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NOZZLE FLOW WITH VIBRATIONAL NONEQUILIBRIUM

Introduction

The research of this project concerns the modeling and numerical solution of the

coupled system of compressible Navier-Stokes equations in cylindrical coordinates under

conditions of equilibrium thermodynamics and nonequilibrium thermodynamics.

The problem considered was the modeling a high temperature diatomic gas N2 flowing

through a converging-diverging high expansion nozzle. The problem was modeled in two

ways. The first model uses a single temperature with variable specific heats as functions

of this temperature. For the second model we assume that the various degrees of freedom

all have a Boltzmann distribution and that there is a continuous redistribution of energy

among the various degrees of freedom as the gas passes through the nozzle. Each degree of

freedom is assumed to have its own temperature and consequently each system state can be

characterized by these temperatures. This suggests the formulation of a second model with

a vibrational degree of freedom along with a rotational-translation degree of freedom, each

degree of freedom having its own temperature. Initially the vibrational degree of freedom

is excited by heating the gas to a high temperature. As the high temperature gas passes

through the nozzle throat there is a sudden drop in temperature along with a relaxation

time for the vibrational degree of freedom to achieve equilibrium with the rotational-

translation degree of freedom. That is, we assume that the temperature change upon

passing through the throat is so great that the changes in the vibrational degree of freedom

occur at a much slower pace and consequently lags behind the rotational-translational

energy changes. This lag results in a finite relaxation time. In this context the term

nonequilibrium is used to denote the fact that the energy content of the various degrees

of freedom are characterized by two temperatures. We neglect any chemical reactions
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which could also add nonequilibrium effects. We develop the energy equations for the

nonequilibrium model from first principles.

The basic equations describing the nozzle flow can be represented in various forms.,

This is done in order to check the derivations with other sources, references [2],[3]. The

final form which is solved numerically are scaled equations in a dimensionless form.

The two models to be compared are written in a weak conservative form using the

symbols listed in the Appendix A. These derivations are from first principles and are con-

sistent with other derivations as given in the references [18],[20]. The only difference in

our derivation is that we use a more accurate representation for the relaxation time T as

developed by Meador, references [7],[28]. The viscosity is obtained from standard formula-

tions based upon the Sutherland potential, reference [13]. The thermal conductivities are

developed by employing a Eucken approximation, reference [30]. We calculate the steady

state solution based upon an assumed laminar boundary layer and do not define a Mach

number because of the dispersive sound speed. Our objective is to determine the veloc-

ity profiles and temperature profiles of l_oth the translational-rotational and vibrational

temperatures for the high expansion converging-diverging nozzle, which is defined in the

Appendix B.

The resulting equations which model the nozzle flow can be expressed in various forms

as indicated in the following sections. In most forms the resulting equations are a coupled

system of nonlinear partial differential equations subject to certain boundary conditions.

To solve the resulting coupled system of nonlinear partial differential equations, several

numerical techniques were investigated (i) The explicit MacCormack method, reference

[14], (ii) The explicit-implicit MacCormack method, reference [14], (iii) The method of

operator splitting, reference [14],(iv) Factorization schemes and (v) The Steger-Warming

scheme, reference [25].

Single Temperature Equations

For our first model we assume that there exists a single temperature T which charac-

terizes the energy state of the system. The basic equations describing flow through a nozzle

with cylindrical symmetry are given by (references [1],[3],[4],[12],[14], See also attached list

of symbols in Appendix A.)
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Continuity _-_(rs) + =

@ O (rYrr)+ (rTrz)- Toe= 0 (2)Momentum _(r_V_)+

O (rTzz) = 0 (3)a_(r_v_)+ (_T_)+
0 0

Energy _-_(ret) + _r (r[(et + g)Vr - VrTrr -- Vzrrz -]-qr])

+ _(r[(e,+ P)Vz - VrTzr--Vzr,,;+ qz])= 0 (4)

where

aT _ K OT
qr = -K-if-�, qz = Oz (5)

Trr= 8V_ + P- rrr (6)

T_ = _V_V.- r_ (_)

Too = P - too- (8)

T=z = 8Vz2 + P- r.z (9)

with the viscous stresses given by

2rlOVr,-.= W +;_v.¢ (lO)
or,,

,_z=2,7--8-Z/+ >,v . ¢ (11)

•_ = 2,vr + _v. ¢ (12)
r

(or. ov,' o3)
r_z= rzr= _ k Or + Oz ]

V.I 7 = 1 a (rVr) + -- (14)r Or Oz

The bulk viscosity is assumed to be zero, {Stoke's hypothesis), so that ), = -2r//3 and et

is the total energy per unit volume and is given by

e, = 8e + _, r + V)), (15)

where e is the internal energy per unit mass determined from the relation

de=C_dT. (16)
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For a diat°mic molecule the specific heats at constant volume and pressure are
0

Cu = C_r_+ C_ and Cp = C_ + R (17)

where R isthegasconstantand Cvrt= 5R/2 isthespecificheatatconstantvolume due

to rotational and translational degrees of freedom and

/_ \ 2 e¢/T hv

c_ = R IT) (e¢/r- 1)2' ¢= T
(18)

is the specific heat at constant volume due to the vibrational degree of freedom. The

symbol ¢ denotes the characteristic vibrational temperature which is unique for each gas

species. For example, the characteristic vibrational temperatures for 02 is ¢ = 2270 o K

and for N2, ¢ = 3395 o K. For small temperatures Cv _ 5R/2 so that the vibrational

degree of freedom only becomes excited when the temperature is on the order of ¢.

Alternative Form for Energy Equation

The energy equation has the Cartesian tensor form

oet oQ (19)0---(+ (eW_),i = O--t--qi,i + 8biVi + (-PVi + _'i]D),i

where Q represents heat produced per unit volume, b_ represents body forces, and ql

represents heat transfer per unit volume. The momentum equation is written

or, (20)8_- + _,ivi = _b_- P,i6o + ro,i

and when dotted with the velocity there results

_V¢--_- + 8F_VjVi,i = _biVi - ViP, j6ij + ViTij,j (21)

or

D$7
857 Dt 8_'. $7 $7. VP + $7. V(ri/). (22)

Consider the identity

D [0 ]_N(._/_)= _ g/(_/_)+ $7.v(._/_)
(23)

_ o._ e_o_+ _$7.v(._/_)
Ot _ Ot
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alongwiththe continuityequation_ ---V(_ 7) and theidentity

v. Cede)=v(_¢e_/_)=v(e_/_)_¢+ _v(_¢). (24)

These results show that

D Oet_NCe_/_)= o--_-+ vC_g)+ vCe_g)- etvC_ff)
(25)

Oet Oet
= a-T+ v(ge_)= a-T+ (e_v,)

Substitutingequations(21)and(25)i_toequation(19)weobtain

_-_De+_D (V:12)= aQ -V'q+ _D cvn/2l+g'v P- vCPff)+ CnsV:)'_-vins'i'a-T(26)

Employingtheidentity

PV. g = V(PV) - $7.VP

and defining the dissipation function -

+ = (nivA ,,- v_n_.,_. (2_)

the equation (26) simplifies to the form

Oe

_ + _g.ve + ev. g + re= oQo--T4- ¢. (28)

When Q = 0 there results the alternative form of the energy equation

Oe

%7+ _g"v e+ ev. g + v .¢-+ =o, (2o)

where (I, is the dissipation function given by

+=vcnivj)-g. vffo.)= O'ovj),_-v_ns,i (3o)

and can be representedas

+ = rl [2(D_, + D222+ D323)+ (2D12) 2 + (2D,3) 2 + (2D23) 2] + AO2 (31)

where
1

Diy = _(Y_,y + Vyj) and O = Dii, (32)
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is the dilatation. In the above equations the summation convention for repeated indices is

to be understood.

In cylindrical coordinates the dissipation function can be represented

0gr 2 Vr 2 2
(_) + CT) + _) } + \ Oz+ _/ + C33)

Car,.v,.
a\ Or + T + --_ /

In the limit as r -* 0 we use L'Hospital's rule that limr--,0 v_ _.r ar "

The internal energy per unit mass is given by

e- CvdT- 4- R(¢/T)2(e_/_, dT (34)

which integrates to

__ Re 0ee = RT 4- eCh/T _ 1 -4-Constant and 0-T = Cv. (35)

The various quantities in the energy equation (29) are given by

ff = v,_, + v.'_.

q-" qr'er 4- qz'_z

e= RT + e¢/__ I
Oe Oe OT OT

O--t- OT Ot -Cv Ot
Oe Oe

_. v e= _v__ + _v,-ff;z
Oe OT Oe OT

0--'_= Cv 0---_ and _zz = Cvoz-z

(or, v, ov.
PV'IT=P\"O--r-r 4---4-r Oz]

Oqz 1 0 OT 0 . OT.
V. 0"-- 1 aCrqr) 4- -r Or az r Or (-rK-_-r) 4- 0-zz(-Ko-_z )"

The thermal conductivity K is a function of temperature T so that

V "¢= -K k Or2 +rO-Tr+O-_z2) aT OVr + \ Oz] J"



Vector Form For Equations of Motion

The weak conservative form for the basic equations of motion can be written as

aU' 1 a(rG') OF' Iii ,
at----i-+ r _ Or + -_z + r a = 0 (37),

where a = 0 is for two dimensional flow and a = 1 is for axisymmetric flow, and

U' = col( 6, 6Vr, 6V_, e,) (38) i

and
6vr

G'= 6VrVr + e- rrr (39)6vrv, - r_z
(e,+ P)Vr - v_r_ - v_rr_+ q_

with

6vz o

F' = 6VrV. - rrz H' = -P + too (40)
6VzVz + P - rzz 0

(et + P)V. - Vrrrz - V_.rzz+ qz 0

The above equations are to be solved over the computational domain 0 <_ z _< b and

0 < r <_ f(z) where f(z) defines the shape of the nozzle. We introduce the change of

variables
t I

x = z/b Y = r/f(z), t = eob-------_o (41)
Po

and write the system of equations in the form

aU aE OF

o--T+ _ + _ + H = o, (42)

where
1

I I l Vf'FI ' H= fl , I ,
E = _F, F = 7G f -]-F + _-](a + Hi) (43)

for y ¢ 0. In the case y = 0 we use L'Hospital's rule and find that

fl t 1-cgGI OHI.

H 7F +__(--_y + --_-y ). (44)

We now introduce the scaled dimensionless variables

6 6Vr 6V. e,
Ul-- --, U2-- US---- U4"-" -- (45)

6o 6oVo ' 6oVo ' eto '

and then employ a numerical method to solve the resulting dimensionless system.



Two Temperature Model

For our second model we assume a vibrational degree of freedom together with a

combined rotational-translational degree of freedom. Each degree of freedom is assumed

to follow a Boltzmann distribution and the energy content of each degree of freedom is'

characterized by temperatures Tv and T respectively. As the gas passes through the nozzle

there is a certain finite relaxation time r before the vibrational mode of excitation achieves

equilibrium with the rotational-translational mode of excitation. Define the quantities:

ni Population density of ith energy level

el Energy per molecule of the ith level

hi timerateofchangeofnidue toV-T collisions

Ordinaryheatflux

where q'rristheheatfluxdue torotationalenergy

Heat fluxdue toenergyexcitationofallenergylevels

*Totalenergyfrom allenergylevels

q* = E rtiEiUi
i

where Ui = _ - 17 is the diffusion velocity of molecule in state i

The Dissipation function.

We construct a vibrational energy equation as follows. Let be* = _i nici denote the total

energy per unit volume from all excited states so that by integrating over the volume and

surface of an arbitrary volume element we obtain

be*d_= - _ ,,,,_,.d_+_ _,,,d_
i i

where dv is a volume element and dff is an area element of the control volume and h are

rate equations to be determined. Using the Gauss divergence theorem and interchanging

the order of summation and integration there results

0 ,
-_(_)+_ v(,_,,,(6,+17))=_ _,

_ (46)
, * -_

i
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Using the identities

D . 0(6e*)
b3 (6e) - ot +¢" vc6e*)+ vc6e*¢)- 6e*v.¢ - ¢. vc6e*)

together with the continuity equation and

D . De* .D6 _ De*
DT(6e) =6-53-+e D7 - 6-b3-- 6e*v.

we write the vibrational energy equation as

De*

i

where the rate equations are from Meador, et. al. [28], are given by

* -- e*

1 _ eeniei --• 1"
$

where the subscript e denotes equilibrium. In the case where . denotes the vibrational-

vibrational energy mode (subscript v) we define

DTv lira q'v - 0lim ev (T) - ev (Tv) = C,,v Dt r-.or-*O 1" )

so that the vibrational energy equation can be represented as

De,, DT,, [ev(T) - e,,(Tu) ] V _v.6--bT= 6c.. _ - 6 _ - • (47)

The second energy equation is obtained by writing the energy equation (19) in the form

6°(e,_ + e,) +6¢. vce,_+e,)+ By. ¢ + v(_',_+ ¢,) - ¢ + ,c,,,x - 6c,,,,x=o (48)

where

C,,,,X = e,,(T) - e,,(r,,) (49)r

and then employing the vibrational equation (47) to obtain the coupled energy equations

Oert

6-_- + 6_7. Ve_ + PV. _7+ V. _rt+ 0 + 6C_X =0 (5o)_ev
6--_--+ 6v- vet,+ v. C,.,- 6o,,,.,x=o

10



which reduces to the form

DT - -_ (v._,, ++PV._+_c_x]Dt 8Crt % I

(51)_
DT,,_ -1 v._,,+X
Dt _C_

where

e.(T) = C.vdT = R (e¢/T _ 1)2 dT. (52)

The integral in equation (52) is used to calculate

1
X- (ev(T) -ev(Tu)).

Cvur

Integration produces the result

[(1 1/Cv 1-e-C/T exp ¢ T.

The quantity 8Cv.X = _r(ev(T) -ev(Tv)) is thus a coupling term for energy between the

vibrational and rotational-translational modes. The other terms in the coupled equations

(51) are given by

e¢/T,

C_= C.r, + C_, C_._= 5R/2, C_.= R(¢/T_)2(e¢/T._ 1)2 (54)

er_ = 5 RT (55)

e,, = Cv_,dT = e_/T " _ 1 + constant (56)

1
x- (e_(r)- _(T_))

Cvu

qr, = -gr,VT (58)

=-K_VT_ _ (59)

Kr, = 19r/k/4m (60)

g_=_C_. (61)

c*g°T3/2 Sutherland's formula (62)
_7 = T+e2

el ---=(1.488) * 2.16(10-s), gÙ= 5R/2, c2 = 184.0 (63)
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0.0001 Viscosity vs Temperature
,4

O ' I J I i I _ ]

0 1000 2000 3000 4000
Temperature (K) .__

Figure 1. Viscosity vs Temperature from Sutherland potential

The Sutherland formula is illustrated in the figure 1 and depicts viscosity vs tempera-

ture. Also in the above equations we have fused the Eucken approximation, reference [30],

that the coefficient of self diffusion D satisfies the relation pD = r/to obtain the specific

heats Krt and Kv.

12



The divergence of the heat flux. terms are then given by

V. qrt- -Krt \ Or2 +---+ (64)r ar a_2/ aT _ + karl ]

V._o=-K.\or 2 +---rOr + Oz2] aT_ + . (65)

For the pressure we assume an equation of state for an ideal gas P = pRT. Following

Meador et.al. [28] the relaxation time r for N2 is taken as

3.2188(10 -12) (T) 1/2P(atm)r = I(T) sinh(¢/2T) exp(-_/T) (66)

where ¢, 0, _ are characteristic temperatures given by ¢ = 3395K,0 = 3.2324(107) K,

= 95.9 K, and

I(T)=/+2_. ( 1+ 1+ (1-e-Z¢-)exp[-(x+_+-_-)]dx (67)

where

_ = 27¢2 1+ (68)
In the matrix form given by equation (42), we must replace the single temperature

energy equation by energy equations associated with two temperatures.

The energy equations can also be written in a conservative form, and are added to the

continuity and momentum equations. The equations are then scaled and solved .similar

to the one temperature model. The conservative form of the two temperature energy

equations are obtained by letting et = Err + Ev and writing

c_Ert 1 0
o--V+ -_,[,(E,+P)V.-V._..-V_..+q,]+

+ - - + + =0 (69)

O--T+ [rE, V, + qr,] + [EvVz + q,,] - -r--daCv,X = 0 (70)

where

5 _ 2
E,t = 5aRT + _(V; + V,_) (71)

Ev - _RalCe 4'/T" - 1) (72)
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" Both the single temperature and two temperature models have the weak conservative

form given by the equations (42). The single temperature model has column vectors of di-

mension four, with while the two temperature model has column vectors of dimension five.
$

For the two energy equation, nonequilibrium model, to facilitate the numerical method,

the vector equations are written in the weak conservative form

aU_ I a(rGi) aF_
at + _ a_ +_+Z-H_=0._ (73)

The continuity, momentum and energy equations then become

ap i aC_pV_)aCpV_)
a-/+ + =o (74)r ar az

aCpVr)at+ rla(r(pV_ +OrP - rrr)) + a(pVrV,,oz.-rr.) rl(p + too) = 0 (75)

OCPVz) 1 aCr(pVrVz - rr,)) a(pV_ + P - rzz) 0 (76)ot + + =r Or Oz

OCpert+ _(V?+V2))+ 1aCr((pert+ _(V?+ V)))Vr- V_r_+ qrtr))
Ot r Or

+ pCvvX = 0 (77)-_ Oz

OCpev) + 10Cr(pevV_ + qvr)) OCPevV_+ qvz) _ pCvvX = O. (78)Ot r Or + Oz

The total equilibrium energy, Err, is defined by

P
Err = pert + _(Vr 2 + Vz2), (70)

and the total vibrational energy, Ev, by

E_=pe,. (80)

The resulting set of equations can be represented as a vector equation

ov 1o(ra) OF 11to-T+ r 0r + T; + r =0, (81)

where U, F, G, and H are vectors. The vector U = col(p, pVr, pVz, Err, Ev ), is the set of

conservative variables.
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The equations are now scaled by introducing the dimensionless variables defined by

* P err

r* ----;, P Po' err = Vo2'
Vr , e_y..v

t* t Vz , p, _
P

= T_, v;= _ poVg'vo

T* T _*
To' 7o

where/f and L are characteristic lengths, Vo is the characteristic velocity, Po is the charac-

teristic density, and To is a characteristic temperature. The characteristic viscosity, _o, is

the viscosity calculated at To. The Reynolds number, Re, is defined as the dimensionless

combination of variables Re = povoL The nozzle domain becomes 0 < r* < _ and
_o " -- -- 5

0 < z* < b. The system of governing equations has the final scaled conservative form

OU* 1 a(r*G*) OF* 1H,
at----z-+ r* Or*_ + _ + r, = 0, (82)

where U*, G*, F*, and H* are the column vectors

u*= IpW;/ (83)
/ E;,i
LE_, J

p'V*
L 2 D* L 2 1 *p*v*v; + -_. - -_-_r;r

L21_, (84)a* = p*V/V; - -_ -_ .,
(E*t + P*)V* v* 1 T* L__V* 1 * *-- " r _-_ rr 62 "z -_Trz + qrtr

E_V; + q_

p'V;
p*v*v* g -_r*62 Re. rz

-* , -* (85)F* = p*v; v; +_ - _;,_
(E,_ t + P*)V* - V* 1 * V* 1 -* *_'_'rz -- " z -_e Tzz Jr qrtz

E_V_ + q_z
0

L 2 D* L 2 1 T*-_-_[ + Tr-_ oo

H* -- 0 (86)rL*p*C;vX*
v2

rL* p* C_vX*
v2

15



The scaled equation of state is

p, , , To,
=pRT (_j. (87)

Finally, the nozzle is mapped to computational domain 0 _<x < 1, 0 _<y _<1, which,

is the unit square, by employing the change of variables,

Z* 7"*

x= _/L' Y= /(Lz*)/6' (88)

The computational domahn is then divided into 6 subregions for computational purposes.

This computational domain is illustrated in the figure 2. The 6 subregions with nonuni-

form grid spacing requires a weighted representation of the derivatives for computational

purposes. The final system of equations has the computational form

OU OE OF

_-_ + _ + _ +H = 0 (80)

where

L , _ 6 , Lyft(bX)F, (90)E = -GF, F- i--_a 1(b_) '

L f (bx) F* 6
H- f(bx) + yf(bx'--_(G* + H*)' U = U*.

When y approaches zero, we obtain by L'Hospital's rule, the limit

0
L2 62q

lirny..-,o ,--;7-_,_(G* + H*) = -P IR, ay (91)
yltzol L 2 6vY.LO _Ay__,,L s Krtq96 _ O=T .__8CvvX--6--_fae oy ---_ 12 0_,=

-L--__ _ --8C_X6= f= Oy s
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ZO Z 1 Z 2

Figure 2. Computational Domain

m0, ml, m2, ms are number of divisions of x-region.

no, nl, n2 are number of divisions of y-region.

Comparison with isentropic one-dimensional model

For comparison purposes we also assume an isentropic process and calculate the results

for a one-dimensional flow through the nozzle in the z direction where the area of the nozzle

17



is a function of z. For an isentropic process we have

dh dP

_- Q =0,
T

with h = e + RT, e : f_o Cu (T) dT and dh = Cp dT. Consequently,

dT dP

ds = Cp T R-_-- - 0 (92)

or

-P- = + (e¢_ -- I) 2" "-T-"

Let
1 e_/_r ¢

V = eclat _ 1' dV = (celt -- 1)2 T 2 dT (94)

and integrate by parts to obtain

. T7 "_ ¢ 1 I_'o+ T 2 dT. (95)logP Ifo= z l°gT ]- Tee/T- 1 e_/_- 1

In the last integral, let z = e¢/T - 1,dz = --e¢/TT--_dT so that

/To // //T ¢ 1 dT=- dz dz+ zT1_r_ e¢/T- 1 o z(z_ I) o z o

and consequently

/T: ¢ 1 dT_log(1-e-C'/T°) (96)T 2 e_lT -- 1 - e-el _r "

Therefore, we can calculate the pressure ratio as

Po -- \Too/ kl-e-¢/T exP\e¢/_r_l e¢/-_o-1 "

Since P : _RT we can write

4 (_0) 5/2 (X--e-C/T°)exp ( C/T C/T° ) (98)_--o-- 1 -- e--¢J/T e¢/T -- 1 e¢/% -- 1 "

where ¢/To is treated as a parameter.

In one dimension the energy equation can be written

dh+VzdVz=O or CvdT+VzdVz=O. (99)

18



Consequently, we may write

Vz dVz = - Cp dT
0 .. ,4

0

which integrates to

V__V_2o=7R(To_T)+2R¢(1 1 ) (100)e¢/To -- 1 e¢lT-- 1 " _

By dividing by a 2 ---- "TRT, the local speed of sound, the one dimensional mach number

can be represented

7(__ ) 2¢( 1 1)
M 2- V_° + ---1 + (101)

"TRT _ "_ e¢l_ - 1 e¢'lT - 1

with M = Vz/a. The mach number and one dimensional analysis is used to obtain an

approximate solution to the more complicated two dimensional problem. Here

Cp 7 + 2(C/T)2e¢/T(e ¢/T- 1) -2 (102)
"7= C---_= 5 + 2(C/T)2e¢/TCe¢/T -- 1) -_"

The one dimensional continuity equation is given by

AVz_ "- A*V*_* (103)

where the * quantities represent those values at the throat of the nozzle where M -- 1.

That is, set M - 1 in equation (101), then solve the equations (101)(102) simultaneously

for the value of ¢/T, treating C/To as a parameter. This calculated value of C/T gives

T = T* when M = 1 and consequently we can calculate the values of P*, _*, q*, V* at

this critical value of the temperature. The equation (103) can then be expressed in the

following form involving the above critical parameters

v;
A _ V*_* _ " V_*RT* R_*T*

A* Vz_ _ _ R_TT_ -
RT.

A 1 /-_ff'T" P* 1 ./q'TP* (104)

V t,
A _I/"I*T C P*Po

A----7-iVq--" CT* P0 P
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Knowing the critical values T*, _/*,P*, A*, Vz*we can calculate the ratio T/¢ as a function
a

of A/A* which is a function of z, with To/¢ as a parameter. These one dimensional values

are then used as starting values (initial conditions) for the solution of the two dimensional
$

non-isentropic nozzle problem.

The figures 3,4,5,6 illustrate results from the above one-dimensional nozzle analysis.

Boundary conditions i

Boundary conditions for both the model 1 and model 2 are similar. We state the

boundary conditions for model 2. The steady solution of the governing equations is de-

termined by the boundary conditions. In order to obtain a meaningful solution, boundary

conditions must be applied that are not only applied correctly but are physically mean-

ingful. The conditions are expressed in terms of the primitive variables [p, Vr, Vz, T, Tv, P]

and are converted to conservative variables when implemented numerically.

At the inflow boundary, the density and the translational-rotational temperature is

held fixed at some initial values p0 and To, respectively. This also means that the pressure is

constant at the entrance. The vibrational-temperature is assumed to be in equilibrium with

the translational-rotational temperature and is also held constant at To. Gas is assumed to

enter the nozzle parallel to the centerline, so the radial velocity is assumed to be zero. We

set the flow to be subsonic at the inlet. An analysis of the flow characteristics of Euler's

equations, reference [27], suggests that one boundary condition must be left free to change

with the solution of the interior flow. To this end, the axial velocity is extrapolated from

interior data. In the computational domain, this represents the condition -_z = 0.

At the far-field boundary, the flow is supersonic. All variables are extrapolated, or

a# av, aT
= a--T= a--T= = = o. (lOS)

Since
OP OT Op
a-"-x= PR-o-'xx+ RT-ff_x = O, (106)

the pressure is also extrapolated.

The symmetry of the nozzle is used to specify the conditions along the centerline.

Assuming that the quantities above the center axis are mirrored by those below, we have

Op _ OVr _ OV, aT _ aTv, OP
Or Or Or -- Or Or = O"-r= 0. (107)
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In the computational coordinates these conditions are simply

Op__aV_ aV, aT __aT_ aP
ay ay- a--_-=a_ ay- a-#=o. (lO8)

Furthermore,theradialvelocityalongthecenterlineiszero,

v_=0 (100),

SLztcethe radialvelocityat thecenterlinemust flowequallyinthepositive and negative

directions.

Lastly, boundary conditions on the nozzle wall are governed by the nozzle shape and

the viscosity. Due to the viscosity, no-slip conditions are applied to the velocities at the

wall boundaries,

vr=v,=0. (110)

The translational-rotationalaswellasthevibrationaltemperaturesareextrapolatedSuch

that
aT- Or,

-- --0. (111)
O!/ 0_/

The pressuregradientnormaltothewallisassumedtobe zero,

OP

a--_--O. (112)

In computational coordinates this condition becomes

aP aP b (1. (/,)2) aP _ 0. (113)
0---_- az f(zb)f'(zb)

The density on the boundary is then calculated using the ideal gas law evaluated on the

boundary.

Initial conditions

The choice of initial conditions is also important. Values that are too far from the

steady solution can make the numerical solution unstable. And of course, the closer the

initial conditions are to the steady solution, the less time is required for convergence. To

minimize the convergence time, the initial conditions are the steady state solution values

obtained from the one-dimensional model previously discussed. The initial vibrational

temperature is assumed in equilibrium with the translational-rotational temperature before

the throat. After the throat, the vibrational-temperature is frozen at the centerline, throat

translational-rotational temperature.
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In summary, the initial flow conditions were set along the centerline from a one-

dimensional analysis of the subsonic to supersonic nozzle flow for the nozzle defined in

Appendix B. These conditions were then extrapolated to fill the remaining nozzle grid

points. A no slip velocity condition was applied at the nozzle walls and symmetry condi-

tions were assumed along the nozzle centerline. The exit pressure was lowered to a point

such that shockless supersonic flow was maintained in the diverging half of the nozzle.

These boundary and initial conditions are consistent with other researchers, references

[1],[2],[3],[9],[17],[20]. However, the choice of appropriately well posed boundary conditions

for internal flows appears to still be an open question, reference [17].

Numerical Methods

Various numerical methods can be used to solve the system given by the vector equa-

tion (42)
OU OE OF

O----_+ -_ + -_y+ H =O.
The following numerical techniques were applied to this equation.

The explicit MacCormack method

The explicit MacCormack method was developed in 1969 and is expressed by the

algorithm:

Predictor:

U.".+1 = U.". At E, _ _ E, _ At "F.'*
',_ ',, a_( ,+,,i ,2 - _( _,i+,- F,?j)- atH_,i

Corrector:

U.,.+, = _I[u n U.,.+, At. ,_+, _ ,_+1 At. ,_+, -- F_,j_,)'_+I_ --=_-+']',J 2 _,s+ ,,j _--_x(E_,iE__lZ) - h-_y(F_,i+l _tH_,_.

where x_,y I is the (i,j) node point. This scheme is second order accurate provided the

various derivatives are differenced correctly.
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Operator Splitting

The weak conservative form for the equations (1) through (4) in terms of the compu-

tational coordinates z, y are given by

OU OE OF °

o-?+ _-_+ _-_y+H =o
where

E = F'/b, F = E'/b- F'yf'/f, H = H' + F'f'/f,

with

U = co](,'81ro_o, rfV,.I,'ofoVo,,'fVzlro_oVo,,'ed,'oeto )

and
ro Qo

"(S'_+P--".)
E l rosoVo

= _(sv,v.-_,.) '
ro So Vo

r( (et + P)Vr--Vr'rrr--Vz'Prz'_-qr roeto)

] Eo_(ov,v.-_,.) (-P+,oo)
F I rosoVo H t
= ,(sv_+P-,..) ' = "°sdv°

ro SoVo
r((e,+ P)V. --Vrrr.--V.r..+q.) 0

rO et 0

8U 8E
We can thendefinetheoperatorsL, asthesolutionof-_-+ -_-= 0 as

--=U*. At , ,
Predictor: U_ ,,, Az (Ei+I6- El'i)

** 1 "U* -- At _ _-
Correcter: U_j =_[ ijq-U_,; Az (EiJ- EI-IJ))"

DefinetheoperatorLy asthesolutionofou OF-0q-+ T_ = 0 as

-- =U.*. At "F*
Predictor: Ui*_ ,,, _( i+1,] -- Fi*,i)

1 "U* -- At _-_ _-** Fi_l,_.)).Correcter: U_,j=_( i6+ U_; Ay (F_,j-

Define the operator L as the solution of ou-_-+H =0 as

Predictor: U_,?=U.*•-,,_AtH_j

,, 1 U* -- AtH_,_)Corrector: U_,j= _ ( ij + U_; -
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where F_*_.-- F(U_*,y),II_*_ = I-I(U_d ), etc.

The method of operator splitting requires that we time march according to the se-

quence of operators

U .n+2 = Lz LyL L L u Lz U:n.$,3 $,3 "

Factorization Schemes

The system (42) is written as

A---_-+_-_x E + -.ff-_A U + -_y F + --ff_A U +H+_-ffAU=0 (114)

which can be written in the operator form

whereA= 0s B= OF C= oH_-ff, _, _0- are Jacobian matrices and

5-d+ N +H •id

Here we have used the notation

(ff---_.A) AU r'+x tomean £(AAU)

For example, if A _--A z is a forward difference operator we may write

0-_ (AAU) = (Ai+z,iUi+xd - AidUid)/Ax
Az

(AAU) _-.

and if A = Vx is a backward difference operator, we would write

(AAU) = (A,,iAUi,s - Ai_a,ihUi_l,i)/hz
V..

(AaV)

with similar results applicable to the forward and backward difference operators V v and

Av in the y-direction.

We desire to obtain the steady state solution to the system of equation (117). Toward

this purpose, several factorization techniques have been investigated. Two such techniques

are currently being used. One technique involves the predictor-corrector algorithm
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Predictor:

I + At A. +At B. +At C ----i,j = --At AUin,i

=v. +n *,_ AUI,i

where Ax,Ay are forward difference operators in the x and y directions.

Corrector-

+At-_yyB • +At

U.,+I_ 1 (U n _n+l _--_..,_+1_,,: - _ _,s+u_,s +zxu_,:" }

where V,,Vy are backward difference operators in the z and y directions. This algorithm

gives rise to upper and lower triangular systems of equations which can be solved at each

time step.

Another way to solve the system of equations (4) is to write it in the factored form

I+ O-_xJ I+ Oy + At C ,n =

Using central differences there results tridiagonal systems of equations to solve. Both of

the above methods have been programmed and are working. However, these methods, as

well as the previous methods, all suffer from the CFL (Courant-Fredrich-Lewy) time step

restrictions which requires that small time steps be taken in order to achieve numerical

stability.

The explicit-implicitMacCormack method.

The explicit-implicitpredictor-correctoralgorithmgivenby:

Predictorwith forward differencing

(AzE_. A_F'_ + H.n.) (116)(au'i)Ezp"°''=-zxt Ax + zx---V-
with implicit system

(I+AtA=.A .B ) AU,n+ 1 n/'x + At/'_----V- +/'tC ',i = (ZW, i ) _._,,o,, (116a)

with

UiT+l = U_r_• + AU/_ .n+l (1165)
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(i,y+ 1)

K1

(i - 1,a) h= (i,y) h, (i+ 1,j)
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au 1 (k= kl )o-X_"k_-7k= _ ("";+_- '*";)+Y=("'; - u,,;__)

Figure 7. Irregular space grid points and first derivative approximations.

Corrector with backward differencing

(V=(E*)i_ Vy(F*)i_ + (H*)_.) (I17)

with implicit system

(117a)
s,3 _. 3 ) Ezplicit

with

U$.n.+l_ 1 [U" ¢Uq? +I + AU_ +1] (117b)
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The predictor corrector equations are applied to a rectangular i, j grid where 1 < i
*

ms and 1 < j < ns, with boundary terms given by i = 0,j = 0,i = rasp = ms + 1,j =

asp = ns+ 1. At certain i, j nodes of the grid we employ a variable grid spacing hi, h2, kl, k2

as illustrated in the figure 7 along with appropriate differencing relations. The equations

(117), when expanded over the i,j grid, produces a system of equations to solve. In this

system of equations there are boundary terms where along the boundary certain differences

must be approximated. (reference [1]).

Steger-Warming Vector Splitting

The Steger-Warming Vector Splitting is used by Mr. J.G. Landry in his thesis to solve

the nonequilibrium model 2. The method is described in his thesis. Upon completion of

the thesis it will be added as an addendum to this report.

Final form of governing equations

In matrix form the basic equations are written as

aU' 1 a(rG') OF' 1H,
Ot--;-+ r_ Or + _ + r _ =0

where a = 0 is for two dimensional flow and a = 1 is for axisymmetric flow, and

U = col( _, _Vr, _Vz, et) (118)

and

G'= _V_V_+ P - r_
_v,v_- r_.

with

Fi = _VrV. + P - rrz H I = -P + too
_v.v. + P - r.z o

(e, + P)V. - Vrrr. - V.r**+ q. 0
We introduce the nondimensional variables

r* r z* z V, V_ p, ==Z' =Z' v,,=N, po
t*- t r/*= _---, P*- P T* T e*

e

L/Vo' .o poVg' = =
then the above equations become

OU* 1 0 OF* 1H.
Ot----'-V+ r *'_ Or* (r'G*) + _ + r* = 0,
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with

U* = P G* = P'V?2 + P* 1 •- --_rrr

ip, V; , p,V;V;_ X___,Re rz

L e; (e;+P*)V? 1v*-* x • • ,fie" r _rr /_e Vz rrz -t- qr

and

F* = p*VgV 2 - _r* _p, 1 •Re rz H* = + -R-'erO8

p,Vz 2 ___p, _ _R_._l.zzl• , 0 '

(e; -I- V*)Vz* 1 y*-* 1_.V,*T* * 0__e " r "trz Re z zz -t- qz
where

•= p*_* -_(v;2e, + +v; )

OV z _, /'1 O , ,. Ov;_
r*,, = 2¢ Ox-----;-+ L-_7-ff_r,(r V_.)-t- Ox*]

• =,c [av; av:'
r,.. \ Or* + Oz*]

,, ,i)V* [1 O , ,. OV*_

V.* ,_,(1 O OV*'_re*e -- 2rl* r-_-r,+ r* Or* (r'V*) + O=*)

v" ( Ov;, _,0= A* 1 0r,,,,= -,,7-E[:+ Cr*V;)+r* Or* Oz*]
and

_ poVoL, e * poV_) _ TIoA*Re et : toe t, eto "- _ : •
_?o

The shape of the nozzle is given by r = f(z) which becomes r* = f(bz*)/b in the,

coordinates. Making the change of variable
r*

x = z*, Y-- f(bz*)/b'

the final form of the equations are given by

aU* a .b , by f_ OF* b , bf __,

c3t-----_ + -_y(_G f F*) + _ + -_(H + G*) + --f-e = O.

In the limit as y _ 0 we find that

H* + G* b 0
lira =- 1 a__
_o yf f p'V; -_y - --ReOy "

- Re Oy Re_'z ay +rrz--_-yi +

The above equations are to be solved over the computational domain 0 < z* < 1 and

0 < r < f(z) where f(z) defines the shape of the nozzle.

30



"I

SUMMARY MODEL 1 (EQUILIBRIUM THERMODYNAMICS)

Continuity Equation Equation of State
Dp
D-7* pV._ = 0 P = pRT

Momentum Equation
2

D_7 -V • P where Pii = P61i - _(vi,i + vij - -{6ikvk,k) and _ is given by theP Dt -
Sutherland formula

ClgcT 3/2
[Kg/ms]

_7= T+c2

where for N2 we have cx = 2.16(10 -s) * 1.488,c2 = 184.0 and gc = 32.174.

Energy Equation

D(Cvr) _ [p: D + V-_'- qrad]P Dt
where

_'= - _kVT

1

D O.= _ (vLY+ vi,i)

qrad=V (ARV(4asBT4))
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SUMMARY MODEL 2 (NONEQUILIBRIUM THERMODYNAMICS)

Continuity Equation Equation of State

Dp + pV V 0 - P pRT
Dt

Momentum Equation

_ 26 v "
D_7 -V • P where P_j = P_i - _7(v_j + vij - _ ik k,k) and 17is given by theP Dt

Sutherland formula clgcTS/2 [Kg/m s]
_= T+c2

where for N2 we have ¢1 = 2.16(10-s) * 1.488,c2 = 184.0 and 9c = 32.174.

Energy Equation

D(C.T) _ _ [p: D + V. q'rt- qrad-FpCwX]
P Dt

DT, V. & +X
Dt pCvv

T2 [I_-e- ¢/n 1 11}X-_7 L 1-e--=;7T ] {exp[¢(Tv T)-
hv

¢ =-k-

Cvv =k (T_) 2 exp(_) (exp(_) - 1) -2

4".= - _VT_

_,_=_C_ /m

¢rt = - _ VT

Ak =19rik/4m

1 exp{A(T-U s - 0.015g 1/4) - 18.42}pC t )

( T _3/2 [1 - exp(-¢/5000)lr = \ 5-_] 1 - exp(-¢/T) rmw

A=220, 4=3395, #=14.

and
1

Dff = _,(vi,y + vi,i)

qrad=V (_RV(4asBT4))
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Preliminary Considerations

The Knudsen number, reference [31], is defined K,_ = h/d, and is the ratio of the mean

free path _ to some typical dimension in the flow field. The Navier-Stokes equations, for

the simulation of gas flows, is valid when the Knudsen number is very small in comparison

with unity. As the Knudsen number increases the intermolecular collisions of the gas

particles becomes less. A knudsen number of 0.1 has been used, reference [29], to describe

the boundary between continuum and transition regime flows. This assumption is based ,

upon the selection of an appropriate scale length d used to determine the Knudsen number.

For internal flows, gas properties which depend upon molecular collisions such as

viscosity, heat conduction, diffusion, heat capacity, etc., will be greatly altered when the

Knudsen number is large. This is because molecules will collide more readUy with the

wall boundaries than with each other. As the density of the gas decreases, the collision

rate of the molecuhs diminishes and eventually the continuum theory breaks down. Under

such conditions one can resort to direct simulation Monte Carlo techniques associated with

Boltzmann equation, as opposed to the Navier-Stokes equations, which treats the rarefied

gas as a set of discrete molecules.

The maximum mean free path for Nz is given approximately by

1

n_r0` 2

reference [26], where 0`2 = 14.9(10) -16 cm 2 and n is the gas density in rnoleculues/crn 3.

The figure 8 illustrates the maximum mean free path vs density of Nitrogen. Using the

local nozzle minimum radius as representative of d, and using the density from a one

dimensional nozzle analysis, the figures 9,10,11 illustrate approximate Knudsen numbers

vs distance along the nozzle. These figures illustrate that for high expansion nozzles, large

pressures are required to insure the Navier-Stokes modeling remains valid.
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Conclusions

The reference [1] points out several difficulties associated with the numerical solution

of the compressible Navier-Stokes equations. These difficulties are:

(i) The Courant-Friedrich-Lewy (CFL) condition for numerical stability limits the time ,

step that the solution can be advanced.

(ii) The treatment of steep flow gradients and mesh size needed to handle these gradients.

(iii) The treatment of turbulence and associated mesh size.

(iv) Approximate factorization error in the numerical solution.

iv) Linearization error.

The figure 2 illustrates the mesh selected for the numerical solution in order to address

the concerns of (ii) and (iii) above. The size of the mesh was selected to address the

concerns of items (iv) and iv) above. The step size limit continued to be a problem in our

numerical techniques for a solution.

The diffusion fluxes, described by the vectors E,F and H of equations (42)(43), are

found from the Navier-Stokes diffusion o]_momentum and Fourier's heat conduction law.

The viscous terms and heat conductivity, in these terms, are all temperature dependent.

The heat capacity of the gas is taken from reference [19]. We also employ the Stokes

hypothesis that the second coefficient of viscosity is given by ), = -2)7/3. The exit pressure

is such that a shockless supersonic flow is sustained in the diverging portion of the nozzle.

The reference [17] points out that there are no proper initial and boundary conditions

that will insure existence and uniqueness of the solution. For this problem we tried to

select boundary conditions that were physically realizable, we use adiabatic boundary

conditions for the temperature T and required that the normal derivative of the pressure

be zero at the walls. The exit values on the boundary were all extrapolated. The inlet

boundary conditions were such that all values were fixed except for one variable conditions

which was extrapolated (reference [27]). We investigated two different input conditions.

One the extrapolation on density and the .other investigated the extrapolation of velocity.

The density extrapolation seemed to keep the mass flow, (continuity equation), in balance.

For model 1 we employed the explicit-implicit MacCormack method. For the model

2, the Steger-Warming technique was employed. The numerical results for the model 1

are summarized in the figures 12 through 19. The figures 12,13 illustrate the resulting

temperature contours throughout the nozzle. Note the sudden drop in temperature as

the gas passes through the throat. The figures 14,15 illustrate the contour plots of the
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resulting radial velocity P'r, while figures 16,17 illustrate the contour plots of the axial

velocity Vz. The figures 18,19 illustrate the contour plots of the logarithm of density. All

nozzle dimensions are given in the appendix B.
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The model 2 assumes nonequilibrium thermodynamics. The vibrational potential of

the molecules are represented by a harmonic oscillator model, references [21],[28]. The

nonequilibrium thermodynamic model is formulated with two temperatures and differs

from the models developed in the references [2] and [3]. The main differences are (i) ther-

mochemical vs thermodynamic nonequilibrium. (ii) boundary conditions. (isothermal vs

adiabatic.) (iii) nozzle shape, scaling and mesh size. (iv) The representation of relaxation

time over the solution domain.

The nonequilibrium model is developed from first principles. It is a two tempera-

ture model used to study thermodynamic nonequilibrium where vibrational excitation and

rotational-translational excitation are the dominant nonequilibrium phenomena. Such sit-

uations arise in the study of re-entry ftow and certain converging-diverging nozzle flows,

reference [2]. Almost everything in model 2 is the same as in model 1 with the exception

of energy and temperature representation. The vibrational relaxation follows the work of

Meador, et. ah, reference [7], for Nitrogen gas through a nozzle.

The numerical results for model 2 are summarized in the figures 20 through 29. The

figures 20,21 are contour plots of temperature. The figures 22,23 are contour plots of

vibrational temperature. The figures 24,25 are contour plots of radial velocity Vr. The

figures 26,27 are contour plots of the axial velocity Vz. The figures 28,29 are contour plots

of logarithm of density.
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Contour Plot of Tran,.ot
r Temperature
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Figure 20. Contour plot of rotational-translational temperature.
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Contour Plot ofr Trans-Rot
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Figure 21. Contour plot of rotational-translational temperature.



Contour Plot of Vibrational

r Temperature
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Figure22. Contourplot of vibrationaltemperature.
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Contour Plot of Vibrational

r Temperature
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Figure 23. Contour plot of vibrational temperature.
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r contour plot of Vr v,0.163
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Figure 24. Contour plot of radial velocity.
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Figure 25. Contour plot of radial velocity.
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r contour plot of Vz vz
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Figure 26. Contour plot of axial velocity.

55



r vz
Contour Plot of Vz 2712

i 2576

2441

Enhancement of Throat Area _oo
0.006 2273

2205

2170

0.004 2135
2035

1900

1765
0.002 1629

1494
1359

0.000 1224
1088

953

818

_0.002 682
547

412

277

-0.004 141

44

6

-0.006
0.005 0.010 0.015 0.020 0.025

Z

Figure 27. Contour plot of axial velocity.
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Figure 28. Contour plot of logarithm of density.
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Figure 29. Contour plot of logarithm of density.
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Results indicate that the vibrational temperature has essentially a frozen value, along

the centerline, upon passage through the throat area into the diverging portion of the

nozzle, the same as reported in the references [2],[3]. As the flow expands into the diverging

nozzle region, the density of the gas decreases, and the Knudsen number becomes large.

Thus, care must be exercised in the nozzle design (Shape of diverging portion of the nozzle)

and choice of initial parameters (Inlet pressure) in order that the model remain valid.

In the boundary layer the vibrational temperature is not frozen. These vibrational

temperature effects imply that there is no meaning to the term "Mach Number" in this

situation as the speed of sound is dependent upon the vibrational properties of the gas.

In both models the boundary layer thickness becomes very thin for high Reynolds number

flow. A high initial pressure insures both a low Knudsen number and a thin boundary

layer. Also, an increased pressure produces a more uniform flow in the nozzle. These

results are consistent with those reported in reference [5].

A more detailed analysis of model 2 will be given in Mr. Landry's thesis, which will

be an addendum to this report and submitted at a later date.

In conclusion, we have developed two models for the study of high pressure gas flow

through nozzles. We have investigated the basic physics associated with the modeling of

such a problem under a variety of circumstances. Improved models for gas vibrational

relaxation were employed during the analysis. The numerical analysis produced both

quantitative and qualitative results associated with both equilibrium and nonequilibrium

thermodynamic flow physics through a converging-diverging nozzle. It turns out that these

problems are extremely dimcult to solve numerically and care should be taken upon the

selection of the numerical method employed. They are challenging problems for current

and existing numerical techniques. The development of numerical techniques which will

handle these types of problems quickly and efficiently are areas for additional research.
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APPENDIX A

LIST OF SYMBOLS

a Speed of Sound [re�s]

A Cross sectional area [m2]

b" Body force per unit mass [Newton/Kg]

Cv, Cvrt, Vuu Specific heat at constant volume [goule/gg g]

Di,j Rate of deformation tensor Is-1]
D 0

D---t= 0--t+ _ "V Material or substantial derivative

e, ert, ev Energy per unit mass [Joule/Kg]

et Energy per unit volume [Joule/mSl

h Plank's constant [Joule s]

h Enthalpy [Joule�ross]

k Boltzmami's constant [Joule�K]

g, Krt,g_ Thermal conductivities [W/m g]

m- W/Na Molecular mass [gg]
M Mach number

Na Avogadro'snumber [tool -1]

q',q'rt, q_ Heat input per unit volume [Joule/m s s]

P Pressure [Newton/m 2]

R Gas Constant [Joule/Kgg]

r Radial distance [m]

8 Entropy per unit volume [Joule/m s s K]

t [s]
T, Tu Temperatures [K]
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_7 Velocity [m/8]

Vr,Vz Velocity components [m/8]

W Molecular weight of N2 [Kg]

X Coupling term [K/8]

z, y Computational coordinates

z axial dista_ce [m]

_/ Viscosity coefficient [Kg/m s]

A Second coefficient of viscosity [Kg/m s]

• Q Density [Kg/rn 3]

r Relaxation time [s]

rq Stresstensor [Newtor_/m 2]

_,0,_ Characteristictemperatures[K]

v Frequency [8-1]

Cp
"7- -- Ratioofspecificheats

C_
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APPENDIX B

NOZZLE DESIGN

The nozzle shape is illustrated in the figure B1 and can be described by a straight

line 1 , circle, cubic spline and straight line 2. In this figure a0 = 0.5ram is the throat

radius, b = 350ram is the length of the nozzle, r0 = 5.0ram is the entrance radius, and

R = 2.0ram is the radius of the circle. The parameters al, a2, as, a4 are selected such that

the line 1, circle, cubic spline and line 2 are connected in a continuous fashion. We require

that at z = al that the slope of the line 1 and slope of the circle are equal. At z - as the

slope of the circle is zero. The parameter as is selected such that the cubic spline converts

the circle to the line 2.

We write the equation of the circle as

(r- (ao + R)) 2 -I- (z- a2) 2 - R 2 (bl)

and the equation of the line 1 as

r --5 = ml * z (b2)

where ml = - tan(60 °) is the slope of line 1. The slope at any point on the circle can be

determined from the derivative of equation (bl)

(r - (ao + R)) drdzz + (z - a2) = 0 (b3)

dr
At z = as we require that the slope of the circle is zero, _ = 0 and at z = al we require

that the point z = al,r = rl lie on both the circle and line 1 so that

rl - (ao + R) = -_R 2 - (al - ao) 2 (b4)

and

v/R 2 - (ax - a2) 2 *mx = -(al - a2). (b5)

Solving the equation (b4) for al - a2 we find that

ax - as -- -v_R/2. (b6)

From the equation (b4) we find

rl -- ao + R- _- 3. (bT)
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The circleintersectstheline1 atthepoint(al,rl)whichgivestheequationofline1

r- (ao +R- _- 3) - ml * (z- al). (b8)
$

Note that at z = 0, where r = ro = 5 we find that

5- (ao +R- _- 3) = V_al

5- (ao + R- _ - 3) (b9)

or a I --"

For 0 <Cz _<al the nozzle shape is described

r = f(z) - ml * (z - al) _Fa0 -}"R -- _ -- 3 (bl0)

or

r=f(z)=rnl*(z-a2)+ao+R 3-V_ 2-3 (bll)

where ml = -tan(60 °) = -V_. For the region al < z < a2 the nozzle shape is described

r = f(z) = ao + R - _/R 2 - (z - a2) 2 (b12)

For the region a2 __Z __ as we must find the parameter a3 such that the cubic spline

converts the circle to the line 2. The cubic spline is represented as

r = S3(z) = A(z - a2) 3 + B(z - a2)2 _- C(Z -- a2) -}-D (b13)

and is subject to the end conditions

S3(a2)=ao B3(a3)--a4 (unknown)
dr

$3(a2) = _zz[Z=a2 =0 S_(a3) =m2 -- tan# (slope of line 2)

1 S_'(a3)=0I! _._

S 3 (a2) R

Solving this system of equations we find

-1 1

A - 12R2m2 B = 2--R C = 0 D = ao (b14)

and consequently

a3 = a2 + 2Rrn2, a4 = $3(a3) = ao + 4Rm2/3 (b15)
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Then the nozzle shape for the region a2 < z < as is given by

--fC_)- -(_-_2)_(_-_2)_ Cbl6)
12R2m2 -}- 2R + ao

and for the region a3 _< z < b we have

r = fCz) = a4 -}-m2 * Cz-az). (b17)

The equations (bl0),(bl2),Cbl6) and Cbl7) must be converted from millimeters to meters

for use in our analysis.

In summary, for r in meters, z in millimeters and using the conversion factor cv =

10 -3 , the equations describing the shape of the nozzle can be written

0 <_ z <_ al, r = f(z) = cv * (ml * (z - a2) - ao + R - 3 - _ - 3)

al <_ z <_ a2, r = f(z) = ev * (ao + R - _/R 2 - (z - a2) 2)

a2<z<a3, r=f(z)=c_*( -(_-_2)_ (_- _2)2
- - 12R2m2 + 2R +ao)

_ < __<b, r =f(_)=c_*(a4+ m2, (z- _))

where
ml = -- tan 60 °

5- ao- R + V_-2- 3

m 2 =tan0 al -- V_

0 =4 ° a2 ----al + V/-3R/2

a0 =0.5 mrn as =a2 + 2Rrn2

R =2.0 mm 4Rm 2
a4 :ao •

3
ro =5.0 rnm
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' line I

z_O Z'- al Z---a3

Figure B1 Nozzle Shape
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