Formal Development of a Clock Synchronization Circuit

Paul S. Miner

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

References

Formal Development of a Fault-Tolerant Clock Synchronization Circuit

Paul S. Miner
May 12, 1995

Outline

- Summary of Prior work
- Description of Torres-Pomales’ Optimization
- Verification of Optimization
 - Definition of Streams in PVS
 - Proof by Co-Induction

Prior Verification

- Developed verified design of clock synchronization circuit using a combination of formal techniques.
 - Mechanized Proof System (EHDM, PVS)
 - Digital Design Derivation
 - OBDD-based tautology checking

Design Hierarchy—Old
Design Hierarchy—New

Informal Description of Algorithm

- Welch & Lynch Algorithm
- System of \(N \) clocks designed to tolerate \(F \) arbitrary faults
- Completely connected network
- Each Clock periodically
 - Gathers estimates of readings of all other clocks in the system
 - Discards the \(F \) largest and \(F \) smallest readings
 - Sets self to mid-point of the range of the remaining readings

Intermediate Stage of Previous Derivation

Intermediate Stage

- Circuit implements core function of algorithm
 - Network interconnect in different partition of design
- Independent of number of clocks in the system
- This stage was reached via a combination of standard DDD transformations and an ad hoc refinement verified using PVS
Torres-Pomales' Optimization

Verification of Optimized Circuit

- Reasoning about Stream Equations using PVS
 - Definition of Streams in PVS
 - Proof by Co-Induction
- Verification Using PVS Streams Package

Signal Assumptions Justifying Optimization

Stream Assumptions Justifying Optimization

Signal BD is the output of a counter.

Streams in PVS

```
DECLAREATIONS

Stream_adt[alpha: TYPE]: THEORY
BEGIN
  Stream: TYPE
  a: VAR alpha
  S, X, Y: VAR Stream
  cs?: [Stream -> boolean]
  cs: [alpha, Stream -> Stream]
  hd: [Stream -> alpha]
  tl: [Stream -> Stream]
  nth(S:Stream,n:nat):alpha = hd(iterate(t1,n)(S))
```

Streams in PVS

AXIOMS

Stream_inclusive: AXIOM cs?(S)
Stream cs_eta: AXIOM cs(hd(S), tl(S)) = S
Stream hd cs: AXIOM hd(cs(a, S)) = a
Stream tl cs: AXIOM tl(cs(a, S)) = S
Stream_eq: AXIOM X = Y <-> FORALL n: nth(X, n) = nth(Y, n)

END Stream_adt

Proof by Co-Induction

Stream_coinduct(alpha: TYPE): THEORY
BEGIN
IMPORTING Stream_adt
X, Y: VAR Stream[alpha]
R: VAR PRED[[Stream[alpha], Stream[alpha]]]

Bisimulation: TYPE =
{R | FORALL X, Y: R(X, Y) => hd(X) = hd(Y) & R(tl(X), tl(Y))}

cımduct: THEOREM (EXISTS (R: Bisimulation): R(X, Y)) => X = Y

END Stream_coinduct

Defining Streams

Stream_corec(alpha, beta: TYPE): THEORY
BEGIN
IMPORTING Stream_adt[beta]
f: VAR [alpha -> beta]
g: VAR [alpha -> alpha]
a: VAR alpha

corec(f, g, a): Stream[beta]

corec_def: AXIOM corec(f, g, a) = cs(f(a), corec(f, g, g(a))

[...]

END Stream_corec

Stream Equations for Original Sub-Circuit

\[\text{THETA-F1} = cs(i, MUX(F1, RD, \text{THETA-F1}) \]
\[\text{THETA-NF} = cs(i, MUX(NF, RD, \text{THETA-NF}) \]
\[\text{CFN} = \frac{\text{THETA-F1} + \text{THETA-NF}}{2} \]

\[\text{RD} \]
\[\begin{array}{c}
 \text{F1} \\
 \text{MUX} \\
 \text{THETA-F1} \\
 \text{NF} \\
 \text{MUX} \\
 \text{THETA-NF} \\
 \text{RD} \\
 \text{CFN} \\
\end{array} \]
Stream Equations for Optimized Sub-Circuit

\[
\begin{align*}
\text{HOLD} & = \text{cs(false, F1 & \neg\text{HOLD})} \\
\text{CIN} & = \text{HOLD & \neg\text{NF}} \\
\text{OPT} & = \text{cs}(i, \text{MUX}(F1, RD, \text{INC(OPT,CIN)}))
\end{align*}
\]

Recursive Stream Definitions

\[
\begin{align*}
\text{THETA}(A,I,i) & = \text{cs}(i, \text{MUX}(A,I,\text{THETA}(A,I,i))) \\
\text{HOLD}(A,a) & = \text{cs}(a, A & \neg\text{HOLD}(A,a)) \\
\text{OPT}(A,C,I,i) & = \text{cs}(i, \text{MUX}(A,I,\text{INC(OPT}(A,C,I,i),C)))
\end{align*}
\]

PVS Definitions for Circuit Verification

\[
\begin{align*}
A, B, C, R & : \text{VAR Stream[bool]} \\
a, b, c, r & : \text{VAR bool} \\
i, j, k & : \text{VAR int} \\
\text{THETA}(A,I,i) & : \text{Stream[int]} \quad \text{%defined using corec} \\
\text{CFN}(A,B,I,i,j) & : \text{Stream[int]} \\
& = \text{DIV2(THETA}(A,I,i) + \text{THETA}(B,I,j)) \\
\text{HOLD}(A,a) & : \text{Stream[bool]} \quad \text{%defined using corec} \\
\text{CIN}(A,B) & : \text{Stream[bool]} = A \text{ AND NOT B} \\
\text{OPT}(A,C,I,i) & : \text{Stream[int]} \quad \text{%defined using corec}
\end{align*}
\]

Type Declarations for Assumptions on Input Signals

\[
\begin{align*}
S(R) & : \text{TYPE} = \\
& \{A \text{ |Invariant(IF } R \\
& \quad \text{THEN NOT } tl(A) \\
& \quad \text{ELSE } A \Rightarrow tl(A) \\
& \quad \text{ENDIF}\} \\
C(R) & : \text{TYPE} = \\
& \{1 \text{ |Invariant(NOT } R \Rightarrow EQ(tl(1),INC(1)))\}
\end{align*}
\]
Correctness Theorem

\textbf{Optimize_correct: THEOREM}

\[\forall R, (R : C(R)), (F_1 : S(R)) \implies \neg \text{hd}(F_1), \]
\[(NF : S(R)) \text{Invariant}(NF \Rightarrow F_1), (i : \text{int}) : \]
\[\text{CFN}(F_1, NF, RD, i, i) = \text{OPT}(F_1, \text{CIN}(\text{HOLD}(F_1, \text{false}), NF), RD, i) \]

\textbf{Proof of Optimize_correct by co_induction}

Define Bisimulation \(B \) as:

\[\{ (X, Y) \} \]
\[\exists R, (R : C(R)), (F_1 : S(R)), (NF : \{ A : S(R) | A \Rightarrow F_1 \}), (i : \text{int}) \]
\[(j : \text{int}) \text{hd}(F_1) \land \neg \text{hd}(NF) \implies \text{hd}(RD) = j + 1, \]
\[(b : \text{bool}) \text{hd}(F_1) \land \neg \text{hd}(NF) \implies b = \text{odd}(i + j) : \]
\[X = \text{CFN}(F_1, NF, RD, i, j) \& \]
\[Y = \text{OPT}(F_1, \text{CIN}(\text{HOLD}(F_1, b), NF), RD, [(i + j)/2]) \]

\textbf{Proof—\(B \) is a Bisimulation}

\textbf{Heads:} For any \((X, Y) \in B\), \(\text{hd}(X) = \text{hd}(Y) = [(i + j)/2]\).

\textbf{Tails:} For any \((X, Y) \in B\), show \((\text{tl}(X), \text{tl}(Y)) \in B\).

\[\text{tl}(\text{CFN}(F_1, NF, RD, i, j)) \]
\[= \text{CFN}(\text{tl}(F_1), \text{tl}(NF), \text{tl}(RD), \]
\[\text{IF hd}(F_1) \text{ THEN } i \text{ ELSE hd}(RD) \text{ ENDIF}, \]
\[\text{IF hd}(NF) \text{ THEN } j \text{ ELSE hd}(RD) \text{ ENDIF}) \]

\[\text{tl}(\text{OPT}(F_1, \text{CIN}(\text{HOLD}(F_1, b), NF), RD, [(i + j)/2])) \]
\[= \text{OPT}(\text{tl}(F_1), \]
\[\text{CIN}(\text{HOLD}(\text{tl}(F_1), (\text{hd}(F_1) \land \neg b)), \text{tl}(NF), \]
\[\text{tl}(RD), \]
\[\text{IF hd}(F_1) \text{ THEN } ((i + j)/2) + [b \land \neg \text{hd}(NF)] \]
\[\text{ELSE hd}(RD) \]
\[\text{ENDIF}) \]

\textbf{Concluding Remarks}

- Proof by co_induction effective technique for verifying circuit refinements.
 - Possible to exploit circuit context to complete proof
- Developed general Stream library for PVS 2
- Torres_Pomales' optimization verified in PVS using proof by co_induction
- PVS dependent type mechanism useful
- Design implemented in VLSI (hand layout)