

Locomotion Training of Legged Robots Using
Hybrid Machine Learning Techniques

FINAL REPORT
NASA Grant NAG 9-695

September 1, 1995

Lamar University
College of Engineering
Beaumont, Texas

William E. Simon, Ph.D., P E., Mechanical Engineering, Principal Investigator
Peggy I. Doerschuk, Ph.D., Computer Science, Research Associate
Wen-Ran Zhang, Ph.D., Computer Science, Research Associate
Andrew L. Li, Graduate Research Assistant

Abstract

In this study artificial neural networks and fuzzy logic are used
to control the jumping behavior of a three-link uniped robot. The biped
locomotion control problem is an increment of the uniped locomotion
control. Study of legged locomotion dynamics indicates that a
hierarchical controller is required to control the behavior of a legged
robot. A structured control strategy is suggested which includes
navigator, motion planner, biped coordinator and uniped controllers. A
three-link uniped robot simulation is developed to be used as the plant.
Neurocontrollers were trained both online and offline. 1In the case of
on-line training, a reinforcement learning technique was used to train
the neurocontroller to make the robot jump to a specified height. After
several hundred iterations of training, the plant output achieved an
accuracy of 7.4%. However, when jump distance and body angular momentum
were also included in the control objectives, training time became
impractically long. In the case of off-line training, a three-layered
backpropagation (BP) network was first used with three inputs, three
outputs and 15 to 40 hidden nodes. Pre-generated data were presented to
the network with a learning rate as low as 0.003 in order to reach
convergence. The low learning rate required for convergence resulted in
a very slow training process which took weeks to learn 460 examples.
After training, performance of the neurocontroller was rather poor.
Consequently, the BP network was replaced by a Cerebellar Model
Articulation Controller (CMAC) network. Subsequent experiments

described in this document show that the CMAC network is more suitable

to the solution of uniped locomotion control problems in terms of both
learning efficiency and performance.

A new approach is introduced in this report, viz., a self-
crganizing multiagent cerebellar model for fuzzy-neural contrql of
uniped locomotion is suggested to improve training efficiency. This is
currently being evaluated for a possible patent by NASA, Johnson Space
Center,.

An alternative modular approach is also developed which uses
separate controllers for each stage of the running sride. A self-
organizing fuzzy-neural conroller controls the height, distance and
angular momentum of the stride. A CMAC-based controller controls the
movement of the leg from the time the foot leaves the ground to the time
of landing. Because the leg joints are controlled at each time step
during flight, movement is smooth and obstacles can be avoided. 1Initial

-results indicate that this approach can yield fast, accurate results.

\\
~
™~

ii

Table of Contents

Page

7 ¥ o - ¥ o o i
Table of Contents. ittt inteanssntsnencnns iii
List Of FiguUIesS . ittt iiiiitneetttneeeerosssssosseasasosenennsnnens v
List Of Tables. .. iiiiireerieiiooenecneranosassssosssssansanannas vi
1., IntroducCtione s e vttt i it inisisneseesenersnasoesssccasssasnssnsoss 1
2. Literature ReVieWw........ .ttt iiiineeonessssesonnesesnsnnanns 4
2.1 Biped Locomotion and Control Strategies............c..... 5
2.2 Neural Networks in Robotic Control........c.iieiienenanns 8

3. Uniped DyNamMiCS .. oot oeeeestasnssassnossssasssnsossssasnssss 15
3.1 Why Two-Dimensional, Uniped, and Three-Link?............ 15
3.2 The Structure of the Robot in Simulation................ 16
3.3 Equations of Motion ...cii it iineneinorenstsaseannnnnns 17
3.4 Isolation of a Single Step Jumpccevteerncreennnnns 21
3.5 Decomposition of a Single Jumpcctieeeereernnnnanns 23
3.6 Simplification of the Problem........veeeveteecencsannss 24
3.7 Angular Momentum and Its Significance................... 25

4, Neural NetWorKksS.....iioiienienenneaneeseasanenaeeneaasennansass 27

4.1 Multilayered Neural Nets with Backpropagation Learning..27

4.2 CMAC NetwoIrKS «ivviiivnneneeneennaoonooans ettt 30
5. System Architecture and Approaches to Uniped Contrél 34
5.1 The Biped Controller......coceevevveeoess rer e 34
5.2 The Uniped Controllerctiiivieerneersssansnononsns 34
5.3 Approaches to Uniped Controlcc.t it onnnns 35

iii

6. Experiments in Neural Network Uniped Control............cc0... 37

6.1 Training of BP Neural Networks.............. Cheeea e 37
6.2 Training of CMAC NetWorKS ...t eveirnnnrennsns cre e ce..42
6.3 A Comparison Between CMAC and BP Neural Networks43
6.4 CMAC Generalization Parameter and Hash Coding........... 44
6.5 Conclusions...... che et Y - ¥ -

7. Mac-J: A Self-Organizing Multiagent Cerebellar Model For

Fuzzy-Neural Control Of Uniped Locomotion............ e e ...01
8. A Modular Neuro-Fuzzy Approach to Uniped Control..... 1)
8.1 The Jump-Off Controller.......... et ti e ..56
8.2 The In-Flight Controller.......... e ie e te i 64
8.3 Summary and Conqlusions et e at et eeee.10
C9. Conclusions and Recommendations.........cceeietencnanenns .72
References............... ceeeraaee e e eer et ce et .. 74

iv

Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 6.1

Figure 6.2

Figure 8.1.
Figure 8.2.

Figure 8.3.

List of Figures

Page
REACHIVE FOICE ..ottt ettt ettt e s ae e baeeesae e sanesansesaes 4
Three-Link Uniped RODOL........cccooiiiiiiiiiiiie ettt st e sens 16
Forces and Dimensions of Each Link............ccooocniiiiiiiiiiieee e 18
Robot Function: Input and OQutputooeeeeiiieiii e e e e e 22
Landing Body ANGIEoiiiiiiiiiieeieeeie et ettt ettt ee e st e e s e e e e e e 22
Factors of Angular Momentum 26
Schematic 0f @ NEUTOI..........ccoiiiiiiiiiicicieice ettt e e e e s res s eesemee e s s 27
A Three-Layer Neural NEetWOTKcoocciiiiiiiiiiiiii ittt seeeeseesenee e 28
CMAC MAPPINE.oeeeeeiieeiiee it et re ettt e et e st re e s e e s e e st et s s e et s eeaene e sbaasssns 31
Biped Locomotion Controller ATChItECtUIEcccevveriiieriieeriee e 34
Uniped Controller ATChItECtUIEcccveciiiiiiiieieeenr et esbeenneseeas 35
Reinforcement Training AIGOTIthINcccooiiiriiiniiiiicc s 40
Jumps Generated by Trained NeuroCOntrolleroooorreinininninces 41
Receptive fields of fuzzy-neural prototypes SP.cccocererverrniieninereeeere e 64
The four-link r0bot 168,ooiiiii et 66
The CMAC-based CONTOLIET.ccooiiirieiiniiciire et e 68

List of Tables

Page
Table 6.1 Reinforcement Training RESUILS...............ccooiiiiiiiiiiiiiiie e e 40
Table 6.2 Test Jump Parameters and Results Compan'son...................._ .. 41
Table 6.3 CMAC Training RESUISooiiiiiiiiiiieee ettt ettt eae v e esse s s te e saessnens 43
Table 6.4 Comparison of Performance Between Backpropagation and CMAC (C=160)......................... 44
Table 6.5 Mapping from Input to Logical Address (C=1)coceeieveiiiieiiinininrceine et 45
Table 6.6 Mapping from Input to Logical Address (C=2)ccvvoieiiiiiiicieniieneicneteneere et 46
Table 6.7 Mapping from Input to Logical Address (C=5)cccooeviriiiniieiceniieniie e ecteeeiee e saes e 46
Table 6.8 Addresses in the ASSOCIAtIVE MEMOTYcceeiirmiiiiiiicii it e 46
Table 6.9 Quality Test of the Hashing FUNCUOM................cvoviiiiiiiieiie et ree e 47
Table 6.10 Results of Learning Parity with TWO ACCESSES.........cccerermreerrieriiiieiieiiie e e s sacsaens 48
Table 6.11 Results of Learning the FUNCHON Z=8iM(X+1)c.oooviiiiiiieiieieeieet ettt s 48
Table 8.1. Results achieved by the fuzzy-neural controller on noisy test Sets.cccoecvervevvecrverenernnecnan 60
Table 8.2. Results achieved by the CMAC controller on noisy test Sets.ocvevrvrrreerenrriereacns 61
Table 8.3 Joint Angle Trajectory SnapShOtS.ccoociiiiiiiieeir et 70

vi

SECTICN 1
Introduction

Legged locomotion is superior to wheeled locomotion in terms of
versatility and flexibility. The development of legged robots having
the same locomotion capabilities as humans remains an outstanding
challenge for researchers in robotics. Several research teams have
focused on the development of legged robots in the U.S., Japan, and
Europe. Since the 1970's several legged robots have been built with the
ability to walk, run, and even do gymnastics, while the major control
strategies for legged robots have been classical control techniques.
Now, however, exploration of machine learning techniques applied to
legged locomotion is beginning to show promise.

The two primary modes of legged locomotion, walking and running,
are distinguished by their nature. Walking is characterized by the
constant contact of at least one foot with the ground, with requisite
periods of multifoot contact. Biped walking motion can be considered as
repetitions of two phases: a single-support phase followed by a double-
support, or changeover, phase. Running, on the other hand, is
characterized by the contact of at most one foot with the ground at any
time. Running also involves two phases: a ballistic phase in which
there is no foot in contact with the ground, and a support phase in
which exactly one foot is in contact with the ground. When biped
running is reduced to one leg, uniped jumping results. Conversely,
biped running can be viewed as the coordination of alternating'uniped
jumps. The study of running can therefore be simplified to uniped

jumping without altering the nature of the problem.

Té date, most control strategies used for legged locomotion have
been based on linear, nonadaptive control equations or rules of motion.
These kinds of controllers lack robustness with respect to environmental
variations and disturbances. 1In the last few years, computational
intelligence has been introduced into the robotic controls area, and
this "has yielded encouraging results. One particular form of
computational intelligence, neural networks, has been widely used due to
its features of parallel processing, nonlinear mapping, learning
ability, and generalization. A neural network is composed of
processors, called neurons, connected with weighted synapses. Neurons
are usually arranged in layers.

Neurocontrollers are controllers based on neural networks and can
be classified into two groups with respect to their learning algorithms:
online and offline. 1In the online approach, the neurocontroller is
trained alongside the plant during normal operation. With offline
training, the training data is collected during plant operation and used
to train the neural net regardless of the operational state of the
plant. Both approaches have been applied to robotic controls with
various degrees of success. More recently, a new class of neural
networks, called the Cerebellar Model Articulation Coﬁtroller (CMAC),
has proved superior to traditional neural networks in control
applications. CMAC was developed from models of human memory and
neuromuscular control. Unlike traditional neural networks, a CMAC
network contains no neurons. Its capabilities for the adaptation of
nonlinear modeling and generalization are embedded in the manner in

which the CMAC maps points in the input space into an associative

memory. Nearby points are mapped into nearby positions with partial
overlap, while points far away from one another are mapped into remote
regions of the associative memory. According to one study (Brown and
Harris, 1994), CMAC actually lies between the traditional neural net and
the fuzzy rule base.

In recent years, several research teams have successfully applied
neural networks to robot arm manipulation, but very rarely have attempts
been made to apply it to legged locomotion. 1In September 1993, Lamar
University was awarded a grant from the Johnson Space Center (JSC) to
explore the application of intelligent machine-learning techniques to
the uniped locomotion problem. One of the objectives of this project
was to develop uniped control strategies based‘on neural networks. The
achievements of this study include:

1) building a three-link uniped robot simulation and using the

simulation to analyze the dynamics of uniped locomotion;

2) evaluating the control signal requirements and designing a

hierarchical controller;

3) constructing and training various neural networks as modular

components of this hierarchical controller;

4) comparing these neural networks in terms of training efficiency

and performance; and

5) and providing insight for future studies of uniped and biped

locomotion.

SECTION 2
Literature Review

Legged locomotion requires the exertion of a traction force in a
direction opposite to that of motion. The reaétive force thereby
provides propulsion for forward motion (Todd, 1985; Raibert, 1986).
This is usually accomplished by applying opening torques at the joints.
Figure 2.1 shows that, when running, the exerted torgques at the knee and
ankle tend to enlarge these angles and result in motion of the foot
opposite to the direction of the body motion. The reactive force caused
by the motion of the foot is equal in magnitude to the force exerted by
the foot on the surface. One of the main characteristics of legged

locomotion is that joint torques compose the main control parameters.

Figure 2.1 Reactive Force

Research in the area of legged locomotion began many years ago. To
date, significant results have been generated. So far, much effort has

been expended developing multiped robots for use in extreme

environments. On the other hand, theoretical studies in biped
locomotion have resulted in numerous publications on many aspects of
this problem. All in all, very few biped robots have actually been
built, due to their complexity in both theory and practice. 1In this
chapter, some research work in biped locomotion published recent years
is reviewed. In addition, the achievements of research in applications
of artificial neural networks to robot manipulator control are also
summarized.

2.1 Biped Locomotion and Control Strategies

Since the 1970’s, biped legged robots have been built with various
locomotion abilities in the U.S., Japan, and Europe. Research in legged
locomotion can be categorized as walking versus running in terms of
motion type, and also as adaptive versus nonadaptive in terms of control
strategies. So far, the majority of the research groups have been
focusing on nonadaptive walking control.

The work of Zheng is typical of this approach (Zheng, 1989, 1990;
Goddard and Zheng, 1992). After developing one of the earliest biped
robots, called CURBi, Zheng in 1987 built a follow-on robot called SD-2,
which is a 5-1link biped with eight degrees of freedom. He also
developed a feedback control system to allow the robot to walk on level
ground as well as well as on sloping surfaces. This was an attempt
leading to the solution of the difficult control problem of walking on
irregular terrain. After solving the external disturbance rejection
problem, Zheng successfully made the robot walk from a level to a
sloping surface. He used a nonadaptive control strategy composed of

three parts. The first part was a scheme for detecting and measuring

the gradient of the slope. The second part dealt with the walking gait
on the slope, and the third and most significant aspect controlled the
robot as it walked through the transition area joining the level and the
sloping surfaces. 2Zheng’s control algorithms were based on the
equations of motion of the robot and the signals from sensors mounted on
the robot’s feet.

Several research groups in Japan have also been working on biped
robots. Furusho built a 9-link biped and its control system (Furusho
and Sano, 1990). First, he used the so-called “Reduced Order Model” to
simplify and examine the walking system. The anthropomorphic 9-link
biped robot he developed weighs 25 kg and stands at 0.97 m, with eight
degrees of freedom. Furusho chose a sensor-based feedback control
method with signals from foot pressure sensors, ankle torque sensors,
inclinometers, - angular rate sensors, speed sensors, and accelerometers.
In this control strategy, the motion of the robot was divided into two
planes: the sagittal plane (vertical to the floor in the direction of
walking) and the lateral plane (perpendicular to the direction of
walking). This division reduced the complexity of the control problem
through decomposition of motion in two orthogonal planes. In the
lateral plane, the motion was simply a repetitive tilting to alternately
place the center of mass directly over the ieft or right supporting
foot. 1In the sagittal plane, the main control objective of walking
motion is the body speed in forward motion. Unlike Zheng’s SD-2 robot,
Furusho’s robot could only walk on flat surfaces.

Shih presented another control strategy for a 7-link biped which

had twelve degrees of freedom (Shih and Gruver, 1992). Shih noticed

that most biped control strategy research was concentrated on the
single-support phase, while in biped walking, the double and single-
support phases alternate. Shih hypothesized that the analysis of biped
locomotion in the double-support phase is important for improving the
smoothness of the biped locomotion system. Shih implemented this idea
by introducing a reduced-order model with constraints, in which the
selected dependent variables were related to independent variables
through the kinematic Jacobian. A control strategy based on feedforward
compensation and linear state feedback was used to track the desired
trajectory.

For several years, Raibert and his colleagues at the MIT
Artificial Intelligence Laboratory have been the sole individuals
working on the problem of biped running. Their running robots, some of
which can even do gymnastics, rely on telescoping legs and simple
-nonadaptive, staged-control strategies (Hodgins, 1990). This type of
robot is controlled by a feedforward controller which works well in a
disturbance-free environment. The feedforward control signals are
generated analytically or empirically. The analytical approach is based
on the following steps:

1. modeling of the running machine;

2. finding the appropriate pitch rate using the equations;

3. calculating the required forward speed and the pitch rate of

the body required; and

4. calculating the appropriate torques and output signals.

The empirical approach uses examples for learning. However, this
work was done essentially by humans based on knowledge of mechanics and
on intuition, instead of by the robot via machine learning techniques.

Work on adaptive walking control was led by Wang, who developed a
neurocontroller for a 3-link biped robot (Wang and Malakooti, 1993).
Wang used the equations of motion and control rules to train a group of
traditional backpropagation (BP) neural networks rather than to control
the robot directly. Two different architectures were investigated, and
their properties analyzed. This_work is a significant beginning, even
though the robot is not as sophisticated as sdme with conventional
control strategies.

Miller published his research on the biped gait controller
(Miller, 1994), and he was the first to apply CMAC networks in biped
locomotion control. CMAC networks were trained in several aspects of
locomotion control including: (1) closed-chain kinematics necessary to
shift body weight side-to-side while maintaining adequate foot contact;
(2) guasi-static balance to avoid falling forward or backward while
shifting body weight side-to-side at different speeds; and (3) dynamic
balance required to lift the foot off the floor for a desired length of
time, during which the foot can be moved to a new location relative to
the body. This is an important contribution to biped locomotion
research, and these experiments confirmed the applicability of
computational intelligence in legged locomotion control.

2.2 Neural Networks in Robotic Control

The last twenty years saw phenomenal growth of artificial neural

network applications in many different areas. Neural networks attempt

to simulate in some aspects the working of biological brains, whose
characteristics include parallel processing, learning ability, nonlinear
mapping, and generalization. In the field of robotic control, many
attempts have been made to utilize neural networks. Fukuta reviewed the
development of neural networks and their application in industrial
control systems (Fukuta and Shibata, 1992). The application of neural
networks to control problems can be categorized into a number of major
distinct groups: supervised control, inverse control, neural adaptive
control, backpropagation of utility (an extension of backpropagation
through time), and adaptive critics (an extension of reinforcement
learning). In fact, many applications ihvolve combinations of one or
more of the methods listed above.'

In supervised control, a neural network learns the mapping from
input signals to desired control actions by adapting to a training set.
In inverse control, the neural network learns the inverse dynamics of a
plant without any symbolic description of the system. In neural
adaptive control, a neural network is used in a place of more classical
mappings. Backpropagation of utility and adaptive critics are two
general-purpose designs for optimal control using neural networks. In
both backpropagation of utility and adaptive critics, the user specifies
a qtility function or performance index to be maximized, or a cost
function to be minimized. Out of these methods, supervised control,
inverse control, backpropagation, or hybrid combinations of these are
most frequently used in robotic control. Almost all neural networks,
except the CMAC networks, which have been applied to robotic control are

feedforward multilayered networks.

A neurocontroller for autonomous underwater vehicle control was
built with a combination of the methods of inverse dynamic learning and -
backpropagation (Venugopal, Sudhakar and Pandya, 1992; Venugopal, Pandya
and Sudhakar, 1994). The objective of this controller was to make the
vehicle track, with minimum error, a desired trajectory related to
corresponding displacements of the angular velocities along three axes.
The neurocontroller was given a desired command signal concerning the
trajectory, after which it “learned” the inverse dynamics, without a
definition, of the vehicle to produce a correct control input. It is
reported that with this control strategy, the vehicle follows the
desired trajectory very precisely. 1In addition, Venugopal and his
coworkers presented an application of a learning algorithm called Alopex
in which weight updating is based on the system output error directly,
rather than using a transformed version of the error.

Another type of vehicle, the mobile robot, was also united with
neural net control in a Fujitsu laboratory in Japan (Nagata, Sekiguchi
and Asakawa, 1990). This four-wheeled robot was controlled by a special
multilayered neural network structure based on signals from twelve
sensors mounted on the robot. The network model was divided into two
subnetworks, named Reason Network and Instinct Network, connected to
each other by short-term memory units. This structure divides one
complex task into two, and with several mutual constraints it enables
the networks developed for different tasks to cooperate efficiently.

Other applications of neural network controls have been in the
area of robotic manipulators. An early and typical example of the

inverse control method was given by Miyamoto (Miyamoto, Kawato, Setoyama

10

and Suzuki, 1988). A neural network was used to learn the inverse
dynamics of a robot manipulator through backpropagation. After the
network was trained, it generated correct control signals to the
manipulator to perform spgcified actions. The learning rate was
reported as follows: “The performance by the neural network model
improved gradually during 30 minﬁtes of learning.” The reason that the
Miyamoto neural net is able to learn the inverse dynamics of this
manipulator in such a short time is that the dynamic relationship
between torques and behavior of the two-link robot arm, both forward and
inverse, are relatively linear. 1In ‘a general case involving more severe
nonlinearities, the training rate is expected to be significantly
slower.

Computational intelligence techniques have also been used
cooperatively with traditional AI expert systems in practice. A control
algorithm which combined a knowledge-based AI system and a CMAC network
for the control of a two-link robotic manipulator was published
(Handelman, Lane and Gelfand, 1990). The author realized that although
neural networks have proven to be very efficient in the learning
process, the training data, in general, must be supplied by an outside
operator who must also closely supervise the learning process. The
basic idea is that, while the neural net has sufficiently been trained
with examéles generated by the expert system, the neural network’s
ability to generalize is what makes it a good controller. In essence,
the learning process of this neurocontroller was supervised by a

knowledge base, rather than using inverse dynamic learning.

11

Another control algorithm for a robot manipulator used a CMAC
network as a compensator in a control system (Miller, Glanz and Kraft,
1987; Miller, 1990). The objective of this control system was to have a
two-link robot track desired trajectories, with the torques at the two
joints as control parameters. In this algorithm, a control signal is
generated by a fixed-gain feedforward controller. This signal is
combined with a compensation signal produced by a CMAC network. This
online learning algorithm was found to provide good dynamic performance
in complex situations.

Another example of the use of neural networks as compensators is
found in a differenf form (Ishiguro, Furuhashim, Okuma and Uchikawa,
1992). Based on the realization that generating examples for neural
network training may be different when the behavior of the plant is not
known and on the belief that neural networks perform best when they are
not required to learn very much, Ishiguro and his colleagues proposed a
new control strategy for a robotic manipulator. In this strategy, neural
networks are incorporated as compensators and are required to learn not
the inverse dynamics, but instead the structured and unstructured
uncertainties of the manipulator. These uncertainties are the principal
factors which degrade high-speed performance. Since the approximate
model of the manipulator can be derived, and model-based control can be
an effective approach to high-performance control, these researchers
chose to use a model-based control method with neural networks trained
to compensate for uncertainties. The “computed torque method” and a
method to obtain the “true teaching signals” were outcomes of this

research. The neural networks must only learn the compensations to the

12

computed torques. Learning, therefore, became simpler. However, this
algorithm was limited to those plants whose dynamic models are
relatively simple.

Reinforcement learning is another important controller training
technique. Neurocontrollers can be trained with supervised methods only
when ‘the correct control action examples are available. Unfortunately,
in many situations it is difficult to obtain these examples. On the
other hand, an index of performance can often be defined in a
straightforward manner and can be used to drive the reinforcement
‘learning process (Morgan, Patterson and Klopf, 1990; Wu and Pugh, 1893).
Examples of reinforcement learning algorithms were presented by
Gullapalli et al, 1994. Two neural networks were trained to perform two
tasks: peg-in-hole insertion and ball balancing. The results showed
that the trained neurocontrollers successfully performed these tasks.
The key to reinforcement learning is to specify the performance
evaluation function, by which the “error” of the neural net is computed
to provide guidance for weight updating.

Publications in legged locomotion and applications of neural
networks to robotic control are growing every day. Among these
publications, only a representative sample was selected as reference for
this study. In legged locomotion research, traditional approaches use
the process of inverse dynamics, which calculates the control parameters
required to perform a specified motion. Inverse dynamics gives
numerical, as opposed to analytical, results (Roberson, 1988; Asada,
1990). In general, a great deal of computation is involved. When

environmental conditions are unknown or variable, this approach becomes

13

unsuitable. Neural networks avoid the computations of inverse dynamics,
but instead learn from experience just as a human does. Although neural
networks have been used extensively in robotic manipulator controls,
their use in the control of legged locomotion has only recently begun.
Reasons for this slow development include greater complexity of the

control problems and the large amount of information to be processed.

14

SECTION 3
Uniped Dynamics
A software package was developed to simulate the dynamics of a
three-link uniped. Several issues concerning the dynamics of this model
are discussed in this chapter.

3.1 Why Two-Dimensional, Uniped, and Three-Link?

The purpose of this study is to investigate control strategies for
legged locomotion. As such, it is proper to begin with as simple a
model as possible without altering the essence of the locomotion
problem. A model as complicated as a three-dimensional (3D) human-like
robot is not suitable for this study in its first stage. Instead, a
two-dimensional (2D) model seems proper, since 3D locomotion can be
synthesized from a 2D model combined with a balance algorithm in the
third coordinate.

It has been reasoned in the first chapter that running is
basically a coordinated jumping problem. This means that the biped
model is an increment of the uniped model. A uniped control problem
includes the primary difficulties of the biped control problem if
running is the locomotion mode of interest.

Concerning the robot structure, a two-link mechanism is too simple
to generate legged locomotion. A four-link model is more humah-like,
but not as suitable as the three-link model to begin with because it
involves more control parameters and state variables than are necessary.
Experiments with a three-link robot indicate that such a robot displays
sufficient complexity worthy of consideration. The schematic of the

robot in Figure 3.1 shows that instead of having a human-~like

15

configuration, the three-link uniped looks rather like the rear leg of a
cat.

3.2 The Structure of the Robot in Simulation

As shown in Figure 3.1, the robot's body mass, represeﬁted by the
large circle in the figure, is lumped at the extremity of the top link.
Table 3.1 lists the kinematic and dynamic properties of the robot. For
the robot to jump, joint torques (at ankle and knee) are required.
Nonlinear torsion springs are used to model joint torques as well as

joint angle restrictions.

—
Fx f
Fy

Figure 3.1 Three-Link Uniped Robot

Table 3.1 Kinematic and Dynamic Properties of the Robot

Link L 1 m (Mass) Moment of Initial
(m) (m) (kg) Inertia (kg-m2) | Orientation (deg)
Foot 0.2 0.1 0.5 0.005 180
Lower Leg 0.4 0.2 1.0 0.040 20
Thigh (Body) 0.4 0.4 6.0 0.300 variable

16

The physical meanings of L and 1 are shown in Figure 3.2.

L -- length of a link;

1l -- dimension from the center of mass to the end pointed;

Ground impact and support are modeled with nonlinear extensional
springs which supply normal reaction forces and friction forces at the
time of surface contact. Surface compliance variability is accounted
for by changing the spring constants.

3.3 Equations of Motion

The three-link uniped robot and its motion can be described with a
set of differential equations. Figure 3.2 shows the free-body diagrams
for the robot’s links, and dimensional parameters. The values of L and
1l for each link are listed in Table 3.1. Those parameters not shown in
Figure 3.2 will be explained as they arise in the development of the
equations.

Among the forces, PX1, PY1l, PX2 and PY2 are reactive forces from
the ground acting on the foot, and FX1, FYl1, FX2 and FY2 represent
internal reaction forces at the joints. M1 and M2 are the torques
applied to the joints to implement the jump and to swing the links
during flight. Position and dimension measurements are represented by 6
1, 62 and 03 (orientations of the links) and 01, 02 and 03 (positions of

the mass centers for the three links).

17

L2

02

(Foot) (Lower Leg) (Thigh)

Figure 3.2 Forces and Dimensions of Each Link

From Newton’s second law, there arise the following equations:

a,1= (PX1+ PX2- FX1)/m
a,2 = (FX1- FX2)/m2

a 3=FX2/m3
a,1=(PY1+PY2~FY1)/m
a,2=(FY1+FY2)[m2

a,3=-FY2/m3

(-M1+((FX1- PX1)Sin6l +(FY1- PY1)Cos61)l1
+(PX2-Sin6l+ PY2-Cos61)(L1-11))
12

al =

18

(3.

(3.

(3.

(3.

1)

.2)

.3)

.4)

3)

6)

7)

(M1+ M2+ (FX1-Sin62 - FY1-Cos82)(L2 - I2)

+(FX2-Sin@®2 + FY2-Cos62)I2)
a2 = I (3.8)

_ —M2+(FX2-Sin63 - FY2-Cos83)I3

a3
I3

(3.9)

Relations between acceleration, .velocity, and position are

included in the following equation set:

al=dv.1/dt (3.10)
a2=dv,2/dt (3.11)
a,3=dv.3/dt (3.12)
al=av1/dt (3.13)
a,2=dv,2/dt (3.14)
a3=dv,3/dt (3.15)
v, 1=dxl/dt (3.16)
v.2=dx2/dt (3.17)
v.3=dx3/adr (3.18)
v,1=dyl/dt (3.19)
v,2=dy2/dt (3.20)
v,3=dy3/dt (3.21)
al=dwl/dt ©(3.22)
a2=dw/dt : (3.23)
a3 =dw3/dt (3.24)

19

wl=d6l/dt (3.25)
w2 =d62/dt (3.26)
w3=da3/dt (3.27)

Conditions of constraint at the joints are:

x1+11-CosOl = x2 - (L2-12)Cos62 (3.28)
y1+11-8Sin6l = y2 - (L2 -12)Sin62 (3.29)
x2+12-Cos02 =x3-13-Cos @3 (3.30)
y2+12-8Sin62 = y3-13-Sin63 (3.31)

Variables related to reaction forces from the ground to the foot

but not illustrated in Figure 3.2 are defined as:

X, = X1-(L1-11)Cosél
Y, =Y1-(L1-11)Sin8
X, = X1+11-Cos6
Y, =Y1+11-Sin6l
Ve =V,1-(L1-11)-@1-Cos8

Viea =V, 1+11-01-Cos

The reactive forces of the ground are:

PY1=0; ifY,,, 20
K(-1,.); ifY,.<0, &Vy,,>0 (3.32)
K(_Y;:)+nUVyheeI ’ itheel < 0’ & Vyheel < O

eel

20

PY2=0; if ¥, 20
K(-Y,.); ift,<0, &V, >0 (3.33)
K(-Y,)+t¥y,,; Y, <0, &Vy, <0

PXl:O: I:fY;l"IZO
e (3.34)
K(Xheel - Xoheel)+:quheel ; I.f Yheel <0
PX1=0; ifY,, >0
. (3.35)
K(Xtoe _Xotoe)+ ﬂthoe; I.fYtoe <O
where:
Xoheel-: Xheel

at the instant when the heel touches the ground, and

Xotoe = Xtoe
at the instant when the toe touches the ground; The surface condition
is described by constants K and u, which can be varied to reflect

different ground conditions.

3.4 1Isolation of a Single Step Jump

The condition for continuous jumping is that at the end of a
current jump, a proéer landing configuration in terms of kinetics and
position must be achieved in order to begin the next jump. This
configuration includes linear velocity, orientation, and angular
velocity for each link. To begin, an isolated jump is considered as a
mathematical function. The inputs to this function are the initial
configuration and joint torques. The outputs are the jump height, jump
distance, and landing configuration. The term “initial configuration”

also includes velocity, orientation, and angular velocity for each link.

21

Input: Output:

Initial —> —= Jump Height

Configuration Jump DisFance

and Torques and Landing
Configuration

Figure 3.3 Robot Function: Input and Output

Jump height is measured as the vertical position of the center of
mass when the robot’s center of mass reaches its highest point in the
trajectory. Jump distance is defined as the advance of the robot’s mass
center between take-off and landing. The landing angle, defined as the
angle between the straight line connecting the foot center to the mass
center and the vertical, must fall within a specified envelope (Figure
3.4). The angular momentum of the robot during flight is also
controlled to prevent excessive rotation, which could lead to
somersaults; and also to make it possible for the landing angle to fall
within the specified envelope. The control parameters consist of joint

torques and the initial configuration of the robot.

-

center W L
of mass

Figure 3.4 Landing Body Angle

s 22

3.5 Decomposition of a Single Jump

' A single jump can be thought of as occurring in two phases.
During the support phase, the foot is in contact with the ground and the
‘Jjoint torques are exerted to move the body into a crouch position for
the jump. Large joint torques are then exerted to initiate the
ballistic phase. During the ballistic phase, there is no interaction
between the robot and the surrounding environment (air resistance is
ignored); thus, due to the law of conservation of momentum, there is
nothing the robot can do to change its overall motion, such as jump
height and angular momentum (This will be discussed further in section
3.7.). As an analogy, when a baseball is thrown, not only its flight
height and angular momentum, but also its flight distance is determined
at the moment it begins the flight process. However, the problem of the
jumping robot is not identical to the flight of the baseball because a
robot has a changing radius from the center of mass to the point at
which it contacts the ground, due to the changing of its link
configuration. Therefore, different swing motions of the links may
result in a slight difference in jump distance. The purpose of the
swinging motion during the ballistic phase is to maneuver its links into
place for ianding. This can be accomplished with a single set of joint
torques at the apex of the trajectory if the objective of ballistic
control is simply the proper landing position. Otherwise, it can be
éccomplished with a sequence of joint torques if the objective is a
specified sequence of positions along the trajectory for the purpose,

for example, of avoiding obstacles.

23

3.6 Simplification of the Problem

In order to start with as simple a model as possible, the initial
configuration of a single jump can be such that the initial velocity and
angular velocity of each link are zero. A further simplification is made
by fixing the initial orientation of the two lower links (see Table
3.1). Thus, the number of control parameters is significantly reduced
(Once this simplified case is completely solved, the continuous jump can
be addressed by releasing constrained parameters included in the initial
configuration of the single jump.). The thigh orientation is retained
as a control parameter to allow the robot to control the initial
placement of its center of mass with respect to is foot. The other
control parameters are the initial joint torques, and torques during
flight. Since the robot cannot change its linear and angular momentem
values during the ballistic phase, its gross motion is basically
. determined by initial torques and initial thigh orientation.

Initially, a simple PD (Proportional and Derivative) controller is
used to control the body configuration during the ballistic phase. The
PD controller responds to desired joint angles and generates a sequence
of joint torques to achieve these angles. It is assumed that the PD
controller can reach the objective with satisfactory precision (Kuo,

1991). The PD controller can be described as

Torque = K(6, — 6.) - ub’ (3.36)

where 6; is the desired angle, fr is the current angle, 8’ is angular
velocity, K is the gain of the proportional term, and -u# is the gain of

the derivative term.

24

At this point there are two initial torques, one thigh
orientation, and two landing joint angles (or two more joint torques,
since they are interchangeable), for a total of five control parameters.
Some "good" jumps generated through a trial-and-error process have shown
that the described control parameters are sufficient to allow the robot
to jump. 1In fact, in some situations, this set of control parameters
contains redundancy, leading to multiple solutions to the control
problem.

3.7 Angular Momentum and Its Significance

The variation of the thigh orientation supplies flexibility in
positioning the mass center at the beginning of a jump. This is one way
to adjust the angular momentum, which is determined as the integral of

the product of moment about the center of mass, and time:
H= I(g(t)-L,(z)-Fy(z)- L (1))dt (3.37)

Figure 3.5 illustrates the physical meaning of the variables in equation
(3.37).

As a description of the rotational motion of a multibody, angular
momentum, by definition, is the product of the moment of inertia and the
angular velocity about the same axis. 1In the case where angular
momentum is constant, i.e., in the ballistic phase, increasing the
moment of inertia results in a decrease in angular velocity, and vice
versa. The performance of an ice skater provides an explanation of this
principle. A skater turns faster when he decreases his moment of
inertia by drawing his legs and arms close to the body. Conversely, he
turns slower when he stretches out his legs and arms. It should be

noted that for the problem at hand, the range of variation in moment of

25

inertia is limited, therefore the variation in body angular velocity is

also limited.

center
of mass

—] —
Fyl

Figure 3.5 Factors of Angular Momentum

20

SECTION 4
Neural Networks

4.1 Multilayered Neural Networks with Backpropégation Learning

In general, a neural network consists of highly intergonneqted
processors called neurons which perform very simple operations. 1In a
multilayered feedforward neural network, the processors are logically
arranged in two or more layers, an input layér and an output layer, each
containing at least one neuron. Usually, there are also hidden layers
located between the input and output layers. A neuron receives outputs
of neurons in the preceding layer and combines them in a weighted sum.
Figure 4.1 shows the structure and principle of a single neuron, where
f(x), called the activation function, provides a nonlinear mapping of

the input sum to a fixed-range output.

output y

Figure 4.1 Schematic of a Neuron

The output of each neuron is a function of the weighted sum of
that neuron's inputs. A neuron in the input layer, which does not have
a preceding layer, simply transmits the input value unaltered. 1In
addition to the N inputs, a neuron also has a bias signal. The neuron’s

output y5 is expressed as

27

N-1
y,=f(Cxw,+b)) (4.1)
i=0

where (x5, i=0,1, ..., N-1} are inputs, {Wji' i=20, 1, ;.., N-1} are
synaptic weights, and bj is the bias of neuron j.

The activation function can be linear or nonlinear. A traditional
and popular activation function is the logistic function

1
1+e™*

f(x)=

(4.2)

where x represents the weighted sum of the neuron outputs from the
preceding layer as computed by the neuron.

For a multilayered neural network, network inputs are passed to
each neuron in the first layer, called the input layer. The output of
the input layer is proéessed by the subsequent hidden layer and passed
on to the next layer. In this way the signals are processed until the
output layer generates the network outputs. The activations of all
output-layer neurons are computed in one deterministic pass. Figure 4.2

illustrates the hierarchy of a three-layer neural network.

input hidden output
layer layer layer
inputs \/’“\ /’“\ /’“\ outputs
V4

Figure 4.2 A Three-Layer Neural Network

The nonlinear mapping of a neural network depends on both the

activation function and the weight matrix. The training algorithm of a

28

neural net is then the adjustment of weights subject to certain rules.
The widely used backpropagation algorithm provides a gradient-descent-
based procedure for training a multilayered network. The network is
first initialized with random weights and the input signals are fed
through the network. The output errors, defined as the differences
between the desired output values for the input, and the actual network
output values} are typically large for a randomly initialized network.
The errors are backpropagated through the network to correct the weight
values so that output errors are reduced. When the input-output pattern
p is presented, the error is computed as:

E =

) Z(t‘w.—ol,,.)2 (4.3)

lN—l
25
where ?pi represents the ith component of the desired output vector,

while Opi is the actual output generated by the ith output neuron. The

index 1 ranges on the number of neurons in the output layer. The total

error for all input-output patterns is:

E=ZE,, (4.4)
p

To perform a gradient descent in E, it is sufficient to correct
the elements of the weight matrix by using the following rule (Masters,

1993):

Aw,=né 0, (4.5)
where 7 is a real constant, called the learning rate, which determines

the rate at which the weight matrix changes; 8,5 is the error due to the

o]

pth pattern, associated with the jth neuron; and Opi is the output of

29

the itﬁ neuron in the preceding layer of the given neuron, when the pth
battern is processed by the neural network. When the learning phase is
implemented, the backpropagation algorithm minimizes the square of the
differences between the desired and the actual network output va;ues
summed over the output neurons and all pairs of input-output training
patterns.

It has been proven that when a backpropagation network trained to
model ordinary differential equations is given a proper learning rate,
the training process will converge (Kuan and Hornik, 1991). However, an
analytical result of a study of gradient-based learning, which is the
basic learning rule of backpropagation, has shown that this learning
algorithm is difficult and complex (Wang and Malakooti, 1993). The
studies pgrformed by Eaton and Oliver (1992) and Sundararajan et al.
(1993) show the relationship between learning coefficients and the
training data size.

4.2 CMAC Networks

In the mid 1970’'s, a new type of artificial intelligence technique
called Cerebellar Model Articulation Controller (CMAC) was proposed
(Albus, 1975). However, it was not until the late 1980’s that
researchers began to apply the CMAC network to control problems. Unlike
neural networks in a narrow sense, the CMAC contains no neurons.
Instead, the CMAC models the mathematical concepts of how the cerebellum
structure inputs data, how it computes the addresses where the control
signals are stored, how the memory is organized, and how the output

control signal is generated. The CMAC also has the properties desired

30

for an intelligent controller, such as incremental learning,
generalization, nonlinear mapping, and parallel processing.

In fact, CMAC is a table look-up algorithm which models nonlinear
functions, f(s), where s is a discrete input state vector of dimension
N. This computation scheme is illustrated in Figure 4.3. From the
left, each input point in the input state space S maps to C locations in

associative memory A.

\ \ —>F(S1)
Lo
?
F(S2)
/ F(S3)

vIA A’

Figure 4.3 CMAC Mapping

The constant C is called the generalization parameter. 1In a basic
mapping procedure, the output of the CMAC is generated by summing the
values.of each location in A. 1In practical problems, the size of A is
usually too large to be implemented, even for a problem of very small
size. For example, a three-input problem, with each input element
divided into 100 units, has the size of A ét 1003, or a total of 10°

locations! On the other hand, the number of points in S encountered in

31

a practical control problem is typically much smaller. Therefore, a
uniform random mapping of logical memory A into a smaller physical
memory A’, called hashing, was implemented. After the A —» A’ hash
coding procedure, the output of the network is computed by summing the
values of the C cells in the physical memory A’.

The size of A’, expressed as L., should be chosen properly such
that it is not too large for a common computer, while at the same time
it is able to contain all the cells mapped from A. Given a good hashing
function, ILp can be selected such that mapping collisions are limited.
When collisions occur, they do not decrease the designed generalization
ability, but rather yield undesired generalization among points in the
state space which are not in the same neighborhood. The effect of
collisions is identical to the existing problem of learning
interference, which is handled by iterative data storage (Albus, 1975).
The undesired generalization between distant points can be overcome by
properly selecting C in such a way that C << Lp. When C < 0.01LQ, the
effect is very slight. When C < 0.001L,;, the undesired overlap is
practically eliminated.

Overlaps, on the other hand, are a necessary characteristic of the
S — A mapping process. Each point in S corresponds to C locations in A
and thus A’. Two points in A are considered far from one another when
the distance between them is greater than C. They are near if the
distance is smaller than ¢, in which case there will be an overlap
between the two corresponding sets of memory locations in A. The size
of the overlap depends on the distance from one point to another. The

closer two points are in S, the greater the overlap. The extent of

32

generalization within the state space is determined by the parameter C,
as illustrated in Figure 4.3.

The nonlinear representation ability of CMAC lies in the $ —» A
mapping, rather than depending on nonlinear activation functions as in
traditional neural networks. Since the output of the CMAC is simply the
linear sum of the values in the C locations in A’, the learning process
is simply to distribute the error evenly to these locations and to
adjust the values in all C weights. Suppose that a number of training
sets are available, and that each set contains an input vector and a
desired output vector. 1Initially, when the CMAC has not been trained,
its outputs are far from the required outputs. If f(s;) indicates the
computed output of the CMAC and T, the desired output, then the
correction value § which must applied to each of the C weights is

calculated as:
8= (T, (S,))/C (4.6)

where f is the learning rate, which ranges from 0 to 1. This is known
as the least-mean-square (LMS) rule. Each weight is incremented by 4.
Usually, B is smaller than 1, and the training process will be a
repeated weight adjustment algorithm. When the maximum error falls
below a specified tolerance level, the network is considered trained.
CMAC is more and more used in controls engineering because of its
capabilities in local generalization, nonlinear representatiqn, and fast
learning. The interpolation limitations of CMAC are analyzed by Brown

and his coworkers (Brown et al, 1993).

33

SECTION 5
System Architecture and Approaches to Uniped Control

5.1 The Biped Controller

Figure 5.1 shows the multilayered architecture controller for a
biped robot. At the lowest level are two uniped controllers, each
controlling a single leg. The biped coordinator schedules the legs as
well as compensates for the presence of two legs. The motion planner
generates motion plans for the legs with inputs from a navigation plan
and environmental inputs. The motion plans are transmitted to the
appropriate uniped controller via the biped coordinator. Finally, the

navigator generates navigation plans based on locomotion objectives.

Navigator

Motion Planner

Biped Coordinator

Uniped Controller Uniped Controller

Figure 5.1 Biped Locomotion Controller Architecture

5.2 The Uniped Controller

A diagram of the uniped controller is shown in Figure 5.2. The
control parameters are denoted as TO, Tl, and ®, where T0 and Tl are
the joint torques, and @ represents the initial orientations of links
(currently only the.thigh link). The jump-off controller is responsible
for generating the required jumping heightvand distance. It also

controls the in-flight body angular momentum, which becomes important

34

when the robot plans before landing to prepare itself for the next jump.
To accomplish its tasks, the jump-off controller orients the robot
properly at the beginning of the jump and applies the appropriate joint
torques over a fixed duration during the support phase.

The in-flight configuration controller, on the other hand,
coordinates the positions of the links to avoid obstacles as well as to
prepare the robot for landing. The “correct” in-flight body
configuration is generated by the motion planner as a series of desired
position configurations at discrete points during flight. The desired
configurations at other times are linearly interpolated among these
discrete points. The control signals issued by the in-flight controller
are the joint torques at periodic control points.

The switchover from the jump-off controller to the in-flight
controller is done at the instant the foot leaves the ground completely.

- This can be accomplished by a simple gating controller.

Jump-0ff |[TO,Tl, @
_
Desired Controller
Hgight, Gating
Distance, Controller]
Angular _ >
Momentum In-Flight

Controller T0,T1

Figure 5.2 Uniped Controller Architecture

35

5.3 Approaches to Uniped Control

This study investigates several approaches to uniped control.
Section 6 investigétes various neural network approaches, Section 7
investigates a self-organizing multiagent cerebellar model, and Section
8 investigates a modular fuzzy-neural approach. The approaches are
summarized here and described in detail in the following sections.

The first approach in Section 6 uses a single back propagation
neural network to learn both the three jump-off control signals and cne
set of in-flight 'swing torques' which are applied at the top of the
trajectory. The objective is to produce jump-off signals which will
achieve the desired height, distance and angular momentum and at the
same time produce swing torques which will result in a proper landing
configuration. The second approach in Section 6 uses a CMAC neural
network for the jump-off controller and a separate PD controller for the
in-flight stage. The control signals issued by the PD controller are
joint torques at periodic control points along the in-flight trajectory.
Section 7 proposes a new self-organizing multiagent cerebellar model
which is targeted to learn the control signals to achieve the objectives
of both the jump-off and in-fight stages. In-flight signals are
generated for one or possibly more control points along the trajectory.
Section 8 uses a modular approach with separate controllers for the
jump-off stage and in-flight stage. A self-organizing fuzzy-neural
controller is used for jump-off control, and a CMAC-based controller is
used for in-flight control. The in-flight controller learns control

signals for each time step in the trajectory.

36

SECTION 6

Experiments in Neural Network Uniped Control

6.1 Training of BP Neural Networks

A th#ee—layered backpropagafion neural network was built as the
uniped controller for two purposes: (1) to develop the appropriate
topology; and (2) to determine the appropriate training parameters. The
numbers of neurons in the input and output layers are determined by the
problem, while the number of hidden neurons is determined by empirical
rules or by trial-and-error. The rule-of-thumb for the selection of
hidden neurons is that the more complex the input-output mapping is, the
more neurons should be used (Masters, 1993).

At the beginning of the investigation, the neurocontroller was
trained with several algorithms. Following the traditional training
algorithm, an attempt was made to generate a number of "good" jumps by
means of a trial-and-error procedure. After a number of such example
jumps was generated, the training of the neural net appeared difficult.
Believing that a three-layer neural net could model this mapping, and
following the rule concerning the number of hidden neurons (Masters,
1993), the size of the network was increased to extend the capacity of
the system, but the results were still unsatisfactory.

To avoid the cost of training a large network, the network was
then broken intoc five smaller networks (A complete jump requires five
control signals; see section 3.6.), each for one control parameter, in
the hope that training would be easier and faster. Surprisingly, the

results remained the same. The lack of convergence during training was

37

traced to the high degree of complexity of the control problem. After
the relationship between the control parameters and the jump quality
parameters was carefully investigated, it was realized that the control
problem was underconstrained, and therefore the solution was not unique. .
Neural networks by their nature cannot learn an inverse mapping if the
inverse is not uniquely defined.

The training process was then altered to online reinforcement
training, due to the fact that reinforcement learning does not require
pregenerated examples but instead begins arbitrarily from a point in the
control parameter space and follows a single path to the solution. The
key to applying reinforcement learning is to define a performance index
(PI) function to maximize, or equivalently, to minimize a cost function.
For the jump-off controller, the cost function was defined as the scalar
error (SE) of a jump, which was measured as a weighted Euclidean

distance between the desired jump parameters and the actual values:

SE = Wy Ey) + WpEp) + (W,E,)’ (6.1)

where the W terms are weights applied to the errors according to their
relative importance, and the E-terms represent the errors in jump
height, jump distance, and angular momentum.

In order to make the problem as simple as possible, Wy and W, were
set to zero, making the jump height the single control objective.
Accordingly, the subset of control parameters of interest consists bf
the thigh orientation and the joint torques at jump-off. The control
problem is then underconstrained. The key to this approach is to start
from a single point and then extend it in two opposite directions. Thus

the training follows a single path instead of a multivalued function.

38

Normally, training a neural net with the backpropagation algorithm
results in the minimization of the scalar output error (SE). 1In
reinforcement training, the input to the neural net is the jump height,
and the output is the control parameters. There are no target, or
desired, control parameters available for comparison to the actual
output. Theoretically, as the controller generates correct signals, the
gradients of the actual jump height with respect to the signals are
‘minimized to zero. 1In other words, the minimization of SE (SE=0) is
equivalent to setting the gradients of SE with respect to the control

parameters equal to zero:

5’SE_O . 2
fz. (6.2)

1

It should be noted that the gradients are computed using only
local information. As such, the training algorithm searches out.the
first solution path and follows that path to the exclusion of others.
To obtain gradient information, each control parameter is repeatedly
perturbed by‘a small amount with the gradients approximated as follows:

OSE 6 SE,
dz, ~ 6z,

(6.3)

where 8z; is the perturbation in control parameter z; and dSE; is the
resulting variation in SE. Four simulations are required to generate

the gradients at a single point. This training algorithm is shown in

Figure 6.1.

39

Controller Simulation

Control
Parameters

Hl

>

Gradient

Reinforcement Training Algorithm

Figure 6.1

Training results for two different network topologies are shown in

Table 6.1. The first two controllers were trained for a single jump

height. The last controller was trained for three jump heights.

Table 6.1 Reinforcement Training Results

Controller # Hidden Neurons Jumping Height(s) (m) Final Error
1 15 - 0.9 0.0890"
2 20 0.9 0.0017
3 20 0.7, 0.9, 1.1 0.0780

After training,

desired heights of 0.868 m and 1.157 m.

controller 3 was used to generate two jumps with

The results are listed in Table

6.2. Figure 6.2 illustrates the robot dynamics during the generated

jumps.

height.

40

These are in fact "half" jumps because the only goal is the jump

Table 6.2 Test Jump Parameters and Results Comparison

Desired Actual Error
Height (m) Height (m) (%)
0.868 0.901 3.7
1.157 1.243 7.4

DD Q/Q‘\@

(a) (b)

Figure 6.2 Jumps Generated by Trained Neurocontroller

(a) Desired Height 0.868 m, Actual Height 0.901 m

(b) Desired Height = 1.157 m, Actual Height 1.243 m

Although training results show that the gradient-based
reinforcement training with one object works reasonably well, further
experiments showed that this training procedure does not scale up well
for multiple control objectives. For a non-zero Wp (inclusion of jump
distance as the‘second control objective), it was observed that once
the error is reduced to a certain level, the errors E;, and E; increase
and decrease alternately, resulting in oscillations in SE about an
unacceptably large value. The reason for these oscillations is that
with respect to some of the control parameters, the gradient of H is
positive while the gradient of D is negative, and vice versa. This is
the principal difficulty in applying gradient-based reinforcement
learning to multiobjective control. Another drawback is that this

training algorithm requires the running of the robot simulation several

41

times in each iteration, which is very time consuming. A large scale
multiobjective problem is highly impractical.

Therefore, off-line training was resumed. A further analysis of
the jump procedure revealed that if a jump is divided into phases
associated with separated controllers, as presented in section 3.5, then
the training of a jump-off controller for the first phase requires only
three control parameters. However, this training procedure, even though
it leads to convergence, also proved too time consuming to be practical.
At this point, the research was directed to searching for a more
suitable learning technique.

6.2 Training of CMAC Networks

After further analysis of the control problem, a new control
strategy was developed which uses a CMAC controller for.the jump-off
phase of the stride and a PD controller to control the movement of the
leg during flight. The PD controller is described in Section 3.6. A
CMAC network package was developed to be trained as the uniped jump-off
controller. A set of jump examples was generated which includes three
control parameters corresponding to the two jump torques and the
orientation of the thigh link, and three kinetic parameters
corresponding to jump height, jump distance, and body angular momentum.
In order to reduce the time spent on generating examples, the three
kinetic parameters were computed once the robot left the ground, rather
than obtaining them from simulations of the entire jump. It was
reasoned in Chapter 3 that the jump height and angular momentum can be
calculated exactly in this way, while the computed jump distance might

be slightly different from the actual jump distance. In general, jump

42

requirements will emphasize jump height and angular momentum, while
ignoring slight discrepancies in the jump distance. The three desired
jump parameters and the three control signals form a three-to-three
mapping, with no redundancy. A heuristic proof is based on the
observation that jump height, jump distance and angular momentﬁm are
orthogonal to one another, and that the three control signals are also
independent.

Three training runs were conducted with CMAC generalization
parameters (expressed as C in section 4.2) of 160, 320 and 480. After
training, the controller was tested with a point in the input space not
included in the training set. Table 6.3 lists the kinetic performance
for the test cases. It is clear that the generalization parameter C
plays an importgnt role in CMAC training. After 200 iterations, for
C=160, the maximum relative error was 8.3% for the body angular momentum
parameter. For C=320 and C=480, the maximum relative error became 2.3%
and 2.2%. Training was also very fast; 200 iterations took only minutes
on a.50 MHz 486 computer. Further training improved accuracy for the
case of C=160 to 6.4%, while it did not improve for the other two cases.

Table 6.3 CMAC Training Results

Jump Jump Angular Maximum Iterations
Height Distance | Momentum Error Used
Desired 0.820 0.500 0.500
=160 0.819 0.510 0.532 8.3% 200
c=320 - 0.819 0.500 0.511 2.3% 200
Cc=480 0.821 0.498 0.489 2.2% 200

43

6.3 A Comparison Between CMAC and BP Neural Networks

Training runs similar to those described in the previous section
were performed on a CMAC network and a BP neural network with 30 hidden
neurons. CMAC training with 400 iterations required several hours on a
50MHz 486 computer to reach convergence. In contrast, the BP network
took ‘more than 20,000 iterations, lasting two days on the same machine,
to achieve convergence. Table 6.4 lists the performance comparison for
two test jumps. It is obvious that the performance of the CMAC is
superior to that of the BP network both in terms of training time and
training accuracy. Thus the conclusion was reached that CMAC is more

suitable for locomotion control.

Table 6.4 Comparison of Performance Between Backpropagation and CMAC

(C=160)
Jump Jump Angular Maximum- Iterations

Height Distance Momentum Error Used

Desired 0.920 0.500 0.500
BP 0.920 0.489 0.567 13.4% 5,000
BP 0.916 0.506 0.498 1.2% 20,000
CMAC 0.920 0.503 0.474 5.6% 33
CMAC 0.920 0.502 0.502 0.4% 433

Desired 0.950 0.600 0.480
BP 0.948 0.609 0.496 3.3% 20,000
CMAC 0.945 0.588 0.483 2.0% 433

6.4 CMAC Generalization Parameter and Hash Coding

The total number of weights utilized in a mapping also depends on
the generalization parameter C and the method of selecting the C weights
to be updated for generalization purposes. We use the original method
proposed by Albus (Albus, 1975). We discovered that this method results

in an interesting anomaly. In the normal scale of C (C is smaller than

44

the number of discrete points in one coordinate of the input space), the
larger C is, the more overlap there is in the mapping and the fewer will
be the number of regarded locations in the associative memory. This is
in direct opposition to intuition. As an example, for a simple two-
input problem with a resolution of 1.0 and a range of [0,5] for both
inputs, with ¢=1, =2, and =5, the S5-to-2 mapping and logical memory
address are listed in the following tables (Table 6.5, 6.6 and 6.7).
These tables give different mappings to the logical addresses of the
values 0, 1, 2, 3, and 4 in both of the two input elements. Table 6.8
lists the combinations of these addresses in the locations in the
associative memory. 1In Table 6.8, the addresses from 00 to 44 (in
total, 25 locations) are used when C=1; addresses 00, 02, 04, 11, 13,
15, 20, 22, 24, 31, 33, 35, 40, 42, 44, 51, 53, and 55, (in total, 18
locations) are used when C=2; addresses 00, 05, 11, 16, 22, 27, 33, 38,
44, 50, 55, 61, 66, 72, 77, 83 and 88 (in total, 17 locations) are used
when C=5. As C gets larger, the

We have recently found in the literature a method which selects
for update weights which are more evenly distributed (Parks and Militzer
1991). Future studies should investigate whether the Parks and Militzer

method provides more accurate generalization.

Table 6.5 Mapping from Input to Logical Address (C=1)

Value | O 1 2 3 4 5 6 7 8 Logical Addresses
0 1 0 0 O 0 0 0 0 0 0
1 0 1 0 O 0 0 0 0 0 1
2 0 0 1 0 0 O 0 O 0 2
3 0 0 0 1 0 0 0 O 0 3
4 Q 0 0 O 1 0 0 0 Q@ 4

45

Table 6.6 Mapping from Input to Logical Address (C=2)

Value | O 1 2 3 4 5 6 7 8 Logical Addresses
0 1 1 0 0 0 0 0 0 0 01
1 0 1 1 0 0 0 0 0 0 21
2 0 0 1 1 0 0 0 0 0 23
3 0 0 0 1 1 0 0 0 0 43
4 0 0 0 0 1 1 0 0 0 45

Table 6.7 Mapping from Input to Logical Address (C=5)

Value | O 1 2 3 4 5 6 7 8 Logical Addresses

0 1 1 1 1 1 0 0 0 0 01234
1 0 1 1 1 1 1 0 0 0 51234
2 0 0 1 1 1 1 1 0 0 56234
3 0 0 0 1 1 1 1 1 0 56734
4 0 0 0 0 1 1 1 1 1 56784

Table 6.8 Addresses in the Associative Memory

Inputs c=1 Cc=2 C=5

00 00 00 11 00 11 22 33 44
01 01 02 11 05 11 22 33 44
02 02 02 13 05 16 22 33 44
03 03 04 13 05 16 27 33 44
04 04 04 15 05 16 27 38 44
10 10 20 11 50 11 22 33 44
11 11 22 11 55 11 22 33 44
12 12 22 13 55 16 22 33 44
13 13 24 13 55 16 27 33 44
14 14 24 15 55 16 27 38 44
20 20 20 31 50 61 22 33 44
21 21 22 31 55 61 22 33 44
22 22 22 33 55 66 22 33 44
23 23 24 33 55 66 27 33 44
24 24 24 35 55 66 27 38 44
30 30 40 31 50 61 72 33 44
31 31 42 31 55 61 72 33 44
32 32 42 33 55 66 72 33 44
33 33 44 33 55 66 77 33 44
34 34 44 35 55 66 77 38 44
40 40 40 51 50 61 72 83 44
41 41 42 51 55 61 72 83 44
42 42 42 53 55 66 72 83 44
43 43 44 53 55 66 77 83 44
44 44 44 55 55 66 77 88 44

46

Another important factor affecting CMAC performance is hash
coding. The purpose of hashing is to minimize the use of physical
memory so that the implementation of CMAC becomes practical. Hashing is
essentially a many-to-few mapping. Unlike a general purpose random
number generator whicﬂ generates a sequence of pseudo-random numbers
given a seed, a hashing function generates uniformly distributed random
numbers in a given range, fed with seeds distributed in any way in the
input space. Table 6.9 shows the results of distribution quality tests
conducted for the hashing function used in CMAC implementation. The
term “times” represents the number cf times a point appeared in the
output space during the mapping from the given seed (input) space. This
table shows that the quality of the hashing function is usable, even
though not ideal, especially in mappings from a large space to a space

with a size of about 10,000.

‘Table 6.9 Quality Test of the Hashing Function

Seed Space Output Space Maximum Minimum Mean
Size Size Times Times
10,000 10000 2 0 1
100,000 10000 13 8 10
1,000,000 10000 127 84 100
10,000,000 10000 1226 908 1000
100,000 1000 103 97 100
1,000,000 1000 1014 972 1000

Comparisons were made between straight access and hashing access
to weight memory in CMAC training. Table 6.10 shows the result after
learning a four-fold parity using two different accesses. 1In the case

where the memory size is sufficiently large, there was no difference in

47

the number of iterations; however, when memory size was reduced so that
hashing became necessary, the number of iterations required to reach a
This experiment proves that the cost of using

given accuracy increased.

hash coding is in learning accuracy and training time.

Table 6.10 Results of Learning Parity with Two Accesses

(o) Size of Learning Iterations Max Error

Weight Space Rate Used
Straight 4 10000 0.6 7 0.000983
Hashing 4 10000 0.6 7 0.000983
Hashing 4 100 0.6 18 0.000911

The results of learning the function z=sin(x+y) with different
sizes of physical memory, listed in Table 6.11, reveal that it is
improper to seiect a memory size larger than necessary (L,=5000).
limited by

Also, it is seen from this table that learning accuracy,

collision, becomes unacceptably low when memory size is too small

(La=500).
Table 6.11 Results of Learning the Function z=sin(x+y)
Generalization Size of Weight Learning iterations Maximum
Parameter C Memory Rate Used Error
5 5000 0.6 17 0.009424
5 1000 0.6 17 0.009424
5 500 0.6 200 0.012200
5 500 0.6 300 0.012210

6.5 Conclusions

The CMAC network has exhibited some important and beneficial

48

features during the experiments performed in this study.

Specifically:

1. It has the ability to learn arbitrarily nonlinear functions
without the mathematical expressions of the function;

2. CMAC training is much faster than BP training because the
number of computations grows only linearly with the numbervof
system state variables, as shown in section 6.3;

3. Since the CMAC is essentially a kind of lookup table, a hashing
technique can scale a large input space associated with complex
problems down to a practical physical memory space;

4. The measure of local generalization is adjustable through
variation of that generalization factor. 1In regions of the
input space which are relatively linear, interpolation may
still suffice for very sparse data sets, provided the
generalization factor is selected properly.

The jump-off controller is used with three inputs corresponding to
the desired jump height, jump distance, and body angular momentum, and
three outputs corresponding to the two joint torques and the orientation
of the thigh link. The link configuration controller has six inputs
corresponding to the sizes, velocities and accelerations of the two
joint angles, and two outputs corresponding to the two torques.

Although this study deals strictly with the uniped controllers at
the bottom of the hierarchy, the uniped controller is currently being
trained and fine-tuned for single jumps responding to jump behavior
requirements within a specified range.

With respect to continuous jump control, additional effort is
needed to investigate the control strategy of the transition phase,

which is the connection of:-one step to the next. As analyzed in Chapter

49

3, the quality of a continuous jump depends on the landing configuration
and the properly selected angular momentum for take-off according to the
stipulations for jump distance and jump height.

Instead of the simple Pp-controller used in this section, an
intelligent controller is necessary for the ballistic phase so that
preconditioning of the transition phase will be more controllable. To
develop a ballistic controller using the techniques of this section a
prohibitively large amount of data representing the performance of the
robot in air is needed for training. The next two chapters develop
alternative techniques which reduce or eliminate the need for

precomputed training examples.

50

SECTION 7
Mac-J: A Self-Organizing Multiagent Cerebellar Model For Fuzzy-Neural
Control Of Uniped Locomotion
This section describes a novel approach for developing a
fuzzy-neural controller for both the jump-off and in-flight éhases of
uniped locomotion. The major contribution of this work includes:

(1) the one-to-many cardinality was determined between desired
jump measures and jump control parameters for full-degree take-off
freedom and full jumps; and

(2) a self-organizing multiagent cerebellar model, MAC-J, is
proposed and developed such that it can learn and control full jumps
with full degree take-off freedom.

MAC-J is unique in two aspects. Theoretically, it introduces
multiagent distributed AI (DAI) concepts into intelligent control and
presents a coordinated computational intelligence (CCI) approach to
legged locomotion. Technically, it bridges a gap between complex motion
equations and high dimensional fuzzy-neural control with four common
sense "cerebellar" laws; it emulates human and animal locomotion
learning with associative memory aggregation and reorganization; and it
is generic, time- and storage-efficient, and ideal for microelectronics
design/manufacturing. MAC-J has been implemented in software and was
successfully tested with four different uniped simulations. Test
results show that, starting with a given jump example (assisted jump),
MAC-J can enable a uniped to learn different jumps quickly with a
learning, tuning, and brainstorming process. The result is being

evaluated by NASA-JSC for a possible patent.

51

Technical details of MAC-J have been presented at the group
meeting in May with NASA personnel and fully reported to the Automation
and Robotics Division at NASA Johnson Space Center. Since this work is
being evaluated for a possible patent by NASA, only general ideas are
discussed in the following:

Step 1. Agent-oriented decoﬁposition:

Corner parameters are identified in this step to achieve a one-to-
one mapping based on the three take-off configuration parameters: ql,
g2, and g3. Given initial (temporary) minimum and maximum values for qi,
i =1,2,3, corner agents are identified. A corner agent is a fuzzy-
neural controller responsible for locomotion control in its subspace,
named a corner. A cornered-space is a subspace within the originally
unknown control space. Any pair of adjacent agents in a cornered-space
must meet the certain neighborhood conditions.

Step 2. Agent tuning with learning by practicing:

Each individual agent consists of a lookup table associative
memory [Albus, 1975], an indirect fuzzy controller interface [Brown and
Harris, 1994), and a BP (backpropagation) neural network [Rumelhart and
McClelland, 1986]. The numerical associative memory is for efficient
adaptive and incremental learning, the fuzzy controller is for
linguistic inversion of the associative memory and interface purposes,
and the BP neural net (optional) can be used for fuzzy-set fine-tuning.
The fuzzy controller is used as a local interface due to its "white-box"
property (each local agent needs to know its functional limits). To
meet the neighborhood conditions, associative memory elements are fine-

tuned with two converging functions. The two equations form a key for a

52

learning by practicing process. Given a single jump example, the
process can generate and fine-tune associative memory elements to
desired similarities for all eight corner agents. It should be remarked
that, with the agent-oriented approach, the number of examples required
by each agent is extremely small. With a small number of fine-tuned
examples, a fuzzy controller [Wang and Mendel, 1992]), a CMAC controller
[Albus, 1975], or a BP neural net [Rumelhart and McClelland, 1986] can
be trained easily (need seconds or minutes). This simplification is
compensated by a powerful brainstorming process in the next steé.

Step 3. Agent discovery with learning by brainstorming:

Brainstorming is defined as a high-level learning process where
new agents are discovered collectively by existing corner agents.
Learning by brainstorming leads to cerebellar memory booming which
provides a partial explanation to the fact that children and baby
animals learn locomotion control rapidly after their first few steps.

Step 4. Cerebellar law discovery:

Memory booming can not go on forever. Then arise the questions: Is
agent discovery the highest level of learning? How many cerebellar
agents are needed for usual locomotion functionalities? How are the
agents self-organized? To answer these questions, the notion of a safe
memory space is defined. A safe memory space can grow (leading to
expanded loéomotion abilities when the body "grows up") or shrink
(leading to reduced locomotion capabilities when memory is "damaged").
Based on the safe space definition, four cerebellar motion laws are

discovered and self-verified by MAC-J. The minimum number of agents

53

N,

required for a safe space is determined as 2" where N is the number of
links of a uniped robot.

Step 5. Cerebellar memory expansion and agent reorganization:

The significance of the cerebellar laws is 3-fold: 1) they bridge
>a gap between motion equations and multiagent fuzzy-neural control by
providing common sense inverse dynamics; 2) they limit the number of
cerebellar agents needed for usual locomotion functionalities; and 3)
they provide a theoretical basis for the aggregation and reorganization
of cerebellar agents in locomotion learning. With the theoretical
basis, MAC-J is extended to a five-layer cerebellum architecture with a
virtual memory scheme and an efficient computational basis for an
intelligent microprocessor technology. It is intelligent in the sense
of being able to learn and control uniped robots with different numbers
of links, changing sizes, and varying weights.

Step 6. Multiagent locomotion control with cooperation and
competition:

With the cerebellar laws, uniped locomotion learning and control
can be efficiently performed online by the corner agents in a safe space
based on a fuzzy coordination protocol.

MAC-J is unique in two aspects. Theoretically, it introduces
multiagent coordination techniques of distributed AI (DAI) [Bond and
Jasser, 1987; Zhang, 1996; Zhang, 1992] into intelligent control and
presents a coordinated computational intelligence (CCI) approach to
legged robot locomotion that can emulate adaptive behaviors in human and
animal locomotion learning processes. Technically, it bridges a gap

between complex motion equations and high dimensional fuzzy-neural

54

control; it supports "cerebellar" memory expansion and reorganization;

and it is generic, time- and storage-efficient, and ideal for

microelectronics design/manufacturing.

It is recommended that follow-on work be implemented by NASA to

further explore the benefits of his novel approach.

55

SECTION 8
A Modular Neuro-Fuzzy Approach to Uniped Control

In this section we investigate a modular neuro-fuzzy approach for
the uniped controller. We use the modular architecture presented in
Figure 5.2, with separate controllers for the jump-off and in-flight
stages of the running stride. This decoupling is a natural one because
the control parameters and control objectives for the two stages are
different. The Jjump-off controller produces the torques and thigh
orientation which are applied to the joints at takeoff in order to
achieve the desired height, distance and angular momentum of the stride.
After the foot leaves the ground, control is switched to the in-flight
controller. It takes the current state of the links (angular position,
velocity and acceleration) and produces the set of torques targeted to
move the links smoothly to the next position.

There are two important advantages to the approach taken here.
First, it is simple. Second, it allows the leg to be controlled at each
time step during the trajectory, rather than at one or more isolated
points. This 1is critical for achieving smooth movement of the leg
during flight and for avoiding obstacles.

Designs of the jump-off and in-flight controllers are presented in
the following sections, along with initial results obtained thus far
using this approach.

8.1 The Jump-Off Controller

For the highly non-linear jump-off control problem we require a
controller which is adaptive, trains quickly and accurately and can be

trained on-line. We select a fuzzy-neural controller which combines

56

learning techniques from self-organizing neural networks and weighting
techniques borrowed from fuzzy logic membership functions. It is based
on an approach has been successfully used to train a truck to back up to
a loading dock (Kwon, 1994).

The fuzzy-neural controller uses locally-tuned receptive fields,
updating only local information for each training pattern. This makes
learning fast and also permits incremental on-line learning, since
changes in portions of the problem space will not require off-line
retraining of the entire space. This permits gradual growth of the
problem space and/or relaxation of the simplifying constraints mentioned
earlier without global retraining.

To train the controller, equations of motion governing the
movement of the robot are used to generate examples. Each training
example consists of an input state/target control signal pair. The
input state space S in our problem is three-dimensional and corresponds
to the desired height, distance and body angular momentum of the stride.
There are three target control signals T to be learned: the torques to
be applied to the ankle and knee joints and the orientation of the thigh
link at takeoff.

The fuzzy-neural controller is trained by presenting it with a
series of examples (5;, Tj). The network learns by forming clusters,
each of which represents a range of input states S whose corresponding
target controi signals T are similar. The basic principle involved is
that similar control signals will be used to produce similar results
from similar stating states. Each cluster is represented by a prototype

{Sp, Tp) pair where the prototype input state Sp represents the center

57

of the.cluster of input states and the prototype target control signal
Tp is the set of control signal values corresponding to this cluster of
inputs. New prototypes are added as needed to achieve the desired
accuracy level. When presented with an input state S;, the network
produces a response which is a weighted average of the control signals
Tp corresponding to the learned state clusters Sp which are closest to
Si.

During training the following is repeated for each example (S;,T;)

in the training set:

1. present next input pattern S; to the controller
2. calculate the response T;*.

3. apply control signals Ti* to the robot and determine the

error E in distance, height and angular momentum

4. if E is larger than an acceptable level ¢, create a new
prototype positioned at the location of S; and store T; as the set of
torques for this cluster; otherwise, incorporate this example into

the existing neighboring prototypes

The response T;* in step 2 is a weighted average of the torques
corresponding to the input clusters which are closest to the current

input pattern:
D #s, S)Tp,

Te=4 =N u (S)Tp,
D R A
JjeN

N represents the collection of prototype states which are in the

neighborhood of the input state. The weighting factor pspj(si),

58

borrowed from fuzzy logic, represents the degee of membership of the

input state S; in cluster prototype Spj, and is computed as follows:

1

d,
#Spl(&)= _Jl

keN dk

Qhere dj represents the Euclidean distance from S; to Spy - This assigns
a larger weight to those prototype control signals Tp whose cluster
centers Sp are the closest and hence the most similar to the current
input state under consideration.

We use a dynamic measure for the neighborhood. The nearest
neighbor is the prototype Sp which is closest in terms of Euclidean
distance to the input state S;. Any protytopes which are no farther
than twice this distance from S; are considered to be in the
neighborhood.

In step 4, an input pattern is incorporated into the neighboring
clusters by adjusting the prototypes (Sp, Tp) in the neighborhood so as
to reduce the error between the target response T; and the actual

response T*, using the following update rules adapted from (Kwon, 1994):

ATp, = T2(T; - T*)pis, (S)Vj € N

SI—SP' R
ASp, = (T, -T2l v e N
dry —

J
keN dk

where m is a learning rate << 1. The error criterion €& in 4 can be
decreased over time. Training.stops when the average error falls below
tolerance.

To train the controller we used the.equations of motion governing

movement of the robot to generate a collection of 3152 examples with a

59

random uniform distribution over a portion of the state space
corresponding to heights of 1.0 to 1.2 m, distance of 0 to 1.4 m, and
angular momentum of -.05 to .5. We randomly selected 100 of the
training examples to test the accuracy of the trained nets in
generalizing. Six test sets were formed by adding randomly generated
noise within a certain range to each of the 100 selected example input
states. The amount of added noise ranged from 0 in Set 1 to (-0.1, 0.1)
in Set 6.

To determine the accuracy of the trained contro;ler, we measured
the maximum testing error. The testing errror is obtained by presenting
a testing state S to the trained controller, obtaining the controller's
response f(S), applying these control signals to the simulated leg and
then observing the error Etogt between the desired height, distance and
angulaf momentum and the actual height, distance and angular momentum
achieved in the robot stride.

Table 8.1 shows the results achieved by the fuzzy-neural
controller on the original 100 training points which were selected for
testing, and on points generated by randomly adding various levels of
noise to these points. We used an error criterion e of 2% and a
learning rate of .0001. Only one iteration through the training set was
required to reach convergence, with a total of 728 prototypes formed.
The maximum average testing error was below 0.5% for all of the noisy

testing sets.

60

Table 8.1. Results achieved by the fuzzy-neural controller on noisy

test sets.

Test Added Noise Max
Set Ave
Testing
Errox
1 (-0.00, 0.00) 0.495%
2 (-0.02, 0.02) 0.488%
3 (-0.04, 0.04) 0.497%
4 (-0.05, 0.05) 0.495%
5 (-0.075, 0.075) 0.469%
6 (-0.10, 0.10) 0.478%

For the sake of comparison, we trained a CMAC network like that
described in Section 4.2 on the same data. Table 8.2 shows the average
maximum testing error achieved by CMAC on same testing sets. We used a
generalization parameter C of 160, and a learning rate of .3. We used
cell sizes of .003 for the desired height, distance and angular
momentum. This yielded a logical associative memory A of 5,703/703. Al
was 25,000. The net was trained for 600 iterations. The maximum

average testing error was below 5% for all of the noisy testing sets.

Table 8.2. Results achieved by the CMAC controller on noisy test sets.

Test Added Noise Max
Set Ave
Testing
. Error
1 (-0.00, 0.00) 1.6%
2 (-0.02, 0.02) 4.7%
3 (-0.04, 0.04) 3.2%
4 (-0.05, 0.05) 3.9%
5 (-0.075, 0.075) 3.2%
6 (-0.10, 0.10) 3.5%

The fuzzy-neural controller achieved more accurate results in less

time and using less memory than the CMAC networks. However, the trained

61

CMAC net is simpler and has greater speed in the operational phase. The
two models are compared in more detail in the following paragraphs.

The CMAC and fuzzy-neural «controllers described here use
approaches which are similar in some respects. They both form a map of
the input space and store control signals associated with portions of
the input space. Both use local learning; CMAC updates C cells, while
the fuzzy-neural controller updates the cluster prototypes in the
neighborhood. The main differences are in the method of map formation
and the genéralization scheme. These differences can result in large
differences in performance.

The CMAC forms a static map of the input space by partitioning
each input into fixed sized cells. Generalization is achieved by
spreading the control signals over a fixed number C of neighboring cells
and producing an output signal which is a sum of the signals in the C
cells. The advantages are simplicity and computational speed. In
pérticular, once the net is trained, the control signals for a given
state can be accessed by a simple computation which does not involve a
time-consuming search.

The disadvantages are the excessive memory requirements, potential
for inappropriate generalization, and time to convergence. Memory
requirements grow exponentially with the dimension of the input space.
This makes the CMAC a poor choice for high-dimensional problems. The
combination of fixed cell sizes and fixed generalization parameter C can
result in poor generalization in parts of the input space which require

more finely-grained control than others. Problems with generalization

62

can result in many iterations required for training to converge (600 in
this case, vs. 1 for the fuzzy-neural controller).

The fuzzy-neural controller forms its map dynamically by adding
new prototypes as needed. This forms a partition of the input space in
which the receptive field of each prototype can be of a different size
and grows or shrinks as needed to achieve the desired level of accuracy.
Thus the granularity of the control surface is tuned to the requirements
of that part of the state space, as illustrated in Figure 8.1.
Generalization is achieved by forming output signals which are a
weighted combination of the érototype signals associated with
neighboring control prototypes. The weighting is proportional to the
distance of the prototype from the input state under consideration. 1In
addition, the neighborhood size is not fixed but is a function of the
closeness of neighboring prototypes. More accurate results can be
- expected from this scheme than from the CMAC scheme which uses a simple
unweighted sum and a fixed number of cells as its 'neighborhood'.
Memory requirements for the fuzzy-neural controller are limited to the
number of prototypes needed to produce the desired level of accuracy and
so are much less than the CMAC. Contrast the CMAC associative memory
size A' of 25,000 cells in this example with the fuzzy-neural controller

memory of 728 prototypes.

63

Figure 8.1. Receptive fields of fuzzy-neural prototypes Sp.
The box represents a two-dimensional space S which is partitioned by 8
prototypes. The lines show the boundaries of the receptive fields of
each prototype, marking the region of the space which is closest to that

prototype.

The main disadvantages of the fuzzy-neural controller are greater
complexity in the training algorithm (although it is still fairly
simple) and computational cost during operation of the trained‘network.
In particular, in order to generate the output signals, it is necessary
to compute the Euclidean distance from the input state to each of the
prototype states. However, this presents a problem in speed only if
there are very many prototypes formed. 1In addition, each training step
requires presenting the control signals to the robot simulation to get
the achieved height, distance and angular momentum. However, this
computational cost is offset by the fact that relatively few iterations
are required to reach convergence.

8.2 The In-Flight Contreoller

The In-flight controller controls the movement of the joints from
the time the foot leaves the ground after jump-off to the time it lands

on the ground again. In the simplest case, it must move the joints into

64

a configuration which will allow a safe landing. If there are
obstacles, it must also position the joints so as to avoid collision.

The motion plans for the stride are formulated by the higher-level

motion planner of Figure 5.1. The plan consists of a series of leg
configurations ('snapshots') along a stride trajectory of a certain
height, distance and angular momentum. The stride trajectory is one

whose jump-off control signals have been previously learned by the jump-
off controller. The snapshots are planned so as to avoid any obstacles
present and to move the leg smoothly to a landing position. A simple
interpolation scheme is used to plan the joint movements between time
snapshots.

Like the jump-off phase, the in-flight phase also requires fast,
accurate on-line learning. The state space for this part of the problem
is wvery large. A supervised learning scheme like those previously
described would require the generation of such a large number of
examples that on-line learning would be infeasible. For this problem we
select a controller which learns the input-output relationships of the
robot from observation without precomputed examples. This controller,
developed by Miller (Miller, 1987), has been successfully used to
control the movement of a two-link robot arm. The controller is CMAC-
based, but the CMAC learns from the experiences generated by a
conventional PD controller instead of from precomputed examples.

For this part of the study we move to the four-link leg model
illustrated in Figure 8.2. This leg is harder to control but is more

humanlike and more versatile than the three-link model. It also

65

provides a more demanding test of the current approach. The dynamics of
the leg joints is described by the following:

O''=g(®, ', T)
wheré ® represents the vector of joint angles, ®' represents the joint
rotational velocities, and ©®'' the joint accelerations. The function g
is an unknown nonlinear function of the Jjoint angles, angular
velocities, and the actuator torques T.

To control the joint movements the objective is to learn the
inverse function:

T=g~1(®, ©', 0'")
where T is the vector of torques which must be applied to achieve the
joint accelerations ©'' given the current Jjoint positions @ and
velocities ®'. The CMAC can be applied to this problem by forming the
desired state vector S4 from the vectors ®, ©', and ®'' and training
the CMAC to produce the response f(Sy) =T=g“1(®,®',®"). The desired
state S4q serves as the input to the CMAC and the targeted response f(S5g)

is the set of torques which will achieve the desired state.

torso

upper leg

lower le;

foot

ground

Figure 8.2. The four-link robot leg.
Torques are applied at the ankle, knee and hip joints to make the leg

move.

66

The high-level design of this controller is shown in
Figure 3. At each time step the controller proceeds as follows.
The trajectory planner determines the ideal state S; of the leg
for this time step in the trajectory. This is based on the
series of leg configurations which have been supplied by the
motion planner. A conventional ED controller produces a set of
torques which are designed to reduce the error between S; and
the observed state S,. At the same time, the trajectory planner
computes the desired acceleration A4 which will intersect the
leg.with the ideal state a number of time steps in the future.
The desired state vector Sgq = (S5,A4) is formed from the current
observed angular positions and velocities and the desired
angular acceleration Ag. The CMAC is referenced to find the set
§f torques f£f(Syq) = f(Sg,Aq) which will achieve the desired
acceleration from the current state S,. These torques are added
to the torques computed by the PD controller, énd the combined
torques T are sent to the robot. This produces a new observed
state 35,. At the end of the cycle, the CMAC is updated using
4.6, where T, is the set of torques applied during the control
cycle and S, 1s formed from the observed positions and
velocities of the joints at the beginning of the control cycle
and the observed accelerations of the joints during the control
cycle. Thus the CMAC learns which set of torques T achieved a
certain acceleration from a certain state. If the robot
encounters a similar state/acceleration goal (S,/Ag) in the

future, it will find stored in CMAC the signals which worked in

67

the past. Initially the CMAC has no stored knowledge, and the
robot is controlled exclusively by the PD controller, which is
of the form shown in 3.36. Over time the CMAC learns from
experience. The PD control signals decrease as the error

decreases, and the CMAC takes over.

CMAC CMAC °
Learning
Memory Algorithm
5,78 Ay CMAC fs,)
Generation O
Joint Angles Coﬁgmt N T . so
Trajectory " '—9 +
Planner Controller
S
° Robot

Figure 8.3. The CMAC-based controller.

We trained the in-flight controller on a motion plan
formulated to fit a step trajectory of height 1.6 m, distance
0.294 m and duration 0.81ls. The "ideal" joint trajectories were
planned from the five snapshots shown in Table 8.3, which
specify the configuration of the joint angles at five times on
the trajectory: the point of takeoff, the point of landing, the
top of the trajectory, midway between takeoff and the top; and
midway.between the top and landing. Snapshot 1 is fitted to the
initial configuration of the 1leg at takeoff. Snapshot 5
provides a good 1landing configuration. Snapshots 2-4 are

designed to provide clearance from the front, top, and rear of

an obstacle. The number of snapshots can vary to meet the
demands of the stride. Each simulated control cycle takes 0.2
ms. A simple interpolation scheme was used to obtain the ideal

68

joint .positions versus time for all the time steps between
snapshots.

For the PD controller we used 1000 for the gain of the
proportional term and -10 for the gain of the derivative term.
We use a generalization parameter C of 100, and a learning rate
of 0.2.

The input space for this problem is of nine dimensions,
consisting of the observed joint angles and velocities and the
desired accelerations for each of the three angles. However,
since the control of each joint is independent of the others the
problem reduces to three input spaces of three dimensions each.
While the dimensionality is not very large, the size of the
state space is. At the moment that the foot leaves the ground,
the angular velocities and accelerations can be very large
because large torques must be applied during jump-off in order
to propel the leg off the ground. During the in-flight phase
joint velocities must be small. This results in a large range
of velocities and accelerations. However, the granularity of
the control signals does not have to be very fine at large
speeds and accelerations. Small changes in control signal are
needed only to achieve small changes in angles and velocities.
We therefore use a logarithmic scale for the velocities and
accelerations. This greatly reduces the size of the 1logical
memory A and still provides for fine-grained control in the part
of the space where it 1is needed. Specifically, we use a

logarithmic scale velocity range of #12.5 degrees/s and a

69

logarithmic scale of #20 degrees/s? for acceleration. Each
state wvariable ®' is first converted to 1n(®') and then
assigned to one of 200 bins, each of size 0.125 degrees/s. Each
state wvariable @'' 1is first converted to 1n(®'') and then
assigned to one of 200 bins, each of size 0.2 degrees/sz. Each
variable ® is assigned to one of 180 bins of size 1 degree.
Thus the logical association memory A is of size 3x(200x200x180)
=21,600,000. We use a physical memory A' of size
3X72,000=216,000.

Table 8.3 Joint Angle Trajectory Snapshots.

Joint Snapshot Number

1 2 3 4 5
ankle 106 110 115 95 70
knee 90 80 75 90 105
hip 75 80 85 98 110

To measure the performance of the controller we computed
the maximum of the three errors in joint angle (ankle, knee,
hip) for each time step, where the error is the difference
between the actual joint angle and the ideal joint angle. We
then computed the average maximum error for all the time steps
in the trajectory. After only one iteration the controller
learned the joint trajectories with an average maximum error of
only 0.987 degree. After two iterations the error was reduced
to 0.934 degree.

We are currently trainihg the controller on additional
trajectories with different height and distance characteristics.

8.3 Summary and Conclusions

This section presents a modular approach to controlling

the trajectory of a single running stride. A fuzzy-neural jump-

70

off controller controls the height, distance and angular
momentum of a range of simulated running strides with an average
accuracy of 99.5 percent on significantly noisy test patterns
which were not included in the training set. A CMAC-based in-
flight confroller controls the movement of the joint angles
along a planned trajectory with an average accuracy of 1 degree.
Both approaches are adaptive and use local learning, which will
permit on-line retraining if conditions change. The fuzzy-
neural jump-off controller was trained after only one iteration
through the training set, and the CMAC-based controller was
trained after only two trips through the trajectory.

Controllers for both phases use simple training algorithms. The
CMAC-based in-flight controller is trained on the fly without
precomputed examples. Because the leg joints are controlled at
each time step during flight, movement is smooth and obstacles
can be avoided.

Results obtained thus far demonstrate that this approach
has the potential to produce fast, accurate controllers which
can be trained on-line. ‘Because the controllers use local
learning techniques, they can automatically adapt to changing

conditions without global retraining.

71

SECTION S
Conclusions and Recommendations

This study presents a modular apprecach to biped locomotion
control. 1In this approach thé biped locomotion problem is
reduced to the development of two identical uniped controllers
whose actions are planned énd coordinated by higher-level
components. This phase of the research focuses on the
development of a uniped controller to control a single running
stride.

Several promising appfoaches are developed which are
worthy of further investigation. The multiagent cerebellar
model approach outlined in Section 7 is being considered for a
patent by NASA, and details of its advantages have been
described elsewhere.

The modular fuzzy-neural approach described in Section 8
is also worthy of further study. It offers the advantages of
simplicity, speed of learning, and virtually continuous control
of the leg movements during flight. The latter is important for
smooth movement of the joints and for avoiding obstacles. 1In
addition, the fact that the in-flight controllers learns without
precomputed examples is a big advantage for this large problem
space.

With respect to continuous jump control, additional effort
is needed to investigate the control strategy of the transition

phase, which is the connection of one step to the next. The

72

objective for the transition phase is to smoothly move the leg
from the landing configuration achieved at the end of the in-
flight phase to a crouched position suitable for jump-off in the
next stride. The CMAC-based approach used in Section 8 for the
in-flight controller bears investigation here, since the control
objectives for both phases are similar: smooth movement of the
joints along a planned path to an appropriate final

configuration.

73

References

Albus, J. S. (1975). A New Approach to Manipulator Control: The
Cerebellar Model Articulation Controller (CMAC). Journal of Dynamic
Systems, Measurement, and Control, Transactions of the ASME, 9, 220-
227.

Albus, J. S. (1975). Data Storage in the Cerebellar Model Articulation
Controller (CMAC). Journal of Dynamic Systems, Measurement, and
Control, Transactions of the ASME, 9, 228-233.

Asada, H., Ma, 2.-D., and Tokumaru, H. (1990). Inverse Dynamics of
Flexible Robot Arms: Modeling and Computation for Trajectory Control.
Journal of Dynamic Systems, Measurement, and Control, 112, 6, 177-
185.

Bond, A. and Gasser, L. (1987). Readings in Distributed Artificial
Intelligence, Morgan Kaufmann.

Brown, M, and Harris, C. (1994). Neurofuzzy Adaptive Modeling and
Control. Prentice Hall, New York, 218-295, 407.

Brown, M., Harris, C. J., and Parks, P. C. (1993). The Interpolation
Capabilities of the Binary CMAC. Neural Networks, 6, 429-440.

Eaton, Harry A. C. and Oliver, T. L. (1992). Learning coefficient
dependence on training set size. Neural Networks, 5, 283-288.

Fukuda, T., Shibata, T., Tokita, M. and Mitsuocka, T. (1992) .
Neuromorphic Control: Adaptation and Learning. IEEE Transactions on
Industrial Electronics, 39, 6, 497-503.

Fukuta, T., and Shibata, T. (1992). Theory and Applications of Neural
Networks for Industrial Control Systems. IEEE Transactions on
Industrial Electronics, 39, 6, 472-489.

Furusho, J. and Sano, A. (1990). Sensor-Based Control of a Nine-Link
Biped. The International Journal of Robotics Research, 9, 2, 83-98.

Goddard, R. E., Zheng, Y. F., and Hemami, H. (1992). Control of the
Heel-Off to Toe-0Off Motion of a Dynamic Biped Gait. IEEE
Transactions on Systems, Man, and Cybernetics, 22, 1, 92-102.

Gullapalli, V, Franklin, J. A., and Benbrahim, H. (1994). Acquiring
Robot Skills via Reinforcement Learning. IEEE Control Systems, 2,
13-25.

Handelman, D. A., Lane, 5. H., and Gelfand, J. J. (1990). Integrating
Neural networks and Knowledge-Based Systems for Intelligent Robotic
Control. IEEE Control Systems Magazine, 4, 77-86.

Hodgins, J. K. and Raiber, M. H. (1990). Biped Gymnastics. The
International Journal of Robotics Research, 9, 2, 115-132.

Hodgins, J. K. and Raibert, M. H. (1990). Robot gymnastics. Int'l J.
of Robotics Research, 9, 2, 115-132.

74

Ishiguro, A., Furuhashim T., Okuma, S., and Uchikawa, Y. (1982). A
Neural Network Compensator for Uncertainties of Robotics
Manipulators. IEEE Transactions on Industrial Electronics, 39, 6,
565-569.

Kuan, C., and Hornik, K. (1991). Convergence of Learning Algorithms
with Constant Learning Rates. IEEE Transactions on Neural Networks,
2, 5, 484-489.

Kuo, B. C. (1991). Automatic Control Systems. Prentice Hall,
Englewood Cliffs, New Jersey, 475-477.

Kwon, T.M. and M.E. Zervakis, M.E. (1994). A Self-Organizing KNN Fuzzy
Controller and its Neural Network Structure, International Journal
of Adaptive Control and Signal Processing, Vol. 8, 407-431, 1994.

Masters, T. (1993). Practical Neural Network Recipes in C++. Academic
Press, Inc., San Diego, 94-396, 245-249.

Miller, W. T. (1990). CMAC: An Associative Neural Network Alternative
to Backpropagation. Proceedings of the IEEE, 78, 10, 233-239.

Miller, W. T. (1994). Real Time Neural Network Control of a Biped
Walking Robot. IEEE Control Systems, 2, 41-48.

Miller, W. T., Glanz, F. H., and Kraft, L. G. (1987). Application of a
General Learning Algorithm to the Control of Robotic Manipulators.
The International Journal of Robotics Research, 6, 2, 84-98.

Miyamoto, H, Kawato, M., Setoyama, T., and Suzuki, R. (1988). Feed-
Error-Learning Neural Network for Trajectory Control of a Robotic
Manipulator. Neural Networks, 1, 251-265.

Morgan, J. S., Patterson, E. C., and Klopf, H. (1990). Drive-
Reinforcement Learning: a Self-Supervised Model for Adaptive Control.
Network, 1, 439-448.

Nagata, S., Sekiguchi, M., and Asakawa, K. (1990). Mobile Robot
Control by a structured Hierarchical Neural Network. IEEE Control
Systems Magazine, 4, 69-76.

Parks, P.C. and Militzer, J. (1991). Improved Allocation of Weights for
Associative Memory Storage for Learning Control Systems, Proc. lst
IFAC Symp. on Design Methods for Control Systems, Zurich, Pergamon
Press II, pp. 777-782.

Raibert, M. H. (1986). Legged Robots That Balance. MIT Press,
Cambridge
Roberson, R. E., and Schwertassek, R. (1988). Dynamics of Multibody

Systems. Springer-Verlag, Berlin

Rumelhart, D. E. and McClelland, J. L. (1986). Parallel Distributed
Processing: Exploration in the Microstructure of Cognition, 1, MIT
Press, Cambridge, MA.

Shelton, R. 0., and Peterson, J. K. (1992). Controlling a Truck With
an Adaptive Critic CMAC Design. Simulations, 5, 319-326.

75

Shih, C. and Gruver, W. A. (1992). Control of a Biped Robot in the
Double-Support Phase. IEEE Transactions on Systems, Man, and

Cybernetics, 22, 4, 729-734.

Sundararajan, N., Chin, L., and San, Y. K. (1993). Selection of
Network and Learning Parameters for an Adaptive Neural Robotic
Control Scheme. Mechatronics, 3, 6, 747-766.

Todd, D. J. (1985). Walking Machines, An Introduction To Legged
Robots. Chapman and Hall, New York

Venugopal, K. P., Pandya, A. S., and Sudhakar, R. (1994). A Recurrent
Neural Network Controller and Learning Algorithm for the On-Line
Learning Control of Autonomous Underwater Vehicles. Neural Networks,
7, S5, 833-846.

Venugopal, K. P., Sudhakar, R., and Pandya, A. S. (1992). On—Lihe
Learning Control of Autonomous Underwater Vehicles Using Feedforward
Neural Networks. IEEE Journal of Oceanic Engineering, 17, 4, 308-
318.

Wang, H., Lee, T. T. and Gruver, W. A. (1992). A neuromorphic
controller for a three-link biped robot. IEEE Trans. on Sys., Man,

and Cybern, 22, 1, 164-169.

Wang, J., and Malakooti , B. (1993). Characterization of Training
Errors in Supervised Learning Using Gradient-Based Rules. Neural
Networks, 6, 1073-1087.

Wang, L. and Mendel, J. M. (1992). Generating Fuzzy Rules by Learning
from Examples. IEEE Trans.on Sys., Man and Cybern., 22, 6, 1414-
1427.

Whitley, D., Mominic, S., Das, R., and Anderson, C. W. (1993). Genetic
Reinforcement Learning for Neurocontrol Problems. Machine Learning,
13, 259-284.

Wu, Q. H., and Pugh, A. C. (1993). Reinforcement Learning Control of
Unknown Dynamic Systems. IEE Proceedings-D, 140, 5, 313-322.

Zhang, W. (1995). Learning, tuning, and brainstorming: a multiagent
cerebellar model for fuzzy-neural control of uniped robot locomotion
(Part I and 1II). Working paper.

Zhang, W. (1996). NPN fuzzy sets and NPN qualitative algebra: a
computational framework for bipolar cognitive modeling and multiagent
decision analysis. IEEE Trans. Sys., Man, and Cybern. in press, 26,
8.

zhang, W., Chen, S., Wang, W. and King, R. (1992). A CM-based approach

to the coordination of distributed cooperative agents. IEEE
Trans. on Sys., Man, and Cybern. 22, 1, 103-114.
Zheng, Y. F. (1989). Acceleration Compensation for Biped Robots to

Reject External Disturbances. IEEE Transactions on Systems, Man, and

Cybernetics, 19, 1, 74-84.

Zheng, Y. F. and Shen, J. (1990). Gait Synthesis for the S5SD-2 Biped
Robot to Climb Sloping Surface. IEEE Transactions on Robotics and
Automation, 6, 1, 86-96.

76

