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ABSTRACT 

Research effort was directed towards developing a near real-time, acousto­

ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure 

mechanisms of ceramic composites. Progression of damage IS mOnitored In real­

time by observing the changes In the received AU signal dUring the actual test. 

DUring the real-time AU test, the AU signals are generated and received by the AU 

transducers attached to the specimen While it IS being subjected to increasing 

quasi-static loads or cyclic loads (10Hz, R = 0.1). The received AU signals for 64 

successive pulses were gated In the time domain (T = 40.96 ~ sec) and then 

averaged every second over ten load cycles and stored In a computer file dunng 

fatigue tests. These averaged gated signals are representative of the damage 

state of the specimen at that pOInt of ItS fatigue hfe. This IS also the first major 

attempt In the development and application of real-time AU for continuously 

mOnltonng damage accumulation dunng fatigue without interrupting the test. 

The present work has verified the capablhty of the AU techntque to assess 

the damage state In slhcon carbide/calcium alumlnoslhcate (SIC/CAS) and slhcon 

carbide/magnesium alumlnoslhcate (SiC/MAS) ceramiC composites Continuous 

monttonng of damage Inttlatlon and progression under quasI-static ramp loading 

In tension to failure of untdlrectlonal and cross-ply SIC/CAS and quasI-IsotropIc 

SIC/MAS ceramic composite specimens at room temperature was accomplished 

uSing near real-time AU parameters. 

The AU techntque was shown to be able to detect the stress levels for the 

onset and saturation of matrix cracks, respectively The cntlcal cracking stress 
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level is used as a design stress for brittle matrix composites operating at elevated 

temperatures. The AU technique has found that the critical cracking stress level 

IS 10-15 % below the level presently obtained for design purposes from analytical 

models. 

An acousto-ultrasonlc stress-strain response (AUSSR) model for 

unidirectional and cross-ply ceramic composites was formulated. The AUSSR 

model predicts the strain response to Increasing stress levels uSing real-time AU 

data and classical laminated plate theory. The Weibull parameters of the AUSSR 

model are used to calculate the design stress for thermo-structural applications. 

Real-time AU together with the AUSSR model was used to study the failure 

mechanisms of SIC/CAS ceramic composites under static and fatigue loading An 

S-N curve was generated for a cross-ply SIC/CAS ceramic composite matenal The 

AU results are corroborated and complemented by other NDE techniques, namely, 

In-situ optical microscope Video recordings and edge replication 
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1. INTRODUCTION 

1.1 Introduction 

Monolithic ceramiC materials have been used for centuries to manufacture 

components exposed to very high temperatures. These materials can withstand 

harsh chemical environments besides offering higher oxidation resistance than 

most metals. Monolithic ceramic materials also have a higher strength to weight 

ratio and a higher stiffness to weight ratio than most metals. These attractive 

features make ceramic materials a preferred choice over most metals or alloys for 

high temperature applications. 

Although ceramic materials possess attractive features, they have inherent 

shortcomings limiting their usefulness In many applications. Poor material reliability 

make these matenals unacceptable in many Instances, although these materials 

can have excellent mechanical Integrity and chemical stability at high 

temperatures. These materials are extremely sensitive to micro-cracks and other 

flaws. Mechanical behavior is degraded by the presence of flaws such as pores, 

large grains and micro-structural irregularities. Ceramic materials show little 

damage tolerance and failure is catastrophic, thereby limiting their use in structural 

applications. 

The quantitative prediction of the degradation of mechanical properties as 

a result of flaws and their distribution is a complex problem yet to be tackled 

successfully. The reliability of such materials could be improved by development 

of nondestructive evaluation (NDE) techniques to detect and characterize the 
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shape, size and location of flaws and thereby assess the degradation of structural 

ceramics. Reliability after processing these materials IS also a major concern. Proof 

testing can eliminate defective parts and can be used as a quality control in the 

manufacturing stage. However, proof testing of ceramic components is time 

consuming and expensive. Also, proof testing being destructive can itself damage 

the components that pass the testing. 

A significant amount of research [1-28] has been done to develop and refine 

NDE techniques to detect critical flaws In structural monolithic ceramic composites. 

The application of different NDE techniques to each ceramic material depends on 

its ability to detect not only the critical flaws but also to mOnitor the growth of the 

sub-critical flaws in the material. The location, shape and size of these flaws are 

used in fracture mechanics models to predict the life of structures under operating 

loads. 

Munz, et. aI., [1] introduced artifiCial flaws such as pores and Fe- Inclusions 

in reaction bonded silicon nitride and sintered silicon nitride bend specimens. 

Fracture mechanics models to predict bending strength were applied based on the 

flaw data from NOE, fracture surface analYSIS and fracture toughness of the 

material. 

Klima, et. aI., [2] used radiographlcs, ultraSOnics, scanning laser acoustic 

microscopy and thermo-acoustic microscopy to characterize silicon carbide and 

silicon nitride modulus of rupture specimens. Ultrasonics was found to be sensitive 

to micro-structural variations in grain and VOid morphology and their distributions. 

Scanning laser acoustic microscope was capable of detecting VOids, inclUSions and 

cracks in these specimens. 
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Nongaillard, et. aI., [3] have shown that scanning acoustic microscope 

operating at 100 MHz range is an effective tool for nondestructive evaluation of 

ceramic materials. Scanning acoustic microscope detected flaws and Inclusions 

smaller than 50J.1m. 

Fahr, et. aI., [4] have used a 10-100 MHz surface acoustic wave system 

with a computer controlled data acquisition and analysis system to characterize 

surface cracks in ceramics. At 100 MHz, surface acoustic wave system could 

detect a 25 J.1m deep crack on a polished ceramic specimen. 

Cielo, et. aI., [5] have used three laser based techniques for characterization 

of slntered materials. A good correlation was obtained with the independently 

measured density of the zirCOnia samples. Vary, et. aI., [6] compared scanning 

laser acoustic microscopy, scanning acoustic microscopy, photo-acoustic 

microscopy and electron acoustic microscopy to detect flaws in structural ceramics. 

Presently, ongoing research in the NDE of ceramics [7-28] is primarily 

focussed on developing and refining NDE techniques such as computed 

tomography, scanning laser acoustic microscopy, scanning acoustic microscopy, 

microradiography, ultrasonics and radiography to detect critical flaws with reliability 

and to locate and size them. 

There IS a need to develop new matenal systems which have all the 

inherent advantages of monolithic ceramics but are more tough and damage 

tolerant. The toughening of ceramics can be achieved by adding a second phase 

material system in the form of particles, whiskers or continuous fibers to create 

ceramic composites. The second phase matenals toughen the material system by 

deflecting and branching approaching cracks, and by Increasing resistance to 
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fracture and work of fracture by introduction of fiber debond, crack bridging, fiber 

breakage and fiber pullout mechanisms. Residual stresses due to thermal 

coefficient mismatch can also be a contributing factor to the toughening 

mechanism. Optimization of the interphase can also increase fracture resistance 

and thereby allow for smooth graceful failure. Research and development In the 

ceramic composites field have yielded new material systems with Increased 

fracture resistance, higher strength and higher strain to failure. 

Presently, the processing of reliable ceramic composites is a cause for 

major concern in composite manufacturing industries. Processing and 

manufacturing of ceramic composite components can introduce defects which will 

affect the overall integrity of the resultant composite structure. Interest in NDE as 

a tool or means to weed out defective components during the processing stage 

and for in-service quality mOnitoring has grown. 

There is a need to develop NDE techniques that can assess and quantify 

the damage present in ceramic composites and relate a quantifiable parameter 

directly to strength or long time serviceability of the component. The present 

challenge in the field of NDE is to assess Initial Integnty and also damage 

accumulation and residual strength dunng service. Real-time NDE mOnitoring of 

damage under dynamic loads could also be used as a tool to study the failure 

mechanisms of composite material systems in the laboratory. 
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1.2 Problem Statement 

Acoustic emission and ultrasonics are widely used to evaluate material 

performance. Alex Vary and co-workers [29-31] developed a technique, viz., the 

acousto-ultrasonic (AU) method, which is a hybrid of acoustic emission and 

ultrasonics. AU studies [29-75] show a correlation between stress wave 

propagation characteristics determined by AU and the mechanical properties of the 

material. The AU method measures an integrated effect of damage/flaws present 

In the material between two transducers. 

The primary objective of the present research IS to determine the feasibility 

of the real-time AU technique to assess the damage state and to mOnitor damage 

development In ceramiC composites under dynamic loads. A real-time AU 

technique is developed to take AU data for quasi-static ramp loading in tension to 

failure and also for fatigue loading. The feasibility of the real-time AU for this 

purpose IS shown. Next, It is shown that AU can identify different damage modes 

and is able to monitor the progress of these damage modes. 

Unidirectional and cross-ply tensile specimens of SIC/CAS and quasi­

Isotropic tensile specimens of SiCIMAS are loaded in tension to failure and the 

damage growth is continuously monitored in near real-time by AU parameters. 

Several specimens are heat treated before loading. The changes in the damage 

charactenstlcs are evaluated by real- time AU monitoring. Damage initiation and 

growth under cychc loading in cross-ply SiC/CAS specimens are continuously 

monitored by the AU technique speCially developed for fatigue loading. Various 

other NDE techniques are utlhzed to complement the AU results. Based on the 

present results by the author, It IS beheved that real-time AU can decipher the true 

nature of damage mechanisms taking place in a brittle matrix composite. 
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The present research work is presented as follows: Chapter 2 describes the 

AU technique with its basic theory and underlying principles. Chapter 3 explains 

the experimental setup of the various NOT experiments and the mechanical tests 

performed. Results for quasi-static tests are discussed in chapter 4 with the 

acousto-ultrasonic stress-strain response (AUSSR) model described in chapter 5. 

The AUSSR model uses real-time AU data and classical laminated plate theory 

(CLPT) to predict the strain response at increasing stress levels of a laminate. 

Fatigue test results are presented in chapter 6 along with the S-N data curve 

generated for cross-ply SiC/CAS ceramic composite. Concluding remarks are 

presented in chapter 7 along with proposed future work. 
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2. ACOUSTO-UL TRASONIC TECHNIQUE 

2.1 Introduction 

Two basic NOT techniques that have been extensively used to evaluate the 

mechanical integrity of structures are acoustic emission (AE) and ultrasonics. To 

perform AE, it is necessary to load the structure being monitored. The AE results 

from discontinuous, sudden permanent changes (damage) In the micro-structure. 

Whether or not the damage resulting from an AE test affects the overall 

performance of the structure depends upon the level to which the material has 

been loaded. Ultrasonics can detect flaws, such as voids, foreign inclusions or 

fatigue damage, present in the specimen. For the study of advanced materials, a 

new Acousto-Ultrasonic (AU) technique, a hybrid of the ultrasonics and AE 

techniques was suggested by Vary and co-workers [29-31]. The AU technique 

induces an ultrasonic signal Into a specimen and subsequently detects and 

analyzes it using AE methods. One of the major advantages of the AU technique 

IS that it gives an integrated effect of overall flaw/damage present in the structure 

between the transmitting and receiving transducers. The stress wave propagation 

parameters are measured in the principal load directions, which means the stress 

waves must take the same path that the loading would take in the structure. This 

is the key to the measurement. 

The AU technique excites a repeated series of ultrasonic pulses in the 

specimen by a broad band transmitting transducer through a couplant medium. 

The receiver and the sender transducers are placed normally on the same side of 

the specimen. The propagating stress wave interacts with the microstructure and 
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flaws present between the two transducers. The received signal can be analyzed 

to evaluate the changing state of damage. The analysis of the received signal 

produces a parameter referred to as stress wave factor (SWF) which can be 

related quantitatively to the mechanical performance of the material. The SWF 

value is a measure of stress wave energy transmission and provides a rating of 

the efficiency with which dynamic strain energy transfer takes place in the material. 

If the material exhibits high SWF values, the material has better transmission of 

dynamic stress or a better load re-distribution capability and hence will have higher 

strength. Conversely, low SWF values indicate regions where dynamic strain 

energy is likely to concentrate and promote fracture. 

2.2 Ring down SWF method 

Vary [29] defined the SWF as a product of three quantities, 

namely N,T and (p.p.s.) 

where, 

N 

T 

= 

= 

p.p.s. = 

SWF = N x T x (p.p.s.) 

number of times the received signal crosses 

a certain fixed threshold level. 

time gate interval 

pulse repetition rate or pulses per second 

(2.1) 

This method of quantifying the detected stress wave has limitations. The 

threshold level has to be set so as not to incorporate signals In the nOise level. It 
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cannot be set too high, since then it may not be sensitive to the changing 

damage/flaws present in the structure. It has been shown that the ring down SWF 

decreases in proportion to a fractional power of the ultimate tensile strength of 

graphite/epoxy [31]. 

2.3 Weighted ring down SWF method 

A different approach to account for the amplitude of the signal was 

developed by Williams and Lampert [73]. A modified approach was adopted by 

Fahr [62], in which the noise level, Vo, is first determined, and then the threshold 

level is set above it. The total number of counts above Vo is determined. The 

threshold level is increased by a small amount, SV and again the number of counts 

is determined. The difference between these two readings is multiplied by the 

amplitude at that threshold level. This value IS summed by successive increases 

In threshold level until the peak amplitude of the waveform is reached. 

where, 

VI 

el 

Vn 

= 
= 

= 

n 

SWF = E V; (C, - C'+1) 
,=0 

Threshold level at the i-th count 

Number of counts at the i-th level. 

Peak amplitude of the waveform. 

(2.2) 

This weighted nng down SWF method for determining the SWF is more 
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sensitive to damage than the original; the smaller the increments between 

threshold levels, the greater this sensitivity. 

2.4 Modified Acousto-ultrasonic technique 

An alternative approach for analYZing the received AU signal has been 

developed in our laboratory [32-49]. A conceptual configuration of an AU set-up 

is shown In Fig. 1. This approach converts the digitized time-voltage signal 

received at the receiving transducer into an amplitude-frequency spectrum by 

means of a Hartley's transform algorithm [76-77] defined by the equation given 

below. 

N-1 -\21tnv 

F{v} = ..!. E f{ 1:} e--"-
N n-O 

{2.3} 

Various statistical moments of the frequency spectrum are then calculated 

and defined as various SWF values as explained below. 

2.4.1 Frequency-spectrum analysis 

Talreja [78] suggested that three classes of parameters can be used to 

describe any distribution function, viz., scale, location, and shape parameters. One 

can consider the frequency spectrum to be a plane figure, closed on the frequency 

axis. Then, various moments of the frequency spectrum plane figure can be 

calculated using equation {2.4}. 
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Figure 1 Conceptual configuration of acousto-ultrasonic (AU) set-up. 
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Moments 

-
M,= J S (f) f' df (2.4) 

where, 

r = 0,1,2,3, .... 

f = Frequency 

S(1) = Power spectral density 

Mr = fh moment 

The zeroth moment is then simply the area under the spectral density 

distribution and is indicative of the total energy content of the received Signal. The 

location parameter is given by the centroid of the frequency distribution curve, 

equation (2.5). 

Location parameter 

where, 

= 

= 

= 

f = M1 
C M 

o 

CentrOid of the frequency distribution 

First moment of the frequency distribution 

Zeroth moment of the frequency distribution 
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Shape parameters 

Different shape parameters can then be defined by the following: 

s = M, ,.k k 
M'_k fc 

(2.6) 

where, 

k = 1,2,3, ... . 

r = 2,3,4, ... . 

r> k 

Studies have shown that the moments defined above are affected by 

damage/flaws present in the structure in a particular manner, such that the latter 

can be located and charactenzed. Stiffler, et aI., [42] have shown that a decrease 

in SWF values calculated by the moments method correlates well with the 

reduction of stiffness of graphite-epoxy composite specimens subjected to fatigue 

tests. Tiwari, et al. [43-45] have used the moments method for assuring adhesive 

bond quality. 

Researchers [29-49] have shown acousto-ultrasonic (AU) parameters to be 

more sensitive than stiffness measurements as a means of monitoring damage 

development. Although physical understanding of the effect of damage on wave 

propagation and on the AU Signal is not yet completely understood, researchers 

have suggested that the local stress state or displacement field is modified by the 

damage present. By recording information on stress wave propagation 

characteristics one can hope to obtain information about the value of stress 
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concentration or impending failure modes. The moments analysis of the received 

signal In the frequency domain produces a stress wave factor (SWF) which can 

be correlated to residual strength/stiffness of the specimen through additional 

experimental measurements [46-49]. 

Kautz [54] compared AU signals from a neat resin and a composite of the 

resin matrix having the same geometry. Results indicated that AU energy 

introduced into a laminated Gr/resin propagates by two modes through the 

structure. The first mode propagating along the Gr fibers is faster than the second 

mode in the resin. The second mode was attenuated at higher frequencies. Kautz 

et. al. [53] have shown a correlation between ultrasonic velocity data and interfacial 

shear strength data determined from mechanical tests on SiC/RSSN. Kautz [55] 

and Sundaresan [41] applied AU to filament wound composite structures. AU could 

detect delaminatlons and defects due to dry windings and Winding tension 

variations. Kautz et. al. applied AU to SiCrrl-15-3 metal matrix composite with 

different lay-ups. SWF was found to be sensitive to fiber/matrix debondlng due to 

mechanical strain and also due to thermal cycling. 

Additional research [36, 39, 65-69] at Virginia Tech has studied the 

characteristics of AU signals. Tang et. al. [66] used disperSion curves ( fh vs kh; 

h is the thickness of the plate and k IS the wave number ) to characterize 

composite plates since each material and stacking sequence gives distinct 

dispersion curves. A modified AU method was used to measure the low frequency, 

long wavelength flexural wave phase velocity V p' 

Kleman et. al. [36,39] made the first attempt to provide a general physical 

explanation for AU results in composite plates based on elastiCity solutions, Lamb 

wave theory and through-the-thickness transverse resonance (ITR). Velocity 
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measurements and the frequency content of AU signals were compared to Lamb 

wave theory predictions. Higher order lamb waves were identified as a dominant 

mode of propagation. Kiernan [39] has shown the effect of the variation of the 

input disturbance in terms of the frequency content of AU signals. The AU signal 

output needs to be modified by a frequency dependent weighting function to 

account for the frequency variation of the input signal. Also, a slight-off normal 

repositioning of transducers could change the AU energy sent in a given direction. 

Kiernan and Duke [37] utilized the variation of AU signals with respect to 

azimuthal angles to predict the growth of Impact damage. Damage was shown to 

increase in the direction of higher AU values caused by the redirection of reflected 

energy in that direction. 

2.5 Real-time AU 

Real-time monitoring of damage progression in ceramic composites by a 

NDE technique can provide better insight into failure mechanisms under dynamic 

loads. Monitoring in real-time under dynamic loading can indicate the sequence of 

the occurrence of each damage mode and help us understand and model the 

failure mechanisms of the material. Hemann, et al. [79] studied the effect of 

increasing stress level on AU signals on Unidirectional graphite/epoxy composite 

material. This was considered to be a first step towards developing real-time AU 

as a tool for monitoring damage under dynamic loads. 

Progression of damage IS mOnitored In real-time by observing the changes 

in the received AU signal dUring the actual test. Prior to the development of a real­

time AU technique, mechanical testing was stopped to perform an AU test along 
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with other NDE tests before reloading the specimen to the next load level. The 

dynamics of the damage mechanics may be altered by Interrupting the mechanical 

test. DUring the real-time AU test, the AU signals are generated and received by 

the AU transducers attached to the specimen while it is being subjected to 

Increasing quasi-static loads. The sender transducer generates AU signals 

continuously at the rate of 1600 pulses/sec with a rise time for each pulse being 

less than 10 nanoseconds. The received AU Signal corresponding to one of the 

pulse is gated in the time domain (gated time (n = 40.96 J.1 sec; sampling rate = 
25 Mhz) and stored every second in a separate computer file. Further analysIs is 

done to calculate AU (SWF) parameters by the FORTRAN codes developed at 

Virginia Tech [32-49]. A copy of the codes with proper documentation is attached 

In the appendix. The received real-time AU signals contain information regarding 

the damage state of the specimen along with the damage events that occurred at 

each instant. 

The real-time AU developed by the author also monitored damage 

accumulation continuously under cyclic loading (10Hz, R = 0.1). The received AU 

Signals for 64 successive pulses were gated in the time domain (T = 40.96 J.1 sec) 

and then averaged every second over ten load cycles and stored In a computer 

file. These averaged gated signals are representative of the damage state of the 

specimen at that pOint of ItS fatigue life. This is also the first major attempt In the 

development and application of real-time AU for continuously mOnitoring damage 

accumulation during fatigue. The real-time AU technique can be used to decipher 

the true nature of the damage mechanics and help in studying the failure 

mechanisms of composite materials by monitoring the onset and growth of each 

damage mode. 
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3. EXPERIMENTAL PROCEDURES 

3.1 Material Systems 

Unidirectional [O&1s and cross-ply [0/90k ceramic composites having silicon 

carbide fiber and calcium aluminosilicate matrix (SiC/CAS II) were made by 

Corning, Incorporated, with approximately 40% fiber content and less than 1 % 

porosity. Nicalon (SiC) fiber used to make the panels was manufactured through 

a polymer pyrolysis process by Nippon Carbon Co. Ltd. of Japan. Nlcalon is 

homogeneously composed of ultra-fine J3-SiC crystals with excess carbon and 

other elements. Nicalon fiber is highly resistant to oxidation and chemical attack 

and has excellent strength and modulus properties. The impregnated tow of fibers 

IS passed through a slurry of CAS II and then wound on a drum. Unidirectional 

laminae are cut and laid up according to the desired stacking sequence. With the 

help of proper tooling, the laid-up laminate is hot-pressed for consolidation for 

approximately 4 hours with maximum pressure (1500 psi) and maximum 

temperature (12500 C) being maintained for at least 40 minutes. Table 1 shows the 

constituent properties of SiC/CAS ceramic composite material system. The 

information regarding the manufacturing process and the constituent properties has 

been provided by Corning, Incorporated. 

One umdlrectlonal [Osls plate, 6.5- x 6.5- x 0.12-, and two cross-ply [0/90]48 

plates, 6.5· x 6.5- x 0.127· were supplied by Corning Inc .. The results of ultrasonic 

c-scan performed on each plate indicated a negligible amount of porosity. Ten 

samples were cut from each plate with a diamond saw cutter using a synthetic 

lubricant to avoid damage. Samples from the unidirectional plate were marked as 
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samples U1 , .. ,U1 O. Figure 2 shows typical tensile specimen dimensions. The first 

cross-ply plate had an average density of 2.694 gm/cc and the samples cut from 

this plate were marked as C1 , .. ,C1 O. The second cross-ply plate had an average 

density of 2.6S1 gm/cc and the samples were cut and marked as C11 , .. ,C20. 

Samples from the second plate (C11 , .. ,C20) were used to generate fatigue data. 

The difference in the average density between the plates may have been caused 

by the difference in prepregs. Table 2 describes the nomenclature used for 

different SiC/CAS ceramic composite specimens along with the type of subjected 

loads and heat treatments. 

Additional unidirectional [09]5 samples, G12, G14, G16, were supplied by 

NASA Lewis Research Center and were also manufactured by Corning, Inc .. The 

dimensions of these cut specimens were 6.0- x 0.5- x 0.125-. 

A second material system was also available for this study. Quasl-lsotropic 

[0/+-45/901$ specimens (152.4 mm x 11.S mm x 3.4 mm) made from silicon 

carbide fiber and magnesium aluminosilicate matrix (SiC/MAS) were provided by 

Rolls-Royce [SO]. Real-time AU data were recorded dUring static tests on samples 

MAS-S, MAS-11, MAS-1, MAS-3 and MAS-10. There were no coatings applied on 

any of these samples. Samples MAS-1, MAS-3 and MAS-10 were heat treated at 

11000 C for 100 hours in air prior to mechanical testing. 

End tabs made from high pressure cross-plied glass/epoxy laminates, (1.5-

x 0.5- x 0.15-), were glued to the specimens using FM-300 adhesive and cured at 

3000 F for 2 hours. The end tabs were sanded by 180 grit emery paper along With 

the specimen for better bonding. End tabs were attached to prevent crushing 

damage when held in the grips of the testing machine. 
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Table 1. Constituent properties of SiC/CAS ceramic 

composite material system. 

PROPERTY SiC CAS-II Composite 

Radius (Ilm) 7.5 - -

Density (gm/cc) 2.55 2.76 -

Poisson's ratio 0.15 0.22 0.192 (ROM) 

Coefficient of thermal 4.0 4.96 -
expansion (x 1 0 -6 10 C) 

Volume fraction 0.4 0.6 -
Tensile modulus (GPa) 193 98 136 (ROM) 

Strain to failure (%) 1.5 0.1 -

Processing temperature = 12500 C 

Fracture energy (CAS) = 25 J/m2
• 
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Samples U8, U9, C8, C9 were subjected to heat treatment for 48 hours in 

air with the temperature maintained at 1200 0 C. The reason for the heat treatment 

was to change the properties of the Interface and thereby change the failure 

characteristics of these specimens. It was the author's intention to investigate the 

sensitivity of real-time AU by comparing the changes in the AU signals for two 

different failure processes. 

3.2 Sample Preparation 

The edges of the samples in the thickness direction were polished after 

attaching the end tabs to enhance the clarity of video recordings of these surfaces. 

The polished surfaces also produced good quality edge replications. Polishing was 

performed uSing 400 and 600 grit emery paper in succession. A final mirror-like 

surface was produced using diamond paste of 15 microns and then 6 microns, in 

succession. 

Two aluminum V-notch tabs measuring 0.5- long and 0.1875- wide were 

glued to one side of the specimen at the gage section With a thin layer of silicone 

rubber. The V-notch ran along the flat surface parallel to the length. Care was 

taken to align the grooves of the V-notches parallel to each other at an Inch apart 

and perpendicular to the load axis. Silicone rubber is a room temperature cured 

adhesive. The knife edges of the extensometer were seated in the V-notches and 

held in place by rubber bands dUring testing. 
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Figure 2. Detailed view of specimen dimensions. 
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Table 2. Experimental Program 

Fiber - SiC (Nicalon) Matrix - CAS-II 

Specimen dimensions - 6- X 0.5- X 0.125-

LAY-UP NOMENCLATURE TOTAL NOS. 

[Oels U1 .. U10 10 

[0/90]41 C1 .. C20 20 

UNIDIRECTIONAL 

SAMPLES TYPE OF LOADING I HEAT TREATMENT 

U1 .. U4, U10 Quasi-static ramp loading in tension to failure at room 

temperature (QST @ RT) 

U8, U9 Heat treatment @ 12000 C for 48 hrs: then Quasi-static 

ramp loading in tension to failure at room temperature 

(QST @ RT) 

CROSS-PLY 

SAMPLES TYPE OF LOADING I HEAT TREATMENT 

C1 .. C3,C6,C7 QST @ RT 

C8,C9 Heat treatment @ 12000 C for 48 hrs: then QuasI-static 

ramp loading in tension to failure at room temperature 

(QST @ RT) 

C11 .. C20 Fatigue @ room temperature with CJmax = 60 %, 65%, 

75%, 85% & 90% of UTS 
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3.3 Mechanical Testing 

3.3.1 Quasi-static strength testing 

A 20 kip, electro-hydraulic, servo-controlled load frame with hydraulic wedge 

grips was used to load the specimens in tension to failure. A right angled level was 

used to ensure the specimens were aligned to the load axis prior to gripping by the 

hydraulic wedges. Care was taken to grip all specimens in slight tension so as to 

avoid any chances of the specimen experiencing any compressive load. The grip 

pressure used was 400 psi and was sufficient to prevent any premature slipping 

prior to failure. 

Static tests were run in load control mode at the rate of 200 Ibs/min. The 

slow rate was chosen to enable the real-time AU system to gather as much data 

as possible. The strain signal from the extensometer was fed through the load 

frame's internal amplifier and then fed into a computer driven data collection 

system along with the load signal. The AID board in the data acquisition system 

converted the analog signal and stored It at the rate of 5 Hz. The stored data was 

Imported into a spreadsheet A linear regression analysis was done on the linear 

portion of the resulting stress-strain curve to determine the initial stiffness of the 

specimen. 

3.3.2 Fatigue testing 

A 20 kip, electro-hydraulic, servo-controlled load frame with hydrauliC wedge 

grips was used to run tension-tension (R = 0.1), constant load amplitude fatigue 

tests at 10Hz. The gripping procedure was similar to static tests. Maximum load 
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amplitudes were determined based on data from static strength. The load 

amplitude in each cycle was chosen to be a different % of the average ultimate 

static strength. The load amplitude for individual fatigue tests ranged from 90% to 

SO% so as to generate an S-N curve for the material system. Once the load 

amplitudes were set, the fatigue tests were interrupted only to measure static 

stiffness and to take edge replicas. The maximum strain was also monitored by a 

peak detector. The maximum strain readings were recorded by the researcher 

manually after a set number of elapsed cycles or when there was a sudden 

increase in the maximum strain caused by damage. The dynamic stiffness of the 

laminate was monitored by comparing the ratio of the maximum initial strain to the 

present strain (eJeJ. Since the fatigue tests were run in load control, the maximum 

stress remains constant and hence this ratio (eJe.) Indicated the normalized 

dynamic stiffness and was used to monitor modulus/stiffness as a function of 

cycles. The fatigue tests were interrupted if there was a sudden decrease in 

dynamic stiffness so as to enable the researcher to study the damage by other 

means. 

3.4 Nondestructive Testing 

3.4.1 Acousto-ultrasonic Technique 

A block diagram of the experimental AU system is shown in Fig 1 along with 

an enlarged view of the transducer holder. Figure 3 shows a photograph of the 

experimental AU system along with a specimen held in the grips. Ultrasonic pulses 

were introduced into the mechanically loaded specimen through a broadband 

transmitting transducer, Panametrics model V133RM (2.25 Mhz/S.35 mm). The 
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couplant used was Sonotrace-30. A Panametrics Model 5052-AU pulser/receiver 

was used to generate and receive the ultrasonic signal. The receiving transducer 

was the same type as the transmitter. 

A plexi-glass transducer holder was designed and fabricated to maintain a 

fixed distance between the AU transducers: 38.1 mm (1.5-) apart on the opposite 

side of the specimen from the extensometer. The transducer holder had two 

counter bores to snugly fit the outer casing of the AU transducers and a small cut 

out window for the connectors of the transducers. Small grooves were cut at the 

edges of the holder to seat rubber bands so as to prevent it from slipping. The 

rubber bands aided in maintaining a constant pressure at the center of the 

transducer holder throughout the experiment. 

The couplant was applied between the transducers and the specimen with 

the help of a syringe prior to the start of each test. Degradation of the couplant 

was negligible for static tests as the maximum duration of a test was 15 minutes. 

The pressure maintained by the rubber bands produced reproducible results during 

trial runs. Degradation of the couplant during fatigue tests was observed after 

50000 cycles with a consequent effect upon the AU signals. Therefore, fresh 

couplant was applied after 30000 cycles and AU data were compared before and 

after the application of the fresh couplant. Negligible amount of couplant 

degradation was observed in few samples. 

The data acqUisition board used for the AU tests provided sampling rates 

from 156 Khz to 25 Mhz in transient mode. Sampling rates of 40, 80 and 160 Mhz 

were available in the time equivalent sampling mode. A sampling rate of 25 Mhz 

was chosen for these tests. The display software was optimized for the fastest 

possible up-date rate of wave-form data with a standard IBM color graphics board. 
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(b) 

Figure 3. (8.) Photographic view of real-time AU set-up. (b) Enlarged view of the 
transducer holder device attached to the specimen. 
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Update rates of 10-15 times per second were achieved In digital oscilloscope 

fashion. The time delay and the sweep length were controlled from the keyboard. 

The data acquIsition board sends a trigger pulse to trigger a high frequency 

electronic pulse from the pulser to the transmitting transducer. The electronic pulse 

energy is converted to mechanical energy on the face of the transducer plate. The 

mechanical excitation produced induces stress waves in the material, through the 

couplant. The AU stress wave interacts with the material micro-structure and 

damage. The motion of the stress waves is sensed by the receiver AU transducer 

which in turn converts the mechanical energy to an electronic signal. The received 

signal is amplified and sent to the AID converter board. The AID converter is 

triggered by the same trigger pulse used for the pulser unit to signal it to begin 

taking data. The digitized signal is displayed on the screen and can be stored for 

further analysis. 

Two types of data records can be saved in disk files by the data acquisition 

software: set-up parameters and waveform data. The set-up parameter feature 

retains the settings for future data collections reqUiring the same parameter 

readings. Waveform data files contain the digitized waveforms. These files can be 

recalled by the software and displayed or the numerical information contained can 

be dumped directly to the CRT or the printer. The software associated with the 

board allows the computer to act as a digital oscilloscope, with the ability to store 

the waveform and perform limited frequency analysis by means of a fast fourier 

transform algorithm (FFT). 

The preamplifier and amplifier gains for the received signal were set for 

each indiVidual sample. After a group of signals was saved, the signals were input 

to a FORTRAN program developed at Virginia Tech [32-49] to calculate the 
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frequency spectra and their various moments. The FORTRAN codes are attached 

in the appendix for reference. The AU data were normalized with respect to the 

initial value of each test and plotted against stress level. The zeroth moment was 

found to be the most sensitive parameter of the ones studied for detection of 

matrix cracks and is referred to here as AU stress wave factor (SWF). 

3.4.2 X-Ray Radiography 

Damage modes such as delaminatlons and matrix cracks can be easily 

detected by penetrant enhanced x-ray radiography. The researcher can also locate 

damage by taking through-the-thickness and through-the-width X-ray radiographs 

and interpolating to obtain the approximate location of the damage. A zinc-iodide 

solution (60 gms of Znl2 + 10 ml water + 10 ml isopropyl alcohol + 10 ml Kodak 

Photo-Flo 200) was used In this study as an x-ray opaque penetrant with Kodak 

Photo-Flo acting as a wetting agent. This penetrant was applied over the free 

surface of the specimen. The specimen was left to soak in the penetrant for 24 

hours to allow the penetrant to seep into the damaged areas by capillary action. 

Excess penetrant was removed from the free surface With acetone prior to 

exposure to the x-ray radiation. Obviously, one limitation of the technique is that 

only damage that has path(s) open to the surface will be detected. 

A Hewlett Packard 43805N Faxitron series X-ray system was used to 

radiograph the specimens. The applied x-ray tube voltage, the exposure time and 

the distance from the em ittlng element have to be established to get a good 

contrast x-ray radiograph for the specimens. The specimens soaked in penetrant 

were placed on a Kodak M-5 double-side emulsion film at a distance of 16 inches 

from the emitting element. The tube voltage was set at 40 kVp and the exposure 
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time was set at 5 minutes to obtain high contrast contact x-ray radiographs. 

3.4.3 Ultrasonic C-scan 

A Sperry UM721 reflectoscope with an Automation Industries Inc., US-450 

scanner was used to perform ultrasonic c-scans on the specimens. The specimens 

were placed on a glass plate at the bottom of the water tank. A Panametncs 

transducer with focal length of 1.5 inches and nominal frequency of 15 Mhz was 

used in a reflection mode. Ultrasonic signals reflected off the glass surface were 

gated with a preset threshold level. Non-conformities In the specimen such as 

voids, cracks, delaminations, inclusions, etc., attenuate the transmitted signal in 

proportion to the severity of these non-conformities. 

3.4.4 Scanning electron microscope (SEM) 

The specimens were cut to a 1 inch width from the failure surface by using 

a low speed, water cooled diamond wheel. These cut specimens were coated by 

gold sputtering for 2 minutes prior to Insertion in the SEM test chamber. The SEM 

unit was a model type SX40 manufactured by International Scientific Instruments 

(151). The SEM photographs taken of the failure surface show the micro details of 

the failed surface. 

3.4.5 Long distance optical video microscope 

A Questar QM1 long-range microscope especially designed for visual and 

photographic fOCUSing was used to follow damage progression along a free edge 
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of the specimen. The microscope was focusable in a range of 22 Inches (55.88 

cm) to n inches (195 58 cm), as measured between the front surface of the lens 

and the target. At 22 inches (55.88 cm) the QM1 system will resolve below 2.5 

microns with proper lighting arrangement and its in-built optical system. The QM1 

optical system consisted of a primary mirror, a corrector lens, and a secondary 

mirror mounted in the center of the corrector. The magnification range depended 

on the eyepiece used and varied between 5 x at n Inches to 65 x at 22 inches. 

These magnifications were further Increased by 1.6 x with the use of a short-focus, 

negative achromatic Barlow lens resulting in a magnification of 104 x for 22 Inches. 

The QM1 system included a video recorder to record the changes occurnng in the 

observed region which was the polished free edge of our specimen. The video 

recordings indicated the occurrence of first matrix cracks and their saturation. A 

similar system at NASA Lewis was also used to record the damage In several 

samples. 

3.4.6 Edge replication 

Edge replication makes an impression of the surface topography of a 

material on acetone-softened acetate film. Tests were stopped at a preset number 

of cycles during fatigue testing. Acetone was applied to the polished surface 

through a syringe and then acetate film was pressed against the polished surface. 

The acetone softened the acetate film and formed an Impression of the free 

surface giving a clear view of the cracks and other damages on the free edge of 

the specimen. The film again hardened and set with the surface Impression after 

the acetone evaporated. 
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3.4.7 Stiffness reduction 

0' Brien [81], has shown that stiffness reduction could be used as an 

nondestructive method to monitor damage in composites. Here, fatigue tests were 

interrupted after a preset number of cycles and the load level was brought back 

to zero. The specimen was then ramp loaded to 15 % of its ultimate static 

strength. Strain and load signals were recorded as in the static tests With the help 

of a data acquisition board. A linear regression was done on the stress-strain curve 

to evaluate the stiffness of the laminate at that point of its fatigue life. 
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4. QUASI-STATIC TESTING 

4.1 Introduction 

Fiber reinforced ceramic matrix composites exhibit damage accumulation 

and progression well before ultimate failure. Although the matrix has a stiffness 

comparable with that of the fiber, the strain to failure of the matrix is lower than 

that for the fiber in brittle matrix composites (BMC). BMC experience matnx mlcro­

cracking well before their final failure. Thermo-structural applications of such 

materials expose the fiber matrix interphase region to the atmosphere through 

these matrix micro-cracks causing oxidation at elevated temperatures. The 

oxidation could improve the bonding between fiber and matrix resulting In a brittle 

behavior. A weaker interface reduces the likelihood of catastrophic failure by 

allowing debonding to occur, resulting in a smooth failure. The stress level at the 

initiation of matrix cracking, often called the critical cracking stress, for a BMC 

material system is used as the critical design stress for thermo-structural 

applications. 

Analytical and experimental Investigations improve our understanding of the 

damage mechanisms in BMC material systems [82-111]. The observed failure 

mechanisms of BMC have generated much interest in fiber bridged failure modes, 

also called steady state cracking failure mode. The first cylindrical model using 

shear lag theory to predict the critical cracking stress for BMC was presented by 

Aveston et. al. [82]. The Aveston's model takes into account slipping along the 

fiber matrix interface, no-slip perfect bonding, and partial slip which is a 

combination of the two to predict the onset of large scale matrix cracking. 
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A more rigorous model was proposed by Budiansky et.al. [83] which uses 

a fracture mechanics approach to study the condition for the onset of matrix 

cracking. The two conditions considered in this model are (a) - unbonded fibers 

mechanically held by thermal strain mismatch and (b) - fibers weakly bonded but 

under initial residual tension, susceptible to debondlng by localized high stresses 

at a crack tip. The critical conditions are established by uSing a generalized energy 

release rate formulation and the critical stresses are obtained in terms of micro­

structural properties of the constituents and the interface. 

Although the stresses at the onset of matrix cracking are used as a design 

stress for BMC, no standard technique exists to measure it. Researchers have 

used the stress at the start of the non-linearity of the stress strain curve for uni­

axial tension loading along the fiber direction as an indicator of this critical stress. 

The non-linearity point is often poorly defined but is used to fit the analytical 

models proposed by different researchers. 

Barsoum et.al. [84] have tried to determine the matrix cracking Initiation 

stress by measuring the electrical resistance changes of a thin gold film on the 

tensile surface of the composite as a function of applied stress In a three point 

bend test. The results of the research presented here shows that real-time AU 

would be able to more closely Identify the stress level at the onset of matrix 

cracking. 

Available literature regarding work done on SiC/CAS BMC material systems 

is sparse. The few researchers [85-89] working on this material system have yet 

to produce conclusive results regarding the true nature of the failure mechanisms. 

Kim and Pagano [85] concluded that the initiation of matrix cracking for this 

material system is over predicted by the Aveston's model [82]. They suggested 
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that the deviation from linearity in the stress strain curve appeared to be the 

combined effect of the accumulation of small micro-cracks rather than the steady­

state cracks assumed by the model. 

Recent studies done by Kim [86,87] on a cross-ply SIC/CAS material system 

Indicate the onset of micro-cracking to be independent of ply Orientation. Contrary 

to Kim's findings, the results presented here indicate the occurrence of matrix 

cracks in the 90° plies prior to the onset of cracks In the 0° plies. Similar 

conclusions have been drawn by Wang et.al. [88] in his most recent work. The 

damage modes observed by Wang were transverse cracking, followed by 

delamination cracking, followed by fiber fracture for his lay-up of SiC/CAS material 

system. 

This chapter describes the results of the static tests carried out along with 

real-time AU to study failure mechanisms in ceramic composites. The results are 

according to category consisting of unidirectional SiC/CAS and cross-plies 

SiC/CAS and quasi-isotropic SiC/MAS static tests. Static tests for heat treated 

specimens and their failure mechanisms are also presented. 

4.2 Unidirectional SiC/CAS static tests 

Sample G14 is unidirectional SiC/CAS with 18 plies. UltraSOnic c-scan 

results indicated no observable porosity or inclusions in the specimen. Sam pie G 14 

was quasi-statically ramp loaded in tension to 400 MPa at a constant loading rate 

of 90.72 kg (200 Ibs)/min. The resulting stress/strain curve is presented in Figure 

4. Note the start of non-linearity at 200 MPa due to large scale matrix cracking. A 

second linear region starts approximately 275 MPa and IS more compliant than the 
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initial linear zone. The normalized stress wave factor (SWF) MO is plotted versus 

stress in Fig. 5. The AU readings are stored after every 60-80 MPa of increased 

stress levels. The SWF (MO) value recorded at 150 MPa is higher than the initial 

SWF (MO) value taken at zero load. This result may at first appear to be contrary 

to expectation that as the damage progresses the SWF values reduce. Grosskopf 

et. al. [40] had observed a similar increase in one AU data point just before a 

sharp decrease in SWF values in a few ceramiC samples, depending on the load 

level at which the AU data were recorded. The present author investigated this 

apparent anomaly further rather than attributing it to scatter of data due to 

experimental error, fiber straightening effects or some other cause. This 

observation was also the author's motivation for modifying the AU system to record 

AU data every second making this a real-time AU technique. A sharp decline In 

SWF values occurs after 150 MPa that is believed to have been caused by large 

scale matrix cracking in the specimen. The saturation of matrix cracks occurs at 

300 MPa as Indicated In Fig 5. The start of the second linear zone also occurs at 

300 MPa as shown in Fig. 4. The test was stopped at 400 MPa to quantify the 

damage on the edge surface. Figure 6 is a photo-micrograph showing the 

saturation of matrix cracks observed under optical microscope. The average crack 

spacing is found to be 140~m. Real-time AU data are recorded in the remainder 

of the test to obtain Information about damage in real-time and thereby Investigate 

the increase In SWF value prior to the sharp drop caused by large scale matrix 

cracking. 

Sample U2, unidirectional SIC/CAS with 16 plies, was also quasi-statically 

ramp loaded in tension until failure at a constant loading rate of 90.72 kg (200 

Ibs)/min. Figure 7 shows the normalized SWF values taken in real-time versus 

stress levels. The onset of large scale matrix cracking occurs at 180 MPa, as 

indicated by the start of the local increase in SWF values and verified by in-Situ 
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Figure 6. Photo-micrograph of the damaged surface after matrix saturation of 
cracks for sample G14 ( SiC/CAS, [Og], ) 
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optical microscope video recordings. There are at-least 20-30 AU data points 

having SWF values higher than the neighboring values showing a local Increase 

and then a decrease prior to a sharp drop. Hence, the increased AU value in 

sample G14 most probably was not caused by experimental error but by a 

phenomenon observed in most specimens. 

The AU receiving transducer also acts as an AE transducer receiving 

additional stress waves emitted by matrix cracking. The start of the nonlinear zone 

at 180 MPa and video recordings of first matrix cracks observed through the in-situ 

optical microscope were used to verify and complement AU results. In the 

approximate stress range between 180 and 205 MPa, the AU parameter (MO) is 

a combination of additional stress wave energy originating from matrix cracking 

and the received AU signal energy. The received AU signal energy is dependent 

on the efficiency of the stress wave propagation which is dependent on the 

damage state of the material at that stage. While there may be an inherent 

decrease in the AU signal energy In this stress range, It is more than offset by the 

increase in AE signals emitted from matrix cracking. After this range, the 

contribution to the SWF value due to matrix cracking decreases at a considerably 

faster rate than the increase In AE activity originating from the cracks. Hence, only 

a local increase is seen at the onset of matrix cracking. The saturation of matrix 

cracks takes place at approximately 260 MPa as indicated by the subsequent flat 

portion of the SWF graph. ThiS corresponds to the start of the second linear zone 

in the stress strain curve. Figure 8 gives a view of the failure surface of sample U2 

indicating significant fiber pullout. 

Sample U5 was also quasi-statically ramp loaded in tension to 340 MPa at 

a constant loading rate of 90.72 kg (200 Ibs)/min. Almost all matrix cracking has 

taken place by this stress level. The specimen was unloaded and reloaded to 
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(a) 

Figure 8. (a) SEM photo-micrograph of the failure surface of sample U2 
( SiC/CAS, [Osl. ), (b) Enlarged view of the failure surface. 
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failure in displacement control mode at a constant displacement rate of 0.254 

mm/min so as to closely monitor the damage taking place near failure over an 

extended period of time. 

Figure 9 shows the normalized SWF values plotted versus increasing stress 

during the load control mode of the sample U5 test. The local increase of SWF 

values occurs at 180 MPa indicating the onset of large scale matrix cracks. The 

saturation of matrix cracks occurs at approximately 270 MPa indicated by the start 

of the flat portion of the SWF curve. Sharp peaks of SWF values occurs at 240 

MPa and 265 MPa, respectively. These peaks presumably are caused by a 

damage mode other than matrix cracking. These jumps in SWF value are caused 

by damaged induced acoustic emission stress waves that have been detected and 

analyzed by the AU system. The sharp increase in apparent SWF with a very high 

peak indicates stress waves generated by this damage mode have short duration 

and very high energy content. Because these events are so much more energetic, 

It is suggested that this damage mode might be fiber breakage. Further proof to 

verify fiber breakage would require additional testing by other techniques. 

Real-time SWF values are plotted versus cross-head displacement for 

sample U5 loaded In displacement control mode in Fig. 10. ExtenSive acoustic 

emission (AE) generated by the occurrence of damage between 0.508 mm (0.02-) 

and 0.762 mm (0.03-) displacement of the cross-head causes the discontinuous 

changes in apparent SWF. The corresponding stress levels at these displacements 

are 350 MPa and 425 MPa, from the stress versus displacement graph of this test. 

Several peaks in this region are high and sharp indicating again high energy AE 

events, possibly fiber breaks. The smaller peaks which are about twice the order 

of magnitude of the input signal In terms of energy content may Indicate the 

occurrence of some damage mode other than matrix cracking or fiber breaking. 
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However, this possibility must be studied further. The sharp peaks between 0.508 

mm (350 MPa) and 0.762 mm (425 MPa) indicate large scale fiber breaks dunng 

the catastrophic failure of the specimen. 

Sample U4 was quasi-statically ramp loaded In tension until failure at a 

constant loading rate of 90.72 kg (200 Ibs)/min. Figure 11 shows normalized SWF 

values versus stress levels. The onset of large scale matrix cracks occurred at 165 

MPa, as indicated by the subsequent sharp decline (65% drop) in SWF value. The 

normalized SWF graph also shows a decrease of 15% in the range of 80 MPa to 

165 MPa indicating occurrence of ·early· matnx cracking perhaps due to flaw 

distribution In this specimen. A local increase in SWF values was not observed in 

this specimen prior to the large scale matrix cracking. Figure 12 shows the stress 

strain graph for sample U4. The start of the first drop in SWF values at 80 MPa 

along with the deviation from the Initial linear portion of the stress strain curve and 

video recordings of first matrix cracks observed through the in-situ optical 

microscope were used to venfy and complement AU results. The saturation of 

matrix cracks takes place at approximately 300 MPa as indicated by the 

subsequent flat region of the curve of SWF and is verified by the start of the 

second (approximately) linear zone in the stress strain curve. Finally, an abrupt 

change in the rate of decrease of SWF values occurs at approximately 360 MPa. 

The drop in SWF values was about 10%. This specimen failed in the region 

between the two transducers, while the other specimens failed outside this region. 

Hence in this test, AU served as a warning for the impending final failure occurring 

about 25 MPa prior to failure. Failure occurred at 390 MPa with 0.7% failure strain. 

A Similar test was run on sample U 10. Figure 13 shows the normalized 

SWF values plotted with increaSing stress level In load control mode for sample 

U10. The first decrease (20% drop) in SWF values began at 60 MPa followed by 
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a sharper rate of decline (65% drop) In SWF values beginning around 170 MPa 

and IndicatIng the onset of large scale matrix cracks. The saturatIon of matrix 

cracks occurred at around 300 MPa as verifIed by the start of the second linear 

zone in the stress strain curve. AgaIn, there is an abrupt change in the rate of 

decline of SWF values (10% drop) about 25 MPa prior to the final failure at 440 

MPa with a failure strain of 0.S5%. 

Samples G12, G16, U1, and U3 showed similar results and hence are not 

presented here. Table 3 presents the test results for the static tests for SiC/CAS. 

A graph of ultimate strength of unidirectIonal [Oels SIC/CAS specimens subjected 

to similar test conditions versus the Initial SWF (MO) values is presented in Figure 

14. Generally, the higher the initial SWF value, the better is the material in terms 

of having a lesser number of initial flaws and hence the hIgher is the ultImate static 

strength. For these materials, the initIal AU value is a good measure of the 

damage state of the material prior to loading. The gains set for AU sIgnals of 

sample U1 were different from the rest of the samples tested. Samples U5 was 

stopped after saturation of matrix cracks and then run at constant dIsplacement 

rate to failure and hence samples U1 and U5 data are not included in this graph. 

Samples US and U9 were heat treated and their results are presented In the next 

section. 

4.2.1 Heat treated unidirectional [OJ. SiC/CAS static tests 

Samples US and U9 were heat treated in an oven for 4S hours at a 

temperature of 1200° C. The heat treatment was administered to produce 

oxidative embrittlement of the Interface and thereby cause a change in failure 

mechanisms in the SiC/CAS specimens. The purpose of this procedure was to 

evaluate the sensitivIty of the real-tIme AU technique In detectIng and mOnltonng 
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Table 3. Quasi-static Test Results 

Fiber - SiC (Nicalon) Matrix - CAS-II 

Specimen dimensions - 6- X 0.5- X 0.125-

LAY-UP HEAT TREATMENT ULTIMATE STATIC 

STRENGTH (O"u) 

[Os1s NO 400 MPa 

[Os1s YES 210 MPa 

[0/90]48 NO 163 MPa 

[0/90k YES 63 MPa 

The averaged values of the results are shown here. 

Heat treated at 12000 C for 48 hours. 

Quasi-static testing 

FAILURE 

STRAIN 
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the changes in the failure process. 

Sample US was quasI-statically ramp loaded in tension to failure in load 

control at 200 Ibslmin. Normalized SWF (MO) values drop by 60% in the stress 

range of 100 MPa to 190 MPa as shown in figure 15. Following this drop in AU 

values there is a small local Increase because of Increased AE activity. The final 

catastrophic failure occurs instantaneously at 230 MPa with a failure surface 

indicating brittle fracture with very little fiber pull-out. 

A similar test was performed on sample U9. Figure 16 indicates a decrease 

of 55% in normalized SWF values between 100 MPa and 190 MPa. Catastrophic 

failure occurs at 195 MPa after a small local Increase in SWF values. Again the 

failure surface indicated negligible fiber pull-out. Figure 17 shows the stress strain 

behavior of sample U9. The nonlinearity in the stress strain curve occurs at 100 

MPa and is attributed to the onset of matrix cracking. A Similar failure strain of 

0.5% was observed in both samples. The failure surface and its location for 

samples U8 and U9 are shown in Fig. 18. 

4.3 Failure process of Unidirectional [Os1s SiC/CAS under 

static loads 

The first damage mode observed in unidirectional ceramic composites 

subjected to increaSing tensile loads IS the development of parallel transverse 

matrix cracks occurring perpendicular to the fiber and the load axis. Prior to the 

onset of such cracking, the stress-strain response IS linear and the slope of the 

curve is the elastic modulus of the composite laminate (Ec) given by a simple rule 
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Figure 18. Photograph of the failed heat treated specimens U8 and U9, 
( SiC/CAS, [Oe]. ) 
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of mixtures (Ec = vf E, + Vm Em)· The experimental value of Ec = 130 GPa IS 

comparable to that calculated from the rule of mixtures, Ec = 136 GPa. Matnx 

cracking occurs over a stress range In real materials. Once the matrix cracking 

saturates, that is, attains a constant density, the majority of the load is carried by 

the fibers till the final failure of the laminate. The existing analytical models for 

predicting critical matrix cracking stress, ultimate tensile strength for unidirectional 

ceramic composites and their underlying assumptions are presented below for 

comparison with AU and static results. 

Aveston et.al. [82] have used a shear lag model with a stress based failure 

criterion to predict the critical cracking stress for a brittle matrix composite. 

Budiansky et. al. [83] refined the Aveston's model by using a fracture mechanics 

approach with the shear lag model to predict the lower bound for steady state 

matrix cracking. The inherent assumption of steady state matrix cracking is that 

parallel transverse matnx cracks occur instantaneously at O'er and that these cracks 

bridge all the fibers. Observations In real matenals show a stress range over which 

matrix cracks develop and saturate. The model also takes into account the 

mismatch in the thermal coefficients of expansion of the fiber and the matrix which 

causes residual stresses, at room temperature. Processing temperatures of 

SiC/CAS laminates is about 13000C (~T = -12750C). Assuming Poisson's ratio ('0) 

of fiber and the matrix to be the same, the residual axial stress ( O'ma res ) in the 

matrix is given by [83] : 

res 
O'ma = 

~1 EmEfvf(a.f-a.",)~ T 
~Ec(1-'l» 

(4.1) 

where G, ~ and Em' <Xm are the elastic modulus and coefficient of thermal 

expansion of the fiber and matrix respectively and Vf is fiber volume fraction. The 
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residual radial stress (amr
re5

) at the fiber/matrix interface IS given by : 

where, 

res 
CJmr = 

E,v,(a,-a"JAT 

2~, (1-1)) 

J: = 1 - (1-2u) (1 - EcJ 
~1 2 (1 -1)) E, 

The Budiansky model predicts the critical stress acr to be: 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

SiC/CAS composite matenal system has a tensile residual stress (+erma res) 

in the longitudinaVaxial direction that lowers the critical cracking stress, unlike a 

SiCILAS material system. A compressive radial pressure (- amr
re5

) at the Interface 

increases the sliding stress 't and thereby increases the cntical cracking stress 

(aar). SiC/CAS ceramic material system has such a compressive pressure at the 

interface enhancing sliding resistance. 

Computational results suggest the cntical cracking stress level for a 

unidirectional [Oa1s SiC/CAS composite IS 207 MPa. The input data used for the 
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constituent properties were provided by Coming Inc. and are as follows: radius of 

fiber, r = 7.5~m ; Elastic modulus of the matrix, ~ = 98 GPa; Elastic modulus 

of the fiber, E, = 193 GPa; Elastic modulus of the composite (rule of mixtures), 

Ec = 136 GPa ; fiber volume fraction, v, = 0.4; Poisson's ratio, 1) = 0.22 (same for 

fiber and matrix ); Coefficient of thermal expansion, <It = 4.0 x 10 -6 1°C and <Xm = 
4.96 x 10 -6 1°C; matnx fracture energy, 1m = 25 J/m2; interfacial sliding stress, 

't = 17 MPa , [90]; and aT = -1275 °C. 

Flaws introduced during processing are crack initiation sites and at the 

critical cracking stress level ( acr ) the first few cracks appear. The stresses in the 

matrix at the cracked matrix plane become zero and the additional load is now 

being shared by the bridged fibers. The stress in the matrix recovers its original 

pre-cracked value am = aEJEc over a distance Is called the slip length due to 

sliding resistance at the fiber-matrix interface (a is the global stress applied to the 

laminate). The recovered stress in the matrix at a distance of a slip length (lJ IS 

large enough to cause another transverse matrix crack. This process continues till 

the slip lengths overlap resulting in a saturation of matrix cracks parallel to each 

other at a distance of X = 215 called the crack spacing. Real materials do not show 

equal crack spaCing because of the statistical flaw distribution in the material. The 

slip length (~) can be approximated theoretically by the force balance equations 

(Is = r acr Em ( 1- v, ) I 2 't Ec V,). 

The interfacial sliding stress can be calculated from the experimentally 

observed matrix crack spacing, the critical cracking stress level and the material 

constituent properties and is given by [82] : 

't = 

auasi-static testing 

prEm~(1-Vf) 

2vf Ec X 
(4.6) 
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The average matrix crack spacing used for this calculation is 140~m 

obtained from the tests and J3 = 1.337 [91] . The sliding stress calculated is : t = 
8.25 MPa. This value is haH the value of t reported by Corning, Inc. and used in 

the calculation of critical cracking stress. This may be due to the fact that the 

constituent properties used in the calculations may not be the same as the actual 

in-situ properties. The constituent materials might be different than reported or 

matrix re-crystallization could take place during processing of these materials. The 

inherent simplified assumptions could also contribute to this discrepancy. 

The SiC/CAS material system has a weak interface. This is desirable, since 

the propagating matrix cracks debond the fiber-matrix Interface and thereby 

increases the effective unsupported length of the bridged fibers. This causes an 

increase in the total composite strain before failure. A few fiber breaks also occur 

along with the matrix cracks. The load normally carried by the broken fiber at that 

plane is shared by neighboring continuous fibers. This contributes to an increase 

in global composite strains. The Increase in the composite strains due to increase 

in unsupported length of the fiber along with accumulation of matnx cracks and the 

additional strains caused by the few fiber breaks are responsible for the non-linear 

behaVior of the stress strain curve. At the saturation stress level the majority of the 

load is carried by the fibers. The second linear zone of the stress strain curve 

originates at the saturation stress level. The upper bound for the slope of the 

second linear portion is given by VjE,. The observed experimental curve in this 

range is more complaint than this. The few fiber breaks occurring during matrix 

cracking is unaccounted for, and hence the slope is lower than vjEj. 

Curtin [92] has based his ultimate strength model for a brittle matrix 

composite upon weakest link statistics. His assumptions Include taking the sliding 
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stress and debond energy to be negligible and the fibers to be non-interacting. The 

load from a broken fiber site is transferred with the help of matrix through the 

sliding stress with global load sharing. A fiber is allowed to break more than once 

due to reloading of the fiber through the sliding stress ( 't). The pull-out length and 

In-situ strength of a fiber can directly be related to the sliding stress. The ultimate 

strength based on these assumptions is [92]: 

~ 2 11 } ~ 1] a = v a Tni+1J m+ 
u f c (m+2) m+2 

(4.7) 

where m is the Weibull shape parameter and ac is the characteristic fiber strength. 

(4.8) 

where ao and Lo are scale parameters based on the in-Situ strength distribution of 

the fibers. The ultimate strength prediction from equation (4.7) is au = 525 MPa 

based on the In-situ strength parameters ac = 2.0 GPa and the shape parameter 

m = 3.6 [90]. The experimentally observed values are less than 450 MPa for the 

unidirectional SiC/CAS material system. Hence, this model can be used only to 

obtain an upper bound for estimation of the ultimate strength. 

The predictions of the Budiansky model for critical matrix cracking stress is 

higher than the AU results. The onset of matrix cracking is the design stress used 

for thermo-structural applications. Hence, AU results could be used to evaluate this 

stress level instead of the analytical models for a safer design of the structure 

operating at elevated temperatures. 

The ultimate strength of heat treated specimens is reduced by 
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approximately 50% due to heat treatment. The change in the interphase due to 

oxygen ingression hinders Interface debonding. The matrix cracks propagate 

through the fibers causing a brittle failure with negligible fiber pull-out. 

4.4 Cross-ply [0/90]48 SiC/CAS static tests 

Sample C5 IS cross-ply SiC/CAS with 16 plies. Figure 19 shows the 

normalized SWF values versus stress level. A sharp drop of SWF values with 

increasing stress level observed at 70 MPa coincided with the onset of large scale 

matrix cracking in the 90° plies. The stress/strain graph shown in Fig. 20 for 

sample C5 indicates the start of non-lineanty at approximately 70 MPa. The 

deviation from the initial linear portion of the stress strain curve and video 

recordings of first matrix cracks observed through the in-situ optical microscope 

were used to verify and complement the AU results. The recorded SWF values 

remain fairly constant over a very narrow range at about 95 MPa (as seen under 

enlarged scale) before being followed by another sharp decrease in value. This 

second decrease is attributed to matrix cracking in the 0° plies followed by the 

saturation of matrix cracks in the 0° at 150 MPa as indicated by the relatively 

constant SWF values following 150 MPa. The major share of the load is carried 

by the 0° plies after large scale matrix cracking of 90° plies has taken place prior 

to the onset (95 MPa) of matrix cracking in the 0° plies. The actual stress level for 

8 plies of 0° is 190 MPa and is close to the stress level for the onset of large scale 

matrix cracking in unidirectional samples. The stress strain graph after 150 MPa 

is linear indicating saturation of matrix cracks in all plies and that the load IS being 

carried by the fibers in the 0° plies till failure. 

Sample C2 is also cross-ply SIC/CAS with 16 plies. Figure 21 shows 
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Figure 19. Normalized SWF (MO) vs stress for sample C5 ( SiC/CAS,[O/901. ) 
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Figure 21. Normalized SWF (MO) vs stress for sample C2 ( SiCICAS, [0/90L. ) 

Quasi-static testing 65 



normalized SWF values versus stress levels. The monotonic decrease in SWF 

values with increasing stress levels till 85 MPa is due to the matrix cracking in the 

90° plies. The recorded In-situ SWF values remain fairly constant over a narrow 

stress range at the knee till 100 MPa, followed by a second decrease in their 

values. This latter decrease IS attributed to the matnx cracking In the 0° plies 

followed by the saturation of matrix cracks at 150 MPa in all plies and the final 

failure of the specimen. Significant fiber pull-out IS observed in both samples C5 

and C2. 

Similar tests were performed on samples C6 and C7. Figures 22 and 24 

show the normalized SWF (MO) values versus stress levels for samples C6 and 

C7, respectively. The saturation of matnx cracking In all plies In both samples 

takes place at approximately 150 MPa as indicated by the flat portions of the SWF 

graphs prior to failure. Figure 23 shows the graph of stress versus strain for 

sample C6. A typical strain response of a cross-ply laminate under static loads has 

two non-linear portions corresponding to 90° and 0° plies. The slope of the first 

linear portion is given by En obtained from classical lam inated plate theory followed 

by the first nonlinear zone caused by matrix cracking In the 90° plies followed by 

the second nonlinear zone caused by matrix cracking In the 0° plies. The strain at 

the saturation of matrix cracking is about 0.55% in both samples. The load is being 

carried by the fibers at this juncture and hence a second linear portion of the curve 

is seen till failure. Normalized SWF values show a local Increase at the start of the 

test of sample C6 that may have been caused by erroneous instrumentation 

signals generated at that time. Significant fiber pull-out is observed at the failed 

surface as shown in Fig. 25. Figure 26 shows the interfacial failure of the fiber 

matrix system as cracks bifurcate and propagate around the fiber due to the weak 

bonding. 
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(a) 

(b) 

Figure 25. (a) Photo-micrograph of the failure surface of sample C6 
( SiC/CAS, [0/901.), (b) an enlarged view 
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Figure 26. Photo-micrograph showing interfacial debond at failure for sample C6 
( SiC/CAS, [0/90L. ) 
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4.4.1 Heat treated cross-ply [0/90]48 SiC/CAS static tests 

Samples CS and C9 were heat treated at 1200° C for 4S hours prior to 

static tests. Both samples were subjected to quasi-static ramp loading In tension 

to failure at 200 Ibslmin. Figures 27 and 29 show the graphs of SWF (MO) versus 

stress for samples CS and C9, respectively. Final failure is catastrophic in both 

samples with negligible fiber pull-out observed on the failure surfaces. Figure 2S 

shows the stress versus strain graph of sample CS. The failure strain and ultimate 

strength were 0.1 %, 55 MPa and 0.14 %, 70 MPa In samples CS and C9, 

respectively. The stress levels for final failure of heat treated specimens are In the 

range of the stress levels for cracking in the 90° plies of non heat treated 

specimens. It is presumed that the interfacial bonding IS stronger due to the heat 

treatment and the few cracks formed in the 90° plies connect and cause final 

failure by breaking the fibers in their path instead of debonding them. The SWF 

values drop by 45 % In the range of 50 MPa - 70 MPa in sample C9 whereas the 

drop is just 10 % prior to catastrophic failure In sample CS. Real-time AU gives no 

indication of impending final failure in sample CS. The close proximity of flaws in 

this specimen which serve as crack initiation sites could cause the cracks to 

become critical and thereby cause premature failure. 

Figure 30 (a) shows a pohshed surface of sample C9 used as a target for 

long distance optical microscope to monitor surface damage. Figure 30 (b) shows 

a clean fiber from the failed surface of sample C9 with very httle matrix material 

attached to It. Figure 31 (a) and (b) are SEM photographs showing the difference 

in failure surface between the free edges and the mid region of the laminate of 
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Figure 27. Normalized SWF (MO) vs stress for sample C8 ( SiC/CAS, [0/901. ), 
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(a) 

(b) 

Figure 30. (a) Polished surface of heat treated sample C9 ( SiC/CAS, [O/90t ) 
(b) SEM photo-micrograph of a fiber located at the mid-region of the laminate at 
failure (sample C9). 
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(b) 

Figure 31. (a) SEM photo-micrograph of the failure surface of heat treated sample 
C9 ( SiC/CAS, [0/90]48) (b) Enlarged view showing non-uniform heat treatment. 
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sample e9. The oxygen has diffused to about 100J,lm from the free surface only 

and hence we see clean fiber breaks close to the edges and fiber pull-out at other 

regions. The number of hours for heat treatment was found to be insufficient. 

4.5 Failure Process of cross-ply [0/90]48 SiC/CAS under static 

loads 

The failure process in a cross-ply ceramic laminate subjected to static loads 

consists of degradation of the 90° plies caused by matrix cracking In those plies, 

followed by the onset and saturation of matrix cracking in the 0° plies. At this 

Juncture, all the load is being shared by the fibers. Interface debonding and a small 

number of fiber breaks also occur followed by large scale fiber breaks and fiber 

pull-out Just prior and during final failure. 

The slope of the initial linear portion of the stress strain curve IS given by 

Exx obtained from classical laminated plate theory. The start of nonlinearity in the 

stress strain curve caused by matrix cracking In the 90° plies vanes from specimen 

to specimen and IS dependent on the flaw population and distribution. The onset 

of matrix cracking in the 0° plies occurs at approximately 90 MPa - 100 MPa. The 

saturation of matrix cracks has occurred by 150 MPa for all cross-ply specimens 

tested, independently of any flaw distribution or processing parameter. The second 

linear portion of the stress strain curve starts at this stress level as all the load IS 

being carried by the fibers past this pOint. The upper bound for the slope of the 

second linear portion is given by V,E,. This is an upper bound as some limited fiber 

breaks occur early and their contribution to the global strain IS unaccounted. After 

the degradation of the 90° plies, all the load is being earned by the eight 0° plies 
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and hence the effective stress for onset and saturation of cracking in the remaining 

0° plies (190 MPa and 300 MPa respectively) is the same as those observed in 

unidirectional material. The ultimate tensile strength of a cross-ply laminate with 

eight 0° plies is numerically half of the tensile strength of a 16-ply unidirectional 

specimen. The ultimate strength of the cross-ply laminate is dependent on the 

strength of the 0° plies which are the critical elements in the failure process 

[93,94]. The effective strength per critical ply is the same, and is consistent with, 

the unidirectional strength. Hence, the failure process in a cross-ply laminate IS 

very similar to that In a unidirectional laminate apart from the initial degradation of 

the 90° plies caused by matrix cracking In those plies. 

The failure in heat treated specimens is brittle in nature and is caused by 

cracks in the 90° plies which connect and result in brittle failure. The interface has 

a strong bond caused by oxygen Ingression at the interface. The fibers in the path 

of propagating cracks break and hence there is no fiber bridging mechanism. The 

strain at failure is 20 % lower (0.12%) compared to non-heat treated specimens 

and the ultimate strength is reduced by 50-60% due to the heat treatment. 

4.6 Quasi-isotropic [O/±45/90]2s SiCIMAS static tests 

Samples MAs-a, MAS-11, MAS-1, MAS-3 and MAS-10 are 16-ply quasi­

isotropic [0/±45/90]2s laminates of SiC/MAS. Samples MAS-1, MAS-3 and MAS-10 

were subjected to heat treatment for 100 hours at 1100° C. The specimens were 

ramp loaded in tension to failure and AU parameters were monitored in real-time. 

Figure 32 shows the graph of SWF (MO) versus stress of sample MAS-S. The 

SWF values decrease in atleast four distinct regions (0-75 MPa, 75-125 MPa, 125-

1aO MPa and 180 MPa to failure). The stress/strain graph shown in Fig. 33 IS bi-
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linear initially in the stress range of 0-170 MPa, with the Intersection point between 

the linear ranges being at 65 MPa. It is presumed that matrix cracking in the 90° 

and ±45° plies occurs successively In the ranges of 75-125 MPa and 125-180 

MPa. The initial decrease of SWF and the deviation from linear behavior of 

stress/strain graph is due to the distribution of flaws and their close proximity to 

each other which causes several cracks to develop at low loads. The sharp drop 

in SWF values occurs at 180 MPa and is attributed to matrix cracking in the 0° 

plies. The majority of the load is being carried by the 0° plies at this Juncture. 

There is an increase in AE activity caused by fiber breaks prior to final failure at 

270 MPa as indicated by the increase in SWF in this range. The failure strain was 

0.85% for sample MAS-8 as shown in Fig. 33. The stress levels at which matrix 

cracks occur in different plies is based on real-time AU data. Damage occurrence 

on the surface of each plies was not recorded on a video and hence this is a 

speculation supported by AU data only. 

A similar test was performed on sample MAS-11. The SWF values drop by 

15 % in the range of 125-175 MPa as shown in Fig. 34, followed by a 70 % drop 

in SWF values in the range of 175 MPa to failure caused by matrix cracking in the 

0° plies. The failure occurred at 260 MPa with a failure strain of 0.88 %. There is 

a slight initial drop in SWF values and the laminate had a bi-linear behavior as 

observed in the stress/strain graph. 

4.6.1 Heat treated Quasi-isotropic [O/±45/90]2s SiCIMAS static 

tests 

Samples MAS-1 , MAS-3 and MAS-1 0 were subjected to heat treatment prior 

to mechanical loading. Figure 35 shows the graph of SWF (MO) value versus 
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stress of sample MAS-1. The SWF values start decreasing from very low loads till 

60 MPa (20% decrease) followed by another, slower decrease (12%) at 130 MPa. 

The final rapid drop in SWF values occurs from 130 MPa till final failure (60% 

decrease). The failure stress is 220 MPa and the corresponding failure strain is 

0.58% as shown in Fig. 36. A bi-linear curve is seen In the Initial portion of the 

stress/strain curve in the range of 0-130 MPa with the intersection pOint between 

the two linear regions being 65 MPa. 

Similar static tests were run on samples MAS-3 and MAS-10. Figures 37 

and 38 show the graphs of SWF (MO) versus stress which follows the same trend 

as that of sample MAS-1. Matrix cracking takes place in the off-axis plies prior to 

the start of matrix cracking in the 0° plies which causes the last sharp drop in 

SWF values. Further investigation and documentation of the surface damage 

during testing needs to be done as these conclUSions are based on AU data only. 

The final failure in heat treated specimens was brittle in nature. 
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5. AUSSR MODEL 

5.1 Introduction 

The nonlinear behavior observed in a stress-strain curve for a unidirectional 

ceramic composite is predominantly attributed to the effect of matrix cracks. The 

onset of matrix cracks and the first matrix cracks observed by a long distance 

optical microscope occur at the same stress level as described in the previous 

chapter. The models presented in this chapter are an attempt to describe the 

damage mechanisms occurring by incorporating the effect of matrix cracks and 

fiber breakage on the global strain response of the laminate to increasing loads. 

Section 5.1 presents the fundamentals of classical laminated plate theory and the 

procedure for calculating strains at the outer surface of the laminate for a given 

load. The strains at the outer surface obtained from the models described in this 

chapter can be compared to the experimentally observed strains from the 

extensometer attached to the outer surface. Different models will be introduced in 

this chapter outlining the history of development of successive models as the 

research progressed. The acousto-ultrasonlc stress-strain response (AUSSR) 

model introduced in this chapter is capable of predicting the strain response to 

increasing stress levels for unidirectional and cross-ply ceramic composite 

laminates. The fundamentals of classical laminated plate theory is presented as 

follows: 

Hooke's law for an elastic matenal IS given by 
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(5.1) 

where all and ell are the stress and strain components, respectively, and Cqkl are 

the elastic stiffness coefficients. The inverse of Equation (1.1) is given by 

(5.2) 

where 8 1J1d are the elastic compliance coefficients. It is convenient to introduce the 

following contracted notation to represent Cl/kI and 8 1JkI in compact form: 

11~1 22~2 3~3 
23=32~4 13=31~5 12=21~6 

(5.3) 

The stress-strain relationship in a co-ordinate system aligned with principal 

material directions for an orthotropic material (9 independent constants) is: 

a 11 C11 C12 C13 0 0 0 £11 

a 22 C12 C22 C23 0 0 0 ~ 

a 33 C13 C23 C33 0 0 0 Eaa (5.4) 
= 

a 23 0 0 0 C44 0 0 2~3 

a 13 0 0 0 0 Css 0 2£13 

a 12 0 0 0 0 0 C66 2£12 

For a lamina in the 1-2 plane, a plane stress state is defined by setting a3 

= 't23 = 't13 = o. For an orthotroplc matenal under a plane stress state, this results 

In Ea = 8 13a1 + 823a2 and 123 = 113 = O. The stress-strain relationships In principal 
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matenal co-ordinates for a lamina of an orthotropic material under plane stress is 

thus reduced to: 

0'1 Q 11 Q 12 0 

0'2 = Q12 Q22 0 {5.5} 

all is the reduced stiffness matrix and can be expressed in terms of 

engineering elastic constants as follows: 

{5.6} 

The stress In any other co-ordinate system in the plane of the lamina is given by: 

-
0')( Q

11 Q
12 Q16 E)( 

O'y = Q
12 Q

22 Q26 Ey 
{5.7} 

- 2E,xy O',xy Q16 Q26 Q
66 

QI} IS the reduced stiffness matrix for an arbitrary orientation. Alternatively, 

the stress strain relationship can be written for the K th layer with arbitrary 

orientation as: 
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(5.8) 

Kirchoff's hypotheses for plates assumes that laminates consist of perfectly 

bonded laminae with bonds being extremely thin and non-shear deformable. The 

displacements are continuous across lamina boundaries and there is no relative 

Slip between lamina. Normals to the middle surface remain straight and normal 

under deformations (Yxz = yyz = 0). And, finally, the strains perpendicular to the 

middle surface is negligible (£z = 0). 

The implications of these assumptions on the laminate displacements u, v, 

w, in the x, y, z direction results in the following: 

£x 
£0 

x Kx 

£y = £0 +Z Ky y 
(5.9) 

2£xy 2£° xy Kxy 

where, 

(5.10) 

2£~ auo avo 
-+-ay ax 

are the middle surface strains and 
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()2wo 

Kx 
aX2 

Ky = 
()2wo (5.11 ) 

Kxy 
ay2 

2()2wo 

axay 

are the middle surface curvatures. The superscript '0' denotes middle surface 

values.The stresses in the J(lh layer are then expressed in terms of the laminate 

middle surface strains and curvatures as: 

Q 11 
Q

12 Q16 
0 

Kx CJx Ex 

Q
22 Q26 

0 
Ky 

(5.12) 
CJy = Q 12 Ey +Z 

- Kxy CJxy k Q16 Q26 Q
66 2E~ 

The resultant forces and moments for an N layered laminate are obtained 

by integrating the stresses in each lamina through the laminate thIckness (2H). 

N x H 
CJx ZK 

CJx 
N 

Ny =f CJy dz=E f CJy dz (5.13) 

-H K=1 4-, 
Nxy CJxy k CJxy k 

and 

AUSSR Model 93 



Mx 
H 

CJx ZK 
CJx 

N 

My =J CJy zdz = L J CJy z dz (5.14) 

-H Ks l 
ZK.' 

Mxy CJxy k CJxy k 

where Ztc and Ztc.l are the distance in the z direction from the mid-plane of 

the laminate to the outer and inner boundary of the K th lamina, respectively. 

Substitution of the stresses from equation 5.12 gives 

N x ~1 A12 ~6 8 11 812 816 
£0 x 

Ny ~2 ~~ 812 822 826 
0 

£y 

Nxy ~6 ~ Ass 816 826 866 2£~ (5.15) = 
Mx 811 8 12 816 °11 °12 °16 Kx 

My 812 822 826 °12 °22 °26 Ky 

Mxy 8 16 826 866 °16 026 0 66 Kxy 

where, 

(5.16) 

is the extensional stiffness matrix, 

(5.17) 

is the extension-bending coupling matrix, and 
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(5.18) 

is the bending stiffness matrix of the laminate. 

The ply properties obtained from the rule of mixtures and ply orientation with 

respect to the load axis are used to calculate the laminate stlffnesses {Aq, BII , D~. 

We can calculate the mid-plane strains and curvatures for a given set of laminate 

stiffnesses ( A.I ' BII ' DII ) at a given load (P) using equation (5.15). The strains at 

the outer ply surface can be calculated from the mid-plane strains and curvature 

using equation 5.9 and can be compared with the strains obtained from an 

extensometer attached to the outer surface of the laminate during the test. For 

quasi-static ramp loading in tension, the mid-plane strains and curvatures are 

obtained from equation (5.15) using Nx = P N/m; Ny = Nxy= Mx = My = Mxy = o. 
Thermal loads are also incorporated to take Into account residual stresses and 

their effect. 

5.2 Ply-discount Scheme 

The strains in the outer surface of a laminate can be calculated given the 

loadings and the ply properties as explained in the previous section. To account 

for differences in laminate strains caused by damage In the individual plies, the ply 

properties need to be degraded. The degraded properties would reflect the effect 

of matrix cracking, for example on the global strain response to increasing loads. 

The slope of the initial portion of the stress/strain curve for unidirectional 
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composites is given by the rule of mixtures (E;; = V,E. + vmEm). It is assumed that 

no matrix cracking or any other form of damage takes place in this linear portion 

till the critical cracking stress (Gcr) calculated by the Budiansky's model is reached. 

According to the Budiansky's model, a steady state cracking occurs 

Instantaneously at this critical stress. It is assumed that the matrix becomes 

incapable of carrying any load and the majority of the load at this juncture is being 

carried by the fibers. The ply properties are recalculated with ~ and Gm of the 

matrix reduced to zero. The strain response shows a jump at this stress level due 

to the sharp reduction in the values of the constituent matrix properties. The 

second linear portion of the graph corresponds to V,E. as all the load is being 

carried by the fibers. Figure 39 illustrates the global strain response predicted by 

the ply-discount scheme.The laminate becomes more complaint after matrix 

cracking and the final failure occurs when all the fibers have broken. 

Obviously, this simplified model does not accurately predict the behavior of 

real materials. The nonlinearity seen in BMC materials occurs over a wide strain 

range and there are no sharp jumps as predicted by the ply-discount scheme.Also, 

the assumption of steady state cracking occurring instantaneously at Gcr is not 

correct. The matrix properties need to be degraded over a range of stress or strain 

levels. 

5.3 AUSSR model for unidirectional ceramic composites 

5.3.1 Introduction 

The first attempt to use real-time AU data along with claSSical laminated 

plate theory to predict the strain response to increasing stress levels IS presented 
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below. The ply properties were vaned over a stress range with the help of real-time 

AU data by varying Em and Gm of the matrix to incorporate the accumulating effect 

of increasing numbers of matrix cracks. The Em and Gm of the matnx are varied 

linearly over a(J from 100 % to 0 %. The range of stress levels (a(J) over which 

matrix cracks occurs is given by the onset and saturation of matrix cracking stress 

levels obtained from the AU data. Figure 39 shows the effect of the linear 

reduction of matrix properties (with the help of AU data) to predict the global strain 

response of the laminate. This model is an improvement on the more simple ply­

discount scheme, but the predictions are still not close to the observed stress­

strain response of a unidirectional ceramic composite. Although the prediction of 

the onset of the non-linear portion of the stress strain curve is close to the 

experimental data, the slope of the predicted curve at the onset of matrix cracking 

shows a sharp change, unlike the experimental data. 

5.3.2 AUSSR model 

The acousto-ultrasonic stress-strain response (AUSSR) model was 

formulated to study the failure mechanisms of unidirectional SiC/CAS ceramic 

composites. The model uses real-time AU data along with classical laminated plate 

theory to predict the strains measured at the outer plies in the gage section for a 

given load. Instead of uSing a linear fit to the AU data in the matrix cracking range, 

as in the previous section, a Weibull distribution was used to fit the variation of the 

real-time AU parameter with increasing stress levels. Researchers [90,92] have 

shown that the matrix crack density plotted versus stress follows a Weibull 

distribution; hence, a two parameter Weibull distribution was chosen here. Figure 

40 shows the degradation of SWF values for a typical Unidirectional SiC/CAS 

ceramic composite laminate and the corresponding Weibull distribution curve With 

Weibull parameters a = 15 and J3 = 235 MPa selected to approximate this 
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Figure 39. Strain response to increasing stress - ply discount scheme and linear 
variation of E", and Gm over matrix cracking stress range. 
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degradation curve. The elastic moduli of the matnx matenal, Em and Gm , used in 

the classical laminated plate theory fortran code are now varied over the same 

stress range from 100% to 0% using the same Weibull parameters a = 15 (shape 

parameter) and ~ = 235 MPa (location parameter). Here it is assumed that the 

matrix degrades in a similar fashion compared to the real-time AU parameter SWF 

(MO). This assumption takes Into account the effect of matrix cracking and its 

contribution to the observed global strains. Strains are then predicted for each 

increment of stress using classical laminated plate theory and the variatIon of 

matrix properties uSIng Weibull parameters obtained from real-time AU data. The 

results of this calculation are shown in Fig. 41, together with the actual observed 

stress-strain curve. 

The Initial linear portIon of the curve from prediction (Ec= 136 GPa) is a close 

fit to the real data (Ec=131 GPa). The changes in the slopes in the nonlinear zone 

follows the same trends till 0.35% strain. The slope of the second linear zone of 

the predicted curve is V,E, (fIber volume fraction * elastic moduli of fiber = 77 GPa) 

and is stiffer than the corresponding slope from the actual data. 

Results from AU have shown the occurrence of local fiber breaks together 

with matrix cracking in this range. The difference between the relative actual 

compliance of the specimen compared to the AUSSR model is due to the loss of 

load bearing fibers because of the fiber breaks occurring during loading and is 

unaccounted for in this model. The fInal slope could be modified by ~VfE, (0<~<1), 

where ~ depends on the percentage of fibers broken until saturation of matrix 

cracks. Also the strains at which the second linear zone starts is less than the 

actual strain as the contribution from the additIonal straIns caused by fiber 

breakage has not been accounted for in the AUSSR model. 
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Figure 41. AUSSR model predictions and experimental stress-strain curve for 
unidirectional SiC/CAS fOals ceramic composite. 
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5.3.3 AUSSR-WZ model 

Zhu and Weitsman [95] presented a mechanics model which relates the 

response of a unidirectional ceramic composite laminate to matrix cracking, fiber­

matrix interfacial slips and fiber breaks. Fiber breaks occurring during or before 

matrix cracking and their modulus softening effect were also incorporated along 

with matrix cracking to predict the strain response of the unidirectional ceramic 

composite laminate. Figure 42 obtained from the Weitsman and Zhu model rNZ 

model) shows the relative value of incremental strain due to fiber breaks Ms / £ vs 

CJa, where £ is the total strain and CJa is the global stress applied to the laminate. 

The incremental strain Ms calculated from the WZ-model uses constituent property 

values similar to the ones used in the present analYSIS. 

The AUSSR model presented in the previous section accounts for only 

matrix cracks and hence was modified to account for fiber breaks to form an 

AUSSR-WZ model. The corresponding incremental strain Aes obtained from Fig. 

42, is added at each increment of stress level to the AUSSR model predictions.The 

strain response to increasing stress level for the AUSSR-WZ model is presented 

in Fig. 43. The predictions of the AUSSR-WZ model are similar to the AUSSR 

model and closely follow the trend of experimental data till 0.35% strain. The 

additional strains from the WZ model over predicts beyond this range and hence 

the predicted global strains are higher than the experimental data, unlike the 

AUSSR model, although the slope of the AUSSR-WZ model is closer to the 

experimental data in comparison with the AUSSR model. 
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Figure 42. Weitsman's (WZ) model predictions of additional strains due to fiber 
breaks and Weibull distribution curve fit to the model. (ex = 50 and J3 = 290 MPa) 
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5.3.4 AUSSR-WZ-WB model 

The expected number of fiber breaks obtained from WZ model over a stress 

range follows a Weibull distribution [95]. A Weibull distribution with ~ = 50 (shape 

parameter) and J3r = 290 MPa (location parameter) was used to fit the &5 I £ vs 

Ga predicted from the WZ model as shown in Fig. 42. It is assumed that the 

majority of fiber breaks for this material system occurs at 290 MPa and at a very 

narrow range (ar = 50). 

-(a)" 
= {1-e -m } 0.37 (5.19) 

The incremental strain obtained from equation 5.19 was added to the 

AUSSR modeling results to obtain predictions for an AUSSR-WZ-WB model as 

shown in Fig. 44. The AUSSR-WZ-WB model incorporates the additional strains 

due to fiber breakage by using Weibull parameters ar and ~. These Weibull 

parameters are different than the parameters used for modeling matrix cracks in 

the AUSSR models. The AUSSR-WZ and AUSSR-WZ-WB models show a 

secondary nonlinear zone (hump) caused by the prediction of a large amount of 

fiber breaks at approximately 290 MPa. It has been experimentally observed in a 

few samples that a large amount of fiber breaks occurs around 250 MPa. The 

Weibull parameter ~ was changed accordingly to the observed 250 MPa stress 

level and the strain response was recalculated for this modified AUSSR-WZ-WB 

model. Figure 45 shows the trend of strain response to increasing stress levels 

obtained from the modified AUSSR-WZ-WB model. This result follows closely to 
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Figure 43. AUSSR - WZ model predictions and experimental stress-strain curve 
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Figure 44. AUSSR - WZ - WB model predictions and experimental stress-strain 
curve for unidirectional SiC/CAS lOa]. ceramic composite. 

AUSSR Model 106 



the experimental data and has no secondary non-linear zone. The slope of this 

model in the second linear range is higher than the experimental data although it 

is an improvement on the previous models. The onset of the second linear zone 

is still at a higher strain than the experimental curve as the additional strains are 

over-predicted by WZ model. 

5.3.5 Modified AUSSR model 

The AUSSR model was again modified to account for the average number 

of fiber breaks occurring during matrix cracking obtained from real-time AU data. 

The effective fiber volume fraction was re-calculated and the AUSSR model 

predictions were modified accordingly as explained below. 

Sample US was loaded in tension until saturation of matrix cracks. The 

majority of load is being borne by the fibers at this juncture. It was the author's 

Intention to calculate the energy in terms of SWF (MO) obtained from all the fiber 

breaks. As explained In chapter 4, the specimen was unloaded to zero load and 

reloaded to failure In constant displacement control mode. Extensive acoustic 

emission generated by the fiber breaks was observed between 350 MPa (0.508 

mm) and 425 MPa (0.762 mm) as shown In Fig. 10. The sharp peaks were 

generated from fiber breaks, assuming no other damage mode was present, and 

all the load is being carned by the fibers after saturation of matrix cracks.The area 

under these local peaks was summed (1: MO) to obtain the energy content from the 

damage events, namely, fiber breaks, based on the above assumption. It is also 

assumed that each fiber breaks once and loses its load bearing capability. It is 

further assumed that each fiber break generates the same amount of acoustic 

emiSSion as the breaks occur In the same plane at a distance 'd' away from the 

AU receiver transducer. 
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Figure 45. Modified AUSSR - WZ - WB model predictions and experimental 
stress-strain curve for unidirectional SiC/CAS·[Os]. ceramic composite. 
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The average number of fibers were calculated (87000) assuming the fiber 

volume fraction value (0.4) and fIber dimensions obtained from the manufacturer 

were accurate. The contribution from each fIber (MOl) was calculated assuming 

each fiber breaks only one time. The local high peaks of SWF (MO) attributed to 

fiber breaks for a typical sample were summed and compared to MOl to calculate 

the average number of fiber breaks (20000) that have occurred prior to the 

ultimate failure zone. The effective fiber volume fraction (~vI=0.31) was calculated 

by assuming the broken fibers are not load beanng and hence could be assumed 

to behave as a matrix material filling up the volume without sharing any load [96]. 

The fIber volume fractIon was altered to reflect the change after saturation 

of matrix cracks in the AUSSR model. The Weibull parameters a and ~ account 

for the effect of matrix crackIng and the effectIve volume fraction accounts for the 

fiber breaks. The modified AUSSR model predictions shown in Fig. 46 

approximates the experimental stress strain curve for a unidirectional SiC/CAS 

composite. The underlying assumption is that all fiber breaks which occur during 

matrix cracking occur at the one stress level after the saturation of matrix cracks 

and hence a jump in strain value IS seen at that stress level in the modified 

AUSSR model predictions. The effective fiber volume fractions could be altered as 

and when the sharp peaks corresponding to fIber breaks are observed during static 

tests to obtaIn accordingly better modified AUSSR model predictions. The slope 

of the second linear zone (~VI~ = 61 GPA) is closer to the experimental data than 

the other models. The predictIon of the modified AUSSR model could be further 

improved by changing the effective fiber volume ratio over a range at which the 

fIber breaks occur. The onset of the second linear zone in the stress strain curve 

IS experimentally higher than the predIctions of the modIfied AUSSR model as the 

additional strain contributIon was not taken Into consideration. The ultimate 
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Figure 46. Modified AUSSR model predictions and experimental stress-strain 
curve for unidirectional SiC/CAS [Os]. ceramic composite. 
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strength in all these models can be predicted by equation (4.6) although it is also 

an over prediction compared to the experimental results. 

5.4 AUSSR model for cross-ply ceramic composites 

Matrix cracking occurs in 90° plies prior to occurring in the 0° plies and 

occurs in both ply types over a range of stress levels, as indicated by real-time AU 

data. The ply properties used in the classical laminated plate theory fortran code 

for the AUSSR model were degraded accordingly by degrading the constituent 

properties of the matrix (1;0, Em 90; Gm 0, Gm 90) for the respective plies from 100% 

to 0% over the respective stress ranges with the help of AU data. The degradation 

of elastic moduli for respective plies was done with the help of two sets of Weibull 

parameters ago= 2.5, ~ = 60 MPa and a.o =7, J30 = 118 MPa. The 130 value is 

half that of the Weibull location parameter 13=235 MPa used in the AUSSR model 

for unidirectional composites as there are only eight 00 plies in comparison with 16 

plies in the unidirectional SiC/CAS composite laminate. The stress ranges ( AcfO 

and Acf ) over which this matrix cracking takes place are obtained from the AU 

data. The Weibull shape parameters ago= 2.5, 1390 = 60 MPa and a.o =7, 130 = 118 

MPa is obtained by approximating the AU data curve over each stress range 

(AcfO and ACJ~. The degradation of ply properties by degrading the elastic 

properties of the respective matrix constituent properties takes into account effect 

of global strain response to matrix cracking occurring in each ply. 

Figure 47 shows the AUSSR model predictions for the strain response of 

a cross-ply SiC/CAS laminate [0/90Ls subjected to increasing stress levels along 

with the actual observed stress-strain curve. The trends are similar to the 

experimental curves with two non-linear zones each corresponding to matrix 
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Figure 47. AUSSR model predictions and experimental stress-strain curve for 
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cracking in the saO plies and 0° plies which occur in sequence. The initial slope of 

the curve is given by I;; = Exx obtained from the classical laminated plate theory. 

The predicted curve deviates from the actual stress-strain curve at 0.12 % strain. 

Further work needs to be done Incorporate fiber break effects and to obtain the 

correct value of <Xo for a cross-ply laminate using a numerical technique to 

approximate the SWF degradation curve. After the initial degradation of the 90° 

plies, the damage progression and mechanism is similar to the unidirectional 

ceramic composite material. 

5.5 Summary 

The AUSSR model predicts strain response to Increasing stress levels by 

incorporating the damage modes and their effect upon the global strain response 

of a laminate with the help of real-time AU data and classical laminated plate 

theory. The ply properties are vaned according to the real-time AU data by varying 

the ~ and Gm of the matrix to take into account the occurrence of matrix cracks. 

The change in the elastic moduli due to matnx cracks causes the non-linear zone 

of the stress-strain curve generated by the model and closely fits the expenmental 

data. 

The Weibull shape parameter, a, denotes the spread of the range at which 

matrix cracking occurs. This parameter is a processing parameter, the larger the 

value of a, the smaller is the range over which matrix cracking occurs and thus 

the better is the reliability of the processing technique. The spread in the matrix 

cracking range is caused by defects and flaws created in the processing stage, 

producing crack initiation sites In the matrix material. This parameter could be used 

as a quality control tool. The location parameter, (3=235 MPa, is nearly the critical 
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cracking stress level (acr=207 MPa) calculated with the Budiansky, Hutchinson and 

Evans (BHE) model [83]. This model assumes steady state matrix cracking 

whereby cracking takes place at a certain critical stress level and not over a range 

as seen in real materials. The Ji parameter is dependent on the in-situ 

constituent properties, residual stresses caused by thermal coefficient mismatch 

between the constituents, and the properties at the interface. The Weibull 

parameters (a and Ji) obtained from the real-time AU parameter are used to 

closely predict the global strains on the edge of a laminate of SiC/CAS ceramic 

composites below approximately 0.35% strain as shown in the Fig.41. The 

modified AUSSR-WZ-WB model is a further improvement on the prediction of 

AUSSR model by incorporating fiber breaks, although the strains caused by fiber 

breaks are over predicted. The modified AUSSR model incorporates the fiber 

breaks dunng matrix cracking by altering the effective fiber volume fraction and is 

an improvement on all of the previous models. 

The models developed by the author show the effects of each damage 

mode on the global strain response. The predictions of the models approximate 

the typical experimental curve and hence supports the assumptions made by the 

author in interpreting the AU results in terms of the different damage modes 

present and their onset and progression during static tests. The baSIC damage 

mechanisms during static tests are deciphered with the help of real-time AU data 

and supported by the AUSSR models. 

The initial linear portion of the curve is the axial stiffness of the 

unidirectional SiC/CAS composite given by the rule of mixtures. The onset of non­

linearity in the stress strain curve is caused by the onset of matrix cracking as 

shown in the AUSSR model and can be calculated from the Weibull parameters. 

The onset of the matrix cracking exposes the fiber to an oxygen nch environment 
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at high temperatures causing oxidative embrittlement of the interface and thereby 

causing catastrophic failure. The stress at the onset of matrix cracking calculated 

from the Weibull parameters should be used as a design stress instead of the 

critical cracking stress obtained from the Budiansky's model for thermo-structural 

applications. 

The cross-ply AUSSR model shows a similar trend to the experimental data 

as both the model and the experimental data have two non-linear zones each 

corresponding to matrix cracking in the 90° and 0° plies respectively. The two non­

linear zones in the stress strain curve have been modelled by two sets of Weibull 

parameters ( 000, ~90 ; 00, ~o) for 90° and 0° plies, respectively. Further work needs 

to be done to obtain the correct value of 00 and also incorporate the effect of fiber 

breaks in the model. Damage mechanics of the cross-ply is similar to that for the 

unidirectional ceramic composite apart from the initial goO plies degradation caused 

by the matrix cracks in those plies. 
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6. FATIGUE TESTING 

6.1 Introduction 

There were two primary objectives in conducting fatigue tests at room 

temperature. The first objective was to generate an S-N curve (load amplitude vs 

Log (failure cycles» for un-notched cross-ply [O/90Ls SiC/CAS ceramic composite 

material system. S-N curves serve as a guideline for estimation of life of a 

structural component made of the same material when loads and in-service 

fluctuations of loads are known. The second objective was to monitor the damage 

progression during fatigue loading with the help of the real-time AU technique 

without interrupting the tests. Previously, researchers have monitored the damage 

state during fatigue by stopping the test at regular intervals and performing AU 

measurements under static loads. Thus, the feasibility of successfully assessing 

the damage in ceramic composites by AU has already been done. However, 

interrupting a test to perform AU measurements or other NDE tests could change 

the characteristics of the damage mechanism and, more importantly, the exact 

progression of damage might be missed. This is the first known time an AU 

practitioner has attempted to record AU data and assess damage in real-time 

under dynamic fatigue loads without interrupting the test. The real-time AU 

technique developed by the author is a non-disruptive, non-destructive technique 

to assess and monitor damage in ceramic composites. This technique also assists 

in studying the failure mechanisms of cross-ply SiC/CAS ceramic composites 

under cyclic loads. 
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Tension-tension (R=0.1) room temperature fatigue tests were conducted on 

cross-ply [0/90Ls SiC/CAS ceramic specimens at 10Hz. The load amplitudes 

selected to run the fatigue tests ranged from 60% to 90% of the ultimate tensile 

strength (UTS). Validation of the real-time AU technique is presented in this 

chapter followed by the fatigue test results. The observed failure process is also 

described along with the experimentally determined S-N curve of the SiC/CAS 

cross-ply ceramic composite. 

6.2 Validation of the real-time AU technique during fatigue 

tests 

The AU technique needs to be validated before basing our conclusions on 

AU data regarding damage progression. To assure ourselves that the real-time AU 

technique monitors damage progression dUring a fatigue test, the AU technique 

was investigated first with the use of two control experiments. The real-time AU 

data recorded during cyclic loading is claimed to monitor the damage state and its 

progression. The changes in AU signals are claimed to have been caused by 

changes in the damage state and not due to extraneous signals from the noise 

produced by the fluctuating loads. The fluctuating stress level does have a 

fluctuating, but constant, effect on the AU signals. As long as the signals are 

averaged over at least one load cycle and the interval over which averaging is 

done is constant, the energy content of the received signal, as measured by the 

SWF (MO) averaged over one load cycle, is constant. Any change observed in the 

energy content of the received AU signal IS then attributed to changes In the 

damage state level. 
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To validate these hypotheses, two controlled experiments on two different 

materials were performed. An isotropic material (mild steel) and a SIC/CAS 

ceramic composite specimen were selected for this experiment. 

A mild steel specimen of dimensions similar to the ceramic specimens 

(6- x 0.5- x 0.13-) was subjected to tension-tension fatigue (R = 0.1) at 10Hz with 

the load amplitude at 20% of UTS. The fatigue testing conditions were similar to 

the ones used in subsequent SIC/CAS tests. A very low load amplitude was 

selected so as not to induce fatigue damage during testing. Real-time AU data 

were recorded without interrupting the test. The recorded AU signals were 

averaged over 10 cycles to obtain the AU parameter. The real time SWF (MO) 

parameter plotted versus cycles showed a flat, straight line. Hence, if no damage 

takes place at such low load amplitudes and there is no couplant degradation, the 

expected SWF (MO) versus elapsed cycles graph is found to be a straight line with 

zero slope. 

A unidirectional SiC/CAS specimen sample G 16 [09]5 was loaded In quasi­

static tension till saturation of matrix cracks. After saturation of matrix cracks, the 

load is carried by the fibers only. The specimen was then fatigued (R = 0.1; f = 10 

Hz) at 25% UTS. The load level was again selected so as not to induce any 

additional damage during testing. Matrix cracks can occur at very low loads due 

to initial flaws in the specimens as shown in the previous chapters. SWF (MO) is 

very sensitive to matrix cracking and hence saturation of matrix cracks was 

allowed to take place prior to fatigue testing. This reduces any possibility of 

additional damage occurrence during the controlled experiment. Figure 48 shows 

the normalized SWF (MO) versus cycles for sample G16. The resulting graph is a 

flat line. The initial fluctuation was caused by the adjustment of load level during 

the initial cycles. 
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Figure 48. Validation of real-time AU set-up for fatigue testing. 
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These experiments validate the inherent assumptions of the real-time AU 

set-up. Any decrease in SWF (MO) values during fatigue can be attributed to an 

Increase in damage. The real-time AU NDE technique can be used as a 

continuous, damage monitoring system. 

6.3 Fatigue testing 

6.3.1 Introduction 

Fatigue tests were performed on SiC/CAS [0/90]45 specimens. The 

specimens were cut from a second SiC/CAS cross-ply plate (6.5" x 6.5" x 0.127") 

supplied by Corning Inc. C-scan and radiography were performed on the plate prior 

to cutting by a diamond wheel. Figures 49 and 50 show the c-scan and radiograph 

of the cross-ply plate with no observable porosity and inclusions. The dimensions 

of a typical cut specimen were 6" x 0.5" X 0.127". End tabs were attached to 

prevent crushing damage during loading. The edges were polished to faCIlitate 

good edge replication of surface damage. 

To obtain an S-N curve, load amplitudes were selected in the range of 60% 

to 90% of ultimate tensile strength. At least three specimens were subjected to 

each of the load amplitudes of 60% and 90% of UTS. The remainder of the 

specimens were subjected to load amplitudes of 85% , 75% and 65% UTS. Two 

specimens from the first cross-ply plate were also cyclically loaded With load 

amplitudes of 66.66% and 75% respectively. The results of these latter two 

specimens were not Included in generating the S-N curve as the denslflcations of 
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Figure 49. Ultrasonic C-scan of cross-ply SiCICAS [01901. ceramic composite plate 
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Figure 50. X-ray radiograph of cross-ply SiCICAS [01901. ceramic composite plate 
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the first and the second cross-ply plates were different. 

Damage was documented at different points of the fatigue tests to study the 

failure mechanisms during fatigue. The monitoring of damage was done by 

recording and analyzing real-time AU signals. At least one test was run un -

interrupted at each load amplitude. Other techniques used to document damage 

during a fatigue test are listed below. 

Normalized dynamic stiffness versus cycles was also monitored. During 

fatigue, different damage modes occur at different times and each has an effect 

on the subsequent stiffness of the laminate. The progression of damage from initial 

onset to failure for the same load amplitude was observed to rarely deviate from 

specimen to specimen provided the test conditions were kept the same. If the 

normalized dynamic stiffness drops by XOk before failure, one can stop the next 

specimen at the same XO/o of normalized dynamic stiffness and document the 

damage. The extent of damage is expected to be similar in both samples. Dynamic 

stiffness monitoring is also a real-time NDE technique and can be used to 

complement the AU results. 

Edge replication of the damaged surface was done at each interruption of 

the tests. Edge replication shows the matrix crack density present on the damaged 

surface. Static stiffness has also been found to be a good parameter to monitor 

the damage state of the fatigued material. The trends from the static stiffness test 

obtained at each interruption of a fatigue test were compared also with the AU 

results. 

X-ray radiography was performed at a few of the interruptions. Scanning 

electron microscope (SEM) analysis was also done on the failed surface to obtain 
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an insight to the failure characteristics of the specimens. 

The fatigue results in this chapter are subdivided into three section"s. 

namely. high load amplitude fatigue (80%-90% of ultimate tensile strength). 

medium load amplitude fatigue (70%-80% of ultimate tensile strength) and low load 

amplitude fatigue (60%-70% of ultimate tensile strength). The ultimate nominal 

tensile strength for the SiC/CAS [O/g0Ls ceramic composite obtained from static 

tests was 163 MPa. The S-N curve obtained for this material is presented at the 

end of the fatigue results. Representative results of specimens at each load 

amplitude will be presented and discussed in detail. 

6.3.2 High load amplitude fatigue 

The graph of normalized SWF (MO) versus % life of sample C18 is shown 

in Fig. 51. This specimen was subjected to cyclic loading to failure without 

interruption (f = 10Hz ; (Jmax = 90% of ultimate strength and R = 0.1). The 

specimen failed in the gage section after 4053 cycles and a significant amount of 

fiber pullout was observed. The SWF (MO) values decreased by 60% in the first 

8% of the fatigue life. The majority of matrix cracking had already taken place by 

this time as indicated by the AU data. A very slow decline in SWF values was 

observed till just prior to failure. The peak seen at 30% of the fatigue life can be 

attributed to acoustic emission. probably from fiber breakage. The receiving AU 

transducer acts as an AE transducer receiving additional high energy signals from 

the fiber breakage events. Figure 52 shows the formation of parallel transverse 

matrix cracks as observed in static tests. 

Figure 53 shows the graph of normalized SWF (MO) and normalized static 

stiffness vs % of life for sample C12. The fatigue test was interrupted to document 
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Figure 51. Normalized SWF (MO) vs % life for sample C18, SiCICAS [0/90L. 
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Figure 52. Photo-micrograph of transverse matrix cracks at failure in sample C18 
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Figure 53. Normalized SWF (MO) and normalized static stiffness vs % life for 
sample C12, SiCICAS [0/90L. (<J .... = 90% UTS) 
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damage at various points of the fatigue life. Edge replicas of the damaged surface 

and static stiffness were recorded at each interruption. The SWF values drop by 

95% at 8% of the fatigue life. The sharp drop is caused by matrix cracking 

occurring perpendicular to the load axis as observed in sample C18 and other 

brittle matrix composites. The SWF values thereafter show a gradual decline in 

their values until failure at 3482 cycles. The normalized static stiffness follows the 

same trend as the AU data. Figure 54 shows an enlarged view till 10% of life (350 

cycles) to better Illustrate this point. Significant fiber pullout was also observed at 

the failed section as shown in Fig. 55. Figure 56 shows fiber/matrix debond with 

the matrix crack propagating around the weak interface of sample C12. 

Sample C13 was also subjected to cyclic loads at 90% of ultimate strength. 

The normalized SWF (MO) and normalized static stiffness follows similar trends 

throughout its fatigue life (Nf = 2243 cycles) as shown In Fig 57. Progressive 

damage on the specimen surface is seen In the successive edge replicas taken 

at different points of the fatigue life as shown in Fig. 58. Sample C19 was fatigued 

at 85% of ultimate strength without interrupting the test. A 70% initial drop In SWF 

(MO) values was observed at 10% of its fatigue life (Nt = 6791 cycles) as shown 

in Fig. 59. The SWF values increase Just prior to failure. It is speculated that the 

cause of this increase could be due to acoustic emission from some damage 

events being detected over an extended number of cycles. The failure surface 

characteristics showed no deviation from the previous samples and hence further 

investigation needs to be done to verify this supposition. 

6.3.3 Medium load amplitude fatigue 

Sample C17 was fatigued at 75% of ultimate strength. The initial drop in 

SWF (MO) is 80% in the first 10% of its fatigue life (Nf = 50147 cycles), followed 
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Figure 55. (a) SEM photo-micrograph of the failure surface of sample C12, 
SiC/CAS [0/90]4" (b) An enlarged view of the failure surface 
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Figure 56. Photo-micrograph showing debonding at the fiber/matrix interface of 
sample C12, SiC/CAS [0/901. 

Fatigue testing 131 



----------------------------------~1 ~ 
~ 

0.9 ~ 
0.8 ~ 

~ 0.7 0.7 ~ 
en 0.6 0.6 ~ 
~ 0.5 - ........................... ,................................... 0.5 ~ 

~ 0.4 0.4 @ 
~ 0.3 0.3 ~ 
o 0.2 0.2-< 

Z 0.11~~~~~=~====::~~ 0.1 ~ 
00 10 20 30 40 50 60 70 80 90 1 b8 Z 

% LIFE 

I-SWF(MO) ----- STATIC S'IIFFNESS 

Figure ST. Normalized SWF (MO) and normalized static stiffness vs % life for 
sample C13, SiCICAS [01901. (amax = 90% UTS) 

Fatigue testing 132 



N = 1 CYCLES N ::: 10 CYCLES 

N = too CYCLES N = 500 CYCLES 

N = 1000 CYCLES N = 2000 CYCLES 

SCALE I 600 11 m I 

Figure 58. lEdge replicas of the damaged surface of sample C13, SiC/CAS [0/901. 
(O'max = 90% UTS) 
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Figure 61. Local delaminations in the 90° plies of sample C17, SiC/CAS [0/90]4. 
(amax = 75% UTS) 
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by a flat curve till failure as shown In Fig. 60. The initial drop In SWF values is also 

more gradual in comparison with the higher load amplitude fatigue test results. 

There are small jumps in SWF values seen at 15% of the fatigue life prior to a flat 

curve. These jumps could have been caused by acoustic emission from damage 

events occurring during these cycles. Figure 61 shows local delamination 

connected by transverse matrix cracks in the goO plies. This damage mode is not 

seen in similar specimens with the same lay-up subjected to static loads. 

Sample C4 was also fatigued at 75% ultimate strength. Figure 62 shows the 

normalized SWF and normalized static stiffness values plotted with the 

corresponding number of cycles for sample C4. Stiffness measurements and SWF 

values follow the same trends indicating damage accumulation with the Increasing 

number of cycles. The majority of damage takes place before 25 cycles (2.5% life). 

The specimen failed at 961 cycles, very low in comparison with other samples 

tested at the same load amplitude. The difference may have been a result of the 

specimens being cut from two different plates. 

6.3.4 Low load amplitude fatigue 

Sample C11 was subjected to cyclic loading at 60 % of the ultimate 

strength. Figure 63 shows the graph of normalized SWF (MO) and normalized 

static stiffness vs % of life for sample C11. The static stiffness shows a trend 

similar to the AU data. An enlarged view showing the variation of SWF (MO) and 

static stiffness till 500 cycles is plotted in Fig. 64. The majority of the damage 

occurred in the first few cycles. Edge replicas shOWing progressive damage at 

different cycles IS shown In Fig. 65. The specimen failed at 488,743 cycles at one 

end tab With extensive fiber pull-out as shown in Fig. 66. Figure 67 (a) and (b) are 

SEM photomicrographs showing dynamic fracture of the fibers at failure With fibers 
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Figure 65. Edge replicas of the damaged surface of sample C11, SiCICAS [01901. 
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Figure 66. SEM photo-micrograph of the failure surface of sample C11, 
SiC/CAS [0/90]4. 
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(a) 

(b) 

Figure 67. (a) SEM photo-micrograph of the failure surface of sample C11, 
SiC/CAS [0/90]4. , (b) An enlarged view 
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in the path of the final catastrophic crack propagation breaking more than once. 

The fibers are clean indicating a weak interface-no bond situation between the 

fibers and matrix. 

Sample 16 and Sample 20 were fatigued also at 60% ultimate strength. The 

trends of SWF (MO) values are similar to C11 and are shown in Fig. 68 and Fig. 

69. The cycles to failure for C16 and C20 are 317,929 and 374,913 cycles 

respectively. The failure locations for all three samples (C11, C16 and C20) were 

at the end tabs as shown In Fig. 70. It appears to be a shear mode failure at the 

end tabs. The initiation of the final failure is at the mid [901 plies caused by matrix 

cracks connecting in the mid 900 plies with delamination and the adjacent 00 plies 

matrix cracks. The connected cracks become critical, causing localized fiber 

fracture which results in the final failure of the laminate. The Initiation of the final 

failure for low stress amplitude fatigue is at the end tabs due to the global stress 

concentration caused there by the gripping action. The conical shape of the failure 

surface is due to the effect of the post-initiation failure mechanism. The post­

initiation failure path seeks the free edge which is not in the same plane due to the 

extension of the end tabs. The closest free edge is at the end of the end-tabs 

which is at a distance (d) from the failure initiation plane. The distance (d) depends 

on the location of the grips with respect to the end-tabs. This determines the 

conical shape of the failure surface. High stress amplitude fatigue shows a similar 

final failure mechanism. In the latter case, the closest free edge is in the same 

plane and hence the failure surface produced IS perpendicular to the load axis. The 

post-initiation failure path in both cases seeks the nearest free edge as the stress 

intensity factor k, is increased due to the close proximity of the free edge. 

Sample C3 was cyclically loaded at 66.66% of ultimate tensile strength. 

Figure 71 shows the normalized SWF and normalized stiffness values plotted 
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Figure 70. Photograph showing failure locations of samples C11, C16 and C20 

SiC/CAS [0/90]48 (O"max = 60% UTS) 
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Figure 71. Normalized SWF (MO) and normalized static stiffness vs cycles for 
sample C3, SiCICAS [0/90L. (aInU = 66% UTS) 
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Figure 72. Edge replicas of the damaged surface of sample C3, SiC/CAS [0190]4, 
(O"max = 66% UTS) 
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versus the corresponding number of cycles for sample C3. The damage 

accumulation with increasing number of cycles is followed by similar reductions in 

stiffness and SWF values. Figure 72 shows edge replicas taken at the gauge 

length of sample C3 indicating progressive damage at different points of the fatigue 

life. Specimen C3 failed at 41,966 cycles. Local delamination between transverse 

matrix cracks in 90° plies is observed and shown in Fig. 73. The failure surface 

indicated extensive fiber pullout. Maximum damage in sample C3 took place 

between 0-50 cycles. After 150 cycles the SWF values remain fairly constant 

indicating no additional major damage occurring until catastrophic failure. 

Samples C14 and C15 were fatigued at 65% ultimate tensile strength. The 

trends of SWF (MO) are similar to low amplitude fatigue samples and are shown 

in Fig. 74 and Fig. 75 respectively. 

Dynamic stiffness was also monitored In all specimens along with edge 

replication and static stiffness to complement the AU results. Damage In terms of 

matrix cracking takes place in the first few cycles. During the first few cycles the 

load amplitude is being fined tuned and hence it is physically impOSSible to record 

the changes in strain to measure dynamic stiffness. The dynamic stiffness, along 

with static stiffness, remains unchanged after the Initial first drop In its value for 

SiC/CAS cross-ply specimens for the loading levels described above. Hence the 

results of dynamic stiffness are not presented here. In the future, a data acquisition 

system with continuous peak strain monitonng should be utilized to obtain dynamic 

stiffness curves. 

X-ray radiography done on a few samples produced similar results as also 

seen in the case of static tests. 
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Figure 73. Local delaminations in the 90° plies of sample C3, SiCICAS [0/90L. 
(crmax = 66% UTS) 
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6.4 S-N Curve 

The S-N curve stress amplitude vs Log (cycles to failure), was generated 

using cross-ply SiC/CAS [O/90Ls specimens from the second plate only. Sample 

C3 and C4 were cut from different plates each having a different density, and 

hence were not included in the data set. The range of load/stress amplitude was 

selected from 60% to 90% of ultimate tensile strength. At least three samples were 

fatigued at the two extremities of this range. The S-N data shown in Fig. 76 are 

nearly linear. Therefore, a linear regression analysis was performed to obtain the 

coefficient of variance (~ = 0.988): 

a 
~ = - 0.13919 10gN + 1.387776 (6.1) 
au 

Surprisingly, there is not much scatter In the S-N data points obtained 

during the fatigue tests. In general, S-N curves for polymeric composites show a 

scatter of data points by an order of magnitude. All the present specimens were 

fatigued with the same test conditions and were cut from the same panel, perhaps 

contributing to a well behaved S-N curve for the SiC/CAS cross-ply material 

system. A knee in the S-N curve for polymeric composites IS observed above 60% 

of ultimate strength and is used to define the endurance limit. A knee is not seen 

in SiC/CAS for the range of stress amplitudes used here, but thiS does not rule out 

the possibility of its existence. It is speculated that a knee exists at stress 

amplitudes below which matnx cracking does not occur at the very first cycle (45% 

of ultimate tensile strength). The S-N curve generated here could serve as a 

guideline for life prediction of a cross-ply SiC/CAS material system. 
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Figure 76. S-N curve for cross-ply SiCICAS [0/90L. ceramic composite. 
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6.5 Failure process during Fatigue 

Fatigue damage is defined as cycle dependent degradation of internal 

integrity [97]. Fatigue damage is primarily concerned with damage events/process 

which contribute to degradation In stiffness, life or the engineering properties of the 

material. The changes in mechanical response may not be of the same order as 

changes in internal integrity. The damage events observed In composite materials 

include matrix cracking, debonding of fiber/matrix interface, delamination, fiber 

fracture accompanying these damage modes and final fiber fracture. These 

damage modes do not occur independently but are Inter-linked and hence complex 

to analyze. The amount of research done on fatigue characteristics of SiC/CAS 

ceramic composites has been hmited till now. Researchers [108-110] have shown 

a similarity between failure/damage mechanisms occurring during static and fatigue 

tests for the SiC/CAS material system. Fatigue characteristics at elevated 

temperature are different generally than room temperature fatigue tests [110]. For 

the present work, fatigue tests were run at room temperature and the damage 

process described here is for room temperature. 

The typical damage modes during fatigue consist of (a) matrix cracking and 

accompanying fiber breaks at or near the matrix crack planes, (b) the matrix crack 

coupling, interfacial debonding and accompanying fiber breaks, (c) onset of 

delamination and accompanying fiber breaks, (d) local delamination growth with 

perhaps localized fiber breaks, and (e) final failure of the laminate caused by 

extensive fiber breaks. Random fiber breaks are also observed for statistically 

weak fibers. 

The failure/damage process in a ceramic composite consists of initiation 

and growth of several different damage modes and the complex Interaction 

Fatigue testing 156 



between them. The damage process in un-notched SiC/CAS cross-ply [0/90Ls 

ceramic composite at the load levels used here can be considered in three stages. 

Stage 1 occurs during the first 8-10% of life during which damage develops at a 

very rapid rate. The damage mode that occurs during this stage is matrix cracking 

in the 90° and 0° plies with saturation by the end of the first stage and 

accompanied by a few fiber breaks. The SWF (MO) values also drop by 70% -

90% during this stage and a similar drop of 50% is seen in the static stiffness of 

the laminate. The maximum stress level for low load amplitude tests used here 

is higher than the stress level for the onset of matrix cracking in the 90° and 0° 

plies. Hence, matrix cracking occurs in all plies during the first cycle and saturates 

during the first 10-20 cycles. The edge replicas taken at different cycles show the 

increase in crack denSity in the first 10 cycles. In ceramic composites the stiffness 

of the matrix IS comparable to the fiber, unlike polymeric based composites (PMC) 

for which the fibers are considerably stiffer than the matrix. The reduction in static 

stiffness is around 50% due to matrix cracking compared to only 10% in polymeric 

composites. 

The SWF values are reduced by a slightly higher amount at higher load 

amplitudes compared to low load amplitudes. The rate of decrease of SWF values 

is also dependent on the stress amplitude. The higher the stress amplitude, the 

faster is the saturation of matrix cracks in all plies, resulting in a steeper drop of 

SWF values. QuasI-static tests show the relation between SWF values and the 

matrix crack density with increasing stress levels. Since the range of stress 

amplitudes selected are higher than the onset stress level for matrix cracks, the 

difference in the % SWF drop at a fixed % of life during the first stage between the 

high and the low load amplitude is small. 

A characteristic damage state (CDS) is reached at the end of the first stage 
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[112]. The pattern of crack spacing is similar to that for quasi-static tests. The 

saturation of matrix cracks at the end of the first stage is said to be a characteristic 

damage state (CDS) as the saturation spacing is independent of the load history. 

CDS is a laminate property defined by the constituent ply properties, the lay-up 

and the thickness of each ply, and the residual stresses. This matrix crack 

saturation and the corresponding crack spacing is a 'stable damage state' defined 

for each specific laminate. CDS can be used as the starting point of description of 

fatigue damage. 

The second stage corresponds to the next 70% - 80% of the life during 

which time damage continues to grow at a very slow rate. The plateau observed 

in the normalized SWF (MO) and normalized static stiffness curves correspond to 

this stage. The various damage modes initiating and growing in the second stage 

have little effect on the laminate stiffness. The matrix cracks interconnect with 

further fiber/matrix debonding in the 0° plies and Initiation of local delamination 

occurs in this stage of the damage process. Local delamination has been observed 

only during fatigue loading at low and medium stress amplitudes. ThiS does not 

rule out the possibility of slight delamination occurring at high stress amplitudes 

that was undetected, although delamination was not observed dUring static tests. 

Local delaminations as shown In Fig. 61, are initiated by the matrix cracks and 

occur preferentially at positions closer to the free edge surfaces as there is no 

constraint there to the out of plane motion. 

The third stage corresponds to the last 10% of life and consists of an 

accelerated damage process due to the localization of fiber breaks causing 

dynamic fiber fractures as shown in Fig. 67. The damage mechanisms in this 

region are dominated by the failure mechanisms of the fibers and their statistical 

behavior. The laminate stiffness degrades to such an extent in this region that the 
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lam inate cannot support the applied loads. 

Reifsnider [93-94] has proposed the critical element model to characterize 

the damage process and predict the strength of composite laminates. Critical 

elements are defined by the final failure mode of the laminate. Critical elements 

are those elements whose failure defines the failure of the laminate. Sub-critical 

elements are defined by the damage modes that occur during fatigue. Failure of 

these sub-critical elements changes the mechanics of local stress and its 

redistribution but does not cause the final failure of the laminate. The strength of 

the laminate is determined by the state of stress and the state of the material. The 

state of the material is controlled by degradation of the critical elements or the 

properties of the material of the critical elements. 

The critical element in a tensile failure of a fiber controlled cross-ply ceramic 

composite subjected to fatigue IS the 00 plies or the fibers in the 00 plies. Failure 

of these fibers by local unstable growth of a region of fiber fracture is the final 

event in the damage process. The sub-critical elements are: 

1. 900 plies matnx cracking and fiber/matrix debonding 

2. 00 plies matnx cracking, fiber/matrix debonding and lim ited fiber 

fracture in the matrix crack plane 

3. Local delaminations and limited local fiber fracture 

The initiation of damage modes and their propagation can be monitored 

continuously by real time AU parameters and can serve as input to the critical 

element model. The local state of stress is altered by the failure of the 

corresponding critical elements and accordingly the final failure of the critical 

element (breaking fibers in the 00 plies) can be predicted by this model. The 

stiffness of the laminate can also be extrapolated by the SWF (MO) vs cycles curve 
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for a given laminate and fatigue stress amplitude. Matrix cracks for the range of 

stress amplitude used in these tests occur in the first few cycles. The stress 

amplitude needs to be lowered to obtain a wider range over which matrix cracks 

occur so as to have a better extrapolation for stiffness from SWF values over 

larger data sets. The extrapolated stiffness reduction curve could also serve as 

input to the critical element model with the help of AU data. 

6.6 Summary 

The feasibility of the real-time AU technique for mOnitoring damage under 

fatigue loading was accomplished with success. The SWF (MO) measures the 

damage state at each cycle continuously without interrupting the fatigue test. The 

real-time AU set-up was validated by performing controlled experiments to verify 

the assumptions that AU changes resulted predominantly from damage 

progression. The SWF values remained constant as no damage took place during 

low stress amplitude (R = 0.1, f = 10 Hz) fatigue tests performed on mild steel and 

SiC/CAS ceramic composite material saturated with matrix cracks. 

An S-N curve for cross-ply [O/90Ls ceramic composite was generated. The 

failure characteristics of cross-ply SiC/CAS specimens loaded in fatigue were 

similar to the static tests except for delaminatlons which occurred at low and 

medium stress amplitude fatigue tests. The damage progression was documented 

by monitoring static stiffness, dynamic stiffness and edge replication to 

complement the AU results. It has been observed that reduction in SWF values 

during the first stage of the damage process is higher in the Interrupted fatigue 

tests compared to the uninterrupted tests. It is believed that the dynamics of the 

damage mechanisms is altered by the interruption of these fatigue tests. The real-
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time AU technique developed here is a continuous damage monitoring system 

without interruptions and hence has a distinct advantage over the conventional 

NDE techniques for monitoring damage. The critical element model discussed in 

this chapter can be applied to predict the strength of the laminate subjected to 

fatigue with the help of AU parameters. The understanding of damage and Its 

effect on residual strength and life is essential to the development of the damage 

tolerance methodologies for certification of composite structures and for developing 

and quantifying new materials [111]. Damage monitoring by real time AU as shown 

here can be used as a tool to provide an insight into the damage mechanisms of 

these new materials and thereby help in the study of their failure mechanisms. 
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7. Conclusions and Future Recommendations 

A summary of the research conducted and the conclusions drawn are 

presented in this chapter in a succinct form along with future recommendations. 

This chapter is divided into sUb-sections pertaining to the results and conclusions 

of: 

(a) Development of real time AU, (b) Quasi-static tests of ceramic composites, 

(c) AUSSR modeling and (d) fatigue tests on cross-ply SiC/CAS ceramic 

composites corresponding to chapters 4, 5 and 6. Future work IS outlined at the 

end of this chapter based on the observations and conclusions of the present 

research. 

7.1 Development of real-time AU technique 

• The feasibility of the real-time AU technique to assess and monitor the 

damage state in SiC/CAS ceramic composites under dynamic loads, (quasi­

static and fatigue loading) was shown. It was found that the real-time AU 

technique can monitor damage progression in ceramic composites 

subjected to quasi-static and fatigue loading without interrupting the test. 

The dynamics of damage mechanisms are altered by interrupting the test 

for damage documentation by conventional NDE techniques as shown in a 

previous chapter. Hence, the development of the real-time AU technique 

can be considered a significant contribution to the NDE field in terms of 

quantifying damage continuously without stopping the test. 
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7.2 Quasi-static tests 

• Real-time AU was used for monitoring damage progression In unidirectional. 

cross-ply SiC/CAS and quasi-isotropic SIC/MAS ceramic composites 

subjected to quasi-static loads. The real-time AU technique detected the 

onset and saturation stress levels for matrix cracking. The AU results were 

corroborated by in-situ optical microscope video recordings. 

• The AU parameter is a good measure of initial Integrity of the matenal 

studied here. The Initial SWF (MO) shows a linear correlation with the 

ultimate strength of unidirectional SiC/CAS ceramic composite. Higher the 

value of Initial SWF (MO). higher is the ultimate strength of unidirectional 

SiC/CAS ceramic composite. 

• Real-time AU was used to study the failure mechanisms of ceramic 

composites subjected to quasI-static loads. 

7.2.1 Failure process in [OJ. SiC/CAS ceramic composite 

under quasi-static loads 

• The first damage mode observed is the development of parallel transverse 

matrix cracks perpendicular to the load axis over a stress range. The onset 

of large scale matrix cracks (around 180 MPa) and the saturation stress 

level (275 MPa) is obtained from the AU parameter. The Budiansky. 

Hutchinson and Evans model predicts a higher critical cracking stress (207 
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MPa) due to the inherent assumption of steady state cracking which implies 

matrix cracking takes place at a single critical stress unlike real materials 

where it occurs over a stress range. 

• The matrix cracking IS accompanied by a few fiber breaks due to the 

additional loading of fibers at the matrix crack plane. 

• The non-linear portion of the stress-strain curve is believed to be a 

combination of the effects of progressive matrix cracking over the stress 

range, fiber debonding and fiber slipping, and an accompanying few fiber 

breaks during matrix cracking. 

• The onset of large scale matrix cracking slightly varies due to differences 

in flaw distribution in the matrix material. The characteristic damage state 

(CDS) is obtained at the saturation of matrix cracking (275 MPa), is a 

laminate property, and is independent of prior loading. The majority of the 

load is shared by the fibers after saturation of matrix cracks. 

• The average ultimate tensile strength of SiC/CAS [Osls ceramic composite 

obtained from static tests is 400 MPa. The analytical model of Curtin's over­

predicts the ultimate strength (525 MPa). The failed specimens show 

extensive fiber pull-out. 

• The ultimate strength of a heat treated unidirectional specimen is reduced 

by 50% due to oxidative embrittlement of the Interphase. The fiber/matrix 

bonding becomes stronger with oxidation, resulting in a brattle failure with 

negligible fiber pull-out. 
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7.2.2 Failure process in [0/90L. SiCICAS ceramic 

composite under quasi-static loads 

The failure process in a cross-ply laminate is very similar to that in a 

unidirectional laminate apart from the initial degradation of the 90° plies.The 

sequence of damage is as follows: 

• Initial degradation of goO plies caused by matrix cracking In these plies. 

• The onset (95 MPa) and saturation of matrix cracking (150 MPa) in the 0° 

plies with a few accompanying fiber breaks. The nominal stress levels at 

onset and saturation are approximately half the corresponding stress levels 

for unidirectional specimens as there are only half the number of 0° plies. 

The majority of the load is being carried by the fibers in the 0° plies after 

the saturation of matnx cracks. 

• The average ultimate tensile strength of [0/90]45 SiC/CAS ceramic 

composites obtained from the static tests was 163 MPa. The ultimate failure 

was caused by localized extensive fiber breaks. Extensive fiber pull-out was 

observed at failure. 

• Failure in the heat treated specimen was brittle in nature and was caused 

by the initiation and subsequent growth of matrix cracks in the 90° plies . 

The failure surface showed negligible fiber pull-out due to oxidative 

embrittlement of the interphase. The ultimate strength was reduced by 40% 

- 50% due to the heat treatment. 
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Real-time AU monitored damage in quasI-isotropic SiC/MAS specimens 

subjected to quasi-static loads. The number of specimens tested was not sufficient 

to make conclusive remarks about the failure process in these specimens. 

7.3 AUSSR model 

The AUSSR model predicts the strain response to increasing stress levels 

by incorporating the damage modes and their effects upon the global strain 

response of a laminate with the help of real-time AU data and classical laminated 

plate theory. 

• The ply properties are varied according to the real-time AU data using 

Weibull parameters to vary Em and Gm of the matrix to take Into account the 

occurrence of matrix cracks over a stress range. 

• The Weibull shape parameter, a, denotes the spread of the range at which 

matrix cracking occurs and could be used as a quality control tool. 

• The Weibull location parameter, J3 = 235 MPa, for unidirectional SiC/CAS 

ceramic composite is nearly the critical cracking stress level (ocr = 207 MPa) 

calculated with Budiansky, Hutchinson and Evans model. 

• The AUSSR-WZ-WB model incorporates fiber breaks during matrix cracking 

and the additional strains caused by the fiber breaks. 

• The modified AUSSR model Incorporates the fiber breaks dunng matrix 

cracking by altenng the effective fiber volume fraction and IS an 

Improvement on the prevIous models. 
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• The AUSSR model for cross-ply SiC/CAS ceramic composite shows two 

non-linear zones, one each for matrix cracking in the 90° plies and 0° plies 

as observed in the experimental curve. 

The prediction of these models approximates the corresponding typical 

experimental curve. The basic damage mechanisms during quasi-static tests are 

interpreted With the help of real-time AU data and supported by AUSSR models. 

• The Weibull parameters, <X and ~, can be used to predict the onset of large 

scale matrix cracking In ceramic composites. The onset of matrix cracking 

should be used as the design stress for thermo-structural applications 

instead of the critical cracking stress obtained from the Budiansky 

Hutchinson and Evans model. 

7.4 Fatigue tests 

• The verification of the real-time AU set-up to be insensitive to changes 

other than damage during fatigue was accomplished with success. 

• The real-time AU technique monitors damage progression during fatigue. 

Reduction in stiffness correlates with the change in the AU parameter at 

different stages of fatigue life, and these results were complemented and 

verified by edge replica photographs. 

• Room temperature S-N curve was generated for un-notched SiC/CAS 

[0/90]45 ceramic composite. 
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• Real-time AU was used to study the failure mechanisms of ceramic 

composites subjected to fatigue loads. 

• The failure characteristics of a cross-ply specimen subjected to fatigue 

loads are similar to the static tests, except for local delamination. The 

specimens were subjected to fatigue with stress amplitudes varying from 

60% - 90% of UTS. The stress amplitude of 60% UTS is higher than the 

stress level for onset of matrix cracking and hence matrix cracking, occurs 

in the first few cycles for all specimens tested here. 

The damage process in un-notched SiC/CAS [0/90}g ceramic composite 

can be considered in three stages: 

• Stage 1: onset and saturation of matrix cracking in 90° plies and 0° plies 

in the first 8% - 10% of life. Edge replicas of the damaged surface 

document the increasing crack density over this period. The characteristic 

damage state (CDS) is reached at the end of the first stage. 

• Stage 2: corresponds to next 70% - 80% of the life. Delamination has been 

observed during fatigue at low stress amplitude (60% - 70%) and medium 

stress amplitude (70% - 80%). 

• Stage 3: consists of accelerated damage process due to localization of fiber 

breaks causing final dynamic fracture. The failure mechanism at this stage 

is dominated by the failure mechanism of the fibers and its statistical 

behavior. Extensive fiber pull-out is seen at low, medium and high stress 

amplitude fatigue tests. 
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The ability of real-time AU NDE to study the failure mechanisms of ceramic 

composites has been demonstrated. Monitoring the onset of each damage mode 

and its progression under quasi-static ramp loading in tension and fatigue loading 

adds to our overall understanding of the failure mechanisms of ceramic 

composites. 

7.5 Recommendations for future work 

• Apply the critical element model to predict the life of a laminate subjected 

to fatigue with the help of AU damage progression curves. The fibers in the 

0° plies are the critical elements controlling the strength of the laminate. The 

sub-critical elements are defined as the matrix of 90° plies and 0° plies. 

• Extrapolate stiffness degradation curves from AU damage progression 

curves for fatigue loading. The relationship between the slopes of stiffness 

degradation curve and the AU damage progression curve at all three stages 

of damage progression can be obtained for a given stress amplitude. 

• Alter the Modified AUSSR model to incorporate additional strains caused by 

the fiber breaks. These strains can be added to the matrix cracking model 

as and when the fiber breaks occur instead of assuming it to occur at the 

saturation of matrix cracks, with the help of AU data. 

• Modify the AU analysis code to segregate the AE signals from the AU 

signals based on the pnor knowledge of the characteristics of AE signals 

from each damage modes. Frequency domain analysis of AU Signals could 
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be done in real-time dUring the test with the help of better computing 

capability. 

• Study the effect of stress on AU signals by running controlled experiments 

and incorporate it into the AU analYSis. 

• Develop an understanding of the mechanics of acousto-ultrasonic technique 

by studying the wave propagation modes generated by AU signals. 

• Study and design real-time AU tests at high temperatures with the help of 

laser based generation and detection of stress waves. Ceramic composites 

are utilized for high temperature applications and hence mechanical 

characterization at elevated temperature is important. The present 

commercially available AU transducers have a maximum operating 

temperature of 6000 C. Real-time AU testing with the help of laser 

instrumentation might be used as a NDE tool for continuous monitoring of 

damage at high temperature without stopping the test. 
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