Formal Development of a Clock Synchronization Circuit

Paul S. Miner

This talk presents the latest stage in a formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system.

An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM [2]. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University [1]. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed [3]. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International [4].

Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function [5]. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques.

DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation.

DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

References

Formal Development of a Fault-Tolerant Clock Synchronization Circuit

Paul S. Miner
May 12, 1995

Outline

• Summary of Prior work
• Description of Torres-Pomales' Optimization
• Verification of Optimization
 – Definition of Streams in PVS
 – Proof by Co-Induction

Prior Verification

• Developed verified design of clock synchronization circuit using a combination of formal techniques.
 – Mechanized Proof System (EHDM, PVS)
 – Digital Design Derivation
 – OBDD-based tautology checking

Design Hierarchy—Old

1. Clock Synchronization Property

2. General Synchronization Algorithm

3. SDD Specification

4. Abstract Architecture

5. Concrete Architecture

6. Design/Verification (PVS)
Design Hierarchy—New

Informal Description of Algorithm

- Welch & Lynch Algorithm
- System of N clocks designed to tolerate F arbitrary faults
- Completely connected network
- Each Clock periodically
 - Gathers estimates of readings of all other clocks in the system
 - Discards the F largest and F smallest readings
 - Sets self to mid-point of the range of the remaining readings

Intermediate Stage of Previous Derivation

Intermediate Stage

- Circuit implements core function of algorithm
 - Network interconnect in different partition of design
- Independent of number of clocks in the system
- This stage was reached via a combination of standard DDD transformations and an ad hoc refinement verified using PVS
Torres-Pomales' Optimization

Signal Assumptions Justifying Optimization

Signal BD is the output of a counter.

Verification of Optimized Circuit

- Reasoning about Stream Equations using PVS
 - Definition of Streams in PVS
 - Proof by Co-Induction
- Verification Using PVS Streams Package

Streams in PVS

DECLAREATIONS

Stream_adt[alpha: TYPE]: THEORY
BEGIN
Stream: TYPE
a: VAR alpha
S, X, Y: VAR Stream

cs?: [Stream -> boolean]
cs: [alpha, Stream -> Stream]
hd: [Stream -> alpha]
tl: [Stream -> Stream]

nth(S:Stream,n:nat):alpha = hd(iterate(tl,n)(S))
Streams in PVS

AXIOMS

Stream_inclusive: AXIOM cs?(S)

Stream_cs_eta: AXIOM cs(hd(S), tl(S)) = S

Stream_hd_cs: AXIOM hd(cs(a, S)) = a

Stream_t1_cs: AXIOM tl(cs(a, S)) = S

Stream_eq: AXIOM X = Y <-> FORALL n: nth(X, n) = nth(Y, n)

END Stream_adt

Proof by Co-Induction

Stream_coinduct[alpha: TYPE]: THEORY
BEGIN

IMPORTING Stream_adt

X, Y: VAR Stream[alpha]

R: VAR PRED[[Stream[alpha], Stream[alpha]]]

Bisimulation: TYPE = {R | FORALL X, Y: R(X, Y) => hd(X) = hd(Y) & R(tl(X), tl(Y))}

co_induct: THEOREM (EXISTS (R: Bisimulation): R(X, Y)) => X = Y

END Stream_coinduct

Defining Streams

Stream_corec[alpha, beta: TYPE]: THEORY
BEGIN

IMPORTING Stream_adt[alpha, beta]

f: VAR [alpha -> beta]
g: VAR [alpha -> alpha]
a: VAR alpha

corec(f, g, a): Stream[beta]

corec_def: AXIOM corec(f, g, a) = cs(f(a), corec(f, g, g(a)))

[...]

END Stream_corec

Stream Equations for Original Sub-Circuit

\[
\begin{align*}
\text{THETA-F1} &= \text{cs}(i, \text{MUX}(F1, RD, \text{THETA-F1})) \\
\text{THETA-NF} &= \text{cs}(i, \text{MUX}(NF, RD, \text{THETA-NF})) \\
\text{CFN} &= \frac{\text{THETA-F1} + \text{THETA-NF}}{2}
\end{align*}
\]
Stream Equations for Optimized Sub-Circuit

\[\text{HOLD} = \text{cs}(\text{false, } F_1 \& \neg \text{HOLD}) \]
\[\text{CIN} = \text{HOLD} \& \neg \text{NF} \]
\[\text{OPT} = \text{cs}(i, \text{MUX}(F_1, \text{RD}, \text{INC}(\text{OPT,CIN}))) \]

PVS Definitions for Circuit Verification

\[A, B, C, R: \text{VAR Stream[bool]} \]
\[a, b, c, r: \text{VAR bool} \]
\[I, J, K: \text{VAR Stream[int]} \]
\[i, j, k: \text{VAR int} \]
\[\text{THETA}(A, I, i): \text{Stream[int]} \quad \text{%defined using corec} \]
\[\text{CFN}(A, B, I, i, j): \text{Stream[int]} \]
\[= \text{DIV2}(\text{THETA}(A, I, i) + \text{THETA}(B, I, j)) \]
\[\text{HOLD}(A, a): \text{Stream[bool]} \quad \text{%defined using corec} \]
\[\text{CIN}(A, B): \text{Stream[bool]} = A \text{ AND NOT } B \]
\[\text{OPT}(A, C, I, i): \text{Stream[int]} \quad \text{%defined using corec} \]

Recursive Stream Definitions

\[\text{THETA}(A, I, i) = \text{cs}(i, \text{MUX}(A, I, \text{THETA}(A, I, i))) \]
\[\text{HOLD}(A, a) = \text{cs}(a, A \& \neg \text{HOLD}(A, a)) \]
\[\text{OPT}(A, C, I, i) = \text{cs}(i, \text{MUX}(A, I, \text{INC}(\text{OPT}(A, C, I, i), C))) \]

Type Declarations for Assumptions on Input Signals

\[S(R): \text{TYPE} = \]
\[\{A | \text{Invariant(IF } R \text{ THEN NOT } t_1(A) \text{ ELSE } A \Rightarrow t_1(A) \text{ ENDIF)} \} \]

\[C(R): \text{TYPE} = \]
\[\{1 | \text{Invariant(NOT } R \Rightarrow \text{EQ}(t_1(1), \text{INC}(1))) \} \]
Correctness Theorem

Optimize_correct: THEOREM

∀ R, (RD : C(R)), (F1 : S(R)), ¬hd(F1),
 (NF : S(R)) Invariant(NF ⇒ F1), (i : int):
 CFN(F1, NF, RD, i, i) = OPT(F1, CIN(HOLD(F1, false), NF), RD, i)

Proof of Optimize_correct by co-induction

Define Bisimulation B as:

\{ (X, Y) | ∃ R, (RD : C(R)), (F1 : S(R)), (NF : \{ A : S(R) | A ⇒ F1 \}), (i : int)
 (j : int)[hd(F1) ∧ ¬(hd(NF)) ⇒ hd(RD) = j + 1),
 (b : bool)[hd(F1) ∧ ¬(hd(NF)) ⇒ b = odd?(i + j)) :
 X = CFN(F1, NF, RD, i, j) &
 Y = OPT(F1, CIN(HOLD(F1, b), NF), RD, [(i + j)/2]) \}

Proof — B is a Bisimulation

Heads: For any \((X, Y) \in B \), \(\text{hd}(X) = \text{hd}(Y) = [(i + j)/2] \).

Tails: For any \((X, Y) \in B \), show \((tl(X), tl(Y)) \in B \).

\[
\begin{align*}
tl(CFN(F1, NF, RD, i, j))
 &= CFN(tl(F1), tl(NF), tl(RD),
 \text{IF} \ hd(F1) \ \text{THEN} \ i \ \text{ELSE} \ hd(RD) \ \text{ENDIF},
 \text{IF} \ hd(NF) \ \text{THEN} \ j \ \text{ELSE} \ hd(RD) \ \text{ENDIF}) \\
tl(OPT(F1, CIN(HOLD(F1, b), NF), RD, [(i + j)/2]))
 &= OPT(tl(F1),
 CIN(HOLD(tl(F1), (hd(F1) ∧ ¬ b)), tl(NF)),
 tl(RD),
 \text{IF} \ hd(F1) \ \text{THEN} \ [(i + j)/2] + [b ∧ ¬hd(NF)]
 \text{ELSE} \ hd(RD)
 \text{ENDIF})
\end{align*}
\]

Concluding Remarks

• Proof by co-induction effective technique for verifying circuit refinements.
 — Possible to exploit circuit context to complete proof
• Developed general Stream library for PVS 2
• Torres-Poma:es' optimization verified in PVS using proof by co-induction
• PVS dependent type mechanism useful
• Design implemented in VLSI (hand layout)