), \]
\[\text{CIN}(\text{HOLD}(\text{tl}(F1), (\neghd(F1) \land \neghd(b))),\text{tl}(NF), \]
\[\text{tl}(RD), \]
\[\text{IF} \neghd(F1) \text{ THEN } [(i+j)/2] + [b \land \neghd(NF)] \]
\[\text{ELSE } \text{hd}(RD) \text{ ENDP} \]

Concluding Remarks

- Proof by co-induction effective technique for verifying circuit refinements.
 - Possible to exploit circuit context to complete proof
- Developed general Stream library for PVS 2
- Torres-Pomales' optimization verified in PVS using proof by co-induction
- PVS dependent type mechanism useful
- Design implemented in VLSI (hand layout)