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THE SOLAR DYNAMO

David H. Hathaway
NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA

The solar dynamo is the process by which the Sun's magnetic field is generated through
the interaction of the field with convection and rotation. In this, it is kin to planetary
dynamos and other stellar dynamos. Although the precise mechanism by which the Sun
generates its field remains poorly understood in spite of decades of theoretical and
observational work, recent advances suggest that solutions to this solar dynamo problem
may be forthcoming.

The two basic processes involved in dynamo activity are fairly simple to understand. When
the fluid stresses dominate the magnetic stresses (high plasma f=8np/B2) shear flows can
stretch magnetic field lines in the direction of the shear (the “o effect”) and helical flows
(flows with v-Vxv # 0) can lift and twist field lines into orthogonal planes (the “a effect”).
These two processes can be active anywhere in the solar convection zone but with
different results depending upon their relative strengths and signs. How and where these
processes do occur is one source of uncertainty about the solar dynamo. Other processes,
such as magnetic diffusion and the fibril structure of the solar magnetic field, pose
additional problems. '

Several observational constraints must be explained by any prospective model of the solar
dynamo. Observations of sunspots and solar activity since the mid 17th century show that
solar activity associated with the Sun's magnetic field waxes and wanes with an
approximate 11-year cycle. The number of sunspots and the area they cover rise rapidly
from minima near zero to maxima 3 to 4 years later. The decline from maximum then
progresses more slowly over the remaining years of each cycle. Most measures of solar
activity show this asymmetric rise and decline but exhibit substantial variations from one
cycle to the next. During the Maunder Minimum, a period of time from 1645 to 1715, the
sunspot cycle seems to have ceased entirely. This nonlinear and sometimes chaotic
behavior suggests that the dynamo is not a simple wave or oscillatory phenomenon.

Sunspots do not appear randomly over the surface of the Sun but are concentrated in two
latitude bands. This is best illustrated by a “Butterfly Diagram”™ like that shown in Figure
1. This diagram marks the latitudes at which sunspots appear for each 27-day rotation of
the Sun from May 1874 to June 1994. At the beginning of a cycle, sunspots appear only in
the mid-latitudes near 30°. As the cycle progresses, the latitude bands widen and move
toward the equator where they disappear at the next minimum. This equatorward
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movement of the activity bands, known as Sporer's Law, suggests the presence of an
underlying flow or wavelike propagation for the source of the activity. Sunspots tend to
occur in groups that are strung out along a mostly east-west line. Spots within a group can
be separated into preceding (as given by the Sun's rotation) and following spots. These
groups usually have a characteristic tilt such that the preceding spots are closer to the
equator than the following spots (Joy's Law).

Direct measurements of the Sun's magnetic field began in 1908 and show that sunspots are
the sites of intense magnetic fields (3000 Gauss or more) which are cooler and therefore
dimmer than their surroundings. Early magnetic measurements revealed Hale's Polarity
Laws: (1) the preceding spots have one polarity while the following spots are of opposite
polarity; (2) the polarity of the preceding spots in one hemisphere is opposite the polarity
of the preceding spots in the other hemisphere; and (3) the polarities reverse from one 11-
year sunspot cycle to the next to produce a 22-year cycle for magnetic activity.

Observations of weak magnetic fields provide additional details about the dynamo. After
the strong fields erupt through the surface to form sunspots and active regions, the field
elements spread out across the surface of the Sun. The field becomes concentrated in the
network of downdrafts that outline the supergranule convection cells. As the
supergranulation pattern evolves from day-to-day, the magnetic network evolves as well.
The weak field observations reveal a slow poleward migration of these elements and the
presence of weak (1-2 G) polar fields that reverse polarity at about the time of solar
maximum. Measurements of these fields using spectral lines with different magnetic
sensitivity indicate that the actual field has a fibril nature. In weak field regions the field is
concentrated in small flux tubes (unresolved by modern instruments) that are surrounded
by field-free regions.

Models of the solar dynamo involve fluid motions within, or adjacent to, the solar
convection zone that comprises the outer 30% of the Sun. These models should be
consistent with the observed motions. Doppler velocity measurements and feature tracking
provide information on flows at or near the top of the convection zone while
helioseismology provides information on flows in the interior.

The relevant flows include rotation, differential rotation (variations in rotation rate with
latitude and radius), meridional circulations, and convection. The Sun rotates with a basic
period of about 27 days but the equatorial regions rotate more rapidly (24 days) and the
polar regions rotate more slowly (>30 days). Small variations on this rotation profile occur
over the course of the solar cycle. The rotation tends to be slower near sunspot maximum,
slower in the hemisphere with more spots, and slower in cycles with more spots. Rapidly
and slowly rotating streams (torsional oscillations) are observed in conjunction with the
sunspots. These streams move toward the equator like the sunspots but appear to start
earlier and at higher latitudes. The meridional flows at the surface are weak and thus



difficult to measure but most observations indicate the presence of a flow of ~10-20 m/s
from the equator toward the poles. The convection observed at the surface indicates the
presence of three convective flow patterns: granules with diameters of ~1000 km,
mesogranules with diameters of ~6000 km, and supergranules with diameters of ~30,000
km.

Helioseismology probes the interior of the Sun by measuring the characteristics of sound
waves produced by the turbulent convective flows. These waves, or p-modes, are trapped
inside the Sun by the rapid change in density at the surface and the increasing sound speed
deeper inside the Sun. The internal rotation can be measured by comparing the frequencies -
of waves moving prograde and retrograde for p-modes that sample different latitudes and
depths. These observations of the internal rotation show that the observed surface rate
extends inward through the convection zone along radial lines for each latitude. At the
base of the convection zone the latitudinal differential rotation disappears and the rotation
becomes more uniform. An important aspect of this rotation profile is that radial gradients
in the rotation rate occur primarily at the bottom of the convection zone with only very
weak radial gradients throughout the bulk of the zone itself.

One final observation concerning the solar dynamo is the nature of activity cycles in other
stars. The level of emission in the Ca II spectral absorption line at A393.4 nm is another
measure of solar activity. Emission features at certain wavelengths within this line are
associated with the solar chromosphere. Variations in the emission levels are well
correlated with sunspot and magnetic activity. These same spectral features are also
observed in other solar-type stars and so provide a measure of the level of chromospheric
activity in those stars. Observations over several years show that other stars have activity
cycles much like the Sun's. For a given stellar type the level of activity increases with
rotation rate. Cyclic behavior is found primarily in slow rotators like the Sun and amongst
these a quarter to a third appeared to be inactive during the years of observation.

With these observations in mind, how are dynamos constructed that produce similar
behavior? Early dynamo work showed what wouldn't work. Cowling produced an anti-
dynamo theorem that showed an axisymmetric magnetic field could not be produced by
any axisymmetric flows. It was later shown that axisymmetric flows such as differential
rotation and meridional circulation can at best only lengthen the natural decay time of the
magnetic field. Non-axisymmetric flows provide the key for unlocking a variety of possible
dynamos. In one branch of dynamo theory (Mean-Field Electrodynamics) these non-
axisymmetric flows are represented by an average of their dynamical properties. In another
branch (Large Eddy Simulations) the largest of these non-axisymmetric flows are directly
simulated. Each approach has its own advantages but at the present neither one produces a
model in agreement with all the observations.



The basic equation of dynamo theory is the magnetic induction equation constructed from
Maxwell's equations and Ohm's law:

%B~=Vx(va)+ nv°B, (1)

where B is the magnetic induction, v is the fluid velocity, and 7 is the magnetic diffusivity.
In Mean-Field Electrodynamics both the velocity and the magnetic induction are separated
into mean and fluctuating parts. An average of the induction equation gives the mean-field
equation that contains a new induction term given by the average of the cross product of
the fluctuating velocity and magnetic induction. To first order this term is proportional to
the magnetic induction and its curl so that

v'xB ~aB-AVxB Q)

where the primes denote fluctuating quantities, the overbar denotes an average, the
constant a is proportional to the helicity in the fluctuation velocity field, and the constant
B is proportional to the eddy diffusivity. Using spherical polar coordinates (r, 6, ¢),
equation (1) can then be written in terms of the mean toroidal component of the magnetic
induction, By, and the poloidal component, Bp=(Br, Be')=VXA¢, where A is the vector
potential. This gives a pair of coupled equations with
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where U is the mean fluid velocity consisting of meridional flow, Uy, and differential
rotation Uy Neglecting for the moment the meridional flow, equation (4) shows us that
the poloidal field is produced by the a-effect in which the toroidal field is lifted and
twisted by the nonaxisymmetric helical motions. Equation (3) shows us that the toroidal
field is produced by both the a-effect and by the w-effect in which the poloidal field is
stretched out by the differential rotation. The relative strength of these different terms
determines the nature of the resulting dynamo.



If the differential rotation is much weaker than the a-effect then the w-effect term is
dropped from equation (3) and an a:2-dynamo can be obtained These dynamos tend to
produce steadily growing fields. If the differential rotation is much stronger than the a-
effect then the a-effect term is dropped from equation (3) and an aw-dynamo can be
obtained. These dynamos tend to produce oscillatory waves that propagate at right angles
to the shear flow. The direction of propagation, toward the poles or toward the equator,
depends upon the sign of a and the direction of the velocity shear. If the a-effect and the
o-effect are of similar strength an a2o-dynamo can be obtained. These dynamos also tend
to produce oscillatory behavior but with periods that differ from those for am-dynamos
depending upon the relative strength of the a-effect.

Kinematic dynamos for the Sun have been constructed from these equations by taking a
specified rotation profile, Uy(8,r), and a functional form for a. Dynamos produced in the

1970's by investigators such as Yoshimura and Stix reproduced many of the characteristics
of the solar cycle. These were ccw-dynamos in which the Sun's differential rotation takes a
poloidal magnetic field and shears it to produce a stronger toroidal field below the surface.
This toroidal field is then lifted and twisted by the a-effect to produce a poloidal field of
reversed polarity. These steps are illustrated in Figure 2. The key ingredients in these
dynamos were a rotation profile in which the rotation rate increases inward and left-
handed helicity in the northern hemisphere. These conditions produce dynamo waves that
propagate toward the equator in agreement with Sporer's Law. The problem with these
dynamos is the constraints they place on the fluid flows. In order to produce a dynamo
with a 22-year period the o effect produced by the convection must be diminished
enormously. Otherwise very short cycles result. In addition, the rotation profiles they use
do not agree with the helioseismic profiles.

Non-axisymmetric flows with helicity are a natural consequence of the effects of rotation
on convection. As fluid elements rise and expand the Coriolis force produces a clockwise
rotation in the northern hemisphere giving left-handed helicity. Likewise, as fluid elements
sink and contract a counter-clockwise rotation is produced which also gives left-handed
helicity. Right-handed helicity would be produced in the southern hemisphere. This source
of the a-effect is illustrated in Figure 3.

Self-consistent magnetohydrodynamic dynamos were produced in the 1980's by Gilman
and Glatzmaier. These Large Eddy Simulation models start with the equations of motion
and the induction equation and calculate numerically both the velocity field and the
magnetic field. With these models the convection itself explicitly produces both the
differential rotation for the w-effect and the helicity for the a-effect. While the calculated
fields are self-consistent they are not consistent with the observations. The rotation profile
produced in these models has rotation constant on cylinders. While the a effect has the
expected sign, the rotation rate decreases radially inward, contrary to the helioseismic
observations, and the dynamo waves propagate toward the poles, contrary to Sporer's



Law. These dynamos also had short cycle periods due to the large magnitude of the a-
effect. ~

A major problem shared by both types of dynamos is the nature of the internal rotation
profile as determined by helioseismology. Although the magnetohydrodynamical models
produce surface rotation profiles in agreement with observations, the internal profiles
disagree. Likewise, the internal profiles assumed to be present in the kinematic models
disagree with the observations. This problem extends beyond dynamo theory itself.
Dynamical models for the convection zone produce rotation profiles with surfaces of
constant rotation rate lying on cylinders aligned with the rotation axis. The largest
convection eddies (as yet unobserved) become elongated north to south to form banana
shaped cells. Horizontal flows within these cells are turned by the Coriolis force so that
eastward momentum is transported toward the equator to maintain the latitudinal
differential rotation observed at the surface. While this process is well understood and
produces the observed surface profile, the internal rotation profile is all wrong - both for
the dynamo and for agreement with the observed internal profile. This remains an
outstanding problem in convection zone dynamics.

Another problem shared by both types of dynamos was noted by Parker: magnetic flux
tubes should be buoyant and not remain in the convection zone long enough for the fluid
motions to work on them. The magnetic pressure within a flux tube requires a smaller
contribution from the gas pressure inside to balance the gas pressure outside. If the tube is
in thermal equilibrium with its surroundings this gives a lower gas density and makes the
tube buoyant.

These two problems, flux tube buoyancy and the internal rotation profile, have lead to the
suggestion that the dynamo acts in the interface layer at the base of the convection zone.
Flux tubes are less buoyant there due to the stable stratification. Helioseismology results
show that strong radial shear in the rotation profile occurs in this layer. It is also expected
that the more vigorous convective motions will overshoot and penetrate into this layer.
Although, for the equatorial region, the rotation rate decreases inward the a-effect should
still have the correct sign. In this interface layer sinking fluid should expand as it spreads
out along the bottom while rising fluid should contract as the fluid converges in updrafts.
This gives right-handed helicity in the northern hemisphere and thus produces dynamo
waves that propagate in accordance with Sporer's Law. In the higher latitudes where the
rotation rate increases inward these waves should move in the opposite direction. Details
concerning dynamos in this interface layer have been examined by several investigators
including Parker, Gilman, DeLuca, and Choudhuri. These models solve some problems
associated with the convection zone but produce other problems of their own. In
particular, it may be difficult to produce sufficient magnetic flux within this thin layer.



One final problem with current models of the solar dynamo concerns magnetic diffusion.
For any of these dynamos to work diffusion is needed so that magnetic fields can
reconnect to form new topologies. Ultimately this reconnection must take place in small
scale diffusive processes. The problem is that vigorous small scale turbulence should
amplify the magnetic field to levels that would prohibit the flows from moving the field
any further. This limits the amplitude of the mean fields to values less than those observed.
This remains one of the fundamental problems with dynamo theory and is actively being
investigated.

Many of the current efforts in solar dynamo theory are associated with the dynamics of
magnetic flux tubes themselves. Choudhuri, Gilman, D'Silva, Fan and others have
examined how buoyant flux tubes move through the convection zone. Weak fields tend to
rise parallel to the rotation axis and emerge at high latitudes. Fields with strengths of
~100kG at the base of the convection zone are required to produce sunspots at the
observed latitudes. Other investigators are studying the interactions between fluid flows
and fibril magnetic field structures. The difficulty of including thin tubes with strong
magnetic fields in global models is a severe computational problem for solar dynamo
theory.

Observationally we still need to know more about the dynamics of the solar convection
zone. Are we missing details about the internal rotation profile? What meridional flows
exist within the convection zone? What is the structure of the convective flows and how
do these flows interact with the axisymmetric flows and the magnetic field?
Helioseismology is our best hope for obtaining answers to these questions. The Global
Oscillations Network Group (GONG) will start fielding its instruments in late 1994 and
early 1995. In July of 1995 ESA and NASA will launch the Solar and Heliospheric
Observatory (SOHO) with an array of helioseismology instruments. These new
instruments promise to tell us much more about the solar interior, convection zone
dynamics, and the solar dynamo.
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FIGURE CAPTIONS

Figure 1. Sunspot areas and positions from 1874 to 1994. In the upper panel the
latitudinal positions of sunspots are marked for each rotation of the Sun. This illustrates
the equatorward movement of the active latitude band over each solar cycle. In the lower
panel the average daily sunspot area, expressed as a percentage of the area of the visible
hemisphere, is plotted for each rotation of the Sun. This illustrates the 11-year sunspot
cycles and shows the cycle-to-cycle and rotation-to-rotation variations in total sunspot
area.

Figure 2. The two basic dynamo processes: the w-effect and the a-effect. With an ae-
dynamo the w-effect shown in Fig. 2a is produced by differential rotation shearing a
poloidal field line and wrapping it around the solar interior to produce a strong toroidal
field. The a-effect shown in Fig. 2b is produced by helical motions that lift and twist the
toroidal field to produce a new poloidal field of opposite polarity.

Figure 3. Helicity production by convection in rotating layers. The Cortolis force acting on
convective flows produces left-handed helicity in the convection zone in the north and
right-handed helicity in the south. Converging flows in downdrafts spin counter-clockwise
in the north and clockwise in the south while diverging flows in updrafts spin in the
opposite directions. The opposite sense of helicity is produce in the interface layer where
the flows in downdrafts diverge and flows in updrafts converge.



DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS
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a) The w-effect : b) The o-effect
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