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<* Abstract

=\ Heterogeneous concurrent computing, based on the traditional process-oriented
J^ model, is approaching its functionality and performance limits. An alternative
_ paradigm, based on the concept of services, supporting data driven computation, and
E5 built on a lightweight process infrastructure, is proposed to enhance the functional
> capabilities and the operational efficiency of heterogeneous network-based concurrent
i£ computing. TPVM is an experimental prototype system supporting exportable services,
^ thread-based computation, and remote memory operations that is built as an extension
gj of and an enhancement to the PVM concurrent computing system. TPVM offers
3 a significantly different computing paradigm for network-based computing, while
H maintaining a close resemblance to the conventional PVM model in the interest of
m compatibility and ease of transition. Preliminary experiences have demonstrated
EC that the TPVM framework presents a natural yet powerful concurrent programming
J» interface, while being capable of delivering performance improvements of upto thirty
ftl percent.
o

1 Introduction

Parallel and concurrent processing on heterogeneous collections of networked computing
systems has received widespread attention and adoption recently. The standard scenario,

• in the use of networked machines for parallel computing, is for a software system to emulate
general purpose concurrent computing facilities and present, a programming interface
(typically) based on explicit message passing. These software systems permit users to
configure "virtual parallel machines" using networked computer systems and execute their
computations with varying degrees of logical and real concurrency depending upon the
number of physical machines. For many classes of applications, loosely coupled concurrent
computing in such environments has proven to be straightforward in terms of parallelization
effort, at least satisfactory if not very good in terms of performance, and highly effective in
terms of cost. Numerous software systems are in existence [1] although the majority of use
is probably based on a few popular ones, such as PVM [4], P4/Parmacs [2], and Express
[3] that are used extensively — it is estimated that nearly 10,000 sites or users worldwide
have obtained one of the above three software systems, and a fair percentage actively use
them.

However, despite their widespread adoption and abundance of success stories [5, 6],
network-based concurrent computing systems suffer from several critical shortcomings.
Principal among them are factors concerning, or in some way related to, performance -
which in t u r n is almost completely dominated by communication speeds and capacities. It
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is a well known fact that commonly available networks upon which heterogeneous computing
systems typically operate are relatively slow thereby precluding high efficiency in parallel
applications requiring large volume and/or frequent communication. Cardinal rules for good
performance in network-based computing are large granularity, infrequent communication
using the largest possible messages, and avoidance of highly synchronous algorithms, even
if these requirements are unnatural to the problem at hand. In addition, a serious obstacle
to good performance is the general purpose, non-dedicated, nature of typical network-based
environments — external influences, including those generated by other users as well as by
operating systems and network software, lead to load imbalances and intractable scheduling
issues eventually resulting in degraded overall performance.

We believe that only some of the above factors are fundamentally inherent and
unavoidable. Obviously, physical limitations such as network bandwidth and shared-
medium design (as in Ethernet and FDDI) cannot be overcome. However, certain strategies,
such as increasing asynchrony, enabling overlapped communication and computation,
dynamic scheduling, and reducing load imbalances are feasible and wil l likely result in
significant performance improvements. We propose an alternative paradigm, based on light-
weight processes and event driven computation, to attempt to address some of the above
issues in network-based concurrent computing systems. This approach, which is derived
by combining variants of principles from mult i threading systems, data flow computing,
and remote procedure call, is believed to have the potential to enhance performance and
functionali ty in heterogeneous systems, without too drastic a departure from the prevalent
parallel programming methodologies.

2 Background
Heterogeneous concurrent computing, as a technology and an evolving sub-discipline
in parallel processing, is aimed at emulating general, flexible, and effective c o m p u t i n g
environments on networked collections of multifaceted machines. Software frameworks are
the mainstay of this computing methodology, which is built on the premise t h a t " t h e
network is the high-performance computer", i.e. that independent but interconnected
computer systems can be a viable alternative to, if not better than, monolithic hardware
multiprocessors and vector supercomputers. Another fundamental theme is t h a t real
applications are comprised of several sub-algorithms, each with potential ly different
requirements and amenable to different concurrency paradigms — and that heterogeneous
systems therefore enable execution of individual sub-algorithms on the best suited machines,
to the maximal possible extent.

While the above (seemingly logical) issues continue to be long-term research goals, the
practice of network-based computing has generally been confined to clusters or networks
of workstations and sometimes general purpose parallel machines. Heterogeneity is often
present but is addressed only in terms of instruction sets and data representations; most
applications are SPMD programs that are partitioned in a manner identical to homogeneous
MPP's, ignoring such differences as machine speeds, specific architectural and machine
characteristics (pipelining, optimized scientific libraries, varying external loads etc), and
variations in network capacities. The primary reason for the tendency to blindly port
programs or algorithms designed for homogeneous MPP's is complexity — it is very dif f icul t
to accurately parametrize computing resources in a network-based concurrent computing
system especially when it is subject to time-varying external influences. An algorithm or
application optimized for specific clusters or heterogeneous environments might overcome
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this obstacle with significant effort, but would then lose the portability advantage.
It is therefore tempting to conclude that the widespread use of network-based systems

is by and large limited (a) to large-grained applications; and/or (b) small-scale settings;
and/or (c) research/experimental arenas. Such a judgement is not necessarily derogatory;
network-based systems are generally accepted as having high value as stable, pragmatic,
portable technologies that at least provide an entry level solution to parallel computing in
terms of both hardware and software, i.e. zero investment parallelism is made available to
any user interested in high performance computing.

The above discussion is not meant to imply that network-based systems perform poorly
for applications with substantial communications content. To demonstrate that reasonable
performance can be delivered by network-based systems when granularity is not excessively
fine, especially when increasingly popular high-speed networks are used, we present in Table
1 results of recent experiments with the NASA Parallel benchmarks [7]. This table shows
excerpted performance numbers from a detailed benchmarking effort [8] aimed at analyzing
efficiency issues in network-based high-performance computing, using different types of
environments, for a widely accepted and representative class of scientific applications

o o•ng
•o

P*
'"0

Platform/
Benchmark

Cray Y-MP/1
i860/ 128

PVM Comm. Vol.
No. of msgs.

8 RS6K/FDDI
(idle sees)

8 SGI/Gswitch
(idle sees)

Multigrid
Method

22 sees
9 sees

192 MB
1808

110 sees
(30)

108 sees
(50)

Integer
Sort

1 1 sees
14 sees

560MB
2491

318 sees
(129)

258 sees
(105)

Fourier
Transform

29 sees
10 sees

1500 MB
826

412 sees
(3-D

228 sees
(34)

TABLE 1
Representative NPD results on PVM

Several points are worthy of note in the table. One is that realistic algorithms wi th
substantial communication content may be executed on small clusters using PVM about an
order of magnitude slower than on a single processor vector supercomputer or on an MPP
with 128 processors. More relevant to this discussion however, is the fact that there is often
the potential for fur ther improvement by upto 10 to 50%, judging by the ratio of idle time
(spent blocking on receives within the slowest process) to overall execution time. This factor
is due in most part to load imbalances — in network-based systems, dynamically varying
external influences, operating system activity, paging, and background network traffic result
in some processes executing at rates different from others. Further, the algorithms that
were used are loosely synchronous — i.e., all processes compute, then communicate, then
compute, and so on, thereby precluding any overlap of communication and computation.

In this paper, we describe an experimental methodology devised as an enhancement
to the PVM system that is aimed at attacking the above limitations and inefficiencies.
This approach is based on the use of lightweight processes (or threads) as both the un i t
of parallelism and of scheduling, i.e. workload allocation and data/function partitioning in
the new scheme will be in terms of threads, and the the computational entities managed by
the system will also be threads — as opposed to processes in the conventional PVM system.
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lii this model, each heavyweight process wil l be comprised of mul t ip le l ightweight processes
t h a t w i l l , in the abstract, be asynchronous, independent threads of control, capable of
communica t ing and synchronizing with other lightweight processes. This fundamenta l
change in the nature of parallelism offered by PVM will, we believe

• increase the potential for, and the realization of, asynchrony, w i t h l i t t l e or no

addit ional effort required of the programmer

• permit and achieve overlap of communication and computat ion when possible, in a
manner t ransparent to the user

• allow app l i ca t ion parallelization at smaller, perhaps more n a t u r a l , g r a n u l a r i t y w i t h o u t

sacrif icing efficiency

• enable d y n a m i c scheduling of computational tasks in a dynamica l ly load-balanced

m a n n e r

• provide for the exploitation of adaptive parallelism, i.e. changes in the resources
available w i t h i n a network-based comput ing environment

3 The TPVM Framework
TPVM is a collection of extensions and enhancements to the PVM computing model
and system. In TI'Y.M. computational entities arc threads. TPVM threads are r u n t i m e
m a n i f e s t a t i o n s of imperative subroutines or collections thereof tha t cooperate via ;i few
simple extensions to the PVM programming interface. In the interest of s t ra ight forward
t rans i t ion and to avoid a large paradigm shift, one of the modes of use in TPVM is identical
to the process-based model in PVM, except that threads are the computat ional un i t s .
TPV.M also offers two other programming models — one based on data dr iven execution,
and the other suppor t ing remote memory access. The i n d i v i d u a l models supported by
TPVM are discussed in later sections; a general architectural overview of TPVM is depicted
in Figure l . a n d a brief description follows.

Arch i tec tu ra l ly , TPVM is a natural extension of the PVM model. In terms of the
resource p la t form, TPVM also emulates a general-purpose heterogeneous concurrent , com-
p u t e r on an interconnected collection of independent machines. However, since TPVM
supports a threads-based model, it is potentially capable of exploiting the bcnefus of mul-
t i threaded operating systems as well as small-scale SMMP's — both of which are becoming
increasingly prevalent in general purpose computing environments. Further, m u l t i p l e com-
pu ta t iona l entities may now be manifested wi th in a single process. In combination, these
aspects enable increased potential for optimizing interaction between computational vinits
in a user-transparent manner. In other words, inter-machine communication may continue
to use message passing, while intra-machine communication, including that w i t h i n SMMP's,
may be implemented using the available global address space. In addition, "latent" compu-
ta t ional entities in the form of dormant threads may be instantiated either asynchronously
or during initialization, at negligible or low cost. In many cases, this helps reduce the over-
head of spawning new computational entities dur ing application execution. Further, the
concept of latent threads extends naturally to service-based computing paradigms that are
more appropriate in general purpose, non-scientific, distributed and concurrent processing.

TPVM is designed to be layered over the PVM system, and does not require any
modifications or changes to PVM. User level primitives are supplied as a library against
which application programs l i nk ; operational mechanisms are provided in the form of
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FIG. 1. TPVM Architectural Overview

standalone PVM programs. Central to the TPVM implementation is the concept of a
scheduling interface that is responsible for controlling thread spawning as well as other
facilities that are available in TPVM. Thus interface is defined in functional terms,
thereby enabling implementations to evolve from a centralized mechanism in preliminary
implementations to one based on distributed algorithms. A schematic of this the scheduling
interface and the principal facets of a TPVM implementation are shown in Figure 2.
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inv«>ke(dcp2)
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Interface

(local/

centralized/

distributed)

FlO. 2. Schematic of TPVM Implementation

A thread in TPVM is essentially a subroutine/procedure (or a code segment, including
nested procedure invocations, identified by one entry point). TPVM requires "strong
encapsulation" of threads, i.e. shared variables are not permitted, although the system
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cannot enforce this restriction. Thus, a TPVM thread is a (sequence or collection of)
subroutine^) that, when initiated, possesses a thread of control and executes on its
own stack, with its own data segment. Threads in TPVM exist within the context of
PVM processes. However, processes in TPVM do not indulge in computation and/or
communication; they only serve as "shells" or environments for threads to exist in. and play
active roles only at certain points during execution e.g. for thread creation. A process may
play host to (be the "pod" of) one or more threads, each of which may be an ins tant ia t ion
of the same or of different entry points. Application programmers access facilities in TP\ M
by invoking model-dependent functions that are described below.

4 The Process Oriented Model
TPVM supports a "traditional" concurrent computing model based on multiple interacting
threads cooperating via explicit message passing. In this model, mul t ip le threads, each
with its unique thread id, are spawned and subsequently exchange messages using send
and receive calls in a manner analogous to process spawning and interaction in I VM.
However, to define threads that may be spawned, PVM pod (host) processes u t i l i ze the

function

int
tpvm_export(name, func, limit, flags, 0, 0)

char «name;

void (*func)O ;
int limit, flags;

This function declares a potential thread identified by a symbolic s tr ing valued name,
and associated with a function entry point; additional parameters specify options, and
limits to the number of threads allowed within this pod. An already existing thread or
a pod process may subsequently spawn one or more instantiations of an exported thread,

using the function

tpvm_spawn(name, flag, where, nthread, ttids)

char *nama, 'where;
int flag, nthread, *ttids;

specifying the symbolic name of the service, the number desired, and optional parameters
indicating spawning locations and scheduling strategies. The thread ids of all spawned
threads are returned, which may then be distributed to all threads if necessary. Subse-
quently, these threads exchange messages using the calls

tpvm_send(ttid, msgtag)
int ttid, msgtag;

tpvra_mcast(ttids, nthread, msgtag)
int *ttids, nthread, msgtag;

tpvm_recv(ttid, msgtag)
int ttid, msgtag;

tpvm_nrecv(ttid, msgtag)
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int t t id, msgtag;

tpvra_prot>e(ttid, msgtag)
int ttid, msgtag;

As apparent, the above calls are direct equivalents of their PVM counterparts, with
thread ids substituted for task ids; other functions, such as pvm.initsend and pvm_pkxxx
are inherited as is from PVM. Our experiences with a preliminary implementation of
this process-oriented model for TPVM have been encouraging, both from the viewpoints
of functionality as well as performance. Two textbook applications, namely matrix
multiplication and sorting, were written to conform to this model and tested on our
experimental implementation; results are shown in Table 2. As can be seen from this
table, the TPVM versions perform bettor, by a factor of upto 2-1% — with the largest gains
occurring when the granularity and the number of threads are "ideal". As some entries
show, TPVM performance is worse when the overheads of thread management offset any
gains due to the increased asynchrony.

Problem II PVM
(size) I 4/4

M a t m u l (500x500)
M a t m u l (1000x1000)
Sort (2M integers)

201
161S
M23

CPUs/ Processes
16/16

78
756
366

TPVN
.1/16

182
1610
1201

I: CPU"
16/6-1

0-1
710
351

s/Threads
16/36

CO
663
309

TABLE 2
PVM us. TPVM times in seconds (SSI + workstations on Ethernet)

5 The Data Driven Model
Motivated by the well known advantages of data driven comput ing , as well as by
observations tha t scheduling is of critical importance for high performance, the TPVM
system also supports a computing model that is different from the process-based paradigm.
In this scheme, thread entry points arc exported as before, but contain a list of "fir ing
rules" that are required to be satisfied before a thread can be ins tant ia ted. The last two
arguments of tpvm.export contain the size of, and a pointer to. an array conta ining a
list of message tags — implying that the specified thread may be instantiated when one
message of each tag type is available. Typically, as threads complete some portion of their
allocated work, they are able to (partially) satisfy such a dependency. In order to indica te
that a thread is able to satisfy a firing rule of an exported service, and to deliver a message
containing the required data, the following function is used:

int
tpvm_invoke(name, msgtag, number, flags)
char *name;

int msgtag, number, flags;

As an example, consider a PVM process called PI that exports the symbol ' 'matmul ' ' ,
specifying that a thread manifesting a matrix mult iply service may be instantiated when
messages of tag 77 and 88 (e.g. representing corresponding subblocks of the original
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matrices) are available. When threads Ta and Tb, in the course of their computations,
generate the appropriate subblocks required by matmul, Ta, for example, executes:

pvm_initsend(0);
pvm_pkdouble(Asubblock, 100*100, 1);

tpvra_invoke("matmul", 77, 1, 0);

with Tb executing a corresponding sequence of functions. When both tpvm-invokes have
been executed, the TPVM system instantiates the matmul thread at the most appropriate
location, and delivers the two messages to it. Exported threads based on this model would
typically begin execution by calling the appropriate tpvm-recv functions, followed by the
computational code corresponding to the service they provide. The potentially significant
benefits of this model arc to delay thread spawning un t i l all dependencies arc satisfied,
thereby enabling load-balanced scheduling at low cost. Table 3 indicates the measured
performance for the matrix multiplication and sorting examples mentioned earlier; results
from the process-based model arc also included for convenient comparison. As can be
seen, the data driven model performs at approximately the same levels in some cases, and
significantly better in others.

Problem
(size)

M a t m u l (500x500)
Matmu l (1000x1000)
Sort (2M integers)

ProcN
•1/16

182
1610
1201

loclel: CPU's/Threads
10/6-1 | 16/36

9-1
710
351

60
663
309

Dflow
-I/?

19-1
1582
1167

Model: CPUs/Threads
16/7

62
6-10
309

TABLE 3
TPVM ProcMmlel vs. DflowModel times in seconds (SS1+ workstations on Ethernet)

6 Remote Memory Access
In addition to the two message-based computing models described above. TPVM also
supports a third, which is based on the notion of logical access \o remote address spaces.
This facility, referred to as remote memory copy, is a compromise between the need
for explicit participation by both entities involved as in t rad i t iona l message passing and
completely transparent access as in (distributed) shared memory. Essentially, the idea is
that computational entities export data areas which may then be read from or wri t ten to,
asynchronously, by other entities thereby requir ing only the proactive participant to be
explicitly involved in the interaction.

In TPVM, threads or processes may indicate that certain local data areas are available
for remote access, with strongly typed semantics that are required when operating in a
heterogeneous environment, by using the

tpvm_exportd(name, partno, address, type, size, f lags);
char *narae;
void *address;
int piecenura, type, size, flags;

primitive, that associates a (portion of a) local data structure identified by an address,
a datatype, and a length, with a symbolic identifier composed of a string valued logical
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name and an integer qualifier. This naming scheme is useful, for instance, when portions
of a distributed data structure reside within different thread address spaces. External
threads may place or retrieve typed data iuto or from such exported data areas by using
the tpvm_read and tpvm.write constructs. Options, sellable using Ihe flags parameter,
may be used to ensure synchronized access when needed.

CD

S ,a»
O- Raw driver write
I - — — 0 Conv. driver write

/\ f\ Raw portable write
^ ^ Conv. portable write

.A-"*'

• -•

_L I l I L

Remote memory block size (bytes)

F\c,. 3. TPVM Remote Memory Copy Performance (SSI+ \rorkstations on Ethernet)

The preliminary TPVM implementation supports a prototype version of i.ho remote
memory access facility that was used to ensure that the overheads in e m u l a t i n g a t ranslucent
shared address space are acceptable. Figure 3 indicates the time required to perform remote
memory writes for different sizes of exported data areas. Two sets of times are reported;
one based on the generic PVM implementation using high-level In ternet protocols, and the
other based on a research version of PVM modified to use low level Etherne t protocols by
directly accessing the data l ink device drivers. Also shown are the costs incurred in data
format conversion that is necessary to support heterogeneous remote memory copy.

7 Discussion
In this paper, we have described an cntension to the PVM heterogeneous concurrent
computing system that supports three distinct and novel paradigms w i t h i n the same
unified framework, while retaining almost complete compatibility w i t h the existing PVM
model. The key concept in these extensions is the use of mul t iple threads or lightweight
processes within each PVM process, thereby increasing the available and exploitable
asynchrony, and at the same time, providing for alternative computalional models that can
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be implemented in a message-passing environment . From the program development point
of view, the process-oriented model in TPVM is closest to the existing, and traditional,
program structuring scheme. Translating existing message passing programs to this model
is straightforward, and can potentially result in performance gains of Ihe order of 30%.
The other two schemes supported by TPVM, i.e. the data driven model and facilitiies for
remote memory copy are likely to be of value for applications where expressing parallelism
and dependencies does not naturally fit the explicit message passing paradigm. Further, our
experiences show that these facilities for computalional entities to interact in TPVM can
also benefit from increased asynchrony, computation/communication overlap, and dynamic
load balancing, and are capable of delivering significantly improved performance over
comparable implementations based on traditional message passing. While the success and
value of the TPVM system can only be determined after substantial evolution and use,
early experiences have been encouraging and indicate thai ihese paradigms enhance Ihe
viabilily and usability of heterogeneous, network-based, concurrent computing.
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