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Abstract

In this study artificial neural networks and fuzzy logic are used

to control the jumping behavior of a three-link uniped robot. The biped

locomotion control problem is an increment of the uniped locomotion

control. Study of legged locomotion dynamics indicates that a

hierarchical controller is required to control the behavior of a legged

robot. A structured control strategy is suggested which includes

navigator, motion planner, biped coordinator and uniped controllers. A

three-link uniped robot simulation is developed to be used as the plant.

Neurocontrollers were trained both online and offline. In the case of

on-line training, a reinforcement learning technique was used to train

the neurocontroller to make the robot jump to a specified height. After

several hundred iterations of training, the plant output achieved an

accuracy of 7.4%. However, when jump distance and body angular momentum

were also included in the control objectives, training time became

impractically long. In the case of off-line training, a three-layered

backpropagation (BP) network was first used with three inputs, three

outputs and 15 to 40 hidden nodes. Pre-generated data were presented to

the network with a learning rate as low as 0.003 in order to reach

convergence. The low learning rate required for convergence resulted in

a very slow training process which took weeks to learn 460 examples.

After training, performance of the neurocontroller was rather poor.

Consequently, the BP network was replaced by a Cerebellar Model

Articulation Controller (CMAC) network. Subsequent experiments

described in this document show that the CMAC network is more suitable



to the solution of uniped locomotion control problems in terms of both

learning efficiency and performance.

A new approach is introduced in this report, viz., a self-

organizing multiagent cerebellar model for fuzzy-neural control of

uniped locomotion is suggested to improve training efficiency. This is

currently being evaluated for a possible patent by NASA, Johnson Space

Center,

An alternative modular approach is also developed which uses

separate controllers for each stage of the running sride. A self-

organizing fuzzy-neural conroller controls the height, distance and

angular momentum of the stride. A CMAC-based controller controls the

movement of the leg from the time the foot leaves the ground to the time

of landing. Because the leg joints are controlled at each time step

during flight, movement is smooth and obstacles can be avoided. Initial

results indicate that this approach can yield fast, accurate results.

ii



Table of Contents

Page

Abstract i

Table of Contents iii

List of Figures v

List of Tables vi

1. Introduction 1

2 . Literature Review 4

2.1 Biped Locomotion and Control Strategies 5

2.2 Neural Networks in Robotic Control 8

3 . Uniped Dynamics 15

3.1 Why Two-Dimensional, Uniped, and Three-Link? 15

3.2 The Structure of the Robot in Simulation 16

3 . 3 Equations of Motion 17

3. 4 Isolation of a Single Step Jump 21

3. 5 Decomposition of a Single Jump 23

3. 6 Simplification of the Problem 24

3 . 7 Angular Momentum and Its Significance 25

4 . Neural Networks 27

4.1 Multilayered Neural Nets with Backpropagation Learning.. 27

4 .2 CMAC Networks 30

5. System Architecture and Approaches to Uniped Control 34

5.1 The Biped Controller 34

5.2 The Uniped Controller 34

5.3 Approaches to Uniped Control 35

111



6. Experiments in Neural Network Uniped Control 37

6.1 Training of BP Neural Networks 37

6.2 Training of CMAC Networks 42

6.3 A Comparison Between CMAC and BP Neural Networks 43

6. 4 CMAC Generalization Parameter and Hash Coding 44

6.5 Conclusions 48

7. Mac-J: A Self-Organizing Multiagent Cerebellar Model For

Fuzzy-Neural Control Of Uniped Locomotion 51

8. A Modular Neuro-Fuzzy Approach to Uniped Control 56

8 .1 The Jump-Off Controller 56

8 .2 The In-Flight Controller 64

8.3 Summary and Conclusions 70

C9. Conclusions and Recommendations 72

References 74

IV



List of Figures

Page

Figure 2.1 Reactive Force 4

Figure 3.1 Three-Link Uniped Robot 16

Figure 3.2 Forces and Dimensions of Each Link 18

Figure 3.3 Robot Function: Input and Output 22

Figure 3.4 Landing Body Angle 22

Figure 3.5 Factors of Angular Momentum 26

Figure 4.1 Schematic of a Neuron 27

Figure 4.2 A Three-Layer Neural Network 28

Figure 4.3 CMAC Mapping 31

Figure 5.1 Biped Locomotion Controller Architecture 34

Figure 5.2 Uniped Controller Architecture 35

Figure 6.1 Reinforcement Training Algorithm 40

Figure 6.2 Jumps Generated by Trained Neurocontroller 41

Figure 8.1. Receptive fields of fuzzy-neural prototypes Sp 64

Figure 8.2. The four-link robot leg 66

Figure 8.3. The CMAC-based controller 68



List of Tables

Page

Table 6.1 Reinforcement Training Results 40

Table 6.2 Test Jump Parameters and Results Comparison 41

Table 6.3 CMAC Training Results 43

Table 6.4 Comparison of Performance Between Backpropagation and CMAC (C= 160) 44

Table 6.5 Mapping from Input to Logical Address (C=l) 45

Table 6.6 Mapping from Input to Logical Address (C=2) 46

Table 6.7 Mapping from Input to Logical Address (C=5) 46

Table 6.8 Addresses in the Associative Memory 46

Table 6.9 Quality Test of the Hashing Function 47

Table 6.10 Results of Learning Parity with Two Accesses 48

Table 6.11 Results of Learning the Function z=sin(x+y) 48

Table 8.1. Results achieved by the fuzzy-neural controller on noisy test sets 60

Table 8.2. Results achieved by the CMAC controller on noisy test sets 61

Table 8.3 Joint Angle Trajectory Snapshots : 70

VI



SECTION 1

Introduction

Legged locomotion is superior to wheeled locomotion in terms of

versatility and flexibility. The development of legged robots having

the same locomotion capabilities as humans remains an outstanding

challenge for researchers in robotics. Several research teams have

focused on the development of legged robots in the U.S., Japan, and

Europe. Since the 1970's several legged robots have been built with the

ability to walk, run, and even do gymnastics, while the major control

strategies for legged robots have been classical control techniques.

Now, however, exploration of machine learning techniques applied to

legged locomotion is beginning to show promise.

The two primary modes of legged locomotion, walking and running,

are distinguished by their nature. Walking is characterized by the

constant contact of at least one foot with the ground, with requisite

periods of multifoot contact. Biped walking motion can be considered as

repetitions of two phases: a single-support phase followed by a double-

support, or changeover, phase. Running, on the other hand, is

characterized by the contact of at most one foot with the ground at any

time. Running also involves two phases: a ballistic phase in which

there is no foot in contact with the ground, and a support phase in

which exactly one foot is in contact with the ground. When biped

running is reduced to one leg, uniped jumping results. Conversely,

biped running can be viewed as the coordination of alternating uniped

jumps. The study of running can therefore be simplified to uniped

jumping without altering the nature of the problem.



To date, most control strategies used for legged locomotion have

been based on linear, nonadaptive control equations or rules of motion.

These kinds of controllers lack robustness with respect to environmental

variations and disturbances. In the last few years, computational

intelligence has been introduced into the robotic controls area, and

this "has yielded encouraging results. One particular form of

computational intelligence, neural networks, has been widely used due to

its features of parallel processing, nonlinear mapping, learning

ability, and generalization. A neural network is composed of

processors, called neurons, connected with weighted synapses. Neurons

are usually arranged in layers.

Neurocontrollers are controllers based on neural networks and can

be classified into two groups with respect to their learning algorithms:

online and offline. In the online approach, the neurocontroller is

trained alongside the plant during normal operation. With offline

training, the training data is collected during plant operation and used

to train the neural net regardless of the operational state of the

plant. Both approaches have been applied to robotic controls with

various degrees of success. More recently, a new class of neural

networks, called the Cerebellar Model Articulation Controller (CMAC),

has proved superior to traditional neural networks in control

applications. CMAC was developed from models of human memory and

neuromuscular control. Unlike traditional neural networks, a CMAC

network contains no neurons. Its capabilities for the adaptation of

nonlinear modeling and generalization are embedded in the manner in

which the CMAC maps points in the input space into an associative



memory. Nearby points are mapped into nearby positions with partial

overlap, while points far away from one another are mapped into remote

regions of the associative memory. According to one study (Brown and

Harris, 1994), CMAC actually lies between the traditional neural net and

the fuzzy rule base.

In recent years, several research teams have successfully applied

neural networks to robot arm manipulation, but very rarely have attempts

been made to apply it to legged locomotion. In September 1993, Lamar

University was awarded a grant from the Johnson Space Center (JSC) to

explore the application of intelligent machine-learning techniques to

the uniped locomotion problem. One of the objectives of this project

was to develop uniped control strategies based on neural networks. The

achievements of this study include:

1) building a three-link uniped robot simulation and using the

simulation to analyze the dynamics of uniped locomotion;

2) evaluating the control signal requirements and designing a

hierarchical controller;

3} constructing and training various neural networks as modular

components of this hierarchical controller;

4) comparing these neural networks in terms of training efficiency

and performance; and

5) and providing insight for future studies of uniped and biped

locomotion.



SECTION 2

Literature Review

Legged locomotion requires the exertion of a traction force in a

direction opposite to that of motion. The reactive force thereby

provides propulsion for forward motion (Todd, 1985; Raibert, 1986).

This is usually accomplished by applying opening torques at the joints.

Figure 2.1 shows that, when running, the exerted torques at the knee and

ankle tend to enlarge these angles and result in motion of the foot

opposite to the direction of the body motion. The reactive force caused

by the motion of the foot is equal in magnitude to the force exerted by

the foot on the surface. One of the main characteristics of legged

locomotion is that joint torques compose the main control parameters.

Force

Figure 2.1 Reactive Force

Research in the area of legged locomotion began many years ago. To

date, significant results have been generated. So far, much effort has

been expended developing multiped robots for use in extreme



environments. On the other hand, theoretical studies in biped

locomotion have resulted in numerous publications on many aspects of

this problem. All in all, very few biped robots have actually been

built, due to their complexity in both theory and practice. In this

chapter, some research work in biped locomotion published recent years

is reviewed. In addition, the achievements of research in applications

of artificial neural networks to robot manipulator control are also

summarized.

2.1 Biped Locomotion and Control Strategies

Since the 1970's, biped legged robots have been built with various

locomotion abilities in the U.S., Japan, and Europe. Research in legged

locomotion can be categorized as walking versus running in terms of

motion type, and also as adaptive versus nonadaptive in terms of control

strategies. So far, the majority of the research groups have been

focusing on nonadaptive walking control.

The work of Zheng is typical of this approach (Zheng, 1989, 1990;

Goddard and Zheng, 1992). After developing one of the earliest biped

robots, called CURBi, Zheng in 1987 built a follow-on robot called SD-2,

which is a 5-link biped with eight degrees of freedom. He also

developed a feedback control system to allow the robot to walk on level

ground as well as well as on sloping surfaces. This was an attempt

leading to the solution of the difficult control problem of walking on

irregular terrain. After solving the external disturbance rejection

problem, Zheng successfully made the robot walk from a level to a

sloping surface. He used a nonadaptive control strategy composed of

three parts. The first part was a scheme for detecting and measuring



the gradient of the slope. The second part dealt with the walking gait

on the slope, and the third and most significant aspect controlled the

robot as it walked through the transition area joining the level and the

sloping surfaces. Zheng's control algorithms were based on the

equations of motion of the robot and the signals from sensors mounted on

the robot's feet.

Several research groups in Japan have also been working on biped

robots. Furusho built a 9-link biped and its control system (Furusho

and Sano, 1990). First, he used the so-called "Reduced Order Model" to

simplify and examine the walking system. The anthropomorphic 9-link

biped robot he developed weighs 25 kg and stands at 0.97 m, with eight

degrees of freedom. Furusho chose a sensor-based feedback control

method with signals from foot pressure sensors, ankle torque sensors,

inclinometers, angular rate sensors, speed sensors, and accelerometers.

In this control strategy, the motion of the robot was divided into two

planes: the sagittal plane (vertical to the floor in the direction of

walking) and the lateral plane (perpendicular to the direction of

walking). This division reduced the complexity of the control problem

through decomposition of motion in two orthogonal planes. In the

lateral plane, the motion was simply a repetitive tilting to alternately

place the center of mass directly over the left or right supporting

foot. In the sagittal plane, the main control objective of walking

motion is the body speed in forward motion. Unlike Zheng's SD-2 robot,

Furusho's robot could only walk on flat surfaces.

Shih presented another control strategy for a 7-link biped which

had twelve degrees of freedom (Shih and Gruver, 1992). Shih noticed



that most biped control strategy research was concentrated on the

single-support phase, while in biped walking, the double and single-

support phases alternate. Shih hypothesized that the analysis of biped

locomotion in the double-support phase is important for improving the

smoothness of the biped locomotion system. Shih implemented this idea

by introducing a reduced-order model with constraints, in which the

selected dependent variables were related to independent variables

through the kinematic Jacobian. A control strategy based on feedforward

compensation and linear state feedback was used to track the desired

trajectory.

For several years, Raibert and his colleagues at the MIT

Artificial Intelligence Laboratory have been the sole individuals

working on the problem of biped running. Their running robots, some of

which can even do gymnastics, rely on telescoping legs and simple

nonadaptive, staged-control strategies (Hodgins, 1990). This type of

robot is controlled by a feedforward controller which works well in a

disturbance-free environment. The feedforward control signals are

generated analytically or empirically. The analytical approach is based

on the following steps:

1. modeling of the running machine;

2. finding the appropriate pitch rate using the equations;

3. calculating the required forward speed and the pitch rate of

the body required; and

4. calculating the appropriate torques and output signals.



The empirical approach uses examples for learning. However, this

work was done essentially by humans based on knowledge of mechanics and

on intuition, instead of by the robot via machine learning techniques.

Work on adaptive walking control was led by Wang, who developed a

neurocontroller for a 3-link biped robot (Wang and Malakooti, 1993) .

Wang used the equations of motion and control rules to train a group of

traditional backpropagation (BP) neural networks rather than to control

the robot directly. Two different architectures were investigated, and

their properties analyzed. This work is a significant beginning, even

though the robot is not as sophisticated as some with conventional

control strategies.

Miller published his research on the biped gait controller

(Miller, 1994), and he was the first to apply CMA.C networks in biped

locomotion control. CMAC networks were trained in several aspects of

locomotion control including: (1) closed-chain kinematics necessary to

shift body weight side-to-side while maintaining adequate foot contact;

(2) quasi-static balance to avoid falling forward or backward while

shifting body weight side-to-side at different speeds; and (3) dynamic

balance required to lift the foot off the floor for a desired length of

time, during which the foot can be moved to a new location relative to

the body. This is an important contribution to biped locomotion

research, and these experiments confirmed the applicability of

computational intelligence in legged locomotion control.

2.2 Neural Networks in Robotic Control

The last twenty years saw phenomenal growth of artificial neural

network applications in many different areas. Neural networks attempt



to simulate in some aspects the working of biological brains, whose

characteristics include parallel processing, learning ability, nonlinear

mapping, and generalization. In the field of robotic control, many

attempts have been made to utilize neural networks. Fukuta reviewed the

development of neural networks and their application in industrial

control systems (Fukuta and Shibata, 1992). The application of neural

networks to control problems can be categorized into a number of major

distinct groups: supervised control, inverse control, neural adaptive

control, backpropagation of utility (an extension of backpropagation

through time), and adaptive critics (an extension of reinforcement

learning). In fact, many applications involve combinations of one or

more of the methods listed above.

In supervised control, a neural network learns the mapping from

input signals to desired control actions by adapting to a training set.

In inverse control, the neural network learns the inverse dynamics of a

plant without any symbolic description of the system. In neural

adaptive control, a neural network is used in a place of more classical

mappings. Backpropagation of utility and adaptive critics are two

general-purpose designs for optimal control using neural networks. In

both backpropagation of utility and adaptive critics, the user specifies

a utility function or performance index to be maximized, or a cost

function to be minimized. Out of these methods, supervised control,

inverse control, backpropagation, or hybrid combinations of these are

most frequently used in robotic control. Almost all neural networks,

except the CMAC networks, which have been applied to robotic control are

feedforward multilayered networks.



A neurocontroller for autonomous underwater vehicle control was

built with a combination of the methods of inverse dynamic learning and

backpropagation (Venugopal, Sudhakar and Pandya, 1992; Venugopal, Pandya

and Sudhakar, 1994). The objective of this controller was to make the

vehicle track, with minimum error, a desired trajectory related to

corresponding displacements of the angular velocities along three axes.

The neurocontroller was given a desired command signal concerning the

trajectory, after which it "learned" the inverse dynamics, without a

definition, of the vehicle to produce a correct control input. It is

reported that with this control strategy, the vehicle follows the

desired trajectory very precisely. In addition, Venugopal and his

coworkers presented an application of a learning algorithm called Alopex

in which weight updating is based on the system output error directly,

rather than using a transformed version of the error.

Another type of vehicle, the mobile robot, was also united with

neural net control in a Fujitsu laboratory in Japan (Nagata, Sekiguchi

and Asakawa, 1990). This four-wheeled robot was controlled by a special

multilayered neural network structure based on signals from twelve

sensors mounted on the robot. The network model was divided into two

subnetworks, named Reason Network and Instinct Network, connected to

each other by short-term memory units. This structure divides one

complex task into two, and with several mutual constraints it enables

the networks developed for different tasks to cooperate efficiently.

Other applications of neural network controls have been in the

area of robotic manipulators. An early and typical example of the

inverse control method was given by Miyamoto (Miyamoto, Kawato, Setoyama

10



and Suzuki, 1988). A neural network was used to learn the inverse

dynamics of a robot manipulator through backpropagation. After the

network was trained, it generated correct control signals to the

manipulator to perform specified actions. The learning rate was

reported as follows: "The performance by the neural network model

improved gradually during 30 minutes of learning." The reason that the

.Miyamoto neural net is able to learn the inverse dynamics of this

manipulator in such a short time is that the dynamic relationship

between torques and behavior of the two-link robot arm, both forward and

inverse, are relatively linear. In a general case involving more severe

nonlinearities, the training rate is expected to be significantly

slower.

Computational intelligence techniques have also been used

cooperatively with traditional AI expert systems in practice. A control

algorithm which combined a knowledge-based AI system and a CMAC network

for the control of a two-link robotic manipulator was published

(Handelman, Lane and Gelfand, 1990). The author realized that although

neural networks have proven to be very efficient in the learning

process, the training data, in general, must be supplied by an outside

operator who must also closely supervise the learning process. The

basic idea is that, while the neural net has sufficiently been trained

with examples generated by the expert system, the neural network's

ability to generalize is what makes it a good controller. In essence,

the learning process of this neurocontroller was supervised by a

knowledge base, rather than using inverse dynamic learning.

11



Another control algorithm for a robot manipulator used a CMAC

network as a compensator in a control system (Miller, Glanz and Kraft,

1987; Miller, 1990). The objective of this control system was to have a

two-link robot track desired trajectories, with the torques at the two

joints as control parameters. In this algorithm, a control signal is

generated by a fixed-gain feedforward controller. This signal is

combined with a compensation signal produced by a CMAC network. This

online learning algorithm was found to provide good dynamic performance

in complex situations.

Another example of the use of neural networks as compensators is

found in a different form (Ishiguro, Furuhashim, Okuma and Uchikawa,

1992). Based on the realization that generating examples for neural

network training may be different when the behavior of the plant is not

known and on the belief that neural networks perform best when they are

not required to learn very much, Ishiguro and his colleagues proposed a

new control strategy for a robotic manipulator. In this strategy, neural

networks are incorporated as compensators and are required to learn not

the inverse dynamics, but instead the structured and unstructured

uncertainties of the manipulator. These uncertainties are the principal

factors which degrade high-speed performance. Since the approximate

model of the manipulator can be derived, and model-based control can be

an effective approach to high-performance control, these researchers

chose to use a model-based control method with neural networks trained

to compensate for uncertainties. The "computed torque method" and a

method to obtain the "true teaching signals" were outcomes of this

research. The neural networks must only learn the compensations to the

12



computed torques. Learning, therefore, became simpler. However, this

algorithm was limited to those plants whose dynamic models are

relatively simple.

Reinforcement learning is another important controller training

technique. Neurocontrollers can be trained with supervised methods only

when "the correct control action examples are available. Unfortunately,

in many situations it is difficult to obtain these examples. On the

other hand, an index of performance can often be defined in a

straightforward manner and can be used to drive the reinforcement

'learning process (Morgan, Patterson and Klopf, 1990; Wu and Pugh, 1993).

Examples of reinforcement learning algorithms were presented by

Gullapalli et al, 1994. Two neural networks were trained to perform two

tasks: peg-in-hole insertion and ball balancing. The results showed

that the trained neurocontrollers successfully performed these tasks.

The key to reinforcement learning is to specify the performance

evaluation function, by which the "error" of the neural net is computed

to provide guidance for weight updating.

Publications in legged locomotion and applications of neural

networks to robotic control are growing every day. Among these

publications, only a representative sample was selected as reference for

this study. In legged locomotion research, traditional approaches use

the process of inverse dynamics, which calculates the control parameters

required to perform a specified motion. Inverse dynamics gives

numerical, as opposed to analytical, results (Roberson, 1988; Asada,

1990). In general, a great deal of computation is involved. When

environmental conditions are unknown or variable, this approach becomes

13



unsuitable. Neural networks avoid the computations of inverse dynamics,

but instead learn from experience just as a human does. Although neural

networks have been used extensively in robotic manipulator controls,

their use in the control of legged locomotion has only recently begun.

Reasons for this slow development include greater complexity of the

control problems and the large amount of information to be processed.

14



SECTION 3

Uniped Dynamics

A software package was developed to simulate the dynamics of a

three-link uniped. Several issues concerning the dynamics of this model

are discussed in this chapter.

3.1 Why Two-Dimensional, Uniped, and Three-Link?

The purpose of this study is to investigate control strategies for

legged locomotion. As such, it is proper to begin with as simple a

model as possible without altering the essence of the locomotion

problem. A model as complicated as a three-dimensional (3D) human-like

robot is not suitable for this study in its first stage. Instead, a

two-dimensional (2D) model seems proper, since 3D locomotion can be

synthesized from a 2D model combined with a balance algorithm in the

third coordinate.

It has been reasoned in the first chapter that running is

basically a coordinated jumping problem. This means that the biped

model is an increment of the uniped model. A uniped control problem

includes the primary difficulties of the biped control problem if

running is the locomotion mode of interest.

Concerning the robot structure, a two-link mechanism is too simple

to generate legged locomotion. A four-link model is more human-like,

but not as suitable as the three-link model to begin with because it

involves more control parameters and state variables than are necessary.

Experiments with a three-link robot indicate that such a robot displays

sufficient complexity worthy of consideration. The schematic of the

robot in Figure 3.1 shows that instead of having a human-like

15



configuration, the three-link uniped looks rather like the rear leg of a

cat.

3.2 The Structure of the Robot in Simulation

As shown in Figure 3.1, the robot's body mass, represented by the

large circle in the figure, is lumped at the extremity of the top link.

Table 3.1 lists the kinematic and dynamic properties of the robot. For

the robot to jump, joint torques (at ankle and knee) are required.

Nonlinear torsion springs are used to model joint torques as well as

joint angle restrictions.

Figure 3.1 Three-Link Uniped Robot

Table 3.1 Kinematic and Dynamic Properties of the Robot

Link

Foot
Lower Leg
Thigh (Body)

L
(m)
0.2
0.4
0.4

1
(m)
0.1
0.2
0.4

m (Mass)
(kg)
0.5
1.0
6.0

Moment of
Inertia (kg-m2)

0.005
0.040
0.300

Initial
Orientation (deg)

180
20

variable

16



The physical meanings of L and 1 are shown in Figure 3.2.

L — length of a link;

1 — dimension from the center of mass to the end pointed;

Ground impact and support are modeled with nonlinear extensional

springs which supply normal reaction forces and friction forces at the

time of surface contact. Surface compliance variability is accounted

for by changing the spring constants.

3.3 Equations of Motion

The three-link uniped robot and its motion can be described with a

set of differential equations. Figure 3.2 shows the free-body diagrams

for the robot's links, and dimensional parameters. The values of L and

1 for each link are listed in Table 3.1. Those parameters not shown in

Figure 3.2 will be explained as they arise in the development of the

equations.

Among the forces, PX1, PY1, PX2 and PY2 are reactive forces from

the ground acting on the foot, and FX1, FY1, FX2 and FY2 represent

internal reaction forces at the joints. Ml and M2 are the torques

applied to the joints to implement the jump and to swing the links

during flight. Position and dimension measurements are represented by 6

1, 02 and 63 (orientations of the links) and Ol, 02 and 03 (positions of

the mass centers for the three links).

17



FY1

M
L3,13

PY1'

(Foot) (Lower Leg) (Thigh)

Figure 3.2 Forces and Dimensions of Each Link

From Newton's second law, there arise the following equations:

axl = (PXl + PX2-FXl)/m (3.1)

ax 2 = (FX\ - FX2)lm2 ( 3 . 2 )

(3 .3 )

( 3 . 4 )

( 3 . 5 )

( 3 . 6 )

(-Ml + ((FXl - PXl)Sin ft + (FYl - PYV)Cosft)l\

+ (PX2 • Sin 01 + PY2- Cosft)(L\- /!))
12

(3.7)

18



(Ml + M2 + (FXl • Sin 02-FYl- Cos01)(L2 - 12)

a2 = - - - - — - - ( 3 . 8 )
12

- M2+ (FX2 • Sin 03-FY2-Cos 03)13
- — — ( 3 . 9 )

Relations between acceleration, velocity, and position are

included in the following equation set:

ax\ = dvx\ldt (3.10)

ax2 = dvx2/dt (3.11)

(3.12)

ay\ = dvy\ldt (3.13)

ay2 = dvy2ldt (3.14)

ay3 = dvy3/dt (3.15)

V x \=dxl /dt (3.16)

vx2 = dx2/dt (3.17)

vx3 = dx3/dt (3.18)

vy\ = dy\ldt (3.19)

vy2 = dy2/dt ( 3 . 2 0 )

(3.21)

dco\ldt ( 3 .22 )

do)2/dt (3 .23)

dco3/dt ( 3 . 2 4 )

19



(3.25)

(3.26)

(3.27)

Conditions of constraint at the joints are:

= x2-(L2-l2)Cos&2 (3.28)

(3.29)

(3.30)

(3.31)

Variables related to reaction forces from the ground to the foot

but not illustrated in Figure 3.2 are defined as:

Xtoe=X\-(L\-l\)Cos0[

Ytoe = Y\-(L\-lV)Sine

y t ae=Vy\-(L\-l\)-(o\-Cose

The reactive forces of the ground are:

PYl=0, tfYh e e l>0

, & Vyhee l>0 0.32)
, & vyhee l<o
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PY2=0;
<0 5 &^ t o e >0 (3.33)
<Q, & Vy t a e<0

ifY t a e<0

where:

at the instant when the heel touches the ground, and

x^ = xtoe

at the instant when the toe touches the ground. The surface condition

is described by constants K and //, which can be varied to reflect

different ground conditions.

3.4 Isolation of a Single Step Jump

The condition for continuous jumping is that at the end of a

current jump, a proper landing configuration in terms of kinetics and

position must be achieved in order to begin the next jump. This

configuration includes linear velocity, orientation, and angular

velocity for each link. To begin, an isolated jump is considered as a

mathematical function. The inputs to this function are the initial

configuration and joint torques. The outputs are the jump height, jump

distance, and landing configuration. The term "initial configuration"

also includes velocity, orientation, and angular velocity for each link.
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Input:
Initial
Configuration
and Torques

Output:
Jump Height
Jump Distance
and Landing
Configuration

Figure 3.3 Robot Function: Input and Output

Jump height is measured as the vertical position of the center of

mass when the robot's center of mass reaches its highest point in the

trajectory. Jump distance is defined as the advance of the robot's mass

center between take-off and landing. The landing angle, defined as the

angle between the straight line connecting the foot center to the mass

center and the vertical, must fall within a specified envelope (Figure

3.4). The angular momentum of the robot during flight is also

controlled to prevent excessive rotation, which could lead to

somersaults; and also to make it possible for the landing angle to fall

within the specified envelope. The control parameters consist of joint

torques and the initial configuration of the robot.

center
of mass

Figure 3.4 Landing Body Angle
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3.5 Decomposition of a Single Jump

A single jump can be thought of as occurring in two phases.

During the support phase, the foot is in contact with the ground and the

joint torques are exerted to move the body into a crouch position for

the jump. Large joint torques are then exerted to initiate the

ballistic phase. During the ballistic phase, there is no interaction

between the robot and the surrounding environment (air resistance is

ignored); thus, due to the law of conservation of momentum, there is

nothing the robot can do to change its overall motion, such as jump

height and angular momentum (This will be discussed further in section

3.7.). As an analogy, when a baseball is thrown, not only its flight

height and angular momentum, but also its flight distance is determined

at the moment it begins the flight process. However, the problem of the

jumping robot is not identical to the flight of the baseball because a

robot has a changing radius from the center of mass to the point at

which it contacts the ground, due to the changing of its link

configuration. Therefore, different swing motions of the links may

result in a slight difference in jump distance. The purpose of the

swinging motion during the ballistic phase is to maneuver its links into

place for landing. This can be accomplished with a single set of joint

torques at the apex of the trajectory if the objective of ballistic

control is simply the proper landing position. Otherwise, it can be

accomplished with a sequence of joint torques if the objective is a

specified sequence of positions along the trajectory for the purpose,

for example, of avoiding obstacles.
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3.6 Simplification of the Problem

In order to start with as simple a model as possible, the initial

configuration of a single jump can be such that the initial velocity and

angular velocity of each link are zero. A further simplification is made

by fixing the initial orientation of the two lower links (see Table

3.1). Thus, the number of control parameters is significantly reduced

(Once this simplified case is completely solved, the continuous jump can

be addressed by releasing constrained parameters included in the initial

configuration of the single jump.)- The thigh orientation is retained

as a control parameter to allow the robot to control the initial

placement of its center of mass with respect to is foot. The other

control parameters are the initial joint torques, and torques during

flight. Since the robot cannot change its linear and angular momentem

values during the ballistic phase, its gross motion is basically

determined by initial torques and initial thigh orientation.

Initially, a simple PD (Proportional and Derivative) controller is

used to control the body configuration during the ballistic phase. The

PD controller responds to desired joint angles and generates a sequence

of joint torques to achieve these angles. It is assumed that the PD

controller can reach the objective with satisfactory precision (Kuo,

1991). The PD controller can be described as

Torque = K(0d - 0T)- ju0' (3.36)

where 0d is the desired angle, Or is the current angle, 6' is angular

velocity, K is the gain of the proportional term, and -/j is the gain of

the derivative term.
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At this point there are two initial torques, one thigh

orientation, and two landing joint angles (or two more joint torques,

since they are interchangeable), for a total of five control parameters.

Some "good" jumps generated through a trial-and-error process have shown

that the described control parameters are sufficient to allow the robot

to jump. In fact, in some situations, this set of control parameters

contains redundancy, leading to multiple solutions to the control

problem.

3.7 Angular Momentum and Its Significance

The variation of the thigh orientation supplies flexibility in

positioning the mass center at the beginning of a jump. This is one way

to adjust the angular momentum, which is determined as the integral of

the product of moment about the center of mass, and time:

(3.37)

Figure 3.5 illustrates the physical meaning of the variables in equation

(3.37) .

As a description of the rotational motion of a multibody, angular

momentum, by definition, is the product of the moment of inertia and the

angular velocity about the same axis. In the case where angular

momentum is constant, i.e., in the ballistic phase, increasing the

moment of inertia results in a decrease in angular velocity, and vice

versa. The performance of an ice skater provides an explanation of this

principle. A skater turns faster when he decreases his moment of

inertia by drawing his legs and arms close to the body. Conversely, he

turns slower when he stretches out his legs and arms. It should be

noted that for the problem at hand, the range of variation in moment of
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inertia is limited, therefore the variation in body angular velocity is

also limited.

center
of mass

Figure 3.5 Factors of Angular Momentum
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SECTION 4

Neural Networks

4.I Multilayered Neural Networks with Backpropagation Learning

In general, a neural network consists of highly interconnected

processors called neurons which perform very simple operations. In a

multilayered feedforward neural network, the processors are logically

arranged in two or more layers, an input layer and an output layer, each

containing at least one neuron. Usually, there are also hidden layers

located between the input and output layers. A neuron receives outputs

of neurons in the preceding layer and combines them in a weighted sum.

Figure 4.1 shows the structure and principle of a single neuron, where

f(x)e called the activation function, provides a nonlinear mapping of

the input sum to a fixed-range output.

input 0.
input 1-

output y

input N-l

Figure 4.1 Schematic of a Neuron

The output of each neuron is a function of the weighted sum of

that neuron's inputs. A neuron in the input layer, which does not have

a preceding layer, simply transmits the input value unaltered. In

addition to the N inputs, a neuron also has a bias signal. The neuron's

output y-j is expressed as
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N-\

xiwji+bj) (4-D
1=0

where {x^r i = 0, 1, ..., JV-1) are inputs, [Wĵ , i = 0, 1, ..., N-I} are

synaptic weights, and bj is the bias of neuron j.

The activation function can be linear or nonlinear. A traditional

and popular activation function is the logistic function

1
(4.2)

where x represents the weighted sum of the neuron outputs from the

preceding layer as computed by the neuron.

For a multilayered neural network, network inputs are passed to

each neuron in the first layer, called the input layer. The output of

the input layer is processed by the subsequent hidden layer and passed

on to the next layer. In this way the signals are processed until the

output layer generates the network outputs. The activations of all

output-layer neurons are computed in one deterministic pass. Figure 4.2

illustrates the hierarchy of a three-layer neural network.

hidden output
layer layer

inputs v/"~\ /"""N /"~~\ v outputs

Figure 4.2 A Three-Layer Neural Network

The nonlinear mapping of a neural network depends on both the

activation function and the weight matrix. The training algorithm of a
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neural net is then the adjustment of weights subject to certain rules.

The widely used backpropagation algorithm provides a gradient-descent-

based procedure for training a multilayered network. The network is

first initialized with random weights and the input signals are fed

through the network. The output errors, defined as the differences

between the desired output values for the input, and the actual network

output values, are typically large for a randomly initialized network.

The errors are backpropagated through the network to correct the weight

values so that output errors are reduced. When the input-output pattern

p is presented, the error is computed as:

(4.3)

where tp^ represents the ith component of the desired output vector,

while Opi is the actual output generated by the ith output neuron. The

index i ranges on the number of neurons in the output layer. The total

error for all input-output patterns is:

p (4.4)

To perform a gradient descent in E, it is sufficient to correct

the elements of the weight matrix by using the following rule (Masters,

1993) :

=TJSa
0
Pi <4'5>

where TJ is a real constant, called the learning rate, which determines

the rate at which the weight matrix changes; Spj is the error due to the

pth pattern, associated with the jth neuron; and op^ is the output of
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the ith neuron in the preceding layer of the given neuron, when the pth

pattern is processed by the neural network. When the learning phase is

implemented, the backpropagation algorithm minimizes the square of the

differences between the desired and the actual network output values

summed over the output neurons and all pairs of input-output training

patterns.

It has been proven that when a backpropagation network trained to

model ordinary differential equations is given a proper learning rate,

the training process will converge (Kuan and Hornik, 1991). However, an

analytical result of a study of gradient-based learning, which is the

basic learning rule of backpropagation, has shown that this learning

algorithm is difficult and complex (Wang and Malakooti, 1993). The

studies performed by Eaton and Oliver (1992) and Sundararajan et al.

(1993) show the relationship between learning coefficients and the

training data size.

4.2 CMAC Networks

In the mid 1970's, a new type of artificial intelligence technique

called Cerebellar Model Articulation Controller (CMAC) was proposed

(Albus, 1975). However, it was not until the late 1980's that

researchers began to apply the CMAC network to control problems. Unlike

neural networks in a narrow sense, the CMAC contains no neurons.

Instead, the CMAC models the mathematical concepts of how the cerebellum

structure inputs data, how it computes the addresses where the control

signals are stored, how the memory is organized, and how the output

control signal is generated. The CMAC also has the properties desired
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for an intelligent controller, such as incremental learning,

generalization, nonlinear mapping, and parallel processing.

In fact, CMAC is a table look-up algorithm which models nonlinear

functions, f(s), where s is a discrete input state vector of dimension

N. This computation scheme is illustrated in Figure 4.3. From the

left, each input point in the input state space S maps to C locations in

associative memory A.

F(S1)

A'

Figure 4.3 CMAC Mapping

The constant C is called the generalization parameter. In a basic

mapping procedure, the output of the CMAC is generated by summing the

values of each location in A. In practical problems, the size of A is

usually too large to be implemented, even for a problem of very small

size. For example, a three-input problem, with each input element

divided into 100 units, has the size of A at 1003, or a total of 106

locations! On the other hand, the number of points in S encountered in
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a practical control problem is typically much smaller. Therefore, a

uniform random mapping of logical memory A into a smaller physical

memory A', called hashing, was implemented. After the A -» A' hash

coding procedure, the output of the network is computed by summing the

values of the C cells in the physical memory A' .

The size of A', expressed as LA-, should be chosen properly such

that it is not too large for a common computer, while at the same time

it is able to contain all the cells mapped from A. Given a good hashing

function, LA- can be selected such that mapping collisions are limited.

When collisions occur, they do not decrease the designed generalization

ability, but rather yield undesired generalization among points in the

state space which are not in the same neighborhood. The effect of

collisions is identical to the existing problem of learning

interference, which is handled by iterative data storage (Albus, 1975) .

The undesired generalization between distant points can be overcome by

properly selecting C in such a way that C « LA>. When C < Q.QILA>, the

effect is very slight. When C < 0.0011̂ , the undesired overlap is

practically eliminated.

Overlaps, on the other hand, are a necessary characteristic of the

S —> A mapping process. Each point in S corresponds to C locations in A

and thus A'. Two points in A are considered far from one another when

the distance between them is greater than C. They are near if the

distance is smaller than C, in which case there will be an overlap

between the two corresponding sets of memory locations in A. The size

of the overlap depends on the distance from one point to another. The

closer two points are in S, the greater the overlap. The extent of
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generalization within the state space is determined by the parameter C,

as illustrated in Figure 4.3.

The nonlinear representation ability of CMAC lies in the S -> A

mapping, rather than depending on nonlinear activation functions as in

traditional neural networks. Since the output of the CMAC is simply the

linear sum of the values in the C locations in A', the learning process

is simply to distribute the error evenly to these locations and to

adjust the values in all C weights. Suppose that a number of training

sets are available, and that each set contains an input vector and a

desired output vector. Initially, when the CMAC has not been trained,

its outputs are far from the required outputs. If f(s0) indicates the

computed output of the CMAC and T0 the desired output, then the

correction value S which must applied to each of the C weights is

calculated as:

where ft is the learning rate, which ranges from 0 to 1. This is known

as the least-mean-square (LMS) rule. Each weight is incremented by S.

Usually, ft is smaller than 1, and the training process will be a

repeated weight adjustment algorithm. When the maximum error falls

below a specified tolerance level, the network is considered trained.

CMAC is more and more used in controls engineering because of its

capabilities in local generalization, nonlinear representation, and fast

learning. The interpolation limitations of CMAC are analyzed by Brown

and his coworkers (Brown et al, 1993).
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SECTION 5

System Architecture and Approaches to Uniped Control

5.1 The Biped Controller

Figure 5.1 shows the multilayered architecture controller for a

biped robot. At the lowest level are two uniped controllers, each

controlling a single leg. The biped coordinator schedules the legs as

well as compensates for the presence of two legs. The motion planner

generates motion plans for the legs with inputs from a navigation plan

and environmental inputs. The motion plans are transmitted to the

appropriate uniped controller via the biped coordinator. Finally, the

navigator generates navigation plans based on locomotion objectives.

Navigator

Motion Planner

Biped Coordinator

Uniped Controller Uniped Controller

Figure 5.1 Biped Locomotion Controller Architecture

5.2 The Uniped Controller

A diagram of the uniped controller is shown in Figure 5.2. The

control parameters are denoted as TO, Tl, and O, where TO and Tl are

the joint torques, and <D represents the initial orientations of links

(currently only the thigh link). The jump-off controller is responsible

for generating the required jumping height and distance. It also

controls the in-flight body angular momentum, which becomes important
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when the robot plans before landing to prepare itself for the next jump.

To accomplish its tasks, the jump-off controller orients the robot

properly at the beginning of the jump and applies the appropriate joint

torques over a fixed duration during the support phase.

The in-flight configuration controller, on the other hand,

coordinates the positions of the links to avoid obstacles as well as to

prepare the robot for landing. The "correct" in-flight body

configuration is generated by the motion planner as a series of desired

position configurations at discrete points during flight. The desired

configurations at other times are linearly interpolated among these

discrete points. The control signals issued by the in-flight controller

are the joint torques at periodic control points.

The switchover from the jump-off controller to the in-flight

controller is done at the instant the foot leaves the ground completely.

This can be accomplished by a simple gating controller.

Desired
Height,
Distance,
Angular
Momentum

Jump-Off
Controller

In-Flight
Controller

t

TO,T1, <D

Gating
Controller 3

TO,T1

Figure 5.2 Uniped Controller Architecture
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5.3 Approaches to Uniped Control

This study investigates several approaches to uniped control.

Section 6 investigates various neural network approaches, Section 7

investigates a self-organizing multiagent cerebellar model, and Section

8 investigates a modular fuzzy-neural approach. The approaches are

summarized here and described in detail in the following sections.

The first approach in Section 6 uses a single back propagation

neural network to learn both the three jump-off control signals and one

set of in-flight 'swing torques' which are applied at the top of the

trajectory. The objective is to produce jump-off signals which will

achieve the desired height, distance and angular momentum and at the

same time produce swing torques which will result in a proper landing

configuration. The second approach in Section 6 uses a CMAC neural

network for the jump-off controller and a separate PD controller for the

in-flight stage. The control signals issued by the PD controller are

joint torques at periodic control points along the in-flight trajectory.

Section 7 proposes a new self-organizing multiagent cerebellar model

which is targeted to learn the control signals to achieve the objectives

of both the jump-off and in-fight stages. In-flight signals are

generated for one or possibly more control points along the trajectory.

Section 8 uses a modular approach with separate controllers for the

jump-off stage and in-flight stage. A self-organizing fuzzy-neural

controller is used for jump-off control, and a CMAC-based controller is

used for in-flight control. The in-flight controller learns control

signals for each time step in the trajectory.
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SECTION 6

Experiments in Neural Network Uniped Control

6.1 Training of BP Neural Networks

A three-layered backpropagation neural network was built as the

uniped controller for two purposes: (1) to develop the appropriate

topology; and (2) to determine the appropriate training parameters. The

numbers of neurons in the input and output layers are determined by the

problem, while the number of hidden neurons is determined by empirical

rules or by trial-and-error. The rule-of-thumb for the selection of

hidden neurons is that the more complex the input-output mapping is, the

more neurons should be used (Masters, 1993).

At the beginning of the investigation, the neurocontroller was

trained with several algorithms. Following the traditional training

algorithm, an attempt was made to generate a number of "good" jumps by

means of a trial-and-error procedure. After a number of such example

jumps was generated, the training of the neural net appeared difficult.

Believing that a three-layer neural net could model this mapping, and

following the rule concerning the number of hidden neurons (Masters,

1993), the size of the network was increased to extend the capacity of

the system, but the results were still unsatisfactory.

To avoid the cost of training a large network, the network was

then broken into five smaller networks (A complete jump requires five

control signals; see section 3.6.), each for one control parameter, in

the hope that training would be easier and faster. Surprisingly, the

results remained the same. The lack of convergence during training was
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traced to the high degree of complexity of the control problem. After

the relationship between the control parameters and the jump quality

parameters was carefully investigated, it was realized that the control

problem was underconstrained, and therefore the solution was not unique.

Neural networks by their nature cannot learn an inverse mapping if the

inverse is not uniquely defined.

The training process was then altered to online reinforcement

training, due to the fact that reinforcement learning does not require

pregenerated examples but instead begins arbitrarily from a point in the

control parameter space and follows a single path to the solution. The

key to applying reinforcement learning is to define a performance index

(PI) function to maximize, or equivalently, to minimize a cost function.

For the jump-off controller, the cost function was defined as the scalar

error (SE) of a jump, which was measured as a weighted Euclidean

distance between the desired jump parameters and the actual values:

where the W terms are weights applied to the errors according to their

relative importance, and the £-terms represent the errors in jump

height, jump distance, and angular momentum.

In order to make the problem as simple as possible, WD and WA were

set to zero, making the jump height the single control objective.

Accordingly, the subset of control parameters of interest consists of

the thigh orientation and the joint torques at jump-off. The control

problem is then underconstrained. The key to this approach is to start

from a single point and then extend it in two opposite directions. Thus

the training follows a single path instead of a multivalued function.
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Normally, training a neural net with the backpropagation algorithm

results in the minimization of the scalar output error (SE). In

reinforcement training, the input to the neural net is the jump height,

and the output is the control parameters. There are no target, or

desired, control parameters available for comparison to the actual

output. Theoretically, as the controller generates correct signals, the

gradients of the actual jump height with respect to the signals are

minimized to zero. In other words, the minimization of SE (SE=0) is

equivalent to setting the gradients of SE with respect to the control

parameters equal to zero:

dSE
= 0 (6.2)

It should be noted that the gradients are computed using only

local information. As such, the training algorithm searches out the

first solution path and follows that path to the exclusion of others.

To obtain gradient information, each control parameter is repeatedly

perturbed by a small amount with the gradients approximated as follows:

dSE SSEt
=-̂ -L (6.3)

where 5z_£ is the perturbation in control parameter z^ and 5S£̂  is the

resulting variation in SE. Four simulations are required to generate

the gradients at a single point. This training algorithm is shown in

Figure 6.1.
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Controller Simulation

H

Control
Parameters

H?

Gradient
Estimation

Figure 6.1 Reinforcement Training Algorithm

Training results for two different network topologies are shown in

Table 6.1. The first two controllers were trained for a single jump

height. The last controller was trained for three jump heights.

Table 6.1 Reinforcement Training Results

Controller
I
2
3

# Hidden Neurons
15
20
20

Jumping Height (s) (m)
0.9
0.9

0.7, 0.9, 1.1

Final Error
0.0890
0.0017
0.0780

After training, controller 3 was used to generate two jumps with

desired heights of 0.868 m and 1.157 m. The results are listed in Table

6.2. Figure 6.2 illustrates the robot dynamics during the generated

jumps. These are in fact "half" jumps because the only goal is the jump

height.
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Table 6.2 Test Jump Parameters and Results Comparison

Desired
Height (m)

0.868
1.157

Actual
Height (m)

0.901
1.243

Error
(%)
3.7
7.4

(a) (b)

Figure 6.2 Jumps Generated by Trained Neurocontroller

(a) Desired Height = 0.868 m, Actual Height = 0.901 m

(b) Desired Height = 1.157 m, Actual Height = 1.243 m

Although training results show that the gradient-based

reinforcement training with one object works reasonably well, further

experiments showed that this training procedure does not scale up well

for multiple control objectives. For a non-zero WD (inclusion of jump

distance as the second control objective), it was observed that once

the error is reduced to a certain level, the errors £D and £H increase

and decrease alternately, resulting in oscillations in SE about an

unacceptably large value. The reason for these oscillations is that

with respect to some of the control parameters, the gradient of H is

positive while the gradient of D is negative, and vice versa. This is

the principal difficulty in applying gradient-based reinforcement

learning to multiobjective control. Another drawback is that this

training algorithm requires the running of the robot simulation several
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times in each iteration, which is very time consuming. A large scale

multiobjective problem is highly impractical.

Therefore, off-line training was resumed. A further analysis of

the jump procedure revealed that if a jump is divided into phases

associated with separated controllers, as presented in section 3.5, then

the training of a jump-off controller for the first phase requires only

three control parameters. However, this training procedure, even though

it leads to convergence, also proved too time consuming to be practical.

At this point, the research was directed to searching for a more

suitable learning technique.

6.2 Training of CMAC Networks

After further analysis of the control problem, a new control

strategy was developed which uses a CMAC controller for the jump-off

phase of the stride and a PD controller to control the movement of the

leg during flight. The PD controller is described in Section 3.6. A

CMAC network package was developed to be trained as the uniped jump-off

controller. A set of jump examples was generated which includes three

control parameters corresponding to the two jump torques and the

orientation of the thigh link, and three kinetic parameters

corresponding to jump height, jump distance, and body angular momentum.

In order to reduce the time spent on generating examples, the three

kinetic parameters were computed once the robot left the ground, rather

than obtaining them from simulations of the entire jump. It was

reasoned in Chapter 3 that the jump height and angular momentum can be

calculated exactly in this way, while the computed jump distance might

be slightly different from the actual jump distance. In general, jump
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requirements will emphasize jump height and angular momentum, while

ignoring slight discrepancies in the jump distance. The three desired

jump parameters and the three control signals form a three-to-three

mapping, with no redundancy. A heuristic proof is based on the

observation that jump height, jump distance and angular momentum are

orthogonal to one another, and that the three control signals are also

independent.

Three training runs were conducted with CMAC generalization

parameters (expressed as C in section 4.2) of 160, 320 and 480. After

training, the controller was tested with a point in the input space not

included in the training set. Table 6.3 lists the kinetic performance

for the test cases. It is clear that the generalization parameter C

plays an important role in CMAC training. After 200 iterations, for

C=160, the maximum relative error was 8.3% for the body angular momentum

parameter. For C=320 and C=480, the maximum relative error became 2.3%

and 2.2%. Training was also very fast; 200 iterations took only minutes

on a 50 MHz 486 computer. Further training improved accuracy for the

case of C=160 to 6.4%, while it did not improve for the other two cases.

Table 6.3 CMAC Training Results

Desired
C=160
0320
C=480

Jump
Height
0.820
0.819
0.819
0.821

Jump
Distance
0.500
0.510
0.500
0.498

Angular
Momentum
0.500
0.532
0.511
0.489

Maximum
Error

8.3%
2.3%
2.2%

Iterations
Used

200
200
200
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6.3 A Comparison Between CMAC and BP Neural Networks

Training runs similar to those described in the previous section

were performed on a CMAC network and a BP neural network with 30 hidden

neurons. CMAC training with 400 iterations required several hours on a

50MHz 486 computer to reach convergence. In contrast, the BP network

took"more than 20,000 iterations, lasting two days on the same machine,

to achieve convergence. Table 6.4 lists the performance comparison for

two test jumps. It is obvious that the performance of the CMAC is

superior to that of the BP network both in terms of training time and

training accuracy. Thus the conclusion was reached that CMAC is more

suitable for locomotion control.

Table 6.4 Comparison of Performance Between Backpropagation and CMAC

(C=160)

Desired
BP
BP

CMAC
CMAC

Desired
BP
CMAC

Jump
Height
0.920
0.920
0.916
0.920
0.920
0.950
0.948
0.945

Jump
Distance
0.500
0.489
0.506
0.503
0.502
0.600
0.609
0.588

Angular
Momentum
0.500
0.567
0.498
0.474
0.502
0.480
0.496
0.483

Maximum
Error

13.4%
1.2%
5.6%
0.4%

3.3%
2.0%

Iterations
Used

5,000
20,000
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20,000
433

6.4 CMAC Generalization Parameter and Hash Coding

The total number of weights utilized in a mapping also depends on

the generalization parameter C and the method of selecting the C weights

to be updated for generalization purposes. We use the original method

proposed by Albus (Albus, 1975). We discovered that this method results

in an interesting anomaly. In the normal scale of C (C is smaller than
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the number of discrete points in one coordinate of the input space), the

larger C is, the more overlap there is in the mapping and the fewer will

be the number of regarded locations in the associative memory. This is

in direct opposition to intuition. As an example, for a simple two-

input problem with a resolution of 1.0 and a range of [0,5] for both

inputs, with C=l, C=2, and C=5, the S-to-A mapping and logical memory

address are listed in the following tables (Table 6.5, 6.6 and 6.7).

These tables give different mappings to the logical addresses of the

values 0, 1, 2, 3, and 4 in both of the two input elements. Table 6.8

lists the combinations of these addresses in the locations in the

associative memory. In Table 6.8, the addresses from 00 to 44 (in

total, 25 locations) are used when C=l; addresses 00, 02, 04, 11, 13,

15, 20, 22, 24, 31, 33, 35, 40, 42, 44, 51, 53, and 55, (in total, 18

locations) are used when C=2; addresses 00, 05, 11, 16, 22, 27, 33, 38,

44, 50, 55, 61, 66, 72, 77, 83 and 88 (in total, 17 locations) are used

when O5. As C gets larger, the

We have recently found in the literature a method which selects

for update weights which are more evenly distributed (Parks and Militzer

1991) . Future studies should investigate whether the Parks and Militzer

method provides more accurate generalization.

Table 6.5 Mapping from Input to Logical Address (Ol)

Value
0
1
2
3
4

0
I
0
0
0
Q

1
0
1
0
0
0

2
0
0
1
0
0

3
0
0
0
1
0

4
0
0
0
0
1

5
0
0
0
0
0

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

Logical Addresses
0
1
2
3
4
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Table 6.6 Mapping from Input to Logical Address (C=2)

Value
0
I
2
3
4

0
1
0
0
0
0

1
1
1
0
0
0

2
0
1
1
0
0

3
0
0
1
1
0

4
0
0
0
1
1

5
0
0
0
0
1

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

Logical Addresses
01
21
23
43
45

Table 6.7 Mapping from Input to Logical Address (C=5)

Value
0
1
2
3
4

0
1
0
0
0
0

1
1
1
0
0
0

2
1
1
1
0
0

3
1
1
1
1
0

4
1
1
1
1
1

5
0
1
1
1
1

6
0
0
1
1
1

7
0
0
0
1
1

8
0
0
0
0
1

Logical Addresses
01234
51234
56234
56734
56784

Table 6.8 Addresses in the Associative Memory

Inputs
00
01
02
03
04
10
11
12
13
14
20
21
22
23
24
30
31
32
33
34
40
41
42
43
44

C=l
00
01
02
03
04
10
11
12
13
14
20
21
22
23
24
30
31
32
33
34
40
41
42
43
44

C=2
00
02
02
04
04
20
22
22
24
24
20
22
22
24
24
40
42
42
44
44
40
42
42
44
44

11
11
13
13
15
11
11
13
13
15
31
31
33
33
35
31
31
33
33
35
51
51
53
53
55

C=5
00
05
05
05
05
50
55
55
55
55
50
55
55
55
55
50
55
55
55
55
50
55
55
55
55

11
11
16
16
16
11
11
16
16
16
61
61
66
66
66
61
61
66
66
66
61
61
66
66
66

22
22
22
27
27
22
22
22
27
27
22
22
22
27
27
72
72
72
77
77
72
72
72
77
77

33
33
33
33
38
33
33
33
33
38
33
33
33
33
38
33
33
33
33
38
83
83
83
83
88

44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
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Another important factor affecting CMAC performance is hash

coding. The purpose of hashing is to minimize the use of physical

memory so that the implementation of CMAC becomes practical. Hashing is

essentially a many-to-few mapping. Unlike a general purpose random

number generator which generates a sequence of pseudo-random numbers

given a seed, a hashing function generates uniformly distributed random

numbers in a given range, fed with seeds distributed in any way in the

input space. Table 6.9 shows the results of distribution quality tests

conducted for the hashing function used in CMAC implementation. The

term "times" represents the number of times a point appeared in the

output space during the mapping from the given seed (input) space. This

table shows that the quality of the hashing function is usable, even

though not ideal, especially in mappings from a large space to a space

with a size of about 10,000.

Table 6.9 Quality Test of the Hashing Function

Seed Space
Size
10,000
100,000

1,000,000
10,000,000

100,000
1,000,000

Output Space
Size
10000
10000
10000
10000
1000
1000

Maximum
Times

2
13
127
1226
103
1014

Minimum
Times

0
8

84
908
97
972

Mean

1
10
100
1000
100
1000

Comparisons were made between straight access and hashing access

to weight memory in CMAC training. Table 6.10 shows the result after

learning a four-fold parity using two different accesses. In the case

where the memory size is sufficiently large, there was no difference in
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the number of iterations; however, when memory size was reduced so that

hashing became necessary, the number of iterations required to reach a

given accuracy increased. This experiment proves that the cost of using

hash coding is in learning accuracy and training time.

Table 6.10 Results of Learning Parity with Two Accesses

Straight
Hashing
Hashing

C

4
4
4

Size of
Weight Space

10000
10000
100

Learning
Rate
0.6
0.6
0.6

Iterations
Used

7
7

18

Max Error

0.000983
0.000983
0.000911

The results of learning the function z=sin (x+y) with different

sizes of physical memory, listed in Table 6.11, reveal that it is

improper to select a memory size larger than necessary (LA-=5000).

Also, it is seen from this table that learning accuracy, limited by

collision, becomes unacceptably low when memory size is too small

(IM.=500) .

Table 6.11 Results of Learning the Function z=sin(x+y)

Generalization
Parameter C

5
5
5
5 .

Size of Weight
Memory
5000
1000
500
500

Learning
Rate
0.6
0.6
0.6
0.6

Iterations
Used
17
17

200
300

Maximum
Error

0.009424
0.009424
0.012200
0.012210

6.5 Conclusions

The CMAC network has exhibited some important and beneficial

features during the experiments performed in this study. Specifically:
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1. It has the ability to learn arbitrarily nonlinear functions

without the mathematical expressions of the function;

2. CMAC training is much faster than BP training because the

number of computations grows only linearly with the number of

system state variables, as shown in section 6.3;

3. Since the CMAC is essentially a kind of lookup table, a hashing

technique can scale a large input space associated with complex

problems down to a practical physical memory space;

4. The measure of local generalization is adjustable through

variation of that generalization factor. In regions of the

input space which are relatively linear, interpolation may

still suffice for very sparse data sets, provided the

generalization factor is selected properly.

The jump-off controller is used with three inputs corresponding to

the desired jump height, jump distance, and body angular momentum, and

three outputs corresponding to the two joint torques and the orientation

of the thigh link. The link configuration controller has six inputs

corresponding to the sizes, velocities and accelerations of the two

joint angles, and two outputs corresponding to the two torques.

Although this study deals strictly with the uniped controllers at

the bottom of the hierarchy, the uniped controller is currently being

trained and fine-tuned for single jumps responding to jump behavior

requirements within a specified range.

With respect to continuous jump control, additional effort is

needed to investigate the control strategy of the transition phase,

which is the connection of-one step to the next. As analyzed in Chapter
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3, the quality of a continuous jump depends on the landing configuration

and the properly selected angular momentum for take-off according to the

stipulations for jump distance and jump height.

Instead of the simple PD controller used in this section, an

intelligent controller is necessary for the ballistic phase so that

preconditioning of the transition phase will be more controllable. To

develop a ballistic controller using the techniques of this section a

prohibitively large amount of data representing the performance of the

robot in air is needed for training. The next two chapters develop

alternative techniques which reduce or eliminate the need for

precomputed training examples.
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SECTION 7

Mac-J: A Self-Organizing Multiagent Cerebellar Model For Fuzzy-Neural

Control Of Uniped Locomotion

This section describes a novel approach for developing a

fuzzy-neural controller for both the jump-off and in-flight phases of

uniped locomotion. The major contribution of this work includes:

(1) the one-to-many cardinality was determined between desired

jump measures and jump control parameters for full-degree take-off

freedom and full jumps; and

(2) a self-organizing multiagent cerebellar model, MAC-J, is

proposed and developed such that it can learn and control full jumps

with full degree take-off freedom.

MAC-J is unique in two aspects. Theoretically, it introduces

multiagent distributed AI (DAI) concepts into intelligent control and

presents a coordinated computational intelligence (CCI) approach to

legged locomotion. Technically, it bridges a gap between complex motion

equations and high dimensional fuzzy-neural control with four common

sense "cerebellar" laws; it emulates human and animal locomotion

learning with associative memory aggregation and reorganization; and it

is generic, time- and storage-efficient, and ideal for microelectronics

design/manufacturing. MAC-J has been implemented in software and was

successfully tested with four different uniped simulations. Test

results show that, starting with a given jump example (assisted jump),

MAC-J can enable a uniped to learn different jumps quickly with a

learning, tuning, and brainstorming process. The result is being

evaluated by NASA-JSC for a possible patent.
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Technical details of MAC-J have been presented at the group

meeting in May with NASA personnel and fully reported to the Automation

and Robotics Division at NASA Johnson Space Center. Since this work is

being evaluated for a possible patent by NASA, only general ideas are

discussed in the following:

Step 1. Agent-oriented decomposition:

Corner parameters are identified in this step to achieve a one-to-

one mapping based on the three take-off configuration parameters: ql,

q2, and q3. Given initial (temporary) minimum and maximum values for qi,

i = 1,2,3, corner agents are identified. A corner agent is a fuzzy-

neural controller responsible for locomotion control in its subspace,

named a corner. A cornered-space is a subspace within the originally

unknown control space. Any pair of adjacent agents in a cornered-space

must meet the certain neighborhood conditions.

Step 2. Agent tuning with learning by practicing:

Each individual agent consists of a lookup table associative

memory [Albus, 1975], an indirect fuzzy controller interface [Brown and

Harris, 1994], and a BP (backpropagation) neural network [Rumelhart and

McClelland, 1986]. The numerical associative memory is for efficient

adaptive and incremental learning, the fuzzy controller is for

linguistic inversion of the associative memory and interface purposes,

and the BP neural net (optional) can be used for fuzzy-set fine-tuning.

The fuzzy controller is used as a local interface due to its "white-box"

property (each local agent needs to know its functional limits). To

meet the neighborhood conditions, associative memory elements are fine-

tuned with two converging functions. The two equations form a key for a
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learning by practicing process. Given a single jump example, the

process can generate and fine-tune associative memory elements to

desired similarities for all eight corner agents. It should be remarked

that, with the agent-oriented approach, the number of examples required

by each agent is extremely small. With a small number of fine-tuned

examples, a fuzzy controller [Wang and Mendel, 1992], a CMAC controller

[Albus, 1975], or a BP neural net [Rumelhart and McClelland, 1986] can

be trained easily (need seconds or minutes). This simplification is

compensated by a powerful brainstorming process in the next step.

Step 3. Agent discovery with learning by brainstorming:

Brainstorming is defined as a high-level learning process where

new agents are discovered collectively by existing corner agents.

Learning by brainstorming leads to cerebellar memory booming which

provides a partial explanation to the fact that children and baby

animals learn locomotion control rapidly after their first few steps.

Step 4. Cerebellar law discovery:

Memory booming can not go on forever. Then arise the questions: Is

agent discovery the highest level of learning? How many cerebellar

agents are needed for usual locomotion functionalities? How are the

agents self-organized? To answer these questions, the notion of a safe

memory space is defined. A safe memory space can grow (leading to

expanded locomotion abilities when the body "grows up") or shrink

(leading to reduced locomotion capabilities when memory is "damaged").

Based on the safe space definition, four cerebellar motion laws are

discovered and self-verified by MAC-J. The minimum number of agents
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required for a safe space is determined as 2N' where N is the number of

links of a uniped robot.

Step 5. Cerebellar memory expansion and agent reorganization:

The significance of the cerebellar laws is 3-fold: 1) they bridge

a gap between motion equations and multiagent fuzzy-neural control by

providing common sense inverse dynamics; 2) they limit the number of

cerebellar agents needed for usual locomotion functionalities; and 3)

they provide a theoretical basis for the aggregation and reorganization

of cerebellar agents in locomotion learning. With the theoretical

basis, MAC-J is extended to a five-layer cerebellum architecture with a

virtual memory scheme and an efficient computational basis for an

intelligent microprocessor technology. It is intelligent in the sense

of being able to learn and control uniped robots with different numbers

of links, changing sizes, and varying weights.

Step 6. Multiagent locomotion control with cooperation and

competition:

With the cerebellar laws, uniped locomotion learning and control

can be efficiently performed online by the corner agents in a safe space

based on a fuzzy coordination protocol.

MAC-J is unique in two aspects. Theoretically, it introduces

multiagent coordination techniques of distributed AI (DAI) [Bond and

Jasser, 1987; Zhang, 1996; Zhang, 1992] into intelligent control and

presents a coordinated computational intelligence (CCI) approach to

legged robot locomotion that can emulate adaptive behaviors in human and

animal locomotion learning processes. Technically, it bridges a gap

between complex motion equations and high dimensional fuzzy-neural
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control; it supports "cerebellar" memory expansion and reorganization;

and it is generic, time- and storage-efficient, and ideal for

microelectronics design/manufacturing.

It is recommended that follow-on work be implemented by NASA to

further explore the benefits of his novel approach.
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SECTION 8

A Modular Neuro-Fuzzy Approach to Uniped Control

In this section we investigate a modular neuro-fuzzy approach for

the uniped controller. We use the modular architecture presented in

Figure 5.2, with separate controllers for the jump-off and in-flight

stages of the running stride. This decoupling is a natural one because

the control parameters and control objectives for the two stages are

different. The jump-off controller produces the torques and thigh

orientation which are applied to the joints at takeoff in order to

achieve the desired height, distance and angular momentum of the stride.

After the foot leaves the ground, control is switched to the in-flight

controller. It takes the current state of the links (angular position,

velocity and acceleration) and produces the set of torques targeted to

move the links smoothly to the next position.

There are two important advantages to the approach taken here.

First, it is simple. Second, it allows the leg to be controlled at each

time step during the trajectory, rather than at one or more isolated

points. This is critical for achieving smooth movement of the leg

during flight and for avoiding obstacles.

Designs of the jump-off and in-flight controllers are presented in

the following sections, along with initial results obtained thus far

using this approach.

8.1 The Jump-Off Controller

For the highly non-linear jump-off control problem we require a

controller which is adaptive, trains quickly and accurately and can be

trained on-line. We select a fuzzy-neural controller which combines
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learning techniques from self-organizing neural networks and weighting

techniques borrowed from fuzzy logic membership functions. It is based

on an approach has been successfully used to train a truck to back up to

a loading dock (Kwon, 1994) .

The fuzzy-neural controller uses locally-tuned receptive fields,

updating only local information for each training pattern. This makes

learning fast and also permits incremental on-line learning, since

changes in portions of the problem space will not require off-line

retraining of the entire space. This permits gradual growth of the

problem space and/or relaxation of the simplifying constraints mentioned

earlier without global retraining.

To train the controller, equations of motion governing the

movement of the robot are used to generate examples. Each training

example consists of an input state/target control signal pair. The

input state space S in our problem is three-dimensional and corresponds

to the desired height, distance and body angular momentum of the stride.

There are three target control signals T to be learned: the torques to

be applied to the ankle and knee joints and the orientation of the thigh

link at takeoff.

The fuzzy-neural controller is trained by presenting it with a

series of examples (Sĵ , Tj_) . The network learns by forming clusters,

each of which represents a range of input states S whose corresponding

target control signals T are similar. The basic principle involved is

that similar control signals will be used to produce similar results

from similar stating states. Each cluster is represented by a prototype

(Sp, Tp) pair where the prototype input state Sp represents the center
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of the cluster of input states and the prototype target control signal

Tp is the set of control signal values corresponding to this cluster of

inputs. New prototypes are added as needed to achieve the desired

accuracy level. When presented with an input state S^, the network

produces a response which is a weighted average of the control signals

Tp corresponding to the learned state clusters Sp which are closest to

s±.

During training the following is repeated for each example (Ŝ ,T̂ )

in the training set:

1. present next input pattern S^ to the controller

2. calculate the response T^*.

3. apply control signals T^* to the robot and determine the

error E in distance, height and angular momentum

4. if E is larger than an acceptable level e, create a new

prototype positioned at the location of S^ and store T^ as the set of

torques for this cluster; otherwise, incorporate this example into

the existing neighboring prototypes

The response T^* in step 2 is a weighted average of the torques

corresponding to the input clusters which are closest to the current

input pattern:

N represents the collection of prototype states which are in the

neighborhood of the input state. The weighting factor
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borrowed from fuzzy logic, represents the degee of membership of the

input state S^ in cluster prototype Sp-;, and is computed as follows:

*etf"jt

where d-; represents the Euclidean distance from S^ to Spj . This assigns

a larger weight to those prototype control signals Tp whose cluster

centers Sp are the closest and hence the most similar to the current

input state under consideration.

We use a dynamic measure for the neighborhood. The nearest

neighbor is the prototype Sp which is closest in terms of Euclidean

distance to the input state S^. Any protytopes which are no farther

than twice this distance from Sj^ are considered to be in the

neighborhood.

In step 4, an input pattern is incorporated into the neighboring

clusters by adjusting the prototypes (Sp, Tp) in the neighborhood so as

to reduce the error between the target response T^ and the actual

response T*, using the following update rules adapted from (Kwon, 1994):

A7>,. = 7/2(7; -r*)/̂(S,.)V/ €N

AS/>, = T!*(Tt-T*)
St~Spj y/ eN

</2Y—3 ^dkeNuk

where T] is a learning rate « 1. The error criterion 6 in 4 can be

decreased over time. Training stops when the average error falls below

tolerance.

To train the controller we used the equations of motion governing

movement of the robot to generate a collection of 3152 examples with a
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random uniform distribution over a portion of the state space

corresponding to heights of 1.0 to 1.2 m, distance of 0 to 1.4 m, and

angular momentum of -.05 to .5. We randomly selected 100 of the

training examples to test the accuracy of the trained nets in

generalizing. Six test sets were formed by adding randomly generated

noise within a certain range to each of the 100 selected example input

states. The amount of added noise ranged from 0 in Set 1 to (-0.1, 0.1)

in Set 6.

To determine the accuracy of the trained controller, we measured

the maximum testing error. The testing errror is obtained by presenting

a testing state S to the trained controller, obtaining the controller's

response f(S), applying these control signals to the simulated leg and

then observing the error E^-es^- between the desired height, distance and

angular momentum and the actual height, distance and angular momentum

achieved in the robot stride.

Table 8.1 shows the results achieved by the fuzzy-neural

controller on the original 100 training points which were selected for

testing, and on points generated by randomly adding various levels of

noise to these points. We used an error criterion e of 2% and a

learning rate of .0001. Only one iteration through the training set was

required to reach convergence, with a total of 728 prototypes formed.

The maximum average testing error was below 0.5% for all of the noisy

testing sets.
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Table 8.1. Results achieved by the fuzzy-neural controller on noisy

test sets.
Test
Set

1
2
3
4
5
6

Added

(-0.00,
(-0.02,
(-0.04,
(-0.05,
(-0.075,
(-0.10,

Noise

0.00)
0.02)
0.04)
0.05)
0.075)
0.10)

Max
Ave

Testing
Error
0.495%
0.488%
0.497%
0.495%
0.469%
0.478%

For the sake of comparison, we trained a CMAC network like that

described in Section 4.2 on the same data. Table 8.2 shows the average

maximum testing error achieved by CMAC on same testing sets. We used a

generalization parameter C of 160, and a learning rate of .3. We used

cell sizes of .003 for the desired height, distance and angular

momentum. This yielded a logical associative memory A of 5,703,703. A1

was 25,000. The net was trained for 600 iterations. The maximum

average testing error was below 5% for all of the noisy testing sets.

Table 8.2. Results achieved by the CMAC controller on noisy test sets.

Test
Set

I
2
3
4
5
6

Added

(-0.00
(-0.02
(-0.04
(-0.05
(-0.075
(-0.10

Noise

, 0.00)
, 0.02)
, 0.04)
, 0.05)
, 0.075)
, 0.10)

Max
Ave

Testing
Error
1.6%
4.7%
3.2%
3.9%
3.2%
3.5%

The fuzzy-neural controller achieved more accurate results in less

time and using less memory than the CMAC networks. However, the trained
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CMAC net is simpler and has greater speed in the operational phase. The

two models are compared in more detail in the following paragraphs.

The CMAC and fuzzy-neural controllers described here use

approaches which are similar in some respects. They both form a map of

the input space and store control signals associated with portions of

the input space. Both use local learning; CMAC updates C cells, while

the fuzzy-neural controller updates the cluster prototypes in the

neighborhood. The main differences are in the method of map formation

and the generalization scheme. These differences can result in large

differences in performance.

The CMAC forms a static map of the input space by partitioning

each input into fixed sized cells. Generalization is achieved by

spreading the control signals' over a fixed number C of neighboring cells

and producing an output signal which is a sum of the signals in the C

cells. The advantages are simplicity and computational speed. In

particular, once the net is trained, the control signals for a given

state can be accessed by a simple computation which does not involve a

time-consuming search.

The disadvantages are the excessive memory requirements, potential

for inappropriate generalization, and time to convergence. Memory

requirements grow exponentially with the dimension of the input space.

This makes the CMAC a poor choice for high-dimensional problems. The

combination of fixed cell sizes and fixed generalization parameter C can

result in poor generalization in parts of the input space which require

more finely-grained control than others. Problems with generalization

62



can result in many iterations required for training to converge (600 in

this case, vs. 1 for the fuzzy-neural controller).

The fuzzy-neural controller forms its map dynamically by adding

new prototypes as needed. This forms a partition of the input space in

which the receptive field of each prototype can be of a different size

and grows or shrinks as needed to achieve the desired level of accuracy.

Thus the granularity of the control surface is tuned to the requirements

of that part of the state space, as illustrated in Figure 8.1.

Generalization is achieved by forming output signals which are a

weighted combination of the prototype signals associated with

neighboring control prototypes. The weighting is proportional to the

distance of the prototype from the input state under consideration. In

addition, the neighborhood size is not fixed but is a function of the

closeness of neighboring prototypes. More accurate results can be

expected from this scheme than from the CMAC scheme which uses a simple

unweighted sum and a fixed number of cells as its 'neighborhood'.

Memory requirements for the fuzzy-neural controller are limited to the

number of prototypes needed to produce the desired level of accuracy and

so are much less than the CMAC. Contrast the CMAC associative memory

size A' of 25,000 cells in this example with the fuzzy-neural controller

memory of 728 prototypes.
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Figure 8.1. Receptive fields of fuzzy-neural prototypes Sp.

The box represents a two-dimensional space S which is partitioned by 8

prototypes. The lines show the boundaries of the receptive fields of

each prototype, marking the region of the space which is closest to that

prototype.

The main disadvantages of the fuzzy-neural controller are greater

complexity in the training algorithm (although it is still fairly

simple) and computational cost during operation of the trained network.

In particular, in order to generate the output signals, it is necessary

to compute the Euclidean distance from the input state to each of the

prototype states. However, this presents a problem in speed only if

there are very many prototypes formed. In addition, each training step

requires presenting the control signals to the robot simulation to get

the achieved height, distance and angular momentum. However, this

computational cost is offset by the fact that relatively few iterations

are required to reach convergence.

8.2 The In-Flight Controller

The In-flight controller controls the movement of the joints from

the time the foot leaves the ground after jump-off to the time it lands

on the ground again. In the simplest case, it must move the joints into
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a configuration which will allow a safe landing. If there are

obstacles, it must also position the joints so as to avoid collision.

The motion plans for the stride are formulated by the higher-level

motion planner of Figure 5.1. The plan consists of a series of leg

configurations ('snapshots') along a stride trajectory of a certain

height, distance and angular momentum. The stride trajectory is one

whose jump-off control signals have been previously learned by the jump-

off controller. The snapshots are planned so as to avoid any obstacles

present and to move the leg smoothly to a landing position. A simple

interpolation scheme is used to plan the joint movements between time

snapshots.

Like the jump-off phase, the in-flight phase also requires fast,

accurate on-line learning. The state space for this part of the problem

is very large. A supervised learning scheme like those previously

described would require the generation of such a large number of

examples that on-line learning would be infeasible. For this problem we

select a controller which learns the input-output relationships of the

robot from observation without precomputed examples. This controller,

developed by Miller (Miller, 1987), has been successfully used to

control the movement of a two-link robot arm. The controller is CMAC-

based, but the CMAC learns from the experiences generated by a

conventional PD controller instead of from precomputed examples.

For this part of the study we move to the four-link leg model

illustrated in Figure 8.2. This leg is harder to control but is more

humanlike and more versatile than the three-link model. It also

65



provides a more demanding test of the current approach. The dynamics of

the leg joints is described by the following:

©' '=g(0, ©', T)

where © represents the vector of joint angles, ©' represents the joint

rotational velocities, and ©'' the joint accelerations. The function g

is an unknown nonlinear function of the joint angles, angular

velocities, and the actuator torques T.

To control the joint movements the objective is to learn the

inverse function:

T=g~1(0, ©', ©' ')

where T is the vector of torques which must be applied to achieve the

joint accelerations ©'' given the current joint positions © and

velocities ©'. The CMAC can be applied to this problem by forming the

desired state vector S^j from the vectors ©, ©', and ©'' and training

the CMAC to produce the response f(Sd) =T=g~
1 (©,©',©")• The desired

state Sj serves as the input to the CMAC and the targeted response f (3,-j)

is the set of torques which will achieve the desired state.

torso

upper leg

ground

Figure 8.2. The four-link robot leg.

Torques are applied at the ankle, knee and hip joints to make the leg

move.
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The high-level design of this controller is shown in

Figure 3. At each time step the controller proceeds as follows.

The trajectory planner determines the ideal state S^ of the leg

for this time step in the trajectory. This is based on the

series of leg configurations which have been supplied by the

motion planner. A conventional PD controller produces a set of

torques which are designed to reduce the error between S-^ and

the observed state S0. At the same time, the trajectory planner

computes the desired acceleration A<j which will intersect the

leg with the ideal state a number of time steps in the future.

The desired state vector 8,3 = (Ŝ Â ) is formed from the current

observed angular positions and velocities and the desired

angular acceleration A,̂ . The CMAC is referenced to find the set

of torques f(S<-i) = f(So,Acj) which will achieve the desired

acceleration from the current state So. These torques are added

to the torques computed by the PD controller, and the combined

torques T are sent to the robot. This produces a new observed

state S0. At the end of the cycle, the CMAC is updated using

4.6, where To is the set of torques applied during the control

cycle and So is formed from the observed positions and

velocities of the joints at the beginning of the control cycle

and the observed accelerations of the joints during the control

cycle. Thus the CMAC learns which set of torques T achieved a

certain acceleration from a certain state. If the robot

encounters a similar state/acceleration goal (So/A<-j) in the

future, it will find stored in CMAC the signals which worked in
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the past. Initially the CMAC has no stored knowledge, and the

robot is controlled exclusively by the PD controller, which is

of the form shown in 3.36. Over time the CMAC learns from

experience. The PD control signals decrease as the error

decreases, and the CMAC takes over.
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Figure 8.3. The CMAC-based controller.

We trained the in-flight controller on a motion plan

formulated to fit a step trajectory of height 1.6 m, distance

0.294 m and duration 0.81s. The "ideal" joint trajectories were

planned from the five snapshots shown in Table 8.3, which

specify the configuration of the joint angles at five times on

the trajectory: the point of takeoff, the point of landing, the

top of the trajectory, midway between takeoff and the top; and

midway between the top and landing. Snapshot 1 is fitted to the

initial configuration of the leg at takeoff. Snapshot 5

provides a good landing configuration. Snapshots 2-4 are

designed to provide clearance from the front, top, and rear of

an obstacle. The number of snapshots can vary to meet the

demands of the stride. Each simulated control cycle takes 0.2

ms. A simple interpolation scheme was used to obtain the ideal
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joint positions versus time for all the time steps between

snapshots.

For the PD controller we used 1000 for the gain of the

proportional term and -10 for the gain of the derivative term.

We use a generalization parameter C of 100, and a learning rate

of 0.2.

The input space for this problem is of nine dimensions,

consisting of the observed joint angles and velocities and the

desired accelerations for each of the three angles. However,

since the control of each joint is independent of the others the

problem reduces to three input spaces of three dimensions each.

While the dimensionality is not very large, the size of the

state space is. At the moment that the foot leaves the ground,

the angular velocities and accelerations can be very large

because large torques must be applied during jump-off in order

to propel the leg off the ground. During the in-flight phase

joint velocities must be small. This results in a large range

of velocities and accelerations. However, the granularity of

the control signals does not have to be very fine at large

speeds and accelerations. Small changes in control signal are

needed only to achieve small changes in angles and velocities.

We therefore use a logarithmic scale for the velocities and

accelerations. This greatly reduces the size of the logical

memory A and still provides for fine-grained control in the part

of the space where it is needed. Specifically, we use a

logarithmic scale velocity range of ±12.5 degrees/s and a
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logarithmic scale of ±20 degrees/s2 for acceleration. Each

state variable ©' is first converted to ln(©') and then

assigned to one of 200 bins, each of size 0.125 degrees/s. Each

state variable ©'' is first converted to ln(©'') and then

assigned to one of 200 bins, each of size 0.2 degrees/s2. Each

variable © is assigned to one of 180 bins of size 1 degree.

Thus the logical association memory A is of size 3x(200x200x180)

=21,600,000. We use a physical memory A1 of size

3X72,000=216,000.

Table 8.3 Joint Angle Trajectory Snapshots.

Joint

ankle
knee
hip

Snapshot Number
1
106
90
75

2
110
80
80

3
115
75
85

4
95
90
98

5
70
105
110

To measure the performance of the controller we computed

the maximum of the three errors in joint angle (ankle, knee,

hip) for each time step, where the error is the difference

between the actual joint angle and the ideal joint angle. We

then computed the average maximum error for all the time steps

in the trajectory. After only one iteration the controller

learned the joint trajectories with an average maximum error of

only 0.987 degree. After two iterations the error was reduced

to 0.934 degree.

We are currently training the controller on additional

trajectories with different height and distance characteristics.

8.3 Summary and Conclusions

This section presents a modular approach to controlling

the trajectory of a single running stride. A fuzzy-neural jump-
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off controller controls the height, distance and angular

momentum of a range of simulated running strides with an average

accuracy of 99.5 percent on significantly noisy test patterns

which were not included in the training set. A CMAC-based in-

flight controller controls the movement of the joint angles

along a planned trajectory with an average accuracy of I degree.

Both approaches are adaptive and use local learning, which will

permit on-line retraining if conditions change. The fuzzy-

neural jump-off controller was trained after only one iteration

through the training set, and the CMAC-based controller was

trained after only two trips through the trajectory.

Controllers for both phases use simple training algorithms. The

CMAC-based in-flight controller is trained on the fly without

precomputed examples. Because the leg joints are controlled at

each time step during flight, movement is smooth and obstacles

can be avoided.

Results obtained thus far demonstrate that this approach

has the potential to produce fast, accurate controllers which

can be trained on-line. Because the controllers use local

learning techniques, they can automatically adapt to changing

conditions without global retraining.
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SECTION 9

Conclusions and Recommendations

This study presents a modular approach to biped locomotion

control. In this approach the biped locomotion problem is

reduced to the development of two identical uniped controllers

whose actions are planned and coordinated by higher-level

components. This phase of the research focuses on the

development of a uniped controller to control a single running

stride.

Several promising approaches are developed which are

worthy of further investigation. The multiagent cerebellar

model approach outlined in Section 7 is being considered for a

patent by NASA, and details of its advantages have been

described elsewhere.

The modular fuzzy-neural approach described in Section 8

is also worthy of further study. It offers the advantages of

simplicity, speed of learning, and virtually continuous control

of the leg movements during flight. The latter is important for

smooth movement of the joints and for avoiding obstacles. In

addition, the fact that the in-flight controllers learns without

precomputed examples is a big advantage for this large problem

space.

With respect to continuous jump control, additional effort
\

is needed to investigate the control strategy of the transition

phase, which is the connection of one step to the next. The

72



objective for the transition phase is to smoothly move the leg

from the landing configuration achieved at the end of the in-

flight phase to a crouched position suitable for jump-off in the

next stride. The CMAC-based approach used in Section 8 for the

in-flight controller bears investigation here, since the control

objectives for both phases are similar: smooth movement of the

joints along a planned path to an appropriate final

configuration.
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