Formal Development of a Clock Synchronization Circuit

Paul S. Miner

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

References

Formal Development of a Fault-Tolerant Clock Synchronization Circuit

Paul S. Miner
May 12, 1996

Outline

- Summary of Prior work
- Description of Torres-Pomales' Optimization
- Verification of Optimization
 - Definition of Streams in PVS
 - Proof by Co-Induction

Prior Verification

- Developed verified design of clock synchronization circuit using a combination of formal techniques.
 - Mechanized Proof System (EHDM, PVS)
 - Digital Design Derivation
 - OBDD-based tautology checking

Design Hierarchy—Old
Design Hierarchy—New

Informal Description of Algorithm

- Welch & Lynch Algorithm
- System of N clocks designed to tolerate F arbitrary faults
- Completely connected network
- Each Clock periodically
 - Gathers estimates of readings of all other clocks in the system
 - Discards the F largest and F smallest readings
 - Sets self to mid-point of the range of the remaining readings

Intermediate Stage of Previous Derivation

Intermediate Stage

- Circuit implements core function of algorithm
 - Network interconnect in different partition of design
- Independent of number of clocks in the system
- This stage was reached via a combination of standard DDD transformations and an ad hoc refinement verified using PVS
Torres-Pomales' Optimization

Signal Assumptions Justifying Optimization

Signal RD is the output of a counter.

Verification of Optimized Circuit

- Reasoning about Stream Equations using PVS
 - Definition of Streams in PVS
 - Proof by Co-Induction
- Verification Using PVS Streams Package

Streams in PVS

DECLARATIONS

```plaintext
Stream_adt[alpha: TYPE]: THEORY
BEGIN

Stream: TYPE

a: VAR alpha
S, X, Y: VAR Stream

cs?: [Stream -> boolean]

cs: [alpha, Stream -> Stream]

hd: [Stream -> alpha]

tl: [Stream -> Stream]

nth(S:Stream,n:nat):alpha = hd(iterate(tl,n)(S))
```

228
Streams in PVS

AXIOMS

Stream_inclusive: AXIOM cs?(S)

Stream_cs_eta: AXIOM cs(hd(S), tl(S)) = S

Stream_hd_cs: AXIOM hd(cs(a, S)) = a

Stream_tl_cs: AXIOM tl(cs(a, S)) = S

Stream_eq: AXIOM X = Y <=> FORALL n: nth(X, n) = nth(Y, n)

END Stream_adt

Proof by Co-Induction

Stream_coinduct(alpha: TYPE): THEORY
BEGIN
IMPORTING Stream_adt

X, Y: VAR Stream[alpha]

R: VAR PRED[[Stream[alpha], Stream[alpha]]]

Bisimulation: TYPE =
\{ R | FORALL X, Y: R(X, Y) => hd(X) = hd(Y) & R(tl(X), tl(Y))\}

c_o_induct: THEOREM (EXISTS (R: Bisimulation): R(X, Y)) => X = Y

END Stream_coinduct

Defining Streams

Stream_corec[alpha, beta: TYPE]: THEORY
BEGIN
IMPORTING Stream_adt[beta]

f: VAR [alpha -> beta]
g: VAR [alpha -> alpha]
a: VAR alpha

corec(f, g, a): Stream[beta]

corec_def: AXIOM corec(f, g, a) = cs(f(a), corec(f, g, g(a))

[...]

END Stream_corec

Stream Equations for Original Sub-Circuit

\[\text{THETA-F1} = \text{cs}(i, \text{MUX}(\text{F1}, \text{RD}, \text{THETA-F1})) \]
\[\text{THETA-NF} = \text{cs}(i, \text{MUX}(\text{NF}, \text{RD}, \text{THETA-NF})) \]
\[\text{CFN} = \frac{\text{THETA-F1} + \text{THETA-NF}}{2} \]
Stream Equations for Optimized Sub-Circuit

\[
\begin{align*}
\text{HOLD} &= \text{cs} (\text{false}, \text{F1} \& \neg \text{HOLD}) \\
\text{CIN} &= \text{HOLD} \& \neg \text{NF} \\
\text{OPT} &= \text{cs} (i, \text{MUX}(\text{F1}, \text{RD}, \text{INC}(\text{OPT}, \text{CIN})))
\end{align*}
\]

PVS Definitions for Circuit Verification

\[
\begin{align*}
A, B, C, R : \text{VAR Stream[bool]} \\
a, b, c, r : \text{VAR bool} \\
I, J, K : \text{VAR Stream[int]} \\
i, j, k : \text{VAR int}
\end{align*}
\]

\[
\begin{align*}
\text{THETA}(A, I, i) : \text{Stream[int]} & \quad \% \text{defined using corec} \\
\text{CFN}(A, B, I, i, j) : \text{Stream[int]} & \quad = \text{DIV2(THETA}(A, I, i) + \text{THETA}(B, I, j)) \\
\text{HOLD}(A, a) : \text{Stream[bool]} & \quad \% \text{defined using corec} \\
\text{CIN}(A, B) : \text{Stream[bool]} & \quad = A \text{ AND NOT B} \\
\text{OPT}(A, C, I, i) : \text{Stream[int]} & \quad \% \text{defined using corec}
\end{align*}
\]

Recursive Stream Definitions

\[
\begin{align*}
\text{THETA}(A, I, i) &= \text{cs}(i, \text{MUX}(A, I, \text{THETA}(A, I, i))) \\
\text{HOLD}(A, a) &= \text{cs}(a, A \& \neg \text{HOLD}(A, a)) \\
\text{OPT}(A, C, I, i) &= \text{cs}(i, \text{MUX}(A, I, \text{INC}(\text{OPT}(A, C, I, i), C)))
\end{align*}
\]

Type Declarations for Assumptions on Input Signals

\[
\begin{align*}
S(R) : \text{TYPE} &= \\
&\{ A \mid \text{Invariant(IF } R \text{ THEN NOT t1(A) ELSE } A \Rightarrow t1(A) \text{ ENDIF)} \}
\end{align*}
\]

\[
\begin{align*}
C(R) : \text{TYPE} &= \\
&\{ 1 \mid \text{Invariant(NOT R } \Rightarrow \text{EQ(t1(1),INC(1)))} \}
\end{align*}
\]
Correctness Theorem

Optimize_correct: THEOREM

\[\forall R, (R : C(R)), (F1 : S(R)^{\neg\text{hd}(F1)}), \]
\[(\text{NF} : S(R)^{\text{Invariant}(\text{NF} \Rightarrow F1)}), (i : \text{int}) : \]
\[\text{CFN}(F1, \text{NF}, R, i, i) = \text{OPT}(F1, \text{CIN}(\text{HOLD}(F1, \text{false}), \text{NF}), R, i) \]

Proof of Optimize_correct by co-induction

Define Bisimulation \(B \) as:

\[\{(X, Y)\} \]
\[\exists R, (R : C(R)), (F1 : S(R)), (\text{NF}: \{A : S(R)|A \Rightarrow F1\}), (i : \text{int}) \]
\[(j : \text{int}|\text{hd}(F1) \land \neg(\text{hd}(\text{NF})) \Rightarrow \text{hd}(R) = j + 1), \]
\[(b : \text{bool}|\text{hd}(F1) \land \neg(\text{hd}(\text{NF})) \Rightarrow b = \text{odd}(i + j)) : \]
\[X = \text{CFN}(F1, \text{NF}, R, i, j) \land \]
\[Y = \text{OPT}(F1, \text{CIN}(\text{HOLD}(F1, b), \text{NF}), R, [(i + j)/2]) \]

Proof—\(B \) is a Bisimulation

Heads: For any \((X, Y) \in B\), \text{hd}(X) = \text{hd}(Y) = [(i + j)/2].

Tails: For any \((X, Y) \in B\), show \((\text{tl}(X), \text{tl}(Y)) \in B\).

\[\text{tl}(\text{CFN}(F1, \text{NF}, R, i, j)) \]
\[= \text{CFN}(\text{tl}(F1), \text{tl}(\text{NF}), \text{tl}(R), \)
\[\text{IF} \text{hd}(F1) \text{ THEN } i \text{ ELSE } \text{hd}(R) \text{ ENDIF}, \]
\[\text{IF} \text{hd}(\text{NF}) \text{ THEN } j \text{ ELSE } \text{hd}(R) \text{ ENDIF} \]

\[\text{tl}(\text{OPT}(F1, \text{CIN}(\text{HOLD}(F1, b), \text{NF}), R, [(i + j)/2])) \]
\[= \text{OPT}(\text{tl}(F1), \]
\[\text{CIN}(\text{HOLD}(\text{tl}(F1), (\text{hd}(F1) \land \neg b)), \text{tl}(\text{NF}), \]
\[\text{tl}(R), \]
\[\text{IF} \text{hd}(F1) \text{ THEN } ([(i + j)/2] + [b \land \neg \text{hd}(\text{NF})] \]
\[\text{ELSE} \text{hd}(R) \]
\[\text{ENDIF} \]

Concluding Remarks

• Proof by co-induction effective technique for verifying circuit refinements.
 - Possible to exploit circuit context to complete proof
• Developed general Stream library for PVS 2
• Torres-Pomales' optimization verified in PVS using proof by co-induction
• PVS dependent type mechanism useful
• Design implemented in VLSI (hand layout)