Formal Development of a Clock Synchronization Circuit

Paul S. Miner

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales’ optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

References

Formal Development of a Fault-Tolerant Clock Synchronization Circuit

Paul S. Miner
May 12, 1995

Outline

- Summary of Prior work
- Description of Torres-Pomales' Optimization
- Verification of Optimization
 - Definition of Streams in PVS
 - Proof by Co-Induction

Prior Verification

- Developed verified design of clock synchronization circuit using a combination of formal techniques.
 - Mechanized Proof System (EHDM, PVS)
 - Digital Design Derivation
 - OBDD-based tautology checking

Design Hierarchy—Old

Diagram of design hierarchy involving various steps including:
- Clock Synchronization Property
- EHDM
- General Synchronization Algorithm
- EBD Specification
- EBD
- Abstract Architecture
- CCSO / PVS
- Concrete Architecture
- (CCS0 / CCSO / PVS)
- Detailed Specification (PMS)
Design Hierarchy—New

Informal Description of Algorithm

- Welch & Lynch Algorithm
- System of N clocks designed to tolerate F arbitrary faults
- Completely connected network
- Each Clock periodically
 - Gathers estimates of readings of all other clocks in the system
 - Discards the F largest and F smallest readings
 - Sets self to mid-point of the range of the remaining readings

Intermediate Stage of Previous Derivation

Intermediate Stage

- Circuit implements core function of algorithm
 - Network interconnect in different partition of design
- Independent of number of clocks in the system
- This stage was reached via a combination of standard DDD transformations and an ad hoc refinement verified using PVS
Torres-Pomales' Optimization

Signal Assumptions Justifying Optimization

Signal RD is the output of a counter.

Verification of Optimized Circuit

- Reasoning about Stream Equations using PVS
 - Definition of Streams in PVS
 - Proof by Co-Induction
- Verification Using PVS Streams Package

Streams in PVS

DECLAREATIONS

Stream_adt[alpha: TYPE]: THEORY
BEGIN

Stream: TYPE

a: VAR alpha
S, X, Y: VAR Stream

cs?: [Stream -> boolean]

cs: [alpha, Stream -> Stream]
hd: [Stream -> alpha]
tl: [Stream -> Stream]

nth(S:Stream,n:nat):alpha = hd(iterate(tl,n)(S))
Streams in PVS

AXIOMS

Stream_inclusive: AXIOM cs?(S)

Stream_cs_eta: AXIOM cs(hd(S), tl(S)) = S

Stream_hd_cs: AXIOM hd(cs(a, S)) = a

Stream_tl_cs: AXIOM tl(cs(a, S)) = S

Stream_eq: AXIOM X = Y = FORALL n: nth(X, n) = nth(Y, n)

END Stream_adt

Defining Streams

Stream_corec[alpha, beta: TYPE]: THEORY

BEGIN

IMPORTING Stream_adt[beta]

f: VAR [alpha -> beta]
g: VAR [alpha -> alpha]
a: VAR alpha

corec(f, g, a): Stream[beta]

corec_def: AXIOM corec(f, g, a) = cs(f(a), corec(f, g, g(a)))

[...]

END Stream_corec

Proof by Co-Induction

Stream_coinduct[alpha: TYPE]: THEORY

BEGIN

IMPORTING Stream_adt

X, Y: VAR Stream[alpha]

R: VAR PRED[[Stream[alpha], Stream[alpha]]]

Bisimulation: TYPE =

{R | FORALL X, Y: R(X, Y) => hd(X) = hd(Y) & R(tl(X), tl(Y))}

c_coinduct: THEOREM (EXISTS (R: Bisimulation): R(X, Y)) => X = Y

END Stream_coinduct

Stream Equations for Original Sub-Circuit

\[
\begin{align*}
\text{THETA-F1} & = cs(i, \text{MUX}(F1, RD, \text{THETA-F1})) \\
\text{THETA-NF} & = cs(i, \text{MUX}(NF, RD, \text{THETA-NF})) \\
\text{CFN} & = \left(\frac{\text{THETA-F1} + \text{THETA-NF}}{2}\right)
\end{align*}
\]
Stream Equations for Optimized Sub-Circuit

\[
\begin{align*}
\text{HOLD} &= \text{cs}(\text{false, } F1 \& \neg \text{HOLD}) \\
\text{CIN} &= \text{HOLD} \& \neg \text{NF} \\
\text{OPT} &= \text{cs}(i, \text{MUX}(F1, \text{RD}, \text{INC}(\text{OPT,CIN}))) \\
\end{align*}
\]

PVS Definitions for Circuit Verification

\[
\begin{align*}
A, B, C, R: \text{VAR Stream[bool]} \\
a, b, c, r: \text{VAR bool} \\
I, J, K: \text{VAR Stream[int]} \\
i, j, k: \text{VAR int} \\
\text{THETA}(A, I, i): \text{Stream[int]} \quad \% \text{defined using corec} \\
\text{CFN}(A, B, I, i, j): \text{Stream[int]} \\
\quad = \text{DIV2}((\text{THETA}(A, I, i) + \text{THETA}(B, I, j)) \\
\text{HOLD}(A, a): \text{Stream[bool]} \quad \% \text{defined using corec} \\
\text{CIN}(A, B): \text{Stream[bool]} = A \text{ AND NOT } B \\
\text{OPT}(A, C, I, i): \text{Stream[int]} \quad \% \text{defined using corec}
\end{align*}
\]

Recursive Stream Definitions

\[
\begin{align*}
\text{THETA}(A, I, i) &= \text{cs}(i, \text{MUX}(A, I, \text{THETA}(A, I, i))) \\
\text{HOLD}(A, a) &= \text{cs}(a, A \& \neg \text{HOLD}(A, a)) \\
\text{OPT}(A, C, I, i) &= \text{cs}(i, \text{MUX}(A, I, \text{INC}(\text{OPT}(A, C, I, i), C)))
\end{align*}
\]

Type Declarations for Assumptions on Input Signals

\[
\begin{align*}
S(R): \text{TYPE} = \\
\{ A \mid \text{Invariant(IF } R \text{ THEN NOT } tl(A) \text{ ELSE A } \Rightarrow tl(A) \text{ ENDIF)} \}
\end{align*}
\]

\[
\begin{align*}
C(R): \text{TYPE} = \\
\{ 1 \mid \text{Invariant}(\text{NOT } R \Rightarrow Eq(tl(1), \text{INC}(1))) \}
\end{align*}
\]
Correctness Theorem

Define Bisimulation B as:

$$B = \{(X,Y) | \exists R, (RD : C(R)), (F1 : S(R)), (NF : A : S(R) | A \Rightarrow F1), (i : \text{int})
\}
$$

Proof of Optimize correct by co-induction

Proof—B is a Bisimulation

Heads: For any $(X, Y) \in B$, $hd(X) = hd(Y) = \lfloor i+j/2 \rfloor$.

Tails: For any $(X, Y) \in B$, show $(t1(X), t1(Y)) \in B$.

$$t1(CFN(F1, NF, RD, i, j)) = CFN(t1(F1), t1(NF), t1(RD),$$

$$\text{IF hd(F1) THEN } i \text{ ELSE hd(RD) ENDIF,}$$

$$\text{IF hd(NF) THEN } j \text{ ELSE hd(RD) ENDIF})$$

$$t1(OPT(F1, CIN(HOLD(F1, b), NF), RD, [(i+j)/2]))) = OPT(t1(F1),$$

$$CIN(HOLD(t1(F1), (hd(F1) \lor \neg b))), t1(NF),$$

$$t1(RD),$$

$$\text{IF hd(F1) THEN } \lfloor (i+j)/2 \rfloor + \lfloor b \land \neg \text{hd(NF)} \rfloor$$

$$\text{ELSE hd(RD) ENDIF)}$$

Concluding Remarks

- Proof by co-induction effective technique for verifying circuit refinements.
 - Possible to exploit circuit context to complete proof
- Developed general Stream library for PVS 2
- Torres-Pomales' optimization verified in PVS using proof by co-induction
- PVS dependent type mechanism useful
- Design implemented in VLSI (hand layout)