Performance Validation of the ANSER Control Laws for the F-18 HARV

Michael D. Messina
Lockheed Engineering & Sciences Company, Hampton, Virginia

Contract NAS1-19000
August 1995

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23681-0001
PERFORMANCE VALIDATION OF THE ANSER CONTROL LAWS FOR THE F-18 HARV*

Final Report

Prepared by: Michael D. Messina
Lockheed Engineering and Sciences Company

Concurrence:

W. Thomas Bundick
Langley Research Center
DCB HARV Control Law
Design Team Leader

John V. Foster
Langley Research Center
VDB HARV Control Law
Design Team Leader

Michael Thomson
Dryden Flight Research Center
HARV System Development Mgr.

Keith D. Wichman
Dryden Flight Research Center
F-18 HARV Lead Control Engineer

Overview

The Actuated Nose Strakes for Enhanced Rolling (ANSER) Control Laws were developed by NASA Langley and Dryden to be used during Phase III HARV flight testing of the actuated nose strakes. These control laws are a product of the same design methodologies as those used for the NASA-1A control laws. The ANSER control laws will exercise logic for mode switching and nose-strake control that was included in the NASA-1A control laws, but disabled for the NASA-1A flight tests during Phase II. For Phase III of the HARV research flights, nose strakes have been added to the forebody of the aircraft and will be exercised during flight. Furthermore, based on NASA-1A flight test results, some modifications were made to the CDR version of the ANSER Control Laws to improve performance.

The ANSER Control Laws (Ref. 1) were implemented in Ada by NASA Dryden for flight test on the High Alpha Research Vehicle (HARV). The Ada implementation was tested in the Hardware-In-the-Loop (HIL) simulation, and results were compared to those obtained with the NASA Langley Fortran implementation of the control laws which are considered the “truth model”. This performance validation process is the same as that used for the NASA-1A Control Laws (Ref. 2). These tests were specified by the ANSER Performance Validation Test Plan (Appendix A) and were intended to be a comprehensive performance evaluation of the Ada implementation.

The HIL vs. batch time-history comparisons for the ANSER performance validation checkcases are shown in Appendix B. The simulation scripts used to generate these checkcases are shown in Appendix C. A list of issues that arose during the ANSER performance validation tests, usually as a result of differences between the HIL and batch results, is shown in Appendix D. In all checkcases where significant discrepancies existed, analysis was performed to isolate and understand these discrepancies. Appendix D also contains the results of these analyses.

Discussion of Results

As noted in the previous section, some differences were noted between the and batch time-history results, and results of the
analyses of the significant differences can be found in Appendix D. A brief summary of the most important differences, particularly those which resulted in modifications to the control law, are discussed below. See Appendix D for more detail.

Lateral Stick Selection Logic

Effects of the HIL signal selection logic were noticed in the NASA-1A testing and reported in (Ref. 2). This effect was still present during the ANSER Performance Validation Tests and was particularly noticeable on the lateral stick signal. For these tests a first order lead-lag filter was developed and shown to successfully model the signal selected lateral stick. Use of this filter in the batch simulation greatly facilitated comparison of the HIL and batch time histories by removing a major cause of differences between the two.

Lateral Sensitivity

During examination of the results of checkcase 23 a lateral sensitivity characterized by an overshoot in the HIL left strake command was discovered in the angle-of-attack region between 30 and 40 degrees. The ensuing analysis included adding time delays to the batch simulation, running additional simulation cases, and investigating the strake aero model. The result was a modification to the control law consisting of gain changes at 35 and 40 degrees AOA.

Lateral Stick Command Rate Limit

During testing of the lateral sensitivity issue, an error in the lateral stick command rate limit in the Ada code was discovered and corrected.

Pitch Command Limit

During study of checkcase 28, which included a 5 inch longitudinal step input, it was noted that the total pitch stick command, labeled PSGTOT internally in the ANSER longitudinal control system, could exceed 5 inches, which is the aft position limit on the longitudinal stick. Analysis of the problem led to a modification of the control law consisting of the addition of a limiter on PSGTOT.
Other issues discussed in Appendix D include several differences between the HIL and batch simulations which were noted in NASA-1A testing. These include a number of issues relative to surface rate and position limits.

Summary and Conclusions

The Ada implementation of the ANSER control laws was tested in the HIL simulation and compared with the Fortran control law implementation in batch simulation. There are differences between the HIL and batch simulation results, but the significant differences are accounted for by known differences in the simulations. When these differences are taken into account, the time-history results between simulations compare relatively well. The Ada implementation of the ANSER Control Laws performs satisfactorily and is ready for Phase III flight test.

References

Appendix B

BATCH VS. HARDWARE-IN-THE-LOOP TIME HISTORIES
The diagrams show various time series data over different time intervals. The time series data is labeled as follows:

- **DRP.BAT**
- **DRP.HIL**
- **RUDPED_LBS_1.HIL**

Each graph represents different file names and signal suffixes:

- **File=langley_FOR_160hz_1; Signal Suffix=.BAT; Date=**
- **File=dryden_Ada_case_1; Signal Suffix=.HIL; Date=**
File=langley_FOR_160hz_1; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_1; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_1; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_1; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_3; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_3; Signal Suffix=.HIL; Date=

Thu May 11 11:13:37 1995
CASE_3__TV_Mode__35-25k_trim_AOA_50lb_ramp_drp page 4/12
File=langley_FOR_160hz_3; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_3; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_6; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_6; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_7; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_7; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_8; Signal Suffix=BAT; Date=
File=dryden_Ada_case_8; Signal Suffix=HIL; Date=
File=langley_FOR_160hz_8; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_8; Signal Suffix=.HIL; Date=
CASE_9__TV_Mode__50alp-16k_Max_AB page 1/12

DEP.BAT
DEP.HIL
PSTICK_1.HIL

Q.BAT
Q.HIL

ALP.BAT
ALP.HIL

DLHTD.BAT
DLHTD.HIL

File=langley_FOR_160hz_9; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_9; Signal Suffix=.HIL; Date=

99
File=langley_FOR_160Hz_9; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_9; Signal Suffix=.HIL; Date=

100
File=langley_FOR_160hz_9; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_9; Signal Suffix=.HIL; Date=
File=langley_FOR_160Hz_11; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_11; Signal Suffix=.HIL; Date=
--- PIT_CMDDB.BAT ---
TVSC_l.HIL

--- YAW_CMDDB.BAT ---
TVYAW_MP_l.HIL

--- XACNZ.BAT ---
XACNZ.HIL

--- XACAY.BAT ---
XACAY.HIL

File=langley_FOR_160hz_12; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_12; Signal Suffix=.HIL; Date=

--- PIT_CMDDB.BAT ---
TVSC_l.HIL

--- YAW_CMDDB.BAT ---
TVYAW_MP_l.HIL

--- XACNZ.BAT ---
XACNZ.HIL

--- XACAY.BAT ---
XACAY.HIL

File=langley_FOR_160hz_12; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_12; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_13; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_13; Signal Suffix=.HIL; Date=
CASE_13_STV_Mode_30alp-35k_Max_Ab_2_in_ramp_dep page 6/12

File=langley_FOR_160hz_13; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_13; Signal Suffix=.HIL; Date=

151
File=langley_FOR_160hz_14; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_14; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_14; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_14; Signal Suffix=.HIL; Date=

105
File=langley_FOR_160hz_15; Signal Suffix=BAT; Date=
File=dryden_Ada_case_15; Signal Suffix=HIL; Date=

179
File=langley_FOR_160Hz_16; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_16; Signal Suffix=.HIL; Date=
null
File=langley_FOR_160hz_18; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_18; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_19; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_19; Signal Suffix=.HIL; Date=

019
This Page Intentionally Left Blank
File=langley_FOR_160hz_19; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_19; Signal Suffix=.HIL; Date=

223
File=langley_FOR_160hz_21; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_21; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_21; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_21; Signal Suffix=.HIL; Date=
CASE_22_S_Mode_30alp-35k_Max_AB_2_in_ramp_dep page 10/12

File=langley_FOR_160hz_22; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_22; Signal Suffix=.HIL; Date=

204
File=langley_FOR_160hz_23; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_23; Signal Suffix=.HIL; Date=
File=langley_FOR_160Hz_23; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_23; Signal Suffix=.HIL; Date=

QCI_SEL.BAT
QC_1.HIL

PSI_SEL.BAT
PS_1.HIL

H.BAT
H.HIL

AMCH.BAT
AMCH.HIL

x10^0

x10^3
File=langley_FOR_160hz_23; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_23; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_24; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_24; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_25; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_25; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_25; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_25; Signal Suffix=.HIL; Date=

302
File=langley_FOR_160hz_26; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_26; Signal Suffix=.HIL; Date=

304

Graphs:

- **DRP.BAT**
- **DRP.HIL**
- **RUDPED_LBS_1.HIL**

- **R.BAT**
- **R.HIL**

- **DRUDL.BAT**
- **DRUDL.HIL**

- **DRUDR.BAT**
- **DRUDR.HIL**

File=langley_FOR_160Hz_26; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_26; Signal Suffix=.HIL; Date=

305
File=langley_FOR_160hz_26; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_26; Signal Suffix=.HIL; Date=

300
File=langley_FOR_160hz_26; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_26; Signal Suffix=.HIL; Date=

310
<table>
<thead>
<tr>
<th>File</th>
<th>Signal Suffix</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>langley_FOR_160hz_27</td>
<td>.BAT</td>
<td></td>
</tr>
<tr>
<td>File</td>
<td>Signal Suffix</td>
<td>Date</td>
</tr>
<tr>
<td>dryden_Ada_case_27</td>
<td>.HIL</td>
<td></td>
</tr>
</tbody>
</table>
File=langley_FOR_160hz_27; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_27; Signal Suffix=.HIL; Date=

325
File=langley_FOR_160hz_28; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_28; Signal Suffix=.HIL; Date=

332
File=langley_FOR_160h2z_29; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_29; Signal Suffix=.HIL; Date=

340
20.00 - 10.00 - 0.00 - -10.00 - VANEP3.BAT

TIME.BAT(00:00:00.0124) TIME.HIL(09:20:43.1640)

10.00 5.00 0.00 5.00 TIME.BAT(00:00:00.0124) TIME.HIL(09:20:43.1640)

VANE04.BAT

VANE04.HIL

10.00 5.00 0.00 5.00 TIME.BAT(00:00:00.0124) TIME.HIL(09:20:43.1640)

VANE05.BAT

VANE05.HIL

10.00 5.00 0.00 5.00 TIME.BAT(00:00:00.0124) TIME.HIL(09:20:43.1640)

VANE06.BAT

VANE06.HIL

File=langley_FOR_160hz_29; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_28; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_29; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_29; Signal Suffix=.HIL; Date=

349
File=langley_FOR_160hz_30; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_30; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_30; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_30; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_30; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_30; Signal Suffix=.HIL; Date=

360
File=langley_FOR_160hz_31; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_31; Signal Suffix=.HIL; Date=

371
CASE_31_TV_Mode_3-25k_trim--3_axis_input page 11/12

Thu May 11 12:04:58 1995

File=langley_FOR_160hz_31; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_31; Signal Suffix=.HIL; Date=

373
File=langley_FOR_160hz_32; Signal Suffix=BAT; Date=
File=dryden_Ada_case_32; Signal Suffix=HIL; Date=

376
<table>
<thead>
<tr>
<th>TIME.BAT(00:00:00.0124)</th>
<th>TIME.HIL(09:22:04.2380)</th>
<th>TIME.HIL(09:22:04.2380)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRP.BAT</td>
<td>DRP.HIL</td>
<td>RUDPED_LBS_1.HIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME.BAT(00:00:00.0124)</th>
<th>TIME.HIL(09:22:04.2380)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.BAT</td>
<td>R.HIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME.BAT(00:00:00.0124)</th>
<th>TIME.HIL(09:22:04.2380)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRUDL.BAT</td>
<td>DRUDL.HIL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME.BAT(00:00:00.0124)</th>
<th>TIME.HIL(09:22:04.2380)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRUDR.BAT</td>
<td>DRUDR.HIL</td>
</tr>
</tbody>
</table>

377
File=langley_FOR_160Hz_32; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_32; Signal Suffix=.HIL; Date=

380
File=langley_FOR_160hz_32; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_32; Signal Suffix=.HIL; Date=

384
File=langley_FOR_160hz_33; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_33; Signal Suffix=.HIL; Date=

394
File=langley_FOR_160hz_34; Signal Suffix=.BAT; Date=
File=dryden_Adlccase_34; Signal Suffix=.HIL; Date=

400
File=langley_FOR_160hz_34; Signal Suffix=BAT; Date=
File=dryden_Ada_case_34; Signal Suffix=.HIL; Date=

410
CASE_35_STV-S_Mode_transition_4-33k_trim page 1/12

File=langley_FOR_160hz_35; Signal Suffix=BAT; Date=
File=dryden_Ada_case_35; Signal Suffix=HIL; Date=
File=langley_FOR_160hz_35; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_35; Signal Suffix=.HIL; Date=

418
File=langley_FOR_160hz_37; Signal Suffix=BAT; Date=
File=dryden_Ada_case_37; Signal Suffix=HIL; Date=
File=langley_FOR_160hz_37; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_37; Signal Suffix=.HIL; Date=

437
File=langley_FOR_160hz_38; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_38; Signal Suffix=.HIL; Date=
File=langley FOR_160hz_38; Signal Suffix=.BAT; Date=
File=dryden Ada case_38; Signal Suffix=.HIL; Date=
File=langley_FOR_160Hz_39; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_39; Signal Suffix=.HIL; Date=
CASE_39_S-TV_Mode_transition_15alp-25k_trim_2_axis_input page 11/12
File=langley_FOR_160hz_40; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_40; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_41; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_41; Signal Suffix=.HIL; Date=

485
File=langley_FOR_160hz_44; Signal Suffix=BAT; Date=
File=dryden_Ada_case_44; Signal Suffix=HIL; Date=

Fri May 12 16:14:13 1995
File=langley_FOR_160Hz_46; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_46; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_47; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_47; Signal Suffix=.HIL; Date=

557
File=langley_FOR_160hz_47; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_47; Signal Suffix=.HIL; Date=

559
CASE_48_TV_Mode_50alp-16k_Max_AB_3__2.5_in_ramp_dep_gainset_2 page 9/12

File=langley_FOR_160hz_48; Signal Suffix=BAT; Date=
File=dryden_Ada_case_48; Signal Suffix=HIL; Date=
File=langley_FOR_160hz_48; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_48; Signal Suffix=.HIL; Date=
File=langley_FOR_160hz_48; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_48; Signal Suffix=.HIL; Date=
FILE=langley_FOR_160Hz_49; Signal Suffix=BAT; Date=
FILE=dryden_Ada_case_49; Signal Suffix=HIL; Date=
PIT_CMDDB.BAT
TVSC_1.HIL

YAW_CMDDB.BAT
TVYAW_MP_1.HIL

XACNZ.BAT
XACNZ.HIL

XACAY.BAT
XACAY.HIL
File=langley_FOR_160hz_49; Signal Suffix=.BAT; Date=
File=dryden_Ada_case_49; Signal Suffix=.HIL; Date=

585
The ANSER Control Laws were implemented in Ada by NASA Dryden for flight test on the High Alpha Research Vehicle (HARV). The Ada implementation was tested in the Hardware-In-the-Loop (HIL) simulation, and results were compared to those obtained with the NASA Langley batch Fortran implementation of the control laws which are considered the "truth model." This report documents the performance validation test results between these implementations. This report contains the ANSER performance validation test plan, HIL vs. Batch time-history comparisons, simulation scripts used to generate checkcases, and detailed analysis of discrepancies discovered during testing.