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ABSTRACT

Heat pipes are highly reliable and efficient energy transport devices, which are being

considered for many terrestrial and space power thermal-management applications, such as

high-performance aeronautics and space nuclear and solar dynamic power systems. In this

work, a two-dimensional Heat Pipe Transient Analysis Model, "HPTAM", was developed

to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes

from a frozen state. The model incorporates: (a) sublimation and resolidification of

working fluid; (b) melting and freezing of the working fluid in the porous wick; (c)

evaporation of thawed working fluid and condensation as a thin liquid film on a frozen

substrate; (d) free-molecule, transition and continuum vapor flow regimes, using the

Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and

hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the

radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial

location of the working fluid level (liquid or solid) in the wick. It also includes the

transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor

interface and geometrically relates the radius of curvature of the liquid meniscus to the

volume fraction of vapor in the wick. The present model predicts the capillary limit and

partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling

submodel, which simulates accumulation of the excess liquid in the vapor core at the

condenser end.

HPTAM can handle both rectangular and cylindrical geometries. The model divides the

heat pipe into three transverse regions: wall, wick, and vapor regions, and solves the

complete form of governing equations in these regions. The heat pipe wick can be a wire-

screened mesh, an isotropic porous medium such as a powder or a bed of spheres, or an

open annulus separated from the vapor core by a thin sheet (with small holes to provide

capillary forces). HPTAM incorporates several working fluids such as lithium, sodium,

potassium and water, as well as various wall materials (tungsten, niobium, zirconium,

stainless-steel, copper and carbon). Evaporation, condensation, sublimation and

resolidification rates are calculated using the kinetic theory relationship with an

accommodation coefficient of unity. To predict the flow of liquid in the porous wick of the

heat pipe, HPTAM uses the Brinkman-Forchheimer-extended Darcy model. This model

was successfully benchmarked against experimental data for natural convection of molten

gallium in a porous bed of glass beads. Also, HPTAM handles the phase-change of

iii



workingfluid in thewick usingamodifiedfixed-grid homogeneousenthalpymethod.The

techniqueemploys a mushy-cell temperaturerangeas small as 2x10-8 K (limited by

machineaccuracyonly), without requiring under-relaxationof the temperaturesand

generatingnumerical instabilities. Insteadof using the harmonicmeandiscretization
scheme(HMDS) of Patankar,asimplemethod,basedon thefrozenvolumefraction,was

developedto calculatethe heatfluxesat theboundariesof themushycell. This method

improvedthe accuracyof the solutionand reducedthe oscillations in temperaturetime

histories (usually encounteredwhen the HMDS is used) by one-to-two orders of

magnitude.

Becauseof the physical complexity of the problem,advancednumericalmethodswere

considered.Two segregatedsolution techniques,onebasedon thenon-iterativePressure

Implicit Splitting Operator (PISO), and the other basedon the SIMPLEC segregated

iterative technique,were developedand testedfor their stability and effectivenessin
reducingtheCPUtime while maintainingtheaccuracyof results. Various linear-system

solverswere alsoexaminedto determinewhich one wasmostefficient for solving the

problemat hand. Basedon the resultsof theseexaminations,the segregatedsolution

techniqueusingthe SIMPLEC procedurewasselectedfor HPTAM. To solve thefive-

point linear Poissonequationsresulting from the discretization of the massbalance
equations,adirectsolutionroutineusingGaussianeliminationwasdeveloped.Thebanded

versionof thesolverallowedsignificantdecreasesincomputationtimeandmemorystorage

requirement. The iterative Strongly Implicit Solver waschosento solvethe five-point

linearequationsresulting from the discretizationof the energyand momentumbalance

equations.

Thedevelopmentof thiscomprehensivemodelwasguidedbycontinuousbenchmarkingof

themodelpredictionswith availableexperimentalandnumericalresults.Theaccuracyof

thephysicalandnumericalschemesfor modelingheatandmasstransfersin thewick was

verified usingvariousbenchmarkproblems,namely: (a) naturalconvectionof liquid in a

squarecavity; (b) naturalconvectionof moltengalliumin aporousbedof glassbeads;(c)

one-dimensionalpure conduction solidification problem; (d) two-dimensional pure

conductionproblemof freezing in acorner; and (e) thefreezingof tin in a rectangular

cavity in thepresenceof naturalconvection. Numericalresultsof the frozenstartupof a

radiatively-cooledwaterheatpipe arepresented,whichdemonstratethe soudnessof the

physical model and numerical approachused in HPTAM. The results illustrate the

importanceof thesublimationandrecondensationprocessesduring thefirst periodof the
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transient and the combined effects of phase-change and liquid hydrodynamics in the wick

during the startup of the low-temperature heat pipe. The startup is characterized by partial

recess of liquid in the evaporator wick after the capillary limit has been reached. After

enough working fluid was melted by resolidification and condensation in the adiabatic and

condenser sections of the heat pipe, resaturation of the wick was established before

complete dryout of the evaporator occurred, leading to a successful startup. Also, the heat

pipe model was validated using transient experimental data of a fully-thawed water heat

pipe constructed at the Institute for Space and Nuclear Power Studies. The calculated

steady-state vapor and wall axial temperature profiles and the transient power throughput

and vapor temperature were in good agreement with measurements. Results illustrated the

importance of the hydrodynamic coupling of the vapor and liquid phases and showed the

appearance during the heatup transient (disappearance during cooldown) of a pool of

excess liquid at the condenser end. Finally, the effects of input power and initial liquid

inventory in the water heat pipe on the wet point and liquid pooling, and on the vapor and

liquid pressure and temperature distributions were investigated in details.
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1. INTRODUCTION

Heatpipescantransportrelativelylargeamountsof energyovera significantdistancewith

asmalltemperaturedropbetweentheheatsourceandtheheatsink. Sinceheatpipeshave

nomovingpartsandoperatepassivelyin vacuumandin microgravityenvironments,they

arehighly reliableandefficientenergytransportdevicesandarebeingconsideredfor many

terrestrialandspacepowerthermal-managementapplications,suchashigh-performance

aeronauticsandspacenuclearandsolardynamicpowersystems.

Water andalkali metal heatpipesarecurrently beingconsideredfor passivecooling of

commercialnuclearreactorsafter shutdown. They arealso being developedfor solar

dynamics,nuclearspacepower systemsand spaceplatformssuchasthe spacestation

Freedom,either as the primary transport sub-systemof for radiative heat rejection.
Nuclearspacepowersystemsmayemploythermoelectricelements,thermionicelements,

closedBraytoncycle,or FreePistonStirlingEngines(thelatterarebeingconsideredfor a

lunar outpost),to convert thermal powerto electrical power. Heat pipesoperatingat

temperaturesinexcessof 700K employliquid-metalworkingfluids while thoseoperating
at lowertemperaturemayemploynon-liquid metalfluids suchaswateror ammonia.

In thetemperaturerangeof 300-500 K, waterprovidesthebestalternativefor a working
fluid. Waterheatpipeshavebeenusedin numerousterrestrialandspaceapplications,such

assolar waterheaters,cooling of moldsduring castingof aluminum and plastics,and

coolingof electroniccomponentsonboardsatellites.

Between500K and700K, theredoesnotexist, to date,anyworking fluid with attractive

properties. Mercury has suitable vapor pressureand high figure of merit in this

temperaturerange,unfortunately,it ishighly toxic andits useisnotrecommended.

In thetemperaturerangeof 700-1600K, candidateheatpipeworking fluids of interestfor

high-performancespacepowerapplicationsarethealkalimetals,potassium,sodium,and

lithium. Examplesof theseapplicationsincludeheattransportfrom thereactorto thepower

converter,heatingandcooling of electrodesin thermionicconverters,andheatrejection.

Additional uses of high temperature heat pipes are cooling of radiation shield,

electromagneticpumps,control drumsand drive motors, and thermal conditioning of

liquid-metal pumpedloopsduring thestartupandshutdownof powersystems(Merrigan



1985). Thesepotentialapplicationshavereceivedthe mostattentionin recentyearswith
the onsetof advancedspacepowerprogramssuchasthe SP-100 (Coxet al. 1991)and

Dynamic IsotopePowerSubsystem(DIPS) studies(Dix 1991). An advantageof using

sodiumorpotassiumworkingfluids in thetemperaturerange700-1100K is theirrelatively

low melting temperature(98 °C and64oC, respectively),which is favorablefor space

applications.TheNaK-78 alloy hasameltingtemperaturewell below thatof sodiumand

potassium(-10 °C), which is thereasonwhy thisparticularworking fluid wasselectedas

theprimary coolant for all Russian(RomachkaandTopaz)andAmerican(SNAP-10A)

nuclearpowersystemslaunchedin spacesincethelate 1950's.At veryhightemperatures

(above1200K), lithium is a goodchoiceasaheatpipeworking fluid becauseof its high

latentheatof vaporizationandhigh surfacetension. Also, becauseof thevery low vapor

pressureof this fluid, lithium heatpipescanoperateat a muchhigher temperaturethan
potassiumandsodiumheatpipeswithoutoverpressurizationof thecontainer.

Oneof the concernswith the utilization of heatpipes in spaceand in someterrestrial

applicationsis understandingtheir transientbehaviorduring startupfrom a frozenstate.

The startupof high-temperatureheatpipesfrom thefrozenstatehasbeenextensivelyand
experimentallyinvestigated(Deveralletal. 1970;Ivanovskiietal. 1982;Jangetal. 1990a;

Faghriet al. 1991; Jang 1995),andsuccessfulstartupof suchheatpipesis consistently

achieved.However,experimentson the startupof low-temperatureheatpipesare rare.
Heat pipes using high vapor pressureworking fluids (such as water and ammonia)

typically exhibitauniform temperaturestartup,whereasthoseusingfluids with low vapor
pressures(suchasliquid metals,sodium,potassiumandlithium) exhibit a frontal startup.

Deverallet al. (1970)successfullystarteda waterheatpipefrom afrozenstate.Becauseof

the relatively high vaporpressureof water,evennearthe melting temperature,choked

and/orsupersonicvapor flows were not encounteredduring the startup. Experimental
resultsshowedthattheheatpipebecameimmediatelyactivewheretheicewasmelted.

Previous investigationsof the frozen startup of heatpipes generally assumeuniform

distribution of the working fluid in the wick. Suchassumptionis found to be invalid

experimentallyfor low-temperatureheatpipes. Redistributionof frozenworking fluid in

low-temperatureheatpipesoccursduringstartupdueto sublimationandresolidificationof

vapor(Kuramae1992; andOchterbeckandPeterson1993).Suchprocessesmayprevent

successfulre-startupof theheatpipeduringcyclic operation.Thevaporresolidifiesin the

coolerpartsof theheatpipeandcannotreturnbackto theevaporator.Eventually,thewick

might completelydryout in theevaporator. In casesof low-temperatureheatpipeswith

2



largeevaporator-to-condenserlengthratio,completeblockageof the vaporchannelwas

observed,dueto resolidificationof workingfluid (OchterbeckandPeterson1993).

The startupcharacteristicsof low-temperatureandhigh-temperatureheatpipesfrom a

frozenstatediffer significantlydueto differencesin thevaporpressureof theworkingfluid

nearthemeltingpoint. In low-temperatureheatpipes,althoughthevaporpressureis large
enoughso that the startupdifficulties associatedwith the viscousand sonic limits are

avoided,significant migration of the working fluid from the evaporatorto the colder

regionsin theheatpipeoccurs. Oncethesolid working fluid is meltedin theevaporator,

dryout may occur due to immediatevaporization of the fluid. In the caseof high-
temperatureworking fluids, the vaporflow in the heatpiperemainsin thefree-molecule

regimefor temperatureswell abovethemeltingtemperature.Thishasthebeneficialeffect

of minimizing the transportof thesolid working fluid to thecondenserby sublimation/

resolidification. The large thermal conductivity of liquid-metal working fluids also allows

melting of the working fluid in adiabatic and condenser sections by conduction, before

large scale evaporation of the liquid occurs.

Attempts have been made to fill the heat pipe with noncondensible gas to make it start more

readily. A significant decrease in startup time was noted by Ivanovskii et al. (1982) for

increasing amounts of noncondensible gas loading in sodium heat pipes. The effect of

noncondensible gas on the startup of a water heat pipe was also investigated by Ochterbeck

and Peterson (1993). The gas-vapor interface, observed visually, was found to be quite

sharp. In the region containing the gas, resolidification and condensation of water vapor

did not occur. A frontal startup, characteristic of high-temperature and gas-loaded heat

pipes, was observed in the gas-loaded water heat pipe.

The wide interest in heat pipes has stimulated the development of numerous steady-state

and transient models. Because the transient operation of heat pipes and the startup of heat

pipes from a frozen state involve several highly non-linear and tightly coupled heat and

mass transfer processes in the vapor, wick and wall regions, mathematical modeling of

these problems is quite complex. An analytical solution is unattainable, and except when

simplifying assumptions are made, the numerical solution could be tedious and require

large computation time. The following section reviews the previous and major heat pipe

modeling efforts, which included a variety of simplifying assumptions in the governing

equations, and a spectrum of numerical techniques to solve these equations.
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1.1. SUMMARY ON HEAT PIPE MODELING

Heat pipe models can be classified into four categories: (a) models which simulate the

vapor flow region only; (b) models which simulate vapor, wick and wall regions but

ignore the liquid flow in the wick and the momentum coupling at the liquid-vapor (L-V)

interface; (c) liquid/vapor counter-current flow models which neglect the momentum

coupling at the L-V interface; (d) models which have the capability to predict the radius of

curvature of the liquid meniscus at the L-V interface in order to insure proper

hydrodynamic coupling of the liquid and vapor phases. Only a few models, however,

attempted to simulate the non-continuum vapor flow regimes occurring in high-

temperature heat pipes operating in the low temperature range, and the change of phase of

the working fluid in the wick during the startup of heat pipe from a frozen state. Table 1.1

summarizes the capabilities and important characteristics of major heat pipe models

developed after the year 1987.

In an attempt to describe the operation of heat pipe, Bowman (1987), Bowman and

Hitchcock (1988), Klein and Catton (1987) and Issacci et al. (1988, 1990 and 1991) have

developed two-dimensional transient models of vapor flow, which decoupled the vapor

from the liquid-wick and wall regions, except for a simplified interfacial energy balance.

Bowman and Hitchcock (1988) studied the vapor flow in the laminar and turbulent

regimes. The emphasis was placed on studying highly compressible vapor flow situations,

including subsonic and supersonic flow fields with shock waves and flow reversal.

Bowman and Hitchcock solved the full unsteady compressible, Reynolds-averaged

turbulent Navier-Stokes equations in cylindrical coordinates, using the Explicit

MacCormack finite difference method. In their calculations, they had to use very small

time steps in order to avoid numerical instabilities. Bowman and Hitchcock (1988)

experimentally investigated vapor flow dynamics using isothermal air injection and suction

at the walls of a porous pipe made from polyethylene beads. Based on this work, Bowman

(1987) established functional relationships of the friction coefficient for a simple, steady

one-dimensional model for highly compressible and sonic vapor flows.

Researchers at the University of California Los Angeles (Klein and Catton 1987; Issacci et

al. 1988, 1990 and 1991) also studied the heat pipe vapor dynamics, using a two-

dimensional approach. Originally, they solved the two-dimensional, laminar compressible

4
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Navier-Stokes equations using the SIMPLER algorithm. This method, however, was

limited to low-compressibility flows. Issacci et al. (1991) showed that a centered-

difference scheme, when used with non-linear filtering, yielded a second-order, stable

solution and captured shocks without oscillations. This non-linear filtering technique was

used to analyze the startup vapor dynamics of a sodium heat pipe with a high heat input

flux. The startup transient involved multiple wave reflections from the line of symmetry in

the evaporator section. It is not clear, however, how this code could model free-molecule

and/or transition flow conditions without any special treatment.

Although the vapor flow models of Bowman and Hitchcock (1988) and Issacci et al.

(1988, 1990 and 1991) have provided valuable information on the vapor flow dynamics,

they are of limited use for the design and transient analysis of heat pipes, because of the

thermal and hydrodynamic decouplings of the vapor from the wick region.

Traditionally, the second category regroups heat pipe models that have been developed for

design purposes. These models pay attention to only these phenomena that influence the

performance of heat pipes. The experimental investigations of Ivanovsky et al. (1982) and

Tilton et al. (1986) suggested that during steady-state or slow transients, heat pipe

operation can be described solely by vapor dynamics and energy balance in the various heat

pipe regions. Following these observations, Tilton et al. (1986), Faghri and Chert (1989)

and Cao and Faghri (1990) at Wright State University solved the two-dimensional heat

conduction equations in the wall and liquid-wick regions, which were thermally coupled to

either a one- or twcr-dimensional vapor flow model.

In their two-dimensional steady-state model, Faghri and Chen (1989) assumed

thermodynamic equilibrium at the L-V interface (the interfacial temperature is equal to the

vapor saturation temperature) and evaluated the evaporation/condensation rates from the

energy balance at the interface. With this model, Faghri and Chen evaluated the effects of

axial conduction, vapor compressibility and viscous dissipation on the operation of water

and sodium heat pipes. Cao and Faghri (1990) extended Faghri and Chen's model to

perform transient calculations. They used the SIMPLE method, and incorporated the effect

of vapor compressibility by treating the vapor pressure as a dependent variable and directly

applying the state equation to obtain the density while iterating.

Jang (1988), Jang et al. (1990a) and Cao and Faghri (1993a, 1993b and 1992) also

modeled the startup of heat pipes from a frozen state. Jang (1988) developed a pure-

conduction transient model for rectangular heat pipe cooled leading edges, and compared its
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predictionswith Camarda's(1977)experimentalresults. Evaporationandcondensation
rateswereevaluatedfrom thekinetictheoryto accountfor thethermalresistanceattheL-V

interface. Different startup periods were considered, including free-molecule and

continuumvaporflow conditions.During thefirst period,Jang(1988)obtainedthevapor

temperatureby equatingthe evaporativeheat input to the sonic limited heat transport.
When continuum flow is establishedalong the heat pipe, one-dimensional steady

compressibleequationswereusedin thevaporcore. Later,Janget al. (1990a)improved

the modelby solving theone-dimensionaltransientcompressibleflow equationsfor the

continuumvaporflow, anddevelopeda modelfor thefrontal startupof circularheatpipes

from a frozenstate. The phasechangeof the working fluid wasmodeledby usingthe

fixed-grid heatcapacitymethod. Jangandco-workersusedthetransitiontemperatureat a
Knudsennumberof 0.01to characterizetheaxial locationof thefree-moleculeflow front,

and assumedno heator masstransfersat the boundariesof the rarefied vapor zone.

Unfortunately,theseassumptionsdonotallow thevaporto accumulateprogressivelyin the

heatpipecore,sothatthevaporflow wouldneverreachthecontinuumregime.

CaoandFaghri(1993a)improvedthemodelof Jangetal. (1990a)by usingararefiedself-

diffusionvapormodelto simulatetheearly startupperiodof high-temperatureheatpipes.
After themeltingfront hasreachedthevapor-wick interface,evaporationandcondensation

rateswerecalculatedusingamodificationof thekinetic theoryof gases.CaoandFaghri
(1993b)extendedthe modelby usinga two-region descriptionof the vaporcore. The

continuum vapor flow region was modeledusing the two-dimensional compressible

Navier-Stokesequations,while the rarefiedvaporflow regionwassimulatedby a self-

diffusion model, the two vapor regions being coupled with appropriate boundary
conditionsat theaxial front definedby thetransitiontemperature.Basedon theresultsof

theirmodel,CaoandFaghri(1992)developedanapproximateflat-front analyticalsolution

for the startupof high-temperatureheatpipes,and proposeda frozen-startupoperation
limit whichindicatedthepossibilityof dryout in theevaporator.This limit wasobtainedby

comparingtherateof increaseof themassof liquid in thewick (dueto axialpropagationof

themeltingfront) with therateof lossof theworking fluid by resolidificationof vaporon
thefrozensubstrate.The two rateswerefound to besimilar for a numberof heatpipes,

indicatingthatresolidificationof working fluid is apotentialfactorfor failureof thestartup

of high-temperatureheatpipesalso.

Someof theabovemodelshavefocusedon themodelingof free-moleculeflow regimesin

the vapor and have provided valuable information concerning the startup of high-
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temperatureheatpipes. Unfortunately,all of thesemodelstreatedthe wick as a pure

conductingmedium,assumeda uniform distributionof the working fluid, andneglected

liquid flow, hydrodynamiccouplingbetweentheliquid andvaporphases,andsolid-vapor

masstransfers.Therefore,thesemodelsarenotcapableof predictingtheoperationlimits

of theheatpipe,suchascapillary,entrainment,dryoutof thewick, andtheredistribution

of workingfluid by sublimationandresolidificationduringthestartupof heatpipes.Tilton

(1987)andCaoandFaghri(1990)recognizedthat the hydrodynamicsof both theliquid

andvaporphasesmustbemodeledin orderto predicttheseoperationlimits.

Investigatorsof thethird heatpipe modelcategoryhaveincludedmodelingof the liquid
flow andtreatedthevaporflow ascompressible.

In their models,Costelloet al. (1988)and Peeryand Best(1987) treatedthe liquid and
vaporflows in theheatpipe asone-dimensionalandcompressibleflow problems,and

evaluatedtheevaporationandcondensationratesattheL-V interfaceusingmodifiedforms

of thekinetic theoryrelationship.Theevaporatorendof theheatpipecontaineda porous
nodeto storeexcessliquid fluid, while theexcessliquid in thecondenserendwasassumed

to exist in slugform. At thecondenserend,the liquid pressurein thewick wasassumedto

beequal to the vapor pressurein the core. Costelloet al. (1988), on contract for Los

AlamosNationalLaboratory,developedaheatpipemodelto predictthetransientbehavior

of liquid-metal heatpipesduringstartupfrom thefrozenstateandoperationalshutdowns.
Thefriction factorwasafunction of the Knudsennumberto simulatefree-moleculeand

transition flow conditions occurringduring startupat low temperature. At eachaxial

location,the liquid andvaporpressuredifferencewastestedagainstthemaximumcapillary
pressurehead. If the pressuredifferenceexceededthe capillary pressure,the nodewas

flaggedasbeingdriedout. Althoughtheirmodelisquitecomprehensive,Costelloandco-

workersdid notreportanycalculationresults. It is believedthatthetemporaldiscretization

schemeassociatedwith the KACHINA algorithm limited thetime stepfor calculations.

Peeryand Best (1987) developeda model to simulate the transient operation of a

rectangularwaterheatpipetestedatTexasA&M University. EvensoPeeryandBestused

oversimplifying assumptions,their model sufferedfrom numericalinstability, and the

authorscould only report calculationsof small transients(up to 2 seconds).Extremely

small time steps(10-4s) were requiredto solve iteratively for the coupledenergyand

kinetic theoryequations. This constrainton the time stepwas previously reportedby

Subbotin when using his model for predicting evaporation / condensation rates. In

conclusion, Costello et al. and Peery and Best did not succeed. The numerical instabilities
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encounteredby theseauthorsareattributedto thenumericalmethodstheyused,whichwere

not suitableto handlethecomplexity of the problem,particularly the coupling with the

kinetictheoryrelationship.

Later,FaghriandBuchko(1991)extendedthecapabilityof their two-dimensionalsteady-

statemodel (Faghri and Chen 1989)by including the effect of liquid flow in the wick.

TheyusedthesteadyDarcy-extendedflow equationsfor a saturatedandisotropicporous

medium,butcomputedthepressureprofilesalongtheheatpipeindependently.

Unfortunately,all theinvestigatorsmentionedaboveignoredthehydrodynamiccouplingat

theL-V interface.Suchdecouplingof theliquid andvapormomentumequationscanresult

in erroneousliquid andvaporflow ratesandpressures.This uncertaintyis attributedto the

fact that neither of thesemodelssatisfy the local interfacial force balanceat the L-V

interface.As pointedoutby Hall andDoster(1989),it is necessaryto accuratelymodelthe
capillaryphenomenaalongtheentirelengthof theheatpipeandthus,adequatelysatisfythe

local capillary relationshipof Pascal. Settingthe liquid andvaporpressuresequalat an

assumedaxial locationandcomputingthephasicpressuredistributionsindependentlydoes
not allow thecapillarypressuredifferenceto adjustto systemparameters.Consequently,

modelsusingthis approachcouldnot accuratelycalculatethevaporandliquid flow rates

and pressuresduring a transient,and were not capableof predicting the capillary and

dryoutoperationlimits.

The fourth categoryregroupsthe heatpipe models that usea geometricapproachfor

modelingthe radiusof curvatureof the liquid meniscus.RansomandChow(1987),Hall

andco-workers (1988-1994)andSeoandEI-Genk (1989) incorporatedliquid flow and

thermalexpansion,hydrodynamicallycoupledthe liquid andvaporphases,andpredicted

thevaporvolumedistributionin thewick. Theyusedthecapillaryrelationshipof Pascalto

relatethephasicpressures.Theporeradius,Rp, is fixed by the geometry of the wick, and

the radius of curvature of the liquid meniscus at the L-V interface, Rc, is related to the

amount of vapor in the wick. The maximum pressure difference occurs when Rc is equal

to the pore radius; in this case, the volume of vapor in the wick forms a hemisphere of

radius Rp in each pore of the wick surface. These geometrical considerations allow to

express the vapor void fraction in the wick in terms of Rc, the wick surface porosity, and

the diameter of the vapor core.
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TheAdvancedThermalHydraulicEnergyNetworkAnalyser(ATHENA) heatpipemodel
of RansomandChow(1987) is a modificationof thereactortransientcodeRELAP-5 (a

generalpurposethermal hydraulic transientsimulation code for two-fluid, two-phase
stratified flow systems). In this model,the two-fluid heatpipe formulation is obtained

from theone-dimensionalarea-averagedphasicmomentumequationsby retainingdistinct
phasicpressures.Resultsreportedby RansomandChowsuggestthe soundnessof their

modelandthestabilityof the iterativesemi-implicit numericalschemeused.However,to

minimize thenumberof changesto theoriginal solutionschemeof RELAP-5, thephasic

pressuredifferencewasevaluatedexplicitly, which led to severetime steprestrictions,

much less than the Courant-Friedrichs-Lewy (CFL) limit, and resulted in large

computationaltime for each run. The authorspointed out that in the caseof liquid

flooding, thediphasicinterfaceis flat andthepressuredifferencebetweenthephasesis
equalto zero,while thispressuredifferenceis equalto amaximumcorrespondingto Rc =

Rp when the vapor volume fraction exceeds the volume of a hemisphere of radius Rp times

the number of pores available at the surface of the wick. These specifications define the

variation of the interphase pressure difference in terms of the vapor volume fraction in the

heat pipe. However, only the relationship corresponding to normal conditions was

considered in the model, so that wick flooding or dryout conditions were not modeled.

Hall (1988) and Hall and co-workers (1990-1994) developed the THROHPUT (Thermal

Hydraulic Response Of Heat Pipes Under Transients) code to model the transient behavior

of a circular lithium heat pipe during startup from a frozen state and operational shutdowns.

Their model predicted the solid, liquid and vapor volume fractions along the heat pipe, so

that liquid pooling and recess were modeled. The THROHPUT code predicts the

evaporation, condensation and resolidification rates using the kinetic theory equation

proposed by Collier (1981). However, the two-dimensional conservation equations were

averaged over the radial direction, yielding a one-dimensional axial model. The important

radial effects and interphase transfer terms were treated in separate lumped submodels.

Melting and freezing processes were modeled with a discontinuous heat flux at the liquid-

solid boundaries. Hall and co-workers assumed that the phases existed in radial layers in

order to simplify the radial submodel. Four specific configurations were considered: cold

state (all solid), startup or melting (wall-liquid-solid), normal operation (all liquid), and

shutdown or freezing (wall-solid-liquid). The governing equations were discretized on a

staggered grid and linearized using an implicit Taylor series expansion about the old time

step. Because the model of Hall is basically one-dimensional, it was possible to solve the

linearized coupled finite-difference equations directly, using specialized block-diagonal
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matrix inversionmethods. Hall andDoster(1988)attemptedto simulatea Los Alamos

experiment(Merriganet al. 1986)of thefrozenstartupof a4 m-long lithium heatpipe. In
order to simulatethefirst 50secondsof thethaw transientthe authorsneeded5 hoursof

CPUtime onaVAX 11/750.In furtherdevelopments,Hall andDoster(1989,1990)used

theDusty GasModel of CunninghamandWilliams to treatfree-moleculeandtransition

flow regimesaswell ascontinuumflow regimein thevaporcore. Also, they incorporated
an axial melt front submodelin THROHPUT. Hall (1988)and Hall andDoster (1989,

1990)showedthatusingmultiplepasses(updatingtheJacobianat eachpass)to updatethe

highly nonlinearequations(particularly thegasmixturestateequationandthe capillary

pressurerelationship)reducedthelinearizationerrors,whichhadlimitedthetimestepsize.
With this new numerical approach,a 2-hour-long transient was simulated using

approximately24hoursof CPUtimeonaVAX 8600.

In somestagesof the THROHPUTcalculations,it was found that therewasnot enough

total vaporpressureto supportthecapillary pressuredifference. In early versionsof the
code,this wasviewedasa shortcoming,andHall forcedtheliquid pressureequalto zero

to preventanynegativeliquid pressurein thewick. However,whenadjacentliquid nodes
showedthesamecondition,therewasnopressuredifferencebetweenthem,resultingin no

axial liquid flow. To remedythis problem,Hall andDoster (1989, 1990)assumedthat
someof thecapillary pressurewasdirectedaxially whentherewasa differencein liquid
volumefractionbetweentwonodes.This treatmentcausedtheirmodelto predictdryoutof

the evaporatorwhen this did not occurexperimentallyfor the sameconditions. In an

attemptto resolvethis problem and reproducethe experimentalresults,Hall and co-
workers(Hall 1988; andHall andDoster1990)variedthevaluesof theevaporationand
condensationaccommodationcoefficientsusedin thecalculation. Thecodecouldsatisfy

eachof severalexperimentalcriteria separatelyby adjustingthesecoefficients,but nopair

of coefficientscouldmeetall of therequirementssimultaneously.In a recentpaper,Hall et

al. (1994) performed in-depth literature reviews of experimental measurementsof

evaporation/ condensation accommodation coefficients and of the possibility of tension in

the liquid phase. They found that values of the accommodation coefficients close to unity

could be measured for both liquid-metal and non-liquid metal working fluids when care

was taken in the experiments to avoid surface contamination, the presence of non-

condensable gas, and other forms of experimental errors. Furthermore, Hall et al. (1994)

found several references which described the effect of tension in the liquid (that is, the

possibility of negative liquid pressure) and validated its physical existence. In the later

version of the THROHPUT code, Hall et al. (1994) allowed negative liquid pressure in the
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wick and used unity accommodation coefficients to calculate the evaporation, condensation

and resolidification rates. With these modifications, the model results were greatly

improved and agreed reasonably well with the experimental data of Merigan et al. (1986)

for the frozen startup of a lithium heat pipe.

Seo and EI-Genk (1989) at the University of New Mexico developed a transient model for

simulating the operation of fully-thawed liquid-metal heat pipes. They assumed the liquid

flow in the wick region to be two-dimensional, transient, incompressible and laminar.

However, a quasi-steady state, compressible one-dimensional approximation was used to

simulate the vapor flow. Seo and El-Genk used the laminar two-dimensional Navier-

Stokes equations and retained only these terms that could be discretized using the axial

variables of the vapor. While the authors recognized the limitations of such an approach,

their goal was to design a fast running heat pipe code for incorporation in the Space

Nuclear Power System Analysis Model (SNPSAM), of SP-100 space nuclear power

system (Seo 1988). Seo and El-Genk used the geometric Pascal relationship to explicitly

satisfy the interfacial local force balance, and the capillary limit was detected when the

effective radius of curvature of the liquid meniscus in the wick became equal to the

geometrical pore radius. The equations were discretized implicitly using a conventional

finite difference method, and an iterative solution scheme was used to resolve the interfacial

couplings. To verify the model predictions, results were compared with the experimental

data of Merrigan et al. (1986) for a 4 m-long cylindrical lithium heat pipe. During normal

operation, a high-frequency RF coil heated the evaporator section, while the condenser

section was cooled radiatively. After shutdown, both the evaporator and condenser

sections were radiatively cooled. The model prediction of the wall temperature distribution

after shutdown before the working fluid reached its freezing point agreed well with the

experimental results, except at the end of the condenser region. It was found

experimentally that during normal operation, excess working fluid pooled into the vapor

core and filled approximately the last 50 cm of the condenser, causing higher measured

temperatures at this end of the heat pipe. It is not clear how pooling effects were treated in

the model.

Although Ransom and Chow (1987) and Seo and E1-Genk (1989) incorporated the effects

of liquid flow, interfacial hydrodynamic coupling and thermal expansion, their models

lacked the capability of predicting liquid pooling at the end of the condenser. Also, these

investigators did not model the phase-change of working fluid in the wick during the

startup from a frozen state, nor the free-molecule and transition vapor flow regimes.
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THROHPUT (Hall and co-workers 1988-1994) is one of the most comprehensive heat

pipe models to date. It is the only model with provisions for predicting liquid recess,

partial dryout and resaturation of wick, and pooling of excess liquid in the vapor core.

However, THROHPUT has certain drawbacks. Because this model is basically one-

dimensional, it does not deal with freezing and melting of the working fluid

mechanistically, hence, its predictions during startup and shutdown transients are only

approximate. Furthermore, because heat transfer through the metallic matrix of the wick

was not modeled separately, THROHPUT cannot be used to predict the startup of low-

temperature heat pipes from a frozen state.

In conclusion, to the best of our knowledge, there has not been a detailed, accurate and

efficient transient analysis model for the startup of heat pipes from a frozen state. Some of

the processes characteristics of the startup of heat pipes from a frozen state, such as the

redistribution of working fluid by sublimation and resolidification, liquid flow and liquid

recess in the wick, partial dryout and resaturation of wick, and pooling of excess liquid,

have not been considered or been seriously investigated by the scientific community.

Furthermore, due to the complexity and nonlinearity of the thaw process of a heat pipe, an

analytical solution is unattainable and the numerical solution could be rather involved and

CPU time consuming. For example, Jang et al. (1990a) modeled the phase--change of the

working fluid using the fixed-grid heat capacity method. Because this method is only

applicable to a special case of the general form of the energy equation, it is prone to

numerical instabilities and inaccurately calculates the melting front location and the

temperature profiles in the solid and liquid regions. Cao and Faghri (1993a, 1993b) used a

fixed-grid temperature transforming method to predict the freezing and melting of working

fluid in the wick (Cao and Faghri 1990b). Their numerical scheme, however, required

strong under-relaxation of the temperature and a large computation time when the mushy

cell temperature range (ST) was small. Also, because of the sharp thermal conductivity

jump at the liquid-solid interface, their model predicted wiggly temperature time histories.

1.2. OBJECTIVES

The objectives of this work are to develop and validate a two-dimensional, transient heat

pipe model, and to devise a stable and efficient solution technique for simulating the

transient operation of liquid-metal and non-liquid metal heat pipes. The model must be

capable of simulating the startup of wick-type heat pipes from fully-thawed or frozen

conditions. The heat pipe wick could be an annular wire-screened mesh, or an isotropic
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porousmediumsuchasapowderor abedof spheres.In additionto simulatingthemelting

and/orfreezingprocessesof theworking fluid, themodelmustincludeliquid flow in the

porouswick andhydrodynamiccouplingof the liquid andvaporphasesin orderto predict

theoperationlimits of theheatpipe,suchascapillarylimit andliquid recess(dryout)in the

evaporatorwick, andthepoolingof excessliquid in thevaporcore. Of specialinterestis to

quantifythe importanceof sublimationandresolidificationprocessesduring thestartupof

low-temperatureheatpipesfrom a frozenstate. Theseprocessescancausesignificant

redistributionof the working fluid in thewick andtheoccurrenceof early dryoutof the
evaporatorwick.

Becauseof the physical complexity of the problem,an advancednumerical methodis

required. Another objectiveof this work is to developa stable,accurateandefficient

solutiontechniquein termsof computationtime. Also,efficient linear-systemsolversmust
bedevisedto solvethefive-point linearequationsresultingfrom thediscretizationof the

energy,massandmomentumbalanceequations.Thesesolversmustbeoptimizedin terms
of computationtimeandmemorystoragerequirement.

Thelast(butnot least)objectiveis to verify thesoundnessandaccuracyof thephysicaland

numerical schemesusing available analytical and experimental data. Of particular
importancearethevalidationsof thefreeze-and-thawmodelandof themodelingof heat

andmasstransfersin theporouswick. Finally,theheatpipemodelwill bevalidatedusing
transientexperimentaldataof afully-thawedwaterheatpipeconstructedattheInstitutefor

SpaceandNuclearPowerStudies(EI-GenkandHuang1993).

Thestatementof objectivesis followedbyaquick descriptionof thefollowing chapters.

Thephysicalmodelsandthegoverningequationsof theproblemin HPTAM aredescribed

in Chapter3. HPTAM canhandlebothrectangular(symmetricandnon-symmetricslabs)

andcylindricalgeometries.Themodeldividestheheatpipe into threetransverseregions:
wall, liquid/wick, andvaporregions,andsolvesthecompleteform of governingequations

in theseregions,togetherwith themass,momentum(capillaryrelationshipof Pascal)and

energyjump conditionsat theliquid-vapor (L-V) interface.Thecalculatedquantitiesare

the wall temperature,temperaturesin the solid, liquid and vapor phases,pressuresand

massfluxesin theliquid andvaporphases,theradiusof curvatureof theliquid meniscusat

theL-V interface,andtheradiallocationof theworking fluid level (liquid or solid) in the

wick. To predicttheflow of liquid in theporouswick of theheatpipe, HPTAM usesthe
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Brinkman-Forchheimer-extendedDarcy flow model (Section3.1), while the volume-

averagedhomogeneousenthalpymodel is usedto modelthe heattransfer. Evaporation,
condensation,sublimationandresolidificationratesarecalculatedin termsof interfacial

pressuresand temperaturesfrom the kinetic theory relationshipwith an accommodation

coefficientof unity. HPTAM incorporatesseveralworking fluids suchaslithium, sodium,

potassiumand water,aswell asvarious wall materials(tungsten,niobium, zirconium,

stainless-steelandcopper).

Themodelhandlesthephase-changeof working fluid in thewick usingamodifiedfixed-

grid homogeneousenthalpymethod,asdescribedin Section3.2. Thetechniqueemploysa
mushy-cell temperaturerangeassmall as2x10-8K (limited by machineaccuracyonly),

without requiring under-relaxation of the temperaturesand generating numerical
instabilities. The simplemethod,basedon thefrozenfraction, developedto calculatethe

heatfluxesattheboundariesof themushycell, improvesaccuracyandreducesoscillations

in temperaturetime historiesby one-to-two ordersof magnitude.Section3.3describes

the liquid pooling submodel,which simulatesaccumulationof theexcessliquid in the
vaporcoreatthecondenserenddueto thermalexpansionof the liquid duringheatup.

Whenmodelingthetransientoperationof low-temperatureheatpipes,thevaporis always
in thecontinuumflow regime. In suchcase,HPTAM solvesthetwo-dimensionalNavier-

Stokesflow equationsin thevaporandobtainsthevaportemperaturefrom thesaturation

state. However, when dealing with high-temperature heat pipes operating at low

temperatures,free-moleculeandtransitionvaporflow regimesmayoccurin theheatpipe.

Therefore,HPTAM usesthe 1-D Dusty GasModel in the vaporto model the transient

operationof liquid-metalheatpipes(Section3.4).

Becauseof the physical complexity of the problem, advancednumerical methodsare

required. Chapter4 comparesseveraldifferentsegregatedsolutiontechniques,onebased

on thenon-iterativePressureImplicit SplittingOperator(PISO)of Issa(1986),anotherof

theSIMPLECsegregatediterativetype,in termsof their effectivenessin reducingtheCPU

time while maintainingthe accuracyof results. Also, various linear-systemsolversare
testedto determinewhichoneismostefficient.

The development of this comprehensivemodel has been guided by continuous

benchmarkingof themodelpredictionswith availableexperimentalandnumericalresults.

Theaccuracyof thephysicalandnumericalschemesfor modelingheatandmasstransfers
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in the wick is checkedin Chapter5, using various benchmarkproblems,namely the
problemsof naturalconvectionof liquid in asquarecavity(Section5.1), naturalconvection

of moltengallium in aporousbedof glassbeads(Section5.2),theone-dimensionalpure
conductionsolidification problem(Section 5.3), the two-dimensional pure conduction

problemof freezingin acorner(Section5.4),andthefreezingof tin in arectangularcavity
in thepresenceof naturalconvection(Section5.5).

Numericalresultsof thefrozenstartupof a radiatively-cooledwaterheatpipearepresented
in Chapter6. Theseresultsdemonstratethesoudnessof thephysicalmodelandnumerical
approachusedinHPTAM, andillustratetheeffectsof resolidificationandsublimation,and

combinedphase-changeandliquid hydrodynamicsin the wick on the startupof low-
temperatureheatpipes.

In Chapter7, theheatpipemodel is validatedusingtransientexperimentaldataof afully-
thawedwaterheatpipeconstructedat the Institutefor SpaceandNuclearPowerStudies

(EI-GenkandHuang1993).Resultsillustratetheeffectof thehydrodynamiccouplingof

thevaporandliquid phasesandtheappearanceduring theheatuptransient(disappearance

duringcooldown)of a pool of excessliquid at thecondenserend. Theeffectsof input

power and initial liquid inventory on the locationof the wet point and liquid pooling
effects,andon thevaporandliquid pressureandtemperaturedistributionsareillustratedin
Chapter8.

Chapter9 presentssteady-stateresultsof a lithium heatpipeoperatingat a temperature
level of 1250K anda powerthroughputof 6.5 kWt. Resultsshowthat high evaporation

and condensationratescan generatesignificant recoveryof vapor pressureand non-
negligibleviscousdissipationratesin thevaporspace.

Finally, summaryandconclusionsof this studyarepresentedin Chapter10,alongwith
somerecommendationsfor futurenumericalandexperimentalwork (Chapter11).

Thenext chapterreviewsimportantbackgroundinformationon the startupof heatpipes

from afrozenstate,thetransientoperationof fully-thawed heatpipesandoperationlimits,

anddiscussesin detail thepreviousheatpipe modelingefforts andrelatedexperimental
work.
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2. BACKGROUND

Heat pipes are highly reliable and efficient energy transport devices. They have no moving

parts and can operate passively under vacuum and zero-gravity environments. Heat pipes

can transport relatively large amounts of thermal energy over a significant distance with a

small temperature drop between the heat source and the heat sink. Energy transport is

achieved by means of the evaporation of a liquid working fluid at the heat source

(evaporator section) and condensation of the vapor produced at the heat sink (condenser

section). Capillary forces developed in a porous structure (or wick) return the liquid

condensate back to the evaporator section.

Thermosyphons are the ancestor of heat pipes and have been used for the first time by

Perkins in 1897. They are wickless heat pipes which rely on gravitational pull to return the

liquid from the condenser to the evaporator. In 1942 Gaugler invented a heat pipe that

worked in a similar manner to Perkin's device, but with a wick structure. In 1963, Grover

and co-workers at the Los Alamos Scientific Laboratory began serious research on heat

pipes. Since 1963, research on heat pipes has grown steadily all over the world.

The next section describes the principle of heat pipe operation in more details.

Considerations for selection of the working fluid for a given temperature range of operation

are given, based on the fluid properties and operation limits of the heat pipe. Section 2.2

describes the startup from a frozen state of low-temperature and high-temperature heat

pipes. Finally, Sections 2.3 and 2.4 review in details the previous heat pipe modeling and

experimental efforts.

2.1. PRINCIPLE OF HEAT PIPE OPERATION AND LIMITS

Figure 2.1 shows a schematic of a conventional circular heat pipe. The heat pipe consists

of a metallic pipe or tube, which serves as a container, closed at both ends. The liquid

phase of the working fluid is confined to a thin capillary structure, a homogeneous porous

medium or a wire-screened wick. The center of the pipe is occupied by the vapor phase of

the working fluid. The heated portion of the heat pipe is called the "evaporator," and the

cooled section, usually located at the opposite end of the heat pipe, is called the

"condenser". The evaporator and condenser can be separated by a thermally insulated
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FIGURE 2.1. Illustration and Principle of Operation of a Conventional Heat Pipe.

("adiabatic") section. Heat added to the evaporator section is conducted radially through

the pipe wall and the wick, and evaporates the liquid. The vapor pressure in the evaporator

of the heat pipe is higher than that in the condenser, forcing the vapor to flow from the

evaporator to the condenser, where it condenses. The liquid condensate returns to the

evaporator by capillary effect. The radius of curvature of the liquid meniscus in the wick

structure of the evaporator is lower than that in the condenser. This difference in these radii

creates the capillary force that returns the liquid from the condenser to the evaporator

through the wick structure.

Heat pipes can operate over a broad range of temperatures, by selecting appropriate

working fluids. The best choices of wick geometry and working fluid are that which

maximize the various operation limits of the heat pipe over the temperature range of

interest, and minimize the mass of the system. This last criteria is of particular importance

for space applications, because of today's prohibitive launch cost of space systems per unit

of mass. The heat pipe operation limits are: the viscous limit, the sonic limit, the capillary

limit, the entrainment limit, and the boiling limit. These limits are illustrated in Figure 2.2.

The viscous limit arises at low temperature with working fluids of very low vapor

pressure. Such fluids are usually frozen at room temperature, for example lithium and

sodium. The viscous limit occurs when the vapor pressure of the working fluid is too low
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to counter the pressure losses in the vapor along the heat pipe. The sonic limit arises when

the vapor velocity reaches the sonic velocity at the exit of the evaporator section. In such

case, the maximum (sonic limited) power throughput transported by the vapor is

proportional to the vapor cross-sectional flow area and to the vapor pressure of the fluid,

and is inversely proportional to the square root of the vapor temperature. When the vapor

flow is maximum, or choked, changes in the condenser heat rejection rate cannot be

transmitted upstream to the evaporator section. This means that further reduction in the

condenser temperature or pressure will not increase the vapor flow rate, but will cause the

vapor velocity to become supersonic in the condenser section, often exhibiting pressure

recovery in the form of a shock front. Therefore, sonic limited heat pipes are characterized

by very large axial temperature gradients.

t"

O
I,,...

t"

O

sonic
limit

entrainment
limit

wicking or
capillary limit

viscous
limit

heat pipe temperature

boiling
limit

Ib,

FIGURE 2.2. Operation Limits of a Heat Pipe.
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Clearly, both the viscousand sonic limits are strongincreasingfunctions of the vapor

temperature,andcanbeenhancedby increasingthevaporflow areaor reducingthevapor

velocity. Therefore,anadequateworkingfluid isonewhichhasasuitablevaporpressure

level over the operationtemperaturerangeof interest. Too low a vapor pressurewould

causetheheatpipeto beviscousor soniclimited. Figure2.3showsthevaporpressureof

a number of working fluids as a function of temperature. In the 800 K-1000 K

temperaturerange,for example,thevaporpressureof potassiumvariesbetween7 and80

kPa,while thatof sodiumrangesbetween1and 18kPa; the vaporpressureof lithium is

below 100Pain this temperaturerange. While thechoiceof potassiumwill result in a20
kWt soniclimit in apipewith adiameterof 3 cm, thesoniclimit for sodiumwill be4 kWt

while thatfor lithium will beas low as400 Wt (atthe lowerendof thetemperaturerange,
800 K).

When selecting the working fluid, care must also be taken that the vapor pressure of the

fluid is not too high (that is, less than a few bars). Too high a vapor pressure would cause

the heat pipe to be limited by the boiling limit in the wick, or to be blocked by the approach

of the critical point, and could cause mechanical rupture of the heat pipe container. In the

800 K-1000 K temperature range, the vapor pressure of potassium and sodium is less than

1 bar (105 Pa), and boiling limit and mechanical resistance of the container are not a

concern at this low pressure level. As an illustration, a 0.3-ram thick nickel tube of radius

2 cm could withstand a radial pressure differential of 10 bars.

The capillary (or wicking) operation limit of the heat pipe arises when the maximum

capillary pressure capability of the porous wick cannot overcome the combined liquid and

vapor pressure losses along the heat pipe. The capillary pressure head is proportional to

the surface tension of the liquid and inversely proportional to the minimum radius of

curvature of the liquid meniscus in the wick. The maximum capillary pressure head arises

when the radius of curvature of the liquid meniscus equals the effective pore size of the

wick structure. To pursue the selection of working fluid further, one can use the figure of

merit. The latter is defined as the product of surface tension, liquid density and latent heat

of vaporization, divided by the dynamic viscosity of the liquid phase, and is shown in

Figure 2.4 as a function of temperature for several working fluids. Clearly, it is preferable

to use the working fluid which exhibits the highest figure of merit. The higher the liquid

transport capability (the product of liquid density and latent heat of vaporization) the slower

the liquid flow in the wick, the lower the liquid viscosity the smaller the liquid pressure
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losses. Finally, the higher the surface tension of the liquid the larger the capillary

pressurehead, and all these factors contribute to a larger capillary operation limit. In the

800 K to 1000 K temperature range, for example, potassium and sodium working fluids

are much preferable than cesium. As shown in Figure 2.4, cesium has a much lower figure

of merit than sodium and potassium. Also, the vapor pressure of cesium is larger, which

leads to a lower boiling limit.

Note that the figure of merit chart must be used carefully. While it combines several

desirable properties which characterize the liquid transport capability and the capillary limit,

it does not provide any information concerning the viscous and sonic operation limits of the

heat pipe. For example, sodium has a figure of merit as much as twice that of potassium,

while the figure of merit of lithium beats that of sodium by one order of magnitude. This is

because lithium working fluid has very high latent heat of vaporization and surface tension.

However, sodium and potassium are preferred working fluids in the temperature range of

800 K-1000 K, because of their much larger vapor pressures than lithium at these

temperatures. The fact that lithium has such a high figure of merit makes it the best choice

of working fluids at higher temperatures (1100 K-1700 K), where its vapor pressure is

higher. Above 1700 K, silver would be preferable, as apparent in Figures 2.3 and 2.4.

The last operation limit of the heat pipe is the entrainment limit. This limit arises when the

shear stress exerted by the vapor at the liquid-vapor interface in the wick overcomes the

liquid surface tension forces. As a result, the vapor carries away liquid droplets back to the

condenser, thus preventing the liquid from replenishing the evaporator wick. Entrainment

arises in the presence of very high and supersonic vapor velocities which occur usually in

sonic limited heat pipes, and depends strongly on the geometry of the separative interface

between the liquid and vapor phases.

There exists a number of heat pipe wick geometries, and only the most popular are

reviewed in this section. The most common type of wick is the homogeneous wick, which

is made of a wrapped wire-screened mesh or a ceramic or metallic powder. Heat pipes

with homogeneous wicks are easily constructed. The main limitation of such wicks is to

introduce large liquid pressure losses, as the liquid must flow through a tight low-porosity

structure. The capillary limit can be enhanced by increasing the capillary pressure

capability of the wick. This is achieved by reducing the effective pore size of the wick

structure, till an optimum value of the capillary limit is reached, due to the associated
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decrease in the wick permeability (that is, increased liquid flow resistance through the

wick). A possible solution to this geometrical limitation is to increase the effective liquid

flow cross-sectional area by adding longitudinal grooves in the pipe wall.

Pipe-grooving is the only manufacturing technique characterized by a high mass-

production at low cost. In the case of a simple grooved heat pipe, performance is quite

sensitive to the groove geometry. Grooves must be deep enough to insure suitable liquid

flow rates, but narrow to provide sufficient capillary driving forces. The entrainment limit

is usually low because of the direct contact between the liquid and vapor phases. The

performance of the heat pipe can be enhanced by covering the grooves with a metallic wire-

screened wick structure.

The combination of grooves and screen wick resolves the limitations associated with both

wick designs considered separately. The existence of grooves significantly reduces the

liquid pressure losses associated with the homogeneous wick design, while the presence of

the screen wick considerably enhances the poor capillary driving force and low entrainment

limit characteristics of the bare grooved heat pipe. In such a configuration, the role of the

grooves is essentially to reduce the liquid pressure losses by increasing the liquid flow

cross-sectional area. This area is maximized when the longitudinal grooves are connected

together, which results in a small annular spacing between the pipe container and the wick

structure. However, this solution is only applicable to heat pipes which utilize liquid-metal

working fluids. Non-liquid metal fluids have too low a thermal conductivity and nucleate

boiling may develop in the annular spacing, blocking the operation of heat pipe.

Another important configuration is that of heat pipes using arteries in the vapor space.

While the use of arteries greatly increases the complexity of the design and the fabrication

cost, it has the potential of offering very high performances. The function of the artery,

which has become a popular feature of heat pipes considered for space applications, is to

provide a low pressure-drop path for circulating the liquid from the condenser to the

evaporator section, where it is redistributed in a thin layer through the circumferential wick.

This last characteristic has the additional effect of enhancing the boiling limit. Also

entrainment effects are reduced because of the partial separation of liquid and vapor flows.

However, arteries may fail to operate when filled with vapor, a phenomena referred to as

depriming. To remedy this problem, several arteries (3 to 4) are usually introduced in the

heat pipe for redundancy, reducing the vapor flow cross-sectional area and increasing the
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vaporvelocity. This hasthe detrimentaleffectof reducingthesoniclimit, aswell asthe
entrainmentlimit in somecases.

After the working fluid and wick geometryhavebeenselectedfor the applicationof
interest,the structuralmaterial for thecontainerandthe wick structuremust bechosen.

Theroleof thecontaineris to isolatetheworking fluid from theenvironmentandmaintain

thepressuredifferential acrossthewall. The materialselectedfor the wick shouldhave

preferablyhighthermalconductivityandstrength-to-weightratio in orderto minimizethe

radial thermalresistanceandmassof thesystem.Also, thewick materialmusthavegood

compatibility and wettability propertieswith the working fluid, andshouldbe easyand

cheapto fabricate. Compatibility is an important issuein heatpipesdesign,sinceno

chemicalreactioncanbetoleratedbetweentheworking fluid andthestructuralmaterialof
theheatpipe. This is particularlyimportantconsideringthatthe working fluid in a heat

pipe is in a diphasicform andalwaysvery pure,anenvironmentwhich greatlyenhances
corrosion reactions. Non-condensablegaseswhich may be generated,even in small

quantity, could significantly reducethe heatpipe performance,andpossibly leadto its
completeblockage.

Theperformanceof a heatpipe dependsnot only on the typeof wick andworking fluid

used,but also to a greatextent on the thermal external conditions imposedupon it,

particularly during the startup. When the capillary limit, the entrainmentlimit, or the

boiling limit is encountered,the wick structure in the evaporatordries out, leadingto
operationfailureof theheatpipe. In additionto theselimitations,startupdifficulties may

occurat low temperaturewhentheheatpipeworkingfluid is frozen.

2.2. STARTUP OF HEAT PIPES FROM A FROZEN STATE

The startup of high-temperature (liquid-metal) heat pipes from a frozen state differs

significantly from that of low-temperature heat pipes, due to differences in the vapor

pressure of the working fluid near the melting point. In low-temperature heat pipes, the

vapor pressure is large enough to avoid the viscous and sonic limits and allow significant

migration of the working fluid to colder regions in the heat pipe. Once the solid working

fluid is melted in the evaporator, dryout may occur due to immediate vaporization of the

fluid.
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Thestartupprocessof a low-temperatureheatpipemaybedivided intoseveralsuccessive

steps(Figure2.5). Initially, the working fluid in thewick is frozen. As thermalpower is

appliedto theevaporatorsection,thefrozenworking fluid sublimatesandtransportsasa
continuumflow to the condenserwhere it resolidifies (Figure2.5a). This sublimation/

resolidification process depletes the frozen working fluid in the evaporator and accumulates

it in the condenser (Figure 2.5b). As the wall temperature continues to increase, the

working fluid at the evaporator wall begins to melt (Figure 2.5c). The melting front

progresses radially and axially with time. As the melting front reaches the liquid-vapor

(L-V) interface (Figure 2.5d), the following processes take place:

(a) evaporation depletes working fluid in the evaporator and could cause the wick to

dryout. In cases where the density of the working fluid decreases upon melting, potential

dryout of the wick decreases, and vice versa.

(b) a thin liquid film of vapor condensate forms on a frozen substrate in the condenser.

The drainage of the film back to the evaporator, which is governed by the capillary effect

and frictional drag at the film-solid interface, could prevent or postpone dryout

(Figure 2.5d).

In addition to the two-dimensional progression of the melt front toward the condenser,

melting may also occur in the condenser and adiabatic sections at the liquid film/solid

interface and proceeds radially outward. Eventually, the heat pipe becomes fully-thawed

and liquid circulation in the wick is established (Figure 2.5e).

Because of the relatively high vapor pressure of low-temperature working fluids, even

near the melting temperature, choked and/or supersonic vapor flows are not encountered

during the startup.

In the case of high-temperature working fluids, however, the vapor flow in the heat pipe

remains in the free-molecule and transition vapor flow regimes for temperatures well above

the melting temperature. This has the beneficial effects of limiting migration of the solid

working fluid to the condenser (by sublimation and resolidification), and allowing for

melting the working fluid by conduction heat transfer before large scale evaporation of the

liquid occurs. However, the startup of high-temperature heat pipes generally involves very

high vapor velocities. In most cases, the sonic limit is reached and supersonic velocities

exist along the condenser, which could cause entrainment of liquid droplets and prevent the

liquid from returning to the evaporator. A typical liquid-metal heat pipe has a
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sonic limit of several kilowatts at high operating temperature, but of only a fraction of a

watt at room temperature. Therefore, the heat pipe operation must pass through a region of

very low heat transfer rates (to the condenser) during the startup.

One way of achieving a successful startup of high-temperature heat pipes would be to

subject the evaporator to a very small input power, progressively increased as the

temperature of the heat pipe rises, to avoid reaching the viscous or sonic limit at any time.

However, such startup scenario would probably take several hours (if not days) before the

operating temperature would be reached. In fact, the startup of heat pipes from a frozen

state is primarily a function of the heat rejection rate at the condenser. The rejection rate

must be low enough to enable the heat transferred by the vapor to melt the working fluid in

the condenser section, and to allow the liquid to return to the evaporator before the wick is

depleted of working fluid.

Three types of startup failures of high-temperature heat pipes have been observed

experimentally (Deverall et al. 1970), all related to the sonic limit. When the temperature is

low and the condenser heat rejection rate is high, very low vapor densities in the heat pipe

result in choked vapor flow and limited heat transfer to the condenser section. The first

type of startup failure occurs when relatively high heat rejection rates are applied to the

condenser. In this case, the limited heat transfer rate is not sufficient to raise the condenser

temperature above the fusion temperature of the working fluid, and the vapor freezes out in

the condenser wick. The evaporator eventually dries out, since the working fluid cannot

return from the frozen condenser. Dryout of the evaporator wick is followed by a local rise

in temperature which eventually damages the heat pipe.

The second type of startup failure of high-temperature heat pipes occurs at moderate

condenser heat rejection rates. Further increases in the evaporator input power or

temperature cannot raise the temperature of the condenser (due to the sonic limited heat

transfer rate), but generate very high (supersonic) vapor velocities along the condenser,

which eventually sweep the liquid out of the wick structure (entrainment limit) and cause

dryout of the evaporator wick. When the entrainment limit occurs, it is often possible to

hear the impingement of liquid droplets on the condenser end cap.

The third type of startup failure arises when moderate heat input and rejection rates are

applied to the evaporator and condenser, simultaneously. The low temperature level and

moderate heat rejection rate at the condenser result in choked vapor flow. Due to the
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limited heattransferrate,thecondensertemperaturedoesnotrise,andthevaporpressure

remainsnegligible in that section. A moderateheat input to theevaporatorcausesthe
evaporatortemperatureto riserapidly,sincetheheattransferrateto thecondenseris limited

by thesonicflow. Eventuallythevaporpressurein theevaporatorbecomessolargethat

thecapillarypumpingcapabilityof thewick cannotovercomethepressurelossesalongthe

heatpipe, andthe flow of liquid returningto theevaporatoris not sufficient to prevent
dryoutof thewick.

Despitetheaforementioneddifficulties, successfulstartupof high-temperatureheatpipes

can be achieved,even when the heat transfer rate to the condenseris choked (sonic

limited). If the heat rejectionrate at the condenseris low enough,as in the caseof a

radiativeconditionfor example,thecondensercanheatupgradually,with acorresponding
increasein vapordensityanddecreasein thevaporvelocity attheevaporatorexit, before
theentrainmentorcapillarylimit couldoccur.

Thisconcludesthebackgroundinformationon thestartupof heatpipesfrom afrozenstate.

Thenextsectiongivesadetailedaccountof previousheatpipemodelingeffortsreportedin
the literature.

2.3. LITERATURE REVIEW ON HEAT PIPE MODELING

Because heat pipes are highly reliable and efficient energy transport devices, they have been

considered for many terrestrial and space thermal management applications. Such wide

interest in heat pipes has stimulated the development of numerous steady-state and transient

models. Because the transient operation of heat pipes and the startup of heat pipes from a

frozen state involve several highly non-linear and tightly coupled heat and mass transfer

processes in the vapor, wick and wall regions, mathematical modeling of these problems is

quite complex. To the best of the authors knowledge, no complete treatment of the

processes taking place and described earlier (Section 2.2) has been reported. An analytical

solution is unattainable, and except when simplifying assumptions are made, the numerical

solution could be tedious and require large computation time. This section reviews the

previous and major heat pipe modeling efforts in details. These models included a variety

of simplifying assumptions in the governing equations, and a spectrum of numerical

techniques to solve these equations (Table 1.1). A literature review of heat pipe models

developed prior to the year 1988 can be found in the Ph.D. Thesis of Hall (1988), Jang

(1988) and Seo (1988).
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Heatpipemodelscanbeclassifiedinto fourcategories:

(a)modelswhichsimulatethevaporflow regiononly;

(b) modelswhich simulatevapor,wick and wall regionsbut ignoretheliquid flow in

thewick andthemomentumcouplingattheliquid-vapor(L-V) interface;

(c) liquid/vaporcounter-currentflow modelswhichneglectthemomentumcouplingat
theL-V interface;and

(d) modelswhich havethecapability to predict the radiusof curvatureof the liquid

meniscusat theL-V interfacein orderto insureproperhydrodynamiccouplingof theliquid

andvaporphases.

Onlyafew models,however,attemptedto simulatethenon-continuumvaporflow regimes

occurringin high-temperatureheatpipesoperatingin the low temperaturerange,andthe

changeof phaseof the working fluid in the wick during the startupof heatpipesfrom a
frozenstate.

Thenextsubsectionsdescribetheheatpipemodelsof thefirst group,whichhavefocused

on the heatpipe vapordynamics. In an attemptto describethe operationof heatpipe,
Bowman(1987),BowmanandHitchcock(1988),Klein andCatton(1987)andIssacciet

al. (1988, 1990and 1991)havedevelopedtwo-dimensional transientmodelsof vapor

flow, which decoupledthe vapor from the liquid-wick and wall regions,exceptfor a
simplifiedinterfacialenergybalance.

2.3.1. Vapor Model of Bowman et al. (1987-1988)

Bowman and Hitchcock (1988) studied the vapor flow in the laminar and turbulent

regimes. The emphasis was placed on studying highly compressible vapor flow situations,

including subsonic and supersonic flow fields with shock waves and flow reversal.

Bowman and Hitchcock solved the full unsteady compressible, Reynolds-averaged

turbulent Navier-Stokes equations in cylindrical coordinates. The vapor was assumed to

behave like a perfect gas. Because the governing equations were solved numerically using

the Explicit MacCormack finite difference method, the time step used in the calculations

was severely limited by a Courant-Friedrichs-Lewy-type condition, to avoid numerical

instabilities. Bowman and Hitchcock (1988) experimentally investigated vapor flow

dynamics using isothermal air injection and suction at the walls of a porous pipe made from

polyethylene beads. Comparison of the model predictions with experimental data was
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good for axial Mach numbersas high as 1.7. Basedon this work, Bowman (1987)

establishedfunctional relationshipsof the friction coefficient for a simple, steadyone-
dimensionalmodel for highly compressibleand sonic vapor flows. Bowman usedthe

compressible,one-dimensional,adiabaticand steadyvapor flow model employingthe

influencecoefficientsof Shapiro. As a result of thenumericalandexperimentalstudies

conducted,expressionsfor thefriction coefficient asfunctionsof the localaxial Reynolds

number,Mach number,pipe aspectratio, andradial Reynoldsnumberwere developed.
Theseexpressionswereshownto giveexcellentresultswhenusedin theone-dimensional

vaporcompressiblemodelandcomparedwith experimentaldata. Basedonexperimental

measurements,theflow was found to be always laminar in the evaporatorsection,and

fully turbulentin mostof thecondensersection(for axialReynoldsnumbersrangingfrom
2000to 106).

2.3.2. Vapor Model of Issacci et al. (1988-1991)

Researchers at the University of California Los Angeles (Klein and Catton 1987; Issacci et

al. 1988, 1990 and 1991) also studied the heat pipe vapor dynamics, using a two-

dimensional approach. They solved the two-dimensional, laminar compressible Navier-

Stokes equations in a cylinder or slab. To provide mathematical closure to the system of

equations in the vapor region, the input heat flux and the temperature of the outer surface

were specified in the evaporator and condenser sections respectively. The evaporation

mass flux was estimated by dividing the heat input power by the latent heat of vaporization,

and the condensation rate was approximated by equating the heat of condensation to the

heat conducted radially across the wick. The interfacial vapor temperature was assumed to

be the saturation temperature corresponding to the interfacial vapor pressure. In the early

stage of their research, the authors used the SIMPLE method of Patankar (Issacci et al.

1988), upgraded eventually to the SIMPLER algorithm. However, because the SIMPLE-

type methods are limited to low-compressibility flows, the authors resorted to using the

CONDIF scheme for differentiating the convective terms (Issacci et ai. 1990). A

Successive Over-Relaxation iterative method was used to solve the different equations, and

it was found that the sharp boundary conditions at the evaporator exit and entrance of the

condenser were perturbing the numerical scheme. These boundary conditions were

smoothed out to solve the problem. However, the numerical scheme was stable only for

low heat input fluxes, and the authors considered various filtering techniques. Issacci et al.

(1991) showed that a centered-difference scheme, when used with non-linear filtering,

yielded a second-order, stable solution and captured shocks without oscillations. This

34



non-linearfiltering techniquewasusedto analyzethestartupvapordynamicsof a sodium

heatpipe with a high heat input flux. The startuptransient involved multiple wave
reflectionsfrom the line of symmetryin theevaporatorsection. It is not clear,however,
how this codecould model free-moleculeand/or transition flow conditions that occur

duringthefrozenstartupof liquid-metalheatpipes,without anyspecialtreatment.

Although the vapor flow modelsof Bowman and Hitchcock (1988) and Issacciet al.

(1988, 1990and 1991)haveprovidedvaluableinformationon thevaporflow dynamics,

theyareof limited usefor thedesignandtransientanalysisof heatpipes,becauseof the
thermalandhydrodynamicdecouplingsof thevaporfrom thewick region.

Thecharacteristicsof steady-stateoperationof heatpipehavebeenextensivelystudied,

bothexperimentallyandtheoretically.Theyincludegeometricalconfigurations,materials

of construction,heattransferoperationlimits andlife expectancy(BakerandTower 1989;

andWoloshunet al. 1989).Theexperimentalinvestigationsof Ivanovskyet al. (1982)and

Tilton et al. (1986) suggestedthat during steady-stateor slow transients,heat pipe
operationcanbedescribedsolelyby vapordynamicsandenergybalancein thevariousheat

piperegions. Duringnormalheatpipeoperation,heatis primarily transportedradially by

conductionthrough the liquid-saturated wick, while phasechangeoccursat the L-V

interface.Temperaturegradientsexistat theL-V interfacein theevaporatorandcondenser

regionsandalong the vaporcore region, but in mostcasestheyaresmall enoughto be
neglected.

Traditionally,thesecondcategoryregroupsheatpipemodelsthathavebeendevelopedfor

designpurposes.Thesemodelspayattentionto only thesephenomenathat influencethe

performanceof heatpipes. At presentthereare4 such modelsat different stagesof

development(Tilton 1987; Faghri and Chen 1989; Cao andFaghri 1990; Jang 1988;
Janget al. 1990a; CaoandFaghri 1993a,1993b,and 1992). The modelsof this second

groupignoreliquid flow in thewick aswell asthe interfacialphenomenasuchascapillary
effect andinterfacialmomentumexchange.Tilton et al. (1987),Faghri andChen(1989)

andCaoand Faghri(1990)at Wright StateUniversity solvedthe two-dimensionalheat

conductionequationsin thewall andliquid-wick regions,whichwerethermallycoupledto
eithera one-or two-dimensionalvaporflow model.
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2.3.3. The Model of Tilton et al. (1986-1987)

Triton et al. (1986) studied numerically and experimentally the transient response of an

Inconel 617 sodium heat pipe subjected to adverse radiative heating of the condenser. The

first experiment used a sliding cylindrical shell radiant heater to simulate Laser illumination

of the condenser end, while an actual CO2 Laser was used for the second test. The outer

surface temperature of the wall along the pipe was recorded as a function of time. Triton

and co-workers assumed that the effective heat capacity of the cross section of the heat pipe

was axially uniform, and they made use of the global energy balance for the heat pipe to

calculate the rate of energy storage per unit length, by assuming that the heat pipe

responded isothermally at any given time. The heat pipe was divided into axial sections of

identical length, and by writing the sectional energy balance (and neglecting liquid and

vapor mass accumulation terms) the authors obtained a set of equations that related

evaporation/condensation flow rates to the external input/output heat fluxes. The vapor

axial flow rate was then obtained from steady-state mass conservation in the vapor core

region. The vapor pressure profile was then calculated using the steady one-dimensional

momentum balance with frictional and dynamic coefficients for laminar incompressible

flows, and the vapor temperature profile was obtained by assuming the vapor state to be

saturated. In his thesis, Triton (1987) improved the heat pipe model by considering radial

conduction across the wall and liquid-wick regions. The L-V interfacial temperature was

assumed to be equal to the axially uniform vapor core temperature. The radial heat flux at

the L-V interface was equated to the phase change rate multiplied by the latent heat of

vaporization. Global mass conservation in the vapor core made it possible to calculate the

(uniform) vapor temperature through the equation of state. Internal iterations were

necessary to resolve the vapor temperature coupling. However, because the energy

equations were discretized explicitly, the size of the time step was limited in the calculations

to avoid numerical instabilities. Tilton (1987) pointed out that his performance model must

be used only for heat pipes operating at high temperature and for low heat input rates and

slow transients, under which conditions the vapor axial temperature variation and L-V

interfacial resistance can be neglected.

2.3.4. The Model of Faghri et al. (1989-1990)

In their two-dimensional steady-state model, Faghri and Chert (1989) assumed

thermodynamic equilibrium at the L-V interface (the interfacial temperature is equal to the

vapor saturation temperature) and evaluated the evaporation/condensation rates from the
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energybalanceatthe interface.Theyusedtheiterativemethoddevelopedby Spaldingand
Rosten (1985) for the generalizedPHOENICS code,combined with the SIMPLEST

techniqueto acceleratethe convergenceof the vapor momentumequations. With this

model,FaghriandChenevaluatedtheeffectsof axialconduction,vaporcompressibility

andviscousdissipationon theoperationof waterandsodiumheatpipes. CaoandFaghri

(1990)extendedFaghriandChen'smodelto performtransientcalculations.Theyusedthe

SIMPLEmethod,andincorporatedtheeffectof vaporcompressibilityby treatingthevapor

pressureasa dependentvariable and directly applying the stateequationto obtain the
density while iterating. Theseauthorssimulatedthe transientoperationof sodiumheat

pipes and demonstratedthe ability of their model to handlehighly-compressible and

supersonicflow conditionsin thevaporregion. However,theyneglectedliquid flow in the
wick andthehydrodynamiccouplingbetweentheliquid andvaporphases.Jang(1988),

Jang et al. (1990a) and Cao and Faghri (1993a, 1993b and 1992) also modeled the startup

of heat pipes from a frozen state.

2.3.5 The Model of Jang et al. (1988, 1990a)

Jang (1988) developed a pure-conduction transient model for rectangular heat pipe cooled

leading edges, and compared its predictions with Camarda's (1977) experimental results.

The capillary structure was assumed to be saturated and liquid flow in the capillary

structure was neglected. Evaporation and condensation rates were evaluated from the

kinetic theory to account for the thermal resistance at the L-V interface. Different startup

periods were considered, including free-molecule and continuum vapor flow conditions.

During the first period, Jang (1988) obtained the vapor temperature by equating the

evaporative heat input to the sonic limited heat transport. When continuum flow is

established along the heat pipe, one-dimensional steady compressible equations were used

in the vapor core. Later, Jang et al. (1990a) improved the model by solving the one-

dimensional transient compressible flow equations for the continuum vapor flow, and

developed a model for the frontal startup of circular heat pipes from a frozen state. The

phase change of the working fluid was modeled by using the fixed-grid heat capacity

method. Because this method is only applicable to a special case of the general form of the

energy equation, it is prone to numerical instabilities and inaccurately calculates the melting

front location and the temperature profiles in the solid and liquid regions. Jang and co-

workers derived the Darcy-extended momentum equations in the wick, but neglected the

flow of liquid in their numerical solution. They used the transition temperature at a

Knudsen number of 0.01 to characterize the axial location of the free-molecule flow front,
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and assumedno heator masstransfersat the boundariesof the rarefied vapor zone.

Unfortunately,theseassumptionsdonotallow thevaporto accumulateprogressivelyin the

heatpipecore,sothatthevaporflow wouldneverreachthecontinuumregime.

2.3.6 The Model of Cao and Faghri (1992, 1993a, 1993b)

Cao and Faghri (1993a) improved the model of Jang et al. (1990a) by using a rarefied self-

diffusion vapor model to simulate the early startup period of high-temperature heat pipes.

After the melting front has reached the vapor-wick interface, evaporation and condensation

rates were calculated using a modification of the kinetic theory of gases. Cao and Faghri

(1993b) extended the model by using a two-region description of the vapor core. The

continuum vapor flow region was modeled using the two-dimensional compressible

Navier-Stokes equations, while the rarefied vapor flow region was simulated by a self-

diffusion model, the two vapor regions being coupled with appropriate boundary

conditions at the axial front defined by the transition temperature. Based on the results of

their model, Cao and Faghri (1992) developed an approximate flat-front analytical solution

for the startup of high-temperature heat pipes, and proposed a frozen-startup operation

limit which indicated the possibility of dryout in the evaporator. This limit was obtained by

comparing the rate of increase of the mass of liquid in the wick (due to axial propagation of

the melting front) with the rate of loss of the working fluid by resolidification of vapor on

the frozen substrate. The two rates were found to be similar for a number of heat pipes,

indicating that resolidification of working fluid is a potential factor for failure of the startup

of high-temperature heat pipes also. Cao and Faghri (1993a, 1993b) used a fixed-grid

temperature transforming method to predict the freezing and melting of working fluid in the

wick (Cao and Faghri 1990b). Their numerical scheme, however, required strong under-

relaxation of the temperature and a large computation time when the mushy cell temperature

range (ST) was small. Also, because of the sharp thermal conductivity jump at the liquid-

solid interface, their model predicted wiggly temperature time histories. In reference

(1993a), Cao and Faghri used a width of the mushy region as large as 1 K, claiming that it

is small enough to simulate the phase-change of pure substances. However, only the least

challenging cases of identical (or almost identical) liquid and solid properties had been

investigated during the development of their phase-change model (Cao and Faghri 1990b).

Some of the above models (in the second category) have focused on the modeling of free-

molecule and transition flow regimes in the vapor and have provided valuable information

concerning the startup of high-temperature heat pipes. Under normal conditions, the
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transientresponseof heatpipesisdictatedby thermalcapacityandconductanceof theshell,

capillary structureandworking fluid, andis only slightly influencedby liquid andvapor

dynamics. However,whendrying or resaturationoccursin thewick, whenthe working

fluid is frozenor in a thermodynamicnear--criticalstate,working fluid dynamicsmay
becomeverysignificant. Unfortunately,all of theheatpipemodelsabovetreatedthewick

asa pureconductingmedium,assumeda uniform distribution of the working fluid, and

neglectedliquid flow, hydrodynamiccouplingbetweenthe liquid andvaporphases,and

solid-vapor masstransfers. Therefore,thesemodelsarenot capableof predicting the
operationlimits of theheatpipe,suchascapillary,entrainment,dryoutof thewick, andthe

redistributionof workingfluid by sublimationandresolidificationduringthestartupof heat
pipesfrom a frozenstate. Tilton (1987)andCao andFaghri(1990)recognizedthatthe

hydrodynamicsof both theliquid and vaporphasesmustbemodeledin orderto predict
theseoperationlimits.

Investigatorsof thethird modelcategoryhaveconsideredmodelingof the liquid flow and

treatedthevaporflow ascompressible.FaghriandBuchko(1991)extendedthecapability
of their two-dimensionalsteady-statemodel (Faghri and Chen 1989)by including the

effectof liquid flow in thewick. TheyusedthesteadyDarcy--extendedflow equationsfor

asaturatedandisotropicporousmedium,butcomputedthepressureprofilesalongtheheat
pipe independently. In their models,Costelloet al. (1988) andPeeryandBest (1987)

treatedthe liquid andvaporflows in the heatpipe asone-dimensionalandcompressible
flow problems,andevaluatedtheevaporationandcondensationratesattheL-V interface

usingmodified forms of thekinetic theory relationship. The evaporatorendof the heat

pipe containeda porousnodeto storeexcessliquid fluid, while theexcessliquid in the

condenserend was assumedto exist in slug form. At the condenserend, the liquid
pressurein thewick wasassumedto beequalto thevaporpressurein thecore.

2.3.7 The Model of Costello et ai. (1988)

Costello et al. (1988), on contract for Los Alamos National Laboratory, developed a heat

pipe model to predict the transient behavior of liquid-metal heat pipes during startup from

the frozen state and operational shutdowns. The friction factor was a function of the

Knudsen number to simulate free-molecule and transition flow conditions that occur during

startup at low temperature. The flow equations in the vapor region were solved using an

iterative scheme based on the KACHINA method developed by Harlow and Amsden

(1971). The liquid flow equations in the wick were solved using a modified version of the
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SIMPLERalgorithmdevelopedby Patankar(1980). At eachaxial location,the liquid and

vaporpressuredifferencewastestedagainstthemaximumcapillarypressurehead. If the

pressuredifferenceexceededthecapillary pressure,the nodewasflaggedasbeingdried

out. Freezingandmeltingprocessesin thewick weretreatedby anenthalpymethod.The

two-dimensionalenergyequationwassolvedin thewall andwick regionswith a radial

lumpedmodelto determinetheradial temperatureprofile. Although their model is quite

comprehensive,Costello and co-workers did not report any calculation results. It is

believedthatthetemporaldiscretizationschemeassociatedwith theKACHINA algorithm

limited the time stepfor calculations. The useof this iterative semi-implicit solution

algorithmimpliesthatcomputerrunningtimeswouldbeprohibitivefor modelingrealistic

operationaltransients.

2.3.8 The Model of Peery and Best (1987)

Peery and Best (1987) developed a model to simulate the transient operation of a

rectangular water heat pipe tested at Texas A&M University. The two-dimensional

transient conduction equation was used to model the heat transfer through the heat pipe

wall, while the liquid and vapor flows were treated as one-dimensional and compressible.

Both fluid phases were assumed to be saturated. Evaporation and condensation rates were

evaluated using a modified form of the kinetic theory relationship. Once the temperatures

and phase-change mass rates were obtained by solving the coupled energy and kinetic

theory equations, the one-dimensional continuity equations were solved in the fluid regions

for the vapor and liquid axial velocities. The pressure distributions were then obtained

from the one-dimensional momentum equations. Even so Peery and Best used

oversimplifying assumptions, their model suffered from numerical instability, and the

authors could only report calculations of small transients (up to 2 seconds). Extremely

small time steps (10 -4 s) were required to solve iteratively for the coupled energy and

kinetic theory equations. This constraint on the time step was previously reported by

Subbotin when using his model for predicting evaporation / condensation rates.

In conclusion, Costello et al. (1988) and Peery and Best (1987) did not succeed. The

numerical instabilities encountered by these authors are attributed to the numerical methods

they used, which were not suitable to handle the complexity of the problem, particularly the

coupling with the kinetic theory relationship. Also, it is well known that determination of

the velocities from the continuity equation alone (as it was done in the model of Peery and
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Best) is not only inaccuratebut alsoa sourceof instabilities that becomeamplified with
time.

Unfortunately,all the investigatorsmentionedaboveignoredthehydrodynamiccouplingat

theL-V interface.Suchdecouplingof theliquid andvapormomentumequationscanresult

in erroneousliquid andvaporflow ratesandpressures.This uncertaintyis attributedto the
fact that neitherof thesemodelssatisfy the local interfacial force balanceat the L-V

interface.Thesimplifiedform of thePascalrelationship(whichneglectstheeffectof flow)
readsas:

Pv PL 2--_-_- = cos0W , (2.1)
Rc

wherecr is the surface tension of the liquid, 0w is the wetting angle between the liquid and

the wick matrix, and Rc is the radius of curvature of the liquid meniscus at the L-V

interface, incorporation of Equation (2.1) into the model poses an additional constraint on

the solution procedure as the later must implicitly calculate Rc • Instead of this approach,

Costello et al. (1988) and Peery and Best (1987) employed a global pressure relation given

below to check if the capillary limit had been exceeded:

(Pv - PL)max -< 2-_° cos0w (2.2)

Rp

where Rp is the effective pore radius of the wick at the L-V interface. These models

assumed that the heat pipe was operational as long as Equation (2.2) was satisfied.

As pointed out by Hall and Doster (1989), it is necessary to accurately model the capillary

phenomena along the entire length of the heat pipe and thus, adequately satisfy the local

capillary relationship of Pascal, Equation (2.1). Setting the liquid and vapor pressures

equal at an assumed axial location and computing the phasic pressure distributions

independently does not allow the capillary pressure difference to adjust to system

parameters. Consequently, models using this approach could not accurately calculate the

vapor and liquid flow rates and pressures during a transient, and were not capable of

predicting the capillary and dryout operation limits.

The fourth category regroups the heat pipe models that use a geometric approach for

modeling the radius of curvature of the liquid meniscus. Ransom and Chow (1987), Hall
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andco-workers(1988-1994)andSeoandEI-Genk (1989) incorporatedliquid flow and

thermalexpansion,hydrodynamicallycoupledtheliquid andvaporphases,andpredicted

thevaporvolumedistributionin thewick. They usedthecapillary relationshipof Pascal

(Equation2.1) to relatethephasicpressures.Theporeradius,Rp, is fixed by the geometry

of the wick, and the radius of curvature of the liquid meniscus at the L-V interface, Ro is

related to the amount of vapor in the wick. The maximum pressure difference occurs when

Rc is equal to the pore radius; in this case, the volume of vapor in the wick forms a

hemisphere of radius Rp in each pore of the wick surface. These geometrical

considerations allow to express the vapor void fraction in the wick in terms of Re, the wick

surface porosity, and the diameter of the vapor core.

2.3.9 The Model of Ransom and Chow (1987)

The Advanced Thermal Hydraulic Energy Network Analyser (ATHENA) heat pipe model

of Ransom and Chow (1987) is a modification of the reactor transient code RELAP-5 (a

general purpose thermal hydraulic transient simulation code for two-fluid, two-phase

stratified flow systems). In this model, the two-fluid heat pipe formulation is obtained

from the one-dimensional area-averaged phasic momentum equations by retaining distinct

phasic pressures. The Pascal relationship (Equation 2.2) is used to relate the phasic

pressures. Ransom and Chow reported steady-state pressure and axial velocity

distributions for a lithium heat pipe with a wick material having a pore radius of 2.5 gm

and operating at an evaporator input flux of 4.3 kW/cm 2. The results suggest the

soundness of the model and the stability of the iterative semi-implicit numerical scheme

used. However, to minimize the number of changes to the original solution scheme of

RELAP-5, the phasic pressure difference was evaluated explicitly, which led to severe time

step restrictions, much less than the Courant-Friedrichs-Lewy (CFL) limit, and resulted in

large computational time for each run. It is not clear how the evaporation and condensation

mass rates were evaluated. We can only assume that the thermodynamic equilibrium

condition used by RELAP-5 was extended for modeling heat pipe operation as well. The

authors pointed out that in the case of liquid flooding, the diphasic interface is flat and the

pressure difference between the phases is equal to zero, while this pressure difference is

equal to a maximum corresponding to Rc = Rp when the vapor volume fraction exceeds the

volume of a hemisphere of radius Rp times the number of pores available at the surface of

the wick. These specifications define the variation of the interphase pressure difference in

terms of the vapor volume fraction in the heat pipe. However, only the relationship

corresponding to normal conditions was considered in the model, so that wick flooding or
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dryout conditionswerenot modeled. Finally, Ransomand Chow(1987) did not model

thephase--changeof working fluid in the wick duringstartupfrom afrozenstate,nor the

free-moleculeandtransitionvaporflow regimes.

2.3.10 The Model of Hall et al. (1988-1994)

Hall (1988) and Hall and co-workers (1990-1994) developed the THROHPUT (Thermal

Hydraulic Response Of Heat Pipes Under Transients) code to model the transient behavior

of a circular lithium heat pipe during startup from a frozen state and operational shutdowns.

Hall and co-workers incorporated liquid flow in the wick, hydrodynamic coupling of the

liquid and vapor phases, and the effect of noncondensible gas in the vapor core (air). Their

model predicted the solid, liquid and vapor volume fractions along the heat pipe, so that

liquid pooling and recess were modeled. The THROHPUT code predicts the evaporation,

condensation and resolidification rates using the kinetic theory equation proposed by

Collier (1981). However, the two-dimensional conservation equations were averaged over

the radial direction, yielding a one--dimensional axial modell The important radial effects

and interphase transfer terms were treated in separate lumped submodels. For simplicity,

specific heat capacities were assumed to be constant, and the thermal mass of the wick

matrix was neglected. This was justified because the screen wick material has thermal

properties that are similar to solid and liquid lithium, and because of the presence of an

open annulus between the wall and the screen wick. Melting and freezing processes were

modeled with a discontinuous heat flux at the liquid-solid boundaries. Hall and co-

workers assumed that the phases existed in radial layers in order to simplify the radial

submodel. Four specific configurations were considered: cold state (all solid), startup or

melting (wall-liquid-solid), normal operation (all liquid), and shutdown or freezing (wall-

solid-liquid). The THROHPUT model assumes that the radial temperature distributions

are parabolic in each non-vapor layer. The three coefficients for each layer are determined

by forcing the equations to satisfy the temperature and heat flux boundary conditions, and

to match the layer average temperature with that computed in the axial model. If a liquid-

solid interface exists, it is forced to be at the melting temperature and to satisfy a phase-

change jump condition for a moving interface. The capillary pressure relationship is not

applied if a node is solid or in the process of melting. The governing equations were

discretized on a staggered grid and linearized using an implicit Taylor series expansion

about the old time step. Because the model of Hall is basically one-dimensional, it was

possible to solve the linearized coupled finite-difference equations directly, using

specialized block-diagonal matrix inversion methods. Hall and Doster (1988) attempted to

43



simulate a Los Alamos experiment (Merrigan et al. 1986) of the frozen startup of a 4 m-

long lithium heat pipe. In order to simulate the first 50 seconds of the thaw transient the

authors needed 5 hours of CPU time on a VAX 11/750. In further developments, Hall and

Doster (1989, 1990) used the Dusty Gas Model of Cunningham and Williams to treat flee-

molecule flow regime as well as continuum flow regime in the vapor core. Also, they

incorporated an axial melt front submodel in THROHPUT. In the new model, the axial

progression of the melt front was modeled by combining the radial model with a lumped-

parameters axial treatment (Hall 1988). Finally, the evaporation-condensation model was

extended to include recondensation at the evaporating surface, and used accommodation

coefficients to account for non-ideal behavior. Hall (1988) and Hall and Doster (1989,

1990) showed that using multiple passes (updating the Jacobian at each pass) to update the

highly nonlinear equations (particularly the gas mixture state equation and the capillary

pressure relationship) reduced the iinearization errors, which had limited the time step size.

With this new numerical approach, a 2-hour-long transient was simulated using

approximately 24 hours of CPU time on a VAX 8600.

In some stages of the THROHPUT calculations, it was found that there was not enough

total vapor pressure to support the capillary pressure difference. In early versions of the

code, this was viewed as a shortcoming, and Hall forced the liquid pressure equal to zero

to prevent any negative liquid pressure in the wick. However, when adjacent liquid nodes

showed the same condition, there was no pressure difference between them, resulting in no

axial liquid flow. To remedy this problem, Hall and Doster (1989, 1990) assumed that

some of the capillary pressure was directed axially when there was a difference in liquid

volume fraction between two nodes. This treatment caused their model to predict dryout of

the evaporator when this did not occur experimentally for the same conditions. In an

attempt to resolve this problem and reproduce the experimental results, Hall and co-

workers (Hall 1988; and Hall and Doster 1990) varied the values of the evaporation and

condensation accommodation coefficients used in the calculation. The code could satisfy

each of several experimental criteria separately by adjusting these coefficients, but no pair

of coefficients could meet all of the requirements simultaneously. This behavior prompted

the authors to suggest that the accommodation coefficients were dependent on temperature,

liquid level, wick porosity, gas velocity and flow regime, and could be much smaller than

one for liquid-metals. To justify their findings, Hall and co-workers mentioned the

experimental results of a number of researchers who measured condensation heat transfer

in liquid-metals to be a fraction of the predictions of Nusselt theory. Other investigators

found that the accommodation coefficient strongly depended upon surface contamination
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(Hall and Doster 1990). In a recent paper, Hall et al. (1994) performed in-depth literature

reviews of experimental measurements of evaporation ! condensation accommodation

coefficients and of the possibility of tension in the liquid phase. They found that values of

the accommodation coefficients close to unity could be measured for both liquid-metal and

non-liquid metal working fluids when care was taken in the experiments to avoid surface

contamination, the presence of non-condensable gas, and other forms of experimental

errors. Furthermore, Hall et al. (1994) found several references which described the effect

of tension in the liquid (that is, the possibility of negative liquid pressure) and validated its

physical existence. The first experiment that exhibited tension in the liquid was performed

by the French chemist Marcellin Berthelot in the 19th century. Other examples can be

found in nature, as for example water-filled cavities in minerals and the rising of sap in

trees. In the later version of the THROHPUT code, Hall et al. (1994) allowed negative

liquid pressure in the wick (the effect of pressure on liquid density, or isothermal

compressibility, is negligible when compared with the effect of temperature, or thermal

expansion) and used unity accommodation coefficients to calculate the evaporation,

condensation and resolidification rates. With these modifications, the model results were

greatly improved and agreed reasonably well with the experimental data of Merigan et al.

(1986) for the frozen startup of a lithium heat pipe.

In summary, THROHPUT (Hall and co-workers 1988-1994) is one of the most

comprehensive heat pipe models to date. It is the only model with provisions for predicting

liquid recess, partial dryout and resaturation of wick, and pooling of excess liquid in the

vapor core. However, THROHPUT has certain drawbacks. Because this model is

basically one-dimensional, it does not deal with freezing and melting of the working fluid

mechanistically, hence, its predictions during startup and shutdown transients are only

approximate. Furthermore, because heat transfer through the metallic matrix of the wick

was not modeled separately, THROHPUT cannot be used to predict the startup of low-

temperature heat pipes from a frozen state.

2.3.11 The Model of Seo and EI-Genk (1989)

Seo and E1-Genk (1989) at the University of New Mexico developed a transient model for

simulating the operation of fully-thawed liquid-metal heat pipes. They assumed the liquid

flow in the wick region to be two-dimensional, transient, incompressible and laminar.

However, a quasi-steady state, compressible one-dimensional approximation was used to

simulate the vapor flow. Seo and E1-Genk used the laminar two-dimensional Navier-
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Stokesequationsandretainedonly thesetermsthat could bediscretizedusingthe axial

variablesof thevapor. In thesamespirit, thesecondderivativeof theaxial liquid velocity

in the momentumconservationequationswasneglectedcomparedto its radial gradient.

While theauthorsrecognizedthelimitationsof suchanapproach,their goalwasto designa

fastrunningheatpipecodefor incorporationin theSpaceNuclearPowerSystemAnalysis
Model (SNPSAM), of SP-100 spacenuclearpower system(Seo 1988). The two-

dimensionaltransientconductionequationwassolvedin thewall region,andspecificheat

capacitieswere assumedto be constantfor simplicity. The model wasdevelopedfor

liquid-metal working fluids andemployedanannularwick structurecoveredby ascreen
mesh,so that therewasno needto considerthe thermal massof the screenwick. The

evaporationandcondensationrateswere obtainedfrom the energybalanceat the L-V

interfaceby dividingtheliquid radialheatflux in thewick by thelatentheatof vaporization.

SeoandEl-GenkusedthegeometricPascalrelationshipto explicitly satisfythe interfacial
local force balance,and the capillary limit was detectedwhen the effective radius of

curvatureof the liquid meniscusin thewick becameequalto thegeometricalporeradius.
In addition,SeoandEI-Genk incorporatedimplicitly thedependenceof surfacetensionon

liquid temperaturein their model. The equationswere discretizedimplicitly using a
conventionalfinite differencemethod,andaniterativesolutionschemewasusedto resolve

the interfacial couplings. The Poissonequation was formed in the liquid region by
combiningthecontinuity andmomentumconservationequations,andwassolvedfor the

pressureof the liquid phase.To verify themodelpredictions,resultswerecomparedwith

theexperimentaldataof Merriganet al. (1986)for a4 m-longcylindrical lithium heatpipe.

Duringnormaloperation,ahigh-frequencyRFcoil heatedtheevaporatorsection,while the

condensersection was cooled radiatively. After shutdown,both the evaporatorand
condensersectionswereradiativelycooled. Themodelpredictionof thewall temperature

distributionaftershutdownbeforetheworking fluid reachedits freezingpoint agreedwell

with the experimentalresults,exceptat the end of the condenserregion. It was found

experimentallythat duringnormaloperation,excessworking fluid pooledinto thevapor

coreandfilled approximatelythe last50 cm of thecondenser,causinghighermeasured
temperaturesatthisendof theheatpipe. It is notclearhowpoolingeffectsweretreatedin

themodel,whentheinterfacialliquid meniscusflattensat somepoint alongtheheatpipe.

Finally, SeoandEI-Genk did not model thephase-changeof working fluid in thewick

duringstartupfrom afrozenstate,nor thefree-moleculeandtransitionvaporflow regimes.

Also, theirmodelcouldnothandlehighlycompressibleflow conditionsandpropagationof

shockwavesin thevaporcoreregion.
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In summary,therehasnotbeena detailed,accurateandefficient transientanalysismodel

for thestartupof heatpipesfrom afrozenstate. Someof theprocessesoccurringduring

thestartupof heatpipesfrom afrozenstate,suchassublimationandresolidification,liquid

flow andliquid recessin thewick, partialdryoutandresaturationof wick, andpooling of

excessliquid, havenotbeenincorporatednorexplicitly investigated.

To verify theheatpipemodelsandassesstheaccuracyof thenumericalschemesemployed,

it is preferableto comparethemodelpredictionswith experimentaldata. Thenextsection

summarizesthe experimentsreportedin the literature for low-temperatureand high-
temperatureheatpipes.

2.4. LITERATURE REVIEW ON EXPERIMENTAL DATA

Heat pipes using low vapor pressure working fluids (such as liquid metals, sodium,

potassium and lithium) typically exhibit a frontal startup, whereas those using fluids with

high vapor pressures (such as water and ammonia) exhibit a uniform temperature startup.

The startup characteristics of low-temperature and high-temperature heat pipes from a

frozen state differ significantly due to differences in the vapor pressure of the working fluid

near the melting point. In low-temperature heat pipes, although the vapor pressure is large

enough so that the startup difficulties associated with the viscous and sonic limits are

avoided, significant migration of the working fluid from the evaporator to the colder

regions of the heat pipe occurs. Once the solid working fluid is melted in the evaporator,

dryout may occur due to immediate vaporization of the fluid.

2.4.1 High-Temperature Heat Pipe Experiments

The startup of high-temperature heat pipes from the frozen state has been extensively and

experimentally investigated (Deverall et al. 1970; Ivanovskii et al. 1982; Jang et al. 1990a;

Faghri et al. 1991; Jang 1995), and successful startup of such heat pipes is consistently

achieved. The vapor flow in high-temperature heat pipes remains in the free-molecule

regime for temperatures well above the melting temperature. This has the beneficial effects

of minimizing the transport of the solid working fluid to the condenser by sublimation /

resolidification. The large thermal conductivity of liquid-metal working fluids also allows

melting of the working fluid in adiabatic and condenser sections by conduction, before

large scale evaporation of the liquid occurs.
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Camarda(1977)evaluatedanalyticallyandexperimentallytheperformanceof a sodiumheat

pipefor cooling theleadingedgesof Earth reentryvehicles. Thepipe wick consistedof
sevenalternatelayersof 100- and 200-meshstainlesssteel screens,and the transient

operationof theheatpipe duringa spaceshuttlereentrywassimulatedby usingradiant

heatersconsistingof quartz iodine lamps. Tolubinsky et al. (1978) haveinvestigated

experimentallythefrozenstartupof sodiumandpotassiumheatpipessubjectto continuous

radiationheatingandhigh-frequencyheatingof theevaporator.Theyshowedthatthe latter

modeof heatingconsiderablyreducedthestartuptime.

BECHTEL NATIONAL, underDOE contract (PreliminaryHeatPipeTesting Program

1981)hasanalyzedthecapabilityof sodiumandpotassiumheatpipesto survivethecyclic
operationassociatedwith solarreceiverpowersystems,for suchtransientasfast startup

andcloud passing. They selectedIncoloy 800H for thecontainermaterial,andtheheat

pipeswereequippedwith a stainless-steelparallel-tent meshstructure. Insulationwas
simulatedwithanarrayof radiantquartzlamps.

Intensiveperformanceinvestigationsandstartupandshutdownstudiesof liquid-metal heat

pipes have beencarried out at the Los Alamos National Laboratory (Kemme 1966;

Deverall et al. 1970; Kemmeet al. 1978; Merrigan 1985; Merrigan et al., 1985and

1986). Kemme(1966)comparedtheperformanceof axially-groovedpipeschargedwith
potassium,sodium and lithium working fluids in the temperaturerange750-1150 K.

Particular attentionwas devotedto startupand low temperatureoperation. The heat

transportcapabilityof the heatpipe wassignificantly improvedwhenthe grooveswere

coveredwith a wire-screenedmesh,which increasedthecapillaryandentrainmentlimits.
Deverall et al. (1970) studiedthe effect of sonic vapor velocity and related startup

problems, and reported temperaturemeasurementsof a mercury heat pipe. They

demonstratedtheeffectsof noncondensablegasandheatrejectionrateatthecondenseron

thestartup.Otherattemptshavebeenmadeto fill theheatpipewithnoncondensiblegasto

makeit startmorereadily. A significantdecreasein startuptimewasnotedby Ivanovskiiet

al. (1982)for increasingamountsof noncondensiblegasloadingin sodiumheatpipes.

Kemmeet al. (1978)investigatedthethermalperformanceof mercury,potassium,sodium

andlithiumheatpipeswithvariouswick structures.A 4-m-long lithium/molybdenumheat

pipewastestedexperimentallyby Merriganet al. (1985and1986)in transientandsteady-

stateoperationsattemperaturesup to 1500K. Testsconductedincludedstartupfrom the

frozenstate,highpowersteady-stateoperation,andshutdownwith continuousradiation
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thermalloading. Tilton et al. (1986)studiedanalyticallyandexperimentallythetransient

responseof an Inconel 617, sodiumheatpipe subjectto adversethermalheatingof the

condenser.Thefirst experimentuseda slidingcylindrical shell radiantheaterto simulate
Laserillumination of thecondenserend,while anactualCO2Laserwasusedfor asecond

test. Theoutersurfacetemperatureof thewall alongthepipewasrecordedasafunctionof
time.

Jang(1995)investigatedexperimentallythefrozenstartupof a stainlesssteel/ potassium

heat pipe with a 40-mesh screen wick. A total of 9 Chromel-alumel thermocouples were

installed on the outer surface of the wall. The heat pipe was tested in a vacuum chamber to

simulate radiation heat transfer at the condenser, and the evaporator of the heat pipe was

radiatively heated by an annular, radiation-shielded silicon carbide heater. Jang (1995)

estimated the transition temperature between free-molecule and continuum vapor flow

regimes using a Knudsen number of 0.01. Experimental data showed that the heat pipe

was inactive until the evaporator end cap temperature reached the transition temperature.

Then, the evaporation of liquid became significant and a continuum flow front propagated

axially along the heat pipe, until the condenser end cap temperature reached the transition

temperature. After that point, the entire heat pipe became active and eventually reached

steady-state operation. Jang (1995) observed that the startup period could be significantly

reduced by increasing the evaporator heat input. At a power throughput approximately

equal to 80% of the heat pipe capillary limit, dryout of the evaporator occurred before the

condenser was completely melted. However, successful startup was achieved later as the

wick became resaturated with liquid again.

Faghri et al. (1991) also investigated the startup of a sodium heat pipe with multiple

evaporator heat source. They measured the outer wall temperature along the heat pipe, and

the vapor temperature using a multipoint thermocouple probe. The startup behavior of the

sodium heat pipe, which was radiatively cooled in vacuum, was always frontal in nature,

with a sharp temperature dropoff in temperature across the vapor front. The low condenser

heat rejection rate prevented supersonic vapor velocities and caused the condenser

temperature to slowly rise to the steady-state value. Experimental measurements showed

that the moving vapor temperature front was much steeper than the outer wall temperature

front, and the vapor temperature was more uniform in the hot zone than the wall

temperature. When the heat pipe was tested in air, the duration of the startup period was

about halved, because the convective losses by natural convection increased the condenser

heat rejection rate. The startup of the sodium heat pipe in air was sonic limited, and the
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verysteepvaportemperaturedropoff in thecondenserindicatedtheexistenceof supersonic

vaporflow in that section. However,evaporatordryoutneveroccurred,andthe startup

wasalwayssuccessful.

2.4.2 Low-Temperature Heat Pipe Experiments

Experiments on the startup of low-temperature heat pipes are rare. Deverall et al. (1970)

successfully started a water heat pipe from a frozen state. Because of the relatively high

vapor pressure of water, even near the melting temperature, choked and/or supersonic

vapor flows were not encountered during the startup. Experimental results showed that the

heat pipe became immediately active where the ice was melted. Redistribution of frozen

working fluid in low-temperature heat pipes occurred during startup due to sublimation

and resolidification of vapor (Faghri 1992; Kuramae 1992; Ochterbeck and Peterson

1993). Such processes may prevent successful re-startup of the heat pipe during cyclic

operation. The vapor resolidifies in the cooler parts of the heat pipe and cannot return back

to the evaporator. Eventually, the wick might completely dryout in the evaporator.

Faghri (1992) measured the wall and vapor temperature profiles along a water / copper heat

pipe and investigated the frozen startup and shutdown transients. The wick of the heat pipe

was made of two layers of 50 mesh copper wire-screen. Three flexible heaters were

installed side by side along the evaporator section of the heat pipe, and the condenser was

cooled with a chiller using ethylene glycol as the coolant. The input power to the

evaporator was 20 W, well below the capillary limit of the heat pipe. After sitting the heat

pipe in a -21 °C freezer for at least 12 hours, startup was attempted with no chiller coolant

flow. After the ice was melted in the evaporator, water evaporated and resolidified onto the

frozen adiabatic and condenser sections of the heat pipe. Eventually the evaporator wick

dried out because the still partially frozen adiabatic section could not provide any

condensate return. Faghri (1992) was able to start the frozen water heat pipe successfully

by pulsing the power input. As soon as the temperature difference between any two vapor

thermocouples exceeded 3 K, the input power was turned off. This allowed the working

fluid in the frozen section immediately adjacent to the hot zone to melt and rewet the wick.

Once the vapor temperatures became uniform again (within 1 K), another power pulse was

applied. In an another experiment, Faghri (1992) froze the water heat pipe from room

temperature by supplying the condenser chiller with -15oC coolant. Because the

evaporator temperature was always above that of the condenser during the freeze-out

transient, a significant portion of the working fluid was displaced by evaporation and
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sublimation from the evaporatorto the condenserwhere it resolidified. The reduced

amountof ice in theevaporatorled to anearlydryoutafterthere-startupof theheatpipe.

In casesof low-temperatureheatpipeswith largeevaporator-to-condenserlengthratio,

completeblockageof the vaporchannelwasobserved,dueto resolidificationof working
fluid (OchterbeckandPeterson1993).

Reinartsand Best (1990) attemptedthe startupof a rectangularwaterheatpipe with a

conventional100-meshscreen,from frozenandthawedconditions.Theymeasuredvapor

pressureandtemperatureandsurfacewick temperaturein thecondenserandtheevaporator

regionsandobservedwick dryoutandsubsequentrewetting.

Theeffectof noncondensiblegason thestartupof awaterheatpipewasalsoinvestigated

by Ochterbeckand Peterson(1993). The gas-vapor interface,observedvisually, was
foundto bequitesharp. In theregioncontainingthegas,resolidificationandcondensation

of water vapor did not occur. A frontal startup, characteristic of high-temperature and

gas-loaded heat pipes, was observed in the gas-loaded water heat pipe.

Several other experiments have been performed which involved fully-thawed water heat

pipes. Fox and Thomson (1970) have measured the axial and radial temperature

distributions in the vapor region of a water heat pipe. They have compared two different

wire-screened wick designs, a dual wick in which generation of superheated vapor

occurred, and a conventional 100-mesh wick, for which the steady-state vapor flow

observed was isothermal. Feldman and Munje (1978) evaluated the thermal performance

of gravity-assisted circular pipes with and without circumferential grooves. Gernert

(1986) presented axial variations of vapor and pipe wall surface temperatures of a water

heat pipe with a copper sintered-powder wick and multiple heat sources under steady-state

conditions. Faghri and Thomas (1989) compared the performance characteristics of

circular and annular water heat pipes having longitudinal grooves at various tilt angles.

Jang et al. (1990b) measured the axial variation of the wall surface temperature in a water

heat pipe with longitudinal grooves, during heatup transients from ambient conditions to

steady-state.

Recently, E1-Genk and Huang (1993) investigated the transient response of a horizontal

water heat pipe. The copper heat pipe employed a double-layered, 150 mesh copper screen

wick. The vapor temperature was measured along the centerline of the heat pipe using a

special probe made of a thin-walled brass tube instrumented with eleven thermocouples,
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equally spaced along the heat pipe. An additional eleven thermocouples were attached to

the outer surface of the heat pipe wall. The evaporator section was uniformly heated using

a flexible electric tape, while the condenser section was convectively cooled using a water

jacket. Results showed that the transient response of the heat pipe could be described by an

exponential function of time. EI-Genk and Huang (1993) determined the time constants of

the vapor temperature and effective power throughput during heatup and cooldown

transients, as functions of the electric input power and the water flow rate in the condenser

cooling jacket. In a follow-up study, E1-Genk et al. (1995) experimentally investigated the

effects of inclination angle on the transient response of a gravity-assisted copper / water

heat pipe, subjected to step changes in input power and varied condenser cooling rates. At

steady-state, the effective power throughput, determined from the heat balance in the

condenser cooling jacket, was 443 W. The difference between the electric input to the

electric tape and the steady-state effective power throughput (132 W) was approximately

equal to the heat losses from the surface of the insulation in the evaporator section to

ambient by natural convection (E1-Genk and Huang 1993).

It is apparent that only a few startup experiments of low-temperature and high-temperature

heat pipes have been attempted in the literature, and that most experiments conducted have

basically been performance tests, rather than phenomenological investigations. It is not an

easy task to monitor phenomena occurring within a short distance in a closed pipe. For

example, because of practical limitations, no direct measurements of the actual progression

of the melting front and mass transfers associated with sublimation and resolidification

were possible. Experimental data available are limited to wall temperatures in most cases,

with few attempts made to measure the vapor pressure or temperature inside the heat pipe.

Therefore, there is a need for systematic theoretical and experimental studies of the transient

behavior of liquid-metal and non-liquid metal heat pipes. The outcome of these studies

would be useful to better benchmark calculation models for the design of reliable heat pipes

for space and terrestrial applications. The transient modes of interest are power step

changes, reversed heat pipe operation due to a condenser external heating, and the startup

of heat pipes from a frozen state.
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3. MODEL FORMULATION AND DESCRIPTION

In this work, a two-dimensional Heat Pipe Transient Analysis Model, "HPTAM", is

developed to simulate the transient operation of fully-thawed heat pipes and the startup of

heat pipes from a frozen state. This chapter describes the physical model used in HPTAM.

The model incorporates the following processes: (a) sublimation of working fluid in the

evaporator and resolidification in the condenser; (b) melting and freezing of the working

fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a

thin liquid film on a frozen substrate; (d) liquid flow and heat transfer in the porous wick;

(e) thermal and hydrodynamic couplings of vapor, liquid and solid phases at their

respective interfaces; (f) accumulation of excess liquid in a liquid pool at the end of the

condenser; and (g) free-molecule, transition and continuum flow regimes in the vapor

region.

HPTAM is a fully two-dimensional heat pipe model which has the capability of handling

both rectangular (flat-plate heat pipe) and cylindrical geometries. Nevertheless, the

analysis throughout this work focuses on heat pipes having a cylindrical geometry. The

model divides the cylindrical heat pipe into three radial regions: wall, wick, and vapor

regions (Figure 3.1), and solves the complete form of governing equations in these

regions. The heat pipe wick can be a wire-screened mesh, an isotropic porous medium

such as a powder or a bed of spheres, or an open annulus separated from the vapor core by

a thin sheet (with small holes to provide capillary forces). To predict the flow of liquid in

the porous wick of the heat pipe, HPTAM uses the Brinkman-Forchheimer-extended

Darcy model (Section 3.1). The properties of wicks (such as permeability and effective

thermal conductivity) are calculated, based on analysis of experimental data. The model

employs the complete form of the Navier-Stokes compressible flow equations in the vapor

region of low-temperature heat pipes (Section 3.2), and solves the two-dimensional

transient conduction equation in the pipe wall (Section 3.3).

Section 3.4 describes the interfacial and boundary conditions of the problem. Evaporation,

condensation, sublimation and resolidification rates are calculated using the kinetic theory

relationship with an accommodation coefficient of unity. The model predicts the radius of

curvature of the liquid meniscus at the liquid-vapor interface, and the radial location of the

working fluid level (liquid or solid) in the wick, and includes the transverse momentum

jump condition (capillary relationship of Pascal) at the liquid-vapor (L-V) interface. The
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radiusof curvatureof the liquid meniscusis geometricallyrelatedto thevolumefractionof

vaporin thewick. Thesefeaturesallow themodelto predictthecapillarylimit andpartial

liquid recess(dryout)in theevaporatorwick.

In Section3.5,themodifiedfixed-grid homogeneousenthalpymethodusedto handlethe

phase-changeof working fluid in thewick is described.The volumeof working fluid in

the heatpipe varieswith temperature,dueto thermalexpansionof the liquid phase. A

liquid pooling submodelis developedand incorporatedinto HPTAM, which simulates

(de)wettingphenomenaandthe accumulationof excessliquid in the vapor coreat the

condenserend. This liquid poolingmodelis describedin Section3.6.

During thestartupof high-temperatureheatpipes(utilizing liquid-metal working fluids),

rarefiedandtransition flow regimesarise in the vaporregion. Theseflow regimesare
describedin Section3.7.

Finally, the modelaccountsfor thechangein physicalpropertieswith temperatureandin

density upon melting and offers severalchoices of working fluids, such as lithium,
sodium,potassiumand water,and of structuralmaterials,including tungsten,niobium,

zirconium,stainless-steel,carbonandcopper.Theliquid andvaporstateequationsandthe

thermophysicalpropertiesof the fluids and structural materials of the heat pipe are
describedin the lastSectionof thischapter(Section3.8).

3.1. GOVERNING EQUATIONS IN THE LIQUID/WICK REGION

The liquid/wick region is constituted of the liquid phase of the working fluid and the solid

structural phase of the wick, whether it is an annular wire-screened mesh or a

homogeneous porous medium. HPTAM models the wick as an isotropic and

homogeneous porous medium. Most analytical studies of flow through porous media have

dealt primarily with a mathematical formulation based on Darcy's law, which neglects the

effects of solid boundaries and inertial forces on fluid flow through porous media. These

effects are particularly important for high-porosity media. To account for these effects,

Forchheimer and Brinkman extended Darcy's law, and other investigators introduced the

transient and convective inertia effects into their generalized flow equation (see APPENDIX

A). The flow of liquid in the porous region of the heat pipe is modeled using the

Brinkman-Forchheimer-extended Darcy flow model (Scheidegger 1974), while the

volume-averaged homogeneous model described by Cheng (1978) is used to model the
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heat transfer (see APPENDIX A). The model assumes thermal and hydrodynamic

equilibrium in the porous medium, and neglects the thermal dispersion diffusivity since

heat conduction is the only significant mode of heat transfer in this region. The form of the

Brinkman-Forchheimer-extended Darcy's flow equations can be partly justified through

analytical volume-averaging of the microscopic conservation equations, which provides a

mean to identify the apparent viscosity in the Brinkman's term. It is then postulated that

Darcy's term and Forchheimer's extension are the necessary constitutive relationships to

model the unknown terms arising from the volume-averaging process (APPENDIX A).
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FIGURE 3. I. Physical Model of Heat Pipe and Boundary Conditions.

HPTAM uses the Brinkman-Forchheimer-extended Darcy's flow equations for modeling

liquid flow in a fully-saturated isotropic porous wick. The resulting governing equations

in the liquid/wick region of the heat pipe are best rewritten in terms of the mean filter (area-

averaged) velocity _ instead of the pore velocity (actual fluid velocity), and are given in

the following subsections.
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3.1.1. Conservation of Mass

The continuity equation in the wick of the heat pipe has the following form:

e_-tL + diV[PLq]=O (3.1)

3.1.2. Conservation of Radial Momentum

The radial momentum balance in the wick can be written:

l_(0Lqr)_ <_: at + diV(PLqrq)= PLFr ar _L C - ] _tL Aq"_rr + _ PLq qr +- r
_K r J E

where (3.2)

qr r qrlAqr
- r Jr L_rjr - _2+ az L c_z J

3.1.3. Conservation of Axial Momentum

The axial momentum balance in the wick can be written:

,  0Lqz)1 1+--div(Peqzq) : 9LFz az _/Kz _]at e2 _PLq qz --Aqz

where (3.3)

Aqz "_- ----

r ar r2 azL az J

The parameters e, K r and K z are the effective porosity and radial and axial permeabilities of

the liquid-wick region, respectively. Two additional permeability terms have been

introduced into the axial and transverse momentum conservation equations (3.2) and (3.3)
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to account for the enhancedpressurelossesin a homogeneousporous medium, as

demonstratedby Darcy'sexperiment(Scheidegger1974).Thethird, fourth andfifth terms

on theright-handsideof themomentumEquations(3.2) and(3.3)arecommonlyreferred

to astheDarcy, the Forchheimer, and the Brinkman terms, respectively. The permeability

K and the "inertia coefficient" C are functions of the microstructure of the porous medium,

and can be determined from the measured static pressure drop and mass flow rates.

Experimental investigations (Ergun 1952; and Beavers and Sparrow 1969) for uni-

directional flows of water and gases through packed columns and fibrous materials showed

that the Darcy's and the Forchheimer's extensions can accurately express the relationship

between flow rate and pressure drop in porous media.

The form of Equations (3.1), (3.2) and (3.3) can be partly justified analytically through

volume-averaging of the microscopic conservation equations (Cheng 1978; and Gray and

O'Neill 1976), which explains why these equations have been used with success in recent

years to model flow of liquids in porous media (Beckermann and Viskanta 1988; and Raw

and Lee 1991). The final attractive feature of these equations is that they approach the

empirical representation of flow in a porous medium (the Forchheimer-extended Darcy

flow model) as the permeability, K, decreases, and reduce to the standard Navier-Stokes

equations as the porosity e goes to 1 and the permeability goes to infinity.

Expressions for the hydrodynamic properties of wicks, such as volume porosity e,

permeability K and inertia coefficient C are given in APPENDIX A-4.

3.1.4. Conservation of Enthalpy in the Liquid/Wick Region

In the present model, the volume-averaged homogeneous enthalpy method is used to

predict the transport of energy in the heat pipe wick, assuming local thermal and

hydrodynamic equalibrium between phases and negligible thermal dispersion coefficients.

The resulting enthalpy conservation equation has the form (see APPENDIX A):

I [( ] 1-,_9PL _gPL C3PL div((_)+ - LE(Ph)L m c)t --_-r +qz c)z _:

where _L is the viscous dissipation:

(3.4)
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[I /2 2 2] 2CI)L = 2[.1L + + + I_L + 3qz ] 2 2

Or J -3"L[div(q)] '
(3.5)

and0=Iqrqzl k:ff Wkeff W]' ' Yrr' z _z '

and div is the divergence operator defined as div(Fq/_1 3rqr(/,, 3qz

\ / r Or 3z

Note that since we are only concerned here with slow liquid flows in the wick generated by

gravity or capillary forces, viscous dissipation and compressible effects can be neglected in

the liquid. In this case, the right-hand side of Equation (3.4) reduces to the divergence of

the heat flux vector.

3.2. GOVERNING EQUATIONS IN THE VAPOR REGION OF LOW-

TEMPERATURE HEAT PIPES

For the case of high-vapor pressure (or low-temperature) working fluids such as water,

the vapor flow is in the continuum regime, and HPTAM uses the two-dimensional

transient compressible Navier-Stokes flow equations.

3.2.1. Conservation of Mass

The continuity equation in the vapor region of the heat pipe has the following form:

3Pv + div[Pv ]=0 (3.6)__ 0 v
3t

3.2.2. Conservation of Radial Momentum

The radial momentum balance in the vapor can be written:
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pvEr -- __

 (pvU )  ,V(pvUV0V)=
at

+ Uiv(2!mtvD l.tv div(O V
_r __ -Jr 3 c)r

(3.7)

where

l =I_ F aUrv] _ Urv _ r (_ur v aUzv ]] (3.8)

3.2.3. Conservation of Axial Momentum

The axial momentum balance in the vapor can be written:

pvFz -- __ _

+ iv(p uVOV)=Ot

_- Div(21avD ILtv
0z Jz 3 c)z

(3.9)

where

Div(Z_vm)z-- 2., _zJ+r_L_vr_--_-z+ 0r J (3.10)

Note that the model incorporates acceleration effects in the axial and radial directions

(Equations 3.2, 3.3, 3.7 and 3.9). The two-dimensional cylindrical model can handle heat

pipe operation in microgravity conditions (space applications) or in an axial force field; this

is possible through the axial external acceleration term Fz in Equations (3.3) and (3.9).

Rotating circular heat pipes, also, can be modeled through the radial acceleration term Fr in

Equations (3.2) and (3.7). However, the model cannot handle a non-symmetric problem

such as a horizontal circular pipe in a uniform gravity field. The latter is a truly three-

dimensional problem, that could be solved approximately by assuming that non-axial

gravity contributions are small enough not to disturb the circumferential symmetry of the
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liquid flow in the annular wick, because the width of the liquid annulus is very small (less

than a few millimeters). In such case, Fr is taken to be zero.

3.2.4. Conservation of Energy

The enthalpy conservation equation in the continuum vapor region has the form:

- i-Urv +U v div(Qv)+¢ v
Ot Oz '

(3.11)

where _v is the viscous dissipation:

and

*_:2_v + k Oz)j+'v[-_-_+ Or J -3_tv[ dlv(U )]

(3.12)

iv] E kv ']l_lv= uv , U , Or: -kvor , -_z

For the case of high-vapor pressure (or low-temperature) working fluids such as water, it

is a good approximation to assume the vapor phase to be saturated. This approximation is

valid for continuum-flow conditions in the vapor, when the vapor pressure of the fluid is

high, and to some extent for transition and free-molecule flow regimes. In this case, the

vapor temperature is evaluated in terms of the vapor pressure along the saturation line, and

there is no need to solve the vapor energy conservation equation.

3.3. GOVERNING EQUATIONS IN THE PIPE WALL REGION

The wick region is thermally coupled to the annular wall of the heat pipe. The energy

balance equation in the heat pipe wall region reduces to the well-known transient

conduction form of Equation (3.4):

(3.13)
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3.4. INTERFACIAL AND BOUNDARY CONDITIONS

In two-phase flow, the interface between the liquid and vapor phases is a surface of

discontinuity and local jump conditions must be derived, which relate the values of the flow

parameters on both sides of the interface. Both the local instantaneous governing equations

and jump conditions were developed in their general and conservative form by following

the procedure described by Delhaye (1974 and 1976).

3.4.1. Liquid-Vapor Interfacial Jump Conditions

The derivation of the interfacial jump conditions starts with the integral balance laws written

for a fixed control volume containing both phases. These integral laws are then

transformed by means of the Leibnitz rule and Gauss theorems to obtain a sum of two

volume integrals and a surface integral. The volume integrals lead to the well-known

monophasic local instantaneous equations (compressible Navier-Stokes equations) in each

continuous phase. The surface integral furnishes the local instantaneous jump conditions at

the interface. The continuity of the normal mass fluxes at this interface (evaporation/

condensation) yields:

m: LU :pvVv (3.14)

The Marangoni and capillary effects arise in the linear momentum jump conditions by

taking into account the surface tension force acting on the contour of the diphasic separative

interface. The normal momentum jump condition at the L-V interface relates the static

pressure drop across the interface to the capillary pressure head in the wick and the normal

viscous stress discontinuity as:

(PL-Pv)+2 C_+(Re [,epL1 9vl/m2=

[ OUrL c)UrVl __[_tL div(OL) _ _V div(OV)]2 PL c3_---PV ar J-

(3.15)

The first two terms on the left hand side represent the capillary relationship of Pascal,

which has been used in almost all previous heat pipe models reported in the literature, only

to check if the capillary limit has been exceeded. The Pascal relationship is only valid for

incompressible and inviscid phases with no mass transfer at the interface, therefore it is not
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necessarilyapplicableto heatpipemodeling. Thethird termon theleft handsideaccounts

for changeof momentumattheL-V interface.Othertermson theright accountfor radial

stressesin the liquid andvaporphases.Thesetermsarevery small in aheatpipeandcan

beneglected.In Equation(3.15),thetwo principalradiiof curvatureareassumedidentical

(andequalto Rc) because,for smallmeshsize in the wick, the interfacialporesarevery

smallandarelocallyhemispherical.

Thetransversemomentumjump conditionrelatesthetangentialvelocitiesof thephasesat
theL-V interfaceto theaxialgradientof thesurfacetension(Marangonieffect,3cy/3z) and

the discontinuity in shear stress:

(,gu_ ou_/- (ouv ouv) o_ om(U_--uV)+"L_,Oz+ Or; "v(-ff-z+W-r +0-7= (3.16)

In the present model, this transverse momentum jump condition is simplified by assuming

the continuity of the tangential velocities at the interface. This simplification is physically

acceptable when dealing with viscous phases separated with a solid wire-screened mesh or

a homogeneous porous medium (this is the case of a no-slip condition at the L-V

interface). Therefore, the transverse momentum jump condition (3.16) is replaced by the

following equations:

uL=Uz v =0 (3.17)

The enthalpy jump condition relates the enthalpy phase change due to

evaporation/condensation across the L-V interface to the discontinuities of the conduction

flux, kinetic energy and energy dissipated by viscous stress:

QV_QL + m(hV- hL)+ _tL(____Z +___r )U _ U v + (cyV:"')

/' 11I l+ uV) _:2, z, + m2 1 2 _L 3UL Dv3UVp, (_O-c)+am =o2 EPL 3r Pv Or

(3.18a)

Making use of Equation (3.17) and neglecting the viscous stress terms in Equation (3.18a)

leads to the simplified form:
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QV-QL +m(hV -hE) + 2 2 =0
pv

(3.18b)

Equations (3.14) through (3.18) specify the discontinuities of mass, momentum and

enthalpy fluxes at the L-V interface. However, an additional equation is needed at this

interface to formulate a closed form solution of the governing equations and boundary

conditions (see Figure 3.1). This relation is obtained by assuming continuous temperature

at the L-V interface:

T L = T v = T int (3.19)

3.4.2. Radius of Curvature of the Liquid Meniscus in the Wick

In Equation (3.15), the radius of curvature of the liquid meniscus at the interface, Ro is

geometrically related to the amount of vapor in the wick. Because the meniscus is concave

at the L-V interface, the wick is partially filled with vapor (Figure 3.2). The maximum

capillary pressure head occurs when the radius of curvature of the liquid meniscus in the

wick, Rc, equals the pore radius, Rp. Assuming hemispherical pores, the maximum

volume of vapor in the wick forms a hemisphere of radius Rp in each pore of the wick

surface. For this condition, the volume of vapor in the hemispherical pores of the wick

interfacial cell (iL,j) is:

(3.20)

The void fraction ap (the volume of vapor in the wick interfacial pores over the total

volume of the pores Vp) is a geometric function of the cosinus of contact angle of the liquid

meniscus (/ac = Rp/Re) as (Seo and EI-Genk 1989):

(3.21)

where tZp and _c vary between 0 and 1, as explained later. Equation (3.21) is inversed

using the following approximations derived by Seo (1988) and Seo and El-Genk (1989),
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reproducedhereto correctanerrorin thesecondformula("0.413"insteadof "0.443"):

[i.c = 8 ff,p (1- 1.723 if,2) for ff,p < 0.25

 c: [044 Ctp- _ EXP( 0.56- 3.50_p )1 for t_p > 0.25 (3.22)

Figure 3.3 shows the pore void fraction as a function of the cosine of contact angle of the

liquid meniscus, using both the theoretical Equation (3.21) and the approximate

relationship (3.22). As this figure shows, Equation (3.22) is a very good approximation of

the inverse of Equation (3.21).

3.4.3. Interfacial Phase-Change Mass Rates

To account for the phase change thermal resistance at the L-V and S-V interfaces,

evaporation, condensation, sublimation and resolidification mass rates are calculated from

an extension of the kinetic theory of gases to non-flat interfaces:

/1/2

a M [Pv -- pequ
m:PvUV: _ 2nR-gTint -v ]

(3.23)

where Pvequ, the pressure of a vapor bubble in thermal equalibrium with the surrounding

liquid, is given as (Defay and Prigogine 1966):

E °r 1]Wv"": Psa(Tint)'EXP -'R-_-__.Rg-T--int _-L
(3.24a)

A positive _ indicates condensation or resolidification, while a negative value indicates

vaporization (evaporation or sublimation). For all practical cases, however, the term in

squared brackets is negligible, so that the exponential term is very close to unity.

Therefore, Equation (3.24a) simplifies to:

pequv = P (Tint) (3.24b)
sat
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3.4.4. Other Boundary Conditions

Equations (3.1) through (3.13) are solved subject to the interfacial jump conditions

described in the previous subsections and to the boundary conditions delineated in Figure

(3.1). The jump conditions (I) are represented by Equations (3.14) through (3.19), (3.16)

excluded, while the boundary conditions (II) and (III) are given, respectively, as:

Qz=0, Ur:Uz:0, and QL:QW, TL:T w, uL:uL=0 " (3.25)

That is, the liquid and vapor velocities are taken equal to zero at all solid boundaries of the

numerical domain (no-slip condition). Both ends of the heat pipe are assumed insulated,

and isoflux, adiabatic, isothermal or radiative boundary conditions (IV) are applied

independently at the outer wall of the evaporator, adiabatic and condenser sections,

respectively.

3.4.5. Initial Conditions and Mathematical Closure

The governing equations, jump relations and boundary conditions, together with the

equations of states for both the liquid and vapor phases, thermophysical properties for the

wall and both fluid phases, and the initial conditions specified by the user provide all

necessary relations to obtain a closed mathematical system of equations (see Table 3.1).

Initially, at the startup from a frozen state, the vapor, solid and wall temperatures are

uniform and equal, and the vapor pressure is equal to the saturation pressure of the

working fluid calculated at the heat pipe temperature. The radius of the solid-vapor (S-V)

interface is uniform and smaller than that of the screen/wick surface (RintJ = Ro < Rwk)

when modeling the startup of a water heat pipe from a frozen state (due to the decrease in

water density upon freezing), and can be larger than that of the screen/wick surface (RintJ =

Ro > Rwk) for a liquid-metal heat pipe (due to the increase in density upon freezing of the

working fluid).

The model calculates the wall temperatures, the temperatures, pressures, and mass fluxes

(or velocities) of the liquid and vapor, and the radii of curvature of the liquid meniscus at

the L-V interface (or vapor void fractions in the wick along the pipe).
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One should not overlook the fact that the proper choice of boundary conditions is always

governed by the mathematical nature of the equations, which results from the highest order

TABLE 3.1. Mathematical Closure of the Physical Model.

Region / Equations Unknown Boundary Conditions / Jump Conditions

WALL

Enthalpy Tw

LIQUID/WICK

Enthalpy TL

Radial momentum
qr

Axial momentum qz

VAPOR

Enthalpy Tv

Radial momentum Ur v

Axial momentum Uz v

2 wall boundary conditions (insulated ends)

1 outer wall boundary condition

1 radial heat balance at wick/wall interface

2 wall boundary conditions (insulated ends)

1 temperature condition at wick/wall interface

1 radial heat balance at L/V interface

3 wall boundary conditions (qr = O)

1 radial mass balance at L/V interface

3 wall boundary conditions (qz = O)

1 axial velocity condition at LfV interface (qz = O)

2 wall boundary conditions (insulated ends)

1 symmetric boundary condition (insulated)

1 temperature condition at L/V interface

2 wall boundary conditions (Ur v -- 0)

1 symmetric boundary condition (Ur v -- 0)

1 radial momentum balance at L/V interface

2 wall boundary conditions (Uz v = 0 on pipe ends)

1 symmetric boundary condition (_gUzv / Or = 0)

1 axial momentum balance at L/V interface

Additional Unknowns Additional Equations

Radius of Curvature Rc

Liquid Density 9L

Vapor Density Pv

Kinetic Theory Relationship, Equation (3.23)

Equation of State, pL=F(PL,TL)

Equation of State, pv=G(Pv,Tv)
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derivatives. As a consequence, the solution considered globally depends strongly on the

dissipative terms in the Navier-Stokes equations (conductive heat flux, and viscous

stresses). This property is obviously related to the problem of uniqueness of the solution

in the inviscid case. All the governing equations (mass, momentum and energy balances)

possess the following form:

_t (pq_)+ div(p0 _): div(FV_) + S (3.26)

The various terms in Equation (3.26) represent, from left to right, accumulation,

convection, diffusion and source effects. When diffusion is included, the conservation

equations (energy, radial and axial momentum) possess second (highest) order derivatives.

Since they are solved in a two-dimensional (cylindrical or rectangular) space, every one of

them requires 2x2=4 boundary conditions, one on each boundary of the domain to which

they apply. Note that these considerations do not apply to the mass balance Equations

(3.1) and (3.6), which are of first order. The continuity equation is an extra equation to be

satisfied by the additional degree of freedom, the density or the pressure, these two

quantities being related through the equation of state of the fluid.

3.5. FREEZE-AND-THAW MODELING

To handle the startup from the frozen state and subsequent freezing during cooldown,

HPTAM incorporates the volume-averaged homogeneous enthalpy method (see

APPENDIX A-2). In this formulation, the enthalpy is used as a dependent variable along

with the temperature, and there is no need to satisfy explicitly interfacial conditions at the

phase-change boundary. An enthalpy equation for each phase (the porous matrix, liquid

and frozen phases) is derived analytically using the volume-averaging technique (Gray and

O'Neill 1976; and Cheng 1978). These equations contain some unknown convective and

dispersive terms, which involve the deviations of the fluid velocity and temperatures from

their intrinsic averages, as well as surface integrals of temperatures and interphasic

exchange quantities over the separative interfaces between the three phases. In the

approach known as the homogeneous model, the evolution equation of the overall spatial

average temperature is formed by adding the energy equations associated with each phase;

the various interphasic exchange terms simply cancel each others.
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The volume-averagedhomogeneousenthalpymethodis usedin the presentmodel to

predict thethaw(or freezing)of the working fluid in the heatpipe wick, assuminglocal
thermalandhydrodynamicequalibriumbetweenphasesandnegligiblethermaldispersion

coefficients. The volume-averaged homogeneousenthalpy method offers several

advantages:(a) it employs a fixed-grid numerical scheme; (b) it accountsfor the

complicatedinterfacial structuresof thevariousconstituentsandis valid for any volume
fractionsof thewick porousmatrix andtheliquid andfrozenphasesof theworking fluid;

and(c) it doesnotnecessitateimplicit trackingof the liquid-solid (L-S) interface. This

methodis alsopreferredbecauseit canbeeasilyincorporatedinto theconventionalfully-

thawedenthalpyconservationscheme.This is an importantadvantage,particularlysince

the change-of-phaseis only one of the multiple processesinvolved in the physical

operationof heatpipes. The resultingenthalpyconservationequationhastheform (see
APPENDIXA-2):

_[Ey(Ph)s +a(l- y)(Ph)L +(I- _)(Ph)m ] + div [(Ph)Lq]

3P L 3P L 3P L 1
=--+q--+qz div(Q)+E_L,3t r 3r 3z

(3.27)

where the subscripts S, L and m refer to the frozen phase, liquid phase and solid matrix

respectively, e is the porosity (void fraction) of the porous matrix, and 1, is the fraction of

the frozen fluid in the voids of the porous matrix. Since we are only concerned here with

slow liquid flows in the wick generated by gravity or capillary forces, viscous dissipation

and compressible effects can be neglected in the liquid. In this case, the right-hand side of

Equation (3.27) reduces to the divergence of the heat flux vector. The main difficulty of

the enthalpy formulation is that an appropriate procedure is required to insure that the

velocities are null in the solid phase. The idea is to derive a flow equation which reduces to

the proper form of the Brinkman-Forchheimer-extended Darcy equations in a liquid

control element, yields zero velocity in a frozen volume element, and provides a transition

zone in the mushy element which, though artificial, maintains mass and momentum

balances. This is best achieved by a gradual slow-down technique, which treats each

volume element undergoing phase-change as a porous medium with known liquid volume

fraction (Voller and Prakash 1987; and Beckermann and Viskanta 1988). This technique

replaces the wick porosity, e, appearing in Equations (3.1) to (3.3), (A-6) and (A-41) with

the liquid volume fraction in the wick, e(1-y) ; thus, the permeability and liquid velocity



approachzeronearthefrozenregion,asthemomentumEquations(3.2)and(3.3) reduceto
thehydrostaticpressureequations.

Finally, theparallel theoretical model (Equation A-45) and Maxwell's Equation (A-47) for

randomly packed and sized cylinders are used to calculate the effective axial and radial

thermal conductivities of the screen wick, respectively (see APPENDIX A-5). The model

of Veinberg (Equation A-52) for distributed spheres is used to calculate the effective

thermal conductivity of isotropic porous media such as ceramic powder, metallic felt or

sintered metal.

3.6. LIQUID-POOLING SUBMODEL

An effect that has been overlooked in earlier models is the thermal expansion of the liquid

during the startup/cooldown of the heat pipe. Liquid thermal expansion is very important

for transient modeling of heat pipes utilizing working fluids having high thermal expansion

coefficients, such as liquid-metals and water. Experiments have shown that during

startup, the liquid volume in the heat pipe increases, causing its excess volume to pool at

the end of the condenser and reduce its effective length (Merrigan et al. 1986). Such a

behavior could not be accounted for if the liquid flow and thermal expansion are neglected,

resulting in erroneous predictions of the liquid and vapor pressures in the heat pipe. Also

modeling these phenomena is of paramount importance to accurately predict the wicking

limit and dryout conditions.

Figure 3.4 presents a schematic of the liquid model incorporated in the present effort.

During the startup of a heat pipe, as the input power to the evaporator increases with time,

the temperature of the liquid phase in the evaporator section increases rapidly initially, and

hence the working fluid volume increases due to thermal expansion. When the rate of

increase in the liquid volume (taking into account vapor condensation in the condenser

section) exceeds the liquid flow rate towards the evaporator, the radius of curvature of the

liquid meniscus increases. Eventually, the rising concave liquid meniscus at the L-V

interface becomes flat at some point along the heat pipe (such occurrence is referred to

herein as the wet point, as defined by Busse and Kemme, 1978). At the wet point, liquid

and vapor interfacial total pressures become equal and the void fraction in the pores of the

wick is zero. The position of the wet point can be determined by comparing the vapor

pressure recovery with the liquid viscous pressure drop in the condenser region. When the

former is small compared with the latter, the wet point occurs at the end of the condenser
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FIGURE 3.4. Illustration of Liquid Pooling at End of Condenser.
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region. If thepressurerecoveryexceedstheliquid pressuredropin thecondenser,thewet

pointmovesacrossthecondensertill it eventuallyappearsatthebeginningof thecondenser

region in the caseof a much higher pressurerecovery. After the first wet point is

encountered,further heatingof the heatpipecould causethe liquid meniscusat thewet

point to becomeconvex,which would correspondto the caseof a negativepore void

fractionattheL-V interface(Figure3.3). While suchaconvexliquid meniscusin thewick

might be possible in principle under normal operating conditions, it cannot occur in

practice. Becauseof vapor shearstressandcondensationat theL-V interface,suchan

interfacestructureis unstable,the excessliquid will be entrainedby the vapor stream,
transformingtheconvexmeniscusinto acoherentliquid planesurface(BusseandKemme

1978).Therefore,for anypracticalreasons,the interfaceis flat atanywetpointpositionin
theheatpipe. As theexpandingliquid isdraggedby thevaporhigh-velocity flow, thewet

point propagatesacrossthecondenserregion. Eventually,thewetpointreachestheendof

thecondenser,forming aliquid pool. Experimentsperformedat Los Alamos by Merrigan

et al. (1986) using a lithium heat pipe have shown that during startup, excess liquid in the

heat pipe pools at the end of the condenser and reduces its effective length.

A submodel has been incorporated into HPTAM to handle these liquid-pooling processes.

This submodel assumes that as the transient progresses in time, any excess liquid is swept

by the vapor flow towards the end of the condenser, leaving a flat interface and filling up

the eventual concave menisci on its way. When a convex liquid meniscus occurs

somewhere along the heat pipe, the interface is set flat (the void fraction in the pores of the

wick is forced to be zero) at this particular location. The radial momentum jump condition

at the L-V interface (Equation 3.15) is used to calculate the pressure in the liquid cell next

to the diphasic interface. Then, using the mass balance in this cell, the mass of the liquid

pooling into the vapor core is determined. This mass is then transported into the next

interfacial liquid cell. Therefore, the wet point moves towards the end of the condenser.

When the interface at the end of the condenser becomes flat, excess liquid accumulates in

the vapor core and forms a liquid pool. The liquid-pooling submodel also simulates liquid

pool recession conditions during the subsequent cooldown of the heat pipe. As the heat

pipe cools down, the average liquid temperature and volume decrease due to thermal

contraction, and the amount of excess liquid which accumulated at the end of the condenser

(liquid pool) is reduced, and eventually vanishes, so that a positive liquid meniscus is

restored in the condenser region.
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Other phenomena, such as free-molecule and transition flow regimes, need to be

considered to model the transient operation of high-temperature heat pipes.

3.7. FREE-MOLECULE AND TRANSITION FLOWS REGIMES

During the startup at low temperature of a frozen or fully-thawed liquid-metal heat pipe,

very low pressures arise in the vapor region, and free-molecule and transition flow

conditions are prevalent there. The gas flow through a cylindrical channel can be classified

into three types, depending on the dimensionless Knudsen number Kn, which is the ratio

of the molecules mean free path _. to the channel diameter D (Dushman and Lafferty 1962,

chapter 2). The first type of flow is the viscous flow regime, which occurs when the mean

free path is very small compared to the diameter of the channel, so that molecule-molecule

collisions dominate. The second type of flow, the free-molecule flow regime, occurs

when the mean free path of the gas is large compared to the channel diameter, and is limited

by the molecular collisions with the walls. The third type is the transition flow regime, for

which both molecule-molecule and molecule-wall collisions are important. These three

types of flow have been classified as follows:

(1) viscous flow, for Kn < 0.01

(2) transition flow, for 0.01 < Kn < 1

(3) free-molecule flow, for 1. < Kn

(3.28)

The values of the Knudsen number, 0.01 and 1.00, are rather arbitrary, since the viscous

and transition flow regimes are approached asymptotically; they correspond to a ratio of

viscous to total flow conductance of 90% and 7.7% respectively (APPENDIX B).

The flow charts for lithium, sodium, potassium and water heat pipe working fluids give an

estimate of the transition temperatures between viscous, transition and free-molecule flows

regions, as a function of the vapor core diameter. To draw these flow charts, the mean free

path of the vapor molecules is calculated as a function of temperature using Equation

(B-l), reproduced here for convenience:

_ M 1 , D=2a- k - 1 k Ttr (B-l)
"VF271:(y2NaPv Kn Kn -xf-2go-2 Psat (Ytr)
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where M is the molecular weight and o" is the effective diameter of the gas molecules. In

this equation, the vapor density is taken as that of the saturated phase. The effective

molecular diameters of lithium, sodium, potassium and water heat pipe working fluids are

estimated in APPENDIX B.

The resulting flow charts for liquid-metals and water heat pipe working fluids are

presented in Figures (3.5) to (3.7). For a liquid-metal heat pipe with a vapor core diameter

of 2.2 cm, the transition temperatures between free-molecule, transition and viscous flow

regimes are 810K and 1030K for lithium, 540K and 680K for sodium, and 450K and

570K for potassium (Figure 3.5). Clearly, since these liquid-metal fluids are frozen at

room temperature and have melting temperatures (453.7 K, 371.0 K and 336.4 K

respectively) below their free-molecule transition temperature, a heat pipe startup from

frozen conditions belongs to the free-molecule flow regime; therefore it is necessary to

include such modeling to predict the transient operation of liquid-metal heat pipes from the

frozen state and the fully-thawed condition.

For a water heat pipe, viscous flow conditions are prevalent over the whole temperature

and pipe diameter ranges of interest (micro-heat pipes are not being considered here),

because of the relatively high vapor pressure of this fluid above its melting temperature

(Figure 3.7).

Because funding from NASA Lewis Research Center was discontinued in March 1994, the

present report does not include any information concerning the modeling of the free-

molecule and transition vapor flow regimes. However, the final version of HPTAM

includes the capability of modeling these non-continuum flow regimes and the frozen

startup of liquid-metal heat pipes, and this effort is well documented and described in Mr.

Tournier's Dissertation (1995).

The thermophysical properties of the wall material and the working fluids, and the state

equations of the liquid and vapor phases are described in the next subsection.
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3.8. THERMOPHYSICAL PROPERTIES AND STATE EQUATIONS

The thermophysical properties of the wall material and the liquid and vapor phases are

taken to be temperature dependent (also pressure dependent when relevant). The model

incorporates various working fluids such as lithium, sodium, potassium and water, as well

as various structural materials including tungsten, niobium, zirconium, stainless-steel,

carbon and copper.

Additional wall materials are easily incorporated, as they only require knowledge of

density, thermal conductivity and heat capacity as a function of temperature. However, for

a new working fluid, a great deal of data is needed, since the properties of the solid, liquid

and vapor phases are needed (see Table 3.2). Much of these properties are difficult to

locate, particularly for the vapor phase.
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TABLE 3.2. References and Temperature Range of Validity for the Thermophysical

Properties of Working Fluids (Solid, Liquid and Vapor Phases).

Property of working fluid

Melting temperature Tm
[Weast 1986]

Saturation vapor pressure
Psat(Y)

Surface tension of liquid

phase _(T)

Density of saturated liquid

pLat(T)

Isothermal compressibility

of saturated liquid _T(T)

Dynamic viscosity of liquid

phase BL(T)

Thermal conductivity of
liquid phase kL(T)

Specific heat capacity of

liquid phase CpL(T)

Dynamic viscosity of

(saturated) vapor p.v(T)

Thermal conductivity of
(saturated) vapor kv(T)

Latent heat of vaporization
hfg(T)

Density of solid phase ps(T)

Thermal conductivity of
solid phase ks(T)

Latent heat of fusion Hfus

Specific heat capacity of

solid phase C_(T)

][ lithium

453.7 K

Tm-- 1600 K

[Hall 1988]

Tm-- 1600 K
[L6ger 1980]

Tm-- 1600 K

[L6ger 1980]

Tin--2000 K
[Ohse 1985]

Tin--1500 K
[Ohse 1985]

Tm-- 1500 K
[L6ger 1980]

Tin-- 1600 K
[Vargaflik

19751
980*--2000 K

[Vargaflik
1975]

700*--2500 K

[Ohse 1985]

Tm--1600 K
[Vargaflik

1975]

100 K---T m
[Hall 1988]

100 K--Tm
[Touloukian

1970]

432.3 kJ/kg
[Metals

Handbook

1979]

100 K--Tm
[Touloukian

1970]

sodium

370.9 K

Tm--1450 K

[VargaRik
1975]

Tm--1450 K
[Vargaffik

19751

Tm-- 1450 K

[Vargaftik
1975]

Tm--2000 K
[Ohse 1985]

Tm--1500 K
[Ohse 1985]

Tm-- 1500 K
[CEA 1963]

Tm--1500 K
[Vargaftik

1975]
800"--1500 K

[Woloshun et
al. 1989]

700"--1500 K

[Ohse 1985]

Tm-- 1500 K

[Vargaftik
1975]

270 K--Tm
[Metals

Handbook

1979]
100 K--Tm
[Touloukian

1970]

113.0 kJ/kg
[Metals

Handbook

1979]

100 K--Tm
[Touloukian

1970]

potassium

336.4 K

Tm-- 1400 K

[Vargaftik
1975]

Tm--1400 K
[CEA 1963]

Tm--1400 K
[V_gafiik

1975]

Tm--1800 K
[Ohse 1985]

Tm--1500 K
[Ohse 19851

Tm--1500 K
[CEA 1963]

Tm--1500 K
[Woloshun et

ai. 1989]
300"--1500 K

[Woloshun et
al. 1989]

700"--1500 K

[Ohse 1985]

Tm--1500 K
[Vargaflik

1975]

100 K--Tm
[Metals

Handbook

1979]

100 K--Tm
[Touloukian

1970]

59.5 kJ/kg
[Metals

Handbook

1979]

100 K Tm
[Touloukian

1970]

water

273.15 K

Tm--600 K

[Irvine and

Liley 1984]
300--647 K

[Vargaflik
1975]

Tm--647 K
[E1-Wakil

1981]
300--373 K

[Weast1986]

Trn--600 K
[El-Wakil

19811

Tm--600 K
[El-Wakil

1981]

Tm--647 K
[Irvine and

Liley 1984]
Tm--600 K
[Vargaftik

1975]

Tm--620 K
[Vargafiik

1975]

Tm--647 K
[Reynolds

1979]

100 K--Tm
[Touloukian

1970]

120 K--Tm
[Ross et al.

1978]

333.6 kJ/kg
[Moeller 1980

70 K--Tm
[Weast 1986]

*: correlation can be used at lower temperatures.
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TABLE 3.3. References and Temperature Range of Validity for the Thermophysical

Properties of Structural Materials.

Property of
structural material

tungsten

niobium

zirconium

(aL l] metallic phase

change at 1140 K)

stainless-steel

carbon

copper

Melting
temperature

Tfus

3680 K

[Weast 1986]

2740 K

[Weast 1986]

2120 K

[Weast 1986]

1700 K

[Weast 1986]

> 3700 K

[Weast 1986]

1360 K

[Weast 1986]

Density

pm s

19350 kg/m 3
[Weast 1986]

8570 kg/m 3
[Weast 1986]

6490 kg/m 3
[Weast 1986]

7900 kg/m 3
[Weast 1986]

2250 kg/m 3
[Weast 1986]

8920 kg/m 3
[Weast 1986]

Thermal

conductivity
km(T)

120--3000 K

[Ho etal.
1968]

200--2300 K

[Ho et al.
1968]

200--2000 K

[Ho etal.

1968]

80--1200 K

[Metals
Handbook

1979]
200--1500 K

[Schlunder
1984]

200--1200 K

[Ho etal.
1968]

Specific heat
capacity

C_n(T)

273--2600K

[Touloukian
1975]

273--1900 K

[Touloukian
1975]

298--1800K

[Touloukian
1975]

200--1230 K

[Metals
Handbook

1979]
m

Cp =

1506 J/kg.K

323--1273 K

[Touloukian
1975]

In addition to the thermophysical properties, inverse functions and derivative functions are

needed in many cases to perform the numerical solution of the problem. For these reasons,

all of the property information is in the form of functional evaluations. Most of these

functions were derived by using least-squares regression on table values and experimental

data from the literature. Tables 3.2 and 3.3 show the references selected for the various

properties of working fluids and structural materials, and give the temperature range of

validity of the extrapolated functions. For every property, data from several references

were plotted against each other as a function of temperature. In most cases, good

agreement was found in between the various references, and a consistent set of data was

selected that would cover the widest range of temperature. Due to the limitation in space,

only the major dataset reference is given in Tables 3.2 and 3.3. It is important to specify

the temperature range of validity since all too often a function obtained by least-squares

regression gives nonphysical results (such as very large or negative values) outside the

temperature interval of extrapolation.
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The density of the liquid phase is calculated as a function of pressure and temperature to

account for the fluid thermal expansion and compressibility. Because of the capillary

pressure head at the L-V interface, due to the concave meniscus in the wick, the pressure

of the liquid phase is less than the corresponding vapor pressure, that is the liquid phase is

subcooled. Because the van der Waals state equation cannot practically be used away from

the critical point, the density of the liquid phase is obtained in terms of pressure and

temperature from the following relation:

PL (T, PL )= { 1 + _T(T)[P L -- Psa, (T)] } psL,(T) (3.29)

where [3T is the isothermal compressibility factor of the saturated liquid phase.

The density of the vapor phase is obtained as a function of pressure and temperature using

the ideal-gas law:

IMp
Pv(T, Pv)= Rs T v

(3.30)

Enthalpies of the solid, liquid and vapor phases of the working fluid are obtained as

illustrated in Figure 3.8. The enthalpy of the liquid phase is taken as that of the saturated

liquid phase and is related to the liquid specific heat capacity by:

T

hL(T)=h REF+ J'C_(T) dT
T reEF

(3.31)

The enthalpy of the saturated vapor phase is the sum of the enthalpy of the liquid phase and

of the latent heat of vaporization:

hV(T) = hE(T) + hfg(T) (3.32)

By definition, the heat capacity at constant pressure is the partial derivative of the enthalpy

with respect to temperature, so that the vapor specific heat capacity is:

C_' (T)= CL(T)+ _T [hfg (T)] (3.33)
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Finally, the enthalpy of the solid phase is related to the enthalpy of the liquid at melting

temperature, the heat of fusion and specific heat capacity of the solid by:

Tfus

hS(T) = hL(Tfus)- Hfus - J'csp(T) dT

T

(3.34)

h(T)

OK

Hfus

C T)

solid phase

I
I
I
I

_us

vapor phase

hfg(T)

liquid phase

Cp(T)

PT

FIGURE 3.8. Enthalpies of Solid, Saturated Liquid and Saturated Vapor Phases of

Working Fluids as a Function of Temperature.

This section ends the description of the physical heat pipe model. The next chapter

describes in details the discretization of the governing equations and numerical technique

used in HPTAM.
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4. METHOD OF SOLUTION

Simulating the transient operation of heat pipes involves solving a highly non-linear

homogeneous two-phase flow problem, which incorporates the effect of surface tension

and the processes of phase change at the liquid-vapor (L-V) interface. The two-

dimensional Heat Pipe Transient Analysis Model (HPTAM) developed herein solves the

compressible Navier-Stokes equations in the vapor region, and models the liquid flow in

the wick with the Darcy-Forchheimer-extended flow equations. The vapor and liquid

phases are coupled at the L-V interface through the mass, radial momentum and energy

jump conditions. In addition, the evaporation, condensation, sublimation and

resolidification rates are calculated from the kinetic theory of gases to account for the

thermal resistance at the L-V and S-V interfaces. HPTAM geometrically relates the radii of

curvature of the liquid meniscus at the L-V interface to the volume of vapor in the wick,

and simulates pooling of excess liquid in the condenser.

Because of the physical complexity of the problem, advanced numerical methods are

required. In this work, a stable solution technique for simulating transient operation of a

fully-thawed heat pipe is developed, that is accurate and efficient in terms of CPU time.

Various segregated solution techniques are implemented, one based on the non-iterative

Pressure Implicit Splitting Operator (PISO) of Issa (1986), another of the SIMPLEC

segregated iterative type. Their accuracy and computation time requirement are examined

using experimental results for the heatup and cooldown transients of a horizontal water heat

pipe.

The most efficient technique, HPTAM-Revised, is a SIMPLEC-type segregated solution

technique which includes two internal iterative steps to resolve the pressure-velocity and

temperature-velocity couplings and reduce the linearization errors of the kinetic theory

relationship and equations of state. The solution evaluates the volume of the vapor in the

wick explicitly, while the kinetic theory relationship is implicitly coupled with the energy

jump condition at the L-V interface. Other solution techniques examined require using a

small time step size (< 15 ms) to avoid numerical instabilities. On the other hand, a time

step size as high as 500 ms could be used with the HPTAM-Revised technique without

developing any numerical instability. While all solution techniques examined performed

the same in terms of accuracy, the HPTAM-Revised is 90 times faster than the basic non-

iterative SIMPLE-type approach.
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The selection of the appropriate linear-system solver also affects the efficiency of the

solution technique, particularly when computational grids larger than 10x30 are used. For

example, when solving a typical heat pipe problem using a 20x40 size grid, more than 90%

of the total CPU time is used by the banded Gauss-elimination solver. Calculations

showed that, when the iterative SIS solver is used instead of the banded Gauss-elimination

solver for the solution of the 5-point momentum and energy linear systems, the total CPU

time was only 48% of that for the technique using the Gauss-elimination solver.

4.1. SOLUTION PROCEDURE

The numerical approach selected to solve this highly non-linear and complex problem is

attractive in the sense that it combines the power of the most advanced numerical methods

to date and the advantage of algorithmic flexibility. A summary of the method selected

follows, with some comments to justify the choices made. The theoretical developments

and full justifications are collected in APPENDIX C. To solve the set of governing

equations which describe the operation of heat pipes (see Chapter 3), an unsteady finite-

difference discretization method, based on the SIMPLEC segregated iterative solution

technique, is developed.

Finite-difference methods are simple to formulate, can easily be extended to 2 or 3

dimensions, and require considerably less computational work and storage requirement

than finite-element methods. The use of the unsteady formulation makes it possible to

solve both the steady and transient problems with the same code. When solving the

steady-state equations directly, heavy under-relaxation is usually necessary to resolve the

non-linearities and couplings, and it is easily shown that relaxing the steady-state

equations is equivalent to the transient formulation (APPENDIX C-4).

The governing equations and boundary conditions are discretized on a staggered grid using

the control-volume integration approach proposed by Patankar (1980), instead of the

conventional Taylor series technique. The stability enhancing characteristics of the finite

difference equations obtained by volume integration of the conservative form of the

governing equations, are discussed in detail by several investigators (Patankar 1980;

Harlow and Amsden 1971; and Roache 1982). Lax (1954) and others have shown that

shock wave speed and strength are correctly predicted when the conservative form of the

Navier-Stokes equations is used, and that this is not the case with the non-conservative
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form. The point is that all stable, consistent and conservative finite-difference methods

applied to the conservative form of the equations satisfy the Rankine-Hugoniot relations

and therefore produce the correct jump conditions across a shock.

The final attraction of this integration approach is that it is simple to implement, and the

finite-difference forms can be interpreted as integral laws over the control-volume cell: the

solution obtained using this approach satisfies global conservation, even on a non-uniform

grid. The main drawback of using finite-difference methods is the possibility of

developing a "checkerboard" pressure field. Such spurious pressure distribution is

prevented by using the well-known Eulerian staggered-grid (APPENDIX C-2). On this

grid, the liquid and vapor velocities are determined at the cell boundaries while the other

quantities, such as pressures and enthalpies, are evaluated at the cell center. The harmonic

average of the thermal conductivity is used at the boundaries of the control volumes to

insure continuity of temperature and heat flux at these interfaces.

To resolve the couplings and non-linearities of the flow conservation equations, both direct

solution algorithms and non-iterative splitting procedures have been developed. In

practical problems, however, a direct solution technique would require a very large amount

of computer storage and time (Beam and Warming 1978), even when specialized sparse

matrix solvers are employed.

Non-iterative splitting procedures have been considered to speed up calculations and

reduce the complexity of programmation as well as storage requirements (APPENDIX C-

12). Originally, these methods have been applied to solve multi-dimensional problems as a

series of linearized one-dimensional problems (Alternating Direction Implicit

approximations). Unfortunately, it was found that such spatial splitting methods have a

rather poor accuracy for disturbances which propagate skew to the coordinate axes. This

suggests that a more productive approach would be to split by physical phenomena instead,

as it is done in the Marker-And-Cell (MAC) formulation and projections algorithm. It is

therefore desirable to use segregated iterative solution techniques in which the velocity

components and pressure are calculated in a sequential or segregated manner.

Most modern iterative numerical methods used to solve the unsteady compressible flow

equations, such as the SIMPLE-type procedures (APPENDIX C-5) and PISO (Pressure-

Implicit with Splitting of Operators), are based on the Marker-And-Cell (MAC) method

(APPENDIX C-12). They make use of the staggered grid and deduce the pressure field
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from a Poisson equation obtained by combining the continuity and momentum conservation

equations.

Harlow and Amsden (1971) have extended the MAC method to the solution of the

conservative form of the unsteady compressible flow equations. The advanced-time

density was iinearized in terms of the pressure by using the equation of state, and

procedures similar to the SIMPLE-type techniques were derived to resolve the pressure-

density-velocity couplings. The Implicit Continuous-fluid Eulerian technique of Harlow

and Amsden (1971 ) is suitable for arbitrary equation of state and proved successful for all

Mach number.

The SIMPLE-Consistent (SIMPLEC) algorithm of van Doormaal and Raithby (1984) uses

a consistent simplification of the momentum correction equations and does not require any

pressure under-relaxation (the off-diagonal velocity corrections appearing in tlae

diffusion/convection terms are equated to the diagonal velocity correction). When diffusion

and convection phenomena are dominated by pressure gradients and source terms, the

consistent approximation in SIMPLEC becomes exact so that this procedure should be

used. This applies to flow systems with large pressure gradients such as flows in porous

media and heat exchangers. Also SIMPLEC is easy to program and performs as well or

better than SIMPLER in terms of CPU time and storage requirements.

Since these modern segregated iterative solution techniques are extremely modular in

nature, it is a relatively simple task to test possible variations of the algorithm. Any basic

iteration is made of several sequential steps:

(a) momentum predictor step : best estimates of the pressure gradients are calculated

explicitly, and the momentum conservation equations are solved for the velocity field.

(b) pressure corrector step : a simplified (corrected) form of the momentum

conservation equations is used to implicitly relate mass flow rates and pressure gradients;

the mass flow rates are eliminated in terms of pressures in the continuity equations, and

densities are linearized using the equations of state; the resulting Poisson equation is

solved for the pressure field.

(c) energy or enthalpy predictor step : best estimates of pressures and convective

fluxes are evaluated explicitly, and the enthalpy conservation equations are solved for the

temperatures.

(d) properties update : the thermophysical properties are updated, particularly

densities, which are calculated using the equations of state.
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While these basic sequential steps are suitable for monophasic fluid flow problems, they

must be modified to solve the more complex two-phase flow coupled problem, that of heat

pipe. During the pressure corrector step, liquid and vapor volumes around the L-V

interface are treated as functions of the wick void fractions. The void fractions are

linearized in terms of the cosines of the contact angles using the geometrical Equation

(3.22). The latter are implicitly related to the liquid and vapor pressures at the L-V

interface through the radial momentum jump condition or extended Pascal relationship

(Equation 3.15). The kinetic theory Equation (3.23) is used implicitly to relate the

evaporation/condensation mass fluxes and the pressures at the L-V interface. The

densities, evaporation/condensation mass fluxes, and radii of curvature of the liquid

meniscus for the advanced time are then obtained, with the pressure corrections.

The predictor steps are stabilizing steps for the convective and diffusive terms. The

momentum equations are solved for velocities, while the enthalpy equations are linearized

and solved for temperatures and evaporation/condensation rates by implicitly coupling the

interfacial energy jump condition (3.18b) and Equation (3.23) at the L-V interface. To

decouple the radial and axial momentum conservation equations, the convective mass

fluxes, the divergence of the velocity field and the cross-derivative viscous terms are

evaluated explicitly from the previous step. These cross derivative terms are not important

for the stability of the solution (Beam and Warming 1978). If the explicit differentiating of

these terms imposes any limitation on the time step, this fact has been masked by more

restrictive conditions due to convection, diffusion or strong non-linearities for example.

4.1.1. Definition of Domain, Variables and Extrapolations

The physical domain is divided into a two-dimensional cylindrical grid (r,z) of (Nr+l) by

Nz cells. Since azymutal symmetry is assumed in the cylindrical heat pipe, only half of the

vapor core is modeled with cells (i=l) through (i=Nv), as shown in Figure 4.1a. The

liquid-wick region is represented by cells (i=iL=Nv+l) through (i=NL), and the pipe wall

is modeled with cells (i=NL+I) through (i=Nr). The coolant flow in the cooling jacket

along the condenser section is represented by a column of cells (i=Nr+l), as shown in

Figure 4. lb. In the axial direction, the evaporator section extends from (j=l) to (j=Nevap),

the adiabatic section from (j=Nevap+l) to (j=Nadia), and the condenser section from

(j=Nadia+l) to (j=Nz). The dimensions of the cell (i,j) are ARi and AZj, while Rcelli and

Zcellj are the coordinates of the center of this cell (Fig. 4.2). The surface areas of the sides
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FIGURE 4.1 a. Numerical Grid Layout for Circular Heat Pipe.
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FIGURE 4.1 b. Details of the Numerical Grid for Condenser Cooling Jacket.
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of cell (i,j) are Air'j, Air-I'j, A_'j-I andA_'j in the radial andaxial directions,respectively.

Thevolumeof thecell (i,j) is Voli,j. Thedenomination"cell" refers to themassbalance

cell. On thestaggeredgrid, densities,pressures,temperaturesandenthalpiesaredefinedat
thecenterof themassbalancecells,while velocitiesandmassfluxes aredefinedat the

centerof the facesof thesecells (the latter holdsfor wick void fractionsandcosinesof

contactangleaswell, but along theL-V interfaceonly). The momentumconservation

equationsare integratedover themomentumcells surroundingthe velocity components
i,j Ri+l,j and Biz are the surface areas of the sides of the(Figures 4.2, 4.3 and 4.4). Br ,-r ,

• " i,j iradial momentum cell (i,j), whose volume is Volri,J. X_r-1''1, X r , and A z are the surface

areas of the sides of the axial momentum cell (i,j), whose volume is Volzi,J. These

volumes and areas can be expressed as:

Air,J:2rtRiAZ j , Aiz:rt(Ri 2-R__ 1) ,

Bird : 2rtRcelliAZ j , Biz : rt(Rcell_+, - Rcelli 2)

xir 'j= rI:Ri(AZ j +AZj+I) , Vol i'j = AizAZj ,

• AZj + _Zj+ 1

Volir 'j = Biz AZj , VoI_ 'j = Aiz 2

(4.1)

Z
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FIGURE 4.2. Grid Layout for a Mass Cell.
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The densities, pressures, enthalpies, and heat capacities are extrapolated at the velocity

locations using weighting factors, q_ir and q_, such that:

pir, j i i= q)rPi,j + (1 -- q_r)Pi+l,j

p_'J J J )= q0zpi, j + (1 - g0z Pi,j+l

(4.2)

The mass fluxes and velocities are then related by:

G r = PrUr , and Gz = PzUz • (4.3)

Other extrapolations are necessary to evaluate the convective mass fluxes at the faces of the

radial (GRr, GRz) and axial (GZr, GZz) momentum cells. By construction, GRr and GZz

are located at the centers of mass cells (densities locations), while GRz and GZr are located

at the vertices (grid intersections) of the mass cell grid (Figures 4.3 and 4.4). These

extrapolated mass fluxes are expressed as:

• ' i,j A FT i,j AzLEFT "
Blr'JGRr = ArGr) + 1 (ArGr) '-l'J

Az

i,j _i .-.i,j i ]Gi+l,j
GRz=tPrtJ z +(l-q)r,_z ,

yI,J(-, l,j_r "JZr = ArGr) l'J -]-(ArGr) l'J+|

G_J = 2[Giz'J + G_'J-] ] , where

AzLEFT i =_(Rcel' 2-R2_1) , and

AzLEFT i . z_Zj
(Pir = l-- i ' (P_ =

Bz AZj +/_Zj+ I

(4.4)

These extrapolations are derived so that conservation of mass in the mass cells insures

conservation of mass in the radial and axial momentum cells.

UrCELLi,j and UzCELLi,j denote the extrapolated velocities at the centers of mass cells

and are given by:

GRrij GZzi, j
UrCELLi, j - ' , and UzCELLi, j -

Pi,j Pi,j

(4.5)
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FIGURE 4.4. Grid Layout for an Axial Momentum Cell.
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The superscript (n) is used to reference the variables at the old time step t n = t o + nAt,

such as: pn,pn,T n,Tint n,h n, _-n n n n, 'U ,_n,otp,gc,Vol Nn, which represent in order of

appearance pressure, density, temperature, interfacial temperature, enthalpy, velocity field,

mass flux, wick void fraction, cosine of contact angle of liquid meniscus, mass cell volume

and evaporation/condensation mass fluxes. In the same manner, a superscript (n+l) is

used for the variables at the new time step tn+ 1 = t n + At, while a superscript (*) refers to

the best estimate of the new-time variable available at the time of the computation. Since

the formulation is partially implicit, the factors cz, O and qt, which vary between 0 (explicit)

and 1 (fully implicit), are introduced such that the tilted intermediate-time variables are

defined as:

]'int* = o_T int*+ (1 - cz)T int n ,

(_3n +1 . ,,_ n+lr =_u r +(1-qt)a n,

_n+l _ n+l
c =Ugc n,

F'* = OP* + (1 - O)P n.

(4.6)

The factor o_ is used for temperatures and enthalpies, _ for densities, velocities and mass

fluxes, while 0 is used for the other variables such as pressures, wick void fractions and

cosines of contact angle. Finally, the Delta notation is defined as:

Apn+l = pn+l _ pn , and zXP* = P* - pn ,

so that F'* =OP*+(1-O)P n=Pn+OAP*
(4.7)

Now, given a stared best estimate of a new-time quantity, for example the pressure (P*),

we seek a primed correction field (P') such that:

pn+l=p*+p' . (4.8)

4.1.2. Discretization of the Conservation Equations

The mass balance, momentum and enthalpy conservation equations are integrated over their

respective control volume (mass cell, radial and axial momentum cells, and mass cell,

respectively), using the Gauss theorem and Green's formula (Delhaye 1976):
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Vol _Vol

and

j'J'j'(_J • VP)dV = j'j'[[div(PU) - Pdiv(U)]dV
Vol

3Vol Vol

where OVol denotes the surface of the volume Vol and

normal to this surface.

(4.9b)

)V is the outward unity vector

In the following, any omitted grid subscript/superscript must be taken as (i,j). The next

subsections describe the discretization of all the governing equations and their associated

jump conditions and boundary conditions.

4.1.3. Homogeneous Enthalpy Equation in the Porous Wick

During the enthalpy predictor step of the solution procedure, the liquid and solid enthalpies

in the enthalpy conservation Equation (3.27) are linearized in terms of temperature using

the heat capacities of the phases (Figure 4.5). Also, the frozen volume fraction 7 is related

to the cell average temperature T according to Figure 4.6 (Beckermann and Viskanta

1988). The three types of cells are:

(a) solid cell, where

(b) mushy cell, where

(c) liquid cell, where

T < (Tfus-ST), T = 1, and _,/3T = 0.

(Tfus-ST) < T < (Tfus+ST), 0< qt<l, and 0y/_)T = -1/(28T).

(Tfus+ST) < T, T = 0, and _j,/_)T = 0.

Integration of Equation (3.27) over a control volume (i,j) leads to the following discretized

form of the enthalpy conservation equation:
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+ _(pc_)_+[(ph/;-(_h/,._ T'

1-_: * C * ' n+Tv°'°°m{_h)m+(_/m_-¢_)m}
/ - \n+l / ~ ,,n+l 1 - ,,n+l / - \n+l =_WFLOOD+ /A&)i,j-tArrr)i_,,j+_Azrz)i,j-tazrz)i,j_l

+ (Arq:P:)i,j - (Arq:P:)i_l,j + (Azq;P:)i,j - (Azq:P:)i,j_ '

+ )1, -Fd_v((

(4.1 o)

where Fr and Fz represent the convection-diffusion enthalpy fluxes across the faces of the

mass balance cell (i,j). The power loss term for liquid cell (iL,j), '(V_ L°°D, accounts for

the enthalpy of the excess liquid pooling into the vapor core. The second member of

Equation (4.10) is calculated explicitly using the most recent stared pressure and velocity

fields. The derivatives and divergence term at the mass cell centers which appear in the

viscous dissipation q_L (see Equation (3.5) are discretized as:

qr  qzqzF_I -q:' i_,j ,j ,,_,

L c_r lid Rcelli L az Ji,j

(4.1 l)

The cross-derivatives at the mass cell centers are approximated using the following

second-order accurate formulations:

1 (UrCELLi j+l- UrCELgi,j)+ co_(UrCEtgi,j- UrCELLi j 1)

Iaqrl = m: , '-
L c3z Ji,j ½0+<)(Az_+Az__,)

, (4.12a)

-. i

L Or Ji,j , (4.12b)
_(I + (oir)(ARi+ ARi_I)
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i ARi +ARi+I and mj = AZj +AT, j+ 1 (4.12c)
where mr = AR i + ARi_ 1 AZj -I-AT, j_ I

Equations (4.12) reduce to the well known centered approximations when the grid is

uniform. In the boundary cells, the following one-sided approximations are used:

[aqrl_ UrCEU',,, [ qrI _ -UrCELLi,Nz
aZ Ji,l AZI / 2 ' L aZ Ji,Nz AZNz / 2

[<7-o
ar -[1,j ' L 0r JNv,j ARNv / 2 '

03%] = UzCELLiL,j ro_qz]- -UzCELLNI,j
c3r JiL,j ARiL/2 ' L 3r ANI,j ARNI / 2

(4.12d)

The viscous dissipation term in Equation (4.10) is calculated explicitly as:

IF 12_t,. =21at" °3qr

'" [L Or Ji,j

UrCELLi,j ]2
[-_zZ ] 2 _[-_z r _qz] 2

+ + +--

i,j c3r ,J.

In Equation (3.27), enthalpies were linearized in terms of temperatures using the heat

capacities at constant pressure Cp according to Figure 3.8:

h n+l = h* + C;T' (4.14)

A very small 8"1' must be used to simulate the phase-change of a pure substance. When 8T

is small, the y-T relationship closely approximates a step function (Figure 4.5), and many

schemes using the enthalpy formulation have experienced numerical difficulties and

predicted wiggly temperature time histories (Beckermann and Viskanta 1988; Cao and

Faghri 1990b; Cao and Faghri 1993a). The present numerical solution, however, uses a

_T as small as 10 -8 K (limited by machine accuracy), without under-relaxation of the

temperature and numerical instabilities. The transitions between the different phases are

recognized and treated as follows:
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FIGURE 4.5. Variation of the Fluid Frozen Volume Fraction with Temperature.

(a) when the calculated solid fraction 7* >1, the model declares a transition from a

mushy to a frozen cell, and sets 7. and 0y/_)T equal to 1 and O, respectively.

(b) when the calculated solid fraction 7* <0, the model declares a transition from a

mushy to a liquid cell, and sets 7* and 0y/c)T both equal to 0.

(c) when 7* =1 and the calculated temperature T*>(Tfus-ST), the model declares a

transition from a frozen to a mushy cell, and sets T* = Tfus-ST and _97/3T =

- 1/(28T).

(d) when 7* =0 and the calculated temperature T*<(Tfus+ST), the model declares a

transition from a liquid to a mushy cell, and sets T* = Tfus+ST and _gy/_OT=

- 1/(25T).

Many numerical schemes have been developed to discretize the convection-diffusion

enthalpy fluxes appearing in Equation (4.10), such as central difference, upwind

difference, hybrid, exponential, power-law (Patankar 1980) and weighting function (Lee

and Tzong 1991) discretization schemes (APPENDIX C-l). The use of the central

difference scheme is restricted to the treatment of low Reynolds number flows, because a

numerical instability occurs when the convective transport dominates the transport by
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diffusion. The upwind and hybrid differenceschemesareunconditionally stable,but
suffer from severefalse numerical diffusion. The exponential shemedevelopedby

Patankar(1980)is applicableto solvingequationsof conservativeform andto thecaseof
uniform thermal conductivity; it is unconditionally stable and performswell in flow

regionsin which thevelocity field alignsclosely with themeshlines. In this scheme,the

effectsof convectionanddiffusion aretreatedseparately,andtheexponentialfunction is

employedto incorporatetheeffect of fluid flow. To accountfor theeffect of variable

thermalconductivity,Patankar(1980)combinedtheexponentialschemewith theharmonic
meanscheme.Hematchedtheheatfluxesat the interfacebetweengrid cellsto obtainthe

"average"thermalconductivityatthis location. Finally, thepower-lawdifferencescheme,

which isonly anapproximationof theexponentialscheme,reducesthecomputationtime.

The new weighting function schemeof Lee and Tzong (1991) is applicable to both

conservativeand non-conservativeequationsand canbe implementedon non-uniform
grids, an improvement from their former scheme. When applied to the solution of

conservationequations,theweightingfunction schemereducesto Patankar'sexponential

schemein thecaseof uniform thermalconductivity. A numberof higher-orderdifference

schemes(suchasQUICK) havebeendevelopedalso,which havehigher accuracyand

minimal falsenumericaldiffusion. Theseschemes,however,areonly conditionallystable,

morecomplexto implement,andmoreCPUtimeintensive,astheyrequirethe solutionof
unusualnine-point linearsystems.

Since heat transfer in the wick is dominated by diffusion, the central difference

discretization schemeis appropriatefor such a situation and is implemented in the

homogeneousenthalpyequationof thepresentmodel. By contrast,CaoandFaghri(1990b
and 1993a)adoptedthe upwind differenceschemein their numericalsolution,which is

unconditionallystablebutsuffersfrom severefalsenumericaldiffusion, particularlywhen

heattransferis dominatedby conduction. Therefore,theconvection-diffusionenthalpy
fluxesFr andFzareexpressedas:

- }n+l (hn+ltr (1"3 _n+l

(-}n+,=(_,} (hn+l z (Q _n+l
I-'z,i,j , z,i,j, )i,j +_' z/i,j ,

(4.15)

where the enthalpies are extrapolated at the velocity locations as:
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hn+l)r _i,_ n+l . i ,,_ n+li,j = q)rni'j + (1 - qJr)ni+l,j ,

(hn+l) z =tr"Jh n'+l+(1 _J)h n+!
i,j "rz"l,.1 -- z i,j+l •

(4.16)

The large numerical error and sometimes poor stability characteristics and convergence

rates of existing fixed-grid enthalpy formulations are caused by improper handling of the

evolution of the latent heat and discretization of the convection-diffusion enthalpy fluxes

appearing in Equation (3.27). The use of the conventional harmonic mean scheme of

Patankar (1980) to estimate the heat fluxes at the boundaries of the mushy cell is largely

responsible for the loss in accuracy and the generation of wiggly temperature time histories

(Lee and Tzong 1991). The larger the change in thermal diffusivity of the working fluid

upon melting, the worse are the results. Indeed, the thermal diffusivity of the solid phase

is quite different from that of the liquid phase for most materials. For instance, the solid-

to-liquid thermal diffusivity ratios (_S/(XL) for working fluids of common use in heat pipes

are 1.60 (lithium), 1.27 (sodium) and 1.85 (potassium). The thermal diffusivity ratio for

pure water is as large as 7.45. Because Cao and Faghri (1990b and 1993a) employed the

conventional harmonic mean scheme of Patankar (1980) to estimate the heat fluxes at the

faces of the control volumes, their numerical scheme suffered from the inaccuracy

described above, particularly when they used a small ST. Their model would give

reasonable (but inaccurate) front locations and temperature time histories when 5T is large,

since these authors calculated the thermal conductivity in the mushy cells as a linear

function of the solid and liquid thermal conductivities.

The model developed by Raw and Lee (1991) for convection-diffusion change--of-phase

problems uses a modified weighting function scheme to handle the sharp viscosity and

thermal diffusivity jumps at the liquid-solid interface. Unlike other existing fixed-grid

enthalpy formulations, their numerical technique produces smooth streamlines and

isotherms, even in the vicinity of the change-of-phase front. However, it is increasingly

complex and requires larger computation time. The volume fractions (or dimensionless

latent heats) of liquid in the control volumes are related to the node temperatures (or

dimensionless sensible heats) in a complex manner when dealing with a two- or three-

dimensional problem (Lee and Tzong 1991). This strong coupling necessitates the use of

an iterative procedure and a small Successive Over-Relaxation (SOR) factor when solving

the discretized enthalpy equations for temperatures.
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FIGURE 4.6. Numerical Grid Layout in the Vicinity of the Solid-Liquid Interface.

In the present work, a simple method is developed to evaluate the heat fluxes at the

boundaries of the mushy cells, based on a one-dimensional analysis estimation of the

location of the change-of-phase front. Consider a typical grid layout in the vicinity of the

melting front, as depicted in Figure 4.6. The heat fluxes are evaluated at the interfaces of

the numerical cells, and the discretization scheme depends on the types of the cells adjacent

to the interface (mushy, liquid or solid). Considering the radial heat flux between the

mushy cell (i,j) and the monophasic cell (i+l,j) in Figure 4.6, the radius of the melting

front, u, is approximated as:

u =4(1-f)R2 i +fR_ (4.17a)

where

" * Jl 17b)f = Ti,j -- 'Yi+l, (4.

The radial heat flux at the interface (i,j) between the cells (i,j) and (i+l,j) is expressed as:
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Q_r'j = D_r'J(Ti,j-Ti+l,j) , (4.18a)

where

Dir 'j= (k_fmf)i+l'J (4.18b)
ARi+ 1 / 2 + R i - u

The strong dependence of Dr upon _,j is taken into account by discretizing the heat flux

using the following Taylor series:

(Qir,J)n+l = D: (Ti, j - Ti+l,j) + D r (Ti, j - T'i+l,j)

OaDr oau oaf oaYi,j * * ,

4 oaU oaf 0Yi,j OaT (Ti'j-Ti+l'j)Ti'j

(4.19a)

where the partial derivatives of the right-hand-side of Equation (4.19a) can be expressed

as"

OaDr D_ oau R_ - R__,

(°ff) 'oau ksm i+l,j

, and

oaf 1 when 7i+l,j =0 (f Ti,j)
c_Yi,j

oaf
* , )- 1 when Yi+l,j = 1 (f = I -]ti, j .

(4.19b)

The heat flux in the axial direction between the solid cell (i+l,j) and the mushy cell

(i+l,j+l) is calculated in a similar manner. The axial location of the melting front, v, is

obtained from:

v = (1 - g)Zj+ 1 + gZj , (4.20a)

where

g = 7i+l,j - Yi+l,j+l • (4.20b)
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The axial diffusion coefficient, Dz, has the following expression:

eff

i+l,j (ksm)i+l,j (4.21)
D z =

AZj/2+v-Zj

Finally, the axial heat flux at the interface (i+l,j) is discretized using the following Taylor

series:

i+l j n+l * * * * '
(Qz ' ) = Dz(Ti+l,j -Ti+l,j+l)+Dz(Ti+l,j -T'i+l,j+l)

_D z 3v 3g _:_t_+l,j+l * * '

-I 3v ag o_'i+l,j+ 1 oqT (Ti+l'J - Ti+l'j+l)Ti+l'j+l

(4.22a)

where

_)Dz _ D_ c3v

_v

ag

_ti+l,j+l

Gqg

_i+l,j+l

D

[kef f,_ , _g z_Zj+ 1 , and
sm]i+l,j

- 1 when _i+l,j = 0 (g = _ti+l,j+ 1),

, • )--1 when 7i+l,j = 1 (g = 1-]ti+l,j+ 1 .

(4.22b)

In the two other cases of the heat flux between two monophasic cells, and between two

mushy cells, the conventional harmonic mean scheme of Patankar (1980) is used. For

example, the axial heat flux between the solid cells (i+l,j) and (i+l,j-1) of Figure 4.6 is

discretized as:

(Qk+l,j-l)n+l = Diz+l,j-1 T* * ' ,( i+l,j-I -Ti+l,j +Ti+l,j-I -T'i+l,j) (4.23a)

where the diffusion coefficient, Dz, is given as:

AZj
Diz+''j-' = 2 .[kef--/-_-]

L _ Sm ]i+l,j

AT"j -1 ]-1

+ {keff" _ |

_, sm/i+l,j_ 1 ]

(4.23b)
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The heat flux between the mushy cells (i,j) and (i,j-1) of Figure 4.6 is calculated in a

similar manner, except that the effective thermal conductivities of the mushy cells are

calculated using the parallel model (see APPENDIX A, Equation A-45):

_ * ,,_eft, * )(keffke,_f = Yi,j tKSm )i,j + (1 -- Yi,j Lm )id (4.24)

Similar treatment is applied to the discretization of the heat fluxes at the boundaries of the

wick cells. Even though the derived procedure is based on a one-dimensional analysis of

the melting front location, it is quite capable of predicting the shape of the liquid-solid

interface of truly two-dimensional problems, as will be shown in the solution benchmark

section of the thesis (Chapter 5).

4.1.4. Heat balance at the Liquid-Vapor Interface

Making use of the no-slip condition at the L-V interface and neglecting the Marangoni

effect, the enthalpy jump condition (3.18a) reduces to:

_,v_ _,rL: (0V+ mhV)_((_ + mhL)= A_, r , (4.25a)

where

Ar'r :[ 1 l m3(egL) 2 9 2 2 + 2IgVc3UrVL_vc3r EpLgL_U_lmc3r (4.25b)

The conductive fluxes in Equation (4.25a) are discretized as:

0r v:DV['I'Nv,j-_'intj] , and

0r L : DL[_'intj-Til,j ] ,

(4.26a)

where the diffusion coefficients are:

D v 2kNv,j L 2kil,j- , and D r -
ARNv ARil

(4.26b)
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Finally, the enthalpies h L and h v in Equation (4.25a) are evaluated explicitly at the

saturation temperature of the vapor Tsat(F'v).

4.1.5. Coupling of Enthalpy Jump Condition with the Kinetic Theory

Relationship

In the first algorithms tested (Algorithms A and B), the evaporation/condensation mass

fluxes in the energy jump condition Equation (4.25a) are evaluated explicitly, from the best

available estimates. Because of the sensitivity of the evaporation/condensation rates to the

interfacial temperature Tint, the stability of the algorithm is enhanced by implicitly coupling

the kinetic theory relationship and the energy jump condition in Algorithms HPTAM-PISO

and HPTAM-Revised.

The evaporation/condensation mass fluxes are governed by the kinetic theory, Equation

(3.23). For convenience, this relation is rewritten here as:

mj- - _13[PNv,j-Psat(_'intj)]=W(_'intj,PNv.j ) ,
(4.27a)

where

(4.27b)

Equation (4.27a) is linearized in terms of the interfacial temperature corrections as:

m] _ --'* _qJ_ int'j+1 ___mj + Ot T ,
c)T int

(4.28a)

where

m_ = qJ(I"mtj,Pyv,j). (4.28b)

and
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aT int "I'int_
dT +

2_ (4.28c)

The right-hand side of the enthalpy jump condition Equation (4.25a), a polynom in m, is

linearized (the coefficients in squared brackets appearing in Equation 4.25b are evaluated

explicitly) as:

[ ;*; ]A _'n+l = AExp + O_AIMp Tint'; , where

----r --J J LaTint '_]

AexP=(COEV,+COEF,)m_ a'pP=COEVl+3COEV3
__2_.,

, _, O;m,_( )_,,
COEF 1

t J_- Nv,j ARNv ARiL

and

mj

-.+ 2 PiL,j

iL,j

COEF 3 = . 1 1

E_)iL,j )2 (PNv,j)2

*

(4.29)

The enthalpy jump condition (4.25a) is implicitly discretized and rewritten as:

( _)o+,( _)n+,_,rv__r L= (_V+NhV _ 0 L+Nh L =A_'n+l , (4.30)

By using Equations (4.26a) and (4.28a), the radial energy fluxes at the L-V interface are

discretized as:

F'rV= m_ +o_--_-ntT,nt j h v +DV[TNv,j-I"int;]+c_DV[T'Nv,j-Tint]]

[__., ( aq"_ /] DrL[_, ntj _ ,_,i,L,j TiL,j['rL= mj +Or a--_-_ntTint] h E + ' * ]+o_DL[Tint;- ' ]

(4.31)

The substitution of Equations (4.29) and (4.3 l) into Equation (4.30) allows to express the

liquid interfacial temperature corrections in terms of temperature corrections for the mass

cells as:
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_rint;--AINTj[_T;Lj]+BINT,[_T.v,]+CINTj
DL Dr_

=_ , BINTj-
AINTj DINTj DINTj

, *

CI_T,OI_T,[_(hV.t)

and

, where

~* - • * -* • * EXP
+ Dv (TNv,j- Tlntj)+ DrL(TiL,j- _" mtj )-Aj ]

DINTj = D L + Drv Oq'J; AIjMp)a_in_(h)'-_L-

(4.32)

Equation (4.32) is used to eliminate the interfacial temperature corrections in Equations

(4.31), so that finally the radial energy fluxes at the L-V interface can be expressed in

terms of temperature corrections for the mass cells only as:

'v_n+l : AINTV [txT'iL j]+ BINTV[ot, T'Nv j] + CINT v
--r jj , , ,

(f.rL j)n+l = AINT_[IT.T;L,j]+ BINTL[o_T,Nv j' ]+ CINT L , where

[ 0qJ; Dv] AINTj ' [ _"T_nt Dv] BINTj+Drv 'AINTV = h v O--_nt B INTV = h v c)_;

[ -C)fftJ_ '* V+Dr (TNv,j__,lntj) ,CINTV = hV 3--_nt Dry CINTj +mjhj V-* • *

c3_ L L BINTL hL c3-_-nt + DL BINTj ,AINTL= h Lc3-_nt+Dr AINTj-Dr , =

__ ] L - * -*
Oq'J; "* L Dr (Tintj- TiL,j )CINTL = hL 3Tint + DL CINTj + mjhj +

(4.33)

Finally, the interfacial convection-diffusion energy fluxes in the discretized enthalpy

conservation Equation (4.10) are expressed as:

(_ ]n+l /~v_n+l
r]Nv, j :(rr )j

(_ ,_n+l z~ Lxn+l
r]Nv. j :(rr)j

for the mass cell (Nv, j), and

for the mass cell (il,j).

(4.34)
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Notethatin themodelthevaporis assumedto besaturatedsothatthereis noneedto solve

theenergyconservationin thevaporregion. In thatcase,theradialconductionflux in the

vaporis neglectedin the interfacialenthalpyjump condition(Equation4.30),whichresults

in zeroBINT, BINTv andBINTL coefficients. FromEquation(4.33), it canbeseenthat

the interfacial convection-diffusion energyflux on the wick side becomesan implicit
functionof thewick cell temperaturecorrectiononly.

4.1.6. Modeling of the Condenser Cooling Jacket

For the case of a condenser cooled with a water jacket, a column of cells (i=Nr+l) is added

to model the water flow in the jacket (Figure 4.1b), which extends from (j=Nadia+l) to

(j=Nz). The flow enters the jacket with a constant mass flow rate _J and temperature

Tin J. Properties of the cooling water (density p J, heat capacity Cp J and thermal

conductivity k J) are assumed to be constant. For a cooling water cell (i=Nr+l), the

discretized Equation (4.10) reduces to the following form (the jacket is thermally insulated

externally):

V°li,j J n+l _T n / - \n+l / - \n+l / ~ \n+l
At (pCp)i,j(Ti'j i,j)-[ArFr)i_l,jW[AzFz)i,j-_Azrz)i,j_ ' =0. (4.35)

Introducing the convective heat transfer coefficient H J and the jacket inner wall temperature

T W, the radial energy flux at the inner wall can be expressed as:

(_ _n+l /-\n+l 'rNr,j-"F_ V j(_N ,_i,j)
rlNr,) :(Qr)Nr,j =kNr'j ARNr/2 -Hj

(4.36)

The equality in Equation (4.36) is used to eliminate T w in the radial energy flux so that:

(_ / n+l :(ARnr

rJNr,j _ 2kNr.j
,/-1__ + _ [_,n+l

Hj [ i-l,j- i,j ]
(4.37)

Since heat transfer along the cooling jacket is dominated by convection, the convection-

diffusion energy fluxes 1-'z across the faces of the jacket cells are discretized using the

upwind difference scheme (Patankar 1980) as:
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[(' ] i,j i,j -n+l
, _ ,n+l 3I" m J )i,j/AzFz)i, j ___mJ__Azk___ z h J +o_c_r'i, j +A z Dz [Zi, j ,i,n+l ]-- li,j+l], (4.38a)

where the diffusion coefficients are defined as:

(4.38b)

At the entrance of the cooling jacket, the axial energy flux is expressed as:

- ,n+l A k 3I" i D_,Nadia[TinJ _'i'n+l ], (4.39a)AzFz } = mJh - -- -= mJhJ (TinJ ) + Az "i,Nadia+l
/i,Nadia z C)Z

where the diffusion coefficient at the entrance is:

Di,Nadia = kJ
Z

AZNadia+ l / 2
(4.39b)

Finally, the axial energy flux at the exit of the cooling jacket is expressed as:

,n+, I(; J 1AzFz)i Nz -= mJ_l = mJ hJ + °¢CpTi'Nz "
, i,Nz

(4.40)

4.1.7. Thermal Boundary Conditions at the Walls

In the case of a cylindrical heat pipe, the vapor centerline boundary (r=0) is a line of

symmetry. Also, the heat pipe end caps, z=0, and z=Z(Nz), are thermally insulated

(Figure 4. la), so that:

f-/"*' (t/"*' =(f-/"*'
rlo, j = 0 , and _ z]i,0 I z]i,N z = 0

(4.41)

The radial wall boundary condition (IV) delineated in Figure (3.1) can be either isoflux,

isothermal, radiative or convective, and is applied independently in the evaporator,

adiabatic section and condenser. In this subsection, i=Nr and AX stands for ARi/2. The

radial energy flux leaving the wall cell (i,j) by conduction can be expressed in terms of the

outer wall temperature T w, as:
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~)n+l = ,_-,n+l -Fr-i, j ki d i,j AX-TF (4.42)

a. Isoflux thermal boundary condition

~)n+l
In the case of a given radial thermal energy flux, ,F r,i,j is simply equated to its specified

(explicit) value.

b. Isothermal boundary condition

In the case of a given outer wall temperature T w, Equation (4.42) is used as it is to express

the radial thermal energy flux.

c. Radiative boundary condition

In the case of a radiative boundary condition, we have formally:

_j [(w44](-)n+l 'i'n+l -- "i"W
rr,i, j :kid _ -((3eF)rad Tj ) -Tsp

(4.43)

In order to eliminate T W in the radial energy flux, we must linearize the right-hand side of

Equation (4.43). Because of good thermal conductivity of the container metallic material,

the temperature drop across the wall is relatively small, so that we can write:

(4.44)

To a first approximation, this gives:

(_'F) 4 : ("['i,j __ _,_)4 = (_'i,j)4(1-- _T14 _ (Ti,j)- 4(1_ 4 _"T,,jJ
(4.45)

If this approximation (Equation 4.45) is used to eliminate the fourth power of the wall

temperature in Equation (4.43), we find that:
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[_+4__j_o_F_ra_]_--_O_F_rad[_4j-Ws4] (4.46)

so that the radial energy flux at the wall can be expressed as:

[ 1-'r/i, j ((yE_Z) rad b -- ,ki, j '

(4.47)

(4.47) is linearized around the best estimate q'_,j in terms ofEquation temperature

corrections:

[ 12,:4_w_ __X(_;,__T [_,,](Fr')n+l -1,j -sp *~* 2Ti,j •

/i,j --D--E-N_O'-_ + DENOM Ti, j ki,j DE-_-M' '

_ 1 4 AX _,.3
where DENOM* (oEF)raa + ki,J _,j

(4.48)

Finally, the energy conservation discretized Equations (4.10) can be written in terms of the

mass cell temperature corrections in the following form:

apTjT'i,j + aETjT'i+I,j + awTjT'i, -l,j + aNTjT'i,j+I + asTjT'i,j-I = ST',,J , (4.49)

for i=l to NrMAX, and j=l to Nz (NrMAX=Nr+I for the case of a condenser cooling

jacket, Nr otherwise). We obtain by construction:

aW T,,j= aNON _ = aS_, = 0

aET_MAX,j=O for j=Nadia+l to

aE_r,j =0 for j=l to Nadia,

a TSN_.l.N,dia+_ = 0 for a cooling jacket

Nz,

and
(4.50)

Equations (4.49) are solved for mass cell temperature corrections using the very efficient

iterative Strongly-Implicit-Solver (SIS) (see Section 4.3). The interfacial temperature

corrections are then computed from Equations (4.32), and the new tilted

evaporation/condensation rates are obtained from Equation (4.28).
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4.1.8. Radial Momentum Conservation Equations

After multiplying Equations (3.2) by the porosity E, integration of these equations leads to

the following discretized form:

V°i_[p_U_+l-p_U_]-+- DIAG_J0_ +'
At

/i+l,j i,j i,j --_ z Rz ,]i,j_ I '

(4.51)

where

EXPLi/_=_: ol, 13rFr (ART+q+_i)/2 -_Vol r (ARi+, +ARi)/2

.i i,j Uz -Uz _,_i,J-_ Uz -Uz

+B OvR x(A +7, /2 .

and

"_r r j+2p., III '
\Vol_ y

Z i Rcelli+ I

SIS_ : 2n I dz I dr = (2;zAZ,) Log_ Rcell.+,
vo_ z,__ R_., r Rcell i

with

The magnitude of the mass flux at the radial velocity location (i,j) is consistently

extrapolated as:

jG, Ir,J -, 2 i -* 2= [Gr ]i,j + [q)ir ((3Zz)i,j + (I - q)r)(Gzz)i+l,j ] (4.52)

At the velocity locations, the dynamic viscosities are extrapolated as follows:

• " ARi + ARi+I i j ATj + zkZj+ 1

_t_r'j= AR i ARi+ I , and _tz' = AZj AZj+ I
+ +

_i,j _l'i+l,j [.l.i,j _li,j+ 1

(4.53)
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Thedynamicviscositiesatthegrid verticesaregivenby:

• . AT.j + A7]+ 1 inside the domain, while
B_JRTx = AT, j AZj+ 1

: + .i,j+l
plr 'J Br

i,0 i,l . i,Nz . i,Nz liNI,j = IINI,j
P'VRTX = _r ' IAVRTX = btr , I-_VRTX r-z ,

0j
and B_;RTX =0 on the grid boundaries.

(4.54)

The last identity holds for a cylindrical heat pipe since there is no shear stress along the

vapor centerline (symmetry axis).

It has been long known that, though not detected by von Neumann stability analysis, a

behavior very much characteristic of numerical instability can occur if the choice of grid

spacing permits the convective transport to dominate the diffusive one (early fluid codes

were limited to low Reynolds numbers). This physical implausibility has been identified

by Patankar and Spalding (Patankar 1980) as the positiveness of non-diagonal coefficients

of the matrix. The same authors refer to their proposed remedy as a high lateral flux

correction. While the much used donor cell representation is numerically dissipative, the

high lateral flux correction is derived from the exact solution of a theoretical steady-state

one-dimensional flow with constant properties, and is physically more satisfactory (see

APPENDIX C-l). In this work, the convection-diffusion momentum fluxes FRr and l-'Rz

across the faces of the radial momentum control volumes are discretized implicitly using the

power law approximation of the exponential scheme of Patankar (1980) as:

(_. F+, 1G O, 2B30_ l{_j. ] [Fg_Lj].+, FPAT(Pe_)D_I[O__,, j -..,.+,= - = up]I Rrli,j E Or E k mli,jt_ ] + - '

O0 r 1 -,
[I-" '_n+' _!GzOr__ . = (GRz)i,j[O:'J
I Rzli.j E OZ E

]"+' + FPAT(PeR_) DR_[0i, "j-U,- i'J+' "+'] ,

where the diffusion and Peclet coefficients are defined as:

DR_- 2Bi.j , Pe_i-
AR i E D_._

i,j

DRJ : B VRTX i,j

(AZj + AZj+,) ! 2 ' PeR_

, and

(4.55)
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ThefunctionFPAThastheform (Patankar1980):

{/_--_MAX 0 1- +MAX{0,-Pe}FPAT(Pe) = e_ 21 (4.56)

Along the axial boundaries of the domain, the convection-diffusion momentum fluxes FRz

have the following form:

-,.+, OOr ,0 [0i:]"+'-°
FRz)i,0 =- g _ -= gvwrx 6Z 1/2 p:ln+'

z- \n+l O_Jr .i,Nz 0 - [I_'!ir'NZ ] n+l

_= _ = l__i,N z ]n+l
(rRz)i, Nz g c)Z 'UVRTX AZNz/2 _Rz [uir 'yz •

(4.57)

The form of the radial momentum conservation equations in the vapor region is identical to

that in the wick region where the volume porosity, E, is taken as one, and the radial

permeability, Kr, is infinite. Finally, the discretized form of the radial momentum

conservation Equations (4.51) is written in terms of the radial velocity corrections in the

following form:

aP_ j(U' r )i,j + aE_'J ( U'r )i+l.j + aW_'J (U'r )i-l,j + aN_ ,(U' r ] + aS_ ,(U' r ] = St-' 'J\ /i,j+l 'J_, /i,j-1 l,J ,

(4.58)

for i=l to Nv-l, i=iL to NL-1 and j=l to Nz. Note that Equation (4.58) does not apply

at the L-V interface (i=Nv). At this particular location, the evaporation/condensation rates

are governed by the kinetic theory of gases, Equation (3.23). However, the interfacial

radial velocity corrections appear in equations (4.58) and must be treated correctly. Of

course, we have by construction:

r r
aENI_I, j = aWl, j = aN_,Nz = aS_, I = 0 (4.59)

During the radial momentum predictor step, Equations (4.58) are solved for the radial

velocity corrections. In this case, the interfacial radial velocity corrections are evaluated
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explicitly, using best available estimates. After computation of the radial velocity

corrections, the radial mass fluxes are updated using the following corrections:

G' r =p_U' r (4.60)

4.1.9. Axial Momentum Conservation Equations

After multiplying Equations (3.4) by the porosity e, integration of these equations leads to

the following discretized form:

Vol z i- *..n+l

At [PzUz -p_"U_] + DIAG_qJ_ +_

-, ,, , ,, "°" r+'= EXPLi_

(4.61)

where

I r':J+'-r':J ] - 2 v°'' [_d_v(O)]i'l- [od_v(O)]ij

- i-l.j+l - i-l,j

-i.j+l -i,j U'r-"J - 2 U'r-- .1i,j i.j Ur -Ur "_i-l,Jl i i-l, j

+ X, gVRTX(Az----_+_uZ2i/2 "'r _VRTX(Azj+_ +AZj)/2J' and

D,AG_,: _Vol,FU,+c_%&'"l
LK, _ ,2

The magnitude of the mass flux at the axial velocity location (i,j) is consistently

extrapolated as:

"" I ~* 2 J ~* * 2
(4.62)

The convection-diffusion momentum fluxes FZr and FZz across the faces of the axial

momentum control volumes are discretized using the power law approximation of the

exponential scheme of Patankar (1980) as:
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_ ].+, ,j[0:j_0:,j]n+,[_., _n+, !GrOz_ _!.--_ (3Zr)[0; 'j +FPAT(Pezl)Dz,t z,h.j c 3r _.J

~ \n+l a0 z 1 -, -i.J-,"*' FPAT(Pez_)DzJz[U,z, >l U;';] ,F'zz),.j =lGz0z-a_t -(Gzz),j[U , ] + ..... __ .,,+,e 3z e

(4.63a)

where the diffusion and Peclet coefficients are defined as:

(-')i.j 1 Gz'
D_ = _tVRTX , pezl __ i.j and

(AR i+ARi+')/2 e Dzl '

DzJ- 2bti,j , Pez_-
Azj c D_'

(4.63b)

Along the radial boundaries of the domain, the convection-diffusion momentum fluxes FZr

have the following form:

-,°+, aoz o,_[°';']n+'-o •
FZr )O,J _ "-_F- "VRTX ARi/2 = -D°'rJ [Olz'J]n+l ,

,-,°+, ao_ ,,_,,,o-[Oz_"']"+'__ _ = _N',,[0_',,]°+'
/FZrJNI,J !it 0F I'_VRTX ARN1 / 2 _Zr •

(4.64)

The form of the axial momentum conservation equations in the vapor region is identical to

that in the wick region where the volume porosity, c, is taken as one, and the axial

permeability, Kz, is infinite. At the L-V interface, the flux 1-'Zr has different expressions on

the vapor and liquid side. The interface is assimilated to a wall axially (no-slip condition),

but the radial mass transfer must be accounted for. The fluxes FZr have the following

expressions at the L-V interface:

-L \n+l _[1 _ {_0z] L
Fzr )Nv,j OrUz 3r Jim

= 1 (Gzr)Nv j[OkL'J, ]n +i - FPAT(Pe L'rJ) nL'J [i'liL'j -- O] n+l,""Zr ['-'z

(4.65a)
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-v,"÷' [ a0z] vrzr)Nv'j= GrOz- int

--(Gt
/Nv,jt z j

FPAT(peVr j) DV_J[0 - 0Nv'j] n+' '

(4.65b)

where the interfacial diffusion and Peclet coefficients are defined as:

• giL,jz pezkr j _ 1 (GZr)Nv J

DZLrJ- ARiL/2 ' e. DLr j

• gNV,jz peVr j _ ((3Zr)Nv,j
DViJ - ARNv / 2 Dzr' v,j

and

(4.65c)

Finally, the discretized form of the axial momentum conservation Equations (4.61) can be

written in terms of the axial velocity corrections in the form:

aP zj(U;)i,j + aEZ'J (U;)i+,j +aWZ (U'] + aNZj(U'z)i,j+l + aSZ,J( U'z)` j-I = Sz' , 'Jk z]i-l,j , l,J '

(4.66)

for i=l to NL and j=l to Nz-1. Note that the vapor (i=l to Nv) and liquid (i=iL=Nv+l to

NL) regions are decoupled since we assumed a no-slip condition at the L-V interface

(Equation 3.17). We have by construction:

z = aWZL,j = 0 andaENv,j

aE_l,j =aWf, j = aNZ, Nz_l = aSZ,1 = 0

(4.67)

During the axial momentum predictor step, Equations (4.66) are solved for the axial

velocity corrections. Then, the axial mass fluxes are updated using the following

corrections:

O'z =p_U' z (4.68)
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4.1.10. Mass Conservation Equations

The solution of the mass balance equations is the most essential step for resolving the

pressure-density-velocity couplings in the liquid and vapor regions. A combination of the

continuity equations and of an approximation of the momentum conservation equations is

used to formulate the Poisson equation, which is solved for the pressure corrections. The

discretized forms of the radial and axial momentum conservation Equations (4.58) and

(4.66) are derived as described in the previous sections, using the most recent updates of

the new-time pressure and velocity fields. It is apparent that solution of these equations

leads to the correct new-time velocity field only if the pressure field is correct. Since it is

not usually the case, the velocity and pressure fields are corrected simultaneously so as to

satisfy the following momentum correction equations:

aP[ :(U'r/ + aE[j(U;/ + aW[,(U;/ + aN[j(U;/ + aS[,j(U'r)i,j_ 1'J\ /i,j ' \ /i+l,j 'J'_ /i-l,j ' t /i,j+l

_ S r " _ _;iOVolir, j P'i+l,j - P'i,j

-- ,,j (ARi+I +ARi)/2 '

(4.69a)

aPZ'J (U'z)i,j + aEZ'j(U'z)i+kj + aWZ (U']"Jk z/i-,,j + aNZ'j(U'z)i,j+l + aSZj(U'z)i, .j-,

= S z ' _ Ei0Vol_, j Pi,j+l - Pi,j

"J (AZj+ 1 +AZj) / 2

(4.69b)

The local volume porosity, _i, has been introduced into Equations (4.69) so that the form

of these equations applies to both the vapor region and the liquid-wick region. The local

volume porosity, q, is simply defined as:

Ei : 1 if i < Nv (vapor region),

ai =E if i>iL=Nv+l (wick region). (4.70)

In order to form a pentadiagonal Poisson equation and avoid costly matrix inversions, the

off-diagonal velocity corrections in Equations (4.69) must be eliminated. In the SIMPLE

algorithm, these corrections are neglected. This approximation is used in Algorithms A and

B. The SIMPLEC (SIMPLE-Consistent) procedure of van Doormaal and Raithby (1984)

assumes that the off-diagonal corrections are equal to the diagonal correction. This is a

consistent approximation of the momentum correction equations, which does not require
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any pressure under-relaxation (APPENDIX C-5). When diffusion and convection

phenomena are dominated by pressure gradients and source terms, the consistent

approximation in SIMPLEC becomes exact, and hence this procedure should be used.

Furthermore, SIMPLEC performs as well or better than SIMPLER in terms of CPU time

and storage requirement. Indeed, when the SIMPLEC approximation was used in the third

Algorithm HPTAM-PISO in place of the SIMPLE approximation, it resulted in greater

numerical stability and much faster convergence rates. Therefore, the SIMPLEC

approximation was selected for Algorithm HPTAM-PISO. The SIMPLEC-approximated

momentum correction equations take the following form:

t f

[aP_,j+aE[,j+aW_,j +aN[,j+aS_,j](U'r)i,j-sr--Ei0Volir'J Pi+l'J-Pi'J (4.71a)

[aPZj + aEZj + aWZj + aNZj + aSZj](U'z)i j =S z ' _ EiOVol_, j P'i,j+l- P'i,j (4.71b)

The velocity and mass flux corrections are related by:

G'r=P_U' r and G'z=pzU' z (4.72)

At the L-V interface, the liquid and vapor radial velocity corrections are expressed in terms

of the evaporation/condensation mass flux corrections as:

u V (O;)Nv 
( ONv,----; (4.73)

When solving the continuity equations, the evaporation/condensation mass flux corrections

can be either neglected (as in Algorithms A and B), or written implicitly in terms of vapor

pressure corrections using the kinetic theory relationship (Equation 4.27a), as it is done in

Algorithms HPTAM-PISO and HPTAM-Revised. In this case, Equation (4.27a) is

linearized as:

where

(Gn+l)Nv j mj +1 G" --:--"" OqJ_ ,
, , , 0PNv '

(4.74a)
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and

-.. (-..-.)N,..j= mj = hu TIntj,PN_,j , (4.74b)

(G'r)N,, j -- _ 0----p_NP'N,',, -- _ _
(4.74c)

It is worth noting that the interfacial radial velocity corrections appear in the momentum

correction Equations (4.69) for the radial momentum cells (i=Nv-1) and (i=Nv+l).

Because the evaporation/condensation rates are governed by the kinetic theory of gases, we

found that a consistent approximation (Equation 4.71) causes relatively slow convergence

rates when it is used in the iterative Algorithm HPTAM-PISO. To remedy this problem,

Equations (4.73) and (4.74) can be used to implicitly evaluate the interfacial radial velocity

corrections in the radial momentum correction equations (i=Nv-l). The SIMPLE-

Consistent approximation is used for the other off-diagonal radial velocity corrections. In

the radial momentum correction equations (i=Nv÷l), the interfacial radial velocity

corrections are evaluated explicitly, after the pressure corrections in the vapor region have

been calculated using the following formulation:

(a) for i=Nv-1

[aP[,j + aW{,j + aN[,j + aS_,j](U'r)i, j :

S r . _ 0Volir, j P'i+l.j - P'i,j
"J (ARi+ 1 + ARi) / 2

(4.75a)

(b) for i=Nv+l

a r =aPi, j + E_,i +aN,.) aS,4 U_)i. )

p',+,_-p',_
s:,- _°v°l:"(A_ ='-="_/K,+,+_, j 2

r . L- aW,,(Ur)Nv,,•
(4.75b)

Indeed, when this procedure was used in HPTAM-Revised, in place of the SIMPLEC

approximation, it resulted in faster convergence rate and greater numerical stability.

Therefore, this SIMPLEC-corrected procedure was selected for Algorithm HPTAM-

Revised.
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Now that the radial and axial mass flux corrections G' r and G'z are related to the pressure

corrections by the momentum corrections equations, the mass balance Equation (3.1) can

be integrated as:

E i [/ . ,_n+l ": INJECT

_[tpvo,)i,j -(pVol)_j] - mj

,, ~ ,n+, ,' - ,,n+, ,, ~ ,n+, _,'Az_z,n+l(]
+[ArGr)i,j -tArGr)i-l,j+tAzGz)i,j si,j-I =0,

(4.76)

"z INJECT is the mass injection source for the liquid mass cells (iL,j). This term iswhere mj

used later in modeling the liquid pooling phenomena.

The transient term is linearized using the Taylor series linearization. The resulting equation

can be written as:

Eil- ,

_--tL V°li'j (P* + p' )i,j + P;,jV°l'i.J 1

+ Ilt[(ArG'r)i.j - (Ar(3'r)i_l,j + (az(_'z)i,j - (Az(_'z)i,j_l ]

-* _ Ar_* + AzG z - +
=- ArGr i,j r i-l.j i,j i,j-1 mj .

(4.77)

The equations of state are linearized to express the density corrections in terms of the

pressure corrections as:

-°+' " " , w e,e
Pi,j = Pi,j + Pi,j = Pi,j + _,_)P,)T

p:,j=p(P:,j,T:,j) and (_)P']* =(c3P / (P:,j,T:,j)
_°_PJT _ T

(4.78)

The volumes of the mass cells are kept fixed (independent of time), except those adjacent to

the L-V interface (Equations 3.20-3.22). In the case of a concave liquid meniscus, there is

some vapor in the wick, and the change in the liquid and vapor volumes adjacent to the L-

V interface due to the variation of the cosinus of contact angle can be expressed in terms of

the wick void fraction as:
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_vo,,Lj---v_(_;)j
_(_p)VO1Nv,j -= V J

(4.79a)

(4.79b)

The wick void fraction is geometrically related to the cosine of contact angle of the liquid

meniscus through Equation (3.21). This equation (technically its approximation, Equation

3.22) is linearized to express the wick void fraction corrections in terms of the cosine of

contact angle corrections as:

_°+'_=(4)_+(_p)j--(_;)_ (_c)_ (4.80a)

where

(c_;)j=O_p(IU<)j, and _.-_-_-g_) =(_g-_-g_){g_)j
(4.80b)

The radial momentum jump condition, Equation (3.15), is used to relate the wick void

fraction to the pressure corrections. This relationship is implicitly discretized as:

(, 1)(mn+,;(Pi+l- P_/+l)+ 2_pp _n+l -t- E_L PV

= 2 gt. c)_-- gv Or J - 5 ILLdiv 0 L - gv div 0 v .

(4.81)

After linearization of the square of the evaporation/condensation rate, Equation (4.81)

relates the corrections of the cosine of contact angle of the liquid meniscus, lac', to the

pressure corrections and evaporation/condensation rate corrections as:

(PLj - PNv,j) + 2_p/[uc)j +0 (p,mj_

(, -_-. ]
(4.82a)
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where

{[. [.iL,j Nv.j

(4.82b)

Finally, Equation (4.74) is used to eliminate the evaporation/condensation rate corrections

in terms of the vapor pressure corrections, which gives:

Rp

COEFin t = 1- 1 1 2_m_

gPiL,j PNv,j 4Tin,

JUMPin t = EXPLin t -I(Pi*L,j- P;v,j) + 2"_p (_'2)j]- ('£_!L j

with

and (4.83)

.' l[m;]
PNv,j

In Equation (4.82) it is apparent that the radial momentum jump source term JUMPint goes

to zero upon convergence of the new-time fields.

Finally, by substituting Equations (4.80) and (4.83) into Equations (4.79), the corrections

of the liquid and vapor volumes adjacent to the L-V interface can be expressed implicitly as

linear functions of the pressure corrections as:

.... COEFintPNv,j - PiL,j + oJUMPint ,
' P_, 0gc )j 2cj

= -- COEFintPNv,j - PiL,j + oJUMPint •Vol' ,,j "t Jj 2 ,j

(4.84)

Now it is possible to express all mass flux corrections and advanced-time volumes and

densities in terms of pressure corrections, so that the discretized mass balance Equation

(4.77) reduces to the following Poisson equation:

aPi°,J(P' )i,j + aEiO,J(P' )i+,,j + aW_j (P')i-,,j + aNiO,J( P' )i,j+, + aSi°,J( P' )i,j-, = Si°,J+ mlNJECT'
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for i=l to NL and j=l to Nz.

We have by construction:

(4.85)

aE_,.j = aW_j = aN_.Nz = aS_., = 0 , (4.86)

since the normal velocity components cancel on all solid boundaries and symmetry axis

(r=0 for a cylindrical heat pipe). The Poisson Equations (4.85) are solved for the pressure

corrections using a direct banded Gauss-elimination solver (with normalization and partial

pivoting). The use of the SIS iterative solver of Lee has proven to be very inefficient for

this type of elliptic linear system, even with strong relaxation (see Section 4.3).

At this point, it is useful to make the following observation. Since the evaporation/

condensation rate corrections are functions of the vapor pressure corrections only (see

Equation 4.74), the Poisson equations in the vapor cells are coupled to the liquid pressure

corrections only through the implicit discretization of the volumes of the vapor cells (i=Nv)

(Equation 4.79b, or 4.84), as it is done in Algorithm A. This coupling, however,

introduces a non-dominant component to the Poisson linear system, which is responsible

for the poor stability characteristics of Algorithm A. Fortunately, the coupling in question

is found to be particularly weak because the volume of vapor in the wick is a very small

fraction of the vapor core volume, and represents an insignificant fraction of the working

fluid inventory in the heat pipe. Therefore, it is very advantageous to evaluate the volumes

of vapor cells adjacent to the L-V interface (i=Nv) explicitly in the mass balance equations.

This is accomplished in Algorithms B, HPTAM-PISO and HPTAM-Revised by replacing

Equation (4.79b) with the following equation:

VOlNv,j = 0 (4.87)

While this simplification does not affect the accuracy of the solution, it permits decoupling

the Poisson equations in the vapor and liquid regions (aE_v,j = 0), hence increasing the

stability of the algorithm, and reducing the amount of CPU time (the CPU time required to

solve a system of NLxNz linear equations with the banded Gauss-elimination solver is

proportional to NL2-67x Nz). The saving in the CPU time is particularly evident when

internal iterations are needed for the convergence of the mass injection rates, m_ L°°D to

account for pooling of excess liquid.
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Now, the new algorithm is as follows. The Poisson Equations (4.85) are solved in the

vapor region (i=l to Nv, and j=l to Nz) for the vapor pressure corrections. Then the

evaporation/condensation rate corrections are calculated using Equations (4.74), and the

radial interfacial liquid velocity corrections appearing in Equations (4.75b) can be evaluated

from Equations (4.73). At this point, the Poisson Equations (4.85) are discretized in the

liquid region (i=iL to NL, and j=l to Nz). In the equations for the liquid cells adjacent to

the L-V interface (i=iL), the vapor pressure corrections are known and treated explicitly:

aPiPj(P')i,j + aEiP, j(P')i+l,j + aNig, j(P')i,j+l + aZiP, j(P')i,j_l = siP j- aWiP, j(P' )Nv, j + mlNJECT"

(4.88)

Once the liquid pressure corrections are obtained, the corrections in the cosine of contact

angle, btc', are calculated from the radial momentum jump condition, Equation (4.83), and

the advanced-time tilted cosines of contact angle are obtained as:

_n+l -* 0g'c (4.89)c =gc +

4.1.1 1. Vapor-Wick Interfacial Model

During the startup of heat pipe from a frozen state, several interfacial conditions may occur

at the wick-vapor interface, such as: solid-vapor interface sustaining sublimation or

resolidification of working fluid, liquid film on a frozen substrate in the vapor core, liquid-

vapor interface sustaining evaporation or condensation of working fluid and a concave

liquid meniscus in the wick, and a receded liquid-vapor interface in the wick sustaining

maximum capillary pressure head. The way the model recognizes and treats these different

interfacial conditions is described in this subsection. First, we introduce the radial location

of the liquid- / solid- vapor interface, Rint. The volumes of the frozen and liquid phases in

the interfacial wick cell (iL,j) are given respectively as:

Vol_ L'j =YiL.jVoI[L_ j , and Vol_ 'j =(1- 7iL,j)Vol_ j , (4.90a)

where

VOliLL_ j = ET_[(Rwk + ARiL) 2 -- (Rint)2]z_Zj - _pVpJ j , when R_n t >_ Rwk, (4.90b)
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Vol_J=_[_Rwk+_R,L_2-R_k]_Zj
when R_nt < Rwk .

(4.90c)

In a partially thawed wick, there are three different axial regions: (a) a fully-thawed

region, with RintJ > Rwk; (b) a liquid film on a frozen substrate, extending from j=Nmush

to j=Nlast; and (c) a solid region, whose radius RintJ < Rwk (Figure 4.7).
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FIGURE 4.7. Numerical Grid Layout of Heat Pipe Wick During Startup from a

Frozen State.

The liquid film thickness is determined based on calculated liquid volume fractions in the

interfacial wick cells. In the transition zone between regions (a) and (b) (Figure 4.7), the

interfacial cells incorporate liquid film at the top, intermediate solid, and liquid substrate

(j=Nmush to j=Nfirst-1); in these cells the model does not differentiate between the liquid

film at the top and the liquid substrate. Therefore, to estimate the thickness of the liquid

film in these interfacial cells, the film thickness is assumed the same as that calculated in the

first cell incorporating only liquid film on a solid substrate (j=Nfirst).

In region (a) of Figure 4.7, the liquid and vapor phases are coupled through the momentum

jump condition (or capillary relationship), using Equations (4.82)-(4.84). When the

calculated cosine of contact angle is greater than 1, which is a sign of recessing liquid in the
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wick, themaximumcapillary pressureheadis assumed,by usingEquation(4.82)with a
radiusof curvature,Rc, equal to the effective pore radius of the wick, Rp (in that case, Otp

and lac are unity). The mass balance in the interfacial cell is then used to determine the

radial location of the liquid level, Rint, in the wick. This treatment is also applied to the

liquid film (j < Nlast) where Rint j > Rwk.

In region (b) of Figure 4.7 where Rint j < Rwk, the coupling between the vapor and liquid

film is treated the same as in region (a), except that the L-V interface is flat; thus Equation

(4.82) is used with an infinite radius of curvature (in that case, 0_p and _tc are zero). The

mass balance in the interfacial cell is then used to determine the location of the vapor-film

interface, Rint. The film thickness depends on the rate of condensation at the L-V

interface, rate of liquid drainage from the film in region (a), and melting rate at the L-S

interface of the substrate. The liquid film thickness is used to determine the radial thermal

resistance of the film and the drag between the film and the solid substrate. The flow in the

liquid film is treated as a one-dimensional flow with a non-slip boundary condition at the

L-S interface and a slip boundary condition at the L-V interface.

Finally, in the interfacial wick cells in region (c) of Figure 4.7, which extends from

j=Nlast+l to j=Nz, the solid substrate temperature is below the triple point, causing the

vapor to resolidify at the S-V interface. The radius of the S-V interface, Rint, is

determined from the mass balance in the interfacial cells.

4.1.12. Liquid Pooling Submodel

Whenever the cosines of the contact angles are positive, the L-V interface is concave and

the interfacial phenomena are treated as described in the previous sections, 4.1.10 and

4.1.I 1. However, as discussed in Section 3.6, it is possible that the interfacial shear and

the thermal expansion of the liquid phase cause the concave liquid meniscus at the L-V

interface to rise and flatten at some wet point (j) along the heat pipe. Such a condition is

recognized by the numerical scheme as:

:n+l_

(gc)j <- 0 (4.91)

The submodel incorporated into HPTAM to handle liquid-pooling phenomena assumes that

as the transient progresses in time, any excess liquid into the vapor core is swept by the
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vapor flow towards the end of

eventual concave menisci on its

liquid cell (iL,j) is wet (pooling)

the condenser, leaving a flat interface and filling up the

way. The flag WETj is introduced to specify whether the

or not:

WETj=0 if (_n+l)j>0

WETj = l if (_n+l)j <0

(4.92)

Also, jMIN and jMAX stand for the first and last wet liquid cells (iL,j), respectively.

Wherever a convex liquid meniscus forms in the heat pipe (WETj=I), the interface is

assumed flat at this particular location, by forcing the cosine of contact angle correction

equal to:

1_, if WEL=l (4.93)

The radial momentum jump condition at the L-V interface (Equation 4.82) is used to

calculate the pressure correction in the liquid cell (iL,j) next to the diphasic interface:

j ' _ .Pil,j=(COEFint)PNv,j+2GJl(!ITt_/ +ljuMPint if WETj 1 (4.94)
Rp 0 _ /j 0

Equation (4.94) replaces the discretized mass balance Equation (4.88) for the wet cell

(iL,j). The pressure Equations (4.85), (4.88) and (4.94) are solved for the liquid pressure

corrections in the liquid-wick region (i=iL to NL, and j=l to Nz), and the corrections of

the cosines of the contact angle are evaluated using Equations (4.83) and (4.93) as:

j ' JUMPin t
2¢YJ 0(_'c)j=(COgFint)0PNv,j-0P'ilj+ ,

Rp

'-*

if WETj =0 ,

if WETj = 1 ,

(4.95)

The advanced-time cosines of contact angle are updated using Equation (4.89).

During the iterative process, it is possible that new wet points appear, or that former wet

points disappear, so that the flags WETj must be updated using Equations (4.92).
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Similarly, themassinjection rates, m] NJECT, which appear as a sink term in the mass

balance, Equation (4.85), must be evaluated explicitly and updated, in terms of the mass

loss rates due to the removal of excess liquid from the wet liquid cell (iL,j), m FL°°D. The

latter are determined in terms of the pressure corrections using the conservation of mass in

the wet cells (iL,j). Because we force a flat interface at the boundary of these cells, excess

liquid is pooling into the vapor core in order to insure mass conservation. This mass loss

rate m FL°°D must appear as a sink term in the mass balance Equation (4.88). In the

discretization of this equation, we make use of the fact that the L-V interface is flat to

express the volume of the cell as:

IzVol_I;I=_;(AizAZj), if WETj=I (4.96)

Since at this point we know all pressure corrections, the mass loss rates are simply

determined as:

mFLOOD = SiP'J-aWiP, J( P' )Nv,j- [aPiP, J( P' )i,j + aEiP,J(P' )i+,,j + aNiP,J(P' )i,j+l + asPj(P' )i,j-I 1'

if WETj = 1,

m FLOOD = 0, if WETj = 0.

(4.97)

Now we introduce m TRz , the mass rate of liquid transported by the vapor flow towards the

FLOOD
end of the condenser (at axial velocity location j). Physically we always have InjMIN > 0

(unless all liquid cells are dry) and the wet cells (iL,j) form a connected set, from j=jMIN to

jMAX. The transport rate of excess liquid by the vapor flow can then be calculated as:

m_'Rz = _mk-__-FLOOD, for j e [jMIN,jMAX]. (4.98)
jMIN

There are now several physical cases to consider, depending on the values of the quantities
-- TRz

jMAX and mjMAX.
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"r TRz 0)CASE 1 (jMAX<Nz and mjMAX >

These conditions occur during the heating process of the heat pipe, before the wet point

reaches the end of the condenser. The mass of excess liquid transported by the vapor flow

is dumped into the next interfacial dry liquid cell (iL,jMAX+I). Therefore, the mass

injection source term for this cell is obtained from:

INJECT -. TRz
mjMAX+I = mjMAX (4.99)

All the other injection source terms are nul.

"r. TRz > 0)CASE 2 (jMAX =Nz and mjMAX

These conditions occur during the heating process of the heat pipe, when tile wet point

reaches the end of the condenser. After the L-V interface eventually flattens at the end of

the condenser, the excess liquid transported by the vapor flow accumulates in the vapor

core and forms a liquid pool. The mass rate of accumulation into the liquid pool is:

mPOOL ": TRz
= mjMAX (4.100)

":. INJECT
The size of the liquid pool increases with time (all the injection source terms mj are

nul). Conservation of mass in the liquid pool is expressed as:

Mn+l n

POOL -- MpOOL = m POOL , (4.101)
At

where MpOOL represents the mass of the liquid pool.

CASE 3 / n /__ ":-TRzjMAX = Nz, and Mp°°L < mjMAX < 0
At

These conditions occur during the cooldown of the heat pipe, when the liquid pool is

receding. As the heat pipe cools down, the average liquid temperature and volume decrease

due to thermal contraction, and the amount of excess liquid which accumulated at the end of
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thecondenser(liquid pool) is reduced. In this case, Equations (4.100) and (4.101) still

apply.

( n /"r TRz MpOOL
CASE 4 jMAX = Nz, and mjMAX < < 0At

These conditions occur during the cooldown of the heat pipe, just before disappearance of

the liquid pool. Because there is not enough fluid mass in the pool to preserve a flat L-V

interface at the end of the condenser (j=Nz), the liquid pool vanishes and the liquid

meniscus recedes at (j=Nz), that is, the liquid cell (iL,Nz) dries out (we mean that the cell

establishes a concave meniscus). For this case, the numerical treatment can become

extremely complex if more than one cell dries out at the same time (within the same time

step). Therefore, we assume, for simplicity, that the time step is small enough so that only
[ "r TRz

the last cell (iL,Nz) dries out. In this case _mNz_ 1 > 0], we have:

DRYNz = 1 ,

WETNz=0 , and

n

": INJECT "v.TRz MpOOL
mNz = mNz_ 1 +

At

(4.102)

All the other injection source terms are nul. The flag DRYNz is necessary to insure that

Expression (4.102) of the injection source term is used for all internal iterations within the

time step. Upon convergence for this time step, the pool vanishes and its mass is set to

[_n.n+l =0)zero _1,,, POOL

": TRz 0)CASE 5 (jMAX < Nz and mjMAX <

These conditions occur during the cooldown of the heat pipe, after the liquid pool has

disappeared. The liquid cell (iL,jMAX) dries out. For efficiency of the internal iterations,

we anticipate the mass injection source term for this cell to be:

WETjMAX = 0 , and

": INJECT ": TRz
mjMAX =mjMAX_ 1

(4.103)

All the other injection source terms are nul.
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v TRz 0)CASE 6 (jMIN >0 and mjMIN <

There is always the possibility that the first wet cell (j=JMIN) dries out. In this case, we

set:

WETjMIN = 0 (4.104)

Internal iterations are performed until the flags WETj and injection source terms converge.

Note that it is possible that several cells will dry out/wet within one time step.

The liquid-pooling submodel is rather sophisticated owing to the fact that it must identify

liquid pool recession and dewetting conditions during the cooldown of the heat pipe, and

incorporates both mass and energy transfer processes. For simplicity, we neglect the

kinetic energy of the liquid droplets carried by the vapor stream and the work developed by

the vapor to extract these droplets from the L-V interface. Therefore, conservation of

energy becomes a matter of conserving the enthalpy stored in the liquid droplets. The

power loss terms, @FLOOD, in Equation (4.10) are calculated explicitly in a manner

;V ,Oo consistent with the derivation of the mass injection rates mj . is the power

loss term for the liquid cell (iL,j), which accounts for the enthalpy of the excess liquid

pooling into the vapor core. We introduce @_'Rz, the power of liquid transported by the

vapor flow towards the end of the condenser (at axial velocity location j). These two

quantities are related by:

wTRz _ W_ LOOp, for k a[jMIN,jMAX] wherek _

jMIN

w_LOOD=m_LOODxhL(Tint;) >0 if mFLOOD>0,

- mTRz W__I z <0 if m_ °°D <0.
j-I

(4.105)

A positive flooding mass rate corresponds to the case of excess liquid pooling into the

vapor core, while a negative one corresponds to the filling up of the interfacial pores with

liquid droplets transported by the vapor flow (propagation of wet point). There are again

several physical cases to consider, after convergence of the internal Poisson iterations.
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-- TRz )CASE 1 jMAX < Nz and DRYNz = 0 _ mjMAX > 0

These conditions occur during the heatup or cooldown of the heat pipe, with no liquid pool
_7_TRz

at the end of the condenser. The liquid mass rate mjMAX transported by the vapor flow is

dumped into the next interfacial dry liquid cell (iL,jMAX+I). Therefore, the power loss

term for this cell is taken as:

_r FLOOD "r TRz
jMAX+l = -- WjMAX < 0 (4.106)

v TRz )CASE 2 jMAX = Nz and mjMAX > 0 _ liquid pool grows

These conditions occur during the heating process of the heat pipe, when the wet point has

reached the end of the condenser. The size of the liquid pool increases with time. The

enthalpy rate of accumulation in the liquid pool is:

_/POOL ,_TTRz
= "' jMAX > 0 (4.107)

S_ TRz )CASE 3 jMAX =Nz, and mjMAX <0 _ liquid pool decreases

These conditions occur during the cooldown of the heat pipe, when the liquid pool is

receding. For this case, we have:

wPOOL ": TRz n
= mjMAX hpooL < 0, and

_r FLOOD _¢ POOL X_! TRz
jMAX = -- "'jMAX-1 <0

(4.108)

_7_TRz )CASE 4 DRYNz = 1 _ jMAX = Nz-1, and mjMAX >0

These conditions mean that the liquid pool just vanished during the particular time step.

Because there is not enough fluid mass in the pool to preserve a flat L-V interface at the

end of the condenser (j-Nz), the liquid meniscus recedes at (j=Nz), that is, the liquid cell

(iL,Nz) dries out. We assumed that the time step is small enough so that only this cell dries

out. In this case, we have:
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MpooLn hpooLn < 0V POOL =-

At

 FLOOD  vPOOL , ,TRz
jMAX+I = -- " jMAX < 0

Mn+l hn+l
POOL =0 , "POOL =0

, and (4.109)

For the case of a liquid pool (jMAX=Nz, CASES 2 and 3), the new-time mass, enthalpy

and temperature of the pool are determined from mass and energy balances as:

1 r n+l
_-_-[M POOL -- M POOL ] = m POOL

1 [_,t-n+l i.,n+l

-_- ["" POOL" POOL -- M POoLh POOL ] = _ POOL

n+l
Tn+l = WL(hpooL )and *POOL

(4.110)

We assume hydrodynamic equilibrium at the vapor-pool interface to calculate the pressure

of the liquid pool:

Dn+l = _1 Nx.vai _n+l

"POOL _R2v i=l/-""_-zai,Nz (4.1 11 )

Finally, the liquid pool density and thickness are obtained as:

pn+l _ /_n+l _n+l )POOL -- PL_IPOOL,r'POOL , and

_/fn+l
A7n+ 1 l *'*POOL

z"xt_POOL = /rR2vN _n+lPPOOL

(4.112)

4.2. DESCRIPTION OF NUMERICAL SOLUTION ALGORITHMS

The code is written in Standard Fortran 77 and is easily implemented on any machine

supporting a Fortran 77 compiler. In the present effort, HPTAM was successfully

implemented on 386 and 486 machines running MS-DOS, machines running VMS

operating system (DEC VAX 6320) and UNIX operating system (Sun workstations, AIX-

RS6000 IBM, CRAY-YMP).
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Varioussegregatedsolutionalgorithmshavebeenconsideredto accomplishthecouplings
betweenthediscretizedequations.Thefirst algorithm(A) is non-iterativeandis formedof

thefollowing sequentialsteps: (a) momentumpredictorstep,(b) pressurecorrectorstep,

and(c) energypredictorstep. In step(b) of thisalgorithm,theSIMPLE procedureis used

in themomentumcorrectionsequationsto eliminatetheoff-diagonal velocitycorrections,

andtheevaporationandcondensationratesarelinearizedin termsof thevaporpressures

usingthekinetic theoryrelationship.Also, thevolumesof both theliquid andvaporcells

adjacentto the L-V interfaceare discretized implicitly using Equations (4.79). The

evaporation/condensationratesareevaluatedexplicitly in step(c).

Theimplicit discretizationof thevolumesof thevaporcells adjacentto theL-V interface

using Equation (4.79b) introducesa non-dominant componentto the Poissonlinear

system,which is responsiblefor thepoorstabilitycharacteristicsof Algorithm A.

The secondalgorithm(B) is identicalto Algorithm A exceptfor step(b). In step(b) of

Algorithm B, the volumes of the vapor cells (Nv,j) are evaluated explicitly using Equation

(4.87) in place of Equation (4.79b). Because the volume of vapor in the wick is a very

small fraction of the vapor core volume, and represents an insignificant fraction of the

working fluid inventory in the heat pipe, it is found that this simplification does not affect

the accuracy of the solution, but increases the stability of the algorithm.

Algorithm B, however, has some limitations. First, it is not suitable to resolve the

pressure-velocity coupling and the dependence of the evaporation and condensation rates

on both the vapor pressure and L-V interfacial temperature. Also, it has been established

that the SIMPLE-Consistent approximation performs much better than the SIMPLE

algorithm, particularly when diffusion and convection phenomena are dominated by

pressure gradients and source terms.

The third algorithm (HPTAM-PISO) is based on the two-stage PISO (Pressure-Implicit

with Splitting of Operators) scheme of Issa (1986). This algorithm is non-iterative and is

formed of the following sequential steps: (a) momentum predictor step, (b) pressure

corrector step, (c) energy predictor step, and (d) pressure corrector step. Note the

additional step (d) to enhance the resolution of the pressure-velocity coupling. In steps (b)

and (d) of this algorithm, the SIMPLEC procedure is used in the momentum corrections

equations to eliminate the off-diagonal velocity corrections. Finally, the kinetic theory

relationship is linearized in step (c) to express the evaporation and condensation rates in
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termsof temperatures,asdescribedin section4.1.5. As before,thevolumesof thevapor

cells(Nv,j) areevaluatedexplicitly.

Thelastalgorithm(HPTAM-Revised)is iterativein natureto reducethelinearizationerrors

of the kinetic theory relationshipand equationsof state,and formed of the following

sequentialsteps:

(a) enthalpy predictor step: best estimates of pressures and convective fluxes are used

explicitly, frozen fractions in the wick are linearized in terms of temperatures, and the

enthalpy conservation equations are solved for the temperatures.

(b) the frozen fractions in the wick are updated in terms of the temperatures.

(c) iterations to (a) are performed till temperatures and frozen fractions have converged.

(d) pressure corrector step: a simplified form of the momentum conservation equations is

used to implicitly relate the mass flow rates and pressure gradients. The mass flow

rates are eliminated in terms of pressures in the continuity equations. The vapor pore

void fraction appearing in the interfacial wick cell volumes (Equations 4.90) is related

to lac through Equation (4.80), and the later is expressed in terms of the liquid and

vapor pressures using the capillary relationship, Equation (4.83). The resulting

Poisson equation is solved for the pressure field, and the vapor pore void fractions are

updated.

(e) momentum predictor step: best estimates of the pressure gradients are calculated, and

the momentum conservation equations are solved for the velocity field.

(f) properties update: the thermophysical properties and densities are updated.

(g) iterations to (d) are performed until velocities and pressures converge (that is until

pressure corrections are below a prescribed value).

(h) iterations to (a) are performed until the mass balance is satisfied (then evaporation,

condensation, sublimation and resolidification rates and temperatures have converged).

As before, the kinetic theory relationship is linearized in step (a) to express the vaporization

and condensation rates in terms of temperatures. In the momentum corrections equations

of step (d), the interfacial radial velocity corrections are evaluated from the linearization of

the kinetic theory Equations (4.74) and the SIMPLE-Consistent procedure is used to
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eliminate the otheroff-diagonal velocity corrections. This modification considerably

improved the convergence rate of the method. Also, the volumes of the vapor cells (Nv,j)

are evaluated explicitly, as before. A simplified flow chart of this algorithm HPTAM-

Revised is depicted in Figure 4.8.

4.3. SOLVERS FOR 5-POINT LINEAR EQUATIONS

To solve the five-point linear equations resulting from the discretization of the mass,

energy and momentum balance equations, a direct solution routine using Gaussian

elimination (Golub and van Loan 1984) is developed and tested, which includes partial

pivoting and row-normalization options. While this method is very efficient for solving

relatively small linear systems, it is very cumbersome for large matrices encountered in

fluid flow problems. To solve a set of discretized conservation equations on a rectangular

domain of N=NrxNz cells, the computational time increases with the number of equations

raised to the third power, that is as (NrxNz) 3.

In this case, it is useful to consider the banded version of the solver. A band linear

equation solver is organized around a data structure that takes advantage of the many zeros

in the pentadiagonal matrix of the linear system. By construction, this matrix has lower

and upper bandwidths Nr and can be represented in a (2Nr+l)xN band array (see Figure

4.9). The bandwidth of the matrix is preserved as long as no pivoting is performed. If

pivoting is necessary, the matrix can still be represented in a (3Nr+l)xN band array.

Fortunately, such permutation of line was never necessary in solving the present heat pipe

problem. A quick estimate of the number of flops in the banded Gauss-elimination

algorithm shows that the computational time increases as Nr3xNz. Therefore, the use of

the band structure considerably reduces the amount of memory storage and computational

time required. More precisely, if we make use of the "corner zeros" in the band storage

matrix, the computational time is proportional to Nr8/3xNz, which is confirmed by

numerical experiments on a DEC VAX 6320 (Figure 4.10). The CPU time (in seconds)

needed for the banded Gauss-elimination solver to obtain the solution of a linear system of

NrxNz equations is fitted as:

CPUcaus s = 1.66x10-SNr267Nz (4.113)

Several 5-point iterative solvers have been examined and tested which combine strongly

implicit procedures with successive overrelaxation, additive block (row and column)
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The following linear system is considered:

aPi,j(T)i,j + aEi.j(T)i+l,j + aWi.j(T)i_,, j + aNi,j(T),,j+ l + aSij(T)ij_ t

for i= 1 to Nr, and j= 1 to Nz.

If each cell [i,j] is given the cell

number k=i+(j-1)xNr, the matrix [a]

has lower and upper bandwidthes

Nr (Nr<Nz for max. efficiency).

j=Nz
(=5) 17 18 19

= Si. j

Example for Nr=4, Nz=5 •

[a] is a 20x20 matrix.

The banded matrix [b] has

20

13 14 15 16

2Nr+l diagonals, that is •

[b] is a 20x9 matrix.
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FIGURE 4.9. Illustration of Band Storage of a Linear System Matrix which Results

from Discretization of Conservation Equations on a Two-Dimensional

Domain.
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correctionsandconjugategradient.TheStronglyImplicit Solverof Lee(1989)is foundto

be the most efficient in solving the momentumandenergydiscretizedequationsof the

presentheatpipeproblem. The SISprocedureof Leehastheadvantageof not requiringa
partial cancellationparameter,asmost of the implicit iterativesolversdo. Also a SOR

(strongly Over-Relaxation) factor of unity is found to be the best choice for the

convergenceof the iterations.TheLU decompositionof Lee,combinedwith the iterative

methodof solutiondevisedby Stone(1968),is used.

Onepassof the selectediterative solver is constitutedof the following steps. Given a

vector approximationT* to the solution of the linear system[A]T=S, we useStone's
iterativemethodto obtainacorrectionT' to thevectorT*, suchthat:

[A+A'] (T*+T') = [A+A'] T* + S - [A]T* ,

or

[A+A'IT' = S - [A]T* (4.1 14)

It is apparent that the vector correction is nul upon convergence. The matrix alteration [A']

to the system matrix [A] is obtained from the SIS procedure of Lee (1989) such that:

(4.115)[A+A'] = [LI[U] ,

where [L] is a lower triangular matrix and [U] is an upper triangular matrix. Both [L] and

[U] have same dimension NxN than the matrix [A]. While [A] has only 5 non-zero

elements per line when it originates from the discretization of conservation equations on a

two-dimensional domain, the triangular matrices [L] and [U] have only 3 non-zero

elements per line, which makes the computations particularly easy. Making use of

Equation (4.115) into Equation (4.114), the linear system becomes:

(4.116)[LI[U]T' = R ,

where R = S - [A]T* is the residual vector. The linear system (4.116) is readily solved

by making use of the properties of triangular matrices:
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[L]V = R ,

[U]T' = V (4.117)

Once T' is obtained, the vector T* is corrected as T* = T* + T', and the residual vector is

recalculated as R = S - [A]T*. Another iteration is performed if R does not satisfy the

specified convergence criteria.

It is apparent that the iterative algorithm of Stone has the disadvantage of using more

computational time than Lee's, since it requires calculation of the residual vector at the end

of every iteration. However, knowledge of these residuals permits to closely control the

internal iterations of the iterative segregated algorithm HPTAM-Revised, resulting in an

overall saving in the CPU time.

The number of flops of the iterative solver SIS is proportional to the number of equations

N and to the number of internal iterations. Numerical experiments are performed on a DEC

VAX 6320 (Figure 4.11) to obtain the following relation for the CPU time (in seconds):

5 + ITER
CPUsl s - Nr Nz (4.118)
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Becausethe SIS solveris iterative in nature,the computationaltime for this solveris a

function of the numberof iterationsperformed. On the otherhand,the amountof CPU

time necessarywhenusingthedirectGaussalgorithm is solely a (strong)function of the

size of the discretizeddomain. To evaluatewhich solver is more efficient in a given

situation,it is useful to plot theISO-CPU curvesin Figure4.12. For a given numberof

radial cells Nr (it definesthe bandwidthof the matrix), there is an optimal numberof
internal iterationsfor the SISsolver suchthat it is competitivewith theGausssolver in

termsof CPUtime. It isworthnotingthatin practice,theamountof CPUtime neededfor

theSISsolveris only a fractionof that neededfor theGaussdirect solver. For example,

on a 10x30domain, if 7 iterationsof the SISsolveraresufficient to bring theresiduals
belowasatisfactoryvalue,thenthesavingin theCPUtime is about50%thanthat for the

Gaussalgorithm. Sincethe CPU time requiredfor the Gausssolver is proportional to
Nr8/3,themaximumnumberof iterationsincreasesasNr5/3(Figure4.12). Thesavingin
theCPUtimeincreasesexponentiallywith thesizeof thenumericaldomain.

4.4. PERFORMANCE OF NUMERICAL SOLUTION ALGORITHMS

To verify the system of equations in HPTAM and test the performance of the various

algorithms considered, the model is used to simulate the transient results of El-Genk and

Huang (1993) for a (fully-thawed) horizontal water heat pipe experiment. The design and

operational parameters of the experiment analyzed are given in Section 7.1. In the

experiment, the heat pipe was initially at room temperature (296.2 K) when the electrical

power to the heating tape in the evaporator section increased in a step-function to 575 W.

The cooling water enters the condenser cooling jacket at 294.5 K and 11.33 g/s. After

about 10 minutes into the heatup transient, the heat pipe reaches steady-state. After an

additional 7 minutes of steady-state operation, the electrical power to the heating tape was

turned off, and the heat pipe entered the cooldown phase of the transient. To account for

the actual heat input to the heat pipe evaporator section during the heat pipe transient, the

calculations are performed using the measured values of the wall temperatures along the

evaporator section. The number of numerical cells are: Nv=5 (5 radial cells in the vapor

core), NL=iL=6 (1 radial cell in the liquid-wick region), Nr=7 (1 radial cell in the wall),

and Nz+l=31 (31 axial cells). More details can be found in Section 7.1.

Because of their simplistic nature, algorithms (A) and (B) are expected to be very

inefficient. Indeed, when algorithm (A) is used, the size of the time step is limited to a very
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smallvalue(0.5ms),resultingin acomputertimeto realtimeratioof 4500onaDECVAX
6320.

Whenalgorithm(B) is used,the volumesof thevaporcellsadjacentto the L-V interface

(Nv,j) areexplicitly discretizedin themassbalanceequations.This simplificationdoesnot
affect the accuracyof the solution,becausethe changein vapor volume in the wick is

negligibleanddoesnotaffectthepressurefield in thevaporcore. However,thenumerical

algorithmis muchmorestable.This is because implicit discretization of the volumes of the

vapor cells (Nv,j) introduces a non-dominant component in the Poisson equation, which

decreases the stability of the algorithm. This approach also permits the decoupling of the

Poisson equations in the vapor and liquid regions, which reduces the amount of CPU time

for the Gauss solver. As a result, algorithm (B) is five time faster than algorithm (A), with

a time ratio of 900. The time step could be increased to 2 ms (this is a value 4 times greater

than the previous one).

In the algorithm HPTAM-PISO, the implicit coupling of the kinetic theory equation with

the energy conservation equations, combined with the Pressure-Implicit Splitting Operator

algorithm (PISO) of Issa, allowed to use larger time steps, ranging between 5 and 15 ms.

With an increase in CPU time of only 15% per iteration, the overall acceleration factor is

greater than 5 (with a computer to real time ratio of 150) when compared with algorithm

(B).

While this algorithm is much more efficient (30 times faster) than the original algorithm

(A), the size of the time step is still very small and not suitable for simulating heat pipe

transients of several minutes. This limitation on the size of the time step is essentially due

to the linearization errors of the equation of state of the vapor, and the kinetic theory

relationship used to calculate the evaporation/condensation rates. As indicated in the

introductory section, the instability characteristic of the kinetic theory equation is the most

stringent. This is because it is formulated in terms of the difference of two terms of

comparable magnitude.

To minimize the constraint imposed by the kinetic theory relationship, the iterative scheme

HPTAM-Revised, is used. During the first pass of this algorithm, the evaporation and

condensation rates are taken as that of the previous time step when solving the energy

equation (step (a)) and only one pressure-velocity internal iteration (step (g)) is performed.

The use of the SIMPLEC-corrected procedure instead of SIMPLEC as in the previous
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algorithmdecreasedtheresidualsof themomentumequationsby oneorderof magnitude

for anidenticalnumberof internaliterations(g). In orderto modelahalf-hour transientof

thewaterheatpipe,this iterativealgorithmrequires35hoursof CPUtimeonaDEC VAX

6320,which correspondsto acomputerto realtime ratio of only 70. Thesizeof thetime

stepusedin thecalculationsrangedbetween40 msto 100ms.

Figures4.13 to 4.16comparethenumericalresultsfor theHPTAM-PISO andHPTAM-

Revisedalgorithms.Thecomparisonis verygood,exceptfor adifferencein thecenterline

vaporvelocityof about3%duringtheheatuptransientof theheatpipe. Thetimestepused

by HPTAM-Revised is generally one order of magnitude larger than that used by

HPTAM-PISO. When time stepslarger than0.I s wereused,a lossof accuracyin the
calculationsresultedfor theparticularwaterheatpipeconsidered,but HPTAM-Revised
wasstill performingin astablemanner.

Figures4.13 and4.14 comparethe calculatedtransientresponseof theeffective power

throughput,determinedfrom the heatbalancein the cooling jacket, and of the vapor

temperaturewith experimentaldata. Thecalculatedeffectivepowerthroughputatsteady-
state(455W) is almostthesameasthatreportedin theexperiment(443W). However,the

transientresponseof thecalculatedpowerthroughputis somewhatfasterthanthat in the

experiment. This is becausein the experiment,a relatively large fraction of the heat
generatedin theelectrictapeis initially storedin the insulationsurroundingtheevaporator

andadiabaticsectionsandin thecondenserjacket, thereforeslowing down theheatpipe
transient. As shownin Figure4.14, thecalculatedtransientvaportemperaturecompares

very well with experimental measurements. At steady-state, the calculated vapor
temperaturewasonly 1.2K lower thanthatmeasured.

Suchgood agreementbetweenHPTAM andthetransientexperimentaldataof thewater

heatpipe verifies the soundnessof the systemof equationsandthe modelingapproach

used. As describedin the previoussections,HPTAM hasthe additional capability to

simulatepoolingof excessliquid in thecondenser.After theformationof the liquid pool,

anyliquid volumeincreasedueto thermalexpansionis accommodatedin thepool. Figure
4.15showsthat at steadystatea liquid pool that is 1.7mm thick forms at theendof the
condensersection.

In algorithms(A), (B) andHPTAM-PISO, thediscretizedenergy,balanceandmomentum

equations are solved using the bandedGauss-elimination solver. In the algorithm
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HPTAM-Revised, the iterative SIS solver is used instead, except for the solution of the

Poisson equations (the use of such iterative solver is proven to be very inefficient for this

type of elliptic linear system of equations, even with strong relaxation). It turned out that

the SIS solver is extremely efficient for solving the momentum and energy equations.

Typically, the residual of the energy equation decreased by 2 to 4 orders of magnitude,

while the residuals of the momentum equations decreased by one order of magnitude, for

every iteration of the solver.

Despite these favorable results, the use of the SIS solver decreased the CPU time by only

10-20%, simply because the numerical domain (8x31) was relatively small. For a

reasonable number of iterations (typically 3 to 4 for step (g), and 4 to 6 for step (h)),

between 50% and 65% of the CPU time is used up by the 5-point linear system solvers.

Because of this significant fraction of the CPU, the use of the SIS solver could result in

significant savings for larger computational domains.

In the next chapter, the physical and numerical schemes for modeling heat and mass

transfers in the wick are validated.
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5. BENCHMARK OF WICK MODEL

In order to verify the modeling approach, it is preferable to compare the model results with

experimental data. The development of HPTAM has been guided by continuous

benchmarking of its predictions with available experimental and numerical results. The

accuracy of the freeze-and-thaw model of the wick region of the heat pipe is checked using

several benchmark problems, namely: (a) natural convection of liquid in a square cavity

(Prakash and Patankar 1985); (b) natural convection of molten gallium in a porous bed of

glass beads (Beckermann and Viskanta 1988); (c) one-dimensional pure conduction

solidification (Ozisik 1980); (d) two-dimensional pure conduction freezing in a corner

(Rathjen and Jiji 1971); and (e) freezing of tin in a rectangular cavity in the presence of

natural convection (Wolff and Viskanta 1988). Predictions of the present freeze-and-thaw

model for each of the above problems are presented and discussed in the following

subsections, and compared with numerical and experimental values reported in the

literature.

5.1. NATURAL CONVECTION IN A SQUARE CAVITY

This problem is a standard test case for verifying the accuracy of computational schemes.

The square cavity has differentially-heated vertical side-walls and insulated horizontal

boundaries. The properties of the fluid are assumed constant, except the density which is a

linear function of the temperature (using a constant thermal expansion coefficient, _p). A

dimensionless analysis of the problem shows that the solution is dependent only on Prandtl

(Pr) and Grashof (Gr) numbers. No analytical solution is available for this problem, and

the results of the present model can only be compared to those of other numerical models.

Such a comparison is made in this section with the results obtained by the SIMPLE finite-

difference method of Patankar using a fine 32x32 grid, and by the finite-element method

using equal-order velocity-pressure interpolation on a 19×19 grid (Prakash and Patankar

1985).

Calculations are performed with the present model on a uniform 24x24 numerical grid with

a fixed Prandtl number of 1, and Grashof numbers of 103, 104 and 105. Calculated mid-

plane temperature and vertical velocity profiles and flow field are presented for Gr= 104 and

Gr--105, in Figures 5.1 to 5.6. For lower values of the Grashof number, the present
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model produces very accurate results, even with coarser grids. For the numerically most

challenging case of Gr=-105, calculated mid-plane temperature and vertical velocity profiles

(Figures 5.4 and 5.5) agree to within 4% with that reported by other investigators (Prakash

and Patankar 1985). At such high Grashof number, the convective cell in the cavity has a

stagnant eye of elongated shape (Figure 5.6), which is characterized by a uniform

temperature profile along a large portion of the horizontal mid-plane (Figure 5.4). Most of

the heat is transported by strong convection currents around the stagnant eye, characterized

by vertical velocity peaks located very close to the vertical side-walls (Figure 5.5). The

calculations confirm that the continuum conservation Equations (3.1)-(3.6) developed for

multiphase problems transform, as they must, to well-established single-phase

conservation equations.
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5.2. NATURAL CONVECTION OF MOLTEN GALLIUM IN A POROUS

BED OF GLASS BEADS

In this section, the work of Beckermann and Viskanta (1988) is used to verify the

Brinkman-Forchheimer-extended Darcy's model for predicting liquid flow in porous

media. These authors studied numerically and experimentally the phase-change of pure

gallium in a porous bed of randomly-packed glass beads, 6 mm in diameter. The well

insulated rectangular test cell was 47.6 mm in height and width, and 38.1 mm in depth.

The two vertical side-walls, which served as isothermal heat source and heat sink, were

multipass heat exchangers machined out of a copper plate. The first experiment performed

by Beckermann and Viskanta (Experiment 1) was a pure natural convection flow

experiment. The temperatures of the hot and cold walls of the cavity were held constant

above the melting temperature of gallium, at 325.05 K and 303.65 K, respectively. Figure

5.7 shows that the difference between the measured and predicted steady-state temperature

profiles is less than 7% of the temperature difference across the test cell.
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5.3. ONE-DIMENSIONAL SOLIDIFICATION PROBLEM

The analytical solution of the problem of pure conduction, one-dimensional solidification

(Ozisik 1980) is used herein to verify the present freeze-and-thaw model of the heat pipe

wick. The liquid and solid phases have constant, but different, thermophysical properties.

Initially, the semi-infinite slab is liquid at a temperature To above the fusion temperature of

the fluid, Tfus. The solidification process is initiated by lowering the wall temperature to a

value Tc below Tfus. A dimensionless analysis of the problem shows that the solution is

dependent only on three parameters, the ratio of solid and liquid thermal diffusivities,

(XS/(XL, the Stefan number, St, and the dimensionless liquid superheat, To*. In the

dimensionless form, the crust thickness growths with time according to the relation (Ozisik

1980):

G(-c)_ 2;LV_, (5.1)
L
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wherethefreezingconstant,_, is givenby thefollowing transcendentalequation:

g -_1/2
exp(-_. 2) _,ICes! exp(--_.2CZs/OtL) -_-

erf(_) "l'0_-L'L/ erfc(_s/OtL )St
_.=0 (5.2)

The temperature profiles in the solid and liquid are given by:

Ts(t)-T c_eft(X*) for x<5(0 (X*<_.) ,
Tf, S - T c erf(_) '

(5.3a)

and

TL(t ) -- T O _ erfc(X*_s / o_L )

Tf. s -- T O erfc(X_s / Of,L ) '

for x>5(t) (X*_>X) . (5.3b)

In Equations (5.3a) and (5.3b), the similarity variable X* = x / 4._st

Numerical calculations are performed on a uniform grid of 50 cells, for a fluid with thermal

diffusivities ratio C_s/_L=2, and Stefan number St = 0.25 (the model used the following

thermophysical properties: pS=PL =1000 kg/m3; CpS=CpL= 1000 J/kg.K; ks= 100 W/m.K;

kL=50 W/re.K; Hfus=105 J/kg; Tfus=400 K). Figures 5.8 to 5.11 compare the results of

the present model with the exact analytical solution for the cases of no initial liquid

superheat (To*=0) and with liquid superheat (To*=0.25). Also shown are the results of

Beckermann and Viskanta's model (1988), which uses the conventional harmonic mean

scheme of Patankar (1980) to estimate the heat fluxes (no special treatment is performed in

the vicinity of the solidification front). Results of the present model compare well with the

exact analytical solution, while the conventional harmonic mean scheme underpredicts the

crust thickness and generates oscillations of large amplitude in the temperature time history.

The larger the change in thermal conductivity of the working fluid upon freezing, the larger

the amplitude of these oscillations. The peaks of the oscillations correspond to when the

solidification front crosses an interface between two numerical cells.

Note that the present model does not produce perfectly smooth crust thickness and

temperature histories, particularly for freezing problems with small Stefan number and

large initial liquid superheat. This is because the average nodal temperature of a cell
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undergoing phase-change is artificially set to the fusion temperature of the fluid, so that the

change in the heat storage in the mushy cell is not predicted accurately. However, the

present model is a good improvement over the classical fixed-grid enthalpy formulation,

which uses the harmonic mean scheme; it reduces the amplitude of the wiggles in the

temperature time histories by one-to-two orders of magnitude in all cases.

The freezing constant predicted by the present model was also computed for increasing

Stefan numbers and liquid superheats and compared with the exact analytical solution and

the numerical solution of Beckermann and Viskanta (1988) over a larger spectrum of

conditions. As shown in Figure 5.12, the present model predicts the freezing constant

quite well over the full range of Stefan numbers and liquid superheats investigated.

However, the enthalpy model using the harmonic mean discretization scheme (referred to

as Beckermann and Viskanta 1988) underpredicts the freezing constant, with the error

increasing as the Stefan number decreases and/or the liquid superheat increases. The

slower the transient, the flatter the temperature gradients in the vicinity of the freezing front,

and the larger the numerical error introduced by the harmonic mean scheme.

An obvious alternative to the numerical error, step-like and weavy patterns characteristics

of the fixed-grid enthalpy method is to decrease the numerical mesh size, so that the time

over which the nodal temperature of the mushy cell is held at Tfus is reduced. Numerical

calculations show that the magnitude of the oscillations decreases as the mesh size is

decreased and/or the Stefan number increased, and the solution appears essentially smooth.

As expected, the conventional enthalpy formulations provide accurate numerical results as

long as the mesh size is sufficiently small.

5.4. TWO-DIMENSIONAL FREEZING IN A CORNER

The present freeze-and-thaw model is also verified using an approximate analytical

solution for the two-dimensional (pure conduction) freezing problem in a corner (Rathjen

and Jiji 1971). Initially, the liquid is at 12.5 K above its fusion temperature. Freezing is

initiated by lowering the temperature of the two corner faces 25 K below the fusion

temperature, which corresponded to a Stefan number, St= 0.5, and an initial liquid

superheat, To*=0.25 (the model used the following thermophysical properties:

9S=PL=1000 kg/m3; CpS=2000 J/kg.K; CpL=I000 J/kg.K; ks=100 W/m.K; kL=50

W/re.K; Hfus=105 J/kg; Tfus=400 K). The analytical solution is presented in Figure 5.13

in terms of the similarity variables X* and Z*, so that the freezing front profile is
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stationary. Even thoughthepresentsolutionprocedureis basedon a one-dimensional

analysisof the melting front location, it accuratelypredictstheshapeof the liquid-solid

interfaceof truly two-dimensionalproblems. As shown in Figure 5.13, the numerical
predictionsareinexcellentagreementwith theanalyticalsolution.

5.5. FREEZING OF TIN IN A RECTANGULAR ENCLOSURE WITH

NATURAL CONVECTION

The experimental work of Wolff and Viskanta (1988) is also used to benchmark the freeze-

and-thaw model. These investigators studied the freezing of pure tin in a rectangular

enclosure with differentially heated vertical side-walls and insulated horizontal boundaries,

in the presence of natural convection. The rectangular test cell had inside dimensions of

66.6 mm in height, 88.9 mm in width, and 126 mm in depth. The hot side-wall

temperature was kept at TH=506.15 K. Initially, the fluid in the test cell was liquid, at this

temperature (To=TH). The phase-change process was initiated by lowering the cold wall

temperature to a value of 502.15 K, which corresponded to a Stefan number (St) of 0.013.

The temperatures in the liquid and the locations of the freezing front were measured using a

movable thermocouple probe and L-shaped glass rod, respectively. Figures 5.14 and 5.15

show the measured and predicted temperature profiles in the liquid at two different times in

the transient. The scatter in the data is due to disturbances introduced by the measurements

probes and to the uncertainty in thermocouple measurements (+ 0.1 K), since the liquid

superheat in the experiment was only 1.1 K (pure tin has a melting temperature of 505.05

K). Despite these difficulties in the measurements, the model predictions compare well

with experimental data. Also, it is worth noting that the temperature profiles calculated by

HPTAM are closer to the experimental data than that calculated by Wolff and Viskanta

(1988), and Raw and Lee ( 1991 ).

Figure 5.16 shows the measured and predicted freezing fronts at preselected times. The

early discrepancy between calculations and experimental data is because the specified cold

wall temperature was not actually achieved in the experiment until approximately 0.033h.

Also, imperfect insulation at the bottom of the test cell speeded up the solidification rate

there, as remarked by Wolff and Viskanta (1988). Nevertheless, the front locations

predicted by HPTAM compare also well with experimental data, and are similar to that

calculated by Raw and Lee (1991). Figures 5.17 and 5.18 show the calculated liquid flow
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field in the cavity at two different times in the transient. As expected, the freezing front

moves slower near the top of the cavity where the liquid, heated by the hot wall, impinges.

The solidification rate increases toward the bottom of the cavity, since the liquid cools

down as it descends along the interface.

This ends this chapter on the benchmark of the wick model. In the next chapter, results of

the startup of a water heat pipe from a frozen state are presented and discussed.
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6. STARTUP OF A WATER HEAT PIPE FROM A FROZEN STATE

This chapter presents the results of the startup of a water heat pipe from a frozen state. The

calculation illustrates the importance of the sublimation and recondensation processes

during the first period of the transient. The startup is characterized by partial recession of

liquid in the evaporator wick after the capillary limit has been reached. After enough

working fluid was melted by resolidification and condensation in the adiabatic and

condenser sections of the heat pipe, resaturation of the wick was established before

complete dryout of the evaporator occurred, leading to a successful startup.

6.1. DESCRIPTION OF THE TEST CASE

The copper heat pipe, 22 mm I.D., 25 mm O.D., has a 100-inch -] mesh copper screen

wick (_:=0.75, d=109 gin, Rp=72 !am), 1-mm thick. The evaporator, adiabatic, and

condenser sections are 0.3 m, 0.1 m, and 0.6 m long, respectively. The evaporator is

heated uniformly and the condenser is radiatively cooled to an ambient temperature of 260

K. The emissivity and view factor of the condenser are taken as 1 and 2, respectively. The

view factor accounts for the increased radiative area due to the condenser fin. Because

water expands upon freezing, it is assumed that the ice extends initially 0.046 mm above

the screen surface (Figure 6.1a); the mass of working fluid in the heat pipe is 48.0 g

(Figure 6.2).

6.2. TRANSIENT OPERATION WITH FROZEN EVAPORATOR

The frozen heat pipe is initially at 260 K when the input power to the evaporator was

increased in a step-function to 50 W. After about 20 s, 36 W are consumed in the

sublimation-resolidification process of the ice (Figure 6.3), and the other 14 W are used to

raise the temperature of the heat pipe structure and solid working fluid in the evaporator

(Figure 6.4). Most of the heat generated by resolidification along the adiabatic and

condenser sections of the heat pipe is used to raise the temperature in these sections. As a

result, the power radiated away at the condenser wall increases steadily, as shown in

Figure 6.5. After about 140 s, when the heat pipe temperature reaches the fusion

temperature of ice, the fraction of the power throughput radiated away at the condenser wall

is still small, only 5.3 W (Figure 6.5). This is characteristic of radiative heat transfer,

which increases with the fourth power of the temperature. The sublimation-resolidification
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processpartiallydepletesthefrozenworking fluid in theevaporatorandaccumulatesit in

the adiabatic and condenser sections (Figure 6.1b). During the first 140 s of the transient,

when the working fluid is still frozen in the evaporator, the heat pipe can be considered to

operate like a fully-thawed heat pipe during heatup transient (Figures 6.4 to 6.6), with the

differences that the heat transport mechanism is sublimation-resolidiflcation instead of

evaporation-condensation, and that the displaced working fluid cannot circulate back to the

evaporator. That is, the loss of working fluid by sublimation will eventually lead to

complete dryout of the evaporator and startup failure. Note the slight increase in the

sublimation rate with time (Figure 6.3) due to the slow decreases in the radial thermal

resistance and heat storage capacity of the evaporator wick. The normalized working fluid

level at the evaporator end of the wick, [Rint(1)-Rwk] / ARil, is plotted in Figure 6.7. A

value of zero corresponds to a wick saturated with working fluid, while a positive value

means that the working fluid extends above the screen surface, in the vapor core, and a

negative value represents a fluid level receded within the wick. As shown in Figure 6.7,

the level of ice in the evaporator decreases at uniform rates during the first 140 s of the

startup transient. The rate takes a larger value as soon as the ievel starts receding within the

wick, because of the smaller volume porosity of the screen wick.

6.3. THE MELTING PROCESS OF THE EVAPORATOR

As the wall temperature continues to increase, the working fluid at the evaporator wall

begins to melt. The melting front progresses essentially radially with time, as shown in

Figures 6.1c and 6.1d. Most of the heat input (41 W) is consumed in the thaw of the

working fluid, and the importance of the sublimation-resolidification process quickly

diminishes, transporting only 5.4 W (Figure 6.3). This reduction in the sublimation rate is

responsible for the slower rate of decrease in the evaporator ice level (Figure 6.7) during

the melting process of the evaporator, from 142 s to 247 s.

During the thaw process of the heat pipe, from 142 s to 530 s (Figure 6.2), the temperature

of the condenser remained close to the fusion temperature of the working fluid, and the

radiative output power remained essentially constant at 5.3 W (Figure 6.5). Also, the

evaporator temperature remained within only a few Kelvins of the fusion temperature

(Figures 6.4 and 6.6), so that the startup of the water heat pipe was essentially uniform in

temperature. This is characteristic of the startup of low-temperature heat pipes, which

become immediately active upon heatup, as sublimation and evaporation of working fluid

(and their counterparts, resolidification and condensation) have the potential of transporting
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large amounts of energy without encountering any vapor transport limitations, as in the

case of high-temperature heat pipes.

After 248 s, the thaw front reaches the wick-vapor interface first at the evaporator end

(Figures 6. l d and 6.1e). Within only a few seconds, most of the wick-vapor interface in

the evaporator is thawed (Figure 6.1f). Consequently, most of the heat input is used to

evaporate the working fluid (the power throughput is essentially 50 W), as indicated by the

jump in the rate of evaporation in Figure 6.3. Most of the heat deposited by condensation

and resolidification along the adiabatic and condenser sections of the heat pipe is consumed

in the thaw of the working fluid (about 40 W), causing the melting front to proceed radially

outward in the condenser and adiabatic sections (Figures 6. If to 6. l j).

6.4. THE MELTING PROCESS OF THE CONDENSER

After the thaw front reached the wick-vapor interface in the evaporator, simultaneous

melting and condensation occurred at the L-V interface in the adiabatic and condenser

sections, forming a liquid film near the leading edge of the frozen fluid (Figure 6.1f).

Figure 6.8 shows the axial vapor velocity along the centerline of heat pipe during the

formation of the liquid film. The vapor velocity peaks at the axial location corresponding to

the thaw front at the wick-vapor interface. At 248.0 s, the liquid film extends to the end of

the adiabatic section, and resolidification still occurs along the S-V interface in the

condenser (Figure 6.8). After an additional 1.4 s, the liquid film extends to the middle of

the condenser, and covers all of the condenser at t=252.4 s.

Evaporation depletes the working fluid in the evaporator, and the vapor pore volume

fraction in the wick (or the cosinus of contact angle of the liquid meniscus) rises, eventually

reaching a value of 1 (Figure 6.9). At 267 s, the capillary pressure head reached its

maximum value along the evaporator, however, the frictional drag at the film-solid

interface slowed liquid return, causing a liquid recess in the evaporator wick (Figure 6.7).

As melting proceeded radially outward in the adiabatic and condenser sections, enough

working fluid thawed and began to replenish the liquid in the evaporator; this occurred

before the wick would have dried out in the evaporator (Figures 6. l g and 6. l h), causing

unsuccessful startup. At 300 s, the vapor pore void fraction recovered at the beginning of

the adiabatic section (Figure 6.10), and liquid flowed to refill progressively the wick

towards the evaporator end (Figures 6. lg to 6. lh). During that phase, evaporation kept
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depleting the working fluid in the unsaturated portion of the evaporator, and the liquid level

receded further down in the wick (Figure 6.7). Figure 6.11 shows the vapor and liquid

pressure distributions along the heat pipe at two different times during resaturation of the

wick. The vapor pressure is almost uniform along the heat pipe, at a value corresponding

to the saturation at the fusion temperature of the working fluid, and this during the entire

thaw process of the heat pipe (Figure 6.6). The liquid pressure corresponds to the

maximum capillary pressure head of the heat pipe along the unsaturated portion of the

condenser, and is equal to the vapor pressure along the portion of the wick covered with

the liquid film. At time 410 s, the liquid reached its lowest level in the wick at the

evaporator end of the heat pipe (Figure 6.7), and the wick became fully saturated with

liquid at 429 s (Figures 6.1i and 6.7). Resaturation of the wick caused a temporary

decrease in the evaporation rate (Figure 6.3), as some of the heat input was consumed in

heating the cold liquid returning to the evaporator from the condenser section.

Figure 6.12 shows the vapor and liquid pressure distributions along the heat pipe at time

439 s, shortly after resaturation of the wick. The vapor pore void fraction has recovered

along the entire length of the evaporator section (Figure 6.10), and the heat pipe operation

is not limited by the capillary limit anymore. Liquid and Vapor interfacial pressures are

equal along the shorter extent of the liquid film. The extent of the liquid film in the

condenser decreased with time due to the reduction in the working fluid volume as it melted

(Figures 6. lg to 6. li). At 506 s, the liquid film disappeared, shortly after the wick became

fully saturated with liquid (Figure 6.1j). This was expected, since the heat pipe was

nearing the condition for which the liquid charge of working fluid was calculated (that is, a

fully-saturated wick with liquid fluid at the fusion temperature of the working fluid).

At 511 s, the thin ice crust along the condenser began to melt rapidly, uncovering the wall

and causing the portion of the power throughput consumed in the thaw of the working fluid

to drop quickly from 42 W to zero (in about 23 s). The portion used to raise the

temperature of the heat pipe structure and liquid in the condenser increased accordingly. As

a result, the condensation rate decreased, causing the vapor pressure to increase faster, and

the evaporation rate in the evaporator to temporarily drop (Figure 6.3).

At 534 s, the heat pipe is fully-thawed, and a larger portion of the input power is

consumed in raising the thermal inertia of the heat pipe structure and working fluid, causing

the evaporation rate to drop even faster (Figure 6.3). After about 30 s, a uniform radial

temperature gradient was established in the condenser and proper circulation of liquid to the
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evaporator was fully resumed. Beyond this point, the heat pipe temperature and the

condenser output power rose gradually (Figures 6.4 to 6.6), approaching steady-state

when the rate of heat rejection in the condenser equals the power input to the evaporator.

This ends the presentation and discussion of the results of the frozen startup of a water heat

pipe. In the next chapter, the model is benchmarked using transient experimental data of a

fully-thawed horizontal water heat pipe.
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• TRANSIENT CALCULATIONS OF FULLY-THAWED WATER HEAT

PIPE AND COMPARISON WITH EXPERIMENTAL DATA

The fully-thawed heat pipe model is benchmarked using transient experimental data of a

horizontal water heat pipe. The calculated steady-state vapor and wall axial temperature

profiles and the transient power throughput and vapor temperature are in good agreement

with measurements. Also presented and discussed are the calculated axial distributions of

liquid and vapor pressures, effective radius of curvature of the liquid meniscus at the

liquid-vapor interface, and liquid pooling and recession following a step function heatup

and cooldown transients of the water heat pipe.

7.1. DESCRIPTION OF THE WATER HEAT PIPE EXPERIMENT AND

MODELING

To verify the system of equations in HPTAM, the model predictions are compared with the

transient results of EI-Genk and Huang (1993) for a horizontal water heat pipe experiment.

The copper heat pipe, 1.73 cm I.D., 1.91 cm O.D., employs a double-layered, 150 mesh

copper screen wick. The lengths of the evaporator, adiabatic, and condenser sections are

60 cm, 9 cm, and 20 cm, respectively (Figure 7.1). The vapor temperature is measured

along the centerline of the heat pipe using a special probe made of a thin walled brass tube

(3.2 mm O.D.) instrumented with eleven thermocouples, equally spaced along the heat

pipe. An additional eleven thermocouples are attached to the outer surface of the heat pipe

wall to measure its temperature at the same axial location as the vapor temperature

thermocouples. The evaporator section is uniformly heated using a flexible electric tape

and the condenser section is convectively cooled using a water jacket. More details on the

heat pipe design and experimental setup can be found in E1-Genk and Huang (1993).

The experimental heat pipe was initially at room temperature (296.2 K) when the electrical

power to the heating tape in the evaporator section increased in a step-function to 575 W.

The cooling water enters the condenser cooling jacket at 294.5 K and 11.33 g/s. After

about 10 minutes into the heatup transient, the heat pipe reaches steady-state. At steady-

state, the effective power throughput, determined from the heat balance in the condenser

cooling jacket, was 443 W. The difference between the electric input to the electric tape

and the steady-state effective power throughput (132 W) was approximately equal (within

5%) to the heat losses from the surface of the insulation in the evaporator section to ambient
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by natural convection (EI-Genk and Huang 1993). After about 7 minutes of steady-state

operation, the electrical power to the heating tape was turned off (t=1040 s), and the

cooldown of the heat pipe was observed.

Because the water flow rate in the cooling jacket is relatively small, a transient one-

dimensional water jacket submodel was thermally coupled to the condenser wall in

HPTAM in order to calculate the axial distribution of the coolant bulk temperature in the

jacket. At steady-state, the average convective heat transfer coefficient in the jacket

determined from the experiment was 1800 W / m2.K; this value is used in the model during

the simulation. The wick thickness assumed is 0.75 mm, and wick effective pore radius,

porosity and permeability were taken as 54 _tm, 0.9 and 1.5x10 -9 m 2, respectively. The

effective thermal conductivity of the liquid-wick region is calculated using the equation

given by Chi (1976) for distributed cylinders having an effective porosity of 0.5. The

evaporation accommodation coefficient in Equation (3.18) was taken as 0.1 for water

vapor, and the initial vapor void fraction in the wick was assumed uniform along the heat

pipe, with a value of 0.15.

7.2. COMPARISON OF THE MODEL WITH WATER HEAT PIPE

EXPERIMENT

To account for the actual heat input to the heat pipe evaporator section during the

experiment, transient calculations were performed using the measured transient wall

temperatures along the evaporator section. This approach gives good estimate of the input

heat flux in the evaporator region, without the complexity and uncertainty associated with

modeling the thermal response of the electric heater and of the insulation along the

evaporator section. Comparison with the experimental results shown later confirm the

validity of using the transient wall temperatures to determine the heat input to the evaporator

region of the heat pipe. In the experiment, the wall temperature in the evaporator section

was measured at 7 axial locations and found to be uniform. The design and operational

parameters of the experimental water heat pipe analyzed are listed in Table 7.1.

Figures 7.2 and 7.3 compare the calculated transient response of the vapor temperature and

of the effective power throughput, determined from the heat balance in the cooling jacket,

with experimental data. The calculated effective power throughput at steady-state (455 W)
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TABLE 7.1. Design and Operational Parameters of Experimental Water Heat Pipe

Analyzed.

Design Parameter Value Operational Parameter Value

Heat pipe length L (cm) 89

Evaporator length Le (cm) 60

Condenser length Lc (cm) 20

Adiabatic length La (cm) 9

Pipe outer diameter (mm) 19.10

Wall thickness (mm) 0.90

Liquid/wick thickness (ram) 0.75

Effective pore radius (lam) 54

Wick porosity _ 0.7

Wick permeability (m 2) 1.5x10 -9

Wall material Copper

Working fluid Water

Initial pipe temperature (K)

Initial pore void fraction

Startup mode

Shutdown mode

Evaporator wall temperature

296.2

0.15

Evaporator wall

temperature specified

Step function

Uniform

Evaporator maximum heat flux (W/cm 2) 1.25

Maximum power throughput (W) 450

Condenser cooling method Convective

Jacket coolant flow rate (gram/s) 11.33

Jacket coolant inlet temperature (K) 294.5

Jacket heat transfer coefficient (W/m2K) 1800.

is almost the same as that reported in the experiment (443 W). However, the transient

response of the calculated power throughput is somewhat faster than that in the experiment.

This is because in the experiment, a relatively large fraction of the heat generated in the

electric tape is initially stored in the insulation surrounding the evaporator and adiabatic

sections and in the condenser jacket, therefore slowing down the heat pipe transient. As

shown in figure 7.3, the calculated transient vapor temperature compares very well with

experimental measurements. At steady-state, the calculated vapor temperature was only

!.2 K lower than that measured. Such good agreements at steady-state suggest that the

model can predict the thermal resistance of the heat pipe quite well. Figure 7.4 compares

the calculated wall and vapor temperatures along the heat pipe with those measured at

different times during the heatup transient; again the comparison is good. The difference

between calculated and measured wall temperatures in the condenser section is attributed to

the fact that an axially uniform convective heat transfer coefficient is used along the cooling
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jacket. Also, the condensation rate at the L-V interface decreases along the condenser, due

to the increase in the cooling water temperature. Finally, the effects of end bases that are

observed in the experiments during the heatup transient (Figure 7.4a) are not calculated

numerically since both ends of the heat pipe are assumed thermally insulated. As figure 7.4

shows, the calculated vapor temperature is nearly uniform along the heat pipe and in good

agreement with experimental values. Such good agreement between HPTAM and the

transient experimental data of the water heat pipe verifies the soundness of the system of

equations and the modeling approach used for fully-thawed heat pipes.

7.3. WICK VOID FRACTION AND LIQUID POOLING RESULTS

In Figure 7.5, the vapor pore void fraction, O:'p, is normalized to its initial value of 0.15.

At the beginning of the heatup transient, the liquid temperature and volume increase

rapidly, causing the vapor void fraction in the wick to decrease at a relatively uniform rate

(Figure 7.5). Because of the evaporation and condensation in the heat pipe, the void

fraction decreases (or the radius of curvature of the liquid meniscus increases) faster in the

condenser than in the evaporator. In the evaporator, liquid evaporation competes with the

liquid compressibility effect by removing mass, while condensation adds up to the increase

in fluid volume along the condenser. During this period of decreasing wick void fraction,

the liquid pressure is lower than the vapor pressure. The pressure difference decreases

with time and eventually vanishes after about one minute into the transient (Figure 7.6). At

this time, a wet point appears and excess liquid begins to accumulate at the end of the

condenser section, forming a water pool (Figure 7.7). At the wet point, the L-V interface

is flat (or the pore void fraction is zero) and the liquid and vapor total pressures are equal.

The first wet point appears at the end of the condenser because the full length of the

condenser became operational before liquid pooling could occur. The situation would have

been different if a larger amount of working fluid had been introduced in the heat pipe (see

Chapter 8). After the formation of the liquid pool, any increase in liquid volume due to

thermal expansion is accommodated in the pool (Figure 7.7). Essentially, the structure of

the L-V interface is governed by evaporation, condensation, and the liquid flow return, as

shown in Figure 7.5, the vapor void fraction recovers along the heat pipe, except in the

flooded portion of the condenser. As the effective power throughput in the water heat pipe

increases, the pressure losses in the liquid-wick region increase, and the wick void fraction

at the beginning of the evaporator rises in order to provide the necessary capillary pressure

head needed to circulate the liquid in the wick. Before reaching steady-state, the rate of
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evaporation is greater than the liquid flow return from the condenser to the evaporator. In

the condenser, the vapor pressure recovers, as the rate of liquid removal is greater than the

rate of condensation.

At steady-state, the liquid pool extends to about 1.7 mm (Figure 7.7). Figures 7.8 and 7.9

show the calculated axial distributions of the liquid and vapor pressures at steady-state. At

a power throughput of 455 W, a vapor pressure recovery of 66% occurs along the

condenser section. Figure 7.9 shows that the liquid pressure losses in the wick region are

much larger than the vapor pressure losses. This is expected since the liquid is flowing

across a relatively tight wire-screen wick. Figure 7.9 also shows that the vapor and liquid

total pressures are equal at the end of the condenser, where it is flooded. As delineated in

Figure 7.10, at steady-state, the vapor void fraction in the wick is highest (or liquid

meniscus radius of curvature is smallest) at the beginning of the evaporator and decreases

to zero at the end of the condenser. Figure 7.11 shows the axial distribution of the

evaporation and condensation rates along the heat pipe. At steady-state, evaporation is

uniform along the evaporator, while condensation decreases along the condenser due to the

increase in temperature along the cooling jacket (Figure 7.4). Some evaporation and

condensation occurs in the adiabatic section due to the effect of axial conduction in the wall

and liquid-wick regions.

After 17 minutes of heatup transient (1040 s), the electrical power to the heating tape was

shut off. However, the water was kept running in the cooling jacket. During the first

period of the cooldown, the wick void fraction decreases (or the liquid meniscus rises)

along the heat pipe, as shown in Figures 7.5 and 7.10. Subsequent decrease in liquid

volume due to thermal compressibility causes the liquid pool to recede (Figure 7.7). As

Figure 7.11 shows, the rate of evaporation decreases faster than the rate of condensation,

causing the mass of vapor in the heat pipe to decrease with time. This inequality between

evaporation and condensation rates causes the vapor void fraction in the wick to decrease

faster in the condenser than in the evaporator. After 1142 s of the transient, the liquid pool

disappears (Figure 7.7).

From then on, the structure of the L-V interface is generally governed by the thermal

compressibility of the liquid phase. Because the liquid temperature and volume decrease

rapidly, the vapor void fraction in the wick increases at a relatively uniform rate (Figures

7.5 and 7.10), and so does the difference between the vapor and liquid pressures (Figure

7.6). The difference between the vapor void fraction in the evaporator and the condenser is
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governedby theevaporation/condensationrates,or thepowertransportedthroughtheheat

pipe. As the heatpipecools down, the wick void fraction alongthe heatpipe becomes
moreuniformandreturnsto its initial valueof 0.15.

Figure7.12showsthetransientvariationof thecenterlinevaporvelocityat theexit of the

evaporator.During theheatupandcooldowntransientphases,thevaporvelocity increases

aboveits full-power steady-statevalueof 10m/s,for shortperiodsof time. Thefirst peak
occursbecausetheheattransportcapabilityof theheatpipe increasesfasterthanthemass

of vaporin thecore. Thesecondpeakoccursat thebeginningof thecooldownphaseand
is relatedto the imbalancebetweenevaporationandcondensation.After the electrical

powerin theevaporatorwascut off, therateof evaporationdecreasedfasterthantherateof

condensation.As a result, the vapor traveledfast toward the L-V interface along the

condensersection, resulting in a rapid decreasein vapor massin the evaporatorand
increasein thevaporvelocity.

After 2000 s of transient, steady-stateoperation is establishedagain; however, the

temperaturesareslightly different from the initial condition. As Figure 7.2 shows,the

steady-statepowerthroughputis about13W, with acenterlinevaporvelocity of 2.5m/s

(Figure7.12). Also, Figure7.5 showsavaporvoid fraction distributionthat is not quite
uniform. This is becausethe temperatureis not uniform along the heatpipe. After

cooldown, the temperatureof the evaporatorwall equalsroom temperature(296.2 K),

while thecondenserwall is slightly coolerbecausethecoolingwaterentersthecondenser
jacketat 294.5K.

In thenextchapter,theeffectsof inputpowerandinitial liquid inventoryin theheatpipeon
the wet point and liquid pooling, andon the vaporand liquid pressureandtemperature

distributionsareinvestigatedin details.
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• ANALYSIS OF WET POINTS AND LIQUID POOLING (WATER

HEAT PIPE)

Results of the transient operation of a water heat pipe subject to various heating conditions

and having different working fluid inventories are presented. In this chapter, the

liquid/wick region is treated as a liquid open-annulus. Design and operational parameters

of the heat pipe for the four cases analyzed are listed in Tables 8.1 and 8.2. At the startup,

the heat pipe is initially at a temperature of 300 K, and the 20-cm-long evaporator is heated

uniformly with an exponential period "c = 5 s, while the 80-cm-long condenser is

convectively cooled by a water jacket. For the purpose of determining the temperature

distributions in the various regions as well as the distributions of the vapor and liquid

pressures, the numerical scheme employs 6, 2, and 2 radial cells in the vapor, liquid/wick

and wall regions respectively, and 6, 6, and 18 axial cells in the evaporator, adiabatic and

condenser regions, respectively. As indicated in Table 8.2, four cases are investigated,

TABLE 8. I. Design and Operational Parameters of Water Heat Pipes Analyzed.

Design Parameter Value Operational Parameter Value

Heat pipe length L (cm) 120

Evaporator length Le (cm) 20

Condenser length Lc (cm) 80

Adiabatic length La (cm) 20

Pipe outer diameter (mm) 25

Wall thickness (ram) 1.0

Liquid/wick thickness (mm) 1.0

Effective pore radius (Bm) 50

Wick porosity _ 0.7

Wall material Copper

Working fluid Water

Initial pipe temperature (K)

Initial pore void fraction

Startup mode

Shutdown mode

Evaporator radial heat flux

30O

0.02 - 0.20

Exponential

heating

Step function

Uniform

Evaporator maximum heat flux (W/cm 2) 1 - 5

Evaporator exponential heating period 'r 5 s

Condenser cooling method Convective

Water jacket average temperature (K) 300

Jacket heat transfer coefficient (W/m2K) 1000
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TABLE 8.2. Comparison of Operational Parameters of Water Heat Pipes
Investigated.

PARAMETER Case1 Case2 Case3 Case4

Evaporatorheatflux (W/cm2) 1 2 2 5

Initial porevoid fraction 0.02 0.10 0.12 0.20

Liquid inventory(gram) 82.805 82.332 82.295 82.148

Vaporpressurerecovery

attime of wetpoint 0.5% 36.8% nowet 66.0%
point

eachwith different working fluid inventoryandmaximumevaporatorheatflux. In these
cases,themaximumevaporatorheatflux rangedfrom 1W/cm2to 5 W/cm2. Themasses

of working fluid introducedin thepipe weresuchthat initially the liquid meniscusat the

liquid-vapor (L-V) interfaceis concaveeverywhere,so that the pressureof the vapor

phaseis greaterthanthatof the liquid phase.A greatermassof working fluid corresponds

to a smallerinitial vaporporevoid fractionat theL-V interface.As theliquid waterin the
heatpipeheatsup, theexcessvolumedueto thermalexpansionwill beaccommodatedin

the pores of the wick, and it may flatten the L-V interface at somepoint during the

transient;suchoccurrenceisreferredto hereinasthe"wet point". Resultsontheeffectsof

water inventoryandmaximumheatflux on the"wet point" locationandpotentialliquid

poolingattheendof thecondenserarepresentedin thefollowing sections.

8.1. LIQUID POOLING AT END OF CONDENSER

Figures 8. l a and 8.2a show the interfacial pressures and pore void fraction distributions of

Case 4 at the occurrence of the first wet point. Because the vapor pressure recovery in the

condenser is relatively high (66%), the wet point is located close to the beginning of the

condenser region. At the wet point, the L-V interface is flat and the pore void fraction is

zero. Further thermal expansion of the liquid phase increases the liquid pressure causing

the wet point to advance along the condenser region (Figures 8. lb and 8.2b). Eventually,

the wet point reaches the end of the condenser, and the excess liquid begins to accumulate

at the end of the condenser (Figures 8.1c and 8.2c). Notice that wetting of the entire
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condenser occurs within a very short time, only 19 ms after the occurrence of the first wet

point. Also, the maximum pore void fraction (or smallest radius of curvature of the liquid

meniscus) occurs at the beginning of the evaporator, and before flooding of the wick

occurs (wet point), the void fraction recovers along the condenser.

The effects of varying the liquid inventory and the evaporator input power on the position

of the wet point are delineated in Figures 8.3 and 8.4. When the vapor pressure recovery

is small compared to the liquid viscous pressure drop in the condenser region, the wet point

occurs at the end of the condenser region (Case 1, Figure 8.3). If the pressure recovery

exceeds the liquid pressure drop in the condenser, the wet point occurs at some

intermediate position in the condenser (Case 2, Figure 8.4). For Case 3, the mass of the

working fluid was low enough that such flooding of the wick at the L-V interface does not

occur even after 2 minutes into the transient, at which time steady-state operation is

reached. Therefore, by decreasing the operating maximum evaporator heat flux and/or the

liquid inventory in the heat pipe, pooling of liquid at the end of the condenser can be

avoided.

8.2. TRANSIENT RESPONSE OF WATER HEAT PIPE

As shown in Figures 8.5 to 8.7, in Case 4, the heat pipe reached steady-state after about

110 s. Figure 8.5 shows that at the beginning of the transient, the input power to the

evaporator is higher than the output power to the condenser, by the amount stored in the

wall, liquid and vapor regions. As the transient progresses, the output power approaches

the input power and the difference between the two disappears as the heat pipe reaches

steady-state, at a power throughput of 785 W. After 120 s (or 10 s after reaching steady-

state), the evaporator input power is cut off, and the heat pipe begins to cool down. The

heat pipe returns to its initial temperature and void fraction distribution, 100 s after the

power is cut off (Figures 8.6 and 8.7). At 24 s after the initiation of the transient, a liquid

pool forms at the end of the condenser (Figure 8.8). This pool, however, remains

relatively small, extending to a maximum of 0.58 mm at full-power (steady-state). After

the input power is cut off, the pool recedes very quickly, and disappears in about 11 s.

Also, the pore void fraction increases and the condenser becomes fully dewetted (Figure

8.7).
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8.3. HEAT PIPE CHARACTERISTIC PERIOD

It is interesting to analyze the transient response of the heat pipe in terms of its characteristic

periods. Indeed it is found that, except during the early startup until the formation of the

liquid pool (from 0 s to 24 s) and during the pool recession phase (from 120 s to 131 s),

the condenser output power, evaporation/condensation mass fluxes and pore void fractions

varied at a characteristic exponential period x = 14.9 + 0.1 s. This period applies both

during the exponential heating phase and the step-function cooldown phase, and is

therefore characteristic of the water heat pipe analyzed (Case 4). This period is expected to

vary with the pipe geometry, temperature levels of interest (since most properties, such as

heat capacity and thermal conductivity, are temperature dependent) and the type of

condenser cooling (convective or radiative); further work will investigate these effects.

8.4. TRANSIENT VAPOR PRESSURE RECOVERY

Issacci et al. (1988) and Faghri and Chen (1989), in their simulation of the steady-state

operation of water and sodium heat pipes, have reported pressure recoveries up to 90% of

the vapor pressure drop along the condenser and flow reversal at the end of the condenser.

This behavior intensifies as the input power, and consequently the radial Reynolds number

of the vapor increases. Similar behavior is also detected by our model. Figure 8.9a shows

the vapor pressure axial profile, normalized with respect to the maximum vapor pressure at

the beginning of the evaporator (Figure 8.9b), at different times during the heatup transient.

As the input power is increased with time, both the pressure level and the vapor pressure

recovery in the condenser region increase dramatically. The vapor pressure recovery in the

condenser reached a maximum value of 72% at steady-state, at a power throughput of 785

W (after 120 s of transient). Because the vapor pressure at this input power is 3 times that

at startup, a small time step is needed to accurately predict the heat pipe transient response.

The time step must be much smaller than both the exponential heating period (5 s) and heat

pipe's characteristic period (14.9 s). These calculations were performed with a time step of

25 ms.

8.5. VAPORIZATION RATES AND TEMPERATURE PROFILES

Figure 8. lOa shows the variation in the radial evaporation/condensation mass flux at the L-

V interface along the heat pipe at different times during the transient. After a very short

transient time (less than 2 s), the radial mass flux profile becomes uniform in both the
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evaporatorandcondenserregions. However,condensationalsooccursalongtheadiabatic

sectionduring the transientbecausethe liquid and wall temperaturesarecooler in this

region. Thecondensationmassflux in theadiabaticregionprogressivelydisappearswith

time asthe heatpipereachessteady-state(at 120s). Resultsin Figure 8.10showthat

during the transienttheevaporationandcondensationmassfluxes in theevaporatorand

condenserregions,respectively,increasewith time,reachingtheirhighestvaluesatsteady-

state. It is interesting to note that during steadystate operation, the evaporation-

condensationmassflux at the L-V interface is uniform in both the evaporatorand

condenserregions,asit is assumedby simplifiedtheories.

Figure8.11showsthecalculatedouterwall andliquid axial temperatureprofilesatdifferent

timesduringtheheatuptransient.Thesetemperaturesareaxiallyuniformin theevaporator,

adiabatic sectionand condenser,with sharp changesat the transitionsbetweenthese
regions. Theseresultssuggestthat theheatis transferredmainlyby radial conductionin

thewall andliquid/wick regions,andthataxialconductioninsignificantlyaffectsthewater

heatpipestransient.Theradialtemperaturedrop acrossthewall is alsonegligible(0.2K)

due to the high thermal conductivity of the containermaterial (about400 W/m.K for

copper). However,theradialtemperaturedropin the liquid/wick regionin theevaporator
is significant (42 K) becauseof the poor thermal conductivity of water (about 0.65

W/m.K), hencejustifying usinga two-dimensionalmodelingapproachof the heatpipe.
With a wick porosityof 0.70, theaddedconductanceof thecoppermeshhaseffectively

increasedtheconductivityof theworking fluid in thewick regionby only a factorof 1.85.

This poorconductanceof the water/wick region resultsin a relatively largetemperature

dropalongthepipe(44K atthemaximumsteady-statepowerthroughputof 785W).

Becausetheliquid flow in thewick is veryslow,conductionis thedominantmodeof heat
transferin thisregion. It is worthnotingthattheradialtemperaturedifferencebetweenthe

outerwall surfaceandliquid at theL-V interfacein the adiabaticsectionis negligibleat

steady-state,but it is asmuchas9 K after 10s into thetransient.

8.6. VISCOUS DISSIPATION

Results show that the viscous dissipation peaks at the midplane and vanishes towards the

axial ends of the heat pipe. While the viscous dissipation in the liquid phase is three orders

of magnitude smaller than that in the vapor region, the latter peaks up to 180 W/m 3 in the
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vapor region, at the end of the condenser. Consequently, the primary effect of viscous

dissipation is to increase the vapor temperature near the center of the pipe. This effect is

however three orders of magnitude smaller than that for liquid-metal heat pipes, and is

negligible for water heat pipes.

This chapter ends the analysis of the transient operation of low-temperature (water in the

present case) heat pipes. The next chapter presents steady-state results of a lithium heat

pipe operating at a temperature level of 1250 K and a power throughput of 6.5 kWt.

Results show that high evaporation and condensation rates can generate significant

recovery of vapor pressure and non-negligible viscous dissipation rates in the vapor space.
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9. STEADY-STATE OPERATION OF FULLY-THAWED LITHIUM

HEAT PIPE

Steady-state results of a lithium heat pipe operating at a temperature of 1250 K are

presented herein. The lithium heat pipe evaporator is uniformly heated, while its condenser

is radiatively cooled. At such a high temperature, viscous flow conditions are prevalent in

the vapor core region. Design and operational parameters of the lithium/niobium heat pipe

analyzed are listed in Table 9.1. In the radial direction, 5, 3, and 2 computational cells are

used in the vapor, liquid/wick and wall regions respectively, while 8, 4, and 8 axial cells

are used in the evaporator, adiabatic and condenser regions, respectively (Figure 9.10).

Note that, even so modeling of the liquid/wick region as a porous medium has been

incorporated into the heat pipe transient model, the sample calculations presented in this

chapter (and the preceding Chapter 8) were performed for a liquid open-annulus.

TABLE 9.1. Design and Operational Parameters of Lithium Heat Pipe Analyzed.

Design Parameter Value Operational Parameter Value

Heat pipe length L (cm) 150

Evaporator length Le (cm) 60

Condenser length Lc (cm) 60

Adiabatic length La (cm) 30

Pipe outer diameter (mm) 26.72

Wall thickness (mm) 1.60

Liquid/wick thickness (mm) 0.76

Effective pore radius (_tm) 50

Wick porosity E 0.7

Wall material Niobium

Working fluid Lithium

Initial pipe temperature (K)

Initial pore void fraction

Mass of working fluid (gram)

1250

0.1

35.538

Evaporator radial heat flux Uniform

Evaporator maximum heat flux (W/cm 2) 12.8

Input power (W)

Condenser cooling method

Space/ambient temperature (K)

Wall emissivity

View factor

6470

Radiative

300

1

1

2OO



9.1. PRESSURE PROFILES AND VAPOR PRESSURE RECOVERY

Issacci et al. (1988) and Faghri and Chen (1989), in their simulation of the steady-state

operation of water and sodium heat pipes, have reported pressure recoveries up to 90% of

the vapor pressure drop along the condenser and flow reversal at the end of the condenser.

This behavior intensifies as the input power, and consequently the radial Reynolds number

of the vapor increases. Similar behavior is also detected by our model. Figure (9.1)

shows the axial profile of the vapor pressure at steady-state. The vapor pressure recovery

in the condenser reached a value of 49%, at a power throughput of 6470 W.

At steady-state, radial gradients of static pressure are negligible in both the liquid and vapor

regions. This is found to be always true in the vapor region, but untrue in the liquid region

during transient operation. At steady-state the returning liquid flow from the condenser to

the evaporator is fully established as shown in Figures (9.9) and (9.10), and there is no

radial pressure gradient in the liquid region (Figure 9.2). Note that the flow is found to be

symmetric since the evaporator and condenser lengths are equal.

9.2. VAPOR PORE VOID FRACTION

The mass of working fluid introduced in the heat pipe is such that at steady-state, no liquid

pooling occur red. As shown in Figure (9.3), the total interfacial pressure of the vapor

phase is greater than that of the liquid phase, and the liquid meniscus at the L-V interface is

concave everywhere, even in the condenser region, so that the pore void fraction is positive

(Figure 9.4). Note the recovery of the pore void fraction along the condenser, which

follows the vapor pressure recovery in this region.

9.3. TEMPERATURE PROFILES

Figure (9.5) shows the calculated steady-state temperature distributions in the wall and

liquid-wick regions of the lithium heat pipe. The total radial temperature drop across the

wall and the liquid-wick combined thicknesses is about 6 K in both the evaporator and

condenser regions at a steady-state throughput power of 6470 W. Such a small

temperature drop is due to the high thermal conductivity of the container material (niobium)

and the liquid lithium. The maximum temperature difference along the pipe wall is 22 K,

which is small compared with the pipe average temperature of 1250 K (see Figure 9.5).
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These results suggest that the heat is transferred mainly by radial conduction in the wall and

liquid-wick regions, and that axial conduction insignificantly affects the heat pipe transient.

Because the liquid flow in the wick is very slow, conduction is the only mode of heat

transfer in this region. It is worth noting that the radial temperature difference between the

outer wall surface and liquid at the L-V interface in the adiabatic section is negligible at

steady-state.

9.4. VISCOUS DISSIPATION

Results presented in Figures (9.6) and (9.7) show that the viscous dissipation profile in

both the liquid and vapor regions peaks at the axial midplane and vanishes towards the ends

of the heat pipe. As expected, this axial profile is similar to that of the velocity field.

Radially, the peak of the viscous dissipation is located in the vicinity of the liquid-vapor

interface, where the shear stress is maximum. Very close to the interface, the axial velocity

is too small, while the shear stresses are negligible near the centerline of the pipe. While

viscous dissipation is less than 7 W/m 3 in the liquid phase (Figure 9.7), it peaks at about

230 kW/m 3 in the vapor region (Figure 9.6). Consequently, the primary effect of viscous

dissipation is to increase the vapor temperature near the center of the pipe. These results

clearly suggest that while viscous dissipation in the liquid phase could be neglected, it is

not negligible in the vapor region of liquid-metal heat pipes. Neglecting viscous

dissipation in the vapor could underpredict the vapor temperatures. Note that the vapor

viscous dissipation curve at R=10.56 mm indicates that flow reversal is occurring at the

end of the condenser region. Similar results have been reported by other investigators

(Issacci et al. 1988; and Faghri and Chert 1989).

9.5. EVAPORATION / CONDENSATION RATES

Figure (9.8) presents the axial profile of the evaporation/condensation mass flux along the

lithium heat pipe. It is interesting to note that at steady-state, the evaporation/condensation

mass flux at the L-V interface is uniform in both the evaporator and condenser regions, as

it is assumed by simplified theories. The evaporator and condenser lengths of the heat pipe

are equal, and there is no evaporation or condensation along the adiabatic section of the heat

pipe.
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10. SUMMARY AND CONCLUSIONS

Heat pipes are highly reliable and efficient energy transport devices, which are being

considered for many terrestrial and space power thermal-management applications, such as

high-performance aeronautics and space nuclear and solar dynamic power systems. In this

work, a two-dimensional Heat Pipe Transient Analysis Model, "HPTAM", was developed

to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes

from a frozen state. The model incorporates: (a) sublimation and resolidification of

working fluid; (b) melting and freezing of the working fluid in the porous wick; (c)

evaporation of thawed working fluid and condensation as a thin liquid film on a frozen

substrate; (d) free-molecule, transition and continuum vapor flow regimes, using the

Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and

hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the

radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial

location of the working fluid level (liquid or solid) in the wick. It also includes the

transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor

interface and geometrically relates the radius of curvature of the liquid meniscus to the

volume fraction of vapor in the wick. The present model predicts the capillary limit and

partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling

submodel, which simulates accumulation of the excess liquid in the vapor core at the

condenser end.

HPTAM can handle both rectangular and cylindrical geometries. The model divides the

heat pipe into three transverse regions: wall, wick, and vapor regions, and solves the

complete form of governing equations in these regions. The heat pipe wick can be a wire-

screened mesh, an isotropic porous medium such as a powder or a bed of spheres, or an

open annulus separated from the vapor core by a thin sheet (with small holes to provide

capillary forces). HPTAM incorporates several working fluids such as lithium, sodium,

potassium and water, as well as various wall materials (tungsten, niobium, zirconium,

stainless-steel, copper and carbon). Evaporation, condensation, sublimation and

resolidification rates are calculated using the kinetic theory relationship with an

accommodation coefficient of unity.

To predict the flow of liquid in the porous wick of the heat pipe, HPTAM uses the

Brinkman-Forchheimer-extended Darcy model. A submodel was developed to calculate

208



the effectivehydrodynamicpropertiesof wire-screenedwicks, suchasvolumeporosity,

permeability and effective pore size. This submodel was verified using measured

characteristicsof wicks found in the literature. Also severalmodelsfor calculatingthe

effective thermalconductivity of wicks werereviewedandcomparedwith experimental
data. Basedon theresults,Maxwell'sequationfor distributedcylindersis recommendedto

calculatetheeffectiveradialthermalconductivityof wire-screenedwicks,whiletheparallel

model is bestfor calculatingtheaxial thermalconductivityof suchwicks. Themodelof

Veinberg for distributed spheresis most accuratefor estimatingthe effective thermal

conductivityof isotropicporousmediasuchasceramicpowder,metallic felt or sintered
metal. TheBrinkman-Forchheimer--extendedDarcymodelwassuccessfullybenchmarked

againstexperimentaldatafor naturalconvectionof moltengallium in aporousbedof glass
beads.

HPTAM handlesthephase-changeof working fluid in the wick using amodified fixed-

grid homogeneousenthalpy method. The large numerical error and sometimespoor
stabilitycharacteristicsandconvergenceratesof existingfixed-grid enthalpyformulations

arecausedby improperhandlingof theevolutionof the latentheatanddiscretizationof the
convection-diffusionenergyfluxes. A verysmall8T mustbeusedto simulatethephase-

changeof apuresubstance.When8T is small,the?-T relationshipcloselyapproximatesa

step function, and many schemesusing the enthalpy formulation have experienced
numericaldifficulties. The presentnumericaltechnique,however,employsa mushy-cell

temperaturerangeassmall as 2x10-8 K (limited by machineaccuracyonly), without

requiringunder-relaxationof thetemperaturesandgeneratingnumericalinstabilities.The
useof the conventionalharmonicmeandiscretizationscheme(HMDS) of Patankarto

estimatetheheatfluxes at theboundariesof themushycell is largely responsiblefor the

lossin accuracyandthe generationof wiggly temperaturetime histories. Thelarger the

changein thermaldiffusivity of theworking fluid uponmelting,theworsearetheresults.

Indeed,thethermaldiffusivity of thesolid phaseis quite different from that of the liquid
phasefor most materials. Insteadof usingthe HMDS, a simple method,basedon the

frozenvolumefraction,wasdevelopedto calculatetheheatfluxesat theboundariesof the

mushy cell. This method improved the accuracy of the solution and reduced the

oscillationsin temperaturetimehistories(usuallyencounteredwhentheHMDS isused)by

one-to-two ordersof magnitude.

The wide interest in heatpipes hasstimulatedthe developmentof numerousmodels.

Becausethetransientoperationof heatpipesandthe startupof heatpipesfrom a frozen

209



stateinvolveseveralhighlynon-linearandtightly coupledheatandmasstransferprocesses

in thevapor,wick andwall regions,mathematicalmodelingof theseproblems is quite

complex. Even so they used oversimplifying assumptions,several investigators
encounterednumericalinstabilities(Costelloet al. 1988; andPeeryandBest 1987)when

attemptingto modeltheoperationof heatpipes. Extremelysmalltimesteps(10-4 s) were

required to solve iteratively for the coupled energy and kinetic theory equations. This

constraint on the time step was previously reported by Subbotin when using his model for

predicting evaporation / condensation rates.

Not the least contribution of this work was to develop a stable solution procedure that is

accurate and efficient in terms of CPU time. Two segregated solution techniques, one

based on the non-iterative Pressure Implicit Splitting Operator (PISO), and the other based

on the SIMPLEC segregated iterative technique, were developed and tested for their

stability and effectiveness in reducing the CPU time while maintaining the accuracy of

results. The most efficient technique, HPTAM-Revised, is a SIMPLEC-type segregated

solution technique which includes two internal iterative steps to resolve the pressure-

velocity and temperature-velocity couplings and reduce the linearization errors of the

kinetic theory relationship and equations of state. The solution evaluates the volume of the

vapor in the wick explicitly, while the kinetic theory relationship is implicitly coupled with

the energy jump condition at the L-V interface. Other solution techniques examined

required using a small time step size (< 15 ms) to avoid numerical instabilities. On the

other hand, a time step size as high as 500 ms could be used with the HPTAM-Revised

technique without developing any numerical instability. While all solution techniques

examined performed the same in terms of accuracy, the HPTAM-Revised is about 90 times

faster than the basic non-iterative SIMPLE-type approach.

Various linear-system solvers were also examined to determine which one was most

efficient for solving the problem at hand. To solve the five-point linear Poisson equations

resulting from the discretization of the mass balance equations, a direct solution routine

using Gaussian elimination was developed. The banded version of the solver allowed

significant decreases in computation time and memory storage requirement. The selection

of the appropriate linear-system solver clearly affects the efficiency of the solution

technique, particularly when computational grids larger than 10x30 are used. For example,

when solving a typical heat pipe problem using a 20x40 size grid, more than 90% of the

total CPU time is used by the banded Gauss-elimination solver. Calculations showed that,

when the iterative SIS solver is used instead of the banded Gauss-elimination solver for the
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solution of the 5-point momentum and energy linear systems, the total CPU time was only

48% of that for the technique using the Gauss-elimination solver.

The development of this comprehensive model was guided by continuous benchmarking of

the model predictions with available experimental and numerical results. The accuracy of

the physical and numerical schemes for modeling heat and mass transfers in the wick was

verified using various benchmark problems, namely: (a) natural convection of liquid in a

square cavity; (b) natural convection of molten gallium in a porous bed of glass beads; (c)

one-dimensional pure conduction solidification problem; (d) two-dimensional pure

conduction problem of freezing in a corner; and (e) the freezing of tin in a rectangular

cavity in the presence of natural convection.

Numerical results of the frozen startup of a radiatively-cooled water heat pipe are

presented, which demonstrate the soudness of the physical model and numerical approach

used in HPTAM. The results illustrate the importance of the sublimation and

recondensation processes during the first period of the transient and the combined effects of

phase-change and liquid hydrodynamics in the wick during the startup of the low-

temperature heat pipe. The startup is characterized by partial recess of liquid in the

evaporator wick after the capillary limit has been reached. After enough working fluid was

melted by resolidification and condensation in the adiabatic and condenser sections of the

heat pipe, resaturation of the wick was established before complete dryout of the evaporator

occurred, leading to a successful startup. The present analysis identified the following

processes occurring sequentially during the startup of a radiatively cooled water heat pipe

from a frozen state:

- depletion of solid working fluid in the evaporator and accumulation in the adiabatic and

condenser sections via sublimation / resolidification;

- thaw of working fluid in the evaporator and decrease of liquid inventory in wick due to

evaporation and volume decrease upon melting;

- formation of a liquid film on the solid substrate in adiabatic and condenser regions due

to condensation of vapor;

- outward radial propagation of thaw front in adiabatic and condenser regions;

- recovery of liquid saturation in evaporator wick due to liquid circulation from

condenser;

- completion of heat pipe thaw and resumption of normal operation.
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Results also showed that the sublimation/resolidification process in the low-temperature

heat pipe has the beneficial effect of transporting a portion of the heat input from the

evaporator to the condenser, thus reducing the temperature difference between these two

regions, and accelerating the thaw process during the startup from a frozen state.

Previous investigations of the frozen startup of heat pipes generally assumed uniform

distribution of the working fluid in the wick. Such assumption is found to be invalid for

low-temperature heat pipes. As the present calculations show, redistribution of frozen

working fluid in low-temperature heat pipes occurs during startup due to sublimation and

resolidification of vapor. Such phenomena has also been observed experimentally

(Kuramae 1992; and Ochterbeck and Peterson 1993). These processes may prevent

successful re-startup of the heat pipe during cyclic operation. The vapor resolidifies in the

cooler parts of the heat pipe and cannot return back to the evaporator. Eventually, the wick

might completely dryout in the evaporator. In cases of low-temperature heat pipes with

large evaporator-to-condenser length ratio, complete blockage of the vapor channel could

occur due to resolidification of working fluid (Ochterbeck and Peterson 1993).

The heat pipe model was validated using transient experimental data of a fully-thawed

water heat pipe constructed at the Institute for Space and Nuclear Power Studies. The

calculated steady-state vapor and wall axial temperature profiles and the transient power

throughput and vapor temperature were in good agreement with measurements. Results

illustrated the importance of the hydrodynamic coupling of the vapor and liquid phases and

showed the appearance during the heatup transient (disappearance during cooldown) of a

pool of excess liquid at the condenser end. These pooling phenomena were observed by

Merrigan et al. (1986) who studied experimentally the startup and shutdown transients of a

4 m-long cylindrical lithium heat pipe. They found that during normal operation, excess

working fluid pooled into the vapor core and filled approximately the last 50 cm of the

condenser. Finally, the effects of input power and initial liquid inventory in the water heat

pipe on the wet point and liquid pooling, and on the vapor and liquid pressure and

temperature distributions were investigated in details.
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11. RECOMMENDATIONS FOR FUTURE WORK

It is apparent that only a few startup experiments of low-temperature and high-temperature

heat pipes have been attempted in the literature, and that most experiments conducted have

basically been performance tests, rather than phenomenological investigations. It is not an

easy task to monitor phenomena occurring within a short distance in a closed pipe. For

example, because of practical limitations, no direct measurements of the actual progression

of the melting front and mass transfers associated with sublimation and resolidification

were possible. Experimental data available are limited to wall temperatures in most cases,

with few attempts made to measure the vapor pressure or temperature inside the heat pipe.

Therefore, there is a need for systematic theoretical and experimental studies of the transient

behavior of liquid-metal and non-liquid metal heat pipes. The outcome of these studies

would be useful to better benchmark calculation models for the design of reliable heat pipes

for space and terrestrial applications. The transient modes of interest are power step

changes, reversed heat pipe operation due to a condenser external heating, and the startup

of heat pipes from a frozen state.

Space experiments, which investigate the effect of microgravity in startup from a frozen

state, will be a welcome input for benchmarking the present model "HPTAM" and other

models in literature. Such research is necessary for future applications of heat pipe analysis

code to space thermal management and spacecraft thermal control system's operation.
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APPENDIX A. MODELING OF HEAT AND MASS TRANSFERS IN

POROUS MEDIA

Since the early work of Darcy in the nineteenth century, extensive investigations have been

conducted on flow and heat transfer through porous media, covering a broad range of

different fields and applications, such as ground-water hydrology, petroleum reservoir and

geothermal operations, packed-bed chemical reactors, transpiration cooling and building

thermal insulation. The first section of this appendix (Section A- 1) describes the necessary

governing equations for modeling the flow of liquid in the porous wick of the heat pipe.

The Brinkman-Forchheimer-extended Darcy's flow equations approach the empirical

representation of the flow in a porous medium (the Forchheimer-extended Darcy flow

model) as the permeability of the porous wick, K, decreases, and reduce to the standard

Navier-Stokes equations as K goes to infinity.

The next section (A-2) focuses on the heat transfer in a partially frozen porous medium,

which contains a mixture of three phases: the solid and liquid phases of the working fluid,

and the solid matrix of the wick. The volume-averaged homogeneous enthalpy

formulation is best suited for modeling this difficult problem. This method offers several

advantages: (a) it employs a fixed-grid numerical scheme; (b) it accounts for the

complicated interfacial structures of the various constituents and is valid for any volume

fractions of the wick porous matrix and the liquid and frozen phases of the working fluid;

and (c) it does not necessitate implicit tracking of the liquid-solid interface.

Finally, analytical expressions of the hydrodynamic and thermal properties of the heat pipe

wick are presented in the last two sections of this appendix, and checked using

experimental measurements.

A-1. MODELING OF FLOW THROUGH POROUS MEDIA

Most analytical studies of flow through porous media have dealt primarily with a

mathematical formulation based on Darcy's law, which neglects the effects of solid

boundaries and inertial forces on fluid flow through porous media. To account for these

effects, Forchheimer and Brinkman extended Darcy's law, and other investigators

introduced the transient and convective inertia effects into their generalized flow equation.
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The form of the Brinkman-Forchheimer-extendedDarcy'sflow equationscanbepartly

justified throughanalyticalvolume-averagingof themicroscopicconservationequations,

whichprovidesameanto identify theapparentviscosityin theBrinkman'sterm. It is then

postulatedthat Darcy's term andForchheimer'sextensionarethe necessaryconstitutive

relationshipsto modeltheunknowntermsarisingfrom thevolume-averagingprocess.

A-I.1. Darey's Law

The steady flow of a fluid through a fully-saturated homogeneousisotropic porous

mediumisdescribedby theempiricalDarcy'sequation(Darcy 1856):

_p=p_ /a_ , (A-l)
K

where

P, p and/.t are the pressure (Pa), density (kg/m 3 ) and dynamic viscosity (kg/m.s ) of

the fluid, respectively,

F is the external acceleration (body forces, such as gravity, in m/s 2 ),

K is the permeability of the porous medium (m 2 ), and

q denotes the mean (area-averaged) filter velocity within the medium (m/s ).

Since it neglects any inertial and turbulent effects, Darcy's law is valid for very slow flow

conditions only. The inertial effect becomes important for high-porosity media or high

Rayleigh number regimes.

A-1.2. Forchheimer's Extension

For (unidirectional) high-velocity laminar and turbulent flows in a porous medium, it was

first suggested by Osborne Reynolds (1900) and later by Muskat (1937) that the axial

pressure gradient might be represented by the form:

dP IDm

dz alaq+bpqq , (A-2)

where a and b are constant for a given porous medium. The following explanation
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(BeaversandSparrow1969)maybeofferedto justify theform of Equation(A-2). For a

very slow flow, it is well establishedthatthepressuregradientis a linear function of the

filter velocity q, and the coefficient a is the reverse of the permeability (see Equation

A-l). At higher velocities, departures from Darcy's law are due to inertial effects. The

inertial effects are reckoned as being proportional to pq2. The linear superposition of the

viscous and inertial effects embodied in Equation (A-2) cannot be justified on purely

theoretical grounds, nor can the assumption that b is independent of the velocity q. These

aspects of the proposed relationship require experimental justification. An analysis by

Ward (1964) showed that b = C/_/K, where C is a dimensionless constant which has

been evaluated experimentally by various investigators. Ward (1964) found that for a large

variety of porous media C could be taken as a constant equal to approximately 0.55.

Despite the original belief that the "inertia coefficient" C was a universal constant, it is now

generally accepted that C is a function of the microstructure of the porous medium

(Beavers and Sparrow 1969).

Equation (A-2) can be rewritten in terms of the inertia coefficient as:

elldP_laq v 9qq • (A-3)
dz K -_

The second term on the right-hand side of Equation (A-3) is commonly referred to as the

Forchheimer's extension. As apparent from Equation (A-3), the ratio of pressure gradient

to filter velocity is a linear function of the velocity, so that K and C can be easily

determined from measurements of static pressure drops and mass flow rates by fitting a

straight line to the data. Indeed, experimental investigations (Ergun 1952; Ward 1964;

and Beavers and Sparrow 1969) for uni-directional flows of water and gases through

packed columns and fibrous materials showed the axial pressure distribution to be a linear

function of z.

In the literature, it is a common practice to express the pressure drop in terms of a friction

factor. Defining the characteristic dimension of a porous medium as the square root of the

permeability _/K, the Fanning friction factor fa and the Reynolds number Re have the

following expressions:
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pq2 dz ' [a
(A-4)

IdentifyingEquations(A-3) and(A-4) givesthefollowing expressionfor fa"

: _/-K(l-tlql+cpq_2_ 2 ] 1 +C

fa pq2_ K _/K ) = R--7
(A-5)

It was found experimentally that fa varies inversely with the Reynolds number in the

laminar flow regime (Darcy flow) and becomes a constant at high Reynolds numbers. As

apparent from Equation (A-5), there is no distinct division between laminar, transition and

turbulent flows in porous media.

Ergun (1952) used experimental data on the flow of gases (C02, N2, CH4 and H2) through

beds of granular solids of various shape (various-sized spheres, sand and pulverized coal)

and derived the following expressions for the permeability and inertia coefficient of packed

particle columns:

D 2 E3
K - m C - 1.75 1 - 0.143

150 (1 __:)2 ' 1(150 Elrg Ettg ' (A-6)

where Dm is a characteristic dimension which represents the mean diameter of the particles.

The mean particle diameter is generally that of a sphere having same specific surface Sv

as the particles in the bed. For a sphere of radius R •

Sv - 4rtR2 - 3
47_R 3 R , (A-7)
3

and

Om-- 6
Sv

(A-8)
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Needlessto say,while thedeterminationof Sv presents no problem for packed columns of

identical particles, it is technically difficult for porous media (Ergun 1952). A simple

consideration of theoretical possibilities of the structure of porous media makes one realize

that a general correlation between porosity and permeability cannot exist. It is obviously

quite possible for two porous media of the same porosity to have entirely different

permeabilities.

A much used modification of Kozeny's theory for the permeability of porous media was

postulated by Carman who derived the so-called Kozeny-Carman equation:

1 E3 _ D2m e3

K- 5S2v (I-E) 2 180 (l-E) 2 (A-9)

Other models have been proposed (see the excellent critical review of Scheidegger, 1974).

However, the Kozeny-Carman equation is widely used nowadays since it fits experimental

data for a large variety of porous media. Note that Equation (A-6) recommended by Ergun

is identical in form, with a slightly different constant (150 instead of 180; a value of 175

can also be found in the literature). Despite the facts that hydraulic radius theories utterly

fail to describe anisotropic structured bodies such as stiff-fissured clays and highly porous

fibrous media, the Kozeny-Carman equation is usually assumed to be unquestionable and

the method of determining the specific area Sv of powders by measurement of permeability

(with the use of Equations A-3 and A-9) has achieved considerable popularity.

A-1.3. Brinkman's Extension

It is apparent that Darcy's Equation (A-l) neglects the viscous shear stresses acting on a

volume element of fluid; only the damping force of the porous medium has been retained,

thus Darcy's law is only valid for low-permeability (low-porosity) media. Therefore,

there is a need for an equation that is valid for high-permeability media and which reduces

to the Navier-Stokes equation as K---> +oo. The well-known Navier-Stokes equation for

steady flow in a fluid phase, with negligible inertia terms, has the following form:

_'P = p_' + Div _ , (A-10)

where _ is the deviatoric stress tensor. For linear fluids (Newtonian), the deviatoric stress

tensor has the following form:
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T_
and Di---_ reduces to _AU for incompressible fluids (div U = 0). Based on this

analysis, Brinkman (1947) modified Darcy's law in the following way:

_'P = P_"- P'---_q+ ILt'Aq , (A-12)
K

which has the advantage of approximating Equation (A-I) for low-permeability materials

and Equation (A-10) for large values of K. The factor/1' is an effective dynamic viscosity

which may differ from the fluid viscosity ,u. Neale and Nader (1974) showed that in some

instances assigning/1' the value of/1 provided a satisfactory correlation of experimental

data. This simplification was therefore recommended and appeared to be an established

practice. However, it is uncertain which apparent viscosity fl' one should use, the fluid

viscosity/.t, or a viscosity that accounts for the concentration of the particles as Einstein's

correction does for dilute suspensions (/17/1 = l+2.5x(1-e) ).

Lundgren (1972) attempted to resolve this issue by extending a statistical formulation to the

problem of a fixed bed of spheres. His predictions for/.t'//.t, however, differ strongly

from that obtained by Einstein and from ,uV,u = 1/e when e <0.7. It is not clear which

of these correlations is more accurate for low values of e.

Tam (1969) pointed out that, whenever the spatial length scale is much greater than

t5 =v/(Klu'/I..t ), Brinkman's term in Equation (A-12) is negligible. For large systems, this

means that Darcy's law is valid only outside of a boundary layer of thickness 6.

Neale and Nader (1974) pointed out that since the Brinkman's Equation (A-12) contains the

macroscopic shear stress, it is fully compatible with the existence of boundary layer regions

within porous media. Moreover, although the effective thickness of such regions is usually

quite small (in the order of ',/K), their effects on unobstructed external flows can be

surprisingly significant. Outside the boundary layer region, the macroscopic shear term in

the Brinkman equation is negligible, indicating that Darcy's original law is valid

everywhere except in the immediate vicinity of permeable surfaces.
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By introducing the Forchheimer and Brinkman's extensions into Darcy's law, a generalized

flow equation for flow through porous media can be written as:

VP=pF "_t C plql_+.,A_ (A-13)
n

It is a common practice to define the Darcy number Da and Forchheimer number Fo as:

Da =--K , and Fo= C'_-_--. = C_a , (A-14)
L 2 L

where L is a characteristic length of the porous region (such as its thickness). Georgiadis

and Catton (1986, 1988) noted that Brinkman's term has negligible effect on the onset of

cellular Bdnard convection if Da < 10-3 . The magnitude of Da expresses the ratio

(Brinkman's term)/(Darcy drag) away from the solid boundaries. Near these boundaries,

the Brinkman term is significant because the shear increases to accommodate the no-slip

condition.

A-1.4. Transient and Convective Inertia Terms

An attempt to deduce the "turbulent" form of the Forchheimer flow equation was made by

Irmay (1958). This author retained all the inertia terms of the Navier-Stokes equations in

the microscopic flow channels and then built up a hydraulic radius model in a manner

similar to that of Kozeny (Scheidegger 1974):

dP Fdz a_q +bpqq +cpOU (A-15)
3t

Irmay obtained c =1 for the Kozeny model. After using the Dupuit-Forchheimer

assumption (which relates the interstical velocity U to the filter velocity q as: q = eU ),

Irmay's work resulted into adding the transient term 19 3q
E 3t on the right-hand side of

Equation (A-2). This corresponded to the equation already postulated by Polubarinova-

Kochina.
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Other investigators have supported the introduction of new convective inertia terms in

Equation (A-15), but have shown that the role of these additional terms is negligible for

low-permeability porous media. Later, Stark (1969) showed that, at high-flow velocity

the pressure deviates from that predicted by Equation (A-15). Stark proved that this

deviation was due to the convective inertia terms in the Navier-Stokes equations.

Therefore, by introducing the transient term and convective inertia terms in Equation

(A-13), the following empirical general flow equation for flow through porous media is

obtained:

9_____q+inertiaterms=p_:__p Bq C p[ql_q+B,A_ (A-16)
e c3t K

A- 1.5. Local Volume-Averaging Technique

Developing a correct formulation of the problem of convection through porous media

remains a point of major contention in the literature. Fortunately, it is possible to derive

analytically general macroscopic balance equations that describe the flow and heat transfer

in porous media, through volumetric averaging of the microscopic conservation equations.

A comparison of these more general equations with the empirical equations mentioned

above gives some insight into the righteousness of the various heuristic extensions that

were derived somewhat independently. Such a comparison provides a means to identify

the apparent viscosity /1' in the Brinkman's term. Another advantage of the volume-

averaging formulation is that it offers an insight into the assumptions involved.

Following the analysis of Gray and O'Neill (1976; see also Cheng 1978), a two-phase

system is considered in which c_ denotes the fluid phase and/3 the solid matrix. The

porous medium is assumed to be fully-saturated. The averaging volume V is composed of

both the o_ and the [3 phase such that V = Va + V/3, where V_ and V/3 are the volumes

of the phases a and/3 in V, respectively. A phase average of some quantity V in the _z

phase may now be defined by:

(A-17)
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wheregta refers to the value of gt in the a phase and is defined to be zero in the/3 phase.

An average formed by integration over only one phase (e. g., the a phase) is called an

intrinsic phase average and is defined by:

lfv 1fv  dV (A-18)

The second equality comes naturally since gta is nul in the/3 phase. If the fraction of the

total volume occupied by the fluid phase _ is denoted by e = Va/V, then it is apparent

from Equations (A-17) and (A-18) that:

<w)=e (w) (A-19)

When gta refers to the local fluid velocity, we can identify the filter velocity q and the

average pore velocity U with the phase average and intrinsic phase average of gt a

respectively, so that Equation (A-19) provides a mathematical verification of the Dupuit-

Forchheimer postulate (q = eU ).

Now it is assumed that the conventional Navier-Stokes equations for compressible fluid

describe the flow in the pores of the microstructure, and these equations are integrated over

the volume V. In order for the averaging process to lead to meaningful results, the

characteristic length I of the elementary volume V must be such that d << 1 << L, where d

is a microscopic characteristic length over which significant variations in the point

quantities occur, and L is a macroscopic characteristic length of the porous medium.

Averages of derivatives can be related to the derivatives of averages by the theorems of

Whitaker and Gray. The averages of products can be expressed in terms of the product

averages by the following relation (Gray and O'Neill 1976; and Cheng 1978):

(A-20a)

where the tild notation denotes the deviation of a quantity from its phase average, that is:

(A-20b)
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After integrating the Navier-Stokes equationand performing all necessaryanalytical

transformations,GrayandO'Neill (1976)simplifiedtheresultingmacroscopicmomentum

equationsby assumingthat densitygradientsat the microscopiclevel arevery small in

comparisonto the correspondingvelocity gradients,andthat theviscosityof thefluid is

approximatelyconstantwithin theaveragingvolumeV. These assumptions are appropriate

for slow flows of liquids through porous media, in which thermal and pressure gradients

are not too large. At this point, their motion equation takes the form:

P 0___+ P _?q _ = pp _ _p + g__A_ + other terms , (A-21)
E _)t _2 E

where

p= P= ,and = = (A-22)

The other terms (which are not reproduced here) involve the deviations of the fluid velocity

and pressure from their intrinsic averages, and a surface integral (over the fluid-solid

interfacial surface in the volume V ) which accounts for the phase-averaged viscous drag of

the solid on the fluid.

In a similar manner as for the derivation of the turbulent flow equations, constitutive

relationships must be obtained to represent these other terms in a useful and practical

manner. For the flow of a Newtonian fluid through an isotropic medium, Gray and

O'Neill showed that the macroscopic momentum equation can be reduced to an equation

containing only five medium constants (porosity and permeability are two of them), that

could be evaluated from experiments. For our purpose, a comparison of the empirical

Equation (A-16) with Equation (A-21) suggests that the additional inertia and viscous terms

in Equation (A-21) can be represented by the Darcy-Forchheimer extension. Therefore,

the equation of motion for a Newtonian fluid through a fully-saturated isotropic porous

medium reads:

p_)Tq t_p_=p_:__,p iLt_ C pq_+--gAYq (A-23)
Ot E 2 K _ _ "

It is apparent that the flow Equation (A-23) is consistent with the Brinkman-Forchheimer-
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extendedDarcyflow model,wheretheapparentviscosity/1' hasthevalue/1/e. It is also

consistentwith the postulatesof Irmay concerningthe transientterm and that of other

investigatorsconcerningtheconvectiveinertiaterm. Thefinal attractivefeatureof Equation

(A-23) is thatit approachestheempiricalrepresentationof flow in a porousmedium(the

Forchheimer-extendedDarcy flow model)asthepermeability,K, decreases, and reduces

to the standard Navier-Stokes equations as the porosity e goes to 1 and the permeability

goes to infinity; consequently, this equation connects the two theories. These arguments

justify the fact that Equation (A-23) has been used with success in recent years to model the

flow of liquids in porous media (Beckermann and Viskanta 1988; Kladias and Prasad

1989; Nakayama et al. 1990; Sasaki et al. 1990).

In the next section, the governing equations for modeling the heat transfer in a partially

frozen porous medium are described.

A-2. MODELING OF HEAT TRANSFER IN A PARTIALLY-FROZEN

POROUS MEDIUM

While the modeling of flow in porous media involves only one phase, the liquid, modeling

of the heat transfer in a thawing or freezing wick structure is a priori more complex since

heat is conducted through the solid matrix and the frozen and liquid phases. Two different

numerical formulations have been developed to solve multidimensional convection/

diffusion solid-liquid phase-change problems, the temperature-based method and the

volume-averaged enthalpy method. In the temperature based method (Wolff and Viskanta

1988; and Bergman and Webb 1990), the temperature is the sole dependent variable and

the energy conservation equations are written separately for the liquid and frozen regions.

This formulation requires the specification of interfacial conditions on temperature, velocity

and heat transfer at the phase-change boundary. This renders the use of a fixed grid

difficult; instead deforming grids or transformed coordinate systems are required to

transform the time-dependent physical domain occupied by the melt into a time-

independent rectangular domain. While such front tracking formulation is accurate in

locating the phase-change boundary, computational complexities and excessive mesh

distortion usually preclude its use in cases involving a distorted solid-liquid interface (for

example due to natural convection in the liquid phase).

In the enthalpy formulation (Gray and O'Neill 1976; Cheng 1978; Voller and Prakash

1987; Beckermann and Viskanta 1988), the enthalpy is used as a dependent variable along
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with thetemperature,andthereis noneedto satisfyexplicitly interfacialconditionsat the

phase-changeboundary.

A-2.1. Volume-Averaged Homogeneous Enthalpy Formulation

The first step is to derive an enthalpy conservation equation for each phase (the porous

matrix, and liquid and frozen phases of the working fluid). Such equations can be

empirical in nature, or derived analytically from statistical theory (Scheidegger 1974) or

volume-averaging technique (Gray and O'Neill 1976; Whitaker 1977 and 1986; Cheng

1978; Levec and Carbonell 1985). These equations contain some unknown convective

and dispersive terms, which involve the deviations of the fluid velocity and temperatures

from their intrinsic averages, as well as surface integrals of temperatures and interphasic

exchange quantities over the separative interfaces between the three phases.

The interphasic exchange terms can be treated in two different approaches (Combarnous

and Bories 1975; Cheng 1978; Levec and Carbonell 1985). In the first approach, labeled

the continuous solid phase model, a distinction is made between the phases intrinsic

average temperatures, and effective heat transfer coefficients are introduced to model the

heat exchange terms between phases. However, it is difficult to represent interphase heat

fluxes in terms of film heat transfer coefficients when convective transport is small

compared to conduction. The second approach, known as the homogeneous model, forms

the evolution equation of the overall spatial average temperature by adding the energy

equations associated with each phase; in this process, the various interphasic exchange

terms simply cancel each others.

Considering that buoyancy-induced and surface-tension-driven liquid flows are

characterized by relatively low convective transport rates, one is encouraged to assume that

conductive transport is sufficient to eliminate significant temperature differences between

the separate phases (we are not considering the case of internal heat generation). In such

cases, the evolution equation can be expressed in terms of the overall spatial average

temperature only, with the assumption of local thermal equalibrium between phases

(Cheng 1978; and Whitaker 1986), stating that the intrinsic phase averages of temperatures

are equal.

For our purpose of modeling heat transfer in the porous region of the heat pipe, we choose

to use the homogeneous model derived from the volume-averaging of the microscopic
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enthalpyconservationequations,assuminglocal thermalandhydrodynamicequalibrium.

Theadvantagesof thisprocedurearethattheresultingevolutionequationaccountsfor the

complicatedinterfacialstructuresof the variousconstituentsandis valid for anyvolume

fractionsof the wick porousmatrix andthe liquid andsolid phasesof the working fluid.

Hence,this approachofferstheadvantagethattheentiredomaincanbetreatedasa single

regiongovernedby only oneconservationequation(BeckermannandViskanta 1988).In

otherwords,thesameequationcanbeusedfor themeltasfor thefully solidifiedregions.
Also, as mentionedbefore,unlike empirical methods,a rigorous analytical averaging

processcouldoffer additionalinsightinto theassumptionsinvolved.

Thehomogeneousenthalpyconservationequationfor modelingtheheattransferwithin a

partly-frozen liquid-saturatedporousmediumis easily derivedfollowing theprocedure
outlinedby Cheng(1978). It is furtherassumedthat thefrozenfluid phaseis notmoving

andthattheporousmatrixof themediumis fixed, sothat only the liquid velocity is non-

zero. The microscopicenthalpyconservationequationsareintegratedover the volumeV

for each phase, and the unknown terms associated with each particular phase are modeled

by introducing dispersion thermal coefficients (conductivities).

Several investigators have tried to justify the form of the closure relationships for the

unknown terms. Levec and Carbonell (1985) have shown that the unknown terms could

be expressed in terms of known quantities through the introduction of various tortuosity,

dispersive, convective and heat exchange coefficients, resulting in a quite complex set of

equations. Whitaker (1986) has used order-of-magnitude analysis to derive the constraints

that must be satisfied in order that the dispersion-thermal-coefficient closure relationships

provide a reasonable description of the heat transport process in a packed-bed catalytic

reactor. His work has led to a series of constraints which unfortunately are based on

estimates only. It must be noted that the closure problem encountered is extremely complex

and quite similar to that arising in turbulence modeling, and experimentation seems to be

the only reasonable mean to validate the constitutive models. While Cheng (1978)

introduced scalar dispersion coefficients, Whitaker (1977, section Ill.B) developed several

arguments which led to the modeling of all the unknown terms with a second-order

effective-thermal-conductivity tensor, that consists of a conductive part and a dispersive

part.
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Using Whitaker's approach, the addition of the volume-averaged enthalpy conservation

equations associated with each phase leads to the following homogeneous enthalpy

conservation equation:

o_PL
- + q._rP L + div[_effVT ] + 1. L

_)t

(A-24)

where the subscripts S, L and m refer to the frozen phase, liquid phase and solid matrix

respectively, e is the porosity (void fraction) of the porous matrix, and _" is the fraction of

the frozen fluid in the voids of the porous matrix; and

()° ()° (0) (-?Pa -= Pa , h a- h a , and ?q= e =E(1-T) U e =e(i-y)15 (A-25)

Equation (A-24) is derived assuming local thermal and hydrodynamic equalibrium between

the three phases, which can be written (Cheng 1978):

(Ps) S = (PL) L = (pm)m = (p) _ PL ,

/Ts)S =(TL)L =(Tm)m ={T)_T.

and

(A-26)

The volume-averaged homogeneous enthalpy method offers several advantages: (a) it

employs a fixed-grid numerical scheme; (b) it accounts for the complicated interfacial

structures of the various constituents (Equation A-24) and is valid for any volume fractions

of the wick porous matrix and the liquid and frozen phases of the working fluid; and (c) it

does not necessitate implicit tracking of the liquid-solid interface. This method is also

preferred because of its simplicity, particularly since the change-of-phase is only one of

the processes involved in the physical operation of heat pipes.

A-2.2. Effective Thermal Conductivity Tensor

The effective-thermal-conductivity tensor is the sum of a stagnant conduction part and a

thermal dispersion part (Cheng 1978):
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Keff = K' + KD , (A-28)

where the stagnant tensor is diagonal when expressed in the appropriate orthogonal

curvilinear coordinate system, and the dispersion tensor possesses a priori nine non-zero

coefficients which depend on the Reynolds and Prandtl numbers. The experimental and/or

analytical determination of the components of this tensor represents a somewhat

unreasonable task, even for the case of transversely or fully isotropic porous media.

Because of these difficulties it is only recently that investigators have considered these

effects.

Kvernvold and Tyvand (1980) studied analytically the influence of hydrodynamic

dispersion on thermal convection in porous media, and have shown that a better agreement

between theoretical prediction and experimental data could be obtained if the thermal

dispersion effects were taken into account properly. Plumb (1983), Hong et al. (1987),

and Lai and Kulacki (1991) studied the effect of transverse thermal dispersion on both

forced and buoyancy-induced boundary layers along a heated vertical wall, for situations

where inertial effects are likely to be dominant. Since few data on thermal dispersion are

available in the literature, these authors approximated thermal dispersion by hydrodynamic

dispersion. They recognized that this representation is not suitable for a porous medium

that transports significantly larger amounts of energy compared to the fluid alone, such as a

highly permeable porous matrix whose thermal conductivity is higher than that of the fluid

(Kladias and Prasad 1989). Available experimental data suggested that the longitudinal

dispersion diffusivity is directly proportional to the Peclet number, while the transverse

dispersion diffusivity is on the order of 1/7 to 1/3 of the longitudinal value. Despite the fact

that such modeling of the dispersion coefficients is overly simplified, these investigators

have shown that thermal dispersion effects may become very important when flow inertia is

prevalent.

Georgiadis and Catton (1988a and 1988b) developed a stochastic phenomenological model

for fully-saturated isotropic packed beds. The interstitial fluid velocity was decomposed

into the sum of the mean ensemble-averaged velocity and a random fluctuating component,

as is done in the theory of turbulence. They assumed that thermal equalibrium prevails and

their closure procedure leads to the appearance of a (eddy) hydrodynamic contribution to

thermal conductivity that was also identified by Levec and Carbonell (1985). Georgiadis

and Catton then generalized their transport equation for unidirectional flows to the case of a
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general three-dimensional system,and obtained an expressionfor the second-order

dispersiontensor.Theyfoundthatfor steadyconvectiveheattransfer,theeffectivethermal

conductivity dependslinearly on the local Pecletnumberbasedon the characteristic

dimensionDm(meansizeof theparticles),theporosityandthethermaldiffusivity of the

fluid. While theagreementwith experimentaldataisencouraging,theauthorspointedout

thatdispersioneffectscannotbeneglectedapriori evenfor naturalconvectionin porous

media where the velocities are low. They concededthat measuredthermophysical

propertiesfor the fluid-solid mixture shouldbeusedwhenpossible;this appliesto the
valuesof porosity,permeability,stagnantthermalconductivityanddispersivity.

It is apparent,then,thatthethermaldispersioncoefficientsarecomplexfunctionsof flow
variablesandphysicalstructureof theporousmediuminquestion,andthedeterminationof

thesecoefficientsis still averychallengingproblem. Becauseweareonly concernedwith

veryslow buoyancy-inducedandsurface-tension-drivenliquid flows throughtheporous
wick of heatpipes,heatconductionis the only significant modeof heat transferin this

region and we would expect the dispersiontensorto be negligible with respectto the
stagnantconductivetensor(Singhet al. 1973).Forthesepracticalreasons,weassumethat
thethermaldispersioncoefficientsareequalto zero.

The following subsectionsdealwith thepropertiesof wire-screenedwicks andisotropic
porousmedia. Thepropertiesof interestarevolumeporosity,permeability,effectivepore
sizeandeffectivethermalconductivityof thewicks.

A-3. CONSERVATION OF MASS

The homogeneous continuity equation is derived in the same manner as described in

Section A-2. I by following the procedure outlined by Cheng (1978), and reads:

_[[_'_PS "}-[_(I--_)PL "_-(I--_)Pm] "}" diV[pLq]=0 (A-27)

Again, the addition of the volume-averaged mass conservation equations associated with

each phase eliminates the need to consider the mass transfer between the liquid and solid

fluid phases during the freeze-and-thaw process.
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The following sections of this appendix describe the hydrodynamic and thermal properties

of porous wicks, which are of common use in heat pipes.

A-4. HYDRODYNAMIC PROPERTIES OF WIRE-SCREENED WICKS

Wire screens are used extensively as the capillary structure in heat pipes because they are

commercially available in a wide variety of materials and meshes, and are easily

implemented. An important issue associated with modeling of heat pipes is determining the

properties of the wick, such as porosity, permeability and effective pore radius.

Figure A- 1a depicts a standard square-mesh woven wire screen, of thickness t = 2d. The

mesh number N is defined as the number of openings per unit length:

1 1
N - - , (A-29)

L w+d

where d is the wire diameter, L is the mesh size and w is the width of the openings. In

practice, N is expressed in inch -1 and ranges between 40 and 300 inch -1. Below 40 inch -l,

the wick is not capable of developing sufficient capillary effect, due to the large pores.

Above 300 inch -1, the wick is not sufficiently rigid to be of practical use.

Because the woven screen is somewhat loosely wrapped, the effective thickness of one

layer, t, is larger than twice the wire diameter, by an effective interlayer clearance 7"/•

t = 2d + rl = 2d(1 +[3) (A-30)

The equivalent normalized clearance (Ikeda 1988),/3, is defined as/3 = r//(2d), and ranges

typically between 10% and 75%. The three parameters, N, d, and/3 completely define the

geometry of a wire-screened wick.
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FIGURE A- 1. Schematic of a Woven Wire Screen (Top and Front Views).
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A-4.1. Surface Porosity of Wire-Screened Wick

As shown in Figure A-l, the surface porosity of a wire-screened wick is given by:

w2/_s _- 1- :(1-o3) 2 ,
(A-31)

where o) = d/L = Nd is the wire diameter-to-mesh size ratio of the screen. The surface

porosity of the wick is plotted as a function of o9 in Figure A-2.

A-4.2. Coefficient of Shrinkage

The coefficient of shrinkage, S, or crimping factor, accounts for the fact that the woven

wires are not straight; S is defined as the effective length of the wires per unit mesh size.

With the symbols R and 0 denoting the radius of curvature of the wire and the sector angle

respectively (see Figure A-I), S can be calculated as:

2R0
S - - 2RON (A-32)

L

Furthermore, R and 0 are related by the following trigonometric relations:

L
R sin 0 = -- , (A-33a)

2

d
Rcos0 = R -- (A-33b)

2

Adding the squares of Equations (A-33a) and (A-33b) gives:

R2(cos2 0 + sin2 0) =-_- + R2-Rd+ ,

or

- co + (A-34)
L 4
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For computational efficiency, it is useful to calculate the tangent of the half-angle a = 0/2.

The following trigonometric equations relate a and 0"

sin0=2cosc_sinct ,

cos0 = 2cos 2 ct- 1 ,
(A-35)

so that tan a) can be written in terms of the cosine and sine of 0 as:

cosotsincc sin0
tan(m) - - (A-36)

cos 2 ¢_ 1 +cosO

Substituting Equations (A-33a) and (A-33b) into Equation (A-36), and making use of

Equation (A-34) to eliminate the radius of curvature R gives finally:

tan(or)- tan(-_l = 03 (A-37)

Using Equations (A-34) and (A-37) into Equation (A-32) allows to express the coefficient

of shrinkage, S, as a function of the wire diameter-to-mesh size ratio only:

S = (03 + 11Arc tan(03) (A-38)

As shown in Figure A-3, S ranges between 1 and 1.21. The geometrical limit 03 = 1 / _f3,

corresponds to the tightest possible configuration of the screen (for which R = d, and

0 =600).

A-4.3. Volume Porosity of Wire-Screened Wick

The volume of a one-layer square-mesh screen with surface area (LxLy) is given by:

v_=(NL_)(_LyAw)+(_Ly)(_LxAw)
(L ) _9_= 2SNA w xLy ,
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where Aw=rtd2/4, the cross-sectional area of the wire. If we neglect the degree of

intermeshing between adjacent layers, the volume porosity of the screen wick is:

V w SNrcd 2 1 -1 rt 03 S(03) (A-40)

_:=1 (LxLy)t =1 - --------7- 2d(l+_) 4 1+[3

Figure A-4 shows e as a function of 09 = Nd and the normalized clearance ,t3of the wick.

The volume porosity of the wick increases with the clearance, and decreases with

increasing wire diameter-to-mesh size ratio. Note that the porosity of a wire-screened

wick is always greater than 0.452, unless the multi-layered screen is intermeshed. This

geometrical limit (03 = 1 / _f3, w / d = (-,f3 - 1) / 4 ) corresponds to the tightest possible

configuration of the screen (for which R=d, and 0=60 ° , Figure A-l). Because of the

interweaving of the wire rods, the separation distance between two parallel rods must be at

least the diameter d of the woven transverse rod. If the degree of wrapping is uncertain

(that is the normalized clearance/3 is unknown), assuming/3 = 0 for a tightly wrapped wick

is conservative, since it has higher flow resistance (lower permeability) than a loosely

wrapped wick.

A-4.4. Permeability of Wire-Screened Wick

Experimental data on tightly wrapped screen wicks for the wick permeability and inertia

coefficient have been correlated by the modified Biake-Kozeny equation (Ivanovskii et ai.

1982, page 194):

d 2 E 3 2.07 1
K- C----

122 (1-e7 '
(A-41)

where d is the wire diameter. It is apparent that the permeability K and inertia coefficient

C given by Equation (A-41) are identical in form to that given by the Erguns' Equation

(A-6) and the Kozeny-Carman Equation (A-9). If the degree of wrapping is uncertain,

using the formula for a tightly wrapped wick (Equation A-41) provides a conservative

approach since the tightly wrapped screens have higher flow resistance (lower

permeability) than their loosely wrapped counterparts.
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Thenormalizedpermeabilityof thewick with respectto themeshsizehastheform:

KN2= K ¢..D2 I_3
L2 = 122 (l-E) 2

(A-42)

Since the coefficient of shrinkage S (given by Equation A-38) and the volume porosity e

(calculated from Equation A-40) are functions of the wire diameter-to-mesh size ratio co

and the normalized clearance fl of the wick, the normalized permeability given by Equation

(A-42) is also a function of these two variables. Figure A-5 shows that the normalized

permeability of the wick increases with the clearance, and decreases with increasing wire

diameter-to-mesh size ratio; it has a minimum value of 8.5x10 -4.

A-4.5. Verification of Wire-Screened Wick Model

Equations (A-40) and (A-42) were verified using measured characteristics of wire-screened

wicks found in the literature (Ikeda 1988; Dunn and Reay 1978; Chang 1990; Ferrell et

al. 1973). These data included mesh number, wire diameter, pore size, volume porosity

and permeability, and are collected in Table A-1. The last column of this table shows the

volume porosity and permeability calculated using the model described in this section,

Equations (A-40) and (A-42). The equivalent normalized clearance was chosen to match

the porosity (or the permeability) given in the reference. Results showed that these

equations can predict the porosity (within 5%) and permeability (within 25%) of wire-

screened wicks quite well, except for very coarse meshes (N < 60 inch-l).

A-4.6. Effective Pore Radius of a Wire-Screened Wick

The effective pore size of one layer of wire-screened wick is equal to one-half the screen

opening size (Figure A- 1), and is a function of the wire diameter d and the mesh number

N:

w L-d
Rp - - (A-43)

2 2

For muitilayered screens, smaller pores could form in between the various layers,

depending on the degree of compression, distortion and intermeshing of the layers. The

dependence of the effective pore radius on the depth in the wick was experimentally

259



TABLE A-1. Comparisonof CalculatedandMeasuredPorosityandPermeabilityfor
variousSquare-MeshWire Screens.

Reference
screenwick parameters from reference

N d d/L Rp I g K
I

(in-l) (gm) =Nd c (gin) I (m2)

Dunn and Reay (1978)

Nickel 100

Nickel 200

SS 200

Nickel 50 50

100

200

200

Ferrell et al. (1973)

40114oSS 100 100

,soillSO
ss 2OOll 200

Chang (1990)

SS 40

SS 100

Copper 100

SS 150

SS 200

SS 250

SS 400

203g c 0.40 152.M*

123M c 0.484 65.5g*

47g c 0.37 40g

66Mc 0.52 30.5g*

254gt 0.40 190.5Mc

123Mt 0.484 65.5M c

70gt 0.413 49.5g c

50.8Mt 0.40 38.1g c

40

100

100

150

200

250

400

254g

l14g

l14g

66g

53g

41g

25.4 M

0.40 190.5g

0.449 70g

0.449 70g

0.39 52g

0.417 37g

0.40 30.5g

0.40 19.0g

Noren Heat Pipe Co.

0.625 6.63x10 -1o

-- 1.52x10-1o

0.689 6.2x10 -1!

-- 7.71x10-11

0.69 3.7x10 -10

0.63 2.06x10 -Io

0.68 8.0x10 -11

0.69 5.4x10 -11

0.69

0.63

0.69

0.68

0.69

0.735

0.706

calculated parameters

K c gc _t

(m 2)

7.74x10 -10 0.65 0

1.65x10 -10 0.60 10%

6.7x10 -I1 0.69 5%

7.8x10 -!l 0.65 35%

1.2x10 -9 0.65 0

2.3x10 -10 0.63 20%

1.1xl0 -1° 0.675 10%

6.8x10 -ll 0.683 10%

1.8xl0 -9 0.69 12%

2.1x10 -!0 0.63 10%

3.8x10 -!0 0.69 30%

1.2x10 -1° 0.68 8%

8.2x10 -li 0.69 20%

7.8x10-11 0.735 32%

2.0x10 -ll 0.70 15%

d=0.0028 in

d=0.0024 in

d=0.0020in

d=0.0016 in

100t 71.1M 0.28 91.4g c

150 61.0g 0.36 54.2g c

200t 50.8g 0.40 38.1g c

250 40.6g 0.40 30.5g c

0.70

0.65

3.4x10 -10 0.77 0

1.1xl0 -1° 0.70 2%

4.8x10 -ll 0.65 0

3.1x10 -II 0.65 0

*: Reference 3.21 gives pore diameter, not pore radius.

t: Assumed by present author, c: Calculated by present author.
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verified by Roberts and Feldman (1972) for water heat pipes using two layers of stainless

steel and copper wire-screens. At higher than expected dryout heat transfer rates, these

investigators observed that the liquid level receded down to the second layer, at a depth of

about 59% of the wick thickness (measured from the wall), and stopped there. At this

depth, the L-V interface encountered a pore size 20% smaller than that of a single layer,

and the wick could provide enough capillary suction to sustain the liquid level.

While the dependence of the effective pore radius on the depth in a multilayered wick has

been recognized experimentally, predicting analytically this dependence is a very difficult

problem. Therefore, it is assumed in this work that the capillary capability of the wick is

uniform within the wick and given by an effective pore radius of one-half the screen

opening size. In this case, the total wick thickness or distribution wick thickness is sum of

the thicknesses of the various layers. Figure A-6 shows the effective pore radius Rp of the

screen wick as a function of the wire diameter d and the mesh number N. It is important to

note that for a given mesh number, the smallest pore size is obtained at the geometrical limit

(o3 = 1 / w/-3, Rp / d = (_f3 - 1) / 2 ), which corresponds to the tightest screen configuration

possible. This geometrical limit is inherent to the interweaving of the wire rods. The

separation distance between two parallel rods is at least the diameter d of the woven

transverse rod (the limit arises for R = d, and 0=60°; see Figure A-l)

A-4.7. Relationship Between Mesh Number and Wire Diameter

Figure A-6 shows that the pore radius Rp is a strong function of the wire diameter d.

Therefore, it is not possible to estimate Rp and the other properties of the screen wick

accurately if the wire diameter is not known, which is often the case. To remedy this

difficulty, values of the wire diameter were collected from Table A-l, which are of

common use by screen wicks manufacturers (Ikeda 1988; Dunn and Reay 1978; Chang

1990; Ferrell et al. 1973). Using this information, the wire diameter was correlated as a

function of mesh number as:

12,637. 84,867.

d = - 8.65 + N N2 , (A-44)

where d is expressed in micrometers (_tm) and N is in inch -1. The manufacturing values

of the wire diameter that were selected for the least-square regression are collected in Table

A-2, and are compared with the values given by Equation (A-44).

261



::l.

13£

U3

rY

W
rY
C)
EL
W

I.--
O
w
b_
LL.
W

300

250:

200

150

100

5O

: : I
: N (inch-')

....... ........
.: _ i i \ x._-,=o_ _

"'-_2 ......._""_'i .............F'I.......x..__.__
: ... : _ . _ |.==oo

. : -._ : .._ _ _ _,==so

_,,.._......_..............!._,,_ ..........._,.., ,.,oo

...........,_,..........._,,.........._,,_ ....._,.._

." . _ _ ,, ,,,.,",,,,°,,,,,,,,,

_RET'b_'L'M'q

//_!1_.. - IRp -0.366 xd I
I I I

0 50 100 150 200 250 300

WIRE DIAMETER d (_rn)

FIGURE A-6. Effective Pore Radius of the Screen Wick as a Function of Wire

Diameter and Mesh Number.

When the wire diameter of the screen wick is not known, it is recommended to use the

value predicted by the empirical relation, Equation (A-44). In such case, the effective pore

radius of the wick is a function of d only, and this function is represented in Figure A-6 by

the curve labeled "manufacturing practice".

TABLE A-2. Comparison of Common Manufacturing Values of the Wire Diameter

with Correlation Equation (A-44), as a Function of Mesh Number.

Mesh#N (inch -I ) 11

d (_tm), Table A-1

d (pm), Equ. A-44

40 50 100 150 200 250 400

254 210 ll4 66 50.8 40.6 25.4

254.2 210.1 109.2 71.8 52.4 40.5 22.4
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A-5. EFFECTIVE THERMAL CONDUCTIVITY OF POROUS WICK

A great deal of work has been done on the determination of the effective thermal

conductivity of porous media saturated with liquid. The stagnant effective thermal

conductivity of porous media, keff, depends on the structure of the porous medium as well

as the thermal conductivities and volume fractions of the constituents. In this section,

several analytical models and experimental data for the effective thermal conductivity of

wire-screen meshes, packed beds of spheres and homogeneous wicks are reviewed.

A-5.1. Theoretical Models of Effective Thermal Conductivity

Chi (1976) has reviewed various analytical models for evaluating the effective thermal

conductivity of common heat pipe wick structures, such as wire screens, packed-bed of

spheres, cubic array of truncated spheres and rectangular grooves. The parallel and series

theoretical models define the upper and lower limits for the effective thermal conductivity

keff(Combarnous and Bories 1975). The parallel model is valid for a porous medium

structured like a set of alternate strata of fluid and solid parallel to the main heat flux:

kef f = ekf + (1- E)k m , (A-45)

where e is the volume fraction of liquid, kf is the thermal conductivity of the fluid (in the

solid or liquid phase), and km is the thermal conductivity of the wick solid matrix. The

lower limit of the effective thermal conductivity is given by the series model:

I E l--E
- a (A-46)

kef f kf k m

In 1891, Maxwell obtained an expression for the effective conductivity of randomly packed

and sized cylinders (Singh et al. 1973) as:

kef.___L= (kin + kf)+(1- e)(km - kf) Ilt +(1-_ )

kf (k m + kf)-(1-e)(km - kf) V-(l-E)
(A-47)

where
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k m + kf (A-48)
lit - k m - kf

In 1892, Rayleigh developed a series solution for the thermal conductivity of a square array

of identical cylinders using potential theory (Chang 1990):

keff 2(1- 8)
- 1 (A-49)

001 4(,- )8o. , ...

Because the absolute value of N is always greater than or equal to 1, the terms of order

(1-_) 4 and higher can be neglected in Equation (A-49). In this case, Rayleigh's equation

reduces to Maxwell's Equation (A-47). Indeed, it is found that Equations (A-47) and the

truncated series (A-49) give identical results for volume porosities e greater than 0.25.

Ikeda (1988) derived a new correlation for the effective thermal conductivity of a plain

woven screen wick, in which the wire diameter, mesh number, coefficient of shrinkage and

inter-layer clearance were included as variables. Ikeda matched his correlation to

experimental data for wire screens to obtain the volume porosity and the normalized

clearance 13 of the wicks (these two quantities are related by Equation A-40).

Unfortunately, the values of the inter-layer clearance he obtained by this method were

much larger than that calculated from the measured thicknesses of the screens. Ikeda's

work was therefore non-conclusive.

Chang (1990) developed a simple theoretical model for the effective thermal conductivity of

fluid-saturated wire screens in terms of wire diameter, mesh number, total thickness of

wick and number of layers, and compared his model with existing correlations and

experimental data available in the literature. Chang found that all the models tend to deviate

from the measured values as the conductivity ratio km/kL increases above 1. For a

conductivity ratio ranging between 24 (liquid water and stainless-steel screen) and 623

(liquid water and copper screen), Maxwelrs Equation (A-47) for a random arrangement of

distributed cylinders was accurate within 25% (air data excluded). Chang's correlation

gave slightly better results in some cases, but did not exhibit any significant improvement

over Maxwell's, as it was only 20% accurate for copper screens saturated with liquid
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water. Furthermore,Chang'sequationincludedafreegeometricparameterthat is difficult

to estimate.

Maxwell also derived an expression for a continuous liquid phase containing randomly

dispersed and randomly-sized solid spheres (Chi 1976) as:

kef_____L=(km+2kf)+2(1-e)(km-kf) _ qO+2(l-e)

kf (km +2kf) - (1-e)(k m -kf) qo-(1-e)
(A-50)

where

k m + 2kf
q0 - (A-51)

k m -kf

However, because Maxwell did not take into account the interaction between the spherical

inclusions, his solution is admissible only when the conductivity ratio km/kf is much less

than 1 or for porous media with large volume porosity. In order that the action of the

spheres may not produce effects depending on their interference, their radii must be small

compared with their distances, therefore, the wick volume porosity must be large. When

the thermal conductivity of the solid inclusions is greater than that of the liquid, Equation

(A-50) underpredicts the effective thermal conductivity of the wick, as demonstrated by

experimental data for the magnetic permeability of ferromagnetic inclusions dispersed in a

nonmagnetic material (Veinberg 1967).

By taking account the interaction of the inclusions, Veinberg (1967) derived the following

transcendental equation valid for any concentration of spherical solid inclusions and any

matrix-to-fluid thermal conductivity ratio:

(__fff / 1/3 km - keffE - k m -kf
(A-52)

Following a similar procedure, Veinberg (1967) also obtained the effective thermal

conductivity of an isotropic aggregate of randomly oriented ellipsoidal inclusions.

Prasad et al. (1989) measured the stagnant thermal conductivity of several liquid-saturated

porous beds of spheres and evaluated the accuracy of the parallel model and other
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correlations available in the literature. These authors observed that these correlations

(except the parallel model Equation A-45) were quite capable of predicting reasonable

values for keff as long as km > kf; however, none of the correlations investigated by

Prasad and coworkers were suitable when the solid thermal conductivity was significantly

lower than the fluid thermal conductivity. Also, the agreement was generally not good for

a gas-filled porous medium. Based on their experimental data, Prasad et al. (1989)

recommended the use of Krupiczka's model for liquid-saturated beds of granular solids.

Krupiczka (1967) solved analytically the two--dimensional Laplace equation for two simple

geometries: a stack of parallel cylinders of volume porosity 0.215, and a simple cubic array

of spheres of porosity 0.476. Then he extrapolated his results to intermediate volume

porosities using experimental data available in the literature, and obtained the following

conelation:

kf _ kf .} '

n = 0.280 - 0.757Log10 (E) - 0.057 LOgl0 (A-53)

A-5.2. Comparison of Theoretical Models with Experimental Data

Krupiczka (1967) collected experimental data for beds of granular solids in liquid water,

oil, aqueous solutions of glycerol and ethyl alcohol, and various gases. The matrix-to-

fluid conductivity ratio km/kL ranged between 1 and 1650. Krupiczka's correlation

deviated by as much as 70% for gas-filled beds, but performed reasonably well (within

25%) for liquid-saturated packed beds. However, because of the methodology used,

Equation (A-53) is only valid for volume porosities e ranging between 0.2 and 0.5.

For the liquid and frozen phases of liquid metals (sodium, potassium and lithium) and

structural materials compatible with these fluids (stainless steel, nickel, niobium,

molibdenum, tungsten and zirconium), the matrix-to-fluid conductivity ratio ranges

between 0.1 and 3.5. For these combinations of fluids and materials, Equations

(A-45)-(A-47), (A-50) and (A-52) reduce approximately to the thermal conductivity of the

liquid phase, and are suitable (Figures A-7 and A-8). This is because liquid-metals have

high thermal conductivity, similar to that of the structural materials which are compatible
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with these fluids. The situation, however, is very different for non-liquid metal working

fluids, when the fluid thermal conductivity is significantly lower than that of the matrix.

For example, liquid water has a poor thermal conductivity (0.63 W / m.K) compared to that

of the metallic wick matrix, usually copper (392 W / m.K), or stainless-steel

(15.4 W / m.K).

The models presented above for the effective thermal conductivity of porous wicks are

compared with experimental data available in the literature. Chang (1990) and Ikeda (1988)

reported experimental data for the transverse thermal conductivity of wire-screened wicks,

and Krupiczka (1967) collected experimental data for beds of granular solids in liquid

water, oil, aqueous solutions of glycerol and ethyl alcohol, and various gases; the matrix-

to-fluid conductivity ratio km/kf ranged between 1 and 1650. Veinberg (1967) reported

experimental data for the magnetic permeability of ferromagnetic inclusions dispersed in a

nonmagnetic material. Singh et al. (1973) and Ferrell et al. (1973) also studied

experimentally the effective thermal conductivity (parallel to the felting plane) of water-

saturated stainless-steel sintered fiber wicks, sintered powders and screen meshes.

Results for wicks with matrix-to-fluid conductivity ratio of 0.1, 4, 24 (water-stainless

steel), 75 and 623 (water-copper) are shown in Figures A-7 to A-11, respectively. As

shown in Figures A-I 1 and A-9, the effective thermal conductivity of copper and stainless-

steel wicks saturated with liquid water is a strong function of wick porosity, and various

models give very different values. The parallel and series theoretical models define the

extreme range in which the real value of the wick effective conductivity keff is found.

Figures A-7 to A-11 show that Maxwell's Equation (A-50) and Veinberg's model for

randomly distributed spheres give identical results for large volume porosity. For

porosities less than 0.8, Maxwell's model underpredicts the effective thermal conductivity

of the wick. Veinberg's Equation (A-52) is valid for any concentration of spherical solid

inclusions as Veinberg took into account the interaction of the inclusions in the derivation

of his correlation. Also, Maxwell's Equation (A-50) and Veinberg's Equation (A-52) give

almost identical results for wicks with conductivity ratio km/kf less than 1 (Figure A-7),

as the heat conducted through the connected inclusions of solid plays a less important role

in this case.
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As shown in Figures A-7 to A-11, Maxwell's Equation (A-47) for distributed cylinders

gives consistently lower effective thermal conductivities than his model for distributed

spheres (Equation A-50). Figures A-10 and A-11 show that Krupiczka's model (Equation

A-53) gives results very similar to that obtained from Veinberg's model (Equation A-52)

for beds of spherical granulars. This agreement validates the use of Veinberg's correlation

for porous beds of spheres.

For a conductivity ratio ranging between 24 (liquid water and stainless-steel screen) and

623 (liquid water and copper screen), Maxwell's Equation (A-47) is the most accurate for

calculating the effective radial thermal conductivity of wire-screened wicks. The model of

Veinberg compares very well with experimental data for ferromagnetic inclusions dispersed

in a nonmagnetic material and for beds of spherical particles. Therefore, Equation (A-52)

is best for calculating the effective thermal conductivity of isotropic porous media such as

ceramic powders and packed beds of spheres.

Finally, the effective axial thermal conductivity of water-saturated stainless-steel sintered

fiber wicks, sintered powders and screen meshes is well predicted by the parallel model,
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Equation (A-45). As shown in Figure A-9 and A-I 1, the effective axial conductivity of

screen meshes saturated with water is at least four times the effective radial conductivity. It

is therefore important to evaluate these two conductivities independently in HPTAM in

order to accurately predict the effect of axial conduction in heat pipes using low-

temperature working fluids, such as water. For liquid-metal heat pipes with wire-screened

wicks however, Equations (A-45) and (A-52) for axial and radial conductivities give very

similar results (Figures A-7 and A-8), suggesting that, unlike in water heat pipes,

components of the wick effective conductivity are almost equal in liquid-metal heat pipes.

Based on the results of this section, Maxwelrs Equation (A-47) for distributed cylinders is

chosen to calculate the effective radial thermal conductivity of wire-screened wicks in

HPTAM, while the parallel model, Equation (A-45), is selected for calculating the axial

thermal conductivity of such wicks. The model of Veinberg (Equation A-52) for

distributed spheres is preferred for calculating the effective thermal conductivity of isotropic

porous media such as ceramic powder, metallic felt or sintered metal.
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APPENDIX B. FREE-MOLECULE AND TRANSITION FLOWS

REGIMES

During the startup of fully-thawed, high-temperature heat pipes (utilizing liquid-metal

working fluids), free-molecule and transition flow regimes arise in the vapor region.

Section (B-l) reviews some fundamentals of the kinetic theory of gases. Sections (B-2) to

(B-6) describe the methodology used to estimate the effective molecular diameter of heat

pipe working fluids. This information is necessary for evaluating the mean free path of the

vapor molecules.

B-1. MEAN FREE PATH AND KINETIC THEORY

Assuming that molecules are effectively small hard spheres of diameter G, Maxwell derived

the following expression for the average distance traveled by molecules between collisions:

1
_. - (B-l)

._2 n '

where n is the number of molecules per unit volume (Dushman and Lafferty 1962, p. 28;

Cunningham and Williams 1980, p. 70; note the mistake of using the word "radius" for

"diameter" in the text), n is related to the vapor-phase density by n = Na.Pv/M, where

M is the molecular weight.

To draw the flow charts for the various heat pipe working fluids of interest, namely,

lithium, sodium, potassium and water, it is necessary to estimate the effective molecular

diameter _ of these fluids in order to calculate the mean free path of the vapor molecules.

B-2. EVALUATION OF THE MOLECULAR DIAMETER OF SPHERICAL

NON-POLAR MOLECULES

There are three methods reviewed for determining the molecular diameter o of spherical

non-polar molecules (they do not apply for water), namely, the transport coefficient

method, the van der Waals method, and the close-packed solid-phase density method,

which are described in the following sections.
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B-2.1. Transport Coefficient Method (Dynamic Viscosity)

From kinetic theory (Cunningham and Williams 1980, chapter 2), the dynamic viscosity of

a gas can be calculated as:

1
_v = --mnva_ (B-2)

2

where the mean average molecular velocity va is given as:

kTVa = -- (B-3)
V /tm

(note in Dushman and Lafferty 1962, chapter 1, the mistake of using the factor 1/3 instead

of 1/2 in Equation (B-2), due initially to a calculation error of Maxwell! See Cunningham

and Williams 1980, pp. 255-256, for more details). Combining Equations (B-2) and (B-

3) gives the following expression for the viscosity of the gas in terms of the temperature

and the gas molecular mass m and molecular diameter cr:

__8kT

btv = Lmn'V _ - 1 _ (B-4)
2 f2-_o2n _02

A more sophisticated approach leads to the following expression of l.tv for a pure gas

composed of rigid, elastic and nonattracting spherical molecules of diameter cr and mass m

(Dushman and Lafferty 1962, p. 28):

- 5 ,_ (B-5)_tv
1602 V /z

It is well-known, however, that two molecules attract each other when they are far apart

and repel each other when they come close together. These intermolecular forces are

commonly described by a potential energy function characterized by the two parameters cr

and e (e is the maximum energy of attraction between a pair of molecules). For spherical

non-polar molecules, the Lennard-Jones potential applies, leading to a modification of

equation (B-5) as (Monchick and Mason 1961, p. 1678):
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l.t,, - 5 "(-m-mkT (B-6)
16f_-O"2_'2.(T*)

Substituting M = mNa, and evaluating 7t, k and Na, we find:

_l,v -- 5 /k/1/2 Mf_ _ 8.4415 x 10 -25 M(_ (B-7)

161_- _Nal _2_"2. (y2_2"

If CYin expressed in AngstrOm (A,) and M in gr/mol, Equation (B-7) reads as (Hirschfelder

et al. 1954, p. 528):

.v = 8.4415 x 10 -25(10-3)',2

(10-,0)2 _2_._,

- 266.94 x 10 -8 N_
(B-8)

_2" is a dimensionless corrector factor function of the dimensionless temperature T*=kT&.

The function f2* can be expressed in terms ofT* as (Hirschfelder et al. 1954, p. 1126):

_'_*(T*) = 0.73122 + 0.95922 0.102 , for 0.3 < T* < 5.0 (B-9)
T* T .2

Equation (B-8) has been verified experimentally for various non-polar gases (Hirschfelder

et al. 1954, pp. 560-563). The Principle of Corresponding States (Hirschfelder et al.

1954, pp. 244-247) leads to Tc* = 1.3 , which is in good agreement with experimental

data for Ne, Ar, Xe, N2, 02 and CH4 (Hirschfelder et al. 1954, p. 303). Hence, T* may

be calculated as:

T* = 1.3 T (B-10)
Tc

Using experimental data for the dynamic viscosity of the vapor phase lav, it is then a simple

exercise to determine the molecular diameter c_ through the use of Equations (B-8)-(B- 10).
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B-2.2. Van der Waals Method

From Dushman and Lafferty (1962), p. 37, the molecular diameter is given directly in

terms of the molar volume b0 as:

c_3 = 7.929 x 10-25 x b0 , (B-11)

where

b0 - RgTc (B-12)

8Pc

B-2.3. Close-Packed Solid-Phase Density (metallic fluids)

Knowing the structure and the density of the close-packed solid-phase of the working

fluid, it is possible to calculate the lattice parameters and deduce the molecular diameter c_

(molecules are modeled as hard-spheres, and close-packed means the nearest neighboring

molecules are touching each other in the structure). In this section, a refers to the cubic

lattice parameter (the side of the reference cube) and b is the distance between centers of

the nearest neighboring molecules in the structure, which is equal to _ in the case of a

close-packed structure.

B-2.3.1. Close-Packed Simple Cubic Lattice (6 nearest neighbors):

a=b=c_.

One molecule occupies a volume of (_3, SO that:

Ps = m/c _3, and:

(B-13)

B- 2.3.2. Close-Packed Body-Centered

b 2= 3(2)2=3a2=c_2 sothat a=_-3c_, .

Cubic Lattice:

(B-14)
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The body-centered molecule has 8 nearest neighbors and a volume a 3 contains

1+8x(1/8) = 2 molecules, so that the density is 9s = 2m/a3, and:

o= 3

41/3

(B-15)

B-2.3.3. Close-Packed Face-Centered Cubic Lattice:

_ a

b-_=cy, and a=_-cy.

A corner-molecule has 12 nearest neighbors and a cube of side a centered on it

contains 1+12x(1/4) = 4 molecules, so that the density is 9s = 4m/a3, and:

,._t/6/m/!
(_''-g I--/3 (B-16)

 ps/

TABLE B-1. Some Properties of Heat Pipe Working Fluids (Vargaftik 1975,

Reynolds 1979, and Schlunder 1984).

working fluid

lithium

potassium

sodium

water

M (_;r/mol)

6.94

39.10

22.99

18.016

Tmelt (K)

453.7

336.4

371.0

273.15

PS*

(kg/m 3)

534.0

Tc(K)

3,200 ± 600

Pc (MPa)

70.0 ± 14.0

862.0

971.2

916.8

2,225 ±

2,510 ± 20

25 16.4 ±

31.0 ±

647.3

0.3

6.0

22.1 ± 0.03

*: densities at room-temperature (except for ice), from Weast 1986; and ASM Metals 1981.
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B-3. EVALUATION OF THE MOLECULAR DIAMETER OF LITHIUM

B-3.1. Transport Coefficient Method (Dynamic Viscosity)

We found that the most appropriate vapor-phase viscosity correlation is that of Vargaftik

(1975) for monoatomic vapor, with a molecular diameter 6 - 3.0 A (we used Tc = 3,800

K as recommended by Reynolds 1979). The kinetic theory agrees with experimental

values to within _ 8% in the temperature range 1,000 K <_T _<2,000 K.

B-3.2. Van der Waals Method

Using the critical values listed in Table B-l, we find 2.94 ,_, < cr < 3.82 A,

B-3.3. Close-Packed Solid-Phase Density

Solid lithium has a body-centered cubic type of structure above 80 K and undergoes a

spontaneous transition to a close-packed hexagonal structure at 80 K. Using the literature

value of a = 3.5092 ,_ (Pearson 1958; and Jeppson et al. 1978), we find:

cr = f_- a = 3.039 A,
2

Substituting the room-temperature density of solid lithium (Table B-1) in Equation (B-15),

we find 6 -- 3.038 ,_, which is almost identical.

Finally, compilation of these results leads to the following selection:

cy(Li) = 3.0 + 0.1 ,_, resulting in an uncertainty in the mean free path X of

+ 6.3%.
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B-4. EVALUATION OF THE MOLECULAR DIAMETER OF POTASSIUM

B-4.1. Transport Coefficient Method (Dynamic Viscosity)

We found that the best vapor-phase viscosity fits are that of Vargaftik (1975) for saturated

vapor with a molecular diameter cr = 3.93 A,, and that used in SNPSAM (Seo 1988) and

HTPIPE (Woloshun et al. 1989) models with cy = 4.26 A.

B-4.2. Van der Waals Method

Using the critical values listed in Table B-l, we find 4.77 A, < cr < 4.87 A,

B-4.3. Close-Packed Solid-Phase Density

Solid potassium has a body-centered cubic type of structure which is maintained without

transformation down to 0 K (Pearson 1958). Using the room-temperature density of solid

potassium (Table B-l) in Equation (B-15), we find cy = 4.608 ,_, which is the value listed

in Table B-2 for room-temperature.

Finally, compilation of these results leads to the following selection:

or(K) = 4.44 _+0.18 A, resulting in an uncertainty in the mean free path _, of

_+ 8.6%.

TABLE B-2. Lattice Parameters of Solid Potassium at Various Temperatures.

T 5 K 78 K 293 K

a (A) * 5.225 5.247 5.321

(,_) # 4.525 4.544 4.608

*: lattice parameters a compiled from Pearson (1958).

#: molecular diameter calculated with Equ. B-14, assuming close-packed structure.
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B-5. EVALUATION OF THE MOLECULAR DIAMETER OF SODIUM

B-5.1. Transport Coefficient Method (Dynamic Viscosity)

We found that the best vapor-phase viscosity fits are that of Vargaflik (1975) for saturated

vapor with a molecular diameter _ = 2.83 ._, and that used in SNPSAM (Seo 1988) and

HTPIPE (Woloshun et al. 1989) models with _ = 3.45 A.

B-5.2. Van der Waals Method

Using the critical values listed in Table B-1, we find 3.81A < o <4.37 A,

B-5.3. Close-Packed Solid-Phase Density

Solid sodium has a body-centered cubic type of structure, and undergoes a spontaneous

partial martensitic transformation to a close-packed hexagonal structure on cooling below

36 K (Pearson 1958). Using the room-temperature density of solid sodium (Table B-l) in

Equation (B-15), we find _ = 3.710 A, which is close enough to the values listed in Table

B-3.

Finally, compilation of these results leads to the following selection:

o(Na) = 3.58 + 0.13 A,, resulting in an uncertainty in the mean free path _. of

+ 7.7%.

TABLE B-3. Lattice Parameters of Solid Sodium at Various Temperatures.

T 5 K 78 K 87 K 293 K

a (_,) * 4.225 4.238 4.249 4.291

(,4,) # 3.659 3.670 3.680 3.716

*: lattice parameter a compiled from Pearson (1958).

#: molecular diameter calculated with Equ. B-14, assuming close-packed structure.
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B-6. EVALUATION OF THE MOLECULAR DIAMETER OF WATER

The viscosity formula for non-polar gases (Equation B-6), based on the Lennard-Jones

potential, cannot be applied with confidence to gases consisting of polar or highly

elongated molecules, because of the highly angle-dependent force fields that exist between

such molecules (H20, NH3, CH3OH, NOCI .... ). For polar molecules, the most widely

used intermolecular energy potential is the Stockmayer potential, sum of the Lennard-Jones

function and an additional angle-dependent term to account for the electrostatic interaction

of the two dipoles (Hirschfelder et al. 1954, @1.3). The second and third virial

coefficients for water have been computed for this potential function by Rowlinson

( _3 = 2.65 A, e/k = 380 K, Hirschfelder et al. 1954, p. 214; also Eisenberg and

Kauzmann 1969, p. 51 ).

Rowlinson also used a potential function similar to Stockmayer's but with the repulsive

energy proportional to r -]2 and with an additional term describing dipole-quadripole forces

(Hirschfelder et al. 1954, pp. 225-227; also Eisenberg and Kauzmann 1969, p. 52). For

water vapor, he found (5 = 2.725 A, e/k = 356 K . Although the agreement between

calculated and experimental second virial coefficients was not improved, the derived

parameters are certainly more reliable when the dipole-quadripole interaction is included.

In particular the value of cy determined from the modified potential function is much closer

to the intermolecular distance in ice: the separation of hydrogen-bonded molecules in

ordinary ice is 2.76 A, and the distance between nearest neighboring molecules in ice

polymorphs may vary from 2.74 ,_ to 2.87 A, (Eisenberg and Kauzmann 1969, p. 48, 85).

For very high energy collisions, where the repulsive forces are more important than the

attractive forces, it is a fairly good approximation to replace the angle-dependent

contribution in the Stockmayer potential by an expression for the interaction of two-point

dipoles that are perfectly aligned. For water vapor, Krieger (Hirschfelder et al. 1954, pp.

597-599) found c3 = 2.824 _,, Jk = 230.9 K.

Some other models have also been proposed for calculating the viscosity (and other

transport coefficients) of polar gases. The Sutherland model (Hirschfelder et al. 1954, pp.

565-567) is not appropriate for water vapor. Monchick and Mason (1961) have calculated

the collision integrals for the Stockmayer potential for polar gases and have compared their

model with viscosity experimental data. For water vapor, they found the potential

parameters values listed in Table B-4, using different methods.
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Finally, by usingthecritical valueslisted in Table B-I for water, the van der Waals method

gives o" = 2.89 _,.

By compiling all these results we obtain 2.52 ,_ < _(H20) < 2.89 A,. However, we expect

the molecular diameter of water to be greater than 2.74 A, which is the smallest distance

between neighboring molecules in ice, and we choose:

cy(H20) = 2.8 + 0.1 ]k, resulting in an uncertainty in the mean free path _, of

+ 7.5%.

TABLE B-4. Energy Potential Parameters for Water Vapor as Determined by

Monchick and Mason (1961) from Various Fitting Methods.

METHOD o (._) ¢/k (K)

graphical method

least square (rec.)

non-polar gas

free fit

2.52

2.71

2.65

2.80

775.

506.

800.

260.
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APPENDIX C. AN OVERVIEW OF NUMERICAL TECHNIQUES

This appendix reviews several efficient and advanced numerical techniques, and discuss

their performance, respective merits and drawbacks. Section C-1 reviews several

discretization schemes for the convection and diffusion fluxes. Sections C-2 and C-3

discuss the merits of finite-element and finite-difference methods and describe the non-

staggered and staggered grid arrangements. Section C-4 shows the equivalence of under-

relaxation and transient formulations, and demonstrates that the time-dependent

formulation is always preferable. Section C-5 describes the very popular SIMPLE,

SIMPLER and SIMPLEC finite-difference iterative solution techniques, in which the

velocity components and pressure are calculated in a sequential or segregated manner. The

residual norm reduction technique described in Section C-6 provides an optimum pressure

under-relaxation factor for the convergence of the SIMPLE-type strategies. The effective

parabolic block correction technique is described in section C-7. This procedure was

developed to solve two-dimensional incompressible parabolic flow problems very

efficiently by a marching technique in the flow direction, and can be extended to the

solution of two-dimensional steady compressible flows. In contrast with the pressure-

velocity coupling, the temperature-velocity coupling which arises in natural convection and

temperature--driven incompressible flow problems has received little attention. Galpin and

Raithby developed the Coupled-Equation Line-Solver iterative technique for the solution

of such incompressible buoyancy-driven flow problems (section C-8). Sections C-9 and

C-10 describe the very efficient line-by-line iterative technique, additive block-correction

(ACM) method and additive-correction multigrid procedure for the solution of five-point

linear systems which arise from the discretization of conservation equations on a two-

dimensional domain. The advantages of ACM over the Brandt-type multigrid algorithms

are reviewed in section C-11. The last section (C-12) reviews the non-iterative splitting

methods, such as the Alternating Direction Implicit (ADI) approximations to solve multi-

dimensional flow problems, the Marker-And-Cell formulation (MAC) and other projection

algorithms to resolve the pressure-velocity coupling of the Navier-Stokes equations, and

the non-iterative PISO procedure (Pressure-Implicit with Splitting of Operators) of Issa.

These non-iterative splitting procedures have been considered to speed up calculations and

reduce the complexity of programmation as well as storage requirements.
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C-1. DIFFUSION/CONVECTION DISCRETIZATION SCHEMES

As is well known, the numerical solution of convection-diffusion problems is rendered

difficult because of a numerical instability that occurs when the convective transport

dominates the transport by diffusion. The difficulty manifests itself by producing

unrealistic oscillatory or "wiggly" solutions whenever the mesh size exceeds a critical value

(Ramadhyani and Patankar 1985). Although mesh refinement might overcome the

problem, very often the resulting increase in computational cost is excessive. This

difficulty has been recognized and overcome by practitioners of finite-difference and finite-

element techniques through the use of upwind and hybrid schemes, some of which have

the attractive feature of being unconditionally stable. Success in overcoming the stability

problem has been achieved, however, at the expense of accuracy. Most upwind and hybrid

schemes suffer from severe false (numerical) diffusion when the flow direction is at an

angle to the grid lines (Patankar 1980). False diffusion tends to augment the transport in

the direction normal to the local streamline, and can cause quite erroneous inferences to be

drawn, particularly when transport models (such as models of turbulence) themselves are

being studied.

The well-known power-law differentiating scheme (PLDS) of Patankar and Spalding

(Patankar 1980) is based on the exact solution of one-dimensional steady diffusion-

convection problems with constant properties, and performs well in flow regions in which

the velocity field aligns closely with the mesh lines, when convection is primarily balanced

by streamwise diffusion rather than cross-stream diffusion or sources. That is, the power-

law scheme does not respond correctly to lateral diffusion. The Quadratic Upstream-

Weighted Interpolation scheme (QUICK) of Leonard (1979) is third-order accurate in

space and establishes implicitly the coupling between the flow components, even so it

superposes one-dimensional approximations. Huang, Launder and Leschziner (1985)

have shown that for a two-dimensional irrotational corner flow, both the power-law

scheme and QUICK give a very accurate flow field, primarily because of the special nature

of this flow in which the velocity components are coupled through the pressure but not

through convection. However PLDS does not insure formal conservation of the stagnation

pressure. The study of these authors leaves no doubt that PLDS should not be used unless

the mesh can be closely aligned with the flow path lines, like in the case of a boundary

layer flow. QUICK emerges as one of the most successful schemes for incompressible

steady flows. It is a scheme attractively simple to incorporate into a solution algorithm and,

for the typical mesh densities employed, requires only some 65% more computing time
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than PLDS. Becausethe QUICK schemeresults in anunusual nine-point matrix, a

modified line-by-line techniquewith alternatingsweepdirections,which treatsimplicitly
the four closestneighborsonly, must be used to overcomeconvergencedifficulties

(Huang,LaunderandLeschziner1985). Theinvestigationof severalauthorsshowsthat

high-orderschemessuchasQUICK significantlyreducefalsenumericaldiffusionbutcan

producewigglesandoftenfail to converge.In particularTaoandSparrow(1987)showed
thatQUICK is stableonly for grid Pecletnumberslessthan8/3. Forall thesereasons,and

consideringtheparticularflow geometryof interest,thatin aheatpipe,it is appropriateand
preferable to use the power-law differencing schemeof Patankarto discretize the
convection-diffusionfluxes.

C-2. STAGGERED GRID ARRANGEMENTS

In incompressible flow problems, there is no explicit equation that governs the pressure

distribution. It is indirectly specified via the continuity equation. When the correct

pressure field is substituted into the momentum equations, the resulting velocity field also

satisfies the continuity equation (Patankar 1980). One way to handle this indirect

specification of pressure is to attempt a direct simultaneous solution of the whole set of

discretized momentum and continuity equations. In practical problems, however, this

technique would require a very large amount of computer storage and time, even when

specialized sparse matrix solvers are employed. Another possibility is elimination of the

pressure from the overall formulation, but these methods cannot be easily extended to

compressible and unsteady flow situations, and are not well suited for problems in which

boundary conditions are prescribed on the pressure. It is therefore desirable to use iterative

solution techniques in which the velocity components and pressure are calculated in a

sequential or segregated manner (Baliga and Patankar 1983).

Although the continuity constraint is used to determine the pressure, only gradients of

pressure appear in the momentum equations (and the pressure does not appear explicitly in

the continuity equation). Because of this, if the pressure is interpolated using linear shape

functions, only pressure differences between alternate grid points are involved in the

overall system of equations (Prakash and Patankar 1985). Hence the equations reveal no

difference between a uniform and a "checkerboard" pressure fields. Such a spurious

pressure distribution is unacceptable, and is prevented in finite difference methods by using

a staggered grid arrangement.
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On astaggeredgrid, themomentumandcontinuityequationsarediscretizedby usingtwo
different families of control volumes. Massfluxes acrossthe facesof the momentum

controlvolumesareextrapolatedin orderto insurethatmassis strictlyconservedoverthese

volumes.Forthesereasons,themethodentailsspecificationandcalculationof a relatively

extensiveamountof geometricalandtopologicalinformation.

C-3. NON-STAGGERED GRIDS AND FINITE-ELEMENTS

In a finite-difference discretization method, a "checkerboard" pressure field can develop as

an acceptable solution if the velocity components and the pressure are located at the same

grid positions (Patankar 1980). Since such pressure fields are undesirable, one uses a

staggered grid, which completely eliminates the "checkerboard" pressure field. In the

staggered grid, the velocity components are stored at displaced or staggered locations such

that the pressure drop between two pressure nodes can be used to "drive" the velocity

component located between them. Methods such as SIMPLE and its variants all use the

staggered grid arrangement. Although the staggered grid eliminates this major difficulty, it

introduces some inconvenience which becomes more serious when the method is extended

to curvilinear non-orthogonal coordinates. Similarly, since there is no direct counterpart of

the staggered grid in the finite-element method, one has to resort to unequal-order

interpolation, which reduces the accuracy of the overall solution (Patankar 1988). These

reasons provide the motivation for the search for methods with non-staggered grid or

equal-order interpolation.

Although the non-staggered grid methods appear satisfactory on the surface, a number of

them suffer from a subtle drawback: the solution produced by them depends on the values

of the under-relaxation factors or the size of the time step. This feature is obviously very

undesirable. That the non-staggered grid methods have this characteristic has been

recognized by Patankar and other authors for quite some time. Recently, Majumdar (1988)

has described this phenomena and proposed a remedy for it. Incidentally, the same

drawback is present in some of the finite-element methods with equal-order interpolation.

The finite-element method provides close approximation of curved boundaries, a

systematic and general way of modeling boundary conditions, and a versatile algorithm

(Banaszek 1989). For these reasons, the finite--element method has become a more and

more popular numerical tool in field theory problems, despite its greater programming

complexity compared to the finite-difference methods.
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By contrast, finite-difference methods are simple to formulate, can easily be extended to

two or three dimensions, and require considerably less computational work and storage

requirement than finite-element methods (for equivalent number of nodes). For these

reasons, it is preferable to discretize the flow conservation equations using the finite-

difference method, based on the control-volume integration. The control-volume approach

has the following advantages: (a) it is simple to implement and amenable to easy physical

interpretation; (b) the solution obtained by this approach satisfies global conservation, even

on a non-uniform grid.

C-4. EQUIVALENCE OF UNDER-RELAXATION AND TRANSIENT

FORMULATIONS

As is well known when dealing with steady-state problems, the resulting discretization

equations can be solved directly by some relaxation algorithm such as a point or line

Gauss-Seidel solver, or the steady-state solution can be obtained as asymptotic values of

an associated unsteady problem. Moreover, by using the unsteady formulation, it is

possible to solve both the steady and transient problems with the same code. When it is

chosen to solve the steady-state equations directly, heavy under-relaxation is usually

necessary to resolve the non-linearities and couplings, and it can be shown that relaxing the

steady-state equations is equivalent to the transient formulation. To illustrate this point,

consider the discretized form of the two-dimensional transient axial momentum equation:

(pVol) z --vij- Vi_ + aEZ (Vi+l,j - vij ) + aWZ (Vi_lj - viii)

At

+ aNZ (gid+, -vij ) --FaSZ Cvi,j_ 1 - gi,j) = s z ,

which can be rewritten as:

aPZ vi,j + aEZ Vi+l ,j + aWZ Vi- 1d+ aNz vij+l
Zv :_Z

+ aS i,j-1 ' (C- 1a)

where
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(PV°O 
aE z + aW z + aN z + aS z) ,

At At

(pVol) z
and _z = SZ + vi'_ . (C- 1b)

Introducing the coefficient aP* and the factor E (van Doormaal and Raithby 1984) defined

by:

aP* = -(aE z+aW z+aN z+aS z)>0, and E - aP* At - At (C-2)
(pV°I) z At* '

Equation (C-1) is equivalent to:

(1+ El-) aP* vij+aE zvi+l,j+aW zvi.lJ+aN zvi,j+l+aS zvi,j_l=Sz+ __ _,j. (C-3)

By contrast, the steady-state discretized equation has the following form:

aP* Vi, j + aE z Vi+l, j + aW z Vi_l, j --t- aN z vi,j+ 1 + aS z vi,j_ 1 = S z . (C-4)

To resolve the non-linearities and the couplings between the flow equations, Equation

(C-4) must be under-relaxed. Introducing the relaxation factor oc, the relaxed version of

Equation (C-4) has the form (Patankar 1980):

vi,j = v_i,j+_{a_.(SZ-aEZvi+l,j-aWZvi.l,j-aNZvi,j+l-aSZvi,j.l)-V?,j} , (C-5)

or:

aP* S z 1 - o_
O_ Vi'j + aEz Vi+l'J + aWZ Vil'J + aNZ vi,j+l + aS z Vi,j-I = + -- aP* _,j .

o_
(C-6)

Clearly, Equations (C-3) and (C-6) are identical if the relaxation factor o_ is taken to be

= E/(E+I). Note that the characteristic time step At* corresponding to E=I is the

maximum stability limit for the explicit discretization version of Equation (C-1). We wish

to use values of E in excess of 1 for fast calculation of transient and asymptotic solutions,

and this is only possible with implicit discretization schemes such as Equation (C-I). It is

also apparent that the E-formulation is preferable than the c_-formulation since _ is a non-

linear compressed function of the time step At while E is proportional to At. However, it is

better to use the unsteady formulation (C- 1) because the use of the same time step At in all
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conservationequationsgivesa consistentscheme,while theuseof thesameE factordoes
not,sinceAt* is different for different transported variables.

In conclusion, it is recommended that the time-dependent approach be adopted in all cases,

even if only the steady-state solution is of interest. The solution can be advanced in time

by using both explicit and implicit discretizations. Explicit schemes are easily programmed

but have a severe stability restriction on the time step (At < At*), which may compromise

their efficiency. Such a restriction can be (partially) removed by use of an implicit

approach such as an ADI factorization, at the expense of an increase in complexity.

C-5. SIMPLE-TYPE PROCEDURES

The papers most relevant to the present subject are those of Harlow and Welch (1965),

Harlow and Amsden (1971), and Chorin (1968). These authors all use finite-difference

procedures in which the dependent variables are the velocity components and the pressure.

The latter is deduced from a Poisson equation which is obtained by the combination of the

continuity equation and momentum equations, and the idea is present of a first

approximation to the solution, followed by a succeeding correction. The iterative nature of

the SIMPLE-type procedures for incompressible flows arises from the following reasons:

(a) the equations are non-linear; (b) the continuity and momentum equations are coupled

by the pressure; and (c) a direct solution of the finite-difference equations, even when they

are linear, is time consuming (Patankar and Spalding 1972).

In the formulation for fluid flow, only the procedure for incompressible flows is described

here. The method has been extended to compressible flows, but those details do not

necessarily mean flows with constant density; the density can be a function of temperature

and concentration. The term incompressibility refers to the effect of pressure on density.

Since the calculation procedure described does not directly account for the pressure-density

coupling, it is considered to be applicable only to flows at low Mach numbers (Patankar, in

Minkowycz et al. 1988, p. 216).

The momentum conservation equations for two-dimensional incompressible flows can be

discretized by successive-substitution linearization of the convective terms:

apt ui,j + aEr Ui+l,j + aWr Ui-l,j + aNt ui,j+l + aSrui,j-I = cr(pi,j - Pi+l,j) + sr , (C-7a)
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aP z vi, j + aE z Vi+l, j -I- aW z Vi_l, j -I- aN z vi,j+ 1 + aS z vi,j_ 1 = C z (Pi,j- Pi,j+l) + S z , (C-7b)

(Aru) i,j- (Aru)i-i,j + (Azv)i,j- (Azv)i,j-I = 0 (C-7c)

The resulting momentum and continuity linear equations involve the velocity components

u,v and the pressure field P as the dependent variables (as a rule, all omitted subscripts

should be read as i,j ). The pressure-velocity elliptical coupling can be resolved by the

SIMPLE-type pressure correction techniques (Raithby and Schneider 1979), originally

derived by Patankar and Spalding, which proceed as follows. Starting with a guessed

stared pressure field, the momentum conservation Equations (C-7a) and (C-7b) are solved

for the stared velocity components:

* aE r* * r * r* r(* *) sraP r ui, j + Ui+l, j + aW r Ui.l, j 4- aN ui,j+ 1 + aS ui,j_ 1 = C Pi,j- Pi+l,j + , (C-8a)

* aEZ * * * * Cz(P_,j - PT,j+I) SZaP z vi, j + Vi+l, j -I--aN z Vi_l, j + aN z vi,j+ 1 + aS z vi,j_ 1 _- + (C-8b)

Because this new velocity field does not satisfy the continuity equation (C-7c), these

velocities and the pressure field must be corrected:

u=u*+u', v=v*+v', and P=P*+P' (C-9)

The momentum correction equations relate the velocity and pressure corrections and are

obtained by subtracting Equations (C-8a) and (C-8b) from Equations (C-7a) and (C-7b)

respectively:

apt u'i,J + aEr u'i+l,J + aWr tli-l,J + aNr u'i,j+l + aSr u'i,j-I -- cr(P'i,j - P'i+l,j) , (C-lOa)

aPZ v'i,J + aEZ x;i+l,J + aWZ'¢i-l,J + aNZ v'i,j+l + aSZ v'i.j-1 = Cz(P'id - P'i,j+l) • (C-10b)

After suitable simplifications of the momentum correction equations, a pressure correction

equation is derived as follows: the momentum equations are used to express the velocity

components in terms of the pressure correction field, and the velocities appearing in the

continuity Equation (C-7c) are eliminated. This procedure leads to the construction of an

elliptical Poisson equation that is solved for the pressure correction field. This pressure

correction field is used to correct the velocity field, but is not used usually to correct the
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pressure field, so that a separate equation is used to evaluate the pressure field. The

pressure correction step corrects the velocity field to yield a new velocity field which

satisfies exactly the mass conservation constraint, while the pressure field is corrected so as

to satisfy the momentum conservation equations in an average, "most-consistent" way. At

this point a distinction must be made between passive and active pressure update methods.

In the passive PULS algorithm (Pressure Update from Least-Square residual

minimization), the corrected velocity field is inserted into the momentum conservation

equations and the pressure at a particular location is chosen so that a linear combination of

the squares of the four momentum residuals surrounding this particular location is

minimum. The weighting factors must depend on the cell dimensions as recommended by

Briley (1974). Raithby and Schneider (1979) have shown that such a passive pressure

update procedure still achieves convergence for large time steps. The advantage of this

method is that the coefficients of the pressure update matrix are dependent on the grid

dimensions only and need to be calculated only once. It is then possible to perform a

matrix inversion once for the entire problem, so that the pressure update steps will be very

inexpensive in CPU time. This is all the more important that the iterative solution of the

Poisson equation requires many more iterations to reach a given accuracy than do the

momentum equations, and can take up to 80% of the total computing time in some cases.

In the active pressure update SIMPLE (Semi-Implicit Method for Pressure-Linked

Equations) and SIMPLEC (SIMPLE-Consistent) algorithms, the same pressure correction

field is used to update both the velocity field and the pressure field. SIMPLE neglects the

off-diagonal velocity corrections in Equations (C-10), while SIMPLEC approximates these

corrections by u'i,j in Equation (C-10a) and by v'i,j in Equation (C-10b). The resulting

approximate correction momentum equations take the form:

(Aru') i,j

(Azv') i,j

= Dr(P'i,j - P'i+l,j)

= DZ (P'i,j - P'i,j+l)

(C-11)

with

D r- ArCr and D z- AzCZ
apt apZ (C- 11a)

for SIMPLE, and
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D r = ArCr and D z - AzCZ
apr+aEr+aWr+aNr+aSr aPZ+aEZ+aWZ+aNZ+aSZ (C- 11 b)

for SIMPLEC. Making use of Equations (C-9) and (C-11) in the continuity Equation

(C-7c) gives the following pressure correction equation:

aP P'i,j + aE Pi+l,j + aW Pi-l,j + aN l_i,j+l + aS 1)i,j.l = S p , (C-12)

where

aPi,j = I_i,j + Dri.l,j + D],j + D],j_ I ,

agi,j = - l_i,j, aWi,j = - I_i.l, j , aNi,j =- D_i,j, aSi,j =- D_i,j_1 ,

and _,j =- [(Aru*)i,j- (Aru*)i-l,j + (Azv*)i,j- (Azv*)i,j-l] (C-13)

Because of the inconsistency in the simplifications of the momentum correction equations

made by SIMPLE, this algorithm requires that the pressure is under-relaxed. The

SIMPLEC algorithm of van Doormaal and Raithby (1984) uses a consistent simplification

of the momentum correction equations and does not require any pressure under-relaxation.

The SIMPLER (SIMPLE-Revised) algorithm of Patankar (1980) operates slightly

differently. A stared velocity field is assumed and the off-diagonal correction velocities are

neglected in the momentum equations, as in SIMPLE, so that Equations (C-7) are

rewritten:

apt ui,j + aEr Ui+l,j + aWr Ui-l,j + aNt ui,j+l + aSr ui,j-I = cr(pid - Pi+l,j) + sr, (C-14a)

aPZ vi,j + aEZ Vi+l,j + aWZ vi-l,j + aNZ vi,j+l + aSZ vi,j-i = CZ (Pi,j- Pi,j+l) + S z. (C-14b)

These momentum equations are used to express the velocity components in terms of the

pressure field, and the velocities appearing in the continuity equation are eliminated. The

resulting elliptical Poisson equation is solved for the pressure field. At this point a pressure

correction field is computed using the SIMPLE procedure and the stared velocities are

corrected as before. However, the pressure is not corrected and the pressure field

computed in the first step is taken as the new pressure field. Note that in SIMPLER the

Poisson equation for the new pressure field is identical to the pressure correction equation

except for the source term, which is different. One of the advantages of SIMPLER is that
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if theguessedstaredvelocity field happened to be the correct one, the pressure equation

would yield the correct pressure field. SIMPLER internally generates a pressure field that

is compatible with the velocity field, and this procedure has a much better rate of

convergence than SIMPLE, even so the computational work per iteration is increased by

about 60%. Van Doormaal and Raithby (1984) pointed out that when diffusion and

convection phenomena are dominated by pressure gradients and source terms, the

consistent approximation in SIMPLEC becomes exact so that this procedure should be

used. This applies to flow systems with large pressure gradients such as flows in porous

media and heat exchangers. Also SIMPLEC is easy to program and performs as well or

better than SIMPLER in terms of CPU time and storage requirements. Note that SIMPLE-

type algorithms are appropriate when pressure-velocity couplings are predominant. For

buoyancy-induced flows or strong temperature effects, efficient treatment of the pressure-

velocity coupling becomes of less consequence.

C-6. RESIDUAL NORM REDUCTION TECHNIQUE

When using the SIMPLE-type pressure update procedures, the velocity field must usually

be under-relaxed to resolve the non-linearities in the momentum equations, while the

pressure correction is also under-relaxed when inconsistent approximations are made such

as in SIMPLE. Chatwani and Turan (1991) have proposed an improvement of SIMPLE-

type strategies by selecting the pressure correction under-relaxation factor based on the

minimization of global residual form. After solving the pressure correction equation for P'

and after the velocity field has been corrected according to the procedure, the new pressure

field is under-relaxed as P= P*+ _P', and the momentum residuals are formed as:

R r = S r _ [apr ui,j + aEr Ui+l,j + aWr ui.l,j + aNr ui,j+l + aSr ui,j_l]

(C-15a)

R z = S z - laP z vi,j + aE z Vi+l,j + aW z Vi-l,j + aN z Vi,j+l + aS z vi,j-II

_ • p, = _z_ (C-15b)

The global residual norm (assuming equal weight for all node points) is:

G: Z + ,
i,j
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andcanbeminimizedwith respectto therelaxationfactorczby settingthederivativeof G

to zero:

_Z Z '

=0

so that the optimum relaxation factor o_is given by:

_1" ' Z _Z ' _

i,j

= p' 2 + _ (C-16)-
i,j

Therefore, no empirical information is needed for the pressure relaxation factor, as the code

will automatically select the optimum value at each iteration level. Even for those cases

where no improvement in the convergence is obtained, the proposed method takes the

guesswork out of trying to specify _. It is believed that performance of the method can be

improved by reevaluating the momentum equation coefficients with the updated (corrected)

velocities before applying the minimization criterion. Note that the present residual norm

reduction technique is different from the PULS algorithm (Raithby and Schneider 1979)

which formulates a Poisson equation for the pressure on the basis of minimization of local

residuals and thus can encounter convergence difficulties. The present algorithm is based

on improvements in the pressure correction algorithm in a global sense and faces no

convergence difficulties.

Note that this residual norm reduction technique recommended by Patankar (1986) is easily

extended to all dependent variables. The solution procedure of the linearized equations

predicts a change (or correction) in the dependent variables. Instead of accepting this

change as it is, it is multiplied by a constant o_, a kind of under- or over-relaxation factor.

The value of this factor is found by requiring that the norm of the residual vector (i.e., the

sum of the squares of the residuals of all the equations) be a minimum. This minimization

search produces a kind of "optimum" relaxation of the dependent variables.
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C-7. EFFECTIVE PARABOLIC BLOCK CORRECTION PROCEDURE

Braaten and Patankar (1989) have proposed an effective Parabolic Block Correction (PBC)

procedure to accelerate the convergence of the solution of two-dimensional incompressible

flow. This procedure makes use of the fact that incompressible parabolic flow problems

can be solved in a very efficient manner by a marching technique in the flow direction,

technique which requires little computer storage and CPU time, as described by Raithby

and Schneider (1979). A flow is parabolic in the axial direction z if axial diffusion is

negligible and the radial pressure gradient is small compared with the axial pressure drop.

This situation arises usually when an incompressible fluid is flowing in a tube with no

recirculation. The PBC technique proceeds as follows. Consider the axial momentum

conservation Equation (C-7b), which is reproduced here for convenience:

aP z vi, j + aE z Vi+l, j + aW z Vi_l, j + aN z vi,j+ 1 --I- aS z vi,j_ 1 = Cz(Pi,j - Pi,j+l) + SZ • (C-7b)

The procedure consists in correcting the axial velocity components and the pressures by

marching in the flow direction, say by increasing j, so that vi,j_ 1 is known from the

previous line correction step. In the spirit of the parabolic approximation, the flow is not

influenced by the downstream neighbor, so that vi,j+ 1 is evaluated explicitly from the

previous iteration; also the pressure variation in the cross-stream direction is neglected

compared to the streamwise pressure changes, and corrections of pressures APj are

uniform along the line j+l. With these approximations, Equation (C-7b) reduces to:

aW z Vi_l, j + aP z vi, j + aE z Vi+l, j = C Pi,j- Pi,j+l + APj + S z - aN z vi,j+ 1 - aS z vi,j_ 1 ,

or

aW z Vi_l + aP z vi + aE z Vi+l : - C z AP + _'z , (C-17)

where the stared quantities refer to the best available estimates, and subscripts j are dropped

since unnecessary. Because of the linear form of Equation (C-17), it is easy to verify that

the solution of this system can be written: vi = _i at- APfi , where _i and fi are solutions

of the system:

Z A .-x "_ZaW vi-l+aPZ_i+aEZvi+l = , (C-18a)

aWz fi-I + aPZ fi + aE z fi+l = - CZ (C- 18b)
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Equations (C-18) are easily solved using the efficient TDMA tridiagonal matrix solver of

Thomas. It is more efficient to combine the solution of Equations (C-18a) and (C-18b)

since one set of the TDMA recursive coefficients is not dependent on the source term and is

therefore identical for both systems. Finally, AP is calculated by requiring that mass is

globally conserved over the cells of line j. Summation of the mass balance equations over

the line j gives an equation of the following form:

I'i3 = _ pA zvi= P Azfi AP+ PAz_i ,
i=l i i=l

(C-19)

which gives AP in terms of the most recent updates of the velocity field, _i and fi • After

the correction procedure has been applied to every line of constant j in increasing order, it

can be repeated in the radial direction. While the use of PBC is slightly more expensive

than one double sweep of the line-by-line iterative technique, this procedure alone is

capable of solving the entire problem if the flow is of boundary-layer type, and can

significantly improve the rate of convergence of the solution algorithm in the case of an

almost parabolic flow, such as in a heat pipe where radial pressure gradients and axial

diffusion phenomena are small or negligible.

Connell and Stow (1986) have extended the pressure-update procedure to the solution of

two-dimensional steady compressible flows. The first step of a typical iteration consists of

solving the continuity and momentum equations for the pressure and velocity fields by

using an Extended Pressure Correction procedure (EPC). The energy equation is then

solved for the temperatures, and densities are updated as a function of pressures and

temperatures by using the equation of state. Connell and Stow have tested various EPC

procedures and have retained EPC-2A as their most stable and efficient algorithm, which

requires about 20 to 40% less CPU time than SIMPLE. The procedure consists of

performing one or two internal iterations of SIMPLE type, whose purpose is to explicitly

account for the off-diagonal velocity corrections in the momentum correction equation.

The first internal iteration proceeds exactly as SIMPLE: the off-diagonal velocity

corrections are neglected in the momentum correction equation, the pressure correction

equation is formed and solved, and the corresponding off-diagonal velocity corrections are

computed. Their new value is used explicitly in the momentum correction Equations

(C-10) and the process is repeated. While EPC-2A does not require any under-relaxation

of the velocity field, the pressure field must be relaxed. It is apparent that the use of the
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consistentvelocitycorrectionapproximationof VanDoormaalandRaithby(1984)should

stronglyimprovetheefficiencyof the algorithmandremovetheneedfor pressureunder-

relaxation.Thenewprocedureis obtainedby simply usingSIMPLECinsteadof SIMPLE

for the internaliterationsof theextendedpressurecorrectionprocedure.ConnellandStow

pointedout thatbecausethediscreteequationsarecoupledandnon-linear, thereis little

point in solving themexactlyduring eachiteration. Only thePoissonequationfor the

pressurecorrectionsmustbesolvedwithin acertainaccuracyfor theprocedureto converge

correctly.

C-8. THE CELS SOLVER FOR TREATING THE TEMPERATURE-

VELOCITY COUPLING

In contrast with the pressure-velocity coupling, the temperature-velocity coupling which

arises in natural convection and temperature-driven incompressible flow problems has

received little attention. Note that incompressible flows does not necessarily mean flows

with constant density; the density can be a function of temperature and concentration. The

term incompressibility refers to the effect of pressure on density. Since the calculation

procedure described does not directly account for the pressure-density coupling, it is

considered to be applicable only to flows at low Mach numbers (Patankar, in Minkowycz

1988, pp. 216). Galpin and Raithby (1986) identified two different forms of the

temperature-velocity coupling for buoyancy-driven flows: (a) the temperature appears

implicitly in the momentum equations through the Boussinesq approximation; (b) the

velocity components appear in the energy equation through the advective energy transport

terms. In forced-convection flows, coupling (a) is negligible, that is the velocity field does

not depend on the temperature and can be computed separately, while the temperature field

is strongly dependent on the velocity profiles through coupling (b). In pure natural

convection (temperature-driven convection) flow, coupling (a) is particularly strong, and

coupling (b) can be significant also. For very slow flows such as in a porous medium,

coupling (b) is negligible, that is the temperature field is independent of the flow field and

can be computed separately.

Because the conservation equations are non-linear, they must be linearized in the first

place, and two different practices have been extensively used. In the successive

substitution linearization, the unknown coefficients are simply evaluated from the currently

available values of the dependent variables, as it is done in SIMPLE-type algorithms. This

standard linearization decouples the momentum and energy equations, which is convenient
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for the solution of the system, but usually requires heavy under-relaxation to avoid

divergence since it does not accurately mimic the physics of the flow. In the Newton-

Raphson (NR) linearization technique, the anticipated change in the coefficients is taken

into account via their first derivative with respect to the dependent variables (uT = unT +

uT n - unTn). This more accurate NR linearization practice has a significantly higher rate of

convergence, at the expense of an increased computational effort due to the coupling of the

momentum and energy equations. When the current estimates of the solution are close to

the exact solution, the NR technique is very efficient. But for initial guesses that are far

from the solution, this linearization technique often fails to converge, as observed by

Patankar (1986). The same author has devised a very satisfactory technique, called the

hybrid linearization method, which employs the standard linearization until the norm of the

residuals decreases below a certain value, and then switches to the NR linearization until

the final convergence of the solution. By combining this hybrid linearization method with a

direct solution solver (sparse-matrix LU decomposition) and a residual norm reduction

technique (after each iteration, the optimum under-relaxation factor is computed by

minimizing the norm of the residuals), Patankar (1986) was able to obtain a converged

solution in only 25 iterations for a flow with a Rayleigh number of 107 when a zero initial

guess was used for all variables. For the first time, the same author obtained solutions for

Rayleigh numbers as high as 109 (with a Prandti number of 0.71) when solutions for a

lower Rayleigh number were used as the initial guess. Iterative methods such as

SIMPLER failed to converge even after 1000 iterations.

Galpin and Raithby (1986) have applied the NR linearization technique to the momentum

and energy conservation equations for incompressible buoyancy-driven flows and

obtained:

apr ui,j + aEr Ui+l,j --I-aWr Ui.l,j + aNr ui,j+l + aSr ui,j.i

= cr(Pi,j - Pi+l,j) + S r + aprTTi,j + aErTTi+l,j (C-20a)

aP z Vi,j + aE z Vi+l, j + aW z Vi_l, j -I- aN z Vi,j+ 1 + aS z vi,j_ 1

= Cz(Pi,j - Pi,j+l) + S z + apZTTi,j + aNZTTi,j+l , (C-20b)

apT Ti,j + aET Ti+l,j + aWTTi.I,j + aNTTi,j+I + aSTTi,j.I

= ST + aE Tr ui,j + aW Tr ui. l,j + aN Tz vi,j + aS Tz Vi,j_ 1 , (C-20c)

(Aru) i,j- (Aru) i-l,j + (Azv)i,j- (Azv) i,j-I = S (C-20d)

297



Galpin and Raithby have comparedthe standard (ST) and Newton-Raphson (NR)

linearizationtechniquesby solvingthesystemof Equations(C-20)exactlyateachstep(by

using a direct solver),to isolatetheeffectsof the temperature-velocitycoupling. They

haveconsideredthenaturalconvectionflow in apolarannulusfor threedifferentfluids: air

(Pr = 0.71), glycerin (Pr = 13,000)and Mercury (Pr = 0.025). Theseauthorshave

observedlike Patankarthat theNR linearizationtechniqueworksonly whenthe general

senseof theflow isestablished(good"initial" solution)sinceit assumesthatextrapolation

from theprevioussolution is reasonableover theprescribedtime step. For Pr > 1, ST-

direct converges only for small time steps, while NR-direct converges faster for a wider

range of time steps. For fluids with low Prandtl number, the temperature profile is

established mainly by conduction, so that the advective coupling (b) is weak and standard

linearization is suitable to solve the system of Equations (C-20). For flows of moderate or

high Prandtl numbers and high Rayleigh numbers, a bidirectional sensitivity (couplings (a)

and (b)) is retained, and proper treatment of the temperature-velocity coupling via the

Newton-Raphson iinearization is important. Galpin and Raithby (1986) have extended the

Coupled-Equation Line-Solver (CELS) iterative method to the solution of the coupled

system of Equations (C-20). This algorithm solves simultaneously for u, v, P and T along

lines of control volumes, iteratively improving the solution by sweeping line by line across

the entire domain in alternating directions, very much as does the line-GS solver or ADI

technique for a scalar variable. Careful attention is paid in the formulation to ensure that

mass is rigidly conserved, so that iterations are required only to improve the satisfaction of

the linear momentum and energy conservation equations. The j-row updating of the CELS

technique proceeds as follows. By retaining implicitly only the dependent variables with a

subscript j (the variables with subscripts j-1 or j+l are evaluated explicitly and

incorporated into the source terms), the system of Equations (C-20) reduces to:

aPr Ui,j + aE r Ui+l,j + aW r Ui_ld= cr (Pi,j- Pi+ l,j) + _'r + aprT Ti,j + aE rT Ti+l,j , (C-21 a)

aP z vi,j + aE z Vi+l,j 4. aW z Vi-l,j = C z Pi,j --I.-"_z --I.-apzT Ti,j , (C-21b)

apT Ti, j + aETTi+I, j + aWT Ti_l, j = _r + aETr ui,j + awTr Ui.l,j + aNTZ Vi,j , (C-21c)

(Aru) i,j-(Aru)i-l,j + (Azv)i,j = S (C-21 d)

Equation (C-21 d) can be used to express the v components of the velocity field in terms of
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the u components, and the v components are eliminated in Equation (C-21b) to give an

equation for the pressure in terms of the u components and the temperature:

CZ Pi,j = aEPr Ui+l,j + aP Pr ui,j + aW Pr Ui-l,j + aWW Pr Ui-2,j + s'P - aP zT Ti,j . (C-22)

Equation (C-22) is used to eliminate the pressures in Equation (C-21a), which gives a

linear equation pentadiagonal in u and bidiagonal in T. Finally, the v component of the

velocity is eliminated in Equation (C-21c) by using Equation (C-21d), which results in a

linear equation tridiagonal in T and bidiagonal in u. These two linear equations can be

efficiently solved by the coupled pentadiagonal u, tridiagonal T matrix PT-TDMA

algorithm (Galpin and Raithby 1986). After calculation of T and u, Equation (C-22) is

used to evaluate the pressure P while v is obtained from Equation (C-21d). The CELS

algorithm is performed successively on rows of increasing j, and the last line j = Nz

requires a special treatment: (a) the v components of the velocity field are calculated from

the boundary conditions; (b) the u components of the velocity field are calculated using the

mass balance over each control volume (Equation C-21d); (c) the last interior v-

momentum Equation (C-21b) is used to evaluate the pressure; (d) finally the temperatures

are computed from the solution of the tridiagonal Equation (C-2 lc). Note that by sweeping

along lines of constant j in increasing order (from j=l to Nz), mass conservation is

enforced exactly after each sweep, even if the velocity and pressure fields have not

converged yet. Because CELS decouples the pressure between the lines j, the convergence

of the solver is slowed. To remedy this problem, a block correction of pressure is

performed after each sweep, by correcting the pressure levels of each linej by 5Pj (Galpin,

van Doormaal and Raithby 1985). The constraint that determines 5Pj is that the v-

momentum Equations (9b) are satisfied on the average along the linej :

Nr

[aP z Vi, j 4- aE z vi+l,j + aW z Vi-l, j 4- aN z Vi,j+ 1 4- aS z Vi,j_ I - S z- aP zT Ti, j - aN zT Ti,j+l]
i=l

Nr Nr Nr

= Z Cz(Pi,j ÷ _Pj- Pi,j+I) = Z Cz(Pi,J - Pi.j+l) + gPj Z Cz

i=l i=l i=l

(C-23)

Then all pressures on linej are corrected, starting from line Nz-I to line 1, in decreasing

order. Galpin and Raithby (1986) found that for large time steps, NR-CELS performed

better than a line Gauss-Seidel solver combined with SIMPLEC or SIMPLER, the latter

being very sensitive to the size of the time step. In contrast, the computational time

299



requiredby NR-CELS to reachthesteady-stateflow solutionis a smooth and decreasing

function of the time step.

C-9. THE LINE-BY-LINE ITERATIVE TECHNIQUE

The five-point finite-difference equations can be solved by repetitive use of TDMA in the

first and second coordinate directions (TDMA double-sweep or line Gauss-Seidel

method). The advantage of this solver is that it gives nearly the exact solution after only

one double-sweep when the coefficients in one direction are much smaller (or greater) than

the coefficients in the other direction (Patankar and Spalding 1972). This situation arises

for strongly anisotropic problems, of for isotropic problems which must be discretized on

grids of very large aspect ratios. The double-sweep can be repeated a few times to obtain

greater accuracy.

Because the solution of the pressure correction elliptical equation can represent as much as

80% of the total computational cost, it is a high priority to solve the Poisson equation in an

efficient manner. The line-by-line iterative technique of Patankar has the combined

advantages of simplicity and low-storage requirement. The rate of convergence of this

technique depends crucially on the treatment of the off-line dependent variables, and van

Doormaal and Raithby (1984) have proposed a modification of the line-by-line technique

to accelerate its performance.

C-10. ADDITIVE BLOCK-CORRECTION METHOD

Settari and Aziz (1973) have proposed a single partitioning method of acceleration of

convergence for stratified or heterogeneous problems. This Additive Block-Correction

(ABC) can be applied after a certain number of iterations of any iterative method used to

solve the following linear system of equations:

R=S-[A]T =0 (C-24)

where [A] is a NxN matrix, S is the source term vector of dimension N and T is the

dependent variable vector. Now we consider a complete partition of In = { 1,2 ..... N}

constituted of M blocks Ip (p=l to M) with M < N; we associate one unknown correction

C_p with each partition or block, and we define the correction vector 8 such that 8i = O_p
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for i E Ip. If we denote by T the current approximation of the solution of Equation (C-24)

and require that the average residual on every block or partition is zero, we obtain:

Z {[A](T+(_)-S }i=0, for p=l to M.

i _ Ip (C-25)

For the row-partition of a five-point linear system obtained from the discretization of

conservation equations on a two-dimensional domain Nr x Nz, Equation (C-25) can be

rewritten:

N_ < RDij(Tij

2;
i=l

for j=ltoN z .

+ )+aWi,j(Ti-lj+c(j)+aEij(Ti+lj+ )) =0,

(C-26)

The correction vector c_ of dimension Nz is solution of the following tridiagonal linear

system:

bSjo_j_ 1 +bPjocj+bNjo_j+ 1 =Qj, for j= I to Nz, (C-27a)

where

Nr N r N r

bSj = _ aSi,j , bPj = _ (aP+aW+aE)i,j, bNj = _ aNi,j
i =1 i =1 i =1

N r

, and Qj=Z Rid •
i=l

(C-27b)

Hutchinson and Raithby (1986) have studied the rate of convergence of various iterative

solvers and showed that the use of a multigrid method based on the additive correction

strategy of Settari and Aziz (1973) can dramatically reduce the number of iterations needed.

The use of very dissimilar grid spacings results in strongly anisotropic coefficients. A

point Gauss-Seidel solver (GS) reduces the high-frequency modes of the error more

effectively than the lowest-frequency components, so that the asymptotic convergence rate

of the solver depends on the lowest allowable mode in the error. After the high-frequency

modes have been removed, the GS solver appears to "stall" if the grid aspect ratio C =

Az/Ar is large. It can be observed that one application of the GS solver at location (i,j) is
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equivalent to advancing the solution at this point by a time step At i,j , which is the

minimum time to transfer information from the explicit-variable nodes (i,j+l), (i+l,j) to

the node (i,j). For two-dimensional steady-state diffusion, the time steps to transfer

information along the grid lines have the form Atr = EAr 2 and At z = E Az 2 respectively,

and since Ar<<Az we have Ati,j = Atr. Since the time necessary to smooth any error

component is roughly the time to transfer information over one wavelength, the number of

iterations to smooth all allowable error modes in the r-direction is roughly equal to the

number of nodes Nr in that direction. However it takes a time Atz = C 2 Ati,j to transfer

information between two adjacent nodes in the weak coefficient direction z (the smoothing

of even the higher-frequency components is therefore extremely expensive in z). The

convergence is governed by the lowest admissible Fourier mode of the error because the

time step implied by the solver is least effective in smoothing these modes. It is clear that

increasing the implicitness of the solver in the strong coefficient direction r will alleviate the

problem. In such case At i,j = At z and the error is smoothed in about Nz line-by-line

sweeps implicit in the r direction. The use of the row-partition additive correction of

Settari and Aziz (1973) will insure a complete propagation of information in the weak

coefficient direction z. Such level shift guarantees that the average error along each row j is

zero (the residual on every block of the partition is forced to zero), so that the k=0 Fourier

mode is eliminated. For this problem, it is then possible to perform a simple two-level

Additive-Correction Multigrid procedure (ACM) as follows: point-GS iterations are

performed on the fine grid (level 1) as long as the rate of decrease in the norm of the

residual is suitable, that is IIR(k+l)ll <_B IIR(k)ll, where B depends of the rate of smoothing

of the high-frequency error of the iterative solver used for the particular problem

considered ( tx = 0.5 for the point-GS solver applied to the diffusion problem). Then the

level-two shift of Settari and Aziz is performed to remove the low-frequency mode of the

error, and iterations on the level 1 are resumed. The overall rate of convergence is

dominated by the information propagation rate in the weak coefficient direction z. The

line-GS solver (line-by-line technique) propagates information at the rate of roughly one

node Az per iteration, while the line-GS solver combined with ACM propagates

information across the whole domain on each iteration (information propagation refers to

the propagation of Dirichlet-type boundary conditions inside the domain). The point-GS

solver requires roughly C 2 Nz iterations for propagation across the domain in the weak

coefficient direction z, and the rate of convergence of this solver is accelerated to that of the

line-GS when it is combined with the ACM strategy.
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For variablemeshesandflow problemswith spatially varying velocities, it may not be

possibleto orientthe line solverin thestrongcoefficientdirection,becauseit varies.For

high-Pecletconvectioncombinedwithdiffusion,the largecoefficientsarealignedwith the

flow direction. Thepropagationof the boundary conditions arises by diffusion normal to

the flow (between the stream tubes). The time step implied in the solver is now dominated

by the convective time. It takes many such time steps to diffuse information normal to the

flow, which causes the iterative solver to stall. In such case, convergence can be enhanced

by an additive correction based on stream tube blocks (flow rings).

Because the solution of the additive block correction equations is very inexpensive for two-

dimensional problems (the use of row- or ring-shaped blocks leads to a tridiagonal linear

system for the block correction vector), it is generally more efficient to perform an ACM

correction after each fine grid iteration, since the convergence rate of the overall algorithm

is optimized. Inexpensive iterations on the level-two coarse grid rapidly diminish exactly

those components of the error (low-frequency) that are so difficult and expensive to reduce

by fine-grid iterations alone.

C-11. ACM VERSUS BRANDT-TYPE MULTIGRID ALGORITHM

In the multigrid (MG) method of Brandt (1980, 1984), the conservation equations must be

discretized on different (finer to coarser) grids, and difficult decisions must be made

concerning the treatment of boundary conditions, the transfer of residuals or the

interpolation of the dependent variables, so that this type of algorithm is rather complex to

program. By contrast, in the Additive Correction Multigrid method (ACM) proposed by

Hutchinson and Raithby (1986), summation of the equations over a block of cells is

equivalent to demanding integral conservation over each block or coarse-grid cell, and

constrains these choices. Hutchinson and Raithby have shown that ACM was as efficient

as MG for Poisson-type problems, while much easier to implement. Numerical tests

revealed no performance degradation of ACM with either Neumann or Dirichlet boundary

conditions. Unlike the MG algorithm of Brandt, ACM obtains the discretized correction

equations for the coarse grid directly from the fine-grid equations by application of the

ABC strategy of Settari and Aziz. This distinction is important for two reasons. First,

discretization is required on the fine grid only, thus reducing complexity and cost as well as

eliminating the possibility of discretization inconsistencies between the coarse and fine

grids. Second, because the fine-grid discretization equations are conservative and the

coarse-grid correction equations are formed by simply combining the fine-grid equations,
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the resultingcoarse-gridequationsarealso conservative. Solution of the coarse-grid

equationsandsubsequentcorrectionof thefine-grid solution field yields a field that is
conservativeovereachblock.

C-12. NON-ITERATIVE SPLITTING METHODS

To resolve couplings and non-linearities of the flow conservation equations, iterative

methods such as SIMPLE-type pressure-correction algorithms have been used

extensively. However, iterative methods are costly and therefore not very attractive for

unsteady calculations. Non-iterative splitting procedures have been considered to speed up

calculations and reduce the complexity of programmation as well as storage requirements.

Originally these methods have been applied to solve multi-dimensional problems as a series

of linearized one-dimensional problems.

Consider the two-dimensional heat diffusion equation:

aU {a2+ 2at = v ay} u (C-28)

While the explicit discretization of Equation (C-28) is conditionally stable

(2vAt(6-_+_)<l), the following combined implicit-explicit representation is

unconditionally stable if 0 > 1/2 :

At (C-29)

The Crank-Nicolson scheme is obtained for 0=1/2 and is second-order accurate in time.

While in one dimension the fully-implicit and Crank-Nicolson schemes result in a

tridiagonal linear system that can be very efficiently solved with Thomas algorithm, their

extension to 2 and 3 space dimensions leads to algebraic equations that contain 5 or 7

unknowns, respectively. Although the resulting equations are still unconditionally stable,

they are no longer tridiagonal and they must be solved by direct elimination or iterative

procedures, which require a substantially greater computational effort.
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C-12.1. Alternating Direction Implicit Approximations (ADI)

To overcome the shortcomings of the common implicit methods for two-dimensional

problems, Peaceman and Rachford (1955) and Douglas (1955) have developed a variation

of the Crank-Nicolson approximation known as an Alternating Direction Implicit (ADI)

method. A number of variations have been proposed. The Peaceman-Rachford ADI form

of Equation (C-28) is a two-step scheme which proceeds as follows:

U*- tl n

At/2

U n+l- U*

At/2 (c-30)

The diffusion term has been split into its two spatial components and each step results in a

tridiagonal linear system. This ADI scheme is second-order accurate in time and

unconditionally stable for the diffusion equation. However it cannot be extended to 3

dimensions, and Douglas and Gunn (1964) have proposed an ADI scheme that is

unconditionally stable and second-order accurate for the three-dimensional diffusion

equation. Their algorithm retains these properties of stability and accuracy for any number

of commutative splitting operators and for non-commutative operators in two dimensions.

As an illustration, the ADI procedure of Douglas and Gunn is applied to the following

implicit equation:

un+l-un --{F 1 4- F2}[0un+l+ (1-0)U n] ,
At (C-31 a)

which can be rewritten:

{I-0At(F, + F2)} un+l ={I + (1-0)At (F1 + F2)} un = q n (C-31b)

The procedure is formed of the following two steps:

{I - 0At FI} u* - {0At F2} un = qn

{I - 0At F2} un+l - {0At FI} u* = qn

(C-32a)

(C-32b)

Subtracting Equation (C-32b) from Equation (C-32a) gives:

305



u*= {I-OAt F2} U n+l + {OAt F2} U n , (C-33)

and u* can be eliminated from Equation (C-32a) to yield:

{I- OAt (F, + F2)} u n+l = qn_ (0At)2{F1F2}(un+I_ un). (C-34)

It can be seen that the ADI scheme of Douglas and Gunn applied to two-dimensional

problems is equivalent to the Jakonov factorization. Equation (C-34) is of the same order

of accuracy as Equation (C-31a), and is second-order accurate in time when 0=1/2. For

solution efficiency, it is preferable to introduce q_= u - u n, and rewrite Equations (C-31)

as"

,n+, = At {Vl + F2}[u n + 0* n+'] , (C-35a)

or."

{I- OAt (FI + F2)} _bn+l = At {FI + F2} u n (C-35b)

The Jakonov factorization of Equation (C-35b) takes the form:

{I-OAt Fl}{I - OAt F2} q_n+l = At {Fl + F2} u n , (C-36)

which is easily solved by the following two-step scheme:

{I OAt Fl}_b*- = At {F I + F2} u n

1I- OAt Fz}*n+l =,* (C-37)

These ADI schemes are very efficient when the operators {Fi} are linear.

Douglas and Jones (1963) have proposed various splitting predictor-corrector methods for

resolving the non-linearity of the one--dimensional convection-diffusion equation:

0t = {F + G(u)} u , (C-38)
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whereF is a linear operator(diffusion) and G(u) is non-linear (convection). The first
predictor consistsin estimatingthe solution u* at time (n+l/2)At by using successive

substitutionlinearizationof thenon-linearoperatorG. DouglasandJoneshaveconsidered
thefollowing predictors:

i

u - u n _ {F} u* + {G(un)} u n
At/2

U*-u n Iu*+ u n]
At/2 -- {F} L_J + {G(un)} un'

U*- U n -{F + G(un)} ]u,+r U n ]
At/2 [_J "

(C-39a)

(C-39b)

(C-39c)

Equation (C-39a) is the Crank-Nicolson predictor, while Equation (C-39b) is a modified

Crank-Nicolson predictor. Gary (1964) has proposed a predictor similar to Equation

(C-39c) to estimate the solution u* at the new time step (n+l)At:

u*- un _ {F + G(un)} [u*+ un ]
At t_J " (C-40)

After the corrector step is performed, the estimate of the solution u n+l/2 at time (n+l/2)At

was taken as u* if one of the predictors (C-39) was used, or as (u*+un)/2 if predictor (C-

40) was employed, and the solution U n+l at the advanced time was obtained from the

following corrector:

u.+,-un + u"]At L 2 (C-41)

Gary (1964) has also devised an iterative explicit predictor method for the solution of

Equation (C-38):

U(0) = U n ,

u(k+l)_ un

-{F+G{u(k)+un)l[u(k)+un- l for k=0 to p-l, (C-42a)at 2 L 2 '

U n+l = u(P) ,
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whichunfortunatelyis unstablefor certainvaluesof p, andwhoseadmissibletimestepsare

restricted. Gourlay and Morris (1968) haveproposeda variation of Gary's unstable

predictorthatis unconditionallystable:

u(O)- fin _ {F + G(un)} un where Ui = Ui+l + ui-1
At ' 2 '

+ I{G(un)} u n + {G(u(k))} u(k+')] for k=0
At

to p-l,

u n+l = u(P) (C-42b)

In practice, 2 iterations (p=2) are sufficient to obtain convergence to the order of accuracy

of the overall method. The same authors have extended their algorithm to non-linear two-

dimensional problems of the following type:

c)u = {Gl(U) + G2(u)} u
8t (C-43)

The Crank-Nicolson discretization scheme of Equation (C-43) reads:

U n+l- Un _ l [{Gl(un+l)} un+l + {Gl(Un)} u n] + _t{G2(un+l)} un+l + {G2(un)} u n]At 2

or

{I-_-[Gl(u n+') +Gz(un+')]} u n+l= {I+ _-[G,(u n) +Gz(un)]} u n ,

which combines temporal and spatial implicitnesses. The

factorization of Equation (C-44) takes the form:

{I- _-Ol(un+l)} {I -Ate- G2(un+l)} u n+l

(C-44)

approximate Jakonov

= {I + At Gl(Un)} {I + _-G2(un)} un = q n (C-45)5-

To estimate the operators {Gl } and {G2} at the

proposed the following explicit stable predictor:

At
-_Gl(U n) + G2("n)) u n

new time step, Gourlay and Morris

(C-46)
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^ 1

where Ui,j = _- •(Ui+lj + Ui_ld + Uij+l + Ui,j.1)J

step ADI scheme reduces to:

I- At GI(U**)} u* = qnY

{I At G2(u**)I un+, •
-2 --'U

on an uniform grid (Ax=Ay) , so that the two-

(C-47)

Also, Chorin (1968) has adapted the Peaceman-Rachford predictor-corrector method to the

solution of the two-dimensional convection-diffusion transport Equation (C-43):

u*- u n
- {Gl(un)} u* + {G2(un)} u n

At/2

u n+l- u*
At/2 -- {G, (u*)} u* -b {G2(u*)} u TM (C-48)

The Navier-Stokes equations constitute a system of non-linear coupled partial differential

equations for the density, flow field components and temperature. The sequential (or

segregated) numerical solution of the corresponding linearized finite-difference equations

necessitates that the solution procedure be applied repeatedly to restore the couplings and

the non-linearities. If the solution procedure itself is iterative, it is possible that the total

number of iterations required is not significantly increased by the couplings and the non-

linearities (Ghia, in Minkowycz et al. 1988, p. 306). But this is generally not the case.

To overcome these shortcomings, Briley and McDonald (1975, and 1977) and Beam and

Warming (1976) have proposed a block-ADI splitting algorithm for the simultaneous

solution of the unsteady compressible Navier-Stokes equations. Unlike the methodology

proposed by Gourlay and Morris (1968), terms involving non-linearities at the implicit

time level are linearized by Taylor expansion about the solution at the known time level

(Newton-Raphson linearization). The result is a system of multidimensional coupled (but

linear) difference equations for the dependent variables at the implicit time level. To solve

these equations, the ADI factored scheme of Douglas and Gunn is introduced which leads

to systems of coupled linear equations having narrow block-banded matrix structures,

which can be solved efficiently by standard block-elimination methods. Properties are

taken to be constant and the pressure is eliminated as a dependent variable by means of the

equation of state (the perfect gas law was used, which is convenient but not essential).
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Energy dissipation and cross-derivative viscous terms are treated explicitly for efficient

spatial factorization. However, since any number of splitting operators can be used,

mixed-derivatives can be treated implicitly within the ADI framework, at the expense of

computational efficiency. Anyhow, the explicit treatment of the aforementioned viscous

and dissipation terms had no observable adverse effect on stability. Because the

conservative form of the compressible Navier-Stokes equations was discretized using a

two time level scheme, Briley and McDonald pointed out that the vector of the dependent

variables _ must be taken as _ = {9,pU,pe} to maintain second-order accuracy in time

for the overall scheme (obtained when 0=1/2). The two-dimensional compressible

Navier-Stokes equations can be written in the following condensed form:

-T = Gl(_) + G2(_)
_t (C-49)

where G1 and G2 are non-linear multicomponent operators associated with space

dimension 1 and 2 respectively, and the implicit-explicit temporal discretization scheme

gives the analog of Equation (C-49) as:

_[/n+l_ _/n

At
- 0 [GI(v n+t) + G2(Vn+l)] + (1-0)[GI(v n) + G2(vn)] (c-50)

The non-linearity of the operators Gi is treated via Newton-Raphson linearization:

Gi(_n+l)=Gi(_n)+[_i]n[_n+l__/n] + 0 (At 2)

=Gi(v n)+[Ai][_t n+'-x¢ n] + O (At 2) , (c-sl)

where the Jacobians [Ai] are linear operators. Introducing _ = _ - _n, and making use of

linearization (C-51) into (C-50) leads to the following equation:

[I- OAt (A 1 + A2)] 0 n+l = At[GI(V n) + G2(vn)] = Qn (C-52)

The ADI factored scheme of Douglas and Gunn applied to Equation (C-52) gives:

[I-0AtA1][I-0AtA2]_n+1=Qn, (C-53)
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which is equivalent to the solution of two block-tridiagonal systems:

[I - 0At Ai] _* =Qn

[I - OAt A2] _n+l = _ *
(C-54)

For two or three dimensional problems, Alternating Direction Implicit (ADI) methods are

very attractive: instead of solving a 5-point (or 7-point in three dimensions) linear system,

the ADI splitting solves successively 2 or 3 tridiagonal systems. Unfortunately, it has been

found that such spatial splitting methods have a rather poor accuracy for disturbances

which propagate skew to the coordinate axes. This suggests that a more productive

approach would be to split by physical phenomena as well. One step could solve sonic

propagation implicitly in all directions, with further steps involving implicit convection

terms, possibly split by spatial coordinates. Also, when axial velocities are much larger

than transverse velocities, it is advantageous to overcome the convection limit on the time

step in the axial direction only.

C-12.2. Marker-And-Cell Formulation and Projection Algorithms

These ideas have been applied by several authors to the pressure-velocity formulation of

the Navier-Stokes equations:

_(tPU)=-VP+ -(9U)U +F=-VP+G(U)

_9

0_- + div (9U) : 0 (C-55)

where the convection-diffusion non-linear operator G has been introduced for simplicity.

One of the earliest and most widely used methods for solving the unsteady incompressible

version of the system of Equations (C-55) is the Marker And Cell (MAC) method of

Harlow and Welch (1965). The method is characterized by the use of a staggered grid and

the solution of a Poisson equation for the pressure at every time step. Although the original

form of the MAC method has certain weaknesses, the use of a staggered grid and a Poisson

equation for the pressure has been retained in many modern methods derived from the

MAC method, such as the SIMPLE-type procedures. The method was developed initially

for unsteady problems involving free surfaces. To allow the surface location to be
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determinedasafunctionof time,markers(masslessparticles)areintroducedin theflow.

Thesemarkersareconvectedby the velocity field but play no role in determiningthe

velocity or pressurefields. In theMAC formulation,discretizationof the incompressible
versionof Equations(C-55) gives the following algorithm,written in symbolicvector

form:

p un+l- U n _ vpn+l + G(U n)
At

div (U n+ 1) = 0 (C-56)

By treating the convection-diffusion terms explicitly, the advanced-time velocity field can

be expressed in terms of the advanced-time pressure gradient. Substituting the velocity

field in the continuity equation gives an elliptical Poisson equation that is solved for the

advanced-time pressure field. The MAC method has surprisingly excellent stability

characteristics. However, because of the explicit differencing of the convection-diffusion

terms in the momentum equations, the time step for stable solution is limited by the

constraining parabolic stability criterion (Peyret and Taylor 1983, page 148).

The projection method proposed by Chorin (1968) is closely related to the MAC method.

In the present notation the projection method splits the unsteady incompressible momentum

equations into two steps by introducing an auxiliary velocity field which is calculated while

omitting the pressure gradient term:

U*-U n _ G(U*)
P At (C-57a)

U n+l- U* vpn+l
p At (C-57b)

div (un+l) = 0 (C-57c)

Equation (C-57a) is solved using the Peaceman-Rachford ADI splitting, while Equations

(C-57b) and (C-57c) are combined and solved by a Dufort-Frankel type relaxation scheme

(Chorin 1968). Originally the projection method was formulated on a non-staggered grid.

However, Peyret and Taylor (1983) recommended that the projection method be used with

a staggered (MAC) grid. In the first mesh used by Chorin, the velocity and pressure are

defined at the nodes of the mesh. The advantages of such a mesh are its simplicity and the
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fact that the velocity is defined, in particular, on the boundarywherethis quantity is

generallyprescribed. On theotherhand,one of its disadvantagesis thatthe pressureis
alsodefined on the boundary. Sincethere is generallyno boundarycondition for the

pressure,it is necessaryto devisea specialtechniqueto computethe pressureon this
boundary. In the staggeredMAC grid, the pressureis defined at nodes,while the

velocitiesaredefinedat thefacesbetweenthecells. Therefore,thepressureis no longer
definedon thedomainboundary,andthesameformulascanbeusedto computethewhole

pressurefield, so that the Poissonequationfor the pressureautomaticallysatisfiesthe
discreteform of the integralmassconservationover theentire physicaldomain. Soit is

necessaryto employnon-centereddifferencesneartheboundary.But this inconvenience

is largelybalancedbytheadvantageof theMAC meshfor thepressurecomputation.

Goda(1979)hasusedtheprojectionmethodto obtainthesteadyviscousflow in two- and

three-dimensionaldriven cavities. This authorusedanADI fractionalschemeto solve

Equation (C-57a), which is conditionally stable due to the non-linearities in the
convection--diffusionoperatorG.

Anothervariantof thebasicMAC formulationis thatdueto Hirt andCook (1972). In the
presentnotation,anauxiliary velocity field U* andapressurecorrectionP* areobtained
from:

pU* U n -"- = - VP n + G(U)
At

(C-58a)

U n+l- U* -"
9 = - VP*

At
(C-58b)

div (Un+l) = 0
(C-58c)

The pressure correction is used to insure that U TM satisfies continuity, and the new

pressure is obtained as pn+l = pn + p.. Hirt and Cook used the above formulation to

examine incompressible (laminar) viscous flows past three-dimensional structures.

Harlow and Amsden ( 1971 ) extended the MAC method of Harlow and Welch (1965) to the

conservative form of the unsteady compressible flow equations. In the present notation,

Equations (C-55) were discretized as follows:
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(PU) n+l- (pU)n -- V[czP* + (1-oOP n] + G(U n)
At (C-59a)

pn+l_ pn

At
+ div[O(pU) n+l + (1-O)(pU) n] =0 (C-59b)

The Poisson equation for the stared pressure field is obtained from the continuity Equation

(C-59b) by making use of Equation (C-59a) to eliminate the advanced time mass fluxes.

The advanced-time density is linearized in terms of the stared pressure by using the

equation of state:

I_P I n [p*_ pn]
pn+l = pn + lffP]T (C-59c)

Once the elliptical Poisson equation is solved for the stared pressure field, the advanced-

time density is calculated from Equation (C-59c) and the new velocity field is obtained from

Equation (C-59a). The energy equation is then solved for the new temperature field and the

advanced-time pressure field is calculated as a function of density and temperature from the

equation of state. The pressure-velocity coupling algorithm of Harlow and Amsden is very

attractive since it applies to any Mach-number flow regimes. However, the time step is

limited due to the fact that the convection-diffusion terms in the momentum equations are

discretized explicitly.

The splitting algorithm of Harlow and Amsden for compressible flow has been extended by

Liles and Reed (1978) and Stewart (1981) to the non-conservative form of the unsteady

incompressible flow equations. The time step in the resulting TRAC code is still limited by

convection and diffusion. The advantage of the non-conservative form is that it separates

the effect of physical phenomena. Each of them, such as convection, diffusion, sonic

propagation and interphase exchanges, has its own characteristic time scale. If we wish to

evaluate the mechanical stresses following an external laser heating of the heat pipe,

tracking the pressure waves is necessary, at least in the early moments since the waves are

dying out with time. We would apply explicit differences to sonic propagation terms and

compute on a time scale 10 -3 s. In this case, there is no need for implicit differencing of

convection-diffusion terms, but interphase exchanges would probably be the difference

implicitly. Clearly, it is important, for efficient difference schemes, to concentrate the

computational effort on features of the solution which have practical significance. For
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problems where the flow is changing only very slowly with time, or when it is desired to

reach the steady flow quickly, large time steps and unconditionally stable fully-implicit

schemes may be used. For time steps large enough to justify implicit treatment of

convection and diffusion, splittings by physical phenomena and spacial coordinates may be
combined.

C-12.3. Non-Iterative PISO Procedure (Pressure-Implicit with Splitting

of Operators)

The semi-implicit pressure-velocity algorithms described above are conditionally stable

and not particularly accurate because of the approximate way the couplings and non-

linearities are treated. Such drawbacks could be removed through the use of fully implicit

iterative methods such as SIMPLE or other similar algorithms. Unfortunately, such

iterative methods are not very attractive for unsteady flow calculations and not very efficient

for the modeling of compressible flows. Recently, Issa (1986) developed PISO (Pressure-

Implicit with Splitting of Operators), a non-iterative method whose stability is little

impaired by the splitting procedure. PISO has the ability to cope with large time steps,

usually larger than the physical time step required to accurately describe the transient

evolution of the solution. Note that implicitness of the scheme is required for fast solution

calculation since the physical time step is usually very much larger than the time-step

stability limit of the explicit discretization scheme. As in the previous pressure-velocity

splitting algorithms, the pressure is treated as one of the main variables, so that the

incompressibility limit is also correctly handled by PISO.

For simplicity, let us consider first the PISO algorithm as it is applied to solve the

discretized incompressible flow equations:

U n+l_ U n _ Vpn+l + G(U TM)[3. At =

div (un+l)= 0
(C-60)

The algorithm consists of a predictor step followed by two successive corrector steps:
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U*_ I'1 --p 13 _ vpn + Gn(u *) (C-61a)
At

A ---_ A

pU-U n_ VP*+Gn(U *) , div(U)=0 (C-61b)
At

un+l- un VP n+l + Gn(u) , div (U TM) = 0 (C-61c)I3 =-
At

The diffusion-convection operator G is non-linear and can be linearized using a standard

linearization technique or the Newton-Raphson approximation, or the same predictor-

corrector splitting can be used to resolve the non-linearities. The predictor step consists of

solving Equation (C-61a) for the stared velocity field. Convection and diffusion terms are

treated implicitly. The corrector phase is constituted of two identical pressure correction

steps which lead to divergence free velocity fields. The predictor Equation (C-61a) and

first corrector Equation (C-61b) are identical to Equations (C-58) for Hirt and Cook's

algorithm (1972). The role of the second corrector step (Equation C-61c) is to update the

convection/diffusion terms. Issa has shown that a minimum of two corrector steps must be

performed before the velocities and pressures thus obtained can be legitimately regarded as

solutions. Issa showed that the non-iterative PISO splitting procedure constituted of two

corrector steps is third-order accurate in time, which is higher than the order of the two-

time step discretization scheme. Convection and diffusion are treated explicitly in the

momentum conservation equation so that the Poisson equation for the pressure field is

easily formed by substituting the advanced-time velocity field into the continuity equation.

Note that the Poisson equation for the pressure should not be derived from the differential

form of the momentum and continuity equations, but is obtained from the combination of

the discretized forms of these equations for consistency.

As for stability, the exact solution of Equations (C-60) is unconditionally stable since the

system is fully implicit. However, the corrector-predictor splitting solves them

approximately so that stability may be altered. In any event, the stability will be greatly

affected by the non-linearity of the actual system of equations. To remedy this situation,

the corrector Equations (C-61b) and (C-61c) are replaced by ones which are intrinsically

more stable, by treating the diagonal part Go of the convection-diffusion operator G

implicitly ( G = G0I + G ):
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A A

p U- U n G_U =- VP* + G-n(u*)
At (C-62b)

pun+l- unAt G_Un+l = _ VVn+l + _-n(_') (C-62c)

The resulting Equations (C-62b) and (C-62c) possess much smaller error amplification

factors for the same time step. Note that the corrector Equations (C-62) are identical in

form to Equations (C-14) for the SIMPLE-Revised algorithm of Patankar. Because the

equations may not be solved exactly if an iterative solution method is selected, the velocity

field may not be exactly divergence free, so that terms of the form div(U*) must be kept in

the Poisson equation to avoid mass error accumulation.

Issa has extended the PISO algorithm to solve the following discretized compressible flow

equations for a perfect gas:

(OU) n+__ (oU) n = _ VP n+l + G(U TM) (C-63a)
At

pn+l_ pn
+ div (pU) n+l = 0

,at (C-63b)

(pe) n+l_ (pe) n
At = H(e TM) - div (PU) n+l + j(un+l) (C-63c)

pn+l=r(pT) n+i e=e(T)
(C-63d)

where G and H are convection-diffusion operators and J is the stress work operator.

Because the coupling now involves the density and temperature, an additional corrector

stage must be incorporated to achieve third-order accuracy in time (however, a two-stage

scheme still achieves second-order accuracy in time). The merits of PISO stem largely

from its ability to resolve a pressure field free from the influence of errors in div(U).

Again, the convection-diffusion operators G and H are split into their diagonal and off-

diagonal parts to enhance the stability of the algorithm. The two-stage scheme consists of

the following steps: momentum predictor, first momentum (pressure) corrector, energy

predictor and second momentum corrector, which read as:
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pn _U - U n GoU = - VP n + G(U) (C-64a)
At

(PU)*- (PU) n _Go -- ""
At pn (pU)* =- ve* + G(U)

p*_pn • _ p,
--+div(pU)*=O p --- (C-64b)

At ' rT n

(pe)*- (pe) n

At
- Ho e* = H-(e*) - div (PU)* + J(U*) (C-64c)

(ou)**-(pu)" -..¢.

_Go (pU)** =- VP** + G-(U*)
At p

P**- pn p**
+ div (pU)** = 0, p** =-- (C-64d)

At rT*

In the two-stage scheme, the stared temperature field is taken as the advanced-time

temperature, while the double-stared quantities are taken for the new pressure, density and

velocity fields. For the three-stage scheme, two additional steps are performed, an explicit

energy corrector, and a third momentum (pressure) corrector:

p**en+l -(pe) n

At
- Ho e n+l = H--(e*) - div (PU)** + J(U*) (C-64e)

(pU)n+I-(PU) n Go(pu)n+l=_vpn+l+G-(U*)

At p

pn+l_ pn = pn+_____l+div(pU) n+l =0, pn+l
At rT n+l

(C-64f)

Note that the stress work in Equation (C-64e) and the off-diagonal part of the convection-

diffusion operator in Equation (C-64f) are not reevaluated at the most recent double-stared

velocity field for computational efficiency. The fields obtained at the end of the splitting

procedure are approximations to the exact ones with a temporal accuracy comparable to or

better than the accuracy of the two-level discretization scheme. For a perfect gas, Issa

found that the two-stage scheme was second-order accurate in time, while the three-stage

scheme was third-order accurate. PISO treats the couplings with the energy and state

equations implicitly, so that relatively large time steps can be employed without generation
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of instabilities (the time step limitation is dominated by the treatment of the non-linearities

since the procedure is non-iterative).

Issa, Gosman and Watkins (1986) have demonstrated that PISO is of good temporal

accuracy, is faster than common iterative techniques for transient flow calculations, is

stable for large time steps (hence as efficient as SIMPLEC for steady problems) and

applicable to compressible flow regimes as well. The non-linearity arising from the

dependency of the convection-diffusion operators G and H on the field variables

themselves is handled by evaluating their linearized coefficients from the old time level

values. Although this practice is only first-order accurate in time it is of the same order of

accuracy as the Euler temporal difference scheme, and is therefore consistent with it. If a

Crank-Nicolson type discretization scheme is employed, which is second-order accurate in

time, the non-linearities can be resolved within the same accuracy by using the same

splitting algorithm.
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