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Abstract — In this paper, we have computationally examined oscillating flow (zero mean) between two
parallel plates with a sudden change in cross section. The flow was assumed to be laminar incompressible
with the inflow velocity uniform over the channel cross section but varying sinusoidally with time. The
cases studied cover wide ranges of Re ,̂ (from 187. 5 to 2000), Va (from 1 to 10.66), the expansion ratio
(1:2 and 1:4) and A, (2 and 4). Also, three different geometric cases were discussed: (a) asymmetric
expansion/contraction; (b) symmetric expansion/contraction; and (c) symmetric blunt body. For these
oscillating flow conditions, the fluid undergoes sudden expansion in one-half of the cycle and sudden
contraction in the other half. The instantaneous friction factor, for some ranges of Remu and Va, deviated
substantially from the steady-state friction factor for the same flow parameters. A region has been
identified (see Fig. 3) below which the flow is laminar quasi-steady. A videotape showing computer
simulations of the oscillating flow demonstrates the usefulness of the current analyses in providing
information on the transient hydraulic phenomena.

NOMENCLATURE
A,—Relative amplitude of the fluid displacement

[see equation (11)]
Db—Hydraulic diameter of the smaller channel
/—Instantaneous friction factor (=2Tw/pl/J,)
h—Height of the smaller channel
H—Height of the larger channel
/—Total channel length

/'—Pressure
Re—Instantaneous Reynolds number
5—Step size (see Fig. 1)
St—Strouhal number [see equation (12)]

/—Time
T—Time period for one cycle
if—A"-component of velocity
K—^-component of velocity

Va—Valensi number [see equation (10)]

X—Distance along the channel axis
Y— Distance normal to the channel axis

Greek symbols
p—Density of the fluid
H—Dynamic viscosity of the fluid
ta—Frequency of oscillation

Subscripts
Dh—Based on the hydraulic diameter

i—-Based on the inlet condition
m—Mean value

max—Maximum during the cycle
min—Minimum during the cycle

0—Initial condition/reference state
ss—Steady state
w—At the wall

INTRODUCTION
Several engineering applications encounter unsteady flow as well as sudden changes in the channel
cross section. In free-piston Stirling engine applications, the flow oscillates around a zero mean
while sudden changes in the cross section take place at the components interface. As an example,
in the NASA SPRE (Space Power Research Engine) the flow goes through a sudden change in cross
section at the interface between the heater and the expansion space as well as between the cooler
and the compression space. Today, a steady-state correlation for the fluid flow and heat transfer
are used in the design analyses of such engines.

Typically, under these oscillating flow conditions the fluid undergoes a sudden expansion in
one-half of the cycle and a sudden contraction in the other half. The flow reversal is caused not
only by the flow oscillation but also by the sudden expansion.

Since the flow in Stirling engines oscillates in a cyclic manner, the velocity and temperature
profiles differ significantly from those obtained for steady flows [1-3]. Accordingly, the friction
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factor and heat transfer coefficient are considerably different from those of the steady-state
correlations.

Several computational, experimental and analytical efforts have been conducted to examine the
oscillating flows within a straight channel (circular pipe and parallel plates); Ibrahim el al. [1] and
Kurzweg [2] have performed several numerical investigations. Simon and Seume [3,4] conducted
an experimental analysis for oscillating flow in a circular pipe. Their results show a significant
increase in the friction factor as compared to steady flow conditions.

A literature survey shows that several investigations have been conducted for flows with a sudden
change in the area of the cross-section. Examples involve steady unidirectional flow over a
backward-facing step [5-8] and flow through a sudden contraction in a channel [9-11]. The results
obtained showed an enhancement in the friction factor as compared to a straight geometry under
similar flow conditions.

In this paper, results from a computational analysis of the flow between two parallel plates with
a sudden change in cross section are presented. The flow parameters are selected to emulate the
NASA SPRE. Several geometries and expansion ratios have been examined to identify the flow
characteristics under different engine operating conditions.

Since experimental data for such a problem do not exist, a careful step-by-step procedure
has been used for validating the computer code. This includes, examination of false diffu-
sion, comparison with available data for steady flows as well as solving for impulsively started
flows.

ANALYSIS

Assumptions

Figure 1 shows the channel with two parallel plates and a sudden change in cross section
and the Cartesian coordinate system used for the present analyses. Different geometries are
considered: (a) asymmetric expansion/contraction [Fig. l(a)]; (b) symmetric expansion/
contraction [Fig. l(b)]; and (c) a symmetric blunt body [Fig. l(c)]. The following assumptions
were made: (1) the flow is laminar incompressible with constant thermophysical properties;
(2) the inlet velocity is uniform but varies sinusoidally with time; and (3) the location of
the step is far away from both ends; this is chosen to isolate the effect of the step on the flow
field from the end effects.
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(a) Asymmetr ic expansion/contraction
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(c) Symmet r i c b lun t body

Fig. 1. The different geometries examined: (a) asymmetric expansion/contraction; (b) symmetric
expansion/contraction; (c) symmetric blunt body.
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Governing Equations
For unsteady laminar flow the following system of equations is employed.

Continuity equation

dx ' dy

Momentum equations
Two equations for momentum result from conservation of momentum in the x- and y-directions,

respectively:
x-momentum,

d(j>u) d(pu*-\-TXX) d(j>uv 4~T_,) dp
~dT +dx + dy dx' ( 2 )

and
y -momentum,

d(pv) d(puv + iyx) d(pv2 + *„) _ dp
dt dx dy dy'

The momentum equations are cast into a standardized form by utilizing the relationship between
the viscous stress and the strain rates:

fdu dv'

Equations of the following form result, which are parabolic in time but elliptic in space coordinates:

T T _ _ f p
dt dx dy dx

and

SX''•+ ^ . ~" =~ + Sv, (6)i/i vx oy oy

where

i--%^+V <7)

and

For incompressible/constant property flows, the source terms are zero from the continuity
equation.

Dimensionless Parameters
Different dimensionless parameters characterize the unsteady flow in the channel under

consideration:

(1) Ren,,,; for oscillating flows the mean flow velocity for a cycle is zero, therefore the Reynolds
number is based on the maximum amplitude of the velocity during each cycle:
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(2) Va; the frequency of oscillation has been expressed in dimensionless form as the Valensi
number:

4.0-!!

(3) A,; the relative amplitude of fluid displacement is defined as the maximum fluid displacement
during half a cycle divided by the channel length, based on the assumption that the fluid moves
as a slug flow through the passage:

A, = ̂ . (10

Three different physical situations can be identified:

(a) A, < 1; part of the fluid oscillates within the passage without exiting.
(b) A t — l ; the volume of fluid displaced in half a cycle is exactly equal to the volume of fluid

contained within the passage.
(c) A, > 1; the volume of fluid displaced during half a cycle is greater than the volume of fluid

contained within the passage.

(4) St; the Strouhal number is a combination of Re^ and Va:

(12)

It should be noted that for the same channel geometry, a constant Ar would also imply a
constant St.

(5) Another important physical parameter is the channel expansion ratio h /ff (sometimes referred
to in terms of the step height).

Boundary Conditions

The following boundary conditions are applied:

(1) Solid walls,
U = y = 0. (13)

(2) Axis of symmetry,

J! = 0, t>=0 . (14)

(3) Inlet plane

(15)

(4) Outlet plane; the exit plane is chosen to be sufficiently far away from the zones of recirculation,
therefore the gradients normal to the exit plane (i.e. along the streamwise direction) can be
neglected:

E-5"- <">
It should be noted that for oscillating flows the inlet and outlet planes are switched at the

appropriate time step so that a flow reversal is implemented numerically.

Numerical Method
The analysis performed utilizes a modified version of the computer code CAST, developed by

Peric and Scheuerer [12]. The original code is capable of solving two-dimensional, steady and
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Table 1. The different cases studied in the present work

Test Expansion
case ratio

A
B
C
D
E
F
G
H
I
J
K
L

:2
:2
:2
:4
:2
:2
:2
:2
:2
:4
:2
:4

Re»,
187.5
187.5
187.5
187.5

1000.0
1000.0
1000.0
1000.0
1000.0
1000.0
2000.0
2000.0

Va

1.0
1.0
1.0
1.0
5.33
5.33
5.33
5.33
5.33
5.33

10.66
10.66

No. of
axes of

symmetry

N/A
1
2

N/A
N/A

I
2
1
2

N/A
N/A
N/A

-<r

2.0

4.0
4.0
2.0
2.0
4.0
4.0
2.0
2.0
2.0
2.0
2.0

7",

1̂.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2

Mesh

84x22
84x22
84x22
84x22
84x22
84x22
84x22
94x22
94x22
84x32
84x22
84x32

unsteady, unidirectional flow problems. It has been modified to handle time-dependent boundary
conditions for oscillating flows. CAST solves two-dimensional Navier-Stokes equations for
laminar flows utilizing a collocated grid. A special velocity-pressure coupling [12] is used, based
on the staggered grid concept to prevent oscillatory pressure solution [13]. The numerical solution
procedure is a conservative finite volume method using primitive variables such as velocities,
pressure and enthalpy. The basic principal involved in this method is to balance the dependent
variable fluxes at the inlet and outlet of each control volume within the analysis domain. The
solution procedure employed is the well-known SIMPLE algorithm by Patankar [13].

For all cases investigated, the flow cycle was divided into 60 time steps of 6-degree intervals. At
least 3 cycles were run for each case to achieve a converged solution. A 0.2% convergence criteria
was used in this study. The CPU time required on a Cray X-MP/Y-MP ranged from 3600 to 8000 s
(for 3 cycles), depending upon the size of the mesh used (see Table 1).

CODE VALIDATION

Several computational experiments were conducted to validate the CAST code as listed below:

1. The code predictions for the reattachment length and the minimum and maximum velocities at
various locations along the channel axis, for Re = 50 and 150 and expansion ratios of 1:1.2 and
1:1.5, were compared with similar steady flow results by Morgan et al. [8]; the comparisons were
good.

2. Comparisons were made between the present code predictions and the numerical computations
by Chiu [6] for steady flow over a backward-facing step, asymmetric channel with a 1:1.5
expansion ratio and Re = 916. The present code prediction for the friction factor is within 5%
of Chiu's results.

3. Comparison was made, for the size of the separation bubble before the step in a forward-facing
step flow at Re = 200, between the present code prediction and the numerical computation by
Mei and Plotkin [11]. The agreement was within 2%.

4. Also, the present code was used to compute an impulsively started flow over a backward-facing
step with Re = 400 and a 1:2 expansion ratio. The solution was marched in time and the friction
factor and reattachment length were compared with the steady flow results for the same case.
The agreement was within 1%. Similar agreement was found upon examining a forward-facing
step case.

5. Finally, unsteady flow calculations were conducted for oscillating flow (zero mean) in a straight
channel and were in excellent agreement with available analytical solutions for fully developed
channel flow [2].

RESULTS AND DISCUSSION
Table 1 lists the cases studied in this paper. These cases cover wide ranges of Re™, (from 187.5

to 2000), Va (from 1 to 10.66), the expansion ratio (1:2 and 1:4) and A, (2 and 4). Also, shown
in the table are the three geometric cases discussed above:

CAF U/I-O
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Time

90 ISO 360

One cycle

Fig. 2. Time-varying sinusoidal velocity at the channel inlet.

(a) Asymmetric expansion/contraction, cases A, D, E, J, K and L.
(b) Symmetric expansion/contraction, cases B, F and H.
(c) Symmetric blunt body, cases C, G and I.

All cases correspond to operating conditions of the NASA SPRE heater at St = 0.021333. The inlet
velocity at either end of the channel varies sinusoidally with time, as shown in Fig. 2.

Figure 3 shows the envelope in which different Stirling engines operate, plotted in terms of Re^
vs Va [4J. In the figure, different criteria [14, 15] for the transition from laminar to turbulent flow
are shown, for a straight channel. Below these lines (low Re,,,,,) the flow will remain laminar
throughout the cycle, while above them some combination of laminar/transitional/turbulent flow
occurs over the cycle. As evident from the plot, most of the Stirling engine conditions are in the
transition or "fully turbulent" zone. Efforts are underway to map the conditions under which
quasi-steady turbulence models can be applied to oscillating flow conditions. For more details, see
Ref. [16].

The solid circles shown in Fig. 3 are for cases A, E and K (see Table 1) as well as other runs
made (not shown in this paper). We have attempted to identify the region in which the flow is

1.000,000 p-

100,000 -

e 10.000 -

1000 -

'00 -

100 1000

Va

Fig. 3. Envelope in which different Stirling engines operate, together with: (i) the criterion for tran-
sition from laminar to turbulent flow in straight channels, Re ,̂ = 822 x (Va0-5), Re ,̂ = 770 x (Va0-5) and

, = 453.23 x (Va""7); (ii) the different cases studied in the present work.
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laminar quasi-steady. Case A lies in that region, while cases E and K are in the non-quasi-steady
region (to be discussed in more detail later). The shaded area in the figure indicates our estimation
(outcome of the present analysis) that below it the flow is laminar quasi-steady, while above it the
flow becomes laminar non-quasi-steady.

Effect of the Geometry
Figure 4 shows the streamlines of the oscillating flow at different velocity phase angles of 30,

60, 90, 120, 150, 180, 210, 240, 270, 300, 330 and 360. The results are for Remal = 187.5, Va = 1
and an asymmetric expansion/contraction with a ratio of 1:2 (case A). Figure 5 shows similar
results for a symmetric expansion/contraction (case B); while Fig. 6 is for a symmetric blunt body
(case C). From the plots it can be seen that in the sudden expansion process, the separation bubble
behind the step grows gradually during flow acceleration and then shrinks gradually during flow

180

210

240

270

300

330

360
360

Case A Case B

Fig. 4. Streamlines of oscillating now at different velocity Fig. 5. Streamlines of oscillating flow at different velocity
phase angles, for Re,^, = 187.5 and Va = I. (Case A, asym- phase angles, for Rerax = 187.5 and Va = 1. (Case B, sym-

metric expansion/contraction with a ratio of 1:2.) metric expansion/contraction with a ratio of 1:2.)
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deceleration. However, this bubble disappears completely during the flow reversal (sudden
contraction). Also, as expected, the size of the separation bubble (at a given velocity phase angle)
gets progressively bigger from A to B to C. These cases, as described above, show a quasi-steady
behavior.

As for the friction factor results (not shown in this paper for all cases); it was found that for
case B the friction factor is of the same order of magnitude as the asymmetric expansion (case A).
The difference lies in the developing zone beyond the reattachment point. Similar trends are
observed for Remax = 1000—cases E, F and G.

Effect of Remax and Va
Figure 7 shows the streamlines of the oscillating flow at different velocity phase angles of 30,

60, 90, 120, 150, 180, 210, 240, 270, 300, 330 and 360. The results are for Remax = 500, Va = 10.66
and an asymmetric expansion/contraction with a ratio of 1:2. Similar results are shown in Fig. 8
for Remax = 1000, Va = 10.66 and an asymmetric expansion/contraction with a ratio of 1:2 (case

120

150

180

210

240

270

300

330

360

120

150

ISO

210

240

270

300

330

360

CaseC

Fig. 6. Streamlines of oscillating flow at different velocity
phase angles, for Re^, = 187.5 and Va = 1. (Case C, sym-

metric blunt body with a ratio of 1:2.)

Fig. 7. Streamlines of oscillating flow at different velocity
phase angles, for Re^,, = 500 and Va = 10.66 (Asymmetric

expansion/contraction with a ratio of 1:2.)
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E). Experimental and analytical results for a straight channel[4], also see Fig. 3, indicate that the
flow can be assumed laminar for the two cases. Due to the lack of experimental evidence for the
channel with a sudden change in cross section, the flow is considered laminar. It was observed while
watching the animation videos of the above cases that as the fluid accelerates during the sudden
expansion phase, the separation bubble region grows in magnitude and physical size. This effect
is observed irrespective of the magnitude of the flow Re. However, during the flow deceleration,
this separation bubble loses momentum rapidly and disappears for cases A-D (low Re) but
continues to grow while losing momentum for cases E-L (relatively higher Re). This observation,
can be seen also by comparing Figs 4, 7 and 8.

For the cases presented, Va is also increased with the Re to maintain a constant St corresponding
to the actual Stirling engine.

30

60

90

120

150

180

210

240

270

300

330

360

330

360

Case E
Case D

Fig. 8. Streamlines of oscillating flow at different velocity Fig. 9. Streamlines of oscillating flow at different velocity
phase angles, for Rema, = 1000 and Va = 5.33 (Case E, phase angles, for Remx = 187.5 and Va = 1. (Case D, asym-

asymmetric expansion/contraction with a ratio of 1:2.) metric expansion/contraction with a ratio of 1:4.)
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• Steady f low,
Armaly el al. (1983)

O Osci l la t ing flow,
present work
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30 60 90 120 150 180 210 240

Veloci ty phase angle

270 300 330

oo
J

360

Fig. 10. Reattachment length vs time for oscillating flow at Renu,= 187.S and V a = l . (Case A,
asymmetric expansion/contraction with a ratio of 1:2.)

It was found from the analysis in this work that as Va increases, the flow becomes non-
quasi-steady at a lower Re,^. This is shown in Fig. 3 by the shaded area, below which the flow
can be considered quasi-steady. Also, this could lead to the conclusion that as Va increases the
flow is likely to become turbulent at a much lower Remax than normally observed for straight
channels.

Effect of the Expansion Ratio
Figure 9 shows the streamlines of the oscillating flow at different velocity phase angles of 30,

60, 90, 120, 150, 180, 210, 240, 270, 300, 330 and 360. The results are for Re^ = 187.5, Va= 1
and an asymmetric expansion/contraction with a ratio of 1:4 (case D).

Comparing cases A and D (both are similar except for the expansion ratio), the recirculation
zone in case D grows to almost 4 times the size in case A. The recirculation zone, being larger,
dissipates its energy during the fluid deceleration and experiences some growth. This affects the

25 i-

20

15

10

Case E

OO

•oooo

oo

• OOO

OOOO

oo
oo

• Steady flow,
Armaly et al. (1983)

° Osci l lat ing flow,
present work

I I I I
ooooooooooooooo

OOOOOOOO
I I I I J

30 60 90 120 150 180 210 240

Veloci ty phase angle

270 300 330 360

Fig. II. Reattachment length vs time for oscillating flow at Re,,̂  = 1000 and Va = 5.33. (Case E,
asymmetric expansion/contraction with a ratio of 1:2.)
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friction factor by more than an order of magnitude (not shown in this paper). Also, because of
a larger recirculation zone, which results in good mixing, wall heat flux is reduced (not shown in
this paper). Again, by comparing cases A and D, it can be seen that although case A is quasi-steady,
case D is not because of the higher expansion ratio.

For a higher Re, cases E and J (Rema = 1000) and cases K and L (Remai = 2000), a similar trend
regarding the size of the recirculation zone and the corresponding effect on friction and heat
transfer is observed.

Reattachment Length

Figure 10 shows the reattachment length vs velocity phase angle for Re,,̂  = 187.5, Va = 1 and
an asymmetric expansion/contraction with a ratio of 1:2 (case A). Also, shown is the reattachment
length, given by Armaly et al. [5], for steady flow at the instantaneous Re. The results of the present
analysis show good agreement, indicating that the flow is quasi-steady as explained earlier. On the
other hand, Fig. 11 shows a similar plot of the reattachment length vs velocity phase angle at a
higher Re,̂  = 1000, Va = 5.33 (case E). It can be seen from Fig. 11 that the reattachment length
will grow initially at a lower rate than in the corresponding quasi-steady case, thereafter it will

(a)

60

240

0.4

120
90

0

270

300

-0.4 -

ISO
Velocity phaie angle

ISO

120

3 300

330

30

60

90

270
240

210

330

I
-s 10

X / S

15 20 25 30

(b)

3.0 -

2.0 -

1.0 -

0 -

-5 10

X / S

15 20 25 30

Fig. 12. (a) Friction factor vs time for oscillating flow at Re^, = 187.5 and Va = 1. (Case A, asymmetric
expansion/contraction with a ratio of 1:2.). (b) Normalized friction factor vs time for oscillating flow at

Rerau — 187.5 and Va = 1. (Case A, asymmetric expansion/contraction with a ratio of 1:2.)
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continue to grow at a higher rate and then disappear during flow reversal, i.e. case E is
non-quasi-steady.

Friction Factor

Figure 12(a) shows the instantaneous friction factor vs dimensionless axial distance at different
velocity phase angles, for Remax = 187.5, Va = 1 and an asymmetric expansion/contraction with a
ratio of 1:2 (case A). A similar plot is shown in Fig. 12(b) but with the coordinate being the
instantaneous friction factor divided by the steady-state friction factor at the instantaneous Re. The
quasi-steady behavior is observed by having values of///a close to 1.0 in Fig. 12(b) at all times
and most of the channel axial locations.

Figure 13(a) shows the instantaneous friction factor vs dimensionless axial distance at differ-
ent velocity phase angles, for Re^ = 1000, Va = 5.33 and an asymmetric expansion/contraction
with a ratio of 1:2 (case E). A similar plot is shown in Fig. 13(b) but with the coordinate being
the instantaneous friction factor divided by the steady-state friction factor at the instantaneous
Re. It can be seen from Fig. 13(b) that///a departs considerably from 1.0, particularly after the
step, indicating a non-quasi-steady behavior. The friction factor can be a factor of 2 higher or
lower than the steady flow values for X/S east from the reattachment location. This indicates

(a)
0.2 -

0.1 •

0 -
240. 270. 300

-0.1 -

-0.2

• 30

90
330
270

Velocity phue angle

60
120
300
240

210

-5 25 30

(b)

f/f . .

3.0 -

2.0

1.0 -

0 -

-5

Fig. 13. (a) Friction factor vs time for oscillating flow at Re^, = 1000 and Va = 5.33. (Case E, asymmetric
expansion/contraction with a ratio of 1:2.). (b) Normalized friction factor vs time for oscillating flow at

1000 and Va = 5.33. (Case E, asymmetric expansion/contraction with a ratio of 1:2.)
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that the steady-state friction factor correlations cannot be used in such applications. Work is
underway to develop new correlations for the friction factor and pressure drops for oscillating flow
conditions.

CONCLUDING R E M A R K S

In this paper the oscillating flow (zero mean) between two parallel plates with a sudden change
in cross section was studied. The flow was assumed to be laminar incompressible with the inflow
velocity uniform over the channel cross section but varying sinusoidally with time. Under these
conditions, the fluid undergoes a sudden expansion in one-half of the cycle and a sudden
contraction in the other half. The flow reversal, under such conditions, is caused not only by the
flow oscillations but also by the sudden change in cross section.

A computer code, CAST, developed by Peric and Scheuerer [12] has been modified to handle
time-varying boundary conditions. The CAST code solves Navier-Stokes equations in 2-D using
a finite volume method. The code has been validated by comparing its predictions with available
computational, experimental and analytical data for straight channels and those with a sudden
change in cross section. Good agreements were found for the friction factor, reattachment length
and minimum and maximum velocities at different axial channel locations.

The computations were extended to oscillating flow conditions. The cases examined emulate the
operating parameters of the NASA SPRE (Space Power Research Engine). The Re,,̂  in cases
presented here is chosen to be sufficiently low that the assumption of laminar flow holds true during
the entire flow cycle. The cases examined are summarized in Table 1.

In all cases examined, a separation zone appears during the sudden expansion and grows as the
flow accelerates. This growth, however, depends on the Remax. For low RemM (= 187.5), the growth
follows a quasi-steady behavior, while for the higher Remax (= 1000) the growth is very rapid and
the separation bubble continues growing during flow deceleration (non-quasi-steady behavior).

A shaded area has been identified (see Fig. 3), below which the flow is laminar quasi-steady. This
indicated that as Va increases the flow becomes non-quasi-steady at a lower Re,^.

When the flow reverses, the fluid goes through a sudden contraction and the recirculation bubble
from the previous half-cycle is swept back into the smaller section of the channel.

Such flow behavior causes the instantaneous friction factor to deviate substantially from the
steady-state friction factor for the same flow parameters. The friction factor can be a factor of 2
higher or lower than the steady flow values for X/S east from the reattachment location. Work
is underway to develop new correlations for the friction factor and pressure drops under oscillating
flow conditions.

Upon examining the effect of the channel expansion ratio, it was found that for the same Re
and Va, increasing the expansion ratio increases the friction losses. This is consistent with the
observations made by several researchers studying steady flows with a change in the channel cross
section.
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CHAPTER I

INTRODUCTION

Inside the heat exchangers of an operating Stirling engine are

hundreds of tubes where heat is transferred with the working fluid under

oscillating flow conditions. Presently, NASA is using one-dimensional

performance codes to model and simulate this unsteady, oscillating flow

towards the development of the free-piston Stirling engines. These

performance codes utilize incompressible steady-flow heat transfer and

friction factor correlations, while excluding the effects of oscillation and

the compressibility of the working gas. Thus, the validity of using the

steady-state correlations for the oscillating conditions is questionable

[Tew,1987; Ibrahim et.al.,1990]. Confidence is also lacking in the predicted

performance by these one-dimensional analyses.

The present study investigates the complex oscillating flow conditions

within the Stirling engine. The objectives of the current research are as

follows:



1) to develop a two-dimensional modeling code for compressible,

unsteady, periodic internal flows;

2) to better understand the fluid flow and heat transfer

phenomena under the pulsating/oscillating conditions and to

compare the results with the steady flow conditions;

3) to investigate the compressibility effect on the friction and the

heat transfer; and

4) to visualize the results on video with computer animation.

The current computer code evolved from the codes developed earlier

by Chilukuri [1979], Madavan [1981] and Chiu [1984], whom have used it to

estimate incompressible steady flow. However, the current effort is to

modify the computer code to accept unsteady compressible flows.

Two types of unsteady flows will be examined in this thesis, and to

avoid possible confusion, the following definitions will clarify the

differences between the oscillating and pulsating flows:

1) Oscillating - the flow fluctuates back and forth in the channel

and the time-averaged velocity of this flow type is equal to

zero.

2) Pulsating - the flow is fluctuating around a steady driven

flow and the time-averaged velocity of this flow type is non-

zero. An example of the pulsating flow is the circulation of

blood in one's veins.

Jt 2



Review of Past Research

Steady Flow (Incompressible):

Numerous studies exist in the literature on the problem of steady

incompressible flow through parallel plates with various boundary

conditions, and most of the pioneer works were based on the boundary

layer theory. Some of the researchers were Schlichting [1960], Siegel and

Sparrow [1959], and Bhatti and Savery [1977].

In his "Boundary Layer Theory" book, Schlichting [1960] analytically

resolved the boundary layer equations for flow between parallel plates, and

his analysis was based on the Blasius solution technique for external flat

plate flow. For heat transfer analysis, Siegel and Sparrow [1959] obtained

a closed form approximated Nusselt number equation for simultaneously

developing flow under the condition of uniform wall temperatures, while

Bhatti and Savery [1977] solved the same problem except the heating they

used was provided by the constant wall heat flux.

Narang and Krishnamoorthy [1976] presented the pressure and

velocity solutions at the entrance flow regions of the parallel plates for the

low Reynolds number. They solved the Navier-Stokes equations by

linearizing the inertia terms and observed overshoots in the developing

velocity profiles which was not obtained by the boundary layer equation.

Their results were compared with data from Schlichting [1960] and they

concluded the boundary layer assumptions for the entrance region were

only valid for the higher Reynolds number (Re > 200). They also observed



the v-velocity at the entrance was as large as 30% of the inlet u-velocity

for the low Reynolds number (Re = 2), where the v-velocity is assumed

zero in the boundary layer theory.

Some other researchers who solved the full Navier-Stokes equations

were Brandt and Gilles [1966], Morihara and Cheng [1973], and Chen [1973].

Brandt and Gilles [1966] utilized the finite-difference approximation in their

study of incompressible flow in a straight channel with the presence of a

transverse magnetic field. Morihara and Cheng [1973] solved the Navier-

Stokes equation by first eliminating the pressure terms followed by

quasilinearizing the nonlinear terms in the resultant momentum equation.

Finite-difference formulas combined with the Gaussian elimination solver

was utilized to reach the solution. The Reynolds number that was

considered, ranged from zero to 4000.

In the entrance flow study by Chen [1973], he performed the

momentum integral method to solve the Navier-Stokes equation and obtained

approximated closed form solutions for the center-line velocity development

and the average axial pressure drop. His results were compared and were

in excellent agreement with the finite-element solution and the experimental

study at the low Reynolds numbers for flows in circular tubes by Atkinson,

et.al. [1969]. A comparison was also conducted with the finite-difference

analysis by Friedmamn, et.al. [1968]. Velocity overshoot in the developing

profiles were observed by all the investigators who applied the fuD Navier-

Stokes equations.

While the majority of the experimental data for steady internal flows



were performed with the circular tube, a few studies on the parallel plates

were found. Heaton, et.al. [1964] performed an experimental study of

simultaneously developing flow with constant uniform wall heat flux in

Annulus which simulated the parallel plates channel. In a more recent

study, Lou and Barton [1973] assembled a recirculation loop experimental

apparatus with a rectangular channel test section that measured 7 inches

wide by 1/4 inch deep and was 2 to 6 inches long. The fluids examined

were water (Pr=5.7), 20% ethylene-glycol (Pr=10) and 72% ethylene-glycol

(Pr=50). Their heat transfer results for constant wall temperature

compared well with the theoretical data from Lou [1971].

Finally, an experimental investigation of the developing thermal

entrance region with heating at the lower plate and cooling at the upper

plate was done by Kamotani and Ostrach [1976].

Variable Property Flows:

Two types of variable property flows have been considered in the

literature: thermally expandable (temperature dependent) and compressible

(temperature and pressure dependent). An initial thermally expandable

flow investigation was studied by Van Driest [1952]. Van Driest modeled

the steady laminar, external air flow over a flat plate using the boundary

layer method. He assumed the Prandtl number and the specific heat as

constants while employing the Sutherland law to describe the fluid

viscosity. Van Driest presented predictions for skin-friction and for the

heat transfer coefficient as functions of the Reynolds number, the Mach



number and the wall to free-stream temperature ratio.

For the thermally expandable internal flows, Bankston and McEligot

[1969] utilized the superposition method on their study of the coolant

channels of a nuclear reactor. The objective was to determine the wall

temperature from an imposed constant wall heat flux by the variable

property model and the incompressible model. They found that the

variation of the fluid properties tends to shorten the thermal entry region

when heating the fluid.

Later, Bankston and McEligot [1970] extended their study by using

the numerical method of finite control volume to solve the two-dimensional,

coupled boundary layer equations. The study was done on the circular

tube with constant heat flux; laminar and turbulent flows were considered.

They showed that the variable property slightly affected the Nusselt

number but the friction parameters were tripled when compared with

incompressible results under heating conditions. The same analyses were

performed for the parallel plates channel with constant wall temperature

in Schade and McEligot [1971] paper. The study was performed in the

wall/inlet temperature ratios that ranged from high heating (TW/TQ=10) to

extreme cooling (TV/T0=0.1). Similar conclusions as the circular tube study

were found; the effects of gas property variation on the laminar flow of

air are slight to moderate for heat transfer and more severe for the

friction.

Herwig et.al. [1990] introduced an efficient approximation method to

resolve the variable viscosity pipe flow caused by temperature changes.

6



The basic idea is to expand the viscosity in a Taylor series so that the

Navier-Stokes and energy equations can be decoupled. By doing so, no

additional nonlinearities are imposed by the temperature-dependent

viscosity, hence, the set of equations that has to be solved is much simpler

than the full set of coupled equations.

In the case of compressible flows, most literature found dealt with

the study of external aerodynamic design of planes or high speed flows

over a flat plate. MacCormack [1976] examined the time-dependent, two-

dimensional compressible Navier-Stokes equations at Mach number of two.

He presented a method to solve for the interaction of a shock wave with

the boundary layer on a flat plate. The method time-splits the governing

equations into a hyperbolic part and a parabolic part. The hyperbolic part

was solved by the explicit method while the parabolic part was solved by

the implicit scheme.

Other methods to resolve the high-speed compressible flow over a

flat plate were introduced. Beam and Warming [1978] and Kwon et.al. [1988]

applied the implicit finite-difference algorithm with a second-order-time

accurate scheme which required data storage of two time levels.

MacCormack [1982] introduced a new efficient unconditionally stable method

that consisted of two stages to solution. The first stage used an explicit

predictor-corrector finite-difference method while the second stage

transformed the governing equations into an implicit form. Han [1983] then

modified the SIMPLE (Semi-Implicit-Method for Pressure-Linked-Equation)

Algorithm to predict transient analysis of both high speed (compressible)

7



and low speed (incompressible) fluid flows.

Besides flows over a flat plate, Kim [1990] studied the transonic flow

over an axisymmetric curved hill. Hassankhan [1983] examined the effects

of fluid compressibility on the stagnation point of a circular cylinder in

cross flow. Hassankhan found that the friction increases when the Mach

number and/or the wall/inlet temperature ratio increases.

As for internal compressible flow, no literature was found for the

parallel plates geometry but two studies were located for circular tubes.

Presler [1971] studied helium gas flow in a circular tube with uniform

entrance conditions and wall heat flux conditions. The study was done

both analytically and experimentally with an electrically heated small-

diameter Inconel tube. The numerical results were performed for low

values of the initial Mach number to prevent the choking effects. Presler

reported that for any level of uniform wall heat flux, the local Nusselt

number showed only small deviations from the constant property analyses,

while the friction was larger for higher wall heat fluxes. The comparison

of his analytical and experimental results were all within 10 percent.

Similar results were found by Cebeci and Bradshaw [1984].



CHAPTER H

ANALYSIS

Figure 2.1 reveals the cross sectional view of the NASA Stirling

Power Research Engine (SPRE). The components of interest are the two

heat exchangers (heater and cooler) that supply and eject the necessary

thermal energy to continue the oscillating motion of the working helium

gas. A closer look at the inside of these heat exchangers reveals

hundreds of straight, narrow tubes that contain the oscillating helium gas.

Instead of examining the global heat exchanger problems, the present study

is to explore and understand the detail flow and heat transfer phenomena

of the fluid within each tube. The parallel plate channel is chosen for

modeling this detailed single tube problem.
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Figure 2.1: The cross section of the Stirling Power Research Engine, SPRE.



Geometry and Coordinate System

Figure 2.2 shows the parallel plate channel geometry and the

Cartesian coordinate system used. The origin of the coordinate system

resides at the west corner of the lower plate with the x-axis set along the

stream-wise direction while the y-axis starts from zero at the lower plate

to the value of H/2 at the channel's center-line. For the steady and

pulsating flows, the fluid enters the channel from the west where the

numerical calculation begins (Fig. 2.3). As for the oscillating flow, the

fluid enters from the west during the forward half of the cycle and then

shifts to enter from the east during the reverse half of the cycle (Fig.

2.4).

Assumptions

In the heater and cooler tubes, the unsteady periodic fluid flow

contains the complexities of 3-dimensional, laminar, transient and turbulent

flows; the fluid enters the heater and cooler tubes from the expansion and

compression space, respectively, through the passage of a sudden change

in the cross-sectional area; the oscillating phase angle difference between

the displacer and the power piston causes real gas compression and

expansion within the tubes. Due to the enormous amount of experimental

* //
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data and time it would take to model these complex conditions, the present

study is simplified and is limited to the following assumptions:

a) The fluid flow is a two-dimensional, laminar with variable

properties except the C and Pr are assumed constant;

b) The inlet velocity profile is uniform and

i. constant with time for steady flow;

ii. varies sinusoidally with time for unsteady flows;

c) The fluid enters the channel with uniform temperature and

heat is transferred from (or to) the constant temperature plate

walls;

d) The axial viscous diffusion and heat conduction are negligible;

e) The flow is subsonic.

Static Temperature versus Stagnation Temperature

To prevent confusion when examining compressible flow, the

difference between static and stagnation temperatures will be clarified.

The stagnation enthalpy of the fluid represents the combination of thermal

energy and kinetic energy. Since the specific heat of the fluid is assumed

to be constant, the stagnation enthalpy equation can be written in terms

of the stagnation temperature (sometimes called total temperature):



..a + ^a vhere: t Is the stagnation tetnperatuze
• T + — — (2.1)

2 Cf T is the static Cetqperature

As suggested by the equation, the stagnation temperature represents

the total temperature as the gas is brought to rest by an adiabatic

process. If the fluid velocity is slow or the Mach number is close to zero,

the fluid kinetic energy is negligibly small compared to the fluid thermal

energy; hence, the stagnation temperature and static temperature are

equal.

M » 0 — T « T

For the incompressible and thermally expandable flows, the

presumption of the zero Mach number results in identical static and

stagnation temperature values, therefore, no distinction between these

temperatures is necessary as in most incompressible and thermally

expandable flow literature. However, the compressible flow presumes a

non-zero value of the Mach number which means the kinetic energy of the

fluid can no longer be ignored and the two temperatures are differentiated

by equation 2.1.



Governing Equations

The complete Navier-Stokes (NS) equations can model any viscous

flow problems. Mathematically, NS equations are elliptic partial-differential

equations which in a physical view-point, the flow at any location is

affected by the rest of the flow field. Computing these coupled elliptic

differential equations by finite-difference methods requires iterative

solvers, but these solvers require heavy computer time and memory space.

For flows with a predominant flow direction, as in the current study,

where the axial viscous diffusion and heat conduction are small and

negligible, the NS equations can be simplified into the Partially-Parabolized

Navier-Stokes (PPNS) equations. The PPNS equations are parabolic partial-

differential equations by nature except the elliptic behavior associated with

the pressure remains. Having the streamwise diffusion neglected, the flow

at any location is affected only by the upstream flow and can be solved

by marching methods which are relatively more efficient in computer time

and memory space than iterative methods. Please note that only the

pressure in the PPNS equations is computed by using iterative solvers.

Utilizing the assumptions stated earlier, the governing PPNS

equations in primitive variables are as follows:

is-



Continuity Equation:

( 2 . 2 )

X-Momentum Equation:

3u

Y-Momentum Equation:

dv

Energy Equation:

< 2 - 5 >

Note that the viscous diffusion energy is accounted for in the last two

terms of the energy equation, hence the static temperature is used as a

primitive variable.

The pressure has an elliptical effect throughout the flow field and

is described by the Poisson equation [Anderson et.al,1984] which can be

derived from the momentum equations. By rearranging equations 2.3 & 2.A,

the pressure gradients can be written in the form:

a ' < 2 - 6 '

< 2 - 7 '
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and the Poisson equation is:

(2-8)

The above governing equations are similar to the equations Chiu

[198A] utilized in his analyses, except Chiu examined the steady,

incompressible flows which made the apparent form of his PPNS equations

somewhat further simplified. The present equations are more general as

they contain additional time dependent terms to account for the unsteady

flows and the equations have variable fluid properties (density, viscosity

and conductivity) within the derivatives.

Equations of State

To account for fluid compressibility, one state equation is required

for describing each variable fluid property (density, viscosity and

conductivity). Assuming the gas is ideal, the density can be determined

from the pressure and the static temperature by using the Perfect Gas

Law.

p * -2- whaza R Is the Gas constant (2 .9)
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To date, the viscosity of gases has been described by two commonly

used equations, the Power Law and the Sutherland Law.

The Viscosity Power Law:

I— I- ] vhere a la a constant (2.10)
\ Tz.i)

The Sutherland Law:

where B and S axe Sutherland coefficients (2.11)

The a, B and S are constants depending upon the gas used (their values

for air and helium are listed in Table 2.1). The Power Law and the

Sutherland Law relate the viscosity with the temperature of the gas. From

the experimental data by Tribus et.al. [1942] for viscosity of air at various

temperature, Driest [1952] found that the predictions from the Sutherland

Law matched the data more closely than the predictions from the Power

Law. Hence, the Sutherland relationship was chosen for this study to

achieve more accurate viscosity estimations.

As for the fluid conductivity, again, two relationships were commonly

used; the conductivity Power Law and the definition of the Prandtl number.

The Conductivity Power Law:

where 0 Is a constant (2.12)



Table 2.1: Gas properties for the Power Laws and the Sutherland Viscosity
Law.

GAS

Air

Helium

a

.67

—

P

.805

—

B
(kg/(m's«K"))

1.466 E-6

1.286 E-6

S
(K)

110.3

8.93

Pr

.72

.73



The Definition of the Prandtl Number:

*--!^ (2.13)

For most gases, the Prandtl number and specific heat are relatively

constant for a wide range of temperature which makes the gas conductivity

directly proportional to the gas viscosity when incorporating the Prandtl

number definition. In this study, the Prandtl number definition is applied.

As these state equations are normalized, it will become apparent why the

Prandtl number is more advantageous over the Power law.

Boundary Conditions

As shown on Figure 2.2, the computational domain is one-half of the

channel, from the bottom plate to the center-line of the channel. At the

lower solid wall boundary, the no-slip wall condition applies and the wall

temperature is constant.

y" o •• u « v » o , r = r r



While at the line of symmetry, u-velocity and temperature gradients are

assumed to be zero.

4
2

The upper and lower boundary conditions are identical for the steady,

pulsating and oscillating flows.

Ensuring the incoming fluid contains the same energy level, the

imposed inlet stagnation temperature remains constant for all flow types,

while the inlet v-velocity is assumed to be zero.

t0 - constant . v0 * 0

The imposed inlet u-velocity, however, differs according to the flow

type. For the steady flow, inlet u-velocity is constant (see figure 2.3).

u0(t) « u0 = constant

In the case of pulsating flow, the u-velocity varies sinusoidally around a

mean flow according to the relation:

(2.14)

where: -X IB the iupoeed velocity fluctuation amplitude

Zl



Finally, the imposed inlet u- velocity for oscillating flow varies around

a zero-velocity.

u0(t) " umatr0-siaut (2.15)

Referring to figure 2.4, the inlet flow enters the channel from the west

when ufl is positive, and east when ufl is negative.

The boundary conditions for the pressure Poisson equation will be

discussed in the next chapter.

Similarity Parameters

The following characteristic parameters are used to generally

describe the fluid flow and heat transfer in similar systems. For

incompressible and steady flow, only the Reynolds number and Prandtl

number is needed for generalizing similar systems.

Reynolds number (non-dimensional mass flux):

(2.16)

Prandtl number (ratio of viscosity over conductivity of the fluid):

Pr - ce'***' (2.17)
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The additional Mach number is required when dealing with

compressible flow.

Mach number (non-dimensional flow speed):

Mret = ~^- where: C is the speed of sound (2.18)

For unsteady flow, the Valensi number generalizes the fluctuating

frequency of the system.

Valensi number (non-dimensional frequency):

(„• = 2lPi (2 .19)

An amplitude ratio is needed to describe the geometric similarity

between oscillating flow systems.

Amplitude ratio (non-dimensional fluid displacement):

, _ 1 Oh fleWo
AK ~ "2 ~L <„•

( 2 . 2 0 )
where: AK < 1 •• fluid oscillates without exiting the channel

As > 1 •» fluid traverses quickly via the channel
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The advantage for nondimensionalizing the variables is that the

characteristic parameters such as the Reynolds number, the Prandtl

number, the Mach number, etc., can be varied independently. Also the

values of the normalized flow variables often fall in the range such as zero

to one.

Location of the reference values depends on the flow type. The

subscript "ref" used throughout the thesis has the following definitions:

a) For steady flow: ref — the value at the channel's inlet.

b) For pulsating flow: ref -» the mean value at the channel's

inlet.

c) For oscillating flow: ref «• the maximum value at the

channel's inlet.

With the appropriate reference values, all the variables are

nondimensionalized as follows:



8

'x«f

: the normalized streamrise velocity

the normalized transverse velocity

the normalized pressure

: the normalized static temperature

Che normalized stagnation temperature

= P "»/"*•** .

ft

IW

a* - fU

m p" V

normalized x distance

the normalized y distance

: the normalized time

the normalized fluid density

the normalized dynamic viscosity

: the normalized fluid conductivity

the normalized streamwise mass flux

: the normalized transverse mass flux

ZS"



The Normalized Governing Equations

Thus, the partially-parabolized Navier-Stokes equations (2.2-2.5) can

be converted as follows:

Continuity Equation:

X-Momentum Equation:

8 /„. BU / 2(2-

Y-Momentum Equation:

. av , „. 3v . ̂ . 3v ap 4 d /„. / o o ,( 2 > 2 3

Energy Equation:

For the Poisson equation, the x and y-momentura equations are rearranged.

dp . f«« du * rr- 3tr + V du d /u« 3l7\l . ri (1 2«>1• w ^-ss*^?? w -5?)] FJ ( 2 > 2 5 )

dV .,, dV . y dV 4 d / . 3V\1 _ .„ t -) t >f t \-59 + ir-5x*^-5Y--5-3Y\v' ^Y)\ m ** (2 '26)

The pressure Poisson Equation:

<2-2 7 '
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Note that for thermally expandable flows, Mrftf=0, hence the kinetic

energy terms are negligible and the energy equation can be simplified to

balance only the thermal energy. As for incompressible flows, p , p., k =

1 which also converts U = U and V = V, and the coefficient value 4/3 is

changed to one in the y-momentum diffusion term due to simplification by

the incompressible continuity equation. With these reductions and for the

steady flow condition, the normalized governing equations will be identical

to the equations Chiu [1984] utilized. The present governing equations are

more general than Chiu's, and they are capable to describe the different

flow types considered in the present analyses.

Normalized Equations of State

Density (Ideal Gas Law):

P* •-J + A&r-*!1 (2 .28)

where: &P - the change of P fzom the channel'g inlet.

For subsonic flow where Mref « 1, the second term on the right hand

side of equation 2.28 will be insignificant compared to the first term;

2?



hence, for low Mach number flow, the second term can be ignored and the

value of the density depends solely by the temperature only. This type

of flow is assumed to be thermally expandable.

Viscosity (Sutherland's Law) and Conductivity (Definition of Pr):

|t. - e"! **^ ; Jf = i»' (2.29 a&b)
"*ci

where: ^ = -£-
Tz»t

Viscosity and Conductivity (Power Laws):

- . ' - - ' (2-30 a&b)

The definition of Prandtl number is used because it equates the

normalized viscosity and the normalised conductivity, and there is one less

variable to solve.

2$



Normalized Boundary Conditions

The nondimensional boundary conditions are

a) a " V * 0 , 6-6, no-Blip boundary conditions at the vail

b) V - 0 , -f? * 0 • J? * ° symmetry boundary conditions

c) T0 » constant , V0 » o imposed inlet teoperature and v— velocity

d) imposed inlet u- velocity

i) J70(*) - Ue - 1 for steacfr f2ov (2.31)

ii) U0(*) - 1 * -|gijf p
4"'̂  1 for pulsating £Z<w (2.32)

f *"'*
V«^tt.

P0(») - 5io for oscillating flow (2.33)

Again, the normalized pressure boundary conditions will be discussed in

Chapter III.



CHAPTER m

METHOD OF SOLUTION

Based upon the method of solution used in Chiu's thesis [1984], the

present solution techniques have been revised and extended to cover a

wider range of fluid flow problems including the ability to resolve

unsteady periodic flows and compressible fluid flows. This chapter

consists of six sections. The first section describes the staggered, finite-

difference grid utilized in the computation domain. Sections 2 to 5 present

the various finite-difference schemes applied on the governing equations

and the numerical solvers used. Section 6 summarizes the chapter by

illustrating the flow chart and the steps proceeded by the present

computer program to reach the results.

<r so



The Finite-Difference Grid

Having selected the Cartesian coordinate system for the computation

domain, the present finite difference analysis uses a staggered grid

[Patankar,1980] to prevent the probable development of a wavelike pressure

or a wavelike velocity field. The idea behind the staggered grid is to

define three different grids; two for the velocity components and one for

the sealer variables. As shown in Figure 3.1, the solid dots indicate the

grid locations for the sealer variables (the fluid properties, pressure,

temperature and the velocity correction potential 4>), whereas the velocity

components, indicated by the arrows, reside midway between these dot

points. The horizontal arrows denote the locations for U and the axial

pressure gradient Fl, while the vertical arrows designate the positions for

V and the transverse pressure gradient F2. Figure 3.1 also reveals the

spatial step variables used on the unequally spaced grid.

Despite the fact that the variables are actually defined at different

locations, a single reference set of grid indices is used for convenience.

Referring back to Figure 3.1, the label (i+1, j) actually identifies the

spatial locations of the two arrows and one solid point enclosed by the

dashed boomerang, thus, U^

beneath P^ «, etc.

Unlike the convectional grid which only requires a single control

volume at each node, the staggered grid requires three distinctive spatial

control volumes (Fig. 3.2) for the different governing equations. This

is to the right of Pi+1 j and Vi+1 • is
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Figure 3.1: The staggered grid and the variable locations.
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c) continuity, energy, and pressure Poisson equations.



concept leads to the different locations of the expansion point according

to the equation; care is called upon when differencing the governing

equations to the corresponding control volumes. For example, the terms

in the x-momentum equation are expanded at the (i+1, j) u-velocity arrow

(Fig. 3.2a), while the terms in the energy equations are expanded at the

(i+1, j) pressure point (Fig. 3.2c).

Figure 3.3 shows the computational domain of the parallel plates

combined with the staggered grid. Notice that a set of fictitious points is

positioned below the solid wall (j = 1) and another set is located above the

line of symmetry (j = NJ+1); these fictitious points are used in describing

the boundaries of the domain because the horizontal boundaries in

staggered grid are placed along the v-velocity arrows. Hence, the no-slip

and constant temperature boundary conditions stated in Chapter Two

become:

*i.a » -PJ.I (3.1)

v^ - 0 (3 .2)

8M*ei.i . e (3.3)

At the upper boundary, the symmetric boundary conditions are prescribed

as:

(3 .4)

(3.5)



\

•i

1

\

i

* * I 1
' 7

_ _J

1

/

\

S,

S

s
s
s
s
s
v^
V

V,

V,

S
s
V
s
s
s

ij
s.
s
s
s,
V
s
S
S

S
S
V

\

'x
V

\
\

s
\

1

1iI
1
ii
v§

v>
NN'sN

•

"-, '
" J

•o
c
to

00

•o
0)
u
0)
00
BO
CO

4^

£
±J
••4

II
— •«<o c
C 3
O O•a 2to
4^ tM
3 O

en
en

2
QO



(3 .6)

The velocity and temperature profiles at the inlet boundary are

prescribed at the same grid indie of i=l, but the actual locations of the

profiles are slightly different due to the nature of the staggered grid.

Figure 3.4 presents the two types of grid set-ups used in the

present study. For the steady flow and the pulsatile flow analyses, the

axial grid spacing is fine at the channel's entrance then increases down

the stream while the transverse steps are fine closer to the lower wall but

coarse at the channel's center (Fig. 3.4a). This set-up provides sufficient

node points at the critical regions, like areas close to the entrance and the

wall, where rapid gradient changes occur. As for the oscillating flow

analysis, the set-up grid shown in Figure 3.4b is used and is similar to

the steady flow grid, except for the fine axial steps that appear at both

ends of the channel. The reasoning behind this is that during half the

cycle, the flow is moving forward while the second half of the flow is

moving backwards.

Finite-Difference Formulation of the Momentum Equations

Coefficients of the convective terms;

The momentum equations are algebraically nonlinear differential
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Figure 3.4: The x and y grid formats used for:
a) steady flows and pulsating flows.
b) oscillating flows.



equations. Solving these equations by numerical method requires

linearizing the equations and computing them by an iterative procedure.

The most common linearization strategy is done by lagging or extrapolating

the coefficient U and V in the convective terms of the momentum

equations. In this thesis, the coefficients in the x-momentum and y-

momentum equations are denoted by the subscripts x and y, respectively.

Lagging the coefficients: The coefficients are evaluated from the

previous iteration values. This method is used where values of velocity

components are stored.

. e»l.n ( -a 7 \
i+l.i I J • ' J

[ »c«l,n «c»l,a «e»l,a . c»l,n i
O i.J * u l.l-i . AJT U Jn.j * U i*i. j-i . AJT . 1 (3.8)

2 2 2 2 j AXU

v. t*i.«*i _ y'i. ' * V ' ' . j (3 .9)

„• e»l.n»l = „• e*l.a (3.10)

Extrapolating the coefficients (regular): The coefficients are

extrapolated by the upstream values. This method is always used in the

first "Global" iteration at each time step, due to the lack of previously

calculated values.



e»i.a*i . e»l.a«l / • e«i.a»l » e»i.n*l \ u / o -i -i \
i*l.J " U i.i + (U1.J ~ U 1-1.1 ) '

..e»i.n*i
„« e»i,a»i „• e»i.a»i rr« e»i,a*i i
P i.j-i . AJT + tfcii.:f * gfi*i. j-t . AJT . 1 (3.12)

2 2 2 2

3 •

Extrapolating the coefficients (special case): For regions where only

one upstream station is available (the second x-station in the channel's

inlet), the coefficients are evaluated by the previous station.

Convective terms in the x-direction (axial);

du „. dv
' U~§X

Except at the entrance regions with only one station in the upwind

direction, the two convective terms are differenced by the three-point,



second-order accurate, upwind scheme. The polarity of the coefficient U*

determines the direction of the upwind scheme (forward upwind for

positive U , while backward upwind for negative U ). Also, the second

order upwind differencing used in the present work was tested for the

numerical diffusion and compared with a first order upwind differencing

(normally used in the literature); the present scheme showed an

improvement in the predictions of about 10%.

For the x-momentum equation with forward going flow, the convective term

becomes:

_t«i,a*i „ e»i,a*i
1*1,3 ~ Ul.j

**»

«l,a»l „ e»l,a»l _t»l,n*l „ e»l.n»
.j ~ Ui-l.J + °i'l.j ~ °l-l.J

For the y-momentum equation with forward going flow, the convective term

becomes:

L.a»l

(3.20)

,e*l,a»l t*i,a«l e*l,n*l e»l,a«

AX + AJT~



However, for the inflow region where only one station is available in

the upwind direction, a two-point, first-order accurate, upwind scheme is

used instead of the three-point scheme.

For the x-momentum equation:

, au \ «*i.-i = _..W...1. g£i:r - u%""1 (3.2D
** ^r« I **j» f»i . ̂  A «

For the y-momentum equation:

"12̂ 2 (3 .22)

When the coefficient U of the convective terms is negative, the flow

is reversed and the forward moving flow differencing scheme is no longer

valid. For this type of flow, a three-point upwind differencing scheme is

still utilized except the differencing direction is reversed in the x-

direction.

Thus, for the x-momentum equation:

r ._e*i,a _e*i,a*i

*'*W ' A*; (3.23)



For the y-momentum equation:

„ e«l,a T,t«l.a rr**1'" tre»l.v 1+3.j - y1*1.1 +
 v i**.j ~ yi*i,

AJf **

(3.

e»l,fl»l 1

While the forward going differencing scheme uses velocities at the

current n+1 iteration level, the reversed differencing scheme makes use of

Ui»2 j » ui*3 j » ui+2 i and Ui+3 j velocities at the previous n iteration level.

The reason for using previous velocity values is because they have not

been updated by the marching process at the current n+1 iteration level.

Thus, storage for the n level velocities is required for the flow reversal

region.

Convective terms in the y-direction (transverse);

The hybrid differencing scheme [Anderson et.al. 1984] is utilized to

avoid numerical instability that a pure central differencing may resolve at

a high mesh Reynolds number. A pure upwind differencing scheme may be

used but the numerical diffusion may become too large compared to the

actual diffusion at a low mesh Reynolds number. A scheme that switches



from central to upwind after a critical mesh Reynolds number may also be

used but the sudden change could distort the convergence to a solution.

To avoid this sudden switch, the present hybrid scheme applies a weighted

average of the two schemes for large mesh Reynolds numbers and reduces

to a pure central differencing scheme when the mesh Reynolds is smaller

than the set critical mesh Reynolds value, R£. This RC value should be less

than or equal to 2.0 as suggested by Spalding [1972]. In the present

analyses, RC is set to 1.9 (the same value used by Chiu [1984]) and no

attempt was made to fine tune this number in maximizing the stability nor

for minimizing the numerical false diffusion.

For the x-momentum equation, the convective terra becomes:

/„. dm**1-"
I "3vJ\ oxii'i.j

e*l.n*l

-^.^x Ay, Ay* + Ay

_e»i.n»i ...e*i.fl*i
• e»x,o*i Cfi-n i ~ t/i»i j-i Ay*

VGc««l 4 ' — — ' , _ ^_ .**•' Ay A y * * A y - J (3 .25 )

rr-'*1'"*1 . 1̂*1̂  ~ gAi°-l . , , _ M x .,

. t*l.n»i
* f

where W, A, and B are determined as follows:



J?c = Cri tical mesh Reynolds number
If Rl > RC . then A-l, fl-0, andW*R<./RZ
If R^ <-Rc , then A-0, £-1, OOd ti'-Rg/R^

If Rl * RC said R^ *-RC , then A=0, B=0, and tf = l

For the y-momentum equation, the convective term becomes:

Ay; + Ay;

,, t*l,n*l t,t»l,n*l

^ '"•'•*

(3 .26)

where the mesh Reynolds numbers are computed as follows:

. t»i.a*i
* m y*+1-J -• . e*i.a!>i

I1 i»i,j-i/a



By using these mesh Reynolds numbers, the W, A, and B variables can

be determined by the same criteria as used for the x-momentum convective

term.

Pressure gradient and diffusion terms:

dP dP d i...dU 4. d.
-§x ' Tf ' arr a?

\
)

A second-order accurate, central differencing is used for these

terms. Note that because the staggered grid is used, the expansion points

for the central differencing equations are located at (i+1, j) where the

velocities are evaluated (Fig. 3.2a,b). For the x-momentum equation,

t+l.a t»I,j>
( 3 . 2 7 )

_ . _ ,
8 /.,.3O\le»t'a*1 . ,.t»i.a»i Uj^.j^- Vj+i.]., i11^.^ jp

V J.
,.t*l.a*l rre*l.n+l 1

and for the y-momentum equation,

c»l,n
(3.29)



v£J'£i- vtll'?1

A^ (3.30)

3̂

For points immediately within the solid wall, the finite- difference

representation of -J- (n'-jp) > equation 3.28 can be a poor representation

of the diffusion term due to the use of a fictitious point outside of the

boundary. A better representation is to assign a point at the boundary

instead. For points immediately above the lower wall, - L / j i ' . ? becomes:

•
t*l.n*l

. C«l,n»l ^ u i»i,j»i

Ay* (3.31)

~ V-
r^r-o
Ay/2

Time-dependent (unsteady) terms;

. da .. dv
' p

A first order accurate in time, backward differencing scheme is

chosen for the time dependent terms. Any finite-difference scheme would

require storage of all values of parameters evaluated at earlier time steps.

While a second order accurate scheme could be used, such a scheme would



require values of parameters at the two previous time steps to be stored

which could require excessive amount of computer memory. Whereas using

a first-order accurate scheme only requires the values of the previous time

step, will result in saving half the required memory size.

For the x-momentum:

li.jlJ (3 .32)

For the y-momentum:

(3.33)

Momentum equations in Thomas Algorithm formats;

In substituting the corresponding finite-differenced terms back into

the momentum equations 2.22 and 2.23, the equations can be written for

(i+1, j) grid point and can be rearranged to the following formats.

The x-momentum:

_u. „**!.«•! . nn _t»i.a*i u e»i.a*i „ (3.34)
Bj U4+1.J-1 * "1 "i#l.J * -fy "j*!,̂ ! » Cj v I

where



B u
i Ay - (Ay* Ay)

•(!-*)•* -
Ay Ay -(Ay ( 3 .35 )

Ay*-(Ay Ay- (Ay* +Ay)
( 3 . 36 )

u
- for forward flow ( 3 . 3 7 )

* E" for reversed flow ( 3 . 3 8 )

Ay

,e»l,a»l

( 3 . 3 9 )
Ay*

A y - A y - ( A y * + Ay)

c»l,n _ t»l.o

AX*

,t»l,n»l r,t

( 3 . 4 0 )

for forward flow

t»l.n t»l.a
e*l,a*l U + A Xu

. e«l,a»l e
P ^3/3 ' reversed f Jow

(3.41)



The y-momentum:

_
- C ( 3 . 4 2 )

where

( 3 . 4 3 )

_
3

*

Ay; Ay; -(Ay; + Ay;)
( 3 . 4 4 )

y * . . AA"+ 2-A* + Ei
&X-(AX~ + AX) J

for forward flow ( 3 . 4 5 )

for reversed flow ( 3 . 4 6 )

Ay;-Ay;
A y; • A y; Ay Ay;

A y; • A y; •( A y; + A y;)

( 3 . 4 7 )

t»l.a t»l,n
i*l.J ~ e 1+i.J-l + „. t*l.n*l .

AJP
- -(A*-

e*l.n*i

( 3 . 4 8 )

t»l,n _ t*i,n
1+1. j ~ e 1+l.j-l . „. t*l,n*l

e«i.a ^ P reversed flow

( 3 . 4 9 )



The equations 3.34 and 3.42, when written for each y-grid point at

the i+1 axial station will result in a tridiagonal coefficient matrix for each

equation. Combined with the proper boundary conditions (eq. 3.1, 3.2, 3.4

& 3.5), the momentum equations are resolved by the efficient Thomas

Algorithm solver.

Points like the second stations and points adjacent to a solid

boundary can be similarly constructed.

Finite-Difference Formulation of the Continuity Equation

If the exact pressure and temperature fields are used in the

momentum equations, the resulting velocities will automatically satisfy the

continuity equation. However the calculation procedure begins with

estimated pressure and temperature, thus the velocity solutions from the

momentum equations will not balance the continuity equation. An iterative

procedure is necessary to reach the correct pressure and temperature

fields. The present solution procedure adjusts the tentative velocities from

the momentum equations by the continuity equation, and the corrected

velocities are used to update the pressure (using the Poisson equation)

a'nd the temperature (using the energy equation). A detail description of

the steady, incompressible velocity correction procedure can be found in

Chiu [1984] and in Anderson et.al. [1984]; however, the present velocity



correction procedure is generalized to also work on compressible and

unsteady flows.

The continuity equation (eq. 2.21) is converted by the central

differencing scheme except the unsteady, time dependent term is

differenced by a first-order backward scheme. The expansion point is

located at the (i+1, j) dot point. For the exact velocities values (Ug and

Vg) and the exact density values (pg), the continuity equation in finite-

difference form becomes:

(3.50)
A*

These exact values can be defined as the sum of the provisional values and

the correction values.

CT*. *j = U* 4 - ' j + £7* * *

vj/r*'11*1 = v'Zi'T* * Vc/*!'11*1 (3 .52)

^•r1 = «• rvr1 * «• **l-r1 (3.53)

The U , V and p are provisional solutions obtained from the momentum

equations, and the ideal gas equation, while Uc , V£ and pc are correction

values. Substituting these definitions into equation 3.50 and rearranging

all the correction variables to one side of the equation:

ST(



«t»l,a*l

u'**i'.j** ~ H*!*]'"*1 V*i*i',j*i - V*/*!,'"*1 p'iti'."*1 ~ P*

t»l,o*l

-* - *where Si is known since U , V and p have already been calculated.

Equation 3.54 contains three unknown variables (U , V and p ) and

in order to resolve this equation, further simplifications and variable

reductions are necessary.

a) til.] = 0

This condition is true because the velocity at the previous axial

location has already satisfied the continuity equation.

b) Irrotational velocity corrections

This assumption permits the use of a velocity correction potential to

relate Uc and Vc, such that

. t«l,n»l . t»ltn»l
.e>l.p>l _ / 34,\t*i.n*l _ <>>i»2. j -4>i*i.J ( 3 . 55 )

cl*i--3 1 av) A v*\ oxli+i,j AX

( 3 . 5 6 )



c) * ilV.T1 = °

This assumption is true as convergence is achieved.

, . . ,
d) Pci»i.j = 0 .

These density correction terms will equal to zero when convergence

is achieved.

The above four assumptions simplify equation 3.54 and can be

converted in the form:

_*=e*i.a*i _* , e»i,n»l ,* . t»i.n»i _1*1.̂ .1 * DJ-+I.I.J + Aj-t 1.1.̂  = c

As for the boundary conditions, the no-slip condition on the solid

wall and the symmetric condition at the center-line are utilized.

e»i,n*l
j = 2 or

The Thomas Algorithm solver is used to calculate this tridiagonal matrix.



Finite-Difference Formulation of the Pressure Poisson Equation

Central differencing is used for the Poisson equation with the

expansion point located at the (i+1, j) pressure point.

l+i'.J -p l+l'.J _ pl+l'.] -pl.J .
A** A* J

e*i,a*i _ e»l.a*i _ r»l.n»l _ e»l.n»l
l+i.J+i ~ p 1+i.J _ p 1+1. j ~p 1+1,1-1

Ay* Ay

e*i.a*i
" F1 l.J 1+i.J+l 1+1.

(3.58)

The pressure source term, Sp, can be determined by the Fl and F2

pressure gradients resulting from the same finite-difference forms of the

momentum equations (eq. 2.25 and 2.26) using the corrected velocities from

the continuity equation. Combined with the Neumann boundary conditions,

_ e»i,

'*'

i-i or KPNS

where j-2 or »7*i (3.60)

the resulting set of equations for pressure is solved by the method of

Successive Over-Relaxation (SOR) by points. The use of an over-relaxation

factor, usually in the range of 1.5 to 1.99, was necessary to efficiently



reach the pressure solution with minimum pressure iterations. No in depth

study was conducted on determining the best over-relaxation factor to use,

but a trial and error process has shown that for unsteady flow and

compressible flow, a minimum value of 1.9 is required for rapid

convergence compared to the value of 1.5 used for most incompressible flow

types. Moreover, the pressure source term (S ) must be under-relaxed.

Normally this under-relaxation factor starts with a small value (about .01)

and gradually increases with each "Global" iteration (see the Solution

Procedure Section) with a maximum value of .50 used. For variable

properties flow, this under-relaxation factor generally remains below .30 for

the best stable convergence.

Finite-Difference Formulation of the Energy Equation

In the present study, the momentum equations and the continuity

equation are solved prior to the energy equation. The expansion point for

the energy equation is located at the (i+1, j) temperature point. The terms

in the energy equation are differenced as follows:



36U*~5 "* Three point upwind scheme

ay

.../acn2 4 ./ Bv\2 _
»(a?) ' T May)

V~ - Hybrid scheme

^- • -isr — Backward differencingov o9

The followings are finite-difference expressions for the terms in the energy

equation:

. e*i,n»i . . e-i,
U l t i f j -AX* g ^,j e»l.a*l

AX* AX* . - (3 61)

Qe*i.jj«l - t»i.a*i o t»i.a*i fle»i.a*l
- *±l _ " e '-^ + e^i.j -Qj - i . j forward flow

C*l.a*l A „» f ftt»l,o _c»l,a«l
l.J '*X .| B i>2.J ~ Oj^l.J

( 3 . 6 2 )

AX* + AX**
for reversed

/„. aev'*1-"
r 1v)\ dyM«i,j

e»l.n*l

Ay* +

Ay
^ ( 3 . 6 3 )

ot*l,a»l - t«l,a*l. ̂ n . e ^ . e ^ . ,

where W, A, and B are determined as follows:



„• t*l.n*l
!m * L.J* _^i " A Y~

J7e - Critical mesh Reynolds cumber
If Rl > RC . then A-l, B-0, and
If R^ <-Rc , then A-0, B-l, and
If Rl n RC and & i-JZe , Chen A=0, 5-0, and

Again, the value of RC is set equal to 1.9 for the present studies.

a „ I ac*l,n»l
3 /,,. c

(3 .6A)

at»l.a«l ne*l.a»l ]
_ . ,e»i.n»i . o j»i,j - o i*i.j-i . 2

. 36 \t*l'a*1 _ .e*i.n*i .fe^V.j*1-6i«1.^
a*Lw "Pi"'J I - A5 - J

(3 .65)

/ A v + A y » ^ x * '' *1'31 AX*(&X+&X ) I &x (3 .66)

(3.67)



a? (J

e.l.fl»i ,.e.i.a.l, A „ /wfi.a.1 .^^ ;.aA !

(3 .68 )

« e*l.n»l
' I* i*!../

[
. e*i.a»i t»i.a*i 12
Vj*i.j«i - y^i.j (3 .69)

Ay; J

By substituting equations 3.61 through 3.69 into equation 2.2A, the

energy equation can be rearranged in the form:

Be.0e»i.n*i +De.ae»i,a»i + Ae.ee»i.a»i _ ^e ( 3 . 7 0 )

Combined with the constant wall temperature boundary condition (eq.

3.3) and the upper symmetric boundary condition (eq. 3.6), the resulting

Tridiagonal matrix is again solved by the efficient Thomas Algorithm

method. However, for locations such as the 2nd x-station and points

adjacent to the boundary walls, a 1st order upwind scheme for the axial

convective term and a more accurate scheme for the thermal diffusion

terms are used instead.

Solution Procedure

Based upon the Partially Parabolized Navier-Stokes (PPNS) equations

solution procedure for incompressible, steady, subsonic flows [Anderson



et.al.,1984], the present technique is extended to cover unsteady,

compressible flow problems. For the steady flow calculation, the solution

procedure found in Chiu's [1984] thesis is used with the energy equation

resolved at each "Global" iteration (see Fig. 3.5) for variable fluid

properties. As for unsteady flows, an extra "Time Step" loop is required

to calculate the time dependent terms and to advance time increments in

the fluctuation cycle. A flow chart of the present computer code is

provided in Figure 3.5 and the computational steps are explained in the

following summaries.

Steady flow solution procedure summary;

51) Read all the input information, nondimensionalize all the

variables, and initialize all counters. The normalized fluid

properties are set temporarily to 1.0 while the initial boundary

conditions at the channel's inlet are determined.

52) The "Global" iteration level is advanced by one to n+1 level.

53) Advance the axial counter "i" by one to the next stream-wise

station. Use the n iteration level results or initial guessed

values (for the first "Global" iteration) of the pressure and

fluid properties, and determine the tentative U and V velocities

by evaluating the momentum equations with the appropriate

boundary conditions.

54) Next, the continuity equation is balanced to correct the
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Figure 3.5: Computational flow chart of the present solution procedure for
the steady and unsteady fluid flows.



provisional U and V velocities. This requires the

transformation of the correction velocities into the correction

velocity potential <J> and solving equation 3.57. The residual

mass source term is determined.

55) Utilizing the corrected U and V velocities at the n+1 iteration

level, the pressure source term S. is evaluated at the i+1 axial

station.

56) For problems involving transfer of heat, the revision of the

thermal field is performed. The temperature is updated to the

n+1 iteration level via solving the energy equation with the

latest values of U and V.

57) Steps (S3) to (S6) are repeated until the end of the channel

is reached. The U and V velocities, the temperature, and the

S are revised for the entire flow channel to the n+1 "Global"

iteration level.

58) The pressure of the entire flow field is updated to n+1

iteration level by utilizing the Poisson equation with the

previously calculated S values and the Neumann boundary

conditions. As mentioned earlier, this pressure correction

process uses the Successive Over-Relaxation (SOR) by points

method. The SOR method is an iterative procedure which

sweeps the entire channel for the number of prescribed

iterations.



S9) The last step in this n+1 "Global" iteration corrects the fluid

properties by computing the equations of state with the latest

temperature and pressure.

S10) This "Global" iteration process repeats from step (S2) to (S9)

until the residual mass ratio is converged to an acceptable,

imposed percentage value (usually .1%) or until the number of

"Global" iterations exceed the maximum prescribed value. In

either case, the program prints out the detail flow results into

the appropriate output files. A warning message will appear

in these files if the program exit was due to an insufficient

number of imposed iterations.

Unsteady flow solution procedure summary;

The unsteady flow solution procedure is based upon the steady flow

solution steps with an additional time loop. At each time step, the

unsteady PPNS equations are solved in a similar manner as in the steady

flow procedure. The unsteady flow procedure is slightly different for

pulsatile flow from the oscillating flow. For pulsatile flow, the fluid always

travels in one direction, hence the numerical marching sweep moves from

left to right. As for the oscillating flow, the fluid moves forward for half

the fluctuating cycle and then it moves backward in the second half.

During the backward flow period, instead of marching in the reversed

direction, the present code "flips" the channel around as the input axial



velocity direction is changed. This actually simulates the same reversed

marching but, this way, the code maintains the left to right sweeping

direction throughout the oscillating cycle. The following outline briefly

describes the unsteady flow solution procedure:

Ul) The program reads all input information and sets up the "time

step" loop. The program also determines if the flow is

pulsatile or oscillating and sets up the appropriate inlet

velocity fluctuation values.

U2) For the first time step, the computation domain is solved as

steady flow with the corresponding unsteady inlet velocity

value. This is done because no previous results are available

for the time dependent calculations and also it will provide

initial guesses of the velocities, temperature, and pressure for

the next time step.

U3) The time step counter "t" advances by one and the

computation domain is solved by the steps (S2) to (S10) from

the steady flow procedure except the governing equations

contain the time dependent, unsteady terms. The sinusoidal

time variation of the inlet velocity profile is used in these

calculations.

UA) If the inlet flow reverses its direction on the next time step,

the solutions are saved in a reverse order matter which

simulates "flipping" the channel around in a physical sense.



Otherwise, the present solution is normally saved for the next

time step calculations.

U5) Steps (U3) and (U4) are repeated until the total number of

time steps are completed. The results are printed for the last

oscillating cycle.



CHAPTER IV

DISCUSSION OF RESULTS

The presentation of the results are divided into three sections. The

first section compares and validates the present steady flow solutions with

existing literature on incompressible, thermally expandable and compressible

fluid conditions. These variable fluid property validations determine and

evaluate the accuracy of the present computer code prior to the

examination of the pulsating flows and oscillating flows discussed in

sections two and three, respectively. For reference purposes, the

abbreviations and the numbers denoted in square brackets coincide with

the flow runs performed in this chapter, and the detailed input parameters

are summarized in Appendix-A.



Code Validation

Steady Incompressible - Hydrodynamically Developing Flows;

Based on Chiu's [1984] thesis, the present computer code is first

validated for its ability to produce accurate steady incompressible flow

solutions prior to any code modifications on handling thermally expandable,

compressible properties and unsteady conditions. In Figures A.I.la and

A.l.lb, the residual mass source is plotted with respect to the number of

"Global" iterations for the Reynolds numbers of AO and 100, respectively.

The figures reveal the convergence characteristic behaviors for steady

incompressible flows at four axial locations from the area of flow

development to the fully-developed downstream region. Having the over-

relaxation factor for the pressure correction terms set at 1.5, the present

code performed 53 "Global" iterations to reach the 0.2% mass flow

convergence criterion at the two low Reynolds number flows considered.

As for the high Reynolds number flows (Re=2000 or greater), substantial

reduction in the required number of iterations (20 or less) was observed.

The gradual velocity evolvements from the uniform inlet profile to

the fully-developed, parabolic form are illustrated in Figures 4.1.2a and

A.1.2b. For both of the Reynolds numbers (AO and 100), the fully-

developed streamwise velocity reached a maximum normalized value of 1.5

at the channel's center-line which meets the theoretical value for steady

incompressible flows between parallel plates. Notice also that the near wall

over-shoot velocities in the initial developing profiles correspond to

f (6

GO.-
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Figure 4.1.1: Convergence characteristics for incompressible, steady flow at:
a) Re=40 [SI-1].
b) ReJ=100 [SI-2].
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Brandt's [1966] findings and to those who have solved the Navier-Stokes

equations. The over-shoot velocity comparison with data from Brandt are

listed in Table A.1.1; good agreements on the location and on the maxima

value of the over-shoot velocity were established.

Listed in Table A.1.2 are center-line velocity values situated at

various axial distance from the channel's entrance. Two Reynolds numbers

(40 and 1000) were examined and compared with data from Brandt; the

agreements of the results were well below half a percent difference.

An exercise to determine the steady hydrodynamic entrance length

was performed for three Reynolds numbers: 40, 100 and 1000. The

hydrodynamic entrance length is defined as the required distance from the

channel's inlet for U-velocity to reach 99 percent of the fully-developed

U value of 1.5. The outcomes are listed and compared with other

literature in Table 4.1.3.

The boundary layer theory results from Schlichting [1960] estimated

shorter hydrodynamic entrance lengths than others who resolved the

Navier-Stokes equations. At a Reynolds number of 40, Schlichting's

prediction was 28.9% less than the present result; while at the higher

Reynolds number of 1000, the difference decreased to 17.2% less than the

present result. From this comparison, it is clear that the boundary layer

theory provides satisfactory approximations of the Navier-Stokes equations

only when the ReQ is high.

The present hydrodynamic entrance length results are in good

agreement with data from Brandt [1966], Morihara [1973] and Narang [1976].



Table A.I.I: Location and Amplitude of the maxima of the steady, developing
velocity profiles compared with data from Brandt [1966] at different
Refl and axial locations [SI-1, SI-5].

Re.

40

1000

x/H

0.1

0.2

0.3

0.4

0.1

1.0

3.0

5.0

UM

Brandt
[1966]

1.129

1.168

1.210

1.261

1.163

1.151

1.223

1.288

Present

1.201

1.223

1.249

1.278

1.151

1.145

1.222

1.290

Diff.

6.4%

4.7%

3.2%

1.3%

-1.0%

-0.5%

-0.1%

0.2%

(y/HU
Brandt
[1966]

0.125

0.214

0.290

0.369

0.048

0.180

0.315

0.435

Present

0.146

0.222

0.288

0.345

0.044

0.178

0.328

0.468

Diff.

+ .021

+ .008

-.002

-.024

-.003

-.002

+ .013

+ .033

Table 4.1.2: Center-line velocity comparison of steady, developing flow between
parallel plates with data from Brandt [1966] at different Re. and
axial locations [SI-1, SI-5]. "

Rea

40

1000

x/H

0.1

0.2

0.3

0.4

0.1

1.0

3.0

5.0

U (at y/H=.5)

Brandt
[1966]

1.022

1.085

1.169

1.254

1.003

1.100

1.211

1.288

Present

1.021

1.079

1.166

1.250

1.003

1.096

1.213

1.290

Diff.

-0.1%

-0.6%

-0.3%

-0.3%

0.0%

-0.3%

0.2%

0.2%



Table 4.1.3: Comparison of the steady hydrodynamic entrance length for flows
in parallel plates with data from Schlichting [1960], Brandt [1966],
Morihara [1973], Chen [1973] and Narang [1976]. [SI-1, SI-2, SI-5]

Re.

40

100

1000

Hydrodynamic Entrance Length. x/H
( at U=.99«U»M )

Present

1.125

2.630

24.15

Schlichting
[1960]

0.8

2.0

20.0

Brandt
[1966]

1.13

22.4

Morihara
[1973]

1.118

Chen
[1973]

1.50

2.91

Narang
[1976]

1.11

2.72

24.42

Methods used by the earlier investigators:
Schlichting : Boundary Layer Theory
Brandt : Full Navier-Stokes Equation
Morihara : Numerical Solution, Quasilinearized
Chen : Momentum Integral Method
Narang : Linearizing the Inertia Terms

Table 4.1.4: Steady mean nusselt number for equal and constant walls'
temperature at Re =100 and Pr=.72 compared with data from Hwang
[1973]. [SI-2]

Re.

100

x/H

.500

1.25

2.13

Mean Nu»

Hwang [1973]

14.90

10.96

9.593

Present

16.74

11.72

10.03

Diff.

12.3%

6.9%

4.6%

71



As for Chen [1973], who solved the Navier-Stokes equations by the

momentum integral method, he predicted longer hydrodynamic entrance

lengths than the present work (at Re0=40 which was 33% longer, and at

Re0=100 which was 10.6% longer).

Steady Incompressible - Simultaneously Developing Flows;

In this segment the heat transfer analysis in the channel, provided

by the constant wall temperature is examined with both velocity and

temperature profiles developing simultaneously.

The first validation case has a constant temperature for the upper

and lower walls while the flow is at Re0=100 and the fluid has a Pr=.72.

The temperature evolvement from the inlet uniform profile to the fully-

developed parabolic shape is illustrated in Figure A.1.3a, while Figure

A.1.3b plots the present heat transfer coefficient results along with the

available numerical data from Hwang [1973]. The Nusselt numbers are in

good agreement between the two predictions with a maximum difference of

12% after the channel's length x/H=.5 (see Table 4.1.4). Moreover, the

present local Nusselt number curve approaches the analytical fully-

developed value of 7.54 downstream.

The second heat transfer validation run has constant and different

wall temperatures, where the upper plate heats the fluid while the lower

plate cools it. Figure 4.1.4a shows the results of the developing

temperature profiles along 5 axial locations from the entrance to the fully-

* 72
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equal and constant wall temperatures at Re0=100 [SI-2]:
a) Temperature profiles at different developing axial locations.
b) Comparison of the present average heat transfer coefficient

with data from Hwang [1973].
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a) Temperature profiles at different developing axial locations.
b) Comparison of the present developing local Nusselt number

with the theoretical, fully-developed value (NU[,=4.0).



developed downstream region. The developing temperature profiles began

uniformly and then as the input heat flux from the upper wall balanced

with the heat flux ejected into the lower wall, the temperature profile

transformed into a fully-developed diagonal linear line with the end-points

equal to the upper and lower wall temperatures. In Figure 4.1.4b, the local

Nusselt number curve is plotted and the curve approaches the fully-

developed theoretical value of 4.0.

Steady Thermally Expandable Flows:

For the thermally expandable flows, the work done by Schade and

McEligot [1971] is used as the comparison reference. In their paper, the

predictions of the fluid properties were determined by the ideal gas law,

the viscosity power law and the conductivity power law. These equations

are defined in Chapter 2 (eqs. 2.9, 2.10 and 2.12) with the a and p values

listed in Table 2.1 for air.

Two Reynolds numbers, 144 and 2000, were chosen for this extensive

validation study, and the fluid was assumed to have the properties of air

and four TW/TQ ratios (.5 cooling, 1.0 incompressible, 2.0 and 5.0 heating)

were examined for each ReQ. The resulting comparisons are shown in

Figures 4.1.5 to 4.1.7.

In Figures 4.1.5a (ReQ=144) and 4.1.5b (Re0=2000), the local apparent

friction is compared with data from Schade and McEligot at TV/TQ=1.0

(incompressible), 0.5 and 2.0 (thermally expandable). The present

* 7?
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Figure A.1.5: Local apparent friction comparison of steady flow in the channel
with data from Schade & McEligot [1971] at different wall/inlet
temperature ratios, T^/T^l.O (incompressible), 0.5 and 2.0
(thermally expandable):
a) Re =144 [SI-4, ST-1, ST-2].
b) Re0=2000 [SI-5, ST-4, ST-9].
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predictions suggest an increase in friction as the fluid is heated while a

decrease is observed when cooled; this observation corresponds to Schade

and McEligot's findings. This friction behavior is directly related to the

increase in viscosity as the temperature of the gas rises and vice versa.

Such variation in friction can only be recorded when the fluid properties

are allowed to vary; whereas for incompressible flows, a single friction

curve would have been generated regardless of the wall/inlet temperature

ratio. A quantitative comparison revealed that the present friction

predictions compared well with data from Schade and McEligot [1971]

especially at the higher ReQ (2000), (see Table 4.1.5).

The wall and bulk-mean temperature ratios versus the normalized

axial locations are plotted in Figures 4.1.6a (Re0=144) and 4.1.6b (Re0=2000).

Again, the comparisons with data from Schade and McEligot are in excellent

agreement, even at high heating of TV/T0=5.0.

The local Nusselt number comparison at wall/inlet temperature ratios

of 1.0 (incompressible), 0.5 and 2.0 (thermally expandable) are shown in

Figures A.1.7a (Re0=144) and 4.1.7b (Re0=2000). Notice that the Nusselt

number curve increases as a result of a higher wall/inlet temperature ratio

and the opposite effect is shown for cooling. This behavior is caused by

the fluid's conductivity increase with the temperature rise which offers

less thermal resistance against heat flow into the fluid. Quantitative

comparison with Schade and McEligot's data resulted in an agreement

within a 5.0% difference (see Table 4.1.5).



Table A. 1.5: Comparison of the predictions for steady, thermally expandable flow
between the present and the data from Schade & McEligot [1971].
[ST-1, ST-2, ST-4, ST-9]

Re.

144

2000

T./T.

0.5

2.0

0.5

2.0

V

.01

.05

.10

.20

.01

.05

.10

.20

.01

.02

.05

.01

.02

.05

fw * Re. / 24.0

Schade
••

1.40

.872

.806

.841

2.49

1.40

1.17

1.05

1.48

1.14

.872

2.49

1.90

1.40

Present

1.68

.911

.874

.944

2.69

1.31

1.12

1.01

1.54

1.18

.883

2.45

l.fll

1.35

Diff.

(%)

13.5

4.5

8.4

12.2

8.0

-6.4

-4.3

-3.8

4.0

3.5

1.3

-1.8

-4.7

-3.6

T. / T»

Schade
••

.541

.609

.676

.776

1.70

1.37

1.19

1.06

.541

.561

.609

1.70

1.58

1.37

Present

.548

.621

.690

.798

1.65

1.34

1.17

' 1.05

.545

.568

.619

1.68

1.56

1.36

Diff.

(%)

1.3

2.0

2.1

2.8

-2.9

-2.2

-1.7

-0.9

0.7

1.2

1.6

-1.2

-1.3

-0.7

Nu»

Schade
*•

10.0

7.12

7.05

7.21

11.2

8.11

7.81

7.62

10.0

8.22

7.12

11.2

9.27

8.11

Present

10.3

7.42

7.40

7.49

11. 0

8.01

7.80

7.68

10.3

8.55

7.43

10.8

9.09

8.06

Diff.

(%)

3.0

42

5.0

3.9

-1.8

-1.2

-0.1

0.8

3.0

4.0

4.4

-3.6

-1.9

-0.6

Note: •• - Scbade It UcEligot [1971] used the Power Laws for properties variations.



Steady Compressible Flows:

When dealing with the steady nigh velocity flow, previous

investigators mainly studied external supersonic flow or subsonic flow

over a flat plate or a cross section of an air foil. To the author's

knowledge, no internal subsonic compressible flow through parallel plates

was published. Hence, the results in this segment are new findings for

internal compressible flows.

Ensuring the code generates accurate compressible solutions,

validation runs were established at the fixed Re0=2000 and M=0.25 tested

under four different wall/inlet temperature ratios. Note that when dealing

with compressible flow, the stagnation enthalpy or the stagnation

temperature (since C is assumed constant) is taken as the thermal energy

reference of the fluid. By setting the inlet fluid stagnation temperature

equal to 300K, the four different wall temperatures (note: the static wall

temperature is equivalent to the stagnation wall temperature due to zero-

velocity at the wall) were set constant at 294K and 298K (fluid cooling,

cases A and B, respectively), 300K (no heat transfer, case C) and 302K

(fluid heating, case D). The static and stagnation temperature profiles are

presented in Figures 4.1.8a to 4.1.8d where each figure represents

solutions at a specific streamwise location: a) x/H=1.10, b) x/H=5.16, c)

x/H=19.9 and d) x/H=59.7.

The present computer code handled the static temperature as one of

the primitive variables (see eq. 2.5); therefore, the direct results from the

energy equation are static temperature solutions which are plotted as solid

et



302

300-1

g- 298

<U
3 296_>

a
0) 29*

290

233

0.0

300K

T.
'A - 294K

B - 298K
C - 300K
D - 302K

SOLID LINE - Static Temperature
DASHED LIKE - Stagnation Temperature

0.1 0.2 0.2 0.4 0.5

Figure A.1.8:

302

300

^•298
0)
s_
D296

-_i
CO
^294
cu

I292
E-

290

288

—S.16

0.0

r, - 300K

'A - 294K
B - 298K
C - 300K
D - 3021

SOLID LINE - Static Temperature
DASHED LINE - Stagnation Temperature

0.1 0.2 0.3 0.4 0.5

Comparison between static and stagnation temperature distribution
in the channel at high-velocity (M=.25) steady flow for a fluid
with Pr=1.0 [SC-1 to SC-4]:
a) x/H=1.10.
b) x/H=5.16.



3Q2i

A • 294K
B - 298K
C - 300K
D - 302K

SOLID LIKE - Static Temperature
DASHED LINE - Stagnation Temperature

302-

300-

298

D296_j
cd
^294
Q.

I292

E-
290

288

A - 294K
B - 298K
C - 300K
D - 302K

SOLID LINE - Static Temperature
DASHED LINE - Stagnation Temperature

0.0 0.1 0.2 0.3
X/H

0.4

Figure 4.1.8: (cont.)

c) x/H*19.9.
d) x/H=59.7.

0.5



lines in figure A.l.Sa to A.l.Sd. Notice for all four TV/TQ ratios examined,

the static temperature results (solid lines) gradually decreased in value

with respect to the axial length. By intuitive observation, one would

conclude that there was fluid energy loss into the wall at all four of the

wall/inlet temperature ratios studied. However, by close examination of the

temperature gradients at the wall suggested otherwise; gradients for cases

A and B indicate negative heat flux to the fluid (cooling), case D revealed

a positive heat flux to the fluid (heating), while case C had a zero wall

temperature gradient hinting no heat was transferred. The same

conclusions can also be derived by viewing the stagnation temperature

curves represented as the dashed lines in the plots.

As explained in Chapter two, the difference between the static and

stagnation temperature curves is that the static temperature measures only

the thermal energy in the fluid while the stagnation temperature accounts

for the total energy (thermal and kinetic energy). Whereas, in the

incompressible and thermally expandable fluid assumptions, the thermal

energy outweighs the kinetic energy. The two types of energy in the high

velocity compressible flow are comparable. For this very reason, the

decrease of static temperature with respect to the axial length was caused

by the conversion of thermal energy into kinetic energy, and if the static

temperature was examined alone, it could have led to a false conclusion on

the heat flux direction. This validation analysis agrees with the similar

qualitative findings for high speed external flow over a flat plate [Kays

and Crawford, 1980].

* et



The main objective of this thesis is to explore the fluid

compressibility effects on internal flows as compared with the

incompressible and thermally expandable assumptions. The following study

examines the behavior of the apparent friction factor and the heat transfer

coefficient under various Mach number flows. The fluid air was selected

for the investigation with the ReQ fixed at 2000. Two sets of steady flow

with heat transfer were performed, one set on fluid heating (T^/r^l.5) and

one set on fluid cooling (T^/r^.67). Five fluid property models were

considered: a) incompressible; b) thermally expandable; c) compressible,

M=.05; d) M=.10 and e) M=.25.

The predictions of the apparent friction are plotted in Figure A.1.9a

(for the heating case) and Figure A.1.9b (for the cooling case). As

expected, substantial differences exist between the incompressible and

thermally expandable predictions. For the T^/r^l.5 heating case, the

thermally expandable run predicted around 12.5% higher in friction than

the incompressible results throughout the channel; while for the T /T =.67

cooling case, about 15.5% lower was found (see Table A.1.6). As noted in

the previous thermally expandable flow discussion, this behavior is

primarily caused by the temperature dependence of the fluid viscosity (eq.

2.11).

Since thermally expandable flow is actually compressible flow with the

Mach number assumed as zero, the friction factor comparison with

compressible flows at low Mach numbers shows marginal differences. For

both fluid heating and cooling studies, thermally expandable results differ
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Table A.1.6: Steady apparent friction comparison between incompressible,
thermally expandable, and compressible air flow for Re =2000 and
different Mach numbers [SI-6, SI-8, ST-5, ST-8, SC-5 to SC-10].

T,/T.

1.5

.667

x.*

.02

.04

.06

.08

.02

.04

.06

.08

F.pf*Re,/24.0

Inc.

1.449

1.149

1.051

1.019

1.449

1.149

1:051

1.019

I.E.

1.662

1.323

1.199

1.145

1.258

0.993

0.906

0.881

Mach No.

.05

1.665

1.327

1.203

1.149

1.259

0.994

0.908

0.882

.10

1.675

1.339

1.215

1.161

1.262

0.998

0.911

0.886

.25

1.762

1.449

1.344

1.309

1.288

1.027

0.942

0.919

Diff. from I.E. (%)

Inc.

-12.8

-13.2

-12.3

-11.0

15.2

15.7

16.0

15.7

Mach No.

.05

0.2

0.3

0.3

0.3

0.1

0.1

0.2

0.1

.10

0.8

1.2

1.3

1.4

0.3

0.5

0.6

06

.25

6.0

9.2

12.1

14.3

2.4

3.4

4.0

4.3

Table 4.1.7: Steady Nusselt number comparison between incompressible,
thermally expandable, and compressible air flow for Re =2000 and
different Mach numbers [SI-6, SI-8, ST-5, ST-8, SC-5 to SC-10].

T./T.

1.5

.667

X.*

.02

.04

.06

.08

.02

.04

.06

.08

Nub

Inc.

8.819

7.968

7.820

7.798

8.819

7.968

7.820

7.798

I.E.

9.008

8.183

8.027

7.977

8.563

7.680

7.520

7.510

Mach No.

.05
9.017

8.194

8.041

7.994

8.560

7.676

7.516

7.505

.10

9.044

8.228

8.083

8.046

8.552

7.666

7.504

7.491

.25

9.273

8.533

8.505

8.620

8.495

7.593

7.411

7.382

Diff. from I.E. (%)

Inc.

-2.1

-2.6

-2.6

-2.2

3.0

3.8

4.0

3.8

Mach No.

.05

0.1

0.1

0.2

0.2

-0.1

-0.1

-0.1

-0.1

.10

0.4

0.5

0.7

0.9

-0.1

-0.2

-0.2

-0.3

.25

2.9

4.3

6.0

8.1

-0.8

-1.1

-1.4

-1.7

Note:
Inc. - Incompressible
T.E. - Thermally Expandable
Mach No. - Compressible flow at the given Mach number



less than 1.5% when compared with compressible flows at Mach numbers

below .10 . However as the Mach number increases to .25, the compressible

friction factors surpass the thermally expandable predictions regardless of

the wall/inlet temperature ratios; Table 4.1.6 discloses the differences that

were as high as 14.3% (at Xfl*=.08 and T^/r^l.5).

Next, the Nusselt number predictions are plotted in Figure 4.1.10a

(heating) and Figure 4.1.lOb (cooling). Similar behaviors as found in the

friction factor apply to the Nusselt number except the differences between

compressible and thermally expandable results are lower in percentage

magnitude (see Table 4.1.7).

Via this steady compressible flow study, the following observation

was noted. For low Mach number flows (below M=.10), the thermally

expandable fluid assumption predicts excellent results as compared to the

actual compressible flow. However, as the Mach number of the flow

increases (above M=.25), the thermally expandable predictions will no longer

be valid to model such high-velocity compressible flow.

Pulsating Flows

With the preliminary steady flow investigation conducted and the

code validated, the next research stage implements the time-dependent

terms into the governing equations. In this section, the periodic pulsating



unsteady flow is examined in detail. In part, the present pulsating

incompressible and thermally expandable results were presented and

published at the fourth International Symposium on Transport Phenomena

in Heat and Mass Transfer at Sydney, Australia [Ibrahim and Kwan, 1990].

Pulsating Incompressible - Hydrodynamically Developing Flows;

The code modifications for unsteady flow are first checked with the

incompressible pulsating results from Siegel and Perlmutter [1962]. The

pulsating flow boundary conditions described in Chapter two are similar to

the boundary conditions employed by Siegel and Perlmutter, except they

applied the sinusoidally pulsating pressure gradients at the channel's inlet

rather than the pulsating velocity (eq. 2.14). Ensuring the two inlet

velocity matches, Siegel and Perlmutter's equations were used to derive the

present imposed velocity fluctuation amplitude, $. The ijr's are listed in

Table 4.2.1 for various Valensi numbers with the imposed pressure gradient

fluctuation amplitude equal to one.

The predicted phase angle between the axial pressure gradient and

the mean velocity are compared between the present work versus the

closed form incompressible solution given by Siegel and Perlmutter [1962]

in Table 4.2.2. For the low and high Valensi numbers considered, the

comparison shows excellent agreement.

At the fixed Reref=2000, the Figures 4.2.1a (o*=0.08) and 4.2.1b

(o =32.0) illustrate the fully developed, normalized fluctuating velocity



Table A.2.1: Parameter f used in determining the inlet pulsating velocity
conditions (eq. 2.14) for different o to match the conditions
used by Siegel & Perlmutter [1962] [PI-1 to PI-4],

u'

0.08

8.0

32.0

200.0

If

1.0000

0.7775

0.2984

0.0543

Table 4.2.2: Comparison between present work and data from Siegel &
Perlmutter [1962] on the phase angle difference between cross-
sectional average velocity and axial pressure gradient
(incompressible pulsating flow, fully developed) [PI-1 to PI-4].

um

0.08

8.00

32.0

200.0

Phase Angle Difference
(degrees)

Siegel & Perlmutter
[1962]

0.0

38.5

70.5

63.5

Present

0.0

38.7
71.0
83.1
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developed, incompressible pulsating flow, Re|effi=2000):
a) w*=0.08, f=1.00
b) o*=32.0, f=0.298
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versus the normalized distance from the wall. The figures are comparisons

between the present work and data from Siegel and Perlmutter; excellent

agreement was obtained.

A study of the developing velocity profile for pulsating flow was

carried out for Rerej=2000 and <•> =200. Figures 4.2.2a to 4.2.2c show the

predicted normalized fluctuating velocity versus normalized distance from

the wall at three different axial locations. An overshoot has been noticed

in the velocity profile near the duct inlet which dissipates downstream.

This observation is similar qualitatively to Creff's et.al. [1983,1985] findings

for pulsating flow in circular tubes.

Pulsating Incompressible - Thermally Developing Flows:
(Slug Flow Approximation)

Figures A.2.3a and 4.2.3b show the predicted Nusselt number versus

the normalized axial distance comparing the present work with data from

Siegel and Perlmutter [1962] (Slug flow approximation). The Valensi

numbers considered are 0.08 (Figure 4.2.3a) and 32.0 (Figure 4.2.3b). It

should be noted that Figure A.2.3a shows the instantaneous Nusselt number,

while Figure 4.2.3b shows the fluctuating Nusselt number (instantaneous

minus steady state value). The figures clearly illustrate that the

agreement between the present work and the closed form solution for

thermally developing with slug flow approximation is excellent. It can be

seen from the figures that, at a low Valensi number, the Nusselt number

decreases monotonically as x increases (at all values of o>t - see Figure
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(incompressible with pulsating slug flow approximation,
ReMan=2000, Pr=0.72):
a) Instantaneous Nusselt number, o> =0.08, ^=1.00 [PI-1].
b) Fluctuating component of the Nusselt number, o> =32.0,

f=0.298 [PI-3].



4.2.3a); accordingly, the quasi-steady approximation can be applied. As the

Valensi number increases the fluctuating Nusselt number takes a complex

shape in its variation with x or time. The quasi-steady approximation can

only be applied close to the duct inlet.

Pulsating Simultaneously Developing Flows (Variable Fluid Properties);

In this segment, new results will be presented for thermally and

hydrodynamically developing flow for incompressible, thermally expandable

and compressible fluid assumptions. The effects of variable fluid

properties and fluctuating frequencies (Valensi number) on the pulsating

flow results are discussed. The following parameters are fixed for the rest

of the investigation in this pulsating flow solution section: a) Reref=2000, b)

air is the fluid, and c) i|r=1.0 (50% of the mean velocity value).

Figures 4.2.4a to A.2.Ac show the mass flux variation in the channel

at different o>t. Figure 4.2.4a illustrates the results for incompressible flow

at any o value. Notice the inlet mass flux is always equivalent to the exit

mass flux at any instant of ot. This behavior is due to the constant

density restriction applied by the incompressible fluid assumption; the same

conclusion was observed for compressible flow at a low Valensi number

(<i> =0.08). But as the Valensi number increases, the instantaneous mass flux

at the two ends of the duct is no longer equal for variable property flows.

The viscous damping of the fluid reduces the amplitude of the unsteady

mass flux fluctuation downstream (see Figures 4.2.4b and 4.2.4c).
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Accordingly, Table A.2.3 presents the Amplitude of the exit mass flux

fluctuation for the three o> (.08, 32.0 and 100.0) examined with the inlet

fluctuation amplitude set equal to 1.0 . The following pulsating flow

observations were gathered from Figures A.2.4a to 4.2.Ac and Table A.2.3:

a) For incompressible flows, the instantaneous mass flux is

identical at any axial location which means any changes or

disturbance in the inlet mass flux is immediately transferred

throughout the channel. This is true at any Valensi number for

pulsating incompressible flow.

b) For thermally expandable and compressible flows, the

fluctuating mass flux signal at the inlet is delayed downstream by

the fluid density changes. Also the amplitude of mass flux

fluctuation decreases with respect to the axial distance caused by

the fluid viscous damping. These results suggest that if the channel

was sufficiently long, the damping effect of the fluid will eventually

eliminate the fluctuating component of the pulsating flow; hence, the

flow will become steady-state downstream.

c) Results in Table A.2.3 suggest the higher the Valensi number

(dimensionless frequency) of the pulsating flow, the faster the

fluctuating component diminishes. This phenomenon is similar to the

behavior of sound wave, where lower frequency waves can travel

further in distance than higher frequency waves at the same

amplitude of fluctuation.

f B



Table 4.2.3: Amplitude of the fluctuating mass flux at the channel's exit for
different u (thermally expandable pulsating flow, L/H=70.0,
ReMan=2000, Pr=.72, T/T0=1.2, f= -1, PT-3, PT-S].

«•

.08

32.0

100.0

( Ge,it/G«f)miu

1.500

1.489

1.439

(GejU/G,,,),,^

0.500

0.527

0.555

Amplitude of the
Exit Mass Flux

Fluctuation

1.000

0.962

0.884

Table 4.2.4: Comparison between the time-averaged pulsating friction with
the steady friction at different wall/inlet temperature ratios
(Rejgan=2000, Pr=.72) [PI-5 to PI-7, PT-1 to PT-6].

T,/T.

1.0
nc.)

1.2
(T.E.)

1.4

X •

.005

.010

.020

.040

.080

.005

.010

.020

.040

.080

.005

.010

.020

.040

.080

Steady
f rtrt- 1 C*«

2.619
1.914
1.449
1.149
1.019

2.785
2.037
1.543
1.223
1.078

2.931
2.143
1.624
1.291
1.123

Time-Averaged Local F*

<u*=.08
2.589
1.890
1.434
1.152
1.031

2.753
2.012
1.521
1.208
1.064

2.894
2.116
1.598
1.260
1.095

CJ«=32

2.590
1.891
1.433
1.142
1.012

2.753
2.011
1.515
1.191
1.037

2.893
2.112
1.587
1.238
1.065

««=100

2.599
1.898
1.424

' 1.098
0.936

2.754
1.996
1.470
1.110
0.962

2.888
2.083
1.518
1.137
0.992

Diff. from the Steady F*

««=.08
-l.l
-1.3
-1.0
0.3
1.2

-1.1
-1.2
-1.4
-1.4
-1.3

-1.3
-1.3
-1.8
-2.4
-2.5

W = 32

-1.1
-1.2
-1.1
-0.6
-0.7

-1.1
-1.3
-1.8
-2.8
-3.8

-1.3
-1.4
-2.3
-4.1
-6.2

GJ«=100

-0.8
-0.8
-1.7
-4.4
-8.2

-1.1
-2.0
-4.7
-9.4

-10.8

-1.5
-2.8
-6.5
-11.9
-11.7

Note: f» - 4W • Re, / 24
lac. — Incompressible
T.E. - Thermally Expandable



Figures 4.2.5a to 4.2.5c present the predicted local time-averaged

apparent friction versus the normalized axial distance with o=0.08 (Figure

4.2.5a), 32.0 (Figure 4.2.5b) and 100.0 (Figure 4.2.5c). The pulsating results

are plotted with the steady results as reference. In addition, Table 4.2.4

shows the numerical comparison between the steady state and the local

time-averaged apparent friction under the incompressible and thermally

expandable models. For &> =0.08 and 32.0, the difference between the steady

state friction and the local time-averaged friction is within 5% for the

three T^Tp (1.0, 1.2 and 1.4) ratios. The results lead to the conclusion

that these low frequency flows are still close to quasi-steady. However,

at a Valensi number equal to 100.0, the difference between the steady state

friction and the local time-averaged friction increases to about 12%

downstream. Only the near entrance region can be modeled by the quasi-

steady assumption.

Comparison of the local time-averaged friction between thermally

expandable and compressible models is presented in Figures 4.2.6a to 4.2.6c.

At the lower frequencies (<•> =0.08 and 32.0), the difference is minimal (see

Table 4.2.5), but at the higher frequency (o =100.0) the difference between

the two fluid models reached as high as 7.6% downstream,

Figures 4.2.7a to 4.2.7c show the predicted normalized mean fluid

temperature versus time at different axial locations and o =0.08 (Figure

4.2.7a), 32.0 (Figure 4.2.7b), 100.0 (Figure 4.2.7c). As shown in the figures,

the temperature fluctuation increases as the fluid moves downstream, while

the amplitude of these temperature fluctuations decreases as the Valensi
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Table 4.2.5: Comparison of the time-averaged pulsating friction between
predictions from thermally expandable and compressible flows
(Rewan=2000» air) [P"1"-1' PT~3» PT-5> pc~l to PC-3].

«•

.08

32

100

T./T.

1.2

1.2

1.2

Mach
no.

.05

.05

.02

X »
r«f

.005

.010

.020

.040

.080

.005

.010

.020

.040

.080

.005

.010

.020

.040

.080

Time-Averaged Local F*

T.E.

2.753
2.012

1.523

1.210

1.066

2.753

2.011

1.515

1.191

1.037

2.754

1.996

1.470

1.110

0.962

Comp.
2.756

2.015
1.526

1.212

1.068
2.758

1.999

1.496

1.178

1.015

2.755

1.996
1 462

1.077

0.889

Diff. between Comp.
and T.E. (55)

0.1

0.1

0.2

0.2

0.2

0.2

-0.6

-1.3

-1.1

-2.1

0.0

0.0

-0.5

-3.0

-7.6

Note: F* = f^, • Re. / 24
T.E. - Thermally Expandable
Comp. - Compressible
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number increases. Moreover, for the same first order harmonic flow field,

the temperature field contains only low order harmonics at low Valensi

numbers (see Figure 4.2.7a); while at higher Valensi numbers (see Figures

4.2.7b and 4.2.7c), distortions of the temperature fluctuations suggest

higher order harmonics are present. The trend of the temperature field

is similar for both incompressible and thermally expandable models, except

the incompressible model under-states the temperature. Table 4.2.6 lists

the numerical comparison of Figures 4.2.7a to 4.2.7c.

Figure 4.2.8 shows similar plots of mean temperature fluctuation as

presented in Figure 4.2.7 except the predictions are from thermally

expandable and compressible fluid models. The trend of the temperature

field is identical for both models with minimal difference.

The effect of the Valensi number towards the heat transfer of the

pulsating flow is examined and presented in Figures 4.2.9a (o> =0.08), 4.2.9b

(o =0.08) and 4.2.9c (o =0.08). The figures plot the local time-averaged

Nusselt number together with the corresponding steady Nusselt number

results at different wall/inlet temperature ratios. The comparison of the

time-averaged results versus the steady Nusselt number results shows

increased differences as the Valensi number increases, however, even at

the high o =100.0, the maximum difference downstream is only 1.2% (see

Table 4.2.7). Thus, the steady heat transfer predictions are good

estimations of the time-averaged pulsating heat transfer results even at

high Valensi numbers.

Illustrated in Figures 4.2.10a to 4.2.10c are heat transfer solutions

/or



Table 4.2.6: Periodic location and amplitude of the maxima cross-sectional
mean fluid temperature [PI-5 to PI-7, PT-2, PT-A, PT-6].

U"

.08

32

100

T./T.

1.4

1.4

1.4

x/H

1.1
5.2

20.0
45.0
60.0
1.1

5.2

20.0
45.0
60.0
1.1

5.2

20.0
45.0
60.0

Maximum

e—
Incomp.

1.060

1.118

1.206

1.287

1.318

1.060

1.118

1.203

1.271

1.296

1.060

1.117

1.188

1.236

1254

I.E.

1.068

L 1.130

1.221

1.305

1.336

1.068

1.130

1.218

1.293

1.319

1.068

1.130

1.208

1.259

1.278

Velocity Phase Angle, ot
at the Maximum 0.̂ .

(degrees)

Incomp.

270

270

270

270

270

270

280

300

330

340

275

295

350

45

75

T.E.

270

270

270

270

270

270

275

295

320

335

275

295

345

40

70

Notes: Incomp. - Incompressible
T.E. - Thermally Expandable
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Figure A.2.9: Time-averaged Nusselt number in the channel at different
wall/inlet temperature ratios: T^/T^l.O (incompressible), 1.2 and
l.A (thermally expandable); (Reaeaa=2000, Pr=0.72, ^r=
a) o>*=0.08 [PI-5, PT-1, PT-2].
b) o>'=32.0 [PI-6, PT-3, PT-4].
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Table A.2.7: Comparison between the time-averaged pulsating Nusselt number
with the steady Nusselt number at different wall/inlet
temperature ratios (Re^^OOO, Pr=.72) [PI-5 to PI-7, PT-1 to
PT-6].

T./T.

1.0
(Inc.)

1.2
(T.E.)

1.4
(T.E.)

X »
rrf

.02

.04

.06

.08

.02

.04

.08

.08

.02

.04

.08
08

Steady
Local Nuk

8.82
7.97
7.82
7.80

8.92
8.08
7.93
7.89

8.98
8.15
8.00
7.95

Time-Averaged Local Nuk

6j»=.08

8.83
8.02
7.86
7.81

8.91
8.11
7.94
7.89

8.97
8.17
7.99
7.94

u«=33

8.82
8.02
7.86
7.82

8.91
8.11
7.95
7.90

8.97
8.17
8.00
7.95

<u'=100

8.84
7.99
7.79
7.72

8.92
8.09
7.91
7.84

8.98
8.17
7.99
7.92

Diff . from the Steady Nu ,

u*=.08

.11%
.63%
.51%
.13%

-.11%
.37%
.13%
0.0%

-.11%
.25%

-.12%
-.13%

<u'=32

0.0%
.63%
.51%
.26%

-.11%
.37%
.25%
.13%

-.11%
.25%
0.0%
0.0%

<D«=100

.23%

.25%
-38%
-1.2%

0.0%
.12%

-.25%
-.63%

0.0%
.25%

-.12%
-.38%

Note: Inc. -
T.E. -

Incompressible
Thermally Expandable
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Table 4.2.8: Comparison of the time-averaged pulsating Nusselt number
between predictions from thermally expandable and compressible
flows ( R e Z O O O , air) [PT-1, PT-3, PT-5, PC-1 to PC-3],

CJ*

.08

32

100

T./T.

1.2

1.2

1.2

Mach
no.

.05

.05

.02

X,**

.010

.020

.040

.080

.010

.020

.040

.080

.010

.020

.040

.080

Time-Averaged Local Nuk

I.E.

10.59

8.912

8.107

7.889

10.59

8.911

8.109

7.901

10.60

8.922

8.094

7.839

Comp.

10.59

8.907

8.099

7.878

10.55

8.888

8.091

7.871

10.58

8.893

8.042

7.786

Diff. between Comp.
and I.E. (%)

0.00

0.06

0.10

0.14

0.04

0.28

0.22

0.38

0.19

0.33

0.65

0.68

Notes: I.E. - Thermally Expandable
Comp. - Compressible



of the pulsating flow influenced by the effect of fluid compressibility

under different pulsating frequencies. As listed in Table 4.2.8, similar

Nusselt number predictions were found by the thermally expandable model

and the compressible model (Mach number of .02 and .05).

A couple of major observations are identified from this pulsating flow

study. The fluid compressibility has a direct effect on the friction factor

and there is a secondary effect on the heat transfer coefficient (see Table

4.2.5 and 4.2.8). At a range of the Valensi number, the steady flow model

provides good estimations for the time-averaged pulsating Nusselt number;

whereas, for the time-averaged pulsating friction factor, close estimations

by the steady flow model is limited to pulsating flow at the low Valensi

number.

Oscillating Flows

The examination of the oscillating flow is divided into two segments.

The first segment validates the code by comparing results with data from

the existing literature on the incompressible model, then it leads into the

investigation of compressibility effects on the friction and heat transfer

coefficients. The second segment predicts friction and heat transfer

results under the NASA Space Power Research Engine (SPRE) boundary

conditions by the incompressible and compressible models. The comparison

* ///



of the two models will be presented and discussed.

Oscillating Flow (<j*=32.0 and Reinaa=2000);

Kurzweg [1985] developed an analytical equation to calculate the

velocity profile existing in the central channel for incompressible, laminar,

oscillating flow conditions. A validation incompressible run was made at

c> =32.0 and Re^^OOO. The agreements between the present velocity profile

and predictions from Kurzweg are excellent, as shown in Figure 4.3.1. The

velocity profile pattern is symmetrical around the zero velocity which

signifies that the flow is fully-developed.

Figure 4.3.2 illustrates the pressure in the channel at various o>t.

Besides the entry effect at both ends of the channel, the pressure

fluctuation is symmetrical around the normalized pressure value of zero;
/99o

the same qualitative finding was observed by Wolf [****] in his oscillating

flow study for tubes.

With similarity to the pulsating flow, a lead phase angle for the

pressure gradient over the velocity exists. Table 4.3.1 reveals the present

lead phase angle as 68 degrees for the <o =32.0 and Rem=2000; this is

compared to the 66 degrees found by Kurzweg [1985] at the same

conditions. Table 4.3.1 also shows the lead phase angle results for the

variable fluid property models. The graphical presentation of the pressure

gradient variation for one oscillating cycle is illustrated in Figure 4.3.3,

and sine wave pressure gradient curves were obtained.



2.0-f

1.5-1

-1.0-

-1.5-

-2.04

,''
-t" ..-*/

-"
— i:

J-
Letters - results from

Kurzweg [1985]
Lines - present results

0.5 0.4 0.3 0.2 0.1 0.0

ttt, degrees:
A
D
G
J

A -
D -
G -
J -

0
90
180
270

.0

.0

.0

.0

B
E
H
K

B
E
H
K

- 30
- 120
- 210
- 300

.0

.0

.0

.0

C
F
I
L

C -
F -
I -
L -

60
150
240
330

.0

.0

.0

.0

Figure 4.3.1: Cross-sectional velocity profiles compared between present
work with data from Kurzweg [1985] (fully-developed,
incompressible oscillating flow, Relu=2000, o> =32.0) [OS-1].



4-

3-

2-

I 0-

• 2 -

•3-

•4 -

wt, degrees: A A A

€"€--€

2 2

2 0 2
2 9 2

B B B 6 7 . 5
O D D 1 5 7 . 5
F-F--F- 2 4 7 . 5
H-tt-H 3 3 7 . 5

0 10 20 30 40 50 60 70

Figure A.3.2: Center-line pressure in the channel at different ot values
(incompressible oscillating flow, ReM1=2000, <o =32.0) [OS-1].



Table 4.3.1: Comparison between present work and data from Kurzweg [1985]
on the phase angle difference between cross-sectional average
velocity and axial pressure gradient (fully-developed oscillating
flow, Re =2000, d>=32.0) [OS-1 to OS-3].

«'

32.0

Phase Angle Difference (degrees)

Kurzweg [1985]
Incomp.

66.

Present

Incomp.

68.

I.E.

65.

Comp.

66.

Notes:
Incomp. - Incompressible
I.E. - Thermally Expandable
Comp. - Compressible (M=.02)

I2O
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The examination of the mass flux indicated similar results as found

in the pulsating flow analysis. For the incompressible model, the

instantaneous mass flux is constant throughout the channel, (see Figure

4.3.4a), while the compressible model indicated a delay of the input mass

flux signal caused by the fluid density variation. Notice also that the

existence of a mass wave front produced by the acceleration portions of

the cycle oscillates through the channel (see Figure 4.3.4b). This wave

front identifies the location of high density compression at any

instantaneous tot caused by the variable flow speed.

The next parameter examined is the time-averaged apparent friction

in the channel. Unlike the pulsating flow where the time-averaged value

is the average value of a complete fluctuation cycle, the time-averaged

value for oscillating flow is defined as the average value of the forward

half of the cycle. As for the reverse half of the cycle, the time-averaged

values are mirror images across the central channel of the forward half

results. Figure 4.3.5 shows the time-averaged friction comparison between

the different fluid property models plotted with the steady incompressible

results as reference. Notice the close agreement between the steady

incompressible results with the time-averaged oscillating friction

predictions. This suggests that the oscillating flow is close to being

quasi-steady. Table 4.3.2a lists the numerical friction values of Figure

4.3.5, and substantial friction difference of about 50% is observed between

the incompressible results and the thermally expandable results. The

friction comparison between thermally expandable and compressible (M=.02)
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models are close in value at the entrance, but diverges downstream at 15%

difference. This frictional analysis expresses the importance to examine

oscillating flow with the variable property models and reveals the limitation

of the incompressible model.

In Figure 4.3.6, the mean fluid temperature versus time is plotted for

two axial locations: one at the central channel and one close to the

entrance. The figure shows two oscillating temperature cycles for every

oscillating velocity cycle which corresponds to other oscillating flow

literature. The minimal difference in mean temperature is observed

between different fluid property models.

Figure 4.3.7 shows the time-averaged local heat flux in the channel

predicted by the different fluid property models. With the wall/inlet

temperature ratio set at 1.2, the heat flux predictions of the thermally

expandable model are about 3% higher than the incompressible model.

Identical time-averaged heat flux results were found between the thermally

expandable model and the compressible model at M=.02 (see Table 4.3.2b).

The same conclusion in the pulsating flow is observed for the

oscillating flow. For variable property flows, the wall/inlet temperature

ratio and the Mach number has a direct effect on the friction factor while

a secondary effect on the heat transfer.
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Table 4.3.2: Comparison of the oscillating flow results between different fluid
property models (Re.^2000, o>*=32.0, 1 /̂̂ =1.2, Helium) [OS-1 to
OS-3]:

a) time-averaged apparent friction.

x«,*

.01

.02

.04

.08

Time-Averaged Local F*

Incomp.

1.738

1.409

1.185

1.037

I.E.

3.283

2.890

2.523

2.026

Comp.

3.279

2.860

2.406

1.725

Diff. from I.E. (%)

Incomp.

-47.0

-51.2

-53.0

-48.8

Comp.

-0.1

-1.0

-4.6

-14.9

b) time-averaged heat flux.

x,.,*

.01

.02

.04

.08

Time-Averaged Local Q*
(• 1000)

Incomp.

.636

.487

.370

.286

T.E.

.651

499

.381

.293

Comp.

.651

.499

.381

.292

Diff. from T.E. (%)

Incomp.

-2.3

-2.4

-2.9

-2.4

Comp.

0.0

0.0

0.0

-0.3

Notes:
Q' = -te*<aexav> ly ,̂
F* = fw • Re, / 24
Incomp - Incompressible
T.E. - Thermally Expandable
Comp. - Compressible (M=.02)



Oscillating Flows (SPRE Boundary Conditions);

The two components under examination are the heater and the cooler

of the NASA Space Power Research Engine (SPRE). In Appendix A-5, the

run numbers OS-4 and OS-5 show the characteristic parameters of the

cooler while the run numbers OS-6 and OS-7 represent the heater. Each

component was solved under the incompressible fluid model and the

compressible fluid model.

Figure 4.3.8 shows the time-averaged local apparent friction of the

heater and cooler compared with the results from the incompressible and

compressible (M=.01) analysis. It can be seen that only a slight difference

existed between the predictions of the two fluid property models. The

same conclusion was found on the comparison of the time-averaged Nusselt

number presented in Figure 4.3.9.

The identical friction and heat transfer results between the

incompressible and compressible models is caused by the characteristic

parameters used. In the present analysis, the compressibility of the fluid

is limited to the dependence of the temperature change and the flow speed.

Since the wall/inlet temperature ratios are close to one and the Mach

number is at a low .01, the conditions make these oscillating flows ideal

incompressible property models. However, in the actual engine, the fluid

compression and expansion caused by the out-of-phase movement between

the displacer and the power piston will make an impact on the friction and

the Nusselt number, which is not accounted for in this study. This also

confirms the assumption Seume [1988] suggested that compressibility

tzf
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Figure 4.3.8: Time-averaged local apparent friction in the channel at the
SPRE Stirling engine heat exchanger conditions [OS-4, OS-5,
OS-6, OS-7].
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initiated by the flow speed is insignificant compared to the volumetric

change in the expansion and compression spaces. But to model the actual

fluid compressibility caused by the volumetric change requires moving

boundaries which is out of the current code's capacity range.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

The Partially-Parabolized Navier-Stokes equations have been used to

analyze the compressible and unsteady, periodic internal flows. The

computer code has been validated for steady flow conditions, and the

present numerical predictions were in excellent agreement with data

obtained from the Navier-Stokes equations and the boundary-layer

equations reported in the literature.

Upon examining the pulsating flow, the accuracy of the present

numerical code was validated by the comparison with the closed form

solutions from Siegel and Perlmutter [1962]. Excellent agreements were

obtained for the incompressible fully-developed flow conditions and

thermally developing with slug flow approximation.

An interesting observation was made on the mass flux during the

examination of the pulsating flow with variable fluid properties. The

viscous damping of the fluid was diminishing the fluctuating component of

the pulsating flow. Thus, if the channel is sufficiently long, the pulsating
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flow will become steady-state downstream. This is an observation in which

the incompressible model cannot obtain.

Also found in the pulsating flow analysis is that the fluid

compressibility has a stronger effect on the friction factor value than on

the heat transfer coefficient (see Table 4.2.5 and 4.2.8). Furthermore, the

difference between the steady state Nusselt number and the local time-

averaged Nusselt number is less than 1.2% for the cases considered. This

leads to the conclusion that pulsating flows contribute negligible heat

transfer enhancements compared with the steady flows for the cases

considered (see Appendix A-4).

For the oscillating flow, the present fully-developed velocity profiles

are compared with the analytical results from Kurzweg [1985] at o> =32 and

Re =2000. Excellent agreement was obtained. From the variable property

models where Ttf/r0=1.2, the substantial friction difference of about 50% was

observed between the incompressible results and the thermally expandable

results. This shows the importance to examine oscillating flow with the

variable property models.

For the SPRE conditions, the present code predicted similar friction

and Nusselt number results from the incompressible and compressible

models. However in the present analysis, the compressibility of the fluid

is limited to the dependency of the temperature change and the flow speed,

while neglecting the actual compression and expansion effects produced by

the out-of-phase movement of the piston and the displacer. Further

modification of the present code is needed to simulate the engine



conditions. Perhaps incorporating the moving inlet and exit boundaries

and use of the full Navier-Stokes equations would predict results closer

to the engine conditions. As an ultimate goal, it would be desirable to

extend the present solution procedure to handle turbulent flows.

Finally, two flow visualization videos were generated from the

present solutions. The first video named "Pulsatile Flow Between Parallel

Plates" animates the pulsating flows at three different Valensi numbers: .08,

32.0, and 200.0. The fluid air travels at a mean Reynolds number of 2000

while the amplitude of the velocity fluctuation is half of the mean velocity.

In all cases, the fluid is heated by the constant wall temperature at the

ratio of 1.2 to the inlet fluid temperature.

The second video named "Oscillating Flow Between Parallel Plates"

contains two parts of visualization animations. The first part shows three

different Valensi numbers (.08, 32.0, and 100.0) with the operating maximum

Reynolds number set at 2000. Helium is the selected fluid and is heated

by the constant wall/inlet temperature ratio of 1.2. The second part

contains the oscillating flow animations, at the Stirling engine cooler and

heater conditions. The characteristic parameters are listed in Appendix A-

5.

Both pulsating and oscillating flows utilize a channel with a length

of 70 times the height. Numerical calculations were done at every 5

degrees, hence each cycle is animated by 72 frames of plots. The resulting

parameters examined in both videos were the velocity profile, the

temperature contour, the inlet velocity, the center-line pressure in the



channel, and the apparent friction and Nusselt number; each of these

parameters is, animated with respect to time.

The videos clearly reflect the quasi-steady behavior of the flow when

the Valensi number is low (.08) but this behavior switches to non-quasi-

steady as the Valensi number increases (32.0, 100.0 and 200.0). The videos

also demonstrate the difference between incompressible, thermally

expandable and compressible flows.

lit
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Appendix A-l: Steady Flow Runs (Incompressible)

Run
Number

SI-1

SI-2

SI-3

SI-4

Sl-5

SI-6

SI-7

SI-8

Re.

40

100

100

144

1000

2000

2000

2000

Fluid
(Pr no.)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Grid Size
(x,y)

50 X 91

50 X 91

50 X 91

60 X 40

60 X 40

107 X 29

107 X 29

107 X 29

Wall Temp, 8

2.0

2.0

1.5 (upper)
0.5 (lower)

1.0

1.0

.67

1.0

1.5

Appendix A-2: Steady Flow Runs (Thermally Expandable)

Run
Number

ST-1 ,

ST-2

ST-3

ST-4

ST-5

ST-6

ST-7

ST-8

ST-9

ST-10

Re.

144

144

144

2000

2000

2000

2000

2000

2000

2000

Fluid
(Pr no.)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Grid Size
(x,y)

60 X 40

60 X 40

60 X 40

107 X 29

107 X 29

107 X 29

107 X 29

107 X 29

107 X 29

107 X 29

Wall Temp, 6

0.5

2.0

5.0

0.5

0.67

1.2

1.4

1.5

2.0

5.0



Appendix A-3: Steady Flow Runs (Compressible)

Run
Number

SC-1

SC-2

SC-3

SC-4

SC-5

SC-6

SC-?

SC-8

SC-9

SC-10

Re.

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

Fluid
(Pr no.)

Air (1.0)

Air (1.0)

Air (1.0)

Air (1.0)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Air (.72)

Grid Size
(x,y)

107 X 29

107 X 29

107 X 29

107 X 29

107 X 29

107 X 29

107 X 29

107 X 29

107 X 29

107 X 29

Wall Temp, 8

0.980

0.993

1.000

1.007

0.67

0.67

0.67

1.50

1.50

1.50

Mach No.

0.25

0.25

0.25

0.25

0.05

0.10

0.25

0.05

' 0.10

0.25

/<f3



Appendix A-4: Pulsating Flow Runs

Run
Number
Pl-1
Pl-2
PI-3
Pl-4
PI-5
PI-8
pr-7
PT-1
PT-2
PT-3
PT-4
PT-5
PT-6

PC-1

PC-2

PC-3

u'

0.08

8.00

32.0

200.

0.08

32.0

100.

0.08

0.08

32.0

32.0

100.

100.

0.08

32.0

100.

i>

1.00

.778

.298

.054

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

T./T.

2.0

2.0

2.0

2.0

1.4

1.4

1.4

1.2

1.4

1.2

1.4

1.2.
1.4

1.2

1.2

1.2

Fluid
Properties

Incomp.

Incomp. .

Incomp.

Incomp.

Incomp.

Incomp.

Incomp.

I.E.

I.E.

I.E.

T.E.

I.E.

T.E.

Comp.

Comp.

Comp.

Mach no.

—
—
—
—

—
—

—
—
—
—
—

—
—
0.05
0.05

0.02

Notes: All the above runs have the following parameters
a) Air as the fluid with Pr= 72.
b) x.y-grid is 107 X 29. respectively.

d) Time step is 5 degrees.



Appendix A-5: Oscillating Flow Runs

Run
Number

OS-1

OS-2

OS-3

OS-4

OS-5

OS-6

OS-7

u'

32.0

32.0

32.0

350.0

350.0

88.0

88.0

Re,,,..

2.000

2.000

2.000

30.000

30,000

16.500

16.500

A,

.893

.893

.893

1.22

1.22

2.68

2.68

T./T.

1.2

1.2

1.2

0.956

0.956

1.048

1.048

Fluid
Properties

Incompressible

Thermally Expandable

Compressible

Incompressible

Compressible

Incompressible

Compressible

Mach no.

--

--

.02

__ .

.01

-- --

.01

Notes: All the above runs have the following parameters -
a) Helium as the fluid with Pr=.72.
b) x.y-grid is 107 X 29. respectively.
c) Channel length is L/H=70.0.
d) Time step is 5 degrees.



APPENDIX - B

Explanation of Input Parameters for the Computer Code



This variable list contains the input parameters used by the present
computer code and their explanations. The sequence of these variables
are in the same order as they appear in the READ statement.

HIGHT

THIGHT

HSTEP

XSTEP

FLARE

DMLFCT

LPNS

KPNS

JPNS

NLMT

LPOP

NJ

INV

Channel inlet height.

Total channel height including the wall's thickness. If
the wall's thickness is not considered in the analysis,
set equal to HIGHT.

Step height of the sudden expansion. For Straight
Parallel Plates Channel(SPPC), set equal to 0.0 .

Streamwise location of the step for SPPC, set equal to
0.0 .

Constant for FLARE approximation. Set equal to 0.0 .

Constant used for the set up of the x-grid. Normally,
set equal to 1.01 - 1.20 .

Designates the axial station index (MCOUNT) after
which the governing equations (PPNS or NS) are to be
solved. For most cases, set equal to 1 .

Designates MCOUNT after which the governing
equations need not be solved.

Designates MCOUNT after which Global Iteration in
Space(GIS) is desired. In general, set to 2 .

Safety parameter designating the maximum allowable
MCOUNT, set equal to KPNS.

For external pressure gradient flows, this represents
the number of freestream u-velocity input. For
internal fluid flows, set to 0 .

Total number of grid points in the y-direction inside
the channel.

For external pressure gradient flows, this represents
the number of freestream v-velocity inputs. Set to 0
for internal flows or when no v-velocities are
prescribed.



INT

ZAP1

This represents the number of wall temperature inputs
on the upper or lower boundaries. Set to 0 for
isothermal or constant heat flux boundary conditions.

Output selections: For abbreviated output, set equal to
1 ; for detailed output at each streamwise station, set
to -1 .

GLOBE

TOLERC

XE

PR

CPS

TEST

US

XMUS

RHOS

vw

UREF

TWL

TWU

Beginning cycle number for this run. Set equal to
min.

No longer used.
Tolerance on the streamwise pressure gradient to be
used in secant procedure when estimating the initial
pressure field for the first cycle.

Safety parameter designating the maximum axial
distance in length beyond which no calculation will be
done.

Prandtl number.

Specific heat.

Value used to check for edge of B.L., typically 0.9995
for fully-developed flow and 0.995 for developing flow.

The u-velocity used for nondimensionalization.

The absolute viscosity at the channel's inlet used for
non dimensionalization.

The fluid density at the channel's inlet used for
nondimensionalization.

Normal velocity at the wall. Set equal to 0.0 for no-
slip conditions at the wall.

Freestream u-velocity that will vary with axial
distance, however, US remains fixed. Set equal to the
freest ream value at first axial station.

Wall temperature for the lower isothermal boundary.

Wall temperature for the upper isothermal boundary.
For the symmetrical analysis, set equal to any value.



MIN

MAX

IUPDAT

NPOINT

LTEMP

MP1

MPC(J)

NP1

NWALL

JSTEP

MCSTEP

NTEMP

Beginning CIS. In general, set to 1 .

Final CIS.

Set to 1 if the best known values are used in
evaluating convective coefficients for the pressure
gradients, Fl and F2. Otherwise set equal to 0 . In
general, set equal to 0 .

The number of y-grid points used inside of each
channel wall. If the wall thickness is not considered
in the analysis, set equal to 0 .

Number of x-stations from the inlet for the wall
temperature to reach the desired constant wall
temperature. For constant wall temperature starting
at the inlet, set equal to 0 .

The number of MCOUNTs to be read in to determine
detailed printout stations.

J=1,MP1 . The MCOUNTs of streamwise stations where
detailed printout is desired.

Number of x distance from the inlet to be read in to
determine detailed printout locations.

For asymmetric test cases:
Set to 2 if one-sided differencing is to be used to

evaluate Fl and F2 near wall.
Set to -2 if regular differencing is to be used.

For other geometries (including SPPC):
Set to 1 for one-sided differencing.
Set to -1 for regular differencing.

Grid-point index in y-direction for the first point
below the sudden expansion step. For the SPPC
analysis, set equal to 1 .

Station index (MCOUNT) for the first station
downstream of the sudden expansion step. For the
SPPC analysis, set to 1 .

Set to 1, if the energy equation is to be solved,
otherwise set to 0 . For variable fluid properties, set
NTEMP equal to 1 .



NWALLT

NEXTRP

XP3(J)

NPRINT

LSOR1

LSOR2

LEAD

FAG

Set to 0, if both the upper and lower boundaries are
isothermal.
Set to 1, if the temperatures on both boundaries are
not constant.
Set to >1, if only the lower boundary is NOT
isothermal.
Set to <0, if only the upper boundary is NOT
isothermal.

Set to 1, if extrapolation is to be used to evaluate Fl
and F2 near wall, otherwise set to 0 .

J=1,NP1 . The x-distances from the inlet of the
channel where detailed printout is desired.

Set to 0 if abbreviated output is required when
solving the Poisson equation for pressure. Set to 1
for detailed printout. ZAP, if set equal to 1,
overrides NPRINT and no details are printed.

For the steady flow analysis:
If set to 1, calculation of the beginning CIS (MIN)
starts with solving the Poisson equation. In this
case, the marching sweep for this CIS must have been
already calculated and the results stored on unit 9.
Choice of LSOR1 is related to value of LSOR. Set to 0
for first CIS.
For the unsteady flow analysis:
Set to 0 for the first time cycle.

If set equal to 1, the final CIS (MAX) completes with
the calculation of the Poisson equation for pressure.
If set equal to 0, the final CIS finishes with the
marching integration sweep calculation but the Poisson
equation is not solved.

This variable specifies the singularity condition of the
u-velocity at the point just ahead of the leading edge
of the plate. When set to 0, this u-velocity is zero.
When set to 1, this u-velocity is set to UREF. In the
present study (SPPC), LEAD is set to 0.

The over-relaxation factor used on the pressure
update after solving the Poisson equation by the
method of SOR by points. Values used range from 1.5
to 1.97 .



TOL

XKWL

FROMINLT

RC

ERRMAX

NIRROT

IRROT

NDOWN

NOBLK

No longer used.
When positive, this represents tolerance on the total
mass flow rate when making block adjustments on
pressure. This option used only after convergence
has become mon tonic. If block adjustments are not
required, set to any negative value. Make sure TOL
is small when positive to avoid imposing oscillations.

NBLK

The thermo-conductivity of the walls (Pr$0^). If the
analysis does not include the walls, set equal to PR.

This variable is for print-out purpose only. Set to
the x-value where the current results are started
from. In general set this equal to 0.0 .

Critical mesh Reynolds number. Set to 1.9 .

Mass convergence criteria. Set to around .10 .

Set to 2 .

Set to 0 if the freestream u, v-velocities are specified.
Set to 1 if only freestream u values are specified and
an irrotational outer-edge boundary condition is to be
used on the v-velocities. The second option does not
work well.

Specifies the downstream pressure boundary condition.
If set to:
0 - no downstream boundary condition is imposed on

the pressure.
1 - constant axial pressure gradient condition is

imposed.
-1 - constant normal pressure gradient condition is

imposed.

When set to 0, the pressure block adjustment is used
in all the CIS. If set to 1, the pressure block
adjustment is used in the CIS up to the iteration
specified in NBLK, after that no pressure block
adjustment is used. For the variable properties
analysis, set NOBLK to 1 .

The number of CIS that the pressure block adjustment
is used. NBLK is ignored when NOBLK is set to 0 .



NSUTH This variable specifies the method used to determine
the viscosity of the fluid. If set to 1, the
Sutherland's Law is used. If set to 0, the Power Law
is used. For the constant properties case, set NSUTH
to 0 .

NCOMP

XBEGIN

SUTH

For compressible flow, set equal to 1 .
For thermally expandable or incompressible flow, set
equal to Q .

This variable represents the x coordinate value at
which the calculation begins.

The Sutherland's constant in degree Kelvin used to
determine the value of the fluid viscosity. (Example:
for air SUTH=110.4 K) SUTH is ignored when NSUTH
is set to 0 .

ALPHA The exponent a in the Power Law is used to determine
the fluid viscosity. Set ALPHA to 0.0 for
incompressible analysis. ALPHA is ignored when
NSUTH is set to 1 .

BETA

GAMMA

XMACH

CPRATIO

NSTEAD

N2DPRT

The exponent p in the Power Law is used to determine
the fluid conductivity. Set BETA equal to 0.0 for
incompressible analysis. BETA is ignored when NSUTH
is set equal to 1 .

The exponent y in the perfect gas relationship is used
to determine the fluid density. Set GAMMA equal to
1.0 for variable density (thermally expandable or fully
compressible). Set GAMMA equal to 0.0 for
incompressible analysis.

The reference mach number of the flow.
is ignored when NCOMP is equal to 0 .

The ratio of specific heats of the fluid.
is ignored when NCOMP is equal to 0 .

This variable

This variable

This variable specifies the type of flow to be
considered. Set to 1 for steady flow. Set to 0 for
unsteady flow (pulsatile or oscillating).

For print-out of 2-D velocity and fluid properties, set
to 1.0 .



UB(J)

VB(J)

NCYCLE

Read only when the flow is steady (NSTEAD=1).
J=1,NJ+1. The inlet u-velocity profile at the upstream
boundary.

Read only when the flow is steady (NSTEAD=1).
J=1,NJ+1. The inlet v-velocity profile at the upstream
boundary. Note that the axial location of this profile
is slightly different than that for the u-velocity
profile due to the staggered grid format.

Read only when the flow is unsteady (NSTEAD=0).
The number of pulsating (or oscillating) cycles to be
made in this run.

NDEGRE

NSLUG

NOSCIL

Read only when the flow is unsteady (NSTEAD=0).
The degree increment used in the calculation (One
cycle has 360 degrees). Set NDEGRE greater than or
equal to 5 .

Read only when the flow is unsteady (NSTEAD=0).
Set to 1 for the slug flow approximation when
determining the temperature field. Set to 0 for
simultaneously developing flow. The slug flow
approximation works only for the incompressible flow.
Set to 0 when making a variable properties analysis.

Set to 1 for oscillating flow,
flow.

Set to 0 for pulsating

NSKIP Number of time step to be skipped around the zero
velocity for the oscillating flow. Input even number
only.

VALENSI Read only when the flow is unsteady (NSTEAD=0).
Valensi number.

UMEAN Read only when the flow is unsteady (NSTEAD=0). The
time average value of the inlet u-velocity. For
Oscillating flow, set UMEAN equal to 0.0 . Note that for
unsteady flow the inlet velocities are assumed uniform
in profile.



DELTU

MSEP1

MSEP2

MCDOWN

Read only when the flow is unsteady (NSTEAD=0). The
amplitude of the fluctuating u-velocity at the inlet of
the channel. (Example: If UMEAN & DELTU are set to
1.0 & .5, respectively, the inlet u-velocity will vary
from .5 to 1.5 sinusoidally through the cycle).

Set to the MCOUNT value beyond which the 2-D
u,v-velocity arrays are stored. For separated,
incompressible, and steady flow, set equal to the
MCOUNT value slightly ahead of the separation point.
For steady incompressible flow in SPPC, set equal to
KPNS. For other flows (variable properties, pulsating,
or oscillating) set equal to 1 .

Set to the MCOUNT value beyond which the 2-D
u,v-velocity arrays are not stored. For separated,
incompressible, and steady flow, set equal to the
MCOUNT value slightly beyond the reattachment. For
other flows (steady incompressible flow in SPPC,
variable properties, pulsating, or oscillating) set equal
to KPNS. For full Navier-Stokes calculation, the
specified values of MSEP1 and MSEP2 are overridden
within the program (no changes were made in the full
N.S. equations to run variable properties or unsteady
flows).

The MCOUNT value at the downstream.
KPNS.

Set equal to

NSFULL

NHYBRD

Set equal to 0 for solving the Partially Parabolized
Navier-Stokes (PPNS) equations. Set to 1 if the full
Navier-Stokes (NS) equations are to be solved. Note
that even when full NS equations are to be solved,
NSFULL must be set to 0 for the first CIS. No
modifications were made to update the full NS
equations for unsteady, thermally expandable, or
compressible flow analysis. For the present study,
set to 0 .

Set equal to 1 to use the hybrid differencing scheme.
If set to 0, pure upwind or central differencing is
used depending on the value of the mesh Reynolds
number. In general, set to 1 .



NSTEP

MSEP11

MSEP22

XU(J)

YU(J)

XV(J)

YV(J)

MINT

MAXT

NENGY

IBL

Set equal to 0, when analyzing the external or
internal asymmetric channel flow. Set to 1 for
internal symmetric channel flow.

Set to the MCOUNT value where beyond which the 2D
u,v-velocities were stored from the previous CIS. In
general, set equal to MSEP1.

Set to the MCOUNT value where beyond which the 2D
u,v-velocities were Not stored from the previous CIS.
In general, set equal to MSEP2.

Not required for internal flows.
J=1,LPOP. The x distances for freestream u-velocity
input. (Note: No attempts were made to run an
external flow analysis under the unsteady, thermally
expandable, or compressible conditions).

Not required for internal flows.
J=1,LPOP. The freestream u-velocity values
corresponding to XU(J) values.

Not required for internal flows or if INV is set to 0 .
J=1,INV. Represents the x distance for freestream
v-velocity input.

Not required for internal flows or if INV is set to 0 .
J=1,INV. Represents the freestream v-velocity values
corresponding to XV(J) values.

Beginning CIS number for solving the energy
equation.

Final CIS number for solving the energy equation.

Set to 1 if only the energy equation is to be solved
(this option requires that the u,v-velocities have been
solved in previous run); otherwise set to 0 .

Set equal to 1, if the Boundary Layer (B.L.) or the
compressible energy equation is used, otherwise set
to 0 . For Thermally expandable or Compressible flow
analysis, set IBL equal to 1 .



NQWL

NQWH

QWL

QWH

TREF

TT(1,J)

XTWL(J)

YTWL(J)

XTWU(J)

YTWU(J)

NG3(I)

Set to 1 for constant heat flux at the lower wall,
(currently, this works only for incompressible flow),
otherwise set equal to 0 .

Set to 1 for constant heat flux at the upper wall,
(currently, this works only for incompressible flow),
otherwise set equal to 0 .

This is the constant heat flux value at the lower wall,
(currently, this works only for incompressible flow),
if NQWL is set to 0, then QWL is ignored.

This is the constant heat flux value at the upper wall,
(currently, this works only for incompressible flow),
if NQWH is set to 0, then QWH is ignored.

The reference stagnation inlet temperature (in Kelvin).

J=1,NJ. The inlet temperature (in Kelvin) profile at
*- •*. ~~.i.i*+

the upstream boundary.

Not required for Isothermal or constant heat flux
boundary. J=1,INT. The x distances for lower
boundary temperature inputs.

Not required for Isothermal or constant heat flux
boundary. J=1,INT. Lower boundary temperature
values corresponding to the x distances, XTWL(J),
values.

Not required for Isothermal or constant heat flux
boundary. J=1,INT. The x distances for upper
boundary temperature inputs.

Not required for Isothermal or constant heat flux
boundary. J=1,INT. Upper boundary temperature
values corresponding to the x distances, XTWU(J),
values.

I=MIN,MAX. The number of Gauss-Siedel sweeps to be
carried out when solving the Poisson equation for
pressure. For the first CIS, set to a small number
(around 5). For later cycles, increase this number
gradually.



NT3(I) No longer used.
I=MIN,MAX. The number of times the pressure is
revised at each axial station during each conventional
iteration of the SOR method when solving the Poisson
equation for pressure.

FAC13(I) I=MIN,MAX. The under-relaxation factor to be used on
the pressure gradients after each marching
integration sweep. Start with a small fraction and
increase gradually but not to excess one.

FAC23(I) I=MIN,MAX. The relaxation parameter for velocity
corrections; 1.0 was used in this study.

FAC33(I) I=MIN,MAX. The relaxation parameter for fluid
properties corrections; 1.0 was used in this study.

*** Note: One data set of NG3, NT3, FAC13, FAC23, & FAC33 values
is required for each CIS.
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