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ABSTRACT

A key drawback to estimating geodetic and geodynamic parameters over time

based on satellite laser ranging (SLR) observations is the inability to accurately model

all the forces acting on the satellite. Errors associated with the observations and the

measurement model can detract from the estimates as well. These "model errors"

corrupt the solutions obtained from the satellite orbit determination process. Dynamical

models for satellite motion utilize known geophysical parameters to mathematically

detail the forces acting on the satellite. However, these parameters, while estimated as

constants, vary over time. These temporal variations must be accounted for in some

fashion to maintain meaningful solutions.

The primary goal of this study is to analyze the feasibility of using a sequential

process noise filter for estimating geodynamic parameters over time from the Laser

Geodynamics Satellite (LAGEOS) SLR data. This evaluation is achieved by first

simulating a sequence of realistic LAGEOS laser ranging observations. These

observations are generated using models with known temporal variations in several

geodynamic parameters (along track drag and the J2, /3, /4, and J5 geopotential

coefficients). A standard (non-stochastic) filter and a stochastic process noise filter are

then utilized to estimate the model parameters from the simulated observations.

The standard non-stochastic filter estimates these parameters as constants over

consecutive fixed time intervals. Thus, the resulting solutions contain constant

estimates of parameters that vary in time which limits the temporal resolution and

accuracy of the solution. The stochastic process noise filter estimates these parameters

as correlated process noise variables. As a result, the stochastic process noise filter has
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the potential to estimate the temporal variations more accurately since the constraint of

estimating the parameters as constants is eliminated.

A comparison of the temporal resolution of solutions obtained from standard

sequential filtering methods and process noise sequential filtering methods shows that

the accuracy is significantly improved using process noise. The results show that the

positional accuracy of the orbit is improved as well. The temporal resolution of the

resulting solutions are detailed, and conclusions drawn about the results. Benefits and

drawbacks of using process noise filtering in this type of scenario are also identified.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The current state of the art in filtering Earth orbiting satellite data has reached the

point where temporal variations in the gravity field (particularly J2 and 73) appear to be

observable. Determining these variations is of interest for determining global changes

in mass distribution as well as for insight into interior mass properties. The desire to

then obtain accurate estimates of these variations, as well as temporal variations in other

geophysical parameters, provides the motivation for this study. In particular, it is of

interest to determine if the relatively sparse, but accurate, laser range tracking of the

LAGEOS satellite can be used to resolve these variations in the low degree coefficients

of the Earth's gravity field with the use of a stochastic filter. Conventional filtering

methods typically estimate these types of variations as piecewise constants over a given

data arc [Nerem et al., 1993]. This results in a discontinuous solution for the variations

with limited temporal resolution (e.g. monthly). Stochastic filtering methods can

estimate these variations as continuous process noise parameters which are correlated in

time. This type of estimation procedure has the potential for resolving these variations

much more accurately. This study analyzes the ability of a stochastic filter to recover

and accurately estimate such variations.

1.2 Model Errors

A dynamical model is a mathematical representation of the forces acting on a

physical system. If the dynamics of the system are known perfectly, then a dynamical

model for the system can be used to determine the exact physical state of the system for



all time. Most physical systems cannot be modeled or observed perfectly, as is the case

with Earth orbiting satellites. Errors in the dynamical model for a satellite result in

differences between the true satellite state and the predicted satellite state based on the

dynamical model. Many of these dynamical model errors are a result of not accurately

knowing the values of physical parameters which help define the satellite dynamics

mathematically. Geopotential coefficients, drag coefficients, and solar radiation

pressure coefficients are some examples. Also, model errors may consist of

unpredictable time variations in the model parameters which can not be modeled.

Likewise, errors may exist between the actual observation or measurement and

the model used to determine a computed or predicted measurement based on the satellite

state. These are measurement model errors. A computed measurement of the state is

necessary to compare to the actual observed measurement of the state in order to

compare the current actual state with the current predicted state. Errors due to moving

laser stations (plate tectonics), clock errors, and atmospheric refraction are some

examples of measurement model errors. There are also some model errors, such as

polar motion errors, which may be considered both dynamical model errors and

measurement model errors as these parameters are present in both models.

1.3 Orbit Determination Filters

By observing the satellite over time, the differences between the true (observed)

state and the predicted state based on the dynamical model become apparent. Orbit

determination is the process of obtaining the best estimate of the state of a satellite based

on observations of that satellite. An orbit determination filter is used to combine the

information from a set of observations into an estimate of the state while filtering out

the errors associated with the observations and the dynamical model.



There are several types of orbit determination filters. The particular application

usually dictates the specific filter which is most appropriate. For this study, the two

main types of filters which are of concern are a standard (non-stochastic) Square Root

Information Filter (SRIF) and a process noise (stochastic) SRIF. These two filters are

compared and their ability to resolve specific model errors is assessed.

The satellite state parameters may be defined as the position and velocity of the

satellite plus constant model parameters. These model parameters are defined as

constants in the mathematical model, yet they may in fact vary in time. Such

parameters must be defined as constants in the model since any variations are usually

unpredictable. If variations of a particular model parameter are predictable, then these

variations can be built into the model. The resulting dilemma is that of estimating

unpredictable variations in model parameters as constants. The limitations inherent to

this approach are obvious.

Standard non-stochastic filters estimate model parameters (used in the

dynamical and measurement models) as constants. Process noise stochastic filters can

estimate these model parameters as stochastic, time varying parameters correlated in

time. Generally, stochastic filters are most often used to estimate extra accelerations

which account for the total effect of the individual model errors for various parameters

combined [Yunck et ai, 1990; Wu et al., 1992; Yunck et al, 1994]. These stochastic

acceleration estimates result in an estimated state which is much closer to the true state

(position and velocity). The estimates of the constant parameters of the state that are

used in the dynamical and measurement models are generally no closer to the true

values, however. This is due to the fact that the errors in these parameters have not

been estimated, but rather the net effect of these errors has been estimated as additional

accelerations. This study focuses on the ability of a stochastic orbit determination filter

to estimate time varying model parameters directly and simultaneously with the satellite



state, and the associated accuracies of the estimates of the model parameters and the

satellite orbit.

1.4 Satellite Laser Ranging and LAGEOS

Satellite laser ranging (SLR) is a satellite observational technique which has

developed and matured over the last couple of decades. The observable used in SLR is

a range measurement from a ground based laser station to the satellite. This range

measurement is based on the round trip travel time of a laser pulse and the constancy of

the speed of light. Current precisions for SLR measurements are at the sub-centimeter

level [Kolenkiewicz etal., 1991]. This highly accurate type of measurement results in

geodynamic solutions which are more accurate than those solutions using other types of

ground-based measurements.

Launched in 1976, the Laser Geodynamics Satellite (LAGEOS) has been a

popular target for SLR. Due to its high altitude (approximately 5900 km), the

LAGEOS orbit is highly predictable and fairly easy to model [Cohen and Smith, 1985].

The high altitude results in smaller effects from atmospheric drag or the higher

frequency geopotential terms. Thus, LAGEOS solutions are less sensitive to model

errors from drag and gravity than lower altitude satellites, and more accurate

geodynamic solutions are possible.

1.5 Thesis Objectives

The main objective of this thesis is to assess the ability of a sequential process

noise filter to resolve specific model deviation signals embedded in simulated LAGEOS

SLR data. The accuracies of the estimated model deviation signals and the satellite state

are analyzed by comparing them to the known truth used in the simulated orbit.

Specifically, model deviation signals in an along track drag parameter and the second



and third degree zonal geopotential coefficients (J2 and 73) are introduced into a

simulated one year orbit and temporally resolved by a stochastic filter. Comparisons

are made to a solution generated with a standard non-stochastic filter. Also, solutions

are generated in the presence of additional model deviation signals (74 and /5), which

are not estimated. A simulated three year orbit with model deviation signals present in

Ct, J2, and J3 is also processed just using the stochastic filter. The three year arc is not

processed using the standard non-stochastic filter. The ability of a stochastic process

noise filter to resolve variations over this longer three year arc is assessed. The

advantages and disadvantages of using a stochastic filter to generate a LAGEOS

geodynamic solution are addressed as well.

This research will benefit future geodetic and geodynamic studies which attempt

to temporally resolve satellite model parameters. The feasibility of this approach is

assessed as it is related to orbit determination and satellite geodynamics. The specific

benefits and drawbacks of sequential process noise filtering in determining these

solutions will help to refine the role of this type of filtering in future analyses. This

study will also benefit orbit determination studies considering the use of process noise

parameters and stochastics in general in estimating model errors.

1.6 Description of Chapters

Chapter two reviews the basic aspects of filtering theory. The orbit

determination problem is presented and state estimation theory is summarized. The

square root information filter (SRIF) is developed both with and without correlated

process noise. The standard SRIF (without process noise) and the stochastic (process

noise) SRIF are the two orbit determination filters compared in this analysis.

Chapter three discusses the satellite laser ranging technique (SLR) and the Laser

Geodynamics Satellite (LAGEOS) and their roles in geodynamics. Some current



LAGEOS geodynamic solutions are presented and possible benefits of stochastic

filtering of LAGEOS data are detailed.

Chapter four details the simulation model used in the generation of the simulated

LAGEOS data. The measurement model and tracking station network are presented

along with the dynamical model. The specific model deviation signals inserted into the

simulated data are presented as well.

Chapter five details the results obtained from filtering the simulated data with

both the standard and the stochastic filter. The temporal resolution of the model

deviation signals estimated by each filter are compared. The accuracies of each filter in

estimating the satellite orbit are also compared.

Chapter six discusses the conclusions drawn based on the results of filtering the

simulated data. Benefits and drawbacks of using process noise to estimate variations of

parameters from their nominal values are discussed. Finally, recommendations for

future studies related to this research are made.



CHAPTER 2

FILTERING THEORY

2.1 Introduction

By observing a physical system, an estimate of the state of the system can be

made based on the observations. The state of the system defines what the system is

doing or looks like at any given time. Generally, the measurements or observations of

the system usually contain some type of noise. Filtering or estimation is the process of

determining the best estimate of the state of the system (by some measure) from these

noisy observations. By "filtering" out the noise on the observations, a "best estimate"

of the state can be made which is often more accurate than the noise on the

observations.

In the process of determining the best estimate of a satellite state, observations

of the satellite are required. These observations are processed in such a way as to filter

out the errors associated with them as the state of the satellite is estimated. This chapter

describes the theory associated with this process, which is commonly referred to as

filtering.

2.2 The Orbit Determination Problem

If the forces acting on a satellite have been modeled perfectly and the initial

conditions of the satellite are known exactly, then the state of the satellite can be found

for all time by integrating its equations of motion. A general form for the equations of

motion is

f = F(r,r,p,0 (2.1)
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where r and r are the geocentric position and velocity of the satellite, p are constant

parameters contained in the mathematical force model for the satellite's dynamics, and t

is the integration time. In general, however, neither the dynamical force model nor the

true initial conditions are known exactly. Perfect dynamical force models do not exist,

and the constant parameters p in the force model have errors as well as possibly

unpredictable changes over time. True initial conditions usually differ from those

calculated a priori, so even a "perfect" dynamical force model for the satellite will

predict a trajectory that differs from the true trajectory as a result of this initial condition

error. Also, some accelerations may not be modeled at all by the chosen dynamical

force model. As a result, observations during the satellite's orbit must be made in order

to determine or verify its subsequent trajectory. Since the state variables associated

with a satellite ( r and r ) cannot be observed directly, other measurements such as a

range or a range rate must be made. The satellite state can then be estimated based on

these measurements. This is known as the orbit determination problem.

Due to inherent measurement errors in making observations of the satellite, the

trajectory estimated based on the observations will be different than the satellite's true

trajectory, even if the dynamical force model for the motion of the satellite is perfect.

Errors in the measurement model, which relates the satellite observations to the satellite

state, also exist. The observation vector Z of the satellite at time t is usually a nonlinear

function of the satellite state (r and r), a set of measurement model parameters b, plus

some random measurement noise ez:

Z = G(r,r,b,0 + ez (2.2)

Thus, the satellite state and the observations are related in a nonlinear manner, denoted

by the function G. By linearizing this nonlinear function about a known reference

trajectory, the orbit determination problem can be simplified [Smith et ai, 1962]. If the



reference trajectory and the true trajectory are sufficiently close during the time interval

of concern, then the actual trajectory can be expanded in a Taylor series about the

reference trajectory for each point in time. By truncating this expansion after the first

order terms, the state deviation from the reference trajectory may be represented by a set

of linear differential equations. Likewise, the observation deviation may be linearly

related to the state deviation. Thus, the nonlinear problem of determining the satellite's

state can be transformed to a linear problem which determines the satellite's state

deviation from some reference state (trajectory).

To summarize mathematically, at time t, the deviations in the satellite state and

observations are:

x(0 = X(0-X*(0 (2.3)

z(/) = Z(f)-Z*(f) (2.4)

where X(f) is the true satellite state; X* (t) is the reference state based on a specified

dynamical force model; \(f) is the state deviation from the reference state X*(r); Z(f) is

the observation vector; Z*(r) is the computed observation vector based on the reference

state X*(f); and z(t) is the observation deviation from the computed observation Z*(f).
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By using the deviations defined in equations 2.3 and 2.4, and dropping the time

dependence of the state and observation deviation for notational simplicity, equations

2.1 and 2.2 may be linearized as

x = A(t)\ (2.5)

z = #x + ez (2.6)

where

O) (2.7)

(2.8)

For the nx 1 state vector X, an nxn state transition matrix <l> is defined

(2-<

with

,) = / (2.9b)

and

~ (2.9c)

Thus, the linearized system (equation 2.5) has the general solution

(2.10)
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If desired, by using this result and choosing an arbitrary epoch time t0, the linearized

observation-state relation (equation 2.6) may also be written

z = H0*0 +ez (2.11)

where

H0 = HQ>(t,Q and \0 = x(O (2.12)

For an m x 1 observation deviation vector z, H is a m xn matrix. Thus, observation

deviations at any time t are linearly related to state deviations at that time or at some

epoch time t0.

2.3 State Estimation

Least squares filters are the most commonly used filters for orbit determination

problems since they provide the best estimates of the state when the uncertainty is due

to Gaussian or normally distributed noise. They minimize the square of the difference

between the observed measurement and the expected measurement computed from an

observational model based on the state of the reference trajectory.

Observations can be filtered in two basic modes: batch or sequential.

Depending on the specific problem and application, data is filtered as an entire batch,

sequentially, or a combination of both. A batch filter estimates the state at an epoch

time based on all the observations taken over a given time interval. A sequential filter

processes the observations one by one, estimating either the current state or some epoch

state after each observation. By processing the observations sequentially, many large

matrix inversions and multiplications are avoided since the size of the observation

deviation vector z is dependent only on the number of observations at the current time

rather than the number of observations over the entire time interval. When computer
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storage is limited, the batch method is less favorable due to the necessity to store all the

observations and iterate through the data until a solution is converged upon. Batch

methods, however, are easy to implement and less sensitive to erroneous data points.

While still quite simple to implement, sequential filters are more sensitive to erroneous

data and numerically more unstable. Sequential algorithms are often used in

applications where computer storage is a limitation.

In general, a "standard" filter is most frequently used to estimate the state of

satellites and model parameters. Tapley el al. [1993] and Nerem et al. [1994] are two

typical examples of recent satellite solutions that estimate geodynamic parameters.

Nearly all current satellite solution methods use some type of standard least squares

orbit determination filter to estimate satellite states and model parameters. When epoch

values for the satellite position and velocity are used, a standard filter estimates all of

the parameters in the state vector as constants, which are inherently assumed to be time

invariant. The epoch satellite position and velocity define the satellite state at a specific

epoch time, and the model parameters may be defined in either the dynamical force

model (such as geopotential coefficients or drag coefficients) or the measurement model

(such as tracking station positions). Errors inevitably enter into the solution or estimate

when model parameters are constants in the dynamical or measurement model, but in

reality, vary hi time by some measurable, yet unpredictable amount. This type of error

is often referred to as model error. That is, the system is not performing or behaving

like the predicted model. This problem can be minimized somewhat by using multiple

piecewise constants which represent the particular variation as a group of consecutive

discontinuous constants, each representing a shorter time interval than the entire time

period of interest. The effectiveness of this approach is dictated by many properties,

including the observability of the variation the type, amount, and density of available

data, and the frequency of the variation.
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Another type of filter, called a "process noise" or "stochastic" filter, can be used

to address this type of error. A process noise filter estimates specified "constant"

parameters as stochastic, time varying parameters. Lichten [1990a, 1990b] details

procedures that involve process noise for estimating geodynamical parameters using

Global Positioning System (GPS) data. Lichten [1992] and others have presented

solutions which involve the use of process noise parameters in satellite orbit estimation.

Even though the parameters are modeled as constants in the dynamical force model or

the measurement model, the filter allows the estimates for these parameters to vary in

time. The parameters can vary in a manner which is consistent with the information

contained in the observations. Examples of phenomena which can be approximated

quite well by process noise parameters are solar radiation pressure, mismodeled drag

effects, leaky attitude control systems, moving tracking stations, polar motion and

Earth rotation parameters, clock errors, atmospheric path delays, gravity field model

errors, and linearization errors. Thus, a process noise filter is capable of reducing or

eliminating many types of model error.

Often, process noise filters are utilized to lump all model errors into additional

acceleration parameters or a specific model parameter to reduce the negative effect of the

total model error on the estimate of the orbit. Reduced dynamic tracking techniques

have utilized this approach [Yunck etal, 1990; Wu et al, 1991; Yunck et al., 1994;

Gold, 1994]. This approach is used when the temporal variation of model parameters,

or perhaps their actual values, is of little interest and the objective is only to improve the

continuous estimate of the satellite position and velocity over time. By representing the

cumulative effect of all model errors with an additional stochastic acceleration, this can

be accomplished, and is referred to as the reduced-dynamic -technique [Yunck et al.,

1990].
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In contrast, estimates of particular parameters may be made stochastically to

understand their temporal variations in addition to reducing the effect of the model error

on the estimate of the orbit. This study focuses on the feasibility of this approach in

accurately estimating some basic geodynamic parameters from LAGEOS data. Thus,

eliminating various model errors associated with specific parameters through process

noise filtering may lead to more accurate estimates of the satellite orbit, as well as better

temporal estimates of the particular dynamical model parameters and measurement

model parameters.

2.4 Standard Filtering

The determination of the best estimate of x satisfying the linearized observation-

state relation (equation 2.6) is discussed. The least squares best estimate of x is that

value which minimizes the sum of the squares of the computed observation residuals

ez. A performance index J is defined

y = ele z=lle z l l2 (2.13)

which must be minimized in a least squares sense to determine the best estimate of x.

The notation II • II is used to express the Euclidean norm of a vector ( II a 11= V(aTa) ).

Based on the observations z and specified values of x, the squares of the observation

errors ez may be summed and minimized. Using equation 2.6, the performance index J

may be written as

7 = (z -Hx)T(z -Hx) (2.14)

This performance index is now minimized with respect to the state deviation x:

(2.15)
dx
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or

H'THx = H'Tz (2.16)

Equation 2.16 is often referred to as the normal equations. The value of x which

minimizes the performance index J, and thus satisfies the normal equations, is the least

squares best estimate of the state and denoted x . The error covariance matrix P that is

associated with the best estimate x is defined

(2.17)

so

(2.18)

The error covariance matrix P is updated to the time of the new observations, if

necessary (for current state filters), as follows:

2.5 Standard SRIF Filtering

To achieve more stability, accuracy, and better numerical conditioning,

factorized sequential filtering algorithms can be used [Bierman, 1977]. By updating a

factorized variation of the covariance matrix for the system, the algorithm exhibits

improved numeric behavior with less sensitivity to divergence or erroneous data points.

This is mainly a result of reducing the numerical ranges of the values of the covariance

matrix (10~n to 10" => 10"n/2 to 10n/2). Square root factorizations, first introduced by

Potter (cf. Battin, 1964), are common and quite useful in sequential filter algorithms.
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A current state sequential square root filter is used in this study, and is described

below.

The basic aspects of a commonly used square root filter, known as the square

root information filter (SRIF), are outlined. In a SRIF, the square root of the

information matrix associated with the linearized system is operated on rather than the

covariance matrix. The complete formulation for the SRIF is detailed in Lawson and

Hanson [1974] and Bierman [1977].

If the linearized system deviation defined by equation 2.10 has an associated

error covariance matrix P, then its associated information matrix A, is defined as

A = P~l = R*R (2.20)

where R is the square root of the information matrix and is upper triangular in form.

The a priori error covariance and estimate [Px] are related to the a priori information

array [R z] as follows:

Since

r = R-1R-r (2.21)

the normal equations (equation 2.16) may be written

x = (/?T/?)-'/?Tz=/?-1z (2.22)

Thus, the best estimate x must satisfy

Rx = z (2.23)
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So R and z , which represent a priori values of/? and z, correspond to the following

data equation for the system

z = Rx + e7 (2.24)

where R is square, x is the state of the system, and ez has zero mean with unit

covariance. The least squares solution to this a priori data equation and the equation for

the new observations (equation 2.6) is desired.

The matrix R is updated to the time of the new observations, if necessary (for current

state filters), as follows:

-1
(2.25)

By applying the orthogonal transformation method [Givens, 1959; Householder, 1964;

Schmidt, 1967] to equations 2.24 and 2.6, the least squares solution of

R

H
x = (2.26)

is also the least squares solution of

R

H
= T -7*

ez
(2.27)

where T represents the orthogonal transformation matrix which preserves unit

covariance characteristics of the error terms. The orthogonal transformation matrix T

can be chosen such that

R

H

R

0
(2.28)

with R upper triangular.
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Using the same T, the following can be defined:

and (2.29)

As defined, e,s represents the error in the least squares fit. Now equation 2.26 becomes

R

0

Thus, the augmented observation array

x =
z -e,

e,,,- eft

(2.30)

/? z

H z
(2.31)

is transformed to

R z

0 eu

(2.32)

and observations can be accumulated sequentially with the a priori information array.

After the final observation is accumulated (transformed), the least squares best estimate

of the state x , is:

"• i-k IX>1

x = R z (2.33)

This estimate is easily computed via backsubstitution rather than by matrix inversion
XX . ^^

since R is upper triangular. The filtered best estimate of the state deviations x , can be

computed at any given time. The filtered best estimate of the state is thus based on all

observations up to that particular time. Smoothed estimates can be computed for all

times by mapping the state deviations to any previous time. Alternatively, the estimated
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state deviations can be added to the reference state, and the estimated state at other times

can be found by integrating the equations of state.

2.6 Process Noise SRIF Filtering

By using a process noise filter, many phenomena, unmodeled and mismodeled

by the dynamical model or measurement model, can be accounted for in a more

reasonable way. These unmodeled and mismodeled phenomena degrade the solution

accuracy and are reflected in the measurement residuals (the difference between the

measured observation and the estimated observation resulting from the solution).

Process noise filtering can help prevent these model errors from corrupting the

solution. The development of this sequential current state algorithm is based on the

SRIF algorithm with correlated process noise, first introduced by Andrews [1968], and

presented by Bierman [1977].

First order exponentially correlated process noise is often called colored noise.

The process noise filter developed is based on this type of process noise, but other

types of process noise can be incorporated into process noise filters. Colored noise can

be described mathematically as:

f = -(> + » (2-34)

where p is the process noise parameter, T is the time constant of the process, and (O is

white noise with zero mean. Equation 2.34 can be converted to a recursive form,

which is useful in discrete time systems, such as the orbit determination problem:

Pj+i = mjPj+ WJ (2.35)
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with

m, = - /,)/T] (2.36)

and

"<-f (2.37)

It can be shown that the variance q, associated with the process noise w, is:

(2.38)

where o2 is the steady state variance associated with p.

The state is now partitioned into process noise, dynamic, and bias parameters

denoted by p, x, and y respectively. The bias parameters are simply constant (time

invariant). The dynamical model for this partitioned, linearized state is:

" P i
X

.y J
=

7+1

M O O

Op &x <$y

0 0 7

P
X

.y .
+

j

"w/
0
0

(2.39)

This corresponds to equation 2.10 for the standard SRIF development. The state

transition matrices 4>p, <E>^, and 4>y map state elements at time /, to time fa . l i s a square

unit matrix equal in size to the number of bias parameters y. M is the process noise

transition matrix and is assumed diagonal, with diagonals m, given by equation 2.36.
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The value of m is dictated by the time constant for the process t, in the following way:

m = 0 T —» 0 [white noise process - not correlated in time]

0 < m < l 0 < T < 1 [colored noise process - somewhat correlated in time]

m = 1 T —»oo [random walk process - strongly correlated in time]

The behavior of the process noise parameters p are controlled mainly by the mapping

elements m associated with each particular parameter. Each of the process noise

parameters p can have an independent time constant T (and corresponding m) and

steady state standard deviation a associated with it. A parameter behaves as white

noise when m = 0, and as a random walk when m = 1. A parameter behaves like

colored noise when m is between these two extremes. When a parameter is defined to

model a random walk process (m = 1), the variance q for that particular parameter must

be explicitly defined since no steady state exists and the steady state variance a2 for that

parameter is undefined. Figure 2.1 shows a white noise and a random walk process

generated using equation 2.35. Both processes shown in Figure 2.1 use an initial value

of p=0 for the process noise parameter and the same process noise series w (zero mean,

unit covariance) with a specific value of m.
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Figure 2.1. White Noise and Random Walk Processes.

Paralleling the development of the standard SRIF, the mathematical

development of determining the least squares best estimate using the process noise

SRIF algorithm follows (this development follows that of Bierman [1977]):

At time t/, the data equation for R and z can be written:

(2.40)

RW is zero unless no data was processed at the last time update. If R is not at the time

of the current observation ($+,), it must updated. The time update for R is a bit more

complex in the process noise SRIF algorithm than that described by equation 2.25 in

the standard SRIF algorithm. From equation 2.39:

i- ^yy (2.4i)

Rp Rpx Rpy

R,,, Rx Ry

0 0 R, _

P
X

.y .
=

/

" s**>

z*

.Zy.
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Solving for x, in terms of Xy+i and substituting this into equation (2.40):

XS. XV
E.-1 ~ ,~ ^.-kE) /? — (/? (ft 1t'jr *vpy V.^^pAr'i'ji J
-I

o 0

(2.42)

But, p^, is needed in equation 2.42 as well. By using the a priori data equation for wy

this can be done:

(2.43)

where

with Rw diagonal and q is the variance associated with the process noise wy, as

defined in equation 2.38.

And from equation 2.39

= P;+, - (2.44)

so

= zw (2.45)

Now combining equation 2.45 with equation 2.42 to obtain the updated R and z at the

next time, t j+l:

-RJM Rw 0 0

-&„&„) 0 RPI (Rpy-Rp^y)

,-^Op) 0 Rx (Rxy-Rx®:)

r PJ
PM
xy+i

zw
XV

z,

(2.46)
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where

and (2.47)

Now, using an orthogonal transformation to upper triangularize [R z] and eliminate p,:

-RJM Rw 0 0 zw

P-VDP) 0 Rpx (Rpy-Rpx<t>y)zp

tp-R&p) 0 R, (R^-R&J V

D D*Kp Kp,

0 Rp

0 RT,

Rpy

(2.48)

Since y is a bias, it is unaffected by the mapping from t} to tj+l and need not be included

in the time update for ^? and z or in the orthogonal transformation:

(2.49)

The quantities superscripted by * are not used to obtain filtered estimates, but are critical

if smoothing is to be done following the filtering. The ~ quantities from the previous

time are now represented by the ~ quantities at the current time, completing the time

update for R and z.



25

Next, the measurement accumulation is written:

Rip -M

0 0

H

R

"py

xy

y

Rp Rpi Rpy

0 Rx

0 0

0

R

(2.50)

where z is the observation deviation vector for the current time, H is the observation
s*. ^^

partials matrix, the R and z partitions represent the updated R and z at the current time

after accumulating the current observation, and els represents the sum of squares of the

error terms. At any given time, the best estimate is:

- n~ x x
x = R z (2.51)

where

x =
p
X

.y .

>*s

R =

S** XN XX.

Rp Rpx Rpy

0 R, R
xy

0 0 Ry _

z =
*?
XX

z,
XN.

.Z>.
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Again, since R is kept in upper triangular form, a matrix inversion is not

necessary to compute the best estimate of the state deviations. The best estimate, x ,

can be found directly via backsubstitution. Similarly, the error covariance matrix P

for the estimate x is

•̂s. xv _I xs._f

P = R R (2.52)

This best estimate of the state deviations x , is referred to as a filtered estimate.

It represents the best estimate at that particular time based on all observations up to and

including the observation at that time. Smoothed estimates represent the best estimate at

a given time based on all of the observations, both before and after the time of the

estimate. Smoothing is the process of determining these smoothed estimates once all

the observations have been processed.

If these smoothed estimates of the state at other times are desired, then the

smoothing parameters saved at each time (from equation 2.48) may be used. Given

[p> Xj, y;], then [p^,, x,-.,, y^] can be found as follows. Since y is a constant, its

smoothed estimate equals its filtered estimate:

y,-i=y, (2.53)

Using equations 2.46 and 2.48, the smoothed estimate of p is

p., = [a-p;[^Pi-xy[^jy.-yj[/?;y]7.
[Rpl

and using equation 2.39, the smoothed state estimate is

XH = <£[\j - ®ppH - 0,3 ,̂] (2.55)
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Using these recursive equations, smoothed estimates of the state can be found for all

previous times. This smoothing process is slightly more complex when stochastic

parameters are present than smoothing for the standard SRIF which only involves

integrating the equations of state backwards or mapping state deviations using the state

transition matrix O.

Filtered estimates of the error covariance matrix P at any given time are found

by using equation 2.52. Once all the observations have been processed, the error

covariance matrix at previous times may be desired (smoothed error covariance values).

This requires the knowledge of either the information matrix R at any previous time so

that P may be found via equation 2.52 or the knowledge of P directly by way of

mapping from the final time. The mapping of the information matrix R, based on R at

the final time after all observations have been processed, may be done by using the time

update for R backwards. While equations 2.46 and 2.48 are used to update R forward

in time during the filtering, they may be used for backwards mapping by substituting

tH for tj+l in calculating the state transition matrices. Given the final information matrix

R at the final time based on all observations (equation 2.51), equations 2.46 and 2.48

may be used to propagate R to previous times. Then, the ~ quantities resulting from

equation 2.48 represent R at the previous time rather than the current time, and

the ~ quantities represent the current time rather than the previous time.

Alternatively, P from the final time may be mapped directly to other times by

using the generalized error covariance update relation:

M O O

0 0

PJ

M O

0 0

O
T

+ 0
0

Q 0
0

(2.56)
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Recall, the state transition matrices <J>P, 4>x, and Oy map state elements at time t} to time

fa, M is the process noise transition matrix and is assumed diagonal with diagonals m

given by equation 2.36, and Q is the diagonal error covariance matrix for the process

noise w with diagonals given by equation 2.38. / is a square unit matrix equal in size

to the number of bias parameters y and Ip is a square unit matrix equal in size to the

number of process noise parameters p. In order to map P to previous times using

equation 2.56, the substitution of fa for fa must be made in calculating the state

transition matrices and Q.

The process noise SRIF algorithm parallels the standard SRIF algorithm with

the exception of the propagation of R and the smoothing portion which are both

different from the standard SRIF algorithm since stochastic parameters (p) are

involved. The time variation of each process noise parameter is controlled with a time

constant T, and a steady state variance a2, for the parameter. As T increases and a

decreases, the corresponding parameter stays more constant from one time to the next.

As T decreases and a increases, the corresponding parameter becomes more time

varying. These two parameters are "tuned" or chosen depending on the expected time

variation of the process the process noise parameter is modeling.

2.7 Conclusions

The basic attributes of the standard and stochastic filters are now summarized.

As mentioned previously, the inherent disadvantage of using a standard filter to

estimate temporal variations of parameters is the fact that a standard filter must estimate

these variations as constants. In order to minimize this inadequacy, a parameter may be

divided into multiple "sub-parameters", each of which represents the original parameter

for a particular and unique time interval during the period of interest. For example,

over a one year data arc, the solar radiation pressure coefficient of a satellite may be
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estimated using 52 consecutive parameters, each representing a unique one week period

during the data arc. The consecutive joining of these 52 discontinuous sub-parameters

over the one year time period represents the year long estimate for the parameter.

Based on the appearance of the consecutive joining of these discontinuous sub-

parameters, this type of solution is denoted a "boxcar" solution for the purposes of this

study. For parameters which are not purely kinematic in nature, this involves adding

each of these sub-parameter boxcars to the satellite state vector. Thus, the

computational price for filtering a two year arc instead of a one year arc doesn't merely

double, but grows geometrically depending on the number of parameters that are

estimated with shorter boxcars. For data arcs spanning long time periods such as six

months or more, estimating the variations of parameters in this fashion can be quite

tedious and computationally laborious. Further, splitting a parameter into multiple

boxcars does not guarantee improved recovery or resolution of the variation. The ideal

minimum time interval for a parameter depends on many things, including the

sensitivity of the satellite to variations in the parameter, data type and density, and the

observability of the variation in the satellite measurement. As an example, using

boxcars that span time intervals less than one month for variations in gravity

coefficients generally does not improve the recovery of these variations.

In contrast, by estimating variations in a parameter as stochastic process noise

parameters, no increase in the size of the satellite state vector is needed. Since the

parameter is inherently stochastic as opposed to constant, no additional sub-parameters

are required. As shown in the development of the process noise SRIF, stochastic

estimates of the process noise parameters are obtained at every observation time. If the

variation in a parameter is recoverable via this approach, the estimation of the variation

may be significantly simplified computationally.



CHAPTERS

SATELLITE LASER RANGING AND LAGEOS

3.1 Introduction

Some basic principles of the satellite laser ranging technique are discussed. The

specific role of the Laser Geodynamics Satellite (LAGEOS) in satellite laser ranging is

outlined as well. Some current solutions based on LAGEOS data are also presented.

Benefits of processing LAGEOS data using process noise filtering techniques are also

proposed.

3.2 Satellite Laser Ranging

Satellite Laser Ranging (SLR) is a highly accurate and precise tracking method

used for orbit determination of satellites. Ground based tracking stations measure the

distance (range) from the satellite to the station by using lasers. The time it takes the

photon pulse from the ground based laser to travel to the satellite and back is converted

to a range measurement by using the constancy of the speed of this light pulse. In the

case of satellites designed for laser ranging targeting, the laser pulse is reflected by a

cluster of cube-corner reflectors located on the satellite surface. The precision of SLR

is now at the sub-centimeter level [Kolenkiewicz et al, 1991; Tapley et al., 1993;

Degnan, 1994], and through the formation of laser normal points, can reach a few

millimeters [Degnan, 1994] (see Smith et al. [1991] for a detailed discussion on normal

point formation and processing). The accuracy of SLR ranging systems is also at the

sub-centimeter level [Degnan, 1985,1993, 1994], and the number of tracking stations

around the world has been increasing consistently over the past two decades. By

integrating these highly accurate and precise SLR measurements from multiple tracking



31

stations with a dynamical model for the motion of the satellite, numerous model

parameters can be determined to a high degree of precision via a least squares orbit

determination filter. These parameters include those describing the satellite's motion,

positions of the tracking stations, tectonic plate motions, both spatial and temporal

variations of the Earth's gravity field, Earth rotation and polar motion parameters, Earth

and ocean tides, variations in the center of mass of the total Earth system, and other

geodetic parameters used in the dynamic and measurement models [Degnan, 1994].

The accuracies of geodetic and geophysical results obtained through satellite

observations are directly related to, and often limited by, the accuracies of the

observables used in obtaining the results. The accuracy of the SLR observable has

enabled the quality of geophysical and geodetic results to improve significantly through

the use of laser target satellites.
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3.3 The Laser Geodynamics Satellite

The Laser Geodynamics Satellite (LAGEOS), launched by NASA from the

Western Test Range in California on May 4, 1976, is a passive, spherical, artificial

satellite. Figure 3.1 shows LAGEOS which resembles a large cannonball covered with

retroreflectors.

Figure 3.1. The Laser Geodynamics Satellite (LAGEOS), from Smith et al. [1991].

As outlined by Fitzmaurice et al. [1977] and Cohen and Smith [1985], Table 3.1 shows

the orbit and satellite characteristics of LAGEOS. It is covered with cube-corner

reflectors, 422 made of fused silica and four made of germanium. It was designed

specifically and exclusively as a long-term laser ranging target to improve geophysical

and geodetic solutions through the use of SLR data.
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Table 3.1. Orbit and Satellite Characteristics of LAGEOS.

Diameter 60 cm

Mass 411kg

Fused silica retroreflectors 422

Germanium retroreflectors 4

Inner core material Beryllium copper

Outer spherical shell material Aluminum

Semirnajor Axis 12265km

Eccentricity 0.004

Inclination 109.8°

Perigee altitude 5858 km

Apogee altitude 5958 km

Perigee rate -0.214°/day

Orbital period 225.3 minutes

Node rate +0.343°/day

Semirnajor axis decay rate —1.1 mm/day

LAGEOS is in a highly stable, nearly circular Earth orbit, at an altitude of

approximately 5900 km. This high altitude, along with the satellite's simple spherical

shape and high mass density, minimize the effects of drag, solar radiation pressure, and

other nonconservative forces. The effects of the short-wavelength geopotential

coefficients, which are not known to the accuracy of the long-wavelength coefficients,

are also minimized in this high altitude orbit. Thus, the motion of LAGEOS is quite

predictable based on current satellite dynamical models. With both highly accurate

range observations and a very predictable trajectory, LAGEOS is ideal for determining

tracking station positions and distances between stations, geopotential coefficients, tidal

amplitudes, nonconservative force parameters, polar motion parameters, Earth rotation

parameters, tectonic plate motions, and other model parameters. Moreover, the

temporal variations of such solutions can be determined more accurately and precisely
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than from other satellites not specifically designed for precise orbit determination

purposes. Many of the geodetic solutions obtained from LAGEOS data have also been

verified by independent very long baseline interferometry (VLBI) and GPS techniques

[Kolenkiewicz et al, 1985; Himwich et al, 1993; Dickey, 1993; McCarthy, 1993].

3.4 LAGEOS Geodetic Solutions

Advances in SLR techniques have led to improvements in dynamic satellite

geodesy methods and geodynamic solutions. By observing a satellite using SLR

methods, its motion as it moves through the Earth's geopotential field can be

monitored. Thus, by modeling the satellite's orbital motion due to gravitational and

non-gravitational forces, SLR observations provide a link or connection between the

satellite and the tracking stations observing the satellite. The parameters describing the

satellite's motion, the locations of the tracking stations, and other parameters in the

model are estimated by minimizing the difference between the model orbit and the actual

orbit in a least squares fashion through the use of the SLR observations.

LAGEOS, being designed specifically for satellite geodesy and geodynamics

research, has provided improved estimates of tracking stations and their motions since

its mission began in 1976. One of the most current solutions is reported by Tapley et

al. [1993]. Improved estimates of other geophysical parameters and their time

variations have been made using LAGEOS SLR data as well. Lerch et al. [1985],

Marsh et al. [1988], Marsh et al. [1990], Nerem et al. [1994], and others have detailed

improvements in the Earth's gravitational field from LAGEOS data. Tidal parameters

[Christodoulidis et al., 1986], Earth rotation and polar motion parameters [Tapley et

al., 1985; Pavlis et al., 1988; Caporali et al., 1990; Tapley et al., 1993], and secular

variations in J2 [Yoder et al, 1983; Rubincam, 1984; Cheng et al., 1989; Gegout et al.,

1991] have also been estimated based on LAGEOS data. Rubincam [1984] and others
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have used LAGEOS data to study postglacial rebound. The estimates made from

LAGEOS SLR observations are more meaningful than most other data types due to the

accuracy of both the observations and the predicted orbit, which translates to improved

accuracy of the estimates. The utilization of LAGEOS for satellite geodesy and

geodynamics research has led to many advancements and achievements which would

not have occurred as quickly without the benefit of LAGEOS.

3.4.1 LAGEOS J2 and J3 Solutions

Temporal variations in the low degree zonal harmonics of the Earth's

gravitational field are observable using SLR [Shum et al., 1987; Cheng et al., 1989,

1990]. Some examples of the geophysical processes contributing to these variations

are luni-solar tides, nontidal variations in the distribution of atmospheric mass and

ocean water mass, meteorological mass redistribution, and postglacial rebound of the

solid Earth [Chao et al, 1987; Cheng et al., 1989; Chao andAu, 1991]. Continental

water storage and snow cover/loading can cause variations in the gravitational field also

[Chao etal., 1987; Chao and O'Connor, 1988]. The seasonal gravitational variations

(annual and semiannual), however, are dominant and are mainly due to solar influences

on the Earth's mass distribution. The primary solar influences include the seasonal

redistribution of atmospheric mass, the seasonal redistribution of hydrospheric mass,

and solar annual and solar semiannual solid Earth and ocean tides [Chao and Au,

1991].

An example of a current solution for the temporal variations of the 72 and /?

gravitational coefficients based on LAGEOS SLR data is that of Nerem et al. [1993].

As they detail, monthly estimates of the nontidal, nonsecular J2 and /3 variations are

computed for the period from 1980 to 1990. Figure 3.2 presents the monthly estimates

for the J2 variation and Figure 3.3 shows the monthly estimates for the J3 variation that
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they computed. These solutions compute a constant 72 and 73 variation for every month

during the 10 year period. Using the terminology described in the previous chapter,

these are referred to as monthly boxcars. A resolution of one month is typical for

solutions of temporal variations in gravitational coefficients based on SLR data.
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Figure 3.2. Monthly Variations in the J2 Gravitational Coefficient Computed from
LAGEOS SLR Data from Nerem et al [1993].
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Figure 3.3. Monthly Variations in the 73 Gravitational Coefficient Computed from
LAGEOS SLR Data from Nerem etal [1993].

3.4.2 LAGEOS Along Track Drag Solutions

After subtracting most of the known forces acting on LAGEOS, there is still an

along track deceleration (drag) which has been observed and reduces the semimajor

axis by about 1 mm per day (see Tapley et al [1993] for a more detailed look at the

long term estimates of this drag and an interesting discussion on the drag in general).

Previous studies have addressed the possible origins and proposed models for this drag

[Rubincam, 1982, 1987, 1988, 1990], which are mostly thermal in nature.

A current solution for the anomalous along track drag on LAGEOS is computed

by Tapley et al [1993]. This along track drag remains after most of the known forces

acting on LAGEOS are taken into account. Estimates of this along track drag are

necessary when estimating other geodynamic or geodetic parameters from LAGEOS

SLR data to prevent this acceleration from aliasing into estimates. Typically, the along

track drag is estimated every 15 days (15 day boxcars). Figure 3.4 shows the boxcar
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estimates computed by Tapley et al. based on LAGEOS data from May 30, 1976 to

May 30,1993. The along track drag has a mean of-3.5 picometer/s2 over the arc.
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Figure 3.4. 15 Day Estimates of the Along Track Acceleration for LAGEOS from
Tapley etaL [1993].

3.5 Proposed Benefits of Process Noise Filtering for LAGEOS

Most LAGEOS data analysis techniques determine geodetic and geodynamic

parameters by solving for them as if they were constants over the specific time interval

of the data arc through the use of a standard filter. For example, Smith et al [1985],

estimate polar position values and variations in universal time every 5 days, and

tracking station locations and other parameters every 30 days. Smith et al [1991]

estimate parameters as constants over fixed time intervals as well. Aside from being

linked from one time interval to the next by the satellite orbital parameters, these

constant parameters are effectively decoupled from one time interval to the next. In

other words, the estimates for the constants over the time interval are primarily based
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on the observations made during the time interval Estimates of purely kinematic

parameters are based entirely on observations made during the particular time interval,

while estimates of dynamic parameters are still linked from one time interval to the next

by the satellite orbit. If these parameters, in reality, do not change over the given time

interval, then model error is not introduced into the solution. If, however, these

parameters do vary over the given time interval, then model error will corrupt the

solution. By limiting the time interval such that the given parameters do not change in

any measurable way over that interval, then model error can be kept at a minimum. A

time series of a specific parameter can then be constructed by joining the consecutive

fixed interval estimates of the parameter (boxcars). The fundamental drawback to

generating temporal solutions in this manner is the actuality that estimates will degrade

if the time interval for the boxcar estimate is either too short or too long. If the time

interval is too short, then accurate estimates may not be possible given the available data

or the observability of the variation. If the time interval is too long, then the parameter

may vary significantly from the constant estimate over the interval, thus resulting in

adverse effects from model error. The shorter boxcar time intervals may be desirable

from a resolution perspective, while the longer boxcar time intervals may help to reduce

the effects of measurement noise and erroneous data.

By estimating these parameters stochastically using a process noise filter, long

data arcs may be used to generate a solution from LAGEOS SLR data without the

division of the arc into smaller arcs for the estimates of known time varying parameters.

The strength of the solution may be enhanced by using a long time interval (the length

of the entire arc for each parameter), and the temporal resolution of the solution of the

parameters may also improve. Along with the entire geodynamic solution, the estimate

of the satellite orbit over time may be improved as well. The time variations of
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parameters are found by using the entire long arc of data, even though the parameters

may change significantly over the long interval. For example, variations in gravity field

coefficients or variations in tracking station positions could be estimated with improved

resolution by using long arcs spanning years to decades rather than the same long arcs

divided into shorter monthly time intervals for these parameters. An estimate for each

process noise parameter is computed at every time that an observation is made over the

data arc. Thus, the estimate at each individual time for a process noise parameter is

based on the observations made over a rough, adjustable time interval centered on the

time of the estimate. The length of this rough time interval, or correlation window, is

determined by a time constant T, for the particular parameter. Effectively, observations

made outside of this correlation window in time have little or no effect on the estimate

made at the time at the center of the window. Parameters which are highly correlated in

time (slowly varying) may have longer correlation windows than parameters which

vary more rapidly in time. Depending on the observability of the particular variation in

the observation, a parameter may be estimated more accurately as a process noise

parameter. For variations which are not effectively observed in the satellite

observations, the process noise estimates may be no more accurate than standard,

consecutive fixed interval estimates. The possible benefits of estimating particular

parameters stochastically based on LAGEOS SLR data are assessed in this study.



CHAPTER 4

SIMULATION MODEL

4.1 Introduction

Model errors of some type exist within any real satellite observation. This is a

result of the fact that the actual forces causing the motion of the satellite differ from the

forces that can be represented in a mathematical force model. One can not know the

true variations from the dynamical force model. This results in an imperfect knowledge

of the true trajectory of a satellite if real observations are used. The best one can do is

determine the best estimate of the trajectory, which is limited by how well your model

represents the true trajectory.

To fully understand how well model errors can be resolved by estimating

parameters stochastically, the model errors themselves must be known. In this study,

the true temporal variations of the particular parameters being estimated must be known

perfectly before conclusions can be drawn as to the effectiveness of particular filtering

methods in estimating these variations. Thus, simulated LAGEOS SLR observations

are generated with specific temporal variations of parameters (referred to hereafter as

model deviation signals or model signals) built into the model used in generating the

observations. This permits the direct comparison of the estimates to the known truth.

LAGEOS SLR data is generated for a period of one year for this study.

Solutions obtained by processing this simulated one year arc both with stochastic and

non-stochastic filtering techniques are compared. The process by which this data is

generated is now detailed. A three year LAGEOS SLR data arc, processed only by the

stochastic filter, is also generated following the same simulation procedure. The laser
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ranging measurements are computed based on a specified tracking network of laser

ranging stations and a satellite in the same orbit as LAGEOS, acting under a specified

dynamical model. This chapter details the models used and the process by which the

simulated observations are generated.

4.2 Measurement Model

The measurement used in the simulation is a range observable, which

corresponds to a typical SLR measurement. The magnitude of the difference between

the satellite position vector and the tracking station position vector is determined:

Z = l l r s - r , l l (4.1)

where Z is the SLR measurement (range), rs is the satellite position vector, and r, is the

tracking station position vector. This measurement simply represents the distance

(range) from the tracking station to the satellite. Figure 4.1 shows the geometry of the

SLR measurement. The actual determination of real laser range measurements is a bit

more complex, as it involves corrections for atmospheric refraction, instrument delays,

relativistic effects, and the finite speed of light.
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LAGEOS

Figure 4.1. SLR Geometry.

The final, corrected laser range measurement is what is computed geometrically

in equation 4.1 and used in this simulation. Finally, white noise with 1 cm RMS is

added to all measurements once generated. This random error corresponds to the

current ideal levels of accuracy and precision associated with SLR observations. Actual

data may suffer from biases which are being ignored in this simulation.

4.2.1 Tracking Network

Typically, dozens of laser ranging tracking stations are able to track LAGEOS

using the SLR technique. Over 100 tracking station sites around the world have made

laser ranges to LAGEOS since its launch. In generating the simulated observations for

this study, only eight tracking stations are used. This conservative tracking network

was chosen to represent a worst case tracking scenario. Also, using a subset of the

actual tracking network will reveal any problems that might result from the lack of a

dense data distribution.
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Figure 4.2 shows the tracking station network. Six of the eight tracking

stations are located in the northern hemisphere. This reflects the fact that the majority

of SLR tracking stations are in the northern hemisphere.

Figure 4.2. Tracking Station Network for LAGEOS Data Simulation With 20°
Visibility Masks Shown.

The tracking stations operate from 6:00 PM to 6:00 AM local time. Four of the

northern hemisphere stations track five days per week (Monday through Friday), as is

the case with many NASA stations, while the rest of the stations track every day.

Observations are generated every three minutes (representing compressed

normal point observations) for a specific tracking station only if the tracking station is

operating during the particular pass, and the satellite is above 20° elevation. All

observations are decimated by randomly eliminating 75% of the passes in an attempt to

model data outages due to weather problems or inoperative tracking stations. Figure

4.3a shows the histogram of the simulated LAGEOS data over the one year simulation
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period and Figure 4.3b shows a histogram of actual LAGEOS data over the same time

period.
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Figure 4.3a. Histogram of Simulated LAGEOS Laser Ranging Data.
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The simulation generates a conservative amount of data relative to the actual

amount of LAGEOS data that is available from the same time period. The number of

passes in each six days during the simulated LAGEOS arc is approximately one-half the

number of passes in each six days during the actual LAGEOS arc. This ensures that

any conclusions drawn based on the results of this simulation will not be improperly

due to excessive or unrealistic data density. Table 4.1 shows the number of passes and

observations for each of the tracking stations during the one year simulation. The days

of the week that the stations operate is also summarized.

Table 4.1. Tracking Stations and Number of Passes and Observations Generated
During the One Year Simulation. Station operation schedule is also summarized.

Tracking
Station

GRF105
(GSFC, USA)

QUINC2
(Quincy, USA)

HOLLAS
(Maui, USA)

WETZEL
(Wettzell, Germany)

ARELAS
(Arequipa, USA)

MATERA
(Matera, Italy)

SHO
(Simosato, Japan)

YARAG
(Yaragadee, Australia)

Totals

Station
ID

7105

7109

7210

7834

7907

7939

7838

7090

Number of
Passes

151

143

118

135

186

208

201

238

1380

Number of
Observations

1897

1777

1403

1765

2261

2712

2491

2586

16892

Station Operation
Schedule

Monday-Friday

Monday-Friday

Monday-Friday

Monday-Friday

Monday-Sunday

Monday-Sunday

Monday-Sunday

Monday-Sunday
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4.3 Dynamical Model

A simplified dynamical force model is used in this study. The gravitational

forces are modeled by a central body term (fj,, the Earth's gravitational coefficient) and

the zonal nonspherical geopotential coefficients up to degree five (J2, 73, 74, and 75).

The reference value for \JL is taken from Ries et al. [1992], and the zonal coefficients are

taken from the JGM-2 [Nerem et al., 1994] gravity model. Thus, the geopotential

model is longitudinally symmetric. Table 4.2 summarizes the geopotential model used.

Table 4.2. Earth's Gravitational Coefficient and JGM-2 Coefficients (Unnorrnalized)
used in Geopotential Model.

Coefficient

H

4

J*

J*

Js

Nominal Value

398600.4415 kmVs2

1082627.0 x 10'9

-2532.308 x 10~9

-1620.430 x ID'9

-227.071 Ix lO- 9

Standard Deviation (o)

0.0008 kmVs2

0.244 x 1Q-9

0.690 x ID'9

0.780 x 10-9

0.521 x 1Q-9

The anomalous along track drag observed in the LAGEOS orbit is an ideal

parameter to estimate stochastically since the forces causing the drag are not completely

understood. In this study, this particular along track drag is considered the total drag.

An empirical drag model is used to model this acceleration. The empirical function

used is

D = Ct -
x— (4 2)

II r II l '
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where C, is the along track parameter for the drag acceleration. The nominal average

value for C, used in this study is the mean of the observed value, or -3.5 x 10~12 m/s2

(-3.5 picometer/s2) [Tapley et al., 1993].

The satellite state deviation vector, x, that is used in the simulation is

x = [ C, J2 J3 J*. Js H x y z x y z ]T

It is noted that estimates of this state vector are state deviations from the reference state

based on the dynamical force model.

4.4 True Model Deviation Signals Added to Model Parameters

The dynamical model parameters described above remain fixed in the model

throughout the filtering process. However, specific temporal variations, or model

deviation signals, are introduced into the Ct, J2, J^ -A. and J5 model parameters in the

dynamical force model as the simulated SLR measurements are generated. The

temporal estimates of the these signals after filtering may then be compared to the

known true model deviation signals present in the data. Again, these model deviation

signals are not modeled in the dynamical model used in the filtering of the data. They

are only added to the constant nominal values of the respective model parameter during

the generation of the simulated data.

Some basic assumptions are made in defining these realistic model deviation

signals. In general, the temporal signals are based on previously reported estimates or

models of the temporal variations for the particular parameters. The true model

deviation signals for Ct, J2, and J3 are based on previously reported estimates. While

unknown, it is presumed that these parameters vary in some continuous manner. The

previously reported estimates for these signals are then interpolated using a natural

cubic spline in order to produce a smooth, continuous signal to use for the truth in this
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study. The natural cubic spline interpolation forces the interpolation through the

support points (previously reported estimates) while generating a smooth function. The

true model deviation signals for 74 and J5 are based on proposed models. The true

signal used for these parameters is inherently continuous since it is based on a model.

No assumptions are made as to the expected averages (biases) of the model deviation

signals for each of the parameters. While there is no expectation that the averages for

these model deviation signals will be zero, no separate estimate is made for these

biases. That is, the total model deviation signal for each parameter is estimated as a

single deviation in the filtering process rather than a bias plus a variation from the bias.

This approach should be valid as long as the biases of the model deviation signals

remain on the order of magnitude of the variations from the bias, which is the

circumstance for the model deviation signals used in this study and detailed below.

All of the model deviation signals for the one year arc are based on estimates

made during the one year period from January 1, 1986 to December 31, 1986. The

true model deviation signals introduced into the simulated data are detailed below.

4.4.1 Drag Model Deviation Signal

For the along track drag parameter Ct, the model deviation signal shown in

Figure 4.4 is added to the nominal C, value of -3.5 picometer/s2 during the simulation

of the observations.
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Figure 4.4. True Model Deviation Signal for the Q Parameter Based on Current Best
Estimates.

This model deviation signal is taken from Tapley et al [1993] which gives 15 day

estimates for the observed along track drag for LAGEOS over a 14 year period. The 15

day estimates falling between January 1, 1986 and December 31, 1986 are also shown

in Figure 4.4 for reference. This one year of interpolated along track drag variation,

with the average value subtracted out, is what is shown in Figure 4.4.

4.4.2 J2 and J3 Model Deviation Signal

The model deviation signal for the J2 coefficient consists of a secular and

nonsecular term. The model deviation signal for the 73 coefficientis purely nonsecular.

The secular rate used for J2 (J2) is -2.6 x 10""/yr [Nerem et al, 1993]. The total

model deviation signal for each coefficientrepresents the nontidal temporal variations in

72 and J3.

The nonsecular part of the J2 and 73 model deviation signal is taken from Nerem

et al. [1993] which gives monthly estimates for the nonsecular variations of 72 and J3

over the time period from 1980 to 1989. The estimates used are those they computed
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from atmospheric pressure data (with no correction for the inverted barometer effect).

These estimates are used in this study since they represent the current best estimates of

the true J2 and 73 nonsecular variations. (Similar estimates of the J2 and J3 nonsecular

variations exist based on LAGEOS SLR data, but are "effective" estimates as they

include nonsecular variations from higher degree zonals which cannot be separated

without independent data from satellites in different orbits.) Their monthly estimates

for the nonsecular variations from January, 1986 to December, 1986 are interpolated

with a natural cubic spline. This one year of interpolated J2 and J3 nonsecular variation,

with the secular variation for J2 added back, is what is shown in Figures 4.5 and 4.6

with the monthly estimates they are based on shown for reference (unnormalized).

This is the total model deviation signal (total temporal variation) added to the nominal

JGM-2 J2 and 73values.
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Figure 4.5. True Model Deviation Signal for the J2 Parameter Based on Current Best
Estimates.
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Figure 4.6. True Model Deviation Signal for the J3 Parameter Based on Current Best
Estimates.

4.4.3 J4 and J5 Model Deviation Signal

For the 74 and J5 coefficients, the model deviation signal shown in Figures 4.7

and 4.8 is added to the nominal JGM-2 74 and J5 values (unnormalized). It should be

noted that these model deviation signals are only included in part of this study, as

discussed in chapters.
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Figure 4.7. True Model Deviation Signal for the J4 Parameter Based on Current
Models.
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,8. True Model Deviation Signal for the J5 Parameter Based on Current

These 74 and 75 model deviation signals are taken from Chao and Au [1991]

which gives the amplitude and phase of the seasonal variations from the mean of J4 and
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75 (among other coefficients) based on global surface pressure data from 1980 to 1988.

Table 4.3 details the characteristics which are pertinent to this study.

Table 4.3. Amplitude and Phase of Seasonal Variations in 74 and J5 due to Atmospheric
Mass Redistribution Without the Oceanic Inverted Barometer Effect (from Chao and Au
[1991]). Phase with respect to the sine convention with t = 0 on January 1.

Coefficient

/4

Annual Variation

Amplitude

1.52x 1(T10

1.38 x 10-'°

Phase

-155°

-143°

Semiannual Variation

Amplitude

1.12x 10-'°

0.44 x l<r10

Phase

-101°

62°

For this study, the temporal variations from January 1,1986 to December 31, 1986 are

computed from a function based on the amplitudes and phases noted above. Also,

biases of 7.80 x 10~10 and 5.21 x 10~10 are included in the model deviation signals for 74

and J5 respectively. These biases represent the JGM-2 standard deviations (o) for the

reference values of 74 and J5 that are used in the dynamical model. This total model

deviation signal (bias and temporal variation) is what is shown in Figures 4.7 and 4.8.

4.5 Summary of Data Simulation

To summarize, the satellite trajectory is numerically integrated using the

dynamical model and the model deviation signals. These model deviation signals are

continuous and based on a natural cubic spline interpolation of 15 day current estimates

for C, and one month estimates J2 and 73 for the period from 1 January 1986 to 1

December 1986. The continuous model deviation signals for J4 and J5 are based on

current models. Range data from specified tracking stations to this trajectory is then

computed at three minute intervals (based on observability and station operation criteria)

and saved with 1 cm RMS random noise added to each range measurement. This data,
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comprised of a time from epoch, tracking station number, and range measurement,

makes up the simulated SLR data set used in this analysis.



CHAPTERS

FILTERING RESULTS

5.1 Introduction

This chapter summarizes the solutions obtained from both the standard and

stochastic orbit determination filtering modes. Both methods are used independently to

determine solutions from the same set of simulated observations. A simulated one year

data arc is processed both with and without the 74 and J5 model deviation signals

present in the data. Also, a simulated three year data arc (without the 74 or 75 model

deviation signals present) is processed using the stochastic filtering mode and the

resulting solution is presented.

5.2 One Year Arc: Ct, J2, and J3 Model Deviation Signals

A simulated one year data arc with model deviation signals present in C,, J2, and

73 and no model deviation signals present in 74 or J5 is processed. For both the

standard and stochastic filtering methods, the one year data arc is processed with a

single estimate made for the satellite state (r and r ), and no correction made for JA, /,,

or J5 (since no model deviation signal is present in the /I, J4, or J5 parameters, no

correction is needed). In section 5.3, data that contains J4 and 75 model deviation

signals is processed. For the standard SRIF mode, two iterations are performed in

generating the solution. The reference trajectory for the second iteration uses the

corrections from the first iteration. The estimates for Ct, 72> and J3 from the first

iteration are used in the dynamical model during the second iteration as well. For the

process noise SRIF mode, a preliminary correction is made only to the satellite state

while fixing all other parameters. This gives a reference orbit that is sufficiently close
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to the true orbit over the entire arc, thus minimizing linearization errors. A second

iteration is performed using the process noise mode once this preliminary, non-

stochastic correction is made.

5.2.1 Standard SRIF Using Boxcars

The standard SRIF is implemented using consecutive 15 day estimates for C,

throughout the arc. That is, a single, constant Ct estimate is made for the first 15 days

of the arc, a second, constant C, estimate for the second 15 days of the arc, and so on.

This results in 24 consecutive C, estimates over the one year arc. Thus, the solution for

the Ct variation over the one year period is defined by joining these 24 C, "boxcars"

together. Again, the term boxcar is used henceforth to denote this type of solution

based on its appearance as the discontinuous, constant estimates are consecutively

joined together. Similarly, one month estimates are made for J2 and J3 throughout the

one year arc. This results in 12 consecutive boxcars for the J2 and J3 solution over the

one year arc. Thus, the simultaneous solution for the 24 C, boxcars, the 12 J2 boxcars,

the 12 J3 boxcars, and the satellite position and velocity is required.

First, the boxcar estimates for the Ct, J2, and 73 temporal variations are

compared to the truth. Figure 5.1 shows the true Ct and the estimated C, and Figure

5.2 shows the C, residuals, or the true C, minus the estimated Ct.
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Figure 5.1. True C, and Estimated Q Using Boxcars.
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Figure 5.2. C, Residuals Using Boxcars.

The boxcar estimates for Q track the true signal quite well. This is consistent with the

success that others have had using this approach to estimate Q variations with actual

LAGEOS data [Tapley et aL, 1993]. Figures 5.3 and 5.4 show the true 72 and

estimated J2 and the J2 residuals respectively.
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10 11 12

C/5

1

T3

3 4 5 6 7 8 9

Months Past 1 January 1986

10 11 12

Figure 5.4. 72 Residuals Using Boxcars.

Likewise, Figures 5.5 and 5.6 show the true 73 and estimated 73 and the J3 residuals

respectively.
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Figure 5.5. True J3 and Estimated J3 Using Boxcars.
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Figure 5.6. J3 Residuals Using Boxcars.

Again, the boxcar estimates track the true signals quite well for both the J2 and J3

parameters. This too is consistent with the success that others have had using this

approach to estimate J2 and /3 variations with actual LAGEOS data [Nerem et aL,
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1993]. Table 5.1 summarizes the RMS statistics for the C,, J2, and J3 residuals. The

RMS statistics of the respective model deviation signals are also shown for reference.

Table 5.1. RMS for C,, 72> and -^3 Residuals Using Boxcars.

Parameter

C,

J2

J3

Model Deviation
Signal RMS

1.37xlO-12m/s2

2.85 x 1Q-10

3.10x 10'10

Residual RMS
Using Boxcars

2.21 x 1Q-13 m/s2

8.66 x 1Q-"

9.37 x 10-"

Next, the differences between the true orbit and the estimated orbit are analyzed

from a positional standpoint. The radial, transverse, and normal (RTN) residuals are

shown in Figures 5.7 to 5.9. These residuals represent the true position minus the

estimated position in each direction respectively. The radial direction is the direction of

the satellite position vector r. The normal direction is the direction resulting from the

matrix cross product of the satellite position vector r and the satellite velocity vector r

(the normal direction is perpendicular to the satellite's plane of motion). The transverse

direction results from the matrix cross product of the normal and radial directions.
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Figure 5.7. Radial Residuals Using Boxcars.
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Figure 5.9. Normal Residuals Using Boxcars.

The total magnitude of the RTN residuals (3-d position residuals) are shown in Figure

5.10. This is simply the magnitude of the positional difference between the true

position and the estimated position of the satellite at each time.
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Figure 5.10. 3-d Position Residuals Using Boxcars.
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Figures A. 1 through A.6 in Appendix A show the orbit residuals in terms of the

Keplerian elements (semi-major axis a, eccentricity e, inclination i, argument of

periapse co, longitude of ascending node £2, and argument of latitude co +f, where / is

true anomaly).

Finally, the range residuals (observed range minus computed range) are

determined. Figure 5.11 shows the range residuals, and Table 5.2 summarizes the

RMS statistics for the RTN, 3-d position, and range residuals. Since 1 cm RMS noise

is present in the simulated observations, it is expected that the RMS of the range

residuals will approach 1 cm as the estimated solution approaches the truth.
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Figure 5.11. Range Residuals Using Boxcars.
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Table 5.2. RMS for RTN and Range Residuals Using Boxcars.

Residual

Radial

Transverse

Normal

3-d Position

Range

RMS (cm)

0.68

6.43

3.61

7.40

2.26

These residuals, along with the individual Ct, J2, and J3 parameter residuals, form the

basis for the statistical comparison of the standard SRIF boxcar solution to the process

noise SRIF solution.

5.2.2 Process Noise SRIF

The process noise SRCF is implemented with stochastic estimates made for Ct,

J2, and y3. Stochastic estimates of each parameter are made at every time that an

observation exists. Specific values for rand <r(as defined in chapter 2) are chosen for

each parameter based on the expected time correlation and amplitude of the model

deviation signal for that parameter. Table 5.3 summarizes the values used for each

parameter.



66

Table 5.3. Values for the Time Correlation Constant T, and Steady State Standard
Deviation <7, for One Year Arc with C,, J2, and 73 Model Deviation Signals.

Parameter

c,
J2

J3

T (years)

1
12

1
4

1
4

a

3.5 x 10-12 m/s2

1.5 x 1(T9

3.0 x 1(T9

The stochastic estimates for the C,, J2, and /3 temporal variations are compared

to the truth. Figure 5.12 shows the true C, and the estimated C, and Figure 5.13 shows

the Ct residuals, or the true C, minus the estimated C,.
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Figure 5.12. True C, and Estimated Q Using Process Noise.
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Figure 5.13. C, Residuals Using Process Noise.

The stochastic estimate of C, appears excellent. Relative to the previous boxcar estimate

for Ct, the stochastic estimate appears to have much better temporal resolution and

accuracy. Figures 5.14 and 5.15 show the true J2 and estimated J2 and the J2 residuals

respectively.
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Figure 5.14. True J2 and Estimated J2 Using Process Noise.
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Figure 5.15. J2 Residuals Using Process Noise.

Likewise, Figures 5.16 and 5.17 show the true/3 and estimated J3 and the 73 residuals

respectively.
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Figure 5.16. True J3 and Estimated73 Using Process Noise.
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Figure 5.17. 73 Residuals Using Process Noise.

The stochastic estimates of J2 and 73 are also excellent. Relative to the previous boxcar

estimates for y2 and J3, the stochastic estimates appear to have much better temporal

resolution and accuracy. Table 5.4 summarizes the RMS statistics for the Ct, 72» and /3

residuals with the respective RMS statistics from the previous boxcar solution shown

for comparison (from Table 5.1). The RMS statistics of the respective model deviation

signals are also shown for reference.

Table 5.4. RMS for Ct, 72, and 73 Residuals Using Process Noise and Boxcars.

Parameter Model Deviation
Signal RMS

Residual RMS
Using Boxcars

Residual RMS
Using Process Noise

1.37 x 10-12 m/s2 2.21 x 10'13 m/s2

2.85 x 1( 10 8.66xlQ-u

5.91xlO-'4m/s2

1.96x10-"

3.10xl(T10 9.37x10-" 2.36x10-"
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The process noise residuals for Ct, J2, and 73 are noticeably improved relative to the

respective boxcar residuals.

Next, the RTN positional residuals are shown in Figures 5.18 to 5.20. The

total RTN, or 3-d position residuals are shown in Figure 5.21.
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Figure 5.18. Radial Residuals Using Process Noise.
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Figure 5.19. Transverse Residuals Using Process Noise.
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Figure 5.20. Normal Residuals Using Process Noise.
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Figure 5.21. 3-d Position Residuals Using Process Noise.

Figures B.I through B.6 in AppendixB show the orbit residuals in terms of the

Keplerian elements (semi-major axis a, eccentricity e, inclination i, argument of
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periapse co, longitude of ascending node Q and argument of latitude (o +f, where / is

true anomaly).

Figure 5.22 shows the range residuals, and Table 5.5 summarizes the RMS

statistics for the RTN, 3-d position, and range residuals (with comparison to the

respective boxcar statistics from Table 5.2 for reference). Again, since 1 cm RMS

noise is present in the simulated observations, it is expected that the RMS of the range

residuals will approach 1 cm as the estimated solution approaches the truth.
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Figure 5.22. Range Residuals Using Process Noise.
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Table 5.5. RMS for RTN and Range Residuals Using Process Noise and Boxcars.

Residual

Radial

Transverse

Normal

3-d Position

Range

RMS Using
Boxcars (cm)

0.68

6.43

3.61

7.40

2.26

RMS Using
Process Noise (cm)

0.47

0.52

0.80

1.07

1.11

Figures 5.23 to 5.27 show the RTN, 3-d position, and range residuals from

both the standard boxcar SRIF and the process noise SRIF solutions side by side on

the same scale for visual comparison.
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Figure 5.23. Radial Residuals Using Boxcars (a) and Process Noise (b).



74

12

Months Past 1 January 1986

(a)

25
20
15
10
5
0

MH

D -5

S* -10
| -15

H -20

-25

CA

13
3
3
V)
U

RMS = 0.52

0 12

Months Past 1 January 1986

(b)

Figure 5.24. Transverse Residuals Using Boxcars (a) and Process Noise (b).
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Figure 5.25. Normal Residuals Using Boxcars (a) and Process Noise (b).
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Figure 5.26. 3-d Position Residuals Using Boxcars (a) and Process Noise (b).
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Figure 5.27. Range Residuals Using Boxcars (a) and Process Noise (b).

Clearly, the stochastic filtering method produces a temporal solution for Q, J2,

and 73 which is more accurate than the standard boxcar solution. The RMS for the Ct,
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J2, and J3 residuals are reduced to approximately 25% of the respective residuals using

the standard boxcar method (a 75% improvement). Similarly, by using the stochastic

filtering method the total 3-d positional residual is reduced to approximately 15% of the

3-d positional residual resulting from the standard boxcar filtering method (an 85%

improvement). The range residuals are reduced by about 50%.

5.3 One Year Arc: Ct,J2,J3,J4, and Js Model Deviation Signals

Next, a simulated one year data arc with model deviation signals present for Ct,

J2,J3,J4, and Js is processed. Again, the one year data arc is processed with a single

estimate made for the satellite state, and no estimate made for /i, J4, or J5, even though

/4 and J5 model deviation signals are present in the data for this case. This

configuration assesses the ability of each filter to resolve the C, variation and the

effective J2 and 73 temporal variations since J4 and J5 model deviation signals are present

but not estimated (a discussion on the effective J2 and J3 temporal variations will follow

shortly). This situation more closely parallels typical filtering scenarios which estimate

temporal variations in particular parameters in the presence of other parameter

variations/model deviation signals which are not estimated. Aside from the introduction

of the J4 and J5 model deviation signal, the analysis parallels the previous scenario.

5.3.1 Standard SRIF Using Boxcars

The standard SRIF is implemented using 24 consecutive 15 day estimates for C,

and 12 consecutive one month estimates for J2 and J3 throughout the arc. First, the

boxcar estimates for the Ct, J2, and 73 temporal variations are compared to the truth.

Figure 5.28 shows the true Ct and the estimated Ct and Figure 5.29 shows the Ct

residuals, or the true Ct minus the estimated Ct. The boxcar estimates for C, appear to
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be as accurate as in the previous boxcar case where no 74 or J5 model deviation signals

are present.
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Figure 5.28. True C, and Estimated Q Using Boxcars with J4 and J5 Model Deviation
Signals Present but not Estimated.
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Figure 5.29. Ct Residuals Using Boxcars with 74 and 75 Model Deviation Signals
Present but not Estimated.
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Figures 5.30 and 5.31 show the true and estimated J2 and tme and estimated J3

respectively.
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Figure 5.30. True72 and Estimated/2 Using Boxcars with 74 and 75 Model Deviation
Signals Present but not Estimated.
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Figure 5.31. True/, and Estimated J3 Using Boxcars with J4 and J5 Model Deviation
Signals Present but not Estimated.
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It is clear from Figures 5.30 and 5.31 that the estimates of the J2 and J3

variations with J4 and J5 model deviation signals present but not estimated do not

correspond to the true J2 and /3 model deviation signals very well. A bias differentiates

the two. This is a result of the fact that the estimates of the J2 and J3 variations are

estimates of the "effective" J2 and /3 variations. A discussion of effective J2 and 73

signals now follows.

5.3.1.1 Effective J2 and J3 Model Deviation Signals

For this part of the analysis, 74 and J5 model deviation signals are present in the

data, but not estimated. In this scenario, estimates of the J2 and 73 variations are

estimates of the "effective" J2 and 73 variations. That is, the estimate of the J2 variation

is a value that alone would have the same effect (acceleration) on the satellite that the J2

and J4 variations cause. Put another way, the J2 and 74 variations in the data are

combined into an single (effective) J2 variation. This effective J2 variation is estimated

by the filter since no estimate is being made for the 74 variations. Further, if the 74

variations were estimated, the filter could not separate the J2 and 74 variations based on

observations only from LAGEOS. The two variations are not separable without

observations from other satellites. Likewise, the same relationship exists between J3

and J5. For the most part, when temporal variations of low degree zonal geopotential

coefficients are estimated from single satellite data, they are effective estimates since

variations in the higher degree zonals are not estimated separately. Thus, the effect of

variations in all higher even degree zonals can be aliased into the variations of even low

degree zonals that are estimated. Similarly, the effect of variations in all higher odd

degree zonals can alias into the variations of odd low degree zonals that are estimated.

The "true" effective J2 (and true effective J2 variation) is determined as follows:
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The secular variation in the longitude of node Q, due to J2 may be written

d&= 3 te]2 cos/
dt 2 (a

where n is the satellite mean motion (n2o3 = [i), ae is the semi-major axis of the central

body's reference ellipsoid, i is the satellite inclination, and a is the satellite semi-major

axis.

Likewise, the secular variation in Q due to 74 may be written

(5.2,

The expression for the secular variation in Q due to both J2 and J4 may be equated with

an expression for the secular variation in Q due to an effective J2:

3 fa,)2 cos i r -_lw(&)22 u

where J^ is the effective J2.

Thus, the effective 72 (and effective J2 variation) is simply a linear function of J2 and 74:

For LAGEOS, the expression for the secular variation in the longitude of node due to J2

and J4 (equations 5.1 and 5.2) is suitable for determining an effective J2 since the

LAGEOS orbit is very sensitive to secular changes in the longitude of node. For other
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satellites, using expressions for the secular variation in argument of periapse, (O, or

mean anomaly M, may be preferable if they are not suitably sensitive to the node rate.

The "true" effective J3 (and true effective 73 variation) is determined as follows:

The long period variation in the eccentricity e, due to 73 may be written

* = " 2 " ffi(l ~ 4

where a is the satellite semi-major axis, ae is the semi-major axis of the central body's

reference ellipsoid, i is the satellite inclination, n is the satellite mean motion, and (O is

the satellite argument of periapse.

Likewise, the long period variation in eccentricity due to J5 may be written

icos f f l j j (5.6)

The expression for the long period variation in eccentricity due to both J3 and J5 may be

equated with an expression for the long period variation in eccentricity due to an

effective J3:

where A, is the effective /,.
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Thus, the effective J3 (and effective J3 variation) for a particular satellite is simply a

linear function of J3 and 75 :

(5-8>
Again, for LAGEOS, the expression for the long period variation in eccentricity due to

73 and J$ (equations 5.5 and 5.6) is suitable for determining an effective /3 since the

LAGEOS orbit is sensitive to long period changes in eccentricity. For other satellites,

using expressions for the long period variation in a different element may be preferable

if they are not suitably sensitive to variations in eccentricity.

Figure 5.32 shows the effective J2 model deviation signal based on the actual /2

and /4 model deviation signals shown in Figures 4.5 and 4.7. It is shown with the

actual 72 model deviation signal for reference. Thus, the actual 72 model deviation

signal combined with the actual 74 model deviation signal produces the same

acceleration to LAGEOS as the effective J2 model deviation signal combined with no 74

model deviation signal (just a constant reference 74) .
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Figure 5.32. Effective and Actual J2 Model Deviation Signals.

Figure 5.33 shows the effective./, model deviation signal based on the actual J3 and 75

model deviation signals shown in Figures 4.6 and 4.8. It is plotted with the actual J3

model deviation signal for reference.
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Figure 5.33. Effective and Actual 73 Model Deviation Signals.
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Thus, the comparisons of interest are between the true effective J2 and J3 variations and

the estimated J2 and 73 variations. Continuing with the results for the previous boxcar

case, Figures 5.34 and 5.35 show the true effective and estimated J2 and the effective J2

residuals respectively.
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Figure 5.34. True Effective J2 and Estimated J2 Using Boxcars with J4 and J5 Model
Deviation Signals Present but not Estimated.



85

3.0E-10

2.0E-10

l.OE-10

&
^ O.OE+00

o -l.OE-10

W -2.0E-10

-3.0E-10
RMS = 9.24E-11

2 3 4 5 6 7 8 9

Months Past 1 January 1986

10 11 12

Figure 5.35. Effective/2 Residuals Using Boxcars with J4 and J5 Model Deviation
Signals Present but not Estimated.

Clearly, the boxcar estimates for J2 agree quite well with the effective values as

expected. Figures 5.36 and 5.37 show the true effective and estimated J3 and the

effectiveJ3 residuals respectively.
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Figure 5.36. True Effective J3 and Estimated J3 Using Boxcars with J4 and J5 Model
Deviation Signals Present but not Estimated.
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Figure 5.37. Effective 73 Residuals Using Boxcars with /4 and J5 Model Deviation
Signals Present but not Estimated.

The results for 73 also agree quite well with the effective values. Table 5.6 summarizes

the RMS statistics for the Ct, J2, and J3 residuals. The RMS statistics of the respective

model deviation signals are also shown for reference.

Table 5.6. RMS for Ct, 72. and 73 Residuals Using Boxcars with 74 and J5 Model
Deviation Signals Present but not Estimated.

Parameter

Q

J2

^

Model Deviation
Signal RMS

1.37xl(T12m/s2

2.85 x 1(T10

3.10 xl(T10

Residual RMS
Using Boxcars

2.24xlO-13m/s2

9.24 x ID'1 '

1.03 x 1(T10

Figures 5.38 to 5.40 show theRTN respective residuals.
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Figure 5.38. Radial Residuals Using Boxcars with J4 and J5 Model Deviation Signals
Present but not Estimated.
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Figure 5.39. Transverse Residuals Using Boxcars with J4 and J5 Model Deviation
Signals Present but not Estimated.
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Figure 5.40. Normal Residuals Using Boxcars with J* and J5 Model Deviation Signals
Present but not Estimated.

The total 3-d position residuals are shown in Figure 5.41.
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Figure 5.41. 3-d Position Residuals Using Boxcars with J4 and J5 Model Deviation
Signals Present but not Estimated.

Figures C. 1 through C.6 in Appendix C show the orbit residuals in terms of the

Keplerian elements (semi-major axis a, eccentricity e, inclination /, argument of
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periapse co, longitude of ascending node i2, and argument of latitude fi) +/, where / is

true anomaly).

Finally, the range residuals are determined. Figure 5.42 shows the range

residuals, and Table 5.7 summarizes the RMS statistics for the RTN, 3-d position, and

range residuals for the boxcar mode.
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Figure 5.42. Range Residuals Using Boxcars with 74 and J5 Model Deviation Signals
Present but not Estimated.
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Table 5.7. RMS for RTN and Range Residuals Using Boxcars with J4 and Js Model
Deviation Signals Present but not Estimated.

Residual

Radial

Transverse

Normal

3-d Position

Range

RMS (cm)

0.81

6.79

3.79

7.82

2.38

These positional residuals and range residuals are slightly larger but statistically

similar to those obtained from the boxcar solution where no J4 or J5 model deviation

signal is present in the data (refer to Table 5.2). These slightly larger residuals indicate

that the model deviation signals in the J4 and 7S parameters have not been completely

removed. These residuals, along with the individual Ct, J2, and 73 parameter residuals,

are now compared to the process noise SRIF solution.

5.3.2 Process Noise SRIF

The process noise SRIF is implemented with stochastic estimates made for Ct,

J2, and 73, but not for 74 or/5 even though model deviation signals exist for J4 and J5.

Stochastic estimates of each parameter, based on specific values of t and <j, are made at

every time that an observation exists. The values of I and a used for each parameter

are the same as those that were used in the previous process noise case where no J4 or

J5 model deviation signal is present in the data (refer to Table 5.3).
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The stochastic estimates for the Ct, J2, and 73 temporal variations are compared

to the true variations. Figure 5.43 shows the true C, and the estimated C, and Figure

5.44 shows the Ct residuals.
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Figure 5.43. True Q and Estimated C, Using Process Noise with 74 and J5 Model
Deviation Signals Present but not Estimated.
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Figure 5.44. C, Residuals Using Process Noise withJ4 and/5 Model Deviation Signals
Present but not Estimated.

The stochastic estimates of Ct appear just as superb as in the previous stochastic case

where no 74 or Js model deviation signals are present. Figures 5.45 and 5.46 show the

true effective and estimated 72 and the effective 72 residuals respectively.
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Figure 5.45. True Effective^ and Estimated J2 Using Process Noise with J4 and J5
Model Deviation Signals Present but not Estimated.
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Figure 5.46. Effective J2 Residuals Using Process Noise with J4 and J5 Model
Deviation Signals Present but not Estimated.

Figures 5.46 and 5.48 show the true effective and estimated J3 and the effective J3

residuals respectively.
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Figure 5.47. True Effective/3 and Estimated J3 Using Process Noise with J4 and /5
Model Deviation Signals Present but not Estimated.
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Figure 5.48. Effective 73 Residuals Using Process Noise with J4 and J5 Model
Deviation Signals Present but not Estimated.

Table 5.9 summarizes the RMS statistics for the Q, J2, and /3 residuals using process

noise. The respective residuals from the boxcar solution are shown for reference (from

Table 5.6). The RMS statistics of the respective model deviation signals are also

shown for reference.

Table 5.8. RMS for Ct, J2, and/3 Residuals Using Process Noise and Boxcars with 74
and J5 Model Deviation Signals Present but not Estimated.

Parameter Model Deviation
Signal RMS

Residual RMS
Using Boxcars

Residual RMS
Using Process Noise

Q

J2

1.37xl(T12m/s2

2.85 x 1(T10

2.24 x 1(T13 m/s2

9.24 x ICT11

6.30 x 1(T14 m/s2

1.82x10-"

3.10 l.OSx 10'10 2.46 x 10-11
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Again, the process noise residuals for C,, J2, and 73 are noticeably improved relative to

the respective boxcar residuals.

Next, the RTN residuals are shown in Figures 5.49 to 5.51. The 3-d position

residuals are shown in Figure 5.52.
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Figure 5.49. Radial Residuals Using Process Noise with J4 and /5 Model Deviation
Signals Present but not Estimated.
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Figure 5.50. Transverse Residuals Using Process Noise with 74 and J$ Model
Deviation Signals Present but not Estimated.
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Figure 5.51. Normal Residuals Using Process Noise with /4 and 75 Model Deviation
Signals Present but not Estimated.
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Figure 5.52. 3-d Position Residuals Using Process Noise with J4 and J5 Model
Deviation Signals Present but not Estimated.

Figures D. 1 through D.6 in Appendix D show the orbit residuals in terms of the

Keplerian elements (semi-major axis a, eccentricity e, inclination /, argument of

periapse 0), longitude of ascending node Q and argument of latitude a> +f, where / is

true anomaly).

Figure 5.53 shows the range residuals, and Table 5.10 summarizes the RMS

statistics for the RTN, 3-d position, and range residuals (with comparison to the

respective boxcar statistics from Table 5.7 for reference).
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Figure 5.53. Range Residuals Using Process Noise with 74 and Js Model Deviation
Signals Present but not Estimated.

Table 5.9. RMS for RTN and Range Residuals Using Process Noise and Boxcars
with 74 and J5 Model Deviation Signals Present but not Estimated.

Residual

Radial

Transverse

Normal

3-d Position

Range

RMS Using
Boxcars (cm)

0.81

6.79

3.79

7.82

2.38

RMS Using
Process Noise (cm)

0.55

0.82

0.79

1.27

1.12

Again, relative to the process noise results shown in Table 5.5 where no J4 or J5 model

deviation signal exists in the data, these process noise results show slightly larger

residuals. These slightly larger residuals indicate that the model deviation signals in the
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/4 and 75 parameters have not been completely removed. It is also clear that these

process noise residuals are much better than the corresponding boxcar residuals.

Figures 5.54 to 5.58 show the RTN, 3-d position, and range residuals from

both the standard boxcar SRIF and the process noise SRIF solutions side by side on

the same scale for visual comparison.
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(a)

0 3 6 9 12
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(b)

Figure 5.54. Radial Residuals Using Boxcars (a) and Process Noise (b) with 74 and J5
Model Deviation Signals Present but not Estimated.
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Figure 5.55. Transverse Residuals Using Boxcars (a) and Process Noise (b) with 74

and 75 Model Deviation Signals Present but not Estimated.
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Figure 5.56. Normal Residuals Using Boxcars (a) and Process Noise (b) with 74 and
J5 Model Deviation Signals Present but not Estimated.
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Figure 5.57. 3-d Position Residuals Using Boxcars (a) and Process Noise (b) with 74
and J5 Model Deviation Signals Present but not Estimated.
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Figure 5.58. Range Residuals Using Boxcars (a) and Process Noise (b) with J4 and Js
Model Deviation Signals Present but not Estimated.
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Again, the stochastic filtering method produces a temporal solution for Ct,

effective J2, and effective 73 which is more accurate than the standard boxcar solution.

The RMS for the Ct, J2, and J3 residuals are reduced to approximately 25% of the

respective residuals using the standard boxcar method (a 75% improvement).

Similarly, by using the stochastic filtering method the total 3-d positional residual is

reduced to approximately 15% of the 3-d positional residual resulting from the standard

boxcar filtering method (an 85% improvement). Once again, the range residuals are

reduced by about 50%. The improvement in the orbit accuracy and temporal resolution

of the model deviation signals is clearly noticeable when using stochastic process noise

parameters to estimate the model deviation signals.

5.4 Three Year Arc: Ct, J2, and J3 Model Deviation Signals

A simulated three year data arc with model deviation signals present in Ct, J2,

and 73 and no model deviation signals present hi J4 or J5 is processed. The three year

arc is only processed using the stochastic process noise filtering method. A non-

stochastic solution for the three year data arc requires substantially more time

computationally due to the significantly larger satellite state, and is not determined in

this study. Thus, the three year stochastic solution is presented alone without

comparison to a standard non-stochastic solution. The three year data arc is processed

with a single estimate made for the satellite state (r and r), and no correction made for

fj., /,, or J5 (since no model deviation signal is present in the /*, /4, or J5 parameters, no

correction is needed). For this three year process noise SRIF solution, two preliminary

corrections are made to the satellite state ( r and r) while fixing all other parameters.

This gives a reference orbit that is sufficiently close to the true orbit over the entire three

year arc, thus minimizing linearization errors. A third and final iteration is performed
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using the process noise mode once these preliminary, non-stochastic corrections are

made to the initial conditions of the satellite.

5.4.1 True Model Deviation Signals for the Three Year Arc

As detailed in section 4.4, specific model deviation signals are introduced into

the model parameters as the simulated SLR measurements are generated. For the three

year arc, model deviation signals are introduced into the Ct, J2> and J3 parameters. No

model deviation signal is present in J4 or Js for the three year arc. The model deviation

signals for the three year arc are derived in the same manner that those from the one

year arc are derived (refer to section 4.4). The only difference is that the model

deviation signals for the three year arc are based on C,, 72. and J3 estimates from the

three year period from January 1, 1986 to December 31, 1988. The true model

deviation signals introduced into the three year simulated data arc are now detailed.

5.4.1.1 Drag Model Deviation Signal

For the along track drag parameter C,, the model deviation signal shown in

Figure 5.59 is added to the nominal Ct value of-3.5 picometer/s2 during the simulation

of the observations.
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Figure 5.59. True Model Deviation Signal for the C, Parameter Based on Current Best
Estimates.

This model deviation signal is again taken from Tapley et al [1993] which gives 15 day

estimates for the observed along track drag for LAGEOS over a 14 year period. The 15

day estimates falling between January 1, 1986 and DecemberSl, 1988 are also shown

in Figure 5.59 for reference. This three years of interpolated along track drag variation,

with the average value subtracted out, is what is shown in Figure 5.59.

5.4.1.2 J2 and J3 Model Deviation Signal

As was the case for the one year arc, the model deviation signal for the 72

coefficient consists of a secular and nonsecular term. The model deviation signal for

the /3 coefficient is purely nonsecular. The nonsecular part of the J2 and 73 model

deviation signal is again taken fmmNerem etal. [1993] which gives monthly estimates

for the nonsecular variations of 72 and J3 over the time period from 1980 to 1989. Their

monthly estimates for the nonsecular variations from January, 1986 to December, 1988

are interpolated with a natural cubic spline. This three years of interpolated J2 and J3

nonsecular variation, with the secular variation for 72 added back, is what is shown in
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Figures 5.60 and 5.61 with the monthly estimates they are based on shown for

reference (unnormalized). This is the total model deviation signal (total temporal

variation) added to the nominal JGM-2 J2 and Rvalues.
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Figure 5.60. True Model Deviation Signal for the J2 Parameter Based on Current Best
Estimates.
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Figure 5.61. True Model Deviation Signal for the J3 Parameter Based on Current Best
Estimates.

5.4.2 Process Noise SRIF

The process noise SRIF is implemented with stochastic estimates made for Ct,

J2, and 73. Stochastic estimates of each parameter are made at every time that an

observation exists during the three year arc. The values of T and o used for each

parameter are the same as those that were used for the one year arc stochastic solutions

(refer to Table 5.3).

The stochastic estimates for the C,, J2, and J3 temporal variations are compared

to the truth. Figure 5.62 shows the true C, and the estimated C, and Figure 5.63 shows

the C, residuals, or the true C, minus the estimated C,.
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Figure 5.62. True Ct and Estimated Ct Using Process Noise.
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Figure 5.63. Ct Residuals Using Process Noise.

The three year stochastic estimate of Q appears excellent. No noticeable degradation in

the solution is observed relative to the previous stochastic estimate for C\ from the one

year arc. Figures 5.64 and 5.65 show the true J2 and estimated J2 and the J2 residuals

respectively.
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Figure 5.64. True J2 and Estimated72 Using Process Noise.
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Figure 5.65. 72 Residuals Using Process Noise.

Likewise, Figures 5.66 and 5.67 show the true73 and estimated/, and the J3 residuals

respectively.
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Figure 5.66. True 73 and Estimated 73 Using Process Noise.
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Figure 5.67. 73 Residuals Using Process Noise.

The stochastic estimates of J2 and J3 are also excellent. Relative to the previous

stochastic estimates for J2 and J3 from the one year arc, the three year stochastic

estimates appear to have similar temporal resolution and accuracy. Table 5.10



110

summarizes the RMS statistics for the Ct, J2, and J3 residuals. The RMS statistics of

the respective model deviation signals are shown for reference.

Table 5.10. RMS for Ct, J2, and 73 Residuals Using Process Noise.

Parameter Model Deviation Residual RMS
Signal RMS Using Process Noise

Ct 1.10 x 10-'2 m/s2 4.65 x lO'14 m/s2

J2 2.22 xlO'10 1.17x10-"

73 3.14x10-'° 2.06x10-"

The three year process noise residuals for Ct, J2, and J3 are sh'ghtly improved relative to

the respective one year process noise residuals (refer to Table 5.4).

Next, the RTN positional residuals are shown in Figures 5.68 to 5.70. The

total RTN, or 3-d position residuals are shown in Figure 5.71. Figures 5.68 to 5.71

indicate the presence of numerical integration errors at the end of the three year arc.

This can be dealt with by using integration methods which minimize the accumulation

of this type of error.
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Figure 5.68. Radial Residuals Using Process Noise.
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Figure 5.69. Transverse Residuals Using Process Noise.
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Figure 5.70. Normal Residuals Using Process Noise.
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Figure 5.71. 3-d Position Residuals Using Process Noise.

Figure 5.72 shows the range residuals, and Table 5.11 summarizes the RMS

statistics for the RTN, 3-d position, and range residuals. Again, since 1 cm RMS noise

is present in the simulated observations, it is expected that the RMS of the range

residuals will approach 1 cm as the estimated solution approaches the truth.
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Figure 5.72. Range Residuals Using Process Noise.

Table 5.11. RMS for RTN and Range Residuals Using Process Noise.

Residual

Radial

Transverse

Normal

3-d Position

Range

RMS Using
Process Noise (cm)

0.58

0.49

0.54

0.93

1.14

The stochastic filtering method produces a three year temporal solution for C,,

J2, and /3 which is comparable to the one year stochastic solution. The RMS for the

stochastic Ct, J2, and 73 residuals are slightly less for the three year arc than the one year
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arc. The orbit position and range residuals are similar for both the three year and one

year stochastic solutions as well (refer to Table 5.5). Reducing the errors associated

with numerically integrating the orbit for three years may lead to improved orbit

position and range residuals for the three year solution.



CHAPTER6

CONCLUSIONS

6.1 Summary and Discussion

The feasibility of determining the temporal variations in geodynamically

interesting parameters, such as the low degree coefficients of the Earth's gravity field,

through the use of LAGEOS SLR tracking data has been analyzed. A simulation that

included realistic variations in J2 and 73, and also the LAGEOS along track drag effect,

was carried out to evaluate the capability of a stochastic filter to track these variations

using the relatively sparse SLR data.

Various conclusions can be drawn in assessing the results of this analysis.

Overall, the filtering results have shown that a stochastic filter can accurately track the

temporal variations in LAGEOS along track drag, as well as in the J2 and 73 gravity

field coefficients. And the accuracy of these estimates is such that the expected

variations in these parameters are readily observable.

In addition, these (stochastic) filtering results are found to provide much better

accuracy and much better temporal resolution as compared to the conventional (boxcar)

estimation procedure. These improvements are with respect to results obtained from a

standard, non-stochastic filter making semi-monthly estimates for C, and monthly

estimates for 72 and 73. Similarly, the positional accuracy of the orbit is improved by

using the process noise filter. These improvements are observed both when estimating

the parameters with and without J4 and J5 variations present. Generally, by using the

process noise filtering approach, the residual RMS errors for the variations in Ct, J2,

and 73 are reduced to approximately 25% of the residual RMS errors obtained using the
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standard non-stochastic filtering approach. This demonstrates that it is potentially

feasible to use process noise filtering techniques to improve the temporal resolutions

and accuracies of LAGEOS along track drag variations and second and third degree

zonal harmonic coefficient variations. It is also feasible to improve the orbit positional

accuracy by using multiple stochastic parameters which estimate specific geophysical

parameters as opposed to simply estimating additional accelerations with these

parameters. By using the process noise filter, the residual RMS errors for the total 3-d

orbit position are reduced to approximately 15% of the residual RMS errors obtained

using the standard filter. Thus, both the orbit positional accuracy and the temporal

resolution of geodynamic parameters can be improved simultaneously. These

improvements hi the estimates of the C,, J2, and 73 parameters and the orbit itself

translate into a 50% reduction in the RMS error in the range residuals.

In addition, the stochastic results from the three year arc show that these

improvements are possible for longer arcs. While no comparisons to a non-stochastic

solution for the three year arc are made, the accuracies of the estimates for the model

parameters and the orbit position are similar to those from the one year stochastic

solution. This suggests that the ability of the stochastic filter to improve the orbit

position and temporal resolution of geodynamic parameters simultaneously may be

possible for longer arcs (such as three years or more) as well. In fact, the accuracies of

the stochastic estimates for the Ct, J2, and 73 parameters were slightly better for the three

year arc than those from the one year arc. However, other factors such as numerical

integration errors do become more important for the three year arc, as evidenced by the

orbit position and range residuals near the end of the three year simulation case.

Nevertheless, this type of error can be handled effectively, and the accuracies of the

three year stochastic estimates for the Ct, J2, and J3 parameters are very encouraging.
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It seems reasonable to conclude that improving the temporal resolution of

similar parameters is possible. Examples would be solar radiation pressure coefficient

variations, higher degree effective geopotential coefficient variations, and

nonconservative force coefficients in general. Most variations in Earth orientation

parameters can be estimated with constants at a daily resolution (daily boxcars). The

strength in determining these parameters geometrically allows estimates to be made at a

much higher frequency. However, resolution may still be improved with stochastic

filtering methods.

It also seems feasible to extend this stochastic filtering approach to other

satellites. Satellites whose orbits are reasonably predictable and known and whose

observations are highly accurate with noise levels which are suitably low would be

appropriate candidates. If the noise level associated with the observations is too high, it

may mask the temporal variations of interest. Depending on the particular satellite and

the impact of specific geodynamic parameters on its dynamics, the feasibility of

estimating these parameters stochastically with any degree of accuracy may or may not

be possible.

6.1.1 Benefits of Stochastic Filtering

Some general benefits of process noise filtering are discussed as they relate to

this research and possibly other applications. It is clear that stochastic filters have the

potential to be used to improve orbit accuracies and temporal resolutions of specific

geophysical parameters. In addition to improving orbit accuracies along with temporal

estimates of geophysical parameters, another major benefit is computational in nature.

In using a standard filter to estimate multiple boxcar estimates over a long arc,

additional columns of a portion of the state transition matrix must be integrated since the

state vector requires an additional parameter for each boxcar. As the length of the data
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arc increases, the number of boxcars required for each parameter increases in order to

maintain a given temporal resolution for each parameter. For example, in estimating 12

monthly boxcar estimates for a particular parameter throughout a one year arc rather

than a single year long estimate adds 11 columns to the partition of the state transition

matrix which corresponds to the satellite accelerations (velocity rows of the state

vector). For this study, estimating 15 day boxcars for along track drag and monthly

estimates for J2 and J3 over the one year arc requires 48 such columns as opposed to

three columns if a single year long estimate is made. With the stochastic filter,

however, no additional columns of the state transition matrix need to be integrated since

the size of the satellite state vector remains fixed. Only one parameter is required to

estimate a specific temporal variation over any arc length since independent estimates

are possible at each observation time. For arcs that are one year or longer, this results

in a truly significant time savings computationally. Due to this computational

disadvantage for the standard non-stochastic approach, a boxcar solution for the three

year arc was not computed for comparison to the stochastic solution. In order to

estimate a single dynamically consistent orbit for a three year boxcar solution, 72

parameters for Ct, 36 parameters for J2, and 36 parameters for J3 would need to be

estimated simultaneously. Compared to the stochastic method, the computational cost

is extraordinary. Moreover, the temporal resolution of the model parameters and

accuracy of the orbit position is likely to be no better than those from the one year

boxcar solution.

Further, for variations which are observable in the presence of the measurement

noise and temporally resolved equally by both filtering approaches, the stochastic

approach is simply a more elegant way of estimating those variations that the standard

approach must estimate with boxcars. By using process noise parameters to estimate
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unpredictable variations in geodynamic parameters stochastically, no increase in the size

of the satellite state vector is required. By specifying the time correlation window for

the variation, controlled by T, and the amplitude of the variation, controlled by cr, the

need to split up the arc into multiple boxcars is eliminated. While some innovative

algorithms may minimize the computational hindrances associated with the standard

boxcar filter to some extent, the process noise approach is inherently computationally

advantageous with respect to maintaining a smaller state vector and state transition

matrix while providing higher temporal resolution. In addition, with respect to boxcar

estimates, a very high temporal resolution may be achieved through the definition of T

and cr since separate estimates are made at every time an observation is accumulated.

6.1.2 Drawbacks of Stochastic Filtering

One drawback related to stochastic filtering observed in this study relates to

iterating in order to improve the reference trajectory. Improving the initial reference

trajectory by iterating and producing an improved reference trajectory with stochastic

solutions of specific state parameters through the use of a process noise filter is

generally not desirable. If a stochastic solution were to be used for the new reference

trajectory, then new a parameters would need to be used for each iteration since

corrections to the stochastic solution would likely be a different order of magnitude than

the previous correction. While quite straightforward theoretically, the determination of

successive values for <7 for each process noise parameter that produce a meaningful

improved stochastic solution may not be practical. In addition, the use of a stochastic

solution for a reference trajectory may complicate the filtering depending on the

robustness of the filter in propagating a reference trajectory and the particular

application. This approach is definitely possible, but not likely to be advantageous.
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This minor drawback is quite trivial since determining a suitable reference trajectory

without using stochastics is generally not a problem.

Another drawback is the use of stochastics to estimate completely unknown

variations in a parameter. Not knowing some basic trends regarding the amplitude and

frequency of the variations' deviation from an average or reference value is

unfavorable, particularly if multiple parameters are involved. While estimates can be

made with no such insight, they may not be reasonable until a proper t and a are

chosen. It is possible, however, to estimate a parameter with a random walk process

by simply choosing an appropriate variance q for the parameter (assuming the variation

is expected to be continuous). In this study, random walk solutions, with accuracies

comparable to the colored noise solutions previously presented, were generated using a

variance which was on the order of magnitude of the square of the amplitude of the

model deviation signal for the parameter. Based on a random walk solution, additional

insights into a proper rand crare likely, since information regarding the amplitude and

frequency of the unknown model deviation signal is gained. The practical significance

of this drawback is minor since a preliminary standard boxcar solution for a given

variation will likely provide adequate insights into the temporal behavior of the

variation.

Finally, the possibilities of using stochastic filtering to improve orbit accuracies

and temporal resolutions of geodynamic parameters should be kept in perspective.

While this study has shown that it is feasible to make such improvements, it does not

suggest that applying process noise filtering to all satellite solutions will improve every

aspect of each solution. Although it is very encouraging to verify via simulated

LAGEOS SLR data that variations in parameters such as along track drag, J2, and J3

can be recovered and estimated more accurately with process noise parameters while
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improving the orbit position accuracy, overly optimistic extensions of these findings

without similar verification is improper.

6.2 Recommendations for Future Work

Some recommendations for future studies are now summarized. A similar

simulation using a different satellite state may be of interest. By using a satellite state

composed of Keplerian elements, variations from a reference secularly precessing

ellipse might be estimated with or instead of the actual geodynamic variations. This

would lead to direct comparisons of those variations to temporal variations in the

geopotential or other model variations. Further insights as to the relationships between

these variations may be gained.

Another study which assesses the advantages of a hybrid standard-stochastic

filter may prove valuable. Filters using both boxcars and stochastic parameters to

estimate particular variations would be more robust. Estimating some parameters, such

as daily polar motion parameters or tracking station positions and movements, with

boxcars, and other parameters, such as gravity or non-conservative force variations,

stochastically would be interesting. Also, by incorporating data from multiple

satellites, the determination of true variations in higher degree geopotential coefficients

might be possible since aliasing could be reduced. This multi-satellite study might use

a simulation to assess the feasibility of determining multiple variations of geopotential

coefficients. This type of study would contribute to improvements in the modeling of

the static geopotential field by better accommodating the temporal variations in gravity.

Since many of the long-wavelength gravity coefficients are only known to the same

level as their observed temporal variations [Nerem et a/., 1993], improvements hi the

estimates of these coefficients must involve dealing with the temporal variations in an
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appropriate manner. A similar study addressing the estimation of temporal variations in

the Mars gravity field is also recommended.

Finally, a study using actual data, perhaps LAGEOS, to compare a stochastic

filtering solution to a standard boxcar solution over a multi-year arc is recommended.

Knowing that it is feasible to estimate parameters such as Ct, J2, and J3 stochastically,

such a study would seem productive. The dynamical model would need to be more

complex, such as that used in actual LAGEOS filtering. The stochastic estimates could

then be compared to the existing boxcar estimates of the corresponding parameters.
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APPENDIX A

KEPLERIAN RESIDUALS FOR ONE YEAR BOXCAR ARC WITH Ct, J2, AND J3
MODEL DEVIATION SIGNALS

The following Figures are orbit differences (with respect to the truth) resulting

from the one year arc with Ct, J2, and J3 model deviation signals present using the

standard boxcar method. They are shown in terms of the Keplerian elements (semi-

major axis a, eccentricity e, inclination /, argument of periapse (O, longitude of

ascending node 12, and argument of latitude a) +f, where/is true anomaly).
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Figure A. 1. Semi-Major Axis Residuals Using Boxcars.
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Figure A.2. Eccentricity Residuals Using Boxcars.
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Figure A.3. Inclination Residuals Using Boxcars.
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Figure A.4. Argument of Periapse Residuals Using Boxcars.
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Figure A.5. Longitude of Ascending Node Residuals Using Boxcars.
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Figure A.6. Argument of Latitude Residuals Using Boxcars.
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APPENDIX B

KEPLERIAN RESIDUALS FOR ONE YEAR PROCESS NOISE ARC WITH Ct, J2,
AND /3 MODEL DEVIATION SIGNALS

The following Figures are orbit differences (with respect to the truth) resulting

from the one year arc with Ct, J2, and J3 model deviation signals present using the

process noise method. They are shown in terms of the Keplerian elements (semi-major

axis a, eccentricity e, inclination i, argument of periapse Q), longitude of ascending node

Q and argument of latitude co +f, where/is true anomaly).
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Figure B.I. Semi-Major Axis Residuals Using Process Noise.
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Figure B.2. Eccentricity Residuals Using Process Noise.
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Figure B.3. Inclination Residuals Using Process Noise.
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Figure B.4. Argument of Periapse Residuals Using Process Noise.
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Figure B.5. Longitude of Ascending Node Residuals Using Process Noise.
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Figure B.6. Argument of Latitude Residuals Using Process Noise.
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APPENDIX C

KEPLERIAN RESIDUALS FOR ONE YEAR BOXCAR ARC WITH Ct, J2, 73, J4

AND J5 MODEL DEVIATION SIGNALS

The following Figures are orbit differences (with respect to the truth) resulting

from the one year arc with C,, J2, 73, J4, and J5 model deviation signals present using

the standard boxcar method. They are shown in terms of the Keplerian elements (semi-

major axis a, eccentricity e, inclination /, argument of periapse 0), longitude of

ascending node 12, and argument of latitude (0+f, where/is true anomaly).
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Figure C.I. Semi-Major Axis Residuals Using Boxcars with 74 and J5 Model Deviation
Signals Present but not Estimated.
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Figure C.2. Eccentricity Residuals Using Boxcars with /, and /5 Model Deviation
Signals Present but not Estimated.
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Figure C.3. Inclination Residuals Using Boxcars with J4 and 75 Model Deviation
Signals Present but not Estimated.
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Figure C.4. Argument of Periapse Residuals Using Boxcars with 74 and J5 Model
Deviation Signals Present but not Estimated.
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Figure C.5. Longitude of Ascending Node Residuals Using Boxcars with J4 and J5
Model Deviation Signals Present but not Estimated.
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Figure C.6. Argument of Latitude Residuals Using Boxcars with J4 and J5 Model
Deviation Signals Present but not Estimated.



APPENDIX D

KEPLERIAN RESIDUALS FOR ONE YEAR PROCESS NOISE ARC WITH Ct) J2,
73, /4 AND75 MODEL DEVIATION SIGNALS

The following Figures are orbit differences (with respect to the truth) resulting

from the one year arc with C,, Ji, /3, J4, and J5 model deviation signals present using

the process noise method. They are shown in terms of the Keplerian elements (semi-

major axis a, eccentricity e, inclination i, argument of periapse co, longitude of

ascending node Q, and argument of latitude ft) +/, where/is true anomaly).
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Figure D.I. Semi-Major Axis Residuals Using Process Noise with 74 and J5 Model
Deviation Signals Present but not Estimated.
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Figure D.2. Eccentricity Residuals Using Process Noise with Jt and J5 Model
Deviation Signals Present but not Estimated.
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Figure D.3. Inclination Residuals Using Process Noise with /4 and J5 Model Deviation
Signals Present but not Estimated.
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Figure D.4. Argument of Periapse Residuals Using Process Noise with J4 and Js
Model Deviation Signals Present but not Estimated.
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Figure D.5. Longitude of Ascending Node Residuals Using Process Noise with 74 and
J5 Model Deviation Signals Present but not Estimated.



145

3 4 5 6 7 8 9

Months Past 1 January 1986

10 11 12

Figure D.6. Argument of Latitude Residuals Using Process Noise with 74 and J5
Model Deviation Signals Present but not Estimated.




