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ABSTRACT

To determinethe feasibilityof couplingthe output of an optical fiber to a rib

waveguide in a temperatureenvironmentranging from 20°C to 300°C, a theoretical

calculation of the coupling efficiencybetween the two was investigated. This is a

significantproblem which needs to be addressed to determine whether an integrated

optic devicecan functionin a harsh temperatureenvironment. Becausethe behaviorof

the integrated-optic device is polarization sensitive, a polarization-preservingoptic

fiber, via its ellipticalcore, was used to couplelight with a knownpolarizationinto the

device. To couple light energy efficiently from an optical fiber into a channel

waveguide, the design of both componentsshould provide for well-matchedelectric

field profiles.

The rib waveguideanalyzedwas the light input channelof an integrated-optic

pressure sensor. Due to the complex geometry of the rib waveguide, there is no

analytical solution to the wave equation for the guided modes. Approximationor

numericaltechniquesmust be utilizedto determinethe propagationconstantsand field

patterns of the guide. In this study, three solutionmethodswere used to determinethe

field profiles of both the fiber and guide: the effective-index method (EIM),

Marcatili's approximation, and a Fourier method. These methods were utilized
A

independentlyto calculate the electric field profile of a rib channel waveguideand

elliptical fiberat two temperatures,20°C and 300°C. These temperatureswere chosen

to representa nominaland a high temperaturethat the devicewouldexperience.
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Using the electric field profile calculatedfrom each method, the theoretical

coupling efficiency between the single-modeoptical fiber and rib waveguide was

calculatedusing the overlap integraland results of the techniquescompared. Initially,

perfect alignment was assumed and the coupling efficiency calculated. Then, the

coupling efficiencycalculationwas repeated for a range of transverse offsets at both

temperatures. Results of the calculationindicate a high coupling efficiency can be

achieved when the two componentswere properly aligned. The coupling efficiency

was more sensitive to alignment offsets in the y direction than the x, due to the

elliptical modalprofile of both components. Changesin the couplingefficiencyover

temperaturewere foundto be minimal.
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CHAPTER I
t*

INTRODUCTION

1.1 Fiber Optic and Integrated Optic Benefits

Transmitting fields via lossless dielectric cylinders was theoretically demon-

strated as early as 1910 [1]. This concept was not experimentally studied until the

advent of low-loss optical fiber [2], which has revolutionized the communication indus-

try. Copper telephone wires are now being replaced by optical fibers due to benefits

which include: fewer repeaters required compared to electrical wires over the same

distance; larger amounts of information transmitted over smaller diameter fibers due

to the higher bandwidth; and an improved signal to noise ratio.

The advantages seen in communications can be applied to aeronautics. On

an airplane, optical sensors can be located remotely from the processing electronics

with a fiber connection. Since optical sensors can be made compact, they can non-

intrusively detect environmental parameters. These sensors are inherently immune

to electromagnetic interference (EMI), such as radar, which can corrupt an electrical

sensor's performance. This is a very important property because sensors are often

required to operate in harsh electromagnetic environments. To use electrical sensors

in these environments requires additional components for proper shielding. For aero-

" nautics applications, this added shielding increases the weight of an aircraft, which

is an undesired result as added weight reduces the amount of passengers and cargo

that can be transported as well as the aircraft range and speed [3]. Unlike electric
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wires and sensors, optical fibers and sensors do not exhibit sparking, short circuit,

or fire hazards caused by the degradation of the wire insulation [4]. These hazards

can present serious safety concerns on an aircraft. Ground loop problems are also

avoided using optics which reduces noise. Transmitting sensitive information via op- -

tical fibers can improve security because the electromagnetic field strength outside a

fiber is much smaller than that outside an electrical wire, thus making interception

nearly impossible. Optical sensors are amenable to multiplexing, which can greatly

improve efficiency. Sensors distributed in a matrix can map a measured physical

parameter over the aircraft. Therefore, to replace electronic components with opti-

cal components would have wide-spread benefit. However, because this technology

is still maturing, it is more expensive than its electrical counterpart and hence not

widely utilized.

For aeronautics applications, an optical sensor must perform to its design

specifications while located in a hostile environment. This is a challenge because if not

properly designed, the high temperatures of an aircraft engine can seriously degrade

or destroy the device. Modeling has become an important tool in predicting the

waveguide's behavior with temperature. To model the behavior of an optical device

over temperature, changes in both the refractive index of the layers and the physical

dimensions must be determined. Temperature-induced changes in the materials due

to thermal expansion and stress must be taken into account in order to determine

the device properties at an elevated temperature.



3

This research explored the coupling efficiency between a single-mode optical

fiber and a rib waveguide. Single mode sensors are generally more sensitive than mul-

timode sensors, which was one of the main reasons it was desirable to determine the

coupling feasibility between single-mode components. The optical fiber transmits the

source light into the guide, which serves as the input to an integrated optic pressure

sensor. Due to the geometry of these two components, approximation and numerical

techniques have been used to determine the electric field profiles and hence the theo-

retical coupling efficiency. Because this sensor is to be used in a temperature varying

environment on an airplane, changes in the coupling efficiency over temperature are

of interest.

1.2 Dissertation Objectives

Presently, single-mode fibers and waveguides are not considered viable for

use in an aircraft environment due to the coupling problem [5],[6]. The majority

of devices are not optimized for coupling, resulting in reduced maximum coupling

efficiency, such that a slight misalignment drastically reduces the power transfer.

Thus, the results of fiber to rib guide coupling are a critical factor in predicting

device feasibility because a sufficient amount of input light power is required for

the waveguide output to be detected. If theoretical calculations indicate a high

interconnect loss, then modifications must be made prior to fabrication with the goal
v _

to improve the coupling efficiency.

Calculating the theoretical coupling efficiency between an elliptical-core op-

tical fiber and a rib waveguide at two temperature conditions with various alignment
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positions, to determine interconnect feasibility, was the objective of this research. To

do so required the calculation of the electric field profiles of both components in order

to evaluate the well-known overlap integral. Because there is no analytical solution

to the field of the rib guide, two approximation and one numerical technique were

used and the results of these techniques for the rib were compared. The two approx-

imation techniques chosen, the EIM [7],[8],[9],[10],[11],[12] and Marcatili's method

[10],[13],[14],[15], are widely accepted techniques that have been extensively stud-

ied. The numerical technique, the Fourier method, was chosen due to its reported

excellent agreement with known exact solutions [16].

The fiber field can be calculated analytically using a series of Mathieu func-

tions [2], however, the solution cannot be determined in closed form because the

eigenvalue equation involves infinite determinants [17]. It was determined that the

same methods used to calculate the rib guide characteristics were applicable to the

fiber [16],[17],[18].

The effective index, ne, related to the modal propagation constant, is a

result of the field calculation and was used for comparison purposes. Both the ne

and coupling efficiency calculations were performed at the two temperatures. As a

consequence, it was necessary to determine the index and physical dimensions of both

components at the two temperatures, producing a different field profile for each.

d
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The two temperatures were chosen to represent a nominal temperature and

a high temperature that such a device would experience near the inlet of an aircraft

engine [4]. The maximum theoretical coupling efficiencies at each temperature were

compared to determine if the temperature change was significant to affect the sensor

performance.

1.3 Organization

The organization of this dissertation is briefly outlined here. Chapter II

provides an overview of documented research related to this dissertation. A brief

description of the sensor whose input is being studied is also given in Chapter II.

The fiber and sensor physical parameters are discussed in Chapter III along with the

physical parameters' behavior with temperature. In Chapter IV the three methods

used to calculate the electric field profiles of both the fiber and rib waveguide are

discussed. Chapter V is divided into two parts, room temperature (20°C) and 300°C

results. These results include the field profiles and corresponding coupling efficiency

results for transverse offsets. Using the three methods independently, the results

were compared. A discussion on maximizing the theoretical coupling efficiency by

altering the waveguide parameters is given in Chapter V. The conclusion and plans for

future work are discussed in Chapter VI. A list of acronyms used with corresponding

definitions is provided in the on page xv.



CHAPTER II

BACKGROUND INFORMATION

2.1 Introduction

This chapter describes previous research and is divided into rib, fiber, and

coupling efficiency subsections which provide an overview of the research regarding

field solutions required to calculate fiber to guide coupling. The first two subsections

explore the field profile calculations documented to date on the two coupling com-

ponents. The third subsection discusses research on the coupling efficiency between

a fiber and a rib waveguide. A few specific examples from the literature survey will

be explored to illustrate the differences between previous research and that of this

dissertation. A brief description of the pressure sensor for which the rib waveguide

is the light input is also given.

2.2 Previous Research

The problem of transmitting the output light from a fiber into an integrated

optic device is relatively new. Until the advent of low loss fibers in the 1960's, it was

impractical to attempt coupling, as the fiber exhibited such high loss. The commu-

nications industry has addressed this coupling issue extensively for lithium niobate

(LiNbO3) devices. Results from the literature search performed in preparation for

this research will be discussed.

The majority of the research calculates the propagation characteristics of ei-

ther an optical fiber or a waveguide. For this calculation, there are many techniques

6
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from which to choose. These methods include: finite element method, EIM, Mar-

catili's method, Fourier method, variational method, and beam propagation method

(BPM).

- 2.2.1 Rib Field Calculation

Due to the complex geometry of the rib waveguide, approximation or nu-

merical solution techniques are necessary to determine its propagation characteristics.

Two review articles, one by Chiang [19] and the other by Shad [20], discuss the meth-

ods that have been used to solve for the propagation characteristics of waveguides.

A discussion of several of the methods will be given.

The EIM has been used to calculate the profile of a rib [8],[11],[19]. Caution

must be exercised when using this technique, because inaccurate results may occur if

applied to a device which does not meet the approximation assumptions. For exam-

ple, field boundary conditions are not satisfied using this approximation technique

[10]; thus narrow ribs are not accurately modeled using this method. Determination

of the accuracy of this method relies upon comparison with a numerical technique

[21]. The EIM is known to be accurate for ribs with small etch depths, such as

the rib under study. However, it consistently yields propagation constants that are

larger than those provided by the numerical results. Because this technique is only

applicable to a specific rib geometry, it is not widely recognized as useful for field

calculations, but rather only for the determination of the propagation constant [10].

However, this remains one of the most popular techniques for the analysis of rectan-

gular structures. Variations on this method are numerous [22],[23],[24],[25],[26] with

the intent to improve results.



Marcatili's method [13] has been applied to both rib and strip-loaded waveg-

uides. Results from this technique compared well with numerical solutions [14],[15].

This method assumes the field is tightly confined to the core such that the field in

the outer regions is negligible. The technique has even been applied to modes in

anisotropic rectangular waveguides [27]. A perturbation correction to the propaga-

tion constant calculated using Marcatili's method can improve the accuracy [14]. A

perturbation correction can also be applied to the EIM [28]. The major advantage

of the EIM and Marcatili's technique is their simplicity.

Goell [29] reported a numerical technique based on the expansion of circu-

lar harmonic functions. This method produces accurate results for the propagation

constant, but becomes cumberso_ne for devices with aspect ratios other than unity.

Many researchers refer to Goell's work for comparison, yet it is infrequently used.

The finite element method is an application of the Rayleigh-Ritz procedure

to a set of basis functions which are confined to a small spatial region [30]. When

applied properly, this method has been determined to be very accurate and can be

applied to many geometries [31]; unfortunately, it requires an enormous amount of

computing resources.

The variational method has also been applied to a rib guide to determine

the rib field profile. The accuracy of this technique is dependent upon the choice

of the trial field function. Taking the trial function and varying its constants until

an integral relation with the propagation constant is maximized, produces the field

result. This is an application of the Rayleigh-Ritz procedure based on an expansion

of a set of independent basis functions [30]. An integral relation is derived from the



scalar wave equation and defined as

]n2(x,y) - j(Ivt¢( ,y)r aZ (2.1)
y)l

|

where the integration is taken over the guide cross section, _(x, y) is the field trial

2_ where _o is the wavelength in free space. Thefunction, and ko is defined as

variational method has received a fair amount of attention recently [32],[33],[34].

The beam propagation method (BPM) is used to solve the scalar equation

and cannot be adapted to solve the vector wave equation. Yevick and Hermansson

compared the results of the finite element method with the beam propagation method

[30]. Accurate results can be obtained for straight guides, but the BPM becomes

inaccurate when applied to curved sections. The BPM is particularly useful for

determining the coupling between two adjacent, parallel waveguides.

The Fourier method has also been applied to a rib waveguide [35],[36],[37].

The electric field is calculated using a series of sine functions. Inserting this field

expansion into the scalar wave equation and exploiting the orthogonality produces a

matrix equation. Using sine basis functions, the boundary condition of zero field at

infinity is not satisfied. Thus, the field must be enclosed in an artificial rectangular

boundary, such that the accuracy of the results depends on its size [16] and the

number of expansion terms used.

After exploring the different methods for determining the field profile of a

rib waveguide, three methods were chosen. The EIM and Marcatili's approximation

method were chosen because both have demonstrated accurate results for a rib waveg-

uide. The Fourier method was chosen as the numerical technique because it produces
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smaller matrix equations than the other numerical techniques [16]. This reduces the

computing time required for the calculations, while maintaining accuracy. Due to

the flexibility of the three chosen techniques, they can be applied to both coupling

components.

2.2.2 Fiber Field Calculation

The exact solution for the propagation characteristics of an elliptical-core

fiber involves complicated transcendental dispersion equations. These equations re-

quire numerical analysis to determine the fiber propagation constants. Consequently,

most of the recent work on elliptical-core fibers has been based on approximation or

numerical techniques [38].

Yeh [2] provided an exact analysis of an elliptical-fiber using Mathieu and

modified Mathieu functions. From this analysis, a numerical technique is needed to

produce the solutions. Using Yeh's analysis, Dyott et. al. [39] developed a computer

program to solve for the propagation characteristics of the fiber using the finite

element method. This solution is very complex and is not conducive to the coupling

efficiency calculation.

The EIM is applicable to elliptical-core fibers [18],[40]. The solution is a set

of spatially dependent analytic functions which are conducive to evaluation of the

overlap integral. Fiber birefringence can also be calculated using this method.

Another approximation method which can be applied to the fiber is Mar-

catili's technique [41],[42]. This method has been proven to accurately predict the

propagation behavior of a highly elliptical-core fiber [43]. Birefringence results using

this method compared favorably with those obtained by Dyott [39].
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The Fourier method has also been used to calculate the field profile of an

elliptical-core fiber. This method utilizes an orthogonal set of basis functions to

convert a differential equation into a set of simultaneous linear equations [44],[35].

Results from this method accurately predicted the modal propagation constant and

the field profile when compared with known results.

From the above solution methods, the EIM, Marcatili's approximation, and

the Fourier method were chosen for this study. Both the EIM and Marcatili's ap-

proximation methods have been successfully applied to elliptical-core fibers. The

numerical technique chosen was the Fourier method, based on its accurate results for

elliptical fibers. Also, knowing a priori that (1) the Fourier method was chosen for

the rib field calculation and (2) the overlap integral calculation was to be performed,

choosing the Fourier method as the numerical technique for the fiber was a logical

choice. All three methods produce field solutions conducive to calculating the overlap

integral.

2.2.3 Coupling Efficiency

The goal of this research was to determine the feasibility of coupling light

from an optical fiber into a rib waveguide. This required a comprehensive analysis of

the propagation characteristics of both the elliptical-core fiber and rib waveguide over

temperature. Results of this analysis were used to determine the theoretical coupling

.. efficiency between the single-mode components for various alignment positions at two

temperatures to determine interconnect feasibility.

There are several methods of coupling a fiber to a waveguide, which include:

prisms, gratings, evanescent field coupling, lenses, and end-fire coupling. All of these
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methods were explored, but the most practical approach for an aircraft was end-fire

coupling [45]. Prisms or gratings require the fiber to be incident at a particular angle,

which is impossible in the vibrating environment of an aircraft engine. Evanescent

coupling requires the fiber to be stripped of its cladding and placed directly on top

of the guide. Scratches on the upper surface of the guide cause scattering loss and

precise alignment with the 2.7 pm wide rib is difficult. Fabricating a laser diode

source directly on the device substrate [46] was not a viable option for this device

since it was to operate in a temperature range from 20°C to 300°C, because the

output wavelength of the laser diode would shift with temperature, corrupting the

device output. End-fire coupling requires the fiber tip to be in physical contact with

the guide cross section and precisely aligned, which is the most feasible coupling

method for this application.

Burns and Hocker [47] explored end-fire coupling in 1977, and discussed the

issue of mode mismatch between components, which decreases the coupling efficiency.

The coupling efficiency depends on the spatial overlap of the transverse fields of the

optical modes in the fiber and channel guide, therefore any differences between their

field profiles will produce a loss. The calculations performed by Burns and Hocker

[47] approximated the fields of both components as Gaussian, to simplify the integral

calculation.

Approximating the fields of the two coupling components greatly simplifies

the evaluation of the overlap integral. A closed form solution has been derived using

the Gaussian approximation [48]. From this solution, the coupling efficiency between

a GaA1As laser diode and a LiNbO3 device was determined.
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Ghosh [49] performed an interesting theoretical probability analysis of the

alignment between two components. Using a circular-core fiber which was smaller

- than the circular device, the probability of alignment was determined. For this case,

_ 100% coupling efficiency was possible because the fiber was smaller than the device.

As long as the fiber was positioned entirely within the device cross-section, 100%

coupling efficiency is achieved. This geometry was in contrast with the case under

study where the fiber is larger than the device, being nearly two times as high. Thus,

100% coupling efficiency can never be obtained for the device being studied.

The majority of coupling research used LiNbO3 for the waveguide, however,

this material cannot be operated at high temperatures. Also, circular-core single

mode fibers were used as the light input, thus simplifying the theoretical coupling

calculation. Most papers simplified the coupling efficiency calculation by assuming

the field of one or both of the components as Gaussian [50],[51].

Chung [52] addressed the problem of experimentally aligning the fiber with

the guide, as well as the need for a polished waveguide end face to reduce scattering.

The use of grooves fabricated directly on the waveguide for fiber placement improved

alignment. A v-groove configuration is illustrated in Figure 2.1, where the angle 0 is

the crystallographically defined angle of silicon. This approach is widely accepted and

has been extensively used [53],[54]. Using v-grooves for fiber alignment is considered

a self-alignment technique, because it reduces the necessary active alignment to one

direction, z. Using LiNbO3 devices, Murphy and Rice [55] experimentally fabricated

, a multiple fiber-waveguide alignment technique using a series of v-grooves on silicon.

This design is suitable for both single-mode and multi-mode fibers. The required
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groove width can be calculated using

_o=_- 2A, (2.2) _

where wo is the groove width, r is fiber radius and A is the distance from the silicon -

surface to the center of the fiber core. In practice, groove widths can be controlled

to 4-1 /tin; this variation in the groove width produces a transverse offset causing

coupling loss. The coupling efficiency was theoretically calculated assuming Gaussian

mode profiles for both the fiber and waveguide. The fiber/guide system was thermally

cycled between 20°C and 70°C, with minimal coupling efficiency change.

Wo

Figure 2.1: V-groove in silicon for fiber alignment.
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For alignment improvement, a fiber with a tapered diameter can be inserted

in the groove and translated until the maximum coupling efficiency is achieved [56].

This scheme is illustrated in Figure 2.2. Using a LiNbO3 device, coupling efficiencies

of 70% or more have been experimentally achieved with this configuration [56].

Flip-chip alignment is similar to the v-groove concept. V-grooves in the

substrate chip are used to align the fiber while another v-groove chip is placed on top

and upside down such that the v-grooves are aligned. This method keeps the fiber(s)

more securely in place.

ChannelWaveguide
or ChannelWaveguide
Devicein LiNb03

Input Silicon

Tapered
Alignment
Fiber

Figure 2.2: Silicon v-groove coupling structure
with tapered fibers for improved alignment.

Fabricating a lens on a fiber tip to improve field matching between the corn-

ponents is theoretically feasible, but experimentally difficult to achieve. Cai et. al.

proposed the utilization of a coupling waveguide to improve field matching between



16

a single-mode fiber and a thin-film waveguide [57]. A 10 pm core polarization-

maintaining fiber and 1.2 pm thick guide were used for coupling, which are much

larger than the components being studied, with a calculated coupling efficiency of

64%.

More recentresearchinvolvesgalliumarsenide(GaAs) waveguidedevices

[54],[5S]. Vezzetti and Munowitz [591explored coupling between a single-mode circular-

core fiber and a strip-loaded waveguide composed of GaAs using the Fourier method.

They maximized the predicted coupling efficiency by altering the strip-loaded waveg-

uide physical dimensions and indices so that its field more closely matched that of

a circular-core fiber. Their research differed from this dissertation in that (1) the

waveguide was a strip-loaded channel, (2) the fiber was circular-core, (3) the mate-

rial used was GaAs, and (4) parameter changes with temperature were not explored.

Experimentally, using a single-mode fiber, a 0.5 dB coupling loss to a GaAs

device was reported, which corresponds to an 89% coupling efficiency [54]. This work

was purely experimental, and no calculations of the fields of the components were

performed. Another experimental group used a polarization-maintaining fiber and

determined the coupling efficiency between it and a LiNbO3 device. Intrinsic loss

due to the field mismatch was approximately 0.5 dB [53].

A relevant paper compared the calculated coupling efficiency between four

rib waveguides and a circular-core single-mode fiber using three different methods

for the rib: the EIM, finite difference, and function fitting [60]. The function fitting

method utilized the Rayleigh-Ritz procedure. The waveguide modes were assumed

TE and propagating in the z direction, which are the same assumptions used in
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this work. However, the fiber used in the paper was a circular-core single mode

fiber having a spot size of 5 ;urn, with the field approximated as Gaussian. Results

of the work indicated that the EIM was most accurate for ribs with small height

and large widths, similar to the rib studied in this dissertation. Coupling efficiency

variances due to transverse offsets and temperature change were not explored by

these researchers.

Only a few researchers addressed coupling a polarization-maintaining fiber to

a waveguide. Of those, most approximated the field as Gaussian, and no calculations

were performed to determine the coupling efficiency versus transverse offsets [61].

Thus, of the literature surveyed, none calculated the coupling efficiency using

rigorous field solution techniques for both the fiber and rib waveguide to calculate

overlap integral, and then determined changes in the coupling efficiency with trans-

verse offsets at two temperatures.

2.3 Ring Resonator

The rib channel investigated for this research was the input to a micro-

machined ring resonator pressure sensor, shown in Figure 2.3. There are several

modulationtechniques which can be used to deduce a measurand. These have been

described elsewhere [62]. For the sensor investigated, wavelength modulation was

used. Light propagates from the input rib channel waveguide through the first Y-

branch and is split at the second Y-branch. A portion of this light then travels
4

around the ring where it crosses the diaphragm. The light continues around the ring

to the first Y-branch and interferes with the incoming light. The effective index of

the ring, n_, is altered when the diaphragm is perturbed by an applied pressure. The
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round trip phase shift of the ring is given by [63]

27r foL€= no(z) z, (2.a)

where Ao is the wavelength of the source and ne is integrated around the perimeter

of the ring having length L. At resonance, the ring and input light constructively

interfere such that ¢ = 27rm, where m is an integer, which causes the transmissivity

of the ring resonator to be a maximum. When € -- 2_(m -_ ½), the transmissivity is

a minimum. This sensor exhibits cross-sensitivity to temperature which may be re-

duced by shortening the path length [64]. Because the sensor is polarization sensitive,

the input fiber must be polarization-maintaining. The ring resonator configuration

can be used to measure other parameters by replacing the diaphragm in Figure 2.3

with an appropriate sensing mechanism.

Diaphragm

L_:.:;::::::::::=:::::.'::::.:...'..C.t':._J

Input -> --> Output

Figure 2.3: Integrated optic ring resonator interferometer.



CHAPTER III

COUPLING COMPONENTS - RIB GUIDE AND ELLIPTICAL FIBER

3.1 Introduction

The channel waveguide discussed was the input stage of an integrated-optic

pressure sensor. The pressure sensor was based on a strain sensitive ring resonator,

combined with a micromachined silicon diaphragm. This sensor was polarization

sensitive, thus interrogation with TE or TM polarized light each produced a different

output [63]. In this investigation, only the incident TE mode was analyzed. The

rib guide and elliptical-core optical fiber were the two components studied such that

the theoretical coupling efficiency of the light output from the fiber into the input

rib guide was calculated, with the goal being to maximize the coupling efficiency

between the two. Both coupling components were single mode. The sensor design

and fabrication was performed at the University of Cincinnati [63]. The physical

parameters of both the sensor input and elliptical-core fiber, illustrated in Figure

3.4, are discussed in the following sections.

3.2 Rib Waveguide

3.2.1 Materials

Materials for the rib waveguide were judiciously chosen, consisting of a semi-

conductor substrate followed by an isolation layer, guiding layer, and an overlayer.

Each film layer is discussed in this order which was also the deposition order.

19
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CrossSection of Elliptical-C0reFiber
Rib Waveguide

n(core) = 1.484
n(Si02)=1.453 n(clad) = 1.450
n(Si0N)=l.553 a = 1.3 um

Width=W=2.7um x0 = 830 nm b = .65 um -
.516 um

Field Confinement Une[ched Height
.509um Si02
.426 um Si0N x

.-.:.:.:.:.:.:.:.:.
3.1 um Si02_ : : : . : : . . :

.:.:.:.:.:.:.:.:.:.
_y

Figure 3.4: Cross sections of rib waveguide and elliptical-core optical fiber.

3.2.2 Substrate and Isolation Layer

Silicon was chosen as the substrate material due to its excellent waveguiding

and mechanical properties [65]. For field confinement via total internal reflection,

the index of the guiding region must be larger than the surrounding layers. The

index of refraction of silicon at 830 nm is 3.67 [66] at room temperature. Because

the index of all materials varies with wavelength, it is referenced to a wavelength .

Unless otherwise indicated, all indices discussed in this dissertation are referenced

to 830 nm. The index of silicon is higher than most candidate films used in high

temperature applications. Therefore, an isolation layer of low index material must

be deposited between the guiding layer and the substrate in order to utilize a silicon

substrate and silicon micromachining technology. For this case, silicon oxynitride

(SiON) was chosen as the guiding film, making silicon dioxide (SiO2) a natural choice
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for the isolation layer. SiO2 is dense, smooth, highly adherent to silicon substrates,

uniform in refractive index and thickness, simple to produce, has a lower index than

" SiON, and can be fabricated nearly defect free.

. Because the isolation layer was finite, there was loss due to substrate cou-

pling. Consequently, the waveguide's modes were not strictly bound modes, but

rather leaky modes [9],[67]. To minimize this effect, the thickness of the SiO2 layer

was chosen to nearly isolate the guide from the substrate." A theoretical analysis was

performed [68] to determine the required isolation layer thickness to produce a 0.1

dB/cm loss. According to the graphical results shown in Figure 3.5, the isolation

layer thickness must be at least to 2.0/zm for a 0.516/zm thick guide to reduce the

substrate coupling loss to 0.1 dB/cm. For the sensor, the isolation layer was 3.1/zm;

thus, the guiding layer did not 'see' the substrate and the effects of substrate coupling

were negligible. For modeling purposes, the isolation layer was considered to be the

substrate.

3.2.3 Guiding Layer

Silicon nitride, Si3N4, was first explored as the waveguiding core material

because of its ability to withstand high temperatures without degrading. However, it

was discovered that Si3N4 films tend to crack for thicknesses exceeding approximately

0.2/zm. Also, there is a large difference in the index of refraction between Si3N4

(n _ 2.0) and an optical fiber (n _ 1.5) which is not conducive for coupling, because

Fresnel reflection would add a significant contribution to the loss. Using Si3N4, the

calculated coupling efficiency would generally be less than 10%, which is unacceptable

for this sensor application [69].
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Isolation Layer Thic kness vs. Guide Thic kness
for O.1 dB/cmTF Loss

Figure 3.5:SiO2 isolation layer thickness vs. SiON guide thickness.

To maximize the fiber-guide coupling efficiency, the cross sectional area of

the two components should be nearly identical, as well as the core indices. Therefore,

SiON [70],[71] was the material of choice for the guiding layer. The benefits of this

material include the following: (1) film index can be varied from 1.46 - 2.02 with

the fabrication process, (2) high quality deposited films, (3) ability to deposit thicker

films as compared to Si3N4, and (4) better index matching to optical fibers.

Ideally, the film thickness should equal that of the input fiber (1.3 /_m),

but Low Pressure Chemical Vapor Deposited (LPCVD) SiON films deposited thicker

than approximately 0.5/_m become multimode, and cannot be used for a ring res-

onator sensor. The actual film thickness of the SiON layer was 0.516 /_m. Using

photolithography, portions of the film were selectively etched to 0.426/zm to pro-

duce the rib. This etch depth was chosen to provide optimal field confinement while
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maintaining a single-mode guide. The rib width was chosen to optimize the sensor

performance, taking into account bends in the ring, and attempting to closely match

" the 2.6 _tm major axis diameter of the fiber. For the device to remain single mode it

was required that the channel width be approximately 2.4/_m. A mask was designed

for this width, however, due to variations in the fabrication process, the actual width

was 2.7/zm. The thickness of the guide was chosen to match that of the elliptical

fiber. In this study, the fiber diameters along the major and minor axes were 2.6 _tm

and 1.3/zm, respectively.

3.2.4 Overlayer

An overlayer of LPCVD Si02 was deposited on top of the rib guide structure.

This overlayer reduced the guide propagation loss by insulating the guiding film from

the exposed surface, which minimized scattering effects due to surface imperfections.

Similar to the isolation layer thickness, the overlayer thickness was chosen such that

it appeared infinite to the guide. The effective index of a four layer guide consisting of

(Si02\SiON\SiO2\air) was calculated for a Si02 overlayer thickness varying between

0 and 2.0 _tm. As illustrated in Figure 3.6, there was minimal change in the effective

index for an overlayer oxide thickness exceeding approximately 0.5 jurn. Because the

upper SiO2 layer was 0.509 _um thick, it was modeled as an infinite layer. Thus, the

rib guide structure was modeled as a three-layer structure as shown in Figure 3.7.

3.2.5 Deposition Procedure

The fabrication process, performed at the University of Cincinnati [63], be-

gan with a 2" silicon wafer which was polished on both sides. The diaphragm was
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Figure 3.6: Guide effective" index calculated
for various Si02 overlayer thicknesses.

fabricated first, then the wafer was stripped of any native oxide and placed in an oxi-

dation furnace where a thermal oxide was grown in a wet oxygen environment. A£ter

the oxide was grown to the desired thickness, the wafer was placed in an LPCVD

chamber to deposit the SiON guiding layer.

Compared to other techniques, such as sputtering or Plasma Enhanced

Chemical Vapor Deposition (PECVD), LPCVD produced the highest quality guiding

films with the lowest loss [70],[71]. Increasing the amount of oxygen gas flow dur-

ing deposition decreases the film refractive index, with the lower index limit being

that of pure SiO2, which is 1.453 [66]. Actual film refractive index tends to vary

between runs even on the same equipment using identical conditions; hence there is

no standard procedure to fabricate a film with a given thickness and refractive index.
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3 Layer Rib Woveguide for Analysis

2

Cladding Layer n = 1.4531

o Guiding Layer n = 1.553
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Figure 3.7: Three layer structure for analysis.

During the deposition run, the wafers were rotated to ensure uniformity of the film

thickness and index.

After the guide film was deposited, the ring resonator was fabricated using

photolithography. Using a mask to define the rib sections, photoresist was deposited,

and the unprotected SiON regions were etched in acid by 0.9/_rn. After the rib was

formed, an SiO2 overlayer was deposited. Because Si02 films grow extremely slowly

over SiON in an oxidation furnace, the SiO2 overlayer was deposited using LPCVD.

3.2.6 Parameter Variations with Temperature

The eiTective index and field profile of the rib are expected to change with

temperature. Three mechanisms can produce this change: (1) thermal expansion of

the layers causing the width and thickness of the structure to vary, (2) stress induced
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by the mismatch in the coefficient of thermal expansion of each layer, altering the

refractive index via the photoelastic effect, and (3) index of refraction change with

temperature. All of these mechanisms were taken into account to determine how the

rib guide parameters changed with temperature [63].

For each layer of the rib waveguide, values for the thermal change in the

refractive index, _ , coefficient of thermal expansion CtherrnaI10 -6 m71Z -° C '

photoelasticcoefficients andP12),andthePoissonratio(v)weredetermined.

These values can be found in the literature for all the rib constituents, except SiON.

Values for silicon and SiO2 vary with temperature, with averages over temperature

given in Table 3.1 [72].

Compared to SiO2and crystalline silicon whose thermal properties are known,

SiON is not strictly defined sinceits index can vary from 1.453 to 2.008 [66]. Its ther-

mal properties vary as well and are dependent upon both the substrate material and

film thickness [70]. The index of the SiON layer is 1.553 and its temperature sensi-

tivity was approximated as that of SIO2, whose refractive index is 1.453.

For 0.1 /zm thick LPCVD SiON films on quartz (SIO2), an experimental

data set indicated that the film refractive index varied with temperature as 1.5 ×

10-a/°C, whereas for SiON films on a silicon substrate, it varied as -1.1 x 10-4/°C

[70].This rib structure had a silicon substrate with a thick SiO2isolation layer, hence

the refractive index dependence with temperature was expected to be between these

two results, which that of the SiO2 satisfies.

The following development is from De Brabander [63]. Since the rib layers

were much thinner than the silicon substrate, changes in the film dimensions parallel
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to the substrate (x and z directions) were the same as that of a substrate without

any films, which is,

Ez,thermal : _z,therrnal -- 2.33 x 10 -6 mm- oc" (3.4)

If the thin SiO2 and SiON films were removed from the substrate, they would expe-

rience a strain which is expressed as

_x,therrnal = _z,thermal _ Cy,thermal --_ 0.55 X 10 -6 mm- oc" (3.5)

Hence, there is a strain parallel to the substrate face which changes the refractive

index via the photoelastic effect, denoted as

Ez,photoelastie= Sz,photoelastic = (2.33 - 0.55) x 10-6 mm- °C" (3.6)

The substrate stretches or compresses the film and induces an additional strain in

the y direction, through Poisson coupling, which is expressed as

-" (S=,photo,ta,tie+ Cz,,hotoetastic)= -0.7292 × 10-_ m (3.7)
_y,photoelastic -- 1 -- V m - °C'

where v is the Poisson ratio, with value 0.17 [72].

For the rib waveguide, the thickness and index changes with temperature

were small, hence applying each effect separately and adding produces the same

result as applying all the effects simultaneously [63]. For example, the thickness

change in the y direction is determined by the sum of the thermal and photoelastic

strains, as given by

_y,totat = ey,therrnat "q-_y,photoetastic = -1.791 x 10-7 m (3.8)
'Tn, _° C"
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For each parameter of interest, the expression and result for a 1°C change of temper-

ature is given in Table 3.2, where the abbreviation _i,pewhere i = x, y,or z was used

to denote _i,photoelastic,

f

3.3 Fiber

3.3.1 Characteristics

Compared to multimode fibers, single-mode fibers have much smaller core

diameters. Thus, alignment is more critical when coupling a single-mode fiber to

an integrated-optic device. Circular-core single-mode fibers can be characterized as

having V < 2.40, where V is defined as

27ra_/n_ 2
Y _ ore - Tl'clad

Ao ' (3.9)

and a is the core radius [74]. Due to the symmetric geometry of a circular fiber,

the field profile can be approximated as Gaussian. A circular-core single-mode fiber

actually propagates two orthogonal fundamental modes, corresponding to TE and

TM polarization [39]. Thus, to maintain the polarization state of the input light

through a fiber requires an alteration of the standard circular fiber. Preliminary

calculations were conducted using the specification data from commercially available

circular-core single-mode fibers. For a circular-core radius of 4/zm, the calculated

coupling efficiency was unacceptably low, 45% [75]. In an effort to improve the

coupling efficiency, other fibers were explored.



29

An elliptical-core polarization-maintaining fiber was chosen because it was

" expected to provide the highest coupling efficiency due to its geometry and refractive

. index being closely matched to the guide's. Polarization-maintaining fibers can be

one of two types: (1) a circular-core fiber under stress from the cladding or (2) an

elliptical-core fiber. For this study, an elliptical-core fiber was used because its di-

mensions and field profile more closely matched that of the guide, reducing coupling

loss. These types of fibers can be used in coherent optical communication systems,

fiber-optic sensors, and for coupling into polarization-sensitive integrated optic de-

vices [27]. The latter case applies to this research. Elliptical-core fibers have received

more attention recently due to the availability of longer wavelength sources and de-

tectors. Prior to this, the lower wavelengths available required the elliptical-core

dimensions for polarization preservation to be too small for fabrication [39].

An elliptical core-fiber has two preferred directions of polarization; along

the major axis and along the minor axis [74]. Polarized light coupled into the fiber

will propagate as two orthogonal modes, denoted EH and HE. EH denotes modes

with strong axial magnetic field strength, Hz, corresponding to a quasi-TE mode

whereas HE denotes modes with strong axial electric field strength, Ez, correspond-

ing to a quasi-TM mode [76]. Each mode travels at a different velocity, known as

birefringence. The fiber modal birefringence is defined as [74]

B= ('B=- 'BY)A°
2_r ' (3.10)

where fl= is the TE mode propagation constant and/3 v is the TM. Because fix >/3v,

the EH mode is more strongly guided [39].
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By deliberately inducing a large degree of birefringence in a fiber, establishes

a preferred polarization direction into which all the power is launched [77]. The beat

length of a fiber is inversely related to its birefringence, and is defined by

L=&
B" (3.11)

For short beat lengths or high birefringence, transfer of power to the orthogonal mode

is precluded. Hence, the output remains polarized in the direction of the preferred

axis.

Highly birefringent fibers are less susceptible to mode transitions, such that

the output polarization mode is the same as the input polarization. Less birefrin-

gent fibers are susceptible to perturbations in fiber dimensions and indices along its

length such that an input TE polarization may transfer to the TM polarization state,

which is an undesirable property for this application. Highly birefringent fibers are

considered polarization-maintaining [74], the desired property for this application.

3.3.2 Physical Parameters

The fiber used was commercially available [78]. Data from the manufacturer

indicated that the diameter of the major and minor axes of the core ellipse were 2.6

/zrn and 1.3/zrn, respectively. The nominal values of the core and cladding indices

were 1.484 and 1.450, respectively. The numerical aperture (NA) of the fiber, defined

as

NA 2 (3.12)_ ??,clad,
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was 0.316. These parameters will vary slightly between batches, but for this study,

the nominal values were used. A fiber is characterized as "weakly guiding" if the

" difference between the core and cladding index is small. For this fiber, the difference

. was approximately 2.3%, hence it can be classified as weakly guiding [76].

3.3.3 Parameter Variations with Temperature

The elliptical-core fiber investigated had a silica cladding with a germanium

doped core. Generally, the cladding material has a slightly higher coefficient of

thermal expansion than the core [79]. However, lacking data for the doped core,

the same coefficient of thermal expansion for the cladding was used, 5.9 × 10-6 mrn -°C'

which is valid from 0°C to 300°C [78]. Thus, the stress induced by differences in

expansion between the core and cladding was neglected. Similarly, the core change

in refractive index due to temperature was approximated as that of the cladding.

Parameter changes for a I°C change in temperature are given in Table 3.3.

3.4 Summary

Both the rib waveguide and polarization-maintaining fiber were discussed in

this chapter. Reasons for choosing the material for each rib layer and its respective

dimensions were given. The elliptical-core fiber was selected due to its geometry

closely matching the rib and its polarization-maintaining properties. The index and

dimensional variations of both components with respect to temperature were dis-

cussed. Results of these calculations will be presented in Chapter V. The methods

used to independently calculate the electric field profile and propagation constants

of both coupling components will be explored in the next chapter.
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Table 3.1: Temperature Dependence of Silicon and Silicon Dioxide

dn

MATERIAL _-_ [73] _ther,n_a[65] Pn [72] P12 [72] v [72]
Silicon 1.5 x 10-4 2.33 NA NA NA
SiO2 1.28 x 10-5 0.55 0.121 0.27 0.17

Table 3.2: Parameter Change Calculation

PARAMETER Expression For Temperature Dependence Change(@)
W _x,tota! 6.291 x 10-6 #m
toverlayer Ey,total -9.116 X 10-s #m
tunetched Ey,total -9.241x 10-s/zm
tetched Sy,total -7.632 X 10-s #m

a a. 1.2035 x 10-5_o.,:,,_. -(n<_,,o,,o,12){_:,,op,,+ [E=,p_+ _,,,p_]p,,} +
nrib -(nlibl 2) {_:,l_aPn+ [_:,l_,+ E,,,_]p,=} + _ 1.1865 X 10-5

3 dn..o,o.o. -(-.o,o.0../2{_=,.op,,+ [E:,.o+_.,.olp,,)+ _ 1.2o35x lO-"

Table 3.3: Parameter Change Calculation for Fiber

 om e =o,o on on e
a s_,#'ib_,- 7.67 x 10-_ #m
b _v,fib_r 3.84 x 10-7 #m

dn

noose (_nT 1.28 x 10-5

nczaaai.g dT 1.28 x 10-5 '



CHAPTER IV

METHODS USED TO DETERMINE THE ELECTRIC FIELD

" PROFILES

4.1 Introduction

As fiber optic and integrated-optic device technology areas have developed,

so has the need for understanding the modal characteristics of these structures. This

need arises from the desire to accurately predict the performance of a device prior

to fabrication. In particular, rib, channel, and strip-loaded waveguide devices have

received more attention due to improvements in fabrication, particularly microma-

chining. These structures have been developed for practical uses as sensors, couplers,

and electro-optic devices.

4.1.1 Three-Layer Planar Waveguide - Analytical Solution

To provide a basis for understanding a rib waveguide, a discussion of the

three-layer planar guide solution will be given following the development of Marcuse

[10]. Each dielectric layer is characterized by its index of refraction, n. The index

of refraction is a dimensionless quantity relating the speed of light, c, to the phase

velocity, v, of the electromagnetic fields within the dielectric material. That is,

a
n = - = Xf/_r_r, (4.13)V

where _ = _o_r and/z =/Zo/Zr are the permittivity and permeability of the medium

with _o and #o denoting the free-space values. The three-layer planar waveguide

33
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is shown in Figure 4.8 where nl is the core index of refraction and n2 and a3 are

the cladding indices. The x, y, and z coordinates illustrated in the figure are used

consistently throughout this dissertation.

To confine the electromagnetic field within the guiding layer requires that

nl > n2 and nl > n3. Generally, the overlayer has a smaller index than the lower

cladding such that the confining condition can be written as nx > n2 _>n3. A planar

waveguide confines the field only in the y direction while the field in the x direction

extends to infinity. The field propagates in the z direction via total-internal-reflection

at each of the dielectric interfaces, T/,1/ 7/,2 and 7/,1/ n 3 interfaces.

n2

Figure 4.8: Three-layer planar waveguide.
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The derivation begins with Maxwell's equations for linear, homogeneous,

and isotropic nonmagnetic media,

V x H 2OE (4.14)= son a----['
" OH

VxE = _°at' (4.15)

where H and E are the time-dependent magnetic and electric field vectors. The anal-

ysis is simplified by assuming no field variation in the x direction, denoted O/Ox = O.

For brevity, only the transverse electric (TE) development for guided mode solutions

will be given here. The TM development is analogous to the TE, hence only the TM

results will be given.

4.1.2 TE Mode Development - Guided Modes

TE modes have only three field components, Ex, Hu, and Hz. When Eu =

Ez = Hx = 0, equations (4.14) and (4.15) become

OH,, OH, 2hE=
az ay - _on _-_, (4.16)

hE= ag_
az - _° at ' (4.17)

SEx OHz

ay _° at" (4.18)

The time and z dependence of E and H are given by ei(_t-#_), which describes a wave

traveling in the positive z direction with phase velocity u = w/fl, where w -- 27cf is

the radian frequency of the wave and fl is the propagation constant. When ei(wt-#z)

is inserted into equations (4.16) - (4.18), they become

-i_Hu OH_ _ iwson2Ex ' (4.19)Oy
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iflE_ = -iWlzoH_, (4.20)

OEx
= -iW/zoHz. (4.21)8y

Rewriting equations (4.19)- (4.21) in terms of E= yields

E_ - _---H.+ i OH, (4.22)
W_o n2 W_o n20y '

H_ - fl E=, (4.23)
WlZo

i OEx

H, = W/_oOy" (4.24)

Substituting equations (4.23) and (4.24) into equation (4.22) and multiplying by iw/.Zo

produces

-fl2E_ + 02E_ W2EolZon2E_, (4.25)
Oy2

which upon rearrangement is the one-dimensional wave equation,

02E_
Oy------_ + (n2k2o-/32)E_ = O, (4.26)

where ko2 -- W2eo/.Zo-- (27r/Ao)2, Ao is the wavelength of light in free space, and n is

defined as

n = n3 for(y> 0), (4.27)

n = nl for (0 > y > -d), (4.28)

n -- n2 for (y < -d). (4.29)

Solutions to equation (4.26) must satisfy the boundary conditions at the dielectric

interfaces, y = 0 and y -- -d. The tangential E and H fields must be continuous

at the dielectric discontinuities. That is, E_ and H_ are continuous at y = 0 and
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y = -d and the solutions for E= must approach zero as y approaches + oo. Thus,

solutions to E= with implicit time and z dependence, e_(=t-_z),are of the form

E=(y) = Ae -_y for y :>0, (4.30)

E=(y) -- [Acos(ay) + Ssin(ay)] for 0 > y >_ -d, (4.31)

E=(y) = [Acos(mi) - Bsin(_d)] e_(u+_) for y < -d. (4.32)

These are the solutions of Maxwell's equations producing the electric field of an

antisymmetric three-layer planar waveguide in the three dielectric regions. If n3 does

not equal n2, the guide is antisymmetric; conversely, if n3 equals n2, the planar guide

is symmetric. The parameters 5, g, and 7 are given by

5 _/f12 2.2 (4.33)= -- n3_ o

= - (4.34)

7 y/fp 22 (4.35)= -- 722ko.

To solve equation (4.26), the boundary condition for H= must be enforced; hence H=

must be determined in the three dielectric regions. The results for H_ in regions n3,

nl, and n2, with implicit time and z dependence, ei(_t-_), are as follows;

Hz(y) = -iS Ae-_, (4.36)WlZo
-ik

H_(y) = --[Asin(ay) - Bcos(ay)], (4.37)
w/zo
ia

Ha(y) = _ [Acos(r,A) - Bsin(ra/)] e_(y+_). (4.38)
wpo
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4.1.3 TE Results for a Planar Waveguide - Guided Modes

Imposing the continuity requirement of Hz at the two interfaces produces

two equations

6A+nB = 0, (4.39)

[nsin(r_d) - cos(r_)]A + [ncos(r_) + sin(r_d)]B = 0. (4.40)

Solving this system of equations yields the eigenvalue equation for a three-layer planar

waveguide,

_(7 + 6)

tan(_d) - _-_--_/_, (4.41)

where 6, 7, and _; are functions of the propagation constant/3, as given in equations

(4.33)-(4.35).

Solutions to this transcendental equation, equation (4.41), can be exactly

determined. The number of solutions obtained yields the number of guided modes

which can be excited in the guide. For a single-mode three-layer planar guide, there

is only one solution, denoted the fundamental mode. For many applications it is

desirable for the device to operate as single mode because higher order modes have

larger attenuations.

For the symmetric slab waveguide case, n3 = n2 and 7 = 6, and equation

(4.41) becomes

tan(-_-) = [1_ tan, (_22)] = [1_(_)]2. °
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Equation (4.42) is second-order in tan(r,A/2), yielding two solutions,

rancid/2)= @.43)

and

tan(r_i/2) = -_/7- (4.44)

Equations (4.43) and (4.44) correspond to the even and odd modes of a planar waveg-

uide, respectively. The fundamental mode is denoted mode zero, the next higher

mode is one (odd), followed by two (even), etc. Generally, the thicker the guide

region, the more modes it will support. These equations yield exact solutions for/7

and the effective index of the guide is then calculated using

n_ = _/ko. (4.45)

4.1.4 TM Results - Guided Modes

For the transverse magnetic (TM) incident case, the field has H_, E_, and Ez

components. Using the same procedure as in section 4.1.1, the eigenvalue equation

for the asymmetric planar guide is given by

tan(A) = n_(n_o' + n_6) (4.46)
(n2n3_:)2 - n_76"

For the symmetric slab case, n2 = n3, the eigenvalue equation can be determined for

the even and odd modes. Even modes are given by

tan(r,A/2) = /'n_'_ "y, (4.47)

and odd modes by

tan(r,A/2) = /'n_ _ (4.48)-
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Boundary conditions require Hx and Ez to be continuous at y = 0 and y - -d and

Hx to vanish as y approaches 4- oo. The electric field profile can then be determined

from the Hx solution.

4.1.5 Radiation Modes

Radiation modes are solutions to Maxwell's equations that also satisfy the

boundary conditions. The radiation field is considered a mode not confined to the

core but rather one that extends to infinity in the y direction. For this type of mode,

the propagation constants are not restricted to a discrete set of values, because they

are related to the plane wave angle of incidence. These propagation constants form

a continuum, hence the radiation modes do so as well.

The radiation modes can be further divided into substrate radiation modes,

air radiation modes, and evanescent modes. All of the modes can be categorized by

the value of the propagation constant. For guided modes, the propagation constant

is in range knl < fl < kn2. For substrate radiation modes, it is confined to kn2 <

13< kn3, for air radiation modes it is confined to 0 < 13< kn3, and evanescent modes

are denoted by imaginary 13values [81]. Because this research was concerned with

the guided field profile, radiation modes were discussed for completeness but were

irrelevant to the coupling efficiency calculation [10].

4.1.6 Rib Wavegulde

For this study, a rib waveguide structure was investigated. A rib waveguide,

illustrated in Figure 4.9, is a planar-slab waveguide with a raised height section of

given width [29], which provides lateral confinement. Thus, this structure confines
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the light both vertically and horizontally, analogous to a channel guide, illustrated

in Figure 4.10. That channel can be readily analyzed due to its simple geometry;

however, rough sidewall edges are inevitable when fabricating such a device. These

rough edges greatly increase the guide's propagation loss, making it undesirable for

aircraft applications since the higher the propagation loss [80], the more input light

power is required for interrogation. Hence, the rectangular channel guide works well

in theory, but cannot be fabricated with a low enough propagation loss for practical

use.

Experimental results using various channel geometries such as channel, strip-

loaded, rib, and buried rib, indicate that the buried rib waveguide produces the lowest

propagation loss, which is desirable for a sensing device [63],[82]. A buried rib is a

rib guide with an overlayer as illustrated in Figure 4.11. Propagation loss can be

caused from leakage into the substrate, scattering at each guide/cladding interface

and/or scattering due to imperfections in the film. Using the buried design decreases

the field amplitude at the surface, thereby reducing scattering effects due to surface

contamination, scratches, and dust.

Unlike the planar guide, there is no exact solution to the two-dimensional

Maxwell wave equation, due to the complex geometry of the rib channel waveguide.

Therefore, approximation and numerical methods must be utilized. Several review

papers have been written describing these methods [19],[20]. A discussion of the three

chosen methods will follow in the next section.
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Figure 4.9: Rib waveguide.

4.1.7 Elliptical-Core Fiber

The propagation constant of an elliptical-core fiber can be solved analytically

using a series of Mathieu functions [2]. As such, the field components inside and

outside the core must be represented by an infinite product of terms of Mathieu and

modified Mathieu functions and the propagation constant determined from the roots

of an infinite determinant [2]. A numerical technique such as the method of successive

approximations must be utilized to determine these roots. This numerical procedure

is complex and time-consuming and the results are not conducive to the coupling

efficiency calculation in this case. Thus, the same approximation and numerical

techniques chosen to solve the propagation and field profile of the rib guide have also

been used for the elliptical fiber.
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Figure 4.10: Channel waveguide structure.

4.2 Methods

For the rib channel guide and optical fiber, three methods of calculating

the propagation constant and electric field profiles were utilized: the effective-index

method (EIM), Marcatili's technique, and the Fourier method. All solve the scalar-

wave equation. For completeness, a development of the wave equation, based on that

of Marcuse [16], is given. Beginning with Maxwell's equations,

V x H = iweon2E, (4.49)

V x E = -iwpoH, (4.50)

the curl is taken of equation (4.50) and the result of equation (4.49) substituted on

the right hand side, producing

V x (V x E)= n_k_E. (4.51)
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Figure 4.11: Buried rib waveguide structure.

Using therelations

V × (V × E) = V (V. E)- V2E (4.52)

and

v. (_,) =_,.w _+_v. E=0, (4.53)

one can obtain the vector wave equation f'or the electric field, which is

V2E+V E._] + n%_E=0. (4.54)

The guided mode solutions have a z dependence of, e-i_z; thus the Laplace operator

is of the form

02 02
v2 = + _2. (4.55)Ox2 Oy2

The wave equation, equation (4.54), can be decomposed into x, y, and z components.

Using the previously mentioned property that the field components can be expressed

in terms of"Ex and Ey, only two of"the three equations are needed. Using this and
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theassumptionthat

On
_z = O, (4.56)

producesthecoupledequationsforthex and y componentsofthevectorwaveequa-

" tion, which are

02E=ox2 -t- 02E::oy2 -t- [n2(x,y)k2o _ fl2j]E= + 2--0[E=01n(n)0x[ 0x -t-E 01n(n)!--0'Y0y (4.57)

and

02Ey °q2E. [n2(x,y)k 2 _ f12] E. + 2---_-8[E= Oln(n) In(n)"o--7+ ay---7+ ay a_ + E_,a_ = o. (4.58)

If the index difference between the core and cladding of the guide is small,

such that

Z_ ---_ 721 -- ?22 < < 1, (4.59)
nl

where nl is the core and n2 is the cladding index, then the component is considered to

be weakly guiding [40]. For the rib waveguide A = 0.064 and for the fiber A = 0.023,

which are both much less than unity, satisfying the weakly guiding condition. Thus,

the last bracketed term in both equations (4.57) and (4.58) can be neglected. This

yields the scalar-wave equation for E= and Eu,

O2E=(x,y) O2E=(x,y)
+ + [n2(x,y)ko ' - fl'] Ex(x,y) = 0, (4.60)Ox2 Oy2

and

O'E_(x,y) O2Ey(x,y)+ +r..op'tx,y)k;- y)=0. (4.61)
• Ox2 Oy2

The solution to these two scalar wave equations are identical. For quasi-TE modes

propagating in the z direction, the electric field is of the form

E(x,y,z) = :_ E=(x,y) ei('_t-#z), (4.62)
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where Ex(x, y) is the field profile. The electric field of a TE mode has x and y

components, however, the quasi-TE mode electric field has only an x component.

All three of the chosen techniques, the EIM, Marcatili, and the Fourier method,

produce solutions to the two-dimensional scalar wave equation (4.60), where n(x,y)

is the spatially dependent function for the index of refraction and ko was previously

defined.

4.2.1 Effective-Index Method (EIM)

Rib Waveguide

The EIM reduces the two-dimensional scalar wave equation, equation (4.60),

into two one-dimensional problems. This is achieved by first dividing the rib guide

into three separate planar guides oriented perpendicular to the y axis, as shown

in Figure 4.12. Slabs A and C, which have identical characteristics, correspond

to the etched portion of the waveguide, while Slab B corresponds to the unetched

portion. The effective index of each slab was determined using the procedure for

the three-layer planar guide discussed in section 4.1.1 assuming TE incident light.

N1 is the effective index of Slab B and NII is the effective index of Slabs A and C,

where Nrjt = t_jI/ko. To determine the degree of confinement in the x direction, a

symmetric slab waveguide, Slab D, is constructed perpendicular to the x axis. Due

to the orientation of the guide, the effective index of Slab D is determined for the

TM case. Slab D uses Nr and Nu as the core and cladding indices, respectively, and

the rib width W as the core thickness. The analytic solution of Slab D yields the

effective index, n,, of the rib guide.
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Figure 4.12: EIM constituent slab waveguides.

While not applicable to this particular rib, it should be noted that when

analyzing the slabs, it is possible for Slab B to be single mode while Slabs A and C

are cutoff. If either Slab A or C is cutoff, there is no guided-mode solution for these

planar regions. An approach to circumvent this situation is to assume an effective

index of unity in these regions [83].

Quantitatively, for the TE mode, the transverse field is given by

Ex = Exx_ 4- E._, (4.63)

where Exx and Exu are the x and y components of the field profile. Substituting

equation (4.63) into the vector wave equation, (4.54), produces a pair of coupled

.. equations,

OxL,__ ox j _i _ Oy

2 on [Ex. e':9(n2).] 8 rEx. 8(n2)" (4.65)
V2E._ + (n2k2o- fl_)Ex, - ay L,: ax j - _ L': ay
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For Exx >> Exu, by an order of A given in equation (4.59), the right hand side of

these coupled vector equations is near-zero for small index discontinuities. These

coupled vector equations can then be approximated by the scalar wave equation,

equation (4.60).

For a rectangular waveguide, the EIM can first be applied to either the

rectangle oriented perpendicular to the x axis (short guide height), or the rectangle

oriented perpendicular to the y axis (large guide height). Kumar et. al. [84] have

compared the results for the same guide calculated both ways. They determined that

the EIM produces more accurate results if applied to the shorter dimension first.

The EIM uses the method of separation of variables to solve the scalar-wave

equation, where the index profile is approximated as

n2(x,y) = n'2(x) + n"2(y). (4.66)

As discussed for the rib, the .field profile, Ex, is defined in equation (4.77). Using

equation (4.66), the two-dimensional scalar wave equation can then be written in the

form

1 d2X(x) 1 d2y(y)

Z(x) dx 2 Y(y) dy 2

For the planar waveguide analyzed, n"(y) is denoted as

n"(y) _-- nl for y < [b'] (4.68)

-b'n"(y) = n2 for y < (4.69)

b'= n3 fory> (4.70)
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and Y(y) satisfies the one-dimensional wave equation,

1 ,t_Y(y)
+ r.,..[kon,,2(y) _/3_] = 0. (4.71)Y'(y)

. Subtracting equation (4.71) from equation (4.67) produces

x_x) _ + k_ _] - _' =o, (4.72)

where _ is the propagation constant of the fundamental mode of the planar guide

whose index profile is given by the bracketed term,

n"(x)+ _ = Z_ forIxl< a' (4.73)k_ k_
AM2

(4.74)

which provides the x dependent index profile,

n'2(x)= 0 forI_1< a' (4.75)

n_] forI_1> (4.76)n'2(x) [k_o

Substituting the results for n'2(x) and n"2(y) into equation (4.66) produces the sep-

arable refractive index profile, n2(x,y), the EIM uses to solve the two-dimensional

scalar wave equation. This index profile is shown in Figure 4.13 and is larger than

' b' /_ and smaller in the
the actual index profile when Ixl > a and lYl < , by n_ - _o2

corner regions by f_y2L-_- n42"Since the field magnitude is smaller in the corner regions
" ]go

than the cladding regions, the effective index calculated using the EIM is always

larger than the actual effective index, hence, this method consistently overestimates

the propagation constant of the guide [84].
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Figure 4.13: EIM separable refractive index
profile shown in its respective region - shorter
dimension analyzed first.

Following the same procedure, but starting with the x-slab (larger dimen-

sion) first, the EIM approximates the waveguide shown in Figure 4.14. In this case

the index in regions y < -b' and y > b' is larger by n_ - _o2 and lower in the corner

regions by _2o2- n_. The error in the propagation constant is larger due to the overes-

timation of the index in the cladding regions along the shorter rectangle dimension,

where the field magnitude is greater than in the outer cladding region. Thus, when

analyzing a rectangular guide oriented perpendicular to the x-axis using the EIM,

the results are more accurate if the y-slab is analyzed first.

The electric field profile of the rib is the product of the field distribution of

Slab B, X(x), and that of D, Y(y), i.e.,

_,(_,y)=x(_) Y(y). (4.77)
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The field function, X(x), is determined using equations (4.30) - (4.32) and Y(y) is

determined from the eigenvalue equation (4.47), applying the boundary conditions

for the TM case.

The EIM has intuitive appeal; however, because the guide is analyzed as

three separate slabs, the field continuity conditions at the interfaces are not satisfied.

Therefore, the results from this method are most accurate for ribs with small height

and large width [60]. This condition was satisfied in this study as the guide etch

depth was 0.09 /zm which is small when compared to its 2.7 #m width. Several

researchers have attempted to improve this method but none significantly change the

results [22],[23],[24],[25],[26],[28],[85] and they tend to apply to specific cases.

Fiber Field - EIM

The fiber shown in Figure 4.15 is a single-mode polarization-maintaining

elliptical-core fiber. Thus, the Gaussian approximation commonly used for circular-

core fibers was not valid for this case [18],[40]. The electric field and propagation

constant of the elliptical-core fiber were calculated using the EIM [18], where the fiber

was approximated as a rectangle with dimensions a' and b' such that the rectangle

and ellipse have the same area and aspect ratio. Since an ellipse has an area of zrab,

these dimensions are given by

a' ----a x/'_ (4.78)2

and
/--

b' = (4.79)

Using the procedure given in section 4.2.2, the fiber field and effective index were

determined for this rectangle. Marcatili's method was designed to evaluate rectangles,
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hence, for comparison purposes between the two approximation techniques, the fiber

was modelled as a rectangle for the EIM.

. EllipLical-CoreFiber

I _ a'-----_ n2

b'
\

, i< a !> X
/

I

Figure 4.15: Elliptical-core fiber with pseudo-guide (rectangle).

4.2.2 Marcatili's Method

Rib Waveguide

For modes far from cutoff, the majority of the field energy is confined to the

central core region. If this assumption applies, a pseudo-rectangular waveguide can

be utilized to approximate the rib structure [15]. The cross section of the waveguide

is divided into nine regions as shown in Figure 4.16, in which t is the etch depth and

r is the thickness of the etched SiON layer, such that the unetched height is r + t.
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Figure 4.16: Marcatili's method: pseudo-
guide used to approximate rib guide.

The pseudo-guide is assigned a refractive index profile which approximates

that of the actual rib. This profile provides readier analysis because n2(x, y) is sepa-

rable in the x and y coordinates, as defined by [15]

_2(x,y)= n'2(x)+_"2(y)- nl, (4.80)

where

W

n'(X) = Tt1 for Ixl< _, (4.81)
W

n'(x) = _ forIxl> _ (4.82)
and

J

_"(y) = nl for- t < y<r, (4.83)

_"(y) = _2 for(y< -t) or (y> r). (4.84)
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Analogous to the EIM, this method reduces the two-dimensional wave equa-

tion into two separate one-dimensional problems. Substituting equations (4.81) -

(4.84) into equation (4.80) produces an index, n(x,y), which is separable in x and y.

. Using this index distribution in equation (4.60) yields

]_ +k_,_'2(x)- #_x(x)=o, (4.85)

and

_ +ko'n"2(y)- #_Y(y)=o, (4.86)
where

#12+#_ 2 2=#2.- konl (4.87)

When the mode is well-guided, the majority of the field energy is in the

central core (nl region) which is the key assumption of this theory [10]. The refractive-

index profile of the rib waveguide and pseudo guide differs in the outer shaded regions

and sections D and H of Figure 4.16. The index of refraction in the shaded regions

is _/2n_ - n 2. In regions D and H the actual index is

n = n2 for (-t < y< 0) (4.88)

n = nl £or (0<y<r). (4.89)

However, £or this approximation, it is assumed that n2 is the index throughout re-

. gions D and H. Because the modal power in these outer regions is small, the mode

field profile of the pseudo-guide should closely resemble that of the rib guide. This

assumption is generally applicable for ribs with large etch depths (t >> r). How-

ever, for this channel guide the etch depth (t) is small, but because the rib is wide
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(W >> r + t), it is expected that the pseudo-guide will provide an accurate field

profile.

Following the development of Varshney and Kumar [15],the field is given by

equation (4.77), where the x dependent solutions are

xcx) = A1cos2_1W-0 forI_1<y,

( ) w (4.91)
I_1 forI_1>x(_) = A_e_p-2,_ y,

where

,_ _ Wv/ko_n___, (4.92)
w_/#_ _2 (4.93)Iz2 -- 2 - k°n2'

and0 = 0 (2) for a mode symmetric (antisymmetric)in x. The ydependent

solutions are given by

Y(y) = Abexp Y for y > r, (4.94)

Y(y) = Accos(-_)TBcsin(7-tY ) for-t<y<r, (4.95)

Y(y) = A. exp(-_) for y,-t, (4.96)

where

7b tv/#i 2_ (4.97)= -- kon2_

% = t_/k_- #i, (4.98)

7. = %. (4.99)
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Assuming the dominant mode is quasi-TE, the boundary conditions are,

OEx(x,y) W (4.100)n2Ex(x, y) and Ox continuous at x = =l=-_-,

and

Ex(x,y) and OEx(x,y) continuous at y-- -t, r. (4.101)Oy

These boundary conditions are applied and an eigenvalue equation determined for

the x and y dependent field functions, given by

tan-1 Ln2 ftlJ -- _tl "}" (v -- 1)2 = 0, (4.102)

and

[%] [%]tan-1 _ +tan-I _ -7c 1+ +(q--1)Tr = 0, (4.103)

for the x and y dependent field functions, respectively. For the fundamental mode,

p = q = 1 in equations (4.102) and (4.103). Constants A1, A2, Aa, Ab, Ac, and Bc

are determined by satisfying the boundary conditions given in equations (4.100) and

(4.101) and the electric field profile is calculated using the solutions for fll and f12.

Perturbation Correction - Guide Effective Index

• The error caused by approximating the rib guide with a pseudo guide can be

reduced using a first-order perturbation correction to the propagation constant [14].

The first-order perturbation correction minimizes the difference between the actual

guide and the pseudo guide.
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The following development is from Varshney [15]. The perturbation cor-

rection to the effective index, calculated using Marcatili's method, is expressed as

[15]

k_f f IS=(x,y)l26n2dxdw3'5 (4.104)
f f IE=(x,y)l2 dx dy '

where the integration is over all space and 6n2 is given by

6n 2 = (n 2 -n22) shaded regions (C), (E), (G), and (I), (4.105)

6n 2 = 0 otherwise. (4.106)

Inserting fl' into the following equation produces the corrected value for fl,

_ +_,2=_2, (4.107)

where/3o is the propagation constant determined using Marcatili's method. Because

(n2x--n22)issmallinthiscase,thecorrectiontermissmallas,veil.Onceflisdeter-

mined, the effective index of the guide is calculated using equation (4.45).

Marcatili - Fiber Electric Field

Using Marcatili's technique to calculate the field profile of an elliptical-core

fiber has been discussed in the literature with accurate results [14],[42],[43]. For this

method, the elliptical core is approximated by a rectangle, for which an analytical

solution can be found. The same rectangle dimensions chosen for the EIM are used

for this method [42]. Using this rectangle as the pseudo-guide, Marcatili's method

as described in section 4.2.2, is used to determine the fiber field profile. The field is
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given by equations (4.82) and (4.95) - (4.104), replacing t and r with b', W with 2a',

and Bc = 0.

Perturbation Correction - Fiber Effective Index

To determine the perturbation correction to the propagation constant, equa-

tion (4.104) is used. However, for the fiber, 6n2 is of the form [42],[43]

6n 2 = (n21- n22) for regions 1, 3, and 4, (4.108)

6n _ = (n_ - n_) for region 2, (4.109)

6n 2 = 0 otherwise. (4.110)

where the regions are defined in Figure 4.17. Again, this calculation for the effective

index is used only for comparison purposes between the methods.

EllipkiealCoreFiber

X

Figure 4.17: Elliptical-core fiber with re-
: gionsdefined for perturbation correction to

the propagation constant.



60

4.2.3 The Fourier Method

Rib Waveguide

The scalar-wave solution applies to waveguides having small index discon-

tinuities in the region of field confinement, which is the case being studied. If the

waveguide had a large index difference between the core and cladding where the field

intensity was large, a vector solution would have been necessary. Using Maxwell's

equations, elimination of either the magnetic or electric field vectors as shown in

Chapter III can be achieved, to obtain the wave equations for either the electric

field or magnetic field. Analogous to the procedure described in section 4.1.1, the

transverse components of the vector wave equations contain two components, which

are either Ex and E_ or Hx and H_. This reduces the solution of the guided mode

problem to two simultaneous equations for E= and E_ or H= and H_. Using the

vector wave equation for H, a similar wave equation can be derived similar to that

for E discussed here. Formulating the problem in this way results in identical eigen-

values as for the E expansion; however, the Et field results are inaccurate because

the discontinuity of the E field is represented by a continuous H field [16].

To obtain a solution to the scalar wave equation, Ex is expressed as an

infinite series in terms of a complete set of orthonormal functions,

oo OO

Ex = _ _ A,_,_,v(x,y), (4.111)
/_=I v=l

where

1
v.v sin(o.x)sin(pry), (4.112)
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is a simple and complete orthonormal set of sine functions, where

= (4.113)

. and

VTV

= (4.114)
and/z and v are integers. The sine function,k_,v , is orthogonal over the finite base

domain of (0 < x _<L=) and (0 < y < Ly), such that

L_ Lv

/ _vv(x,y)_i,,v,(x,y)dx dy -- 6v_,,6,,,z, (4.115)
0 0

where 6 is the Kronecker delta function. For this method, the field is described only

over this finite base domain; thus, proper choice of the domain limits is critical for

this method to produce accurate results. The values for L= and L_ are chosen such

that the field on those boundaries is zero. For well-guided modes these boundaries

are small and this method performs well. However, for waves at or near cutoff, the

field is not well-confined and the finite domain does not apply.

For the Fourier method, equation (4.111) is inserted into the scalar wave

equation, equation (4.60). Multiplying the left side by ffJvv(x,y) and integrating over

the finite base domain, produces a matrix equation expressed as

_ (M_,,v,_,,A,_,) = A_,,v, (4.116)
p=l v=l

where

Lz Lv

LxLy k_ @_,_,(x,y)@_,,_.,(x,y) dx dy, (4.117)
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which can be rewritten as

y] 2 2

Lx Lv 4 aj,

(4.118)

The index of refraction profile in equation (4.118) is approximated by rectangles of

constant index, to obtain a closed form solutions of the integral. Thus, the rib was

broken into rectangular regions of constant refractive index for the calculations [35].

Equation (4.116) can be rewritten in terms of a matrix C, with eigenvector

X and eigenvalue _ . Increasing the number of terms, by increasing the limit

values mx and mu, increases the accuracy of the results. For many cases, a series

of 10 sine functions in both directions is sufficient to produce accurate results [16].

In this study, 30 was used for m= and m u values, due to the large window size.

This meant that the order of the matrix was 900, hence there were 900 eigenvalues.

These eigenvalues represent both the guided and unguided modes, however, only the

fundamental guided mode was of interest.

Using the procedure from Marcuse [161, two FORTRAN programs [861were

developed to determine the propagation characteristics of the rib and fiber. The Lx

and L_ chosen values, 15/.Lm and 10/_m, respectively, were large compared to the

fiber and rib guide geometry. This choice was necessary to maintain the zero field

condition on the domain boundary while the rib guide was shifted with respect to

the fiber, in order to determine the coupling efficiency at various transverse offsets.

Fiber Field - the Fourier method

The Fourier method was applied to the elliptical-core fiber using the develop-

ment just described to calculate both the field profile and the propagation constant.
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The fiber dimension was closely approximated as a single rectangle with the inte-

gration performed over the elliptical-core boundary. The same Lz and Ly domain

- boundaries as well as expansion terms used for the rib were used for the elliptical-core

fiber.

The Fourier Method - Validity

The accuracy of the Fourier method and appropriateness of choices for the

evaluation boundary and number expansion terms were studied. To determine the

validity of the evaluation box boundary and number of expansion terms chosen, an

analysis of the Fourier method was conducted to compare the E2(x, y) values at a

particular point for the rib guide.

The Lx and Ly boundary values were varied from a 7 _tm by 2/_m box to a

15 by 10 ftm box increasing both dimensions in 1/_m increments. Effects on E2(x, y)

at (_- 0.05, _)are shown in Figure 4.18. From this figure, it appears that all

of the boxes produce similar E2 values with a maximum difference between points of

5.99 x 10-4, hence a 15 by 10 _um box is more than adequate for the structures being

analyzed in this dissertation.

For the rib, the mz and my values were varied from 5 to 30 in increments of

5. Results shown in Figure 4.19 indicate that using 15 or more terms produces the

same E2(x, y) value, hence the 30 expansion terms used are more than sufficient.

Another analysis was performed to determine whether the electric field dis-

continuity at the dielectric interfaces was evident. Field results taken at x = 0 and

w
_ x = -5" slices do not show the discontinuity, as illustrated in Figures 4.20 and 4.21.

This is most likely an artifact of approximating the vector wave equation by the
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Figure 4.19: E2(x, y) vs. number of expansion terms at a point.
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Fourier Method
Rib Wovecjulde Field Moqnitude (x-O)
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Figure 4.20: Rib waveguide field magnitude
at x -- 0 vs. y calculated using the Fourier
method.

scalar-wave equation, but may also be due to the number of expansion terms used or

the small dielectric discontinuity.

As a proof of the accuracy of the Fourier method, it was applied to two

different rib waveguide geometries found in the literature and field results were com-

pared. The first rib, Rib 1, consisted of a 3 layer guide [60] as illustrated in Figure

4.22. The calculated effective index was 3.437397 and 3.436799 using the EIM and

Fourier methods, respectively. This rib was narrow and wide, hence the EIM is not

expected to produce accurate results. Using the EIM and finite difference method,

field profiles for the rib were given in the literature. The vast difference between the

profile calculated using the EIM and finite difference illustrate how approximation

. techniques must be used with caution, because the EIM is not applicable to all rib

guides. Contour plots of the literature results are shown in Figures 4.23 and 4.24.
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Fourier Method
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Figure 4.21: Rib waveguide field magnitude at
W

x = -y vs. y calculated using Fourier method.

Field results using the Fourier method, illustrated in Figure 4.25 closely resemble the

finite element.

Rib 2 differs slightly from a standard rib in that the index of the regions

external to the rib are not of uniform index as illustrated in Fig. 4.26. The operating

wavelength was 1.335/zm and the rib width was 8/zm. The Fourier method predicted

an effected index of 1.57058 which compares well to 1.57081 calculated using the

domain integral equation analysis. Field intensity plots appear similar as shown in

Figures 4.27 and 4.28.

The propagation characteristics of a circular-core fiber was determined using

the three solution techniques and results were compared to the exact solution given

in the literature. The fiber and the rectangles used to approximate it for the Fourier

method are shown in Figure 4.29. Effective index results are given in Table 4.4 and

field results in Figure 4.30. The exact solution field result is shown in Figure 4.31.
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Rib 1 (RobertsonPoper)
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Figure 4.22: Geometry of Rib 1 from Robertson paper.

Electric Field Contour Plot Colculoted Using
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Figure 4.23: Electric field contour plot calcu-
lated using finite difference method.
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Electric Field Contour Plot Calculated Using
ElM(Literature)
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Figure 4.24: Electric field contour plot calculated using the EIM.
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Figure 4.25: Electric field contour plot calculated using the Fourier method.
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Rib 2 (Kolk Poper)
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Figure 4.26: Geometry of rib 2 from Kolk paper.

Comparing Figures 4.30 and 4.31, it was evident that the Fourier field result was

nearly identical to the exact solution.

4.3 Coupling Efficiency Calculation

There are several causes of"interconnect loss between a fiber and a waveg-

uide [50],[55],[57]. These include mode field mismatch, transverse offset (x,y offset),

longitudinal separation (z offset), angular offset, and reflection. The loss mechanisms

addressed in this study were the transverse offset and mode field mismatch. Mode

field mismatch contributes significantly to interconnect loss [37],[57], hence modeling

is a necessary tool to design a waveguide whose field profile closely matches that of

the input fiber. Physically, mode field mismatch is directly related to the difference

between the field profiles of the two components. Since misalignment in the x and

y directions is inevitable in practice, the theoretical coupling efficiency results for x
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Intensity Contour Plot Using
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Figure 4.27: Field intensity contour plot for Rib 2.
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Intensity Contour Plot Calculated Using
Golerkln's Method
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Figure 4.28: Field intensity contour plot for rib 2.
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Figure 4.29: Circular-core fiber and rectangles used for approximation.
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Figure 4.30: Field amplitude versus radial dis-
tance for circular-core optical fiber.
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Figure 4.31: Exact field solution for circular-core fiber.
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and y offsets are of interest. Because the index of refraction difference between the

fiber and waveguide was small, Fresnel reflection loss was neglected [57].

Once the electric fields of the rib guide and fiber are calculated, the efficiency

of coupling between the two components can be determined. The coupling efficiency,

77,is calculated using the overlap integral [87],

(4.119)

wheretheintegralsaretakenoverallspaceandES(x,V)andE_(x,V)aretheelectric

field profiles of the fiber and rib waveguide, respectively. For the EIM and Marcatili's

method, this integration is performed directly. Recall for the Fourier method, both

the fiber and rib fields are calculated using the same orthonormal basis functions,

boundaries, and number of expansion (m and n). Thus, the coupling efficiency is

determined as the integral of the product of the fiber and rib guide fields squared,

which is

E E Au"B_'", (4.120)
# u

where A_,, and B_,_,are the coefficients of the fiber and rib guide, defined by equation

(4.116), which are normalized as

E E A_. = E E B_. = 1. (4.121)
v _ v

The coupling efficiency is related to coupling loss by the relation [60]

Loss = -10 log1077dB. (4.122)

The major axis of the elliptical-core fiber was oriented parallel to the x axis

of the guide. The position of zero x and y offset is chosen to correspond to alignment
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of the maximum field positions of the fiber and rib [60]. After solving for the aligned

case, various x offsets were introduced and a new coupling efficiency calculated for

" each at two temperatures. This procedure was then repeated for various y offsets

while the x offset was zero.

4.4 Concluding Remarks

The field solution for a three-layer planar guide was discussed to provide a

foundation for understanding the field solutions for the rib guide. Because there is no

exact analytical solution for the rib propagation characteristics, three solution tech-

niques were used. These were the EIM, Marcatili's approximation, and the Fourier

numerical method. Results from the three methods will be compared in Chapter V.

The validity of the Fourier method was studied by comparing known solu-

tions to those calculated using the Fourier method. Good agreement between the

results was found, confirming the accuracy of the method and supporting its use as

the baseline numerical method for comparison with the approximation techniques.

The fiber does have an analytical solution which cannot be determined in

closed form, however, it was determined that the three techniques used to solve the

rib were also applicable to the fiber, and were expected to produce accurate field

results.

- Table 4.4: Effective Index Results

Method II Effective Index

EIM II 1.44931

Perturbation to Marcatili's Technique 1.44813
the Fourier Method 1.44817



CHAPTER V

RESULTS

This chapter is divided into two main sections; room temperature results and

300°C results. These two temperatures were chosen to represent a nominal and high

temperature between which the guide is expected to operate when located near the

inlet of an aircraft engine. Results from the coupling efficiency calculations performed

at these two temperatures indicate that the device is expected to function properly

in this environment.

The field results for both the rib waveguide and elliptical-core fiber will

be discussed. The field profiles and coupling efficiency results for x and y offsets

will be shown in graphical format. Results for the effective index of both the rib

guide and fiber as well as the maximum coupling efficiency calculated between the

two components, using the three techniques, will be given in tabular format for

comparison.

5.1 Rib Waveguide Results (20°C)

5.1.1 Field Results

Theoretical field results using the EIM, Marcatili's approximation and the

Fourier method are illustrated using contour plots. For all the contour plots in this

dissertation, each contour indicates a region of equal field magnitude in increments

of 0.1, with the maximum field magnitude being equal to 1.0.

76
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The field profile calculated using the EIM is shown in Figure 5.32, with the

rib cross-section superimposed. For this method, the solutions to N[ and NI[ for the

• constituent guide were 1.5022 and 1.4938, respectively. These values were used to

calculate the field as previously discussed.

Using Marcatili's method, the results for fll and j_2 were 11.7134 and 11.3120

respectively. The contour plot of the electric field calculated using these variables
/_rn '

is shown in Figure 5.33. Field results calculated using the Fourier numerical technique

are shown in Figure 5.34.

Effec rive-Index Method

2

oo
-I

--_ , 11 , I i I ,-2 - 0 1

X (microns)

Figure 5.32: ElM: electric field contours of rib guide.

5.1.2 Effective Index Results - Rib

The results of the calculated effective index, ne, for the rib waveguide using

the three methods are given in Table 5.5. The result using Marcatili's method was

1.4963, which was improved by including the perturbation correction, 0.2186.
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Figure 5.33: Marcatili's method: electric field contours o[ rib guide.
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Figure 5.34: Fourier Method: electric field contours of rib guide.

Table 5.5: Rib Effective Index Results (20°C)

METHOD n_
EIM 1.4994

Perturbation (to Marcatili's Method) 1.4966
Fourier 1.4993



79

5.1.3 Comparison

Field results using the EIM were very similar to those from the Fourier

" method, yet required considerably less computation time. The difference between

the fields calculated using the ElM and Fourier method are shown in Figure 5.35.

Marcatili's method assumed a tightly confined field, hence the results produced a

field more tightly confined than the EIM and the Fourier method. The difference

between the field calculated using Marcatili's method and the Fourier method is

illustrated in Figure 5.36. Results using the two approximation techniques were

completed in a matter of minutes on a computer, however, using the Fourier method,

the computation took a few hours on a Pentium computer.

Effective-index results using the EIM and the Fourier method were nearly

identical, with a difference of 0.007%; whereas between the perturbation method and

Fourier method it was 0.18%. As evidenced here, the EIM is known to consistently

predict a higher effective index than the actual value while the perturbation correction

to Marcatili's method predicts a lower effective index. Hence, the actual effective

index value is bounded above by the EIM result and below by Marcatili's result.

5.2 Fiber Results (20°C)

5.2.1 Field Results

Modeling the elliptical fiber as a rectangle, the field results using the EIM

. are shown in Figure 5.37 with the fiber elliptical-core cross-section superimposed. For

this technique the calculated Nx value was 1.4703 and 1.45 was used for Nix. Utilizing

Marcatili's method, the fiber field profile was determined using the calculated fll and

1
r2 values, of 11.1892 and 11.1300 _--_,respectively. A contour plot of the electric field
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DifferencebetweenFouriermethod ond EIM
RibGuideotRoomT

Figure 5.35: Difference between Fourier field
result and EIM field result for the rib waveg-
uide.

Difference between Fourier method ond Morcotili
Rib Guide ot Room T

Figure 5.36: Difference between Fourier field
result and Marcatili's field result for the rib J
waveguide.
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is shown in Figure 5.38. Field results using the Fourier method for the elliptical-core

fiber are shown in Figure 5.39. Analogous to the procedure used for the rib, a 15 prn

by 10/zm evaluation domain was used.

ElM
Elllptlcol-Core Fiber (20 C)
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Figure 5.37: ElM: electric field contours of elliptical-core fiber.

5.2.2 Effective Index Results - Fiber

The effective index of the elliptical-core fiber was calculated using the three

solution methods with results shown in Table 5.6. The perturbation correction was

0.3678, producing a corrected effective index of 1.4651. Using Marcatili's technique,

the calculated fiber birefringence was 2.5 x 10-a [41] using equation (3.10), where fl=

and/39 denote the propagation constants for the TE and TM modes, respectively.

" This birefringence compares favorably with the manufacturer's nominal value of 1.5 x

10-'[781.
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Figure 5.38: Marcatili's method: electric field contours of elliptical fiber.
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Figure 5.39: Fourier method: electric field profile of elliptical-core fiber.

Table 5.6: Fiber Effective Index Results (20°C)

METHOD ne
EIM 1.4653

Perturbation (to Marcatili's Method) 1.4651
Fourier 1.4652
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5.2.3 Comparison

Both the field and effective-index results from all three techniques agreed

" well for the fiber. Differences between the electric field profile calculated using the

EIM and Marcatili's method with respect to the Fourier method are shown in Figures

5.40 and 5.41. From these graphs, it appears that the field calculated using the EIM

more closely matches that using the Fourier method than the field calculated using

Marcatili's method.

The difference between the effective-index calculated using the EIM and the

Fourier method was 0.0068% which was the same as the percent difference between

the perturbation correction to Marcatili's method and the Fourier method. The EIM

overapproximated the effective index while the perturbation correction to Marcatili's

method underestimated it. In this case, the two approximation methods produced

an effective index that was nearly identical to that of the Fourier method.

5.3 Coupling Efficiency Results

The zero x and y offset position was defined as the alignment of the maximum

field positions of the fiber and rib such that the maximum coupling efficiency occurs

at this position. An offset in the x direction was then introduced which ranged

from -3/zm to +3/_m in 0.10/zm increments. The coupling efficiency between the

fiber and rib guide, calculated using the three different methods, is shown in Figure

5.42 as a function of the x offset. It was evident from this graph that the EIM

and the Fourier method predicted similar results. Marcatili's method predicted the

fields of both components more tightly confined in the x direction, which produced

a coupling efficiency more sensitive to an x offset. For instance, given a 1 /_m x
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Difference between Fourier method and ElM
Fiber at Room T

Figure 5.40: Difference between Fourier field
result and EIM's field result for the elliptical-
core fiber.

offset, the predicted coupling efficiency using the Fourier method was 55%, whereas

for Marcatili's method it was 42%.

Similarly for the y direction, keeping the x alignment, the fiber position

was varied from -3 pm to +3/Ira from the position of alignment. The theoretical

coupling efficiency results versus y offset are shown in Figure 5.43. For a 1 /_m y

offset, the predicted coupling efficiency was 18.0% and 18.5% for the Fourier and

Marcatili methods, respectively. The coupling efficiency versus y offset was nearly

identical for the three methods.

From the graphs in Figures 5.42 and 5.43, it was apparent that alignment

was more critical in the y direction. This was expected since the rib field calculated •

was more tightly confined in the y direction than the x. Using the Fourier method, a
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Difference between Fourier method and Morcotili
Fiber ot Room 1"

Figure 5.41: Difference between Fourier field
result and Marcatili's field result for the
elliptical-core fiber.
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Figure 5.42: Calculated coupling efficiency vs. x offset.
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Figure 5.43: Calculated coupling efficiency vs. y offset.
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1/zm x offset had a predicted coupling efficiency of 5570 whereas a 1 pmy offset had

18.0%. Offsets in the y direction produced coupling efficiency results that were nearly

symmetric in y. Only a slight asymmetry in the coupling efficiency results versus y

. offset was determined, which was so slight that it could not be visually detected from

the graphical results.

The maximum theoretical coupling efficiency results are shown in Table 5.7

to four significant figures. This was done to illustrate the minimal changes in the

predicted coupling efficiency with temperature. Results using Marcatili's method

appeared to be the least accurate due to the method's assumption of a tightly bound

field. The results using the ElM and the Fourier method were similar, leading to the

deduction that the EIM is the more accurate approximation technique for this type

of rib structure.

" The zero offset position, in which the maximum field position of the fiber

and guide are aligned does not necessarily produce the maximum coupling efficiency

[88]. However, due to the symmetry of the rib structure and fiber being studied, the

zero offset position was the maximum coupling efficiency position. This was evident

in the symmetry of the coupling efficiency graphs versus offset.

5.4 Rib Waveguide Results - 300°C

5.4.1 Physical Changes Due to Temperature

• Compared to the 20°C data, the rib and fiber parameters changed slightly

when calculated at 300°C. The nominal values for all the parameters were taken at

room temperature. The physical features of the rib were determined at 300°C using

the relations from Table 3.2, with the subsequent results given in Table 5.8.
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Table 5.7: Maximum Coupling Efficiency (20°C)

METHOD I [ MAXIMUM COUPLING EFFICIENCY
EIM II 85.0348%
Marcatili ]1 88.1608%
Fourier II 81.9948%

Table 5.8: Rib Guide Parameter Changes with Temperature

PARAMETER Equation to Determine Change RESULT
lO-6_m_W(300°C) W(20°C) + 6.295 x oe x 280°C 2.701761/zm

in - 8a-_- 280°C) 0.508975/zmto_er,o_r(300°C)to_er,o_(20°C)+(--9.119×._ oc×
]0 -sam 280°C) 0.515974/_mtun_t_h_(300°C) t_.etched(20°C) + '--9.245 X __ oe X

to,.,,_,(300°C)t_,o,,_,,(20°C)+(-7.632×10-8_×280°C) 0.,,25979,m
no.,.,,,.,ay,,.(300°C) no,,e,.,,_,,.(20°C)+ '1.20345 x 10-5_._ x 280°C) 1.45637

n,.ib(300°C) n,.ib(20°C) + (1.1865 x 10-5 _e.-_x 280°C 1.55632

I0-Sam 280°0) 1.45637nis°zati°"(300°C) ni'oZ"t_on(20°C)+ r1"2035 x oc ×
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The isolation layer thickness was not included in this table because that

layer was modeled as infinite, hence any minute change in thickness would not alter

• theresults.FromtheresultsshowninTable5.8,itwasapparentthatthesubstrate

stretched the film causing the rib width to increase while its height decreased. Also,
r

the index of all three layers increased with the increase in temperature. The temper-

ature induced change in the index of refraction was two orders of magnitude greater

than the change due to the photoelastic effect, thus being the dominant effect.

5.4.2 Field Results - Rib

For the EIM, the rib field calculated at 300°C is shown in Figure 5.44. Field

results for the rib waveguide using the Fourier and Marcatili's methods are shown in

Figures 5.45 and 5.46. Comparing these graphical results, the fields calculated using

the EIM and the Fourier method were remarkably similar. These field contours were

nearly identical to those calculated using 20°C parameters.

Effec tive-lndex Method
300 C

2

>-
-1

2 , 11 I , I ,---2 - 0 1

X (microns)

Figure 5.44: EIM: electric field contours of rib at 300°C.
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Marc otili's Method
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Figure 5.45: Marcatili's method: electric field contours of rib at 300°C.

Fourier Method
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Figure 5.46: Fourier method: electric field contours of rib at 300°C.
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5.4.3 Effective-Index Results - Rib

The effective indexes predicted by the three methods for the rib are given in

" Table 5.9. For the EIM, the values calculated for NI and Nu were 1.5053 and 1.4968,

respectively. The propagation constants, fll and f12, calculated using Marcatili's

method were 11.7388 and !1.3876 __1 respectively. The perturbation correction to
/zrt_ _

the propagation constant calculated using Marcatili's technique was 0.2182.

5.4.4 Comparison - Rib

Field results from the three methods at 300°C were nearly identical to the

field results at room temperature. There was minimal change in the field results

calculated at the two temperatures.

The difference between the effective-index results calculated using the EIM

and the Fourier method was 0.0003% whereas between Marcatili's method and the

Fourier method it was 0.15691%. This difference was less than that observed between

the room temperature results. The effective index change between room temperature

and 300°C was 0.00308 using the Fourier method.

5.5 Fiber Results - 300°C

5.5.1 Physical Changes Due to Temperature Increase

Using the values for parameter change per °C, given in Table 3.3, changes in

the indexes and core dimensions were determined and results shown in Table 5.10.

Using these calculated parameter values, the field and propagation constant were

, determined using the three methods at this higher temperature. Compared to the

room temperature values, the diameter of the fiber's major axis increased by 0.004296
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Table 5.9: Rib Effective Index Results (300°C)

METHOD n_
EIM 1.50239

Perturbation (to Marcatili's Method) 1.50003
Fourier 1.50238

Table 5.10: Fiber Parameter Change With Temperature

PARAMETER Temperature Change PARAMETER (300°C)
a a(20°C + (7.15 x 10-7/°C x 280°C) 1.302148 _m
b b(20°C) + (3.58 x IO-T/°C x 280°C) 0.651074 pm
nco_ nco_(20°C) + (1.28 x 10-5 x 280°C) 1.4868
nc_,_,_,_i,_g ncza,_d,,g(20°C) + (1.28 × 10-5 × 280°C) 1.4528

Table 5.11: Fiber Effective Index Results (300°C)

METHOD n_
EIM 1.4681

Perturbation (to Marcatili's Method) 1.4679
Fourier 1.4680
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/_m and the minor axis increased by 0.002148 pm. The indexes of both the fiber core

and cladding increased by 0.0028.

4

5.5.2 Field Results

"' Field results for the fiber at 300°C calculated using the three methods are

illustrated in Figures 5.47 - 5.49. Graphical results appear very similar to those at

room temperature. For Marcatili's method, results for fll and/32 were 11.2105 and

11.1514 --1 respectively.
_urn )
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Figure 5.47: EIM: electric field contours of fiber at 300°C.

. 5.5.3 Effective Index Results - Fiber

The effective indexes predicted by the three methods for the fiber are given in

Table 5.11. For the EIM, the calculated values of NI and Nn were 1.4731 and 1.4528,

respectively. The perturbation correction to the propagation constant determined
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Figure 5.48: Marcatili's method: electric field contours of fiber at 300°C.

using Marcatili's technique was 0.3672. At 300°C, the difference between the results

from the EIM method and the Fourier method was 0.0044%.

5.5.4 Comparison of Fiber Results

Results from the Fourier method were expected to be the most accurate.

However, the computation time required by this method was orders of magnitude

greater than that required by the approximation techniques. From the two approxi-

mation methods, the field predicted by Marcatili's method was expected to be more

accurate than the EIM. However, graphical field results indicate the opposite, as both

approximation methods had a 0.006870 difference in the effective index compared to

the Fourier results. Compared to the room temperature result using the Fourier

method, the effective index of the fiber increased by 0.0028.
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Figure 5.49: Fourier method: electric field contours of"fiber at 300°C.

5.6 Coupling Efficiency Results

The maximum field positions o£ both components were aligned for the zero

offset position at 300°C. Due to the symmetry of both components, the maximum

coupling efficiency occurred at this perfect alignment position. Graphs of the coupling

efficiency versus x and y offsets are given in Figures 5.50 and 5.51.

For the x offsets, Marcatili's method and the Fourier method predicted signif-

icantly different results. For instance, given a 1.0 pm x offset, the coupling efficiency

was predicted to be 4270 and 55% for Marcatili's and the Fourier method, respectively.

These are the same coupling ef_ciency values determined at room temperature.

For the y offsets, the three methods calculated nearly identical coupling

efficiencies. This was due to all three methods predicting similar y field confinement.

For a 1.0 pm y offset, the predicted coupling efficiency was 17.9% and 18.4% for

the Fourier and Marcatili methods, respectively. This result was slightly less than
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the 18.0% and 18.5% coupling efficiency predicted at room temperature for the same

offset.

COUPLINGEFFICIENCYvs.x OFFSEI"
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x OFFSET(microns)
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Figure 5.50: Calculated coupling efficiency vs. x offset at 300°C.

Results from the three techniques are given in tabular form in Table 5.12.

From this theoretical study, it appears that the coupling efficiency decreases slightly

with temperature, by approximately 0.02% using the Fourier method. Results from

Marcatili's method predicted a slight decrease in the maximum coupling efficiency,

0.01%, while the EIM predicted an increase of 0.2%. These predicted changes in the

coupling efficiency with temperature are negligible and would be difficult to detect

in practice.

Table 5.12: Maximum Coupling Efficiency (300°C)

METHOD MAXIMUM COUPLING EFFICIENCY
Effective Index 85.1815%
Marcatili 88.1462%
Fourier 81.9774%
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5.7 Coupling Efficiency Optimization

The optical fiber is commercially available, thus, its parameters cannot be

altered. The waveguide can be altered slightly, within physical constraints, to maxi-

_ mize the fiber to rib guide coupling. A preliminary study was performed to determine

if the coupling efficiency could be improved. Each parameter was varied to deduce

its affect on the coupling efficiency. It was determined that the coupling efficiency in-

creased with decreased rib width and also with increased etch depth. These modified

rib waveguide dimensions more closely match the fiber dimensions. Combining the

two parameter changes produced the largest increase in the coupling efficiency, 6%,

for a maximum coupling efficiency of 88%. Using these new parameters, the coupling

efficiency versus x and y offsets was calculated. Results of this calculation are shown

in Figures 5.52 and 5.53. Offset affects on the coupling efficiency indicate that the

device is more lenient in the x offset tolerance while more sensitive to y offsets.

5.8 Summary

Results indicate that the EIM was surprisingly accurate for both the fiber

and rib waveguide, given its lack of enforcement of the field boundary conditions.

The EIM is known to consistently predict a higher ne, which was observed in this

study. Temperature induced variations of the rib and fiber indexes and dimensions

were much less than expected. Due to the different coefficients of thermal expansion

for the rib layers, the rib was stretched by the substrate expansion which slightly

decreased its height. The indexes of both the fiber and rib guide increased slightly

with the temperature increase. The field profiles of both components at the two

temperatures were nearly identical. While results from the Fourier method were more



98

COUPLINGEFFICIENCYvs.y OFFSET

_o

9o _orcolili o

Bo Effective-Index*
70 " -

_.J 50

_._ 40

_..1
__ 30
o

_'_ 20

0 ....... _

-_.o -2.o -to o.o to zo 3.o

y OFFSET(microns)
(300c)

Figure 5.51: Calculated coupling efficiency vs. y offset at 300°C.
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Figure 5.52: Optimum rib waveguide coupling
efficiency vs. x offset from the preliminary
study.
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Figure 5.53: Optimum rib waveguide coupling
efficiency vs. y offset from the preliminary
study.

accurate, the amount of time required to determine the coupling efficiency for x and

y offsets was several orders of magnitude greater than that for the approximation

methods.

These results indicate that the device is likely to perform properly in an envi-

ronment with a temperature fluctuating between the two temperatures investigated.

The calculated maximum coupling efficiency was higher than expected. Changes in

the coupling efficiency with temperature were negligible, and the parameter changes

with temperature were lower than expected.

F



CHAPTER VI

CONCLUSION

6.1 Summary

The electric field profiles of an elliptical-core fiber and a SiON rib waveguide

were determined using three methods: two approximation and one numerical. These

calculations were performed for room temperature and 300°C parameters. From

the field results, the maximum coupling efficiency between the two components was

calculated from the overlap integral and found to be higher than expected. Prior to

this work, the coupling efficiency had been calculated between a single-mode circular-

core fiber and the rib waveguide under study. Results from that work indicated an

expected coupling efficiency of only 45% [75]. Therefore, choosing an elliptical-core

fiber improved the device coupling efficiency by nearly a factor of 2.

These results indicate that the device is likely to perform in an environment

whose temperature ranges from 20°C - 300°C. Changes in the physical parameters

with temperature were lower than expected over the 280°C range.

As an offshoot to the problem under study, a comparison of the three solution

techniques was performed. The Fourier method was expected to produce the most

accurate results for both the fiber and rib guide. Therefore, compared to the Fourier

method, it was determined that the EIM produced more accurate results for the rib

guide and elliptical-core fiber. For an additional comparison, Marcatili's method was

to determine the fiber field and the EIM for the rib. The predicted coupling efficiency

100
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was 81% at room temperature [89], which compares favorably with the Fourier pre-

diction of 82%. Calculations using the Fourier method are computationaUy intensive

€ while results using the approximation techniques are achieved in minutes, making

the approximation techniques useful for preliminary studies.

The theoretical coupling efficiency between an elliptical-core fiber and a rib

guide was determined for a range of transverse offsets. Three techniques were used

to calculate the theoretical electric field profile of the rib waveguide: the EIM, Mar-

catili's technique, and the Fourier method. For this channel structure, the EIM and

the Fourier method produced similar results. Results from Marcatili's method were

not as accurate for the particular rib guide being studied. Similarly, for the fiber, the

EIM was determined to be more accurate than Marcatili's approximation technique.

The coupling efficiency results determined using the three methods compared

well. Calculations of this kind are essential to optimize the design of a rib guide in

order to provide an acceptably low coupling loss.

6.2 Significance of Work

The fiber and rib waveguide were determined to be compatible for intercon-

nection over the 20°C - 300 °C temperature range. Minimal changes were determined

over this temperature range for the field profiles of the components and the associ-

ated coupling efficiency. The rib waveguide under study could be implemented as

the input stage for a variety of sensors fabricated using SiON as the guiding layer.

These sensors would be expected to function in the temperature environment of the

inlet of an aircraft engine. Coupling a single-mode fiber to a single-mode device is

more sensitive to offsets than coupling a multimode fiber to the same device, due
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to the smaller diameter of the single-mode fiber. However, these results indicate

that greater than 50% coupling efficiency is predicted for x offsets within + 1 /zm

and y offsets within + 0.5 /zm. Offsets in the y direction were determined more

critical to the coupling efficiency than in the x direction, which must be considered

when designing the coupling configuration. These results are encouraging for future

experimental research on interconnection for this fiber and rib waveguide.

The analysis also provided a comparison between three techniques with re-

sults from the Fourier method expected to be the most accurate. This demonstrated

the surprising accuracy of the EIM for both the rib and fiber. Preliminary calcu-

lations can be performed using these approximation techniques without sacrificing

much accuracy, which will greatly decrease the amount of computation time required.

Marcatili's method was determined less accurate than the EIM for both the rib waveg-

uide and fiber. Approximation techniques must be used with care because they are

not applicable to every guide geometry.

6.3 Future Work

Plans to experimentally couple the light output of an elliptical fiber into the

rib waveguide sensor at room temperature are under way. Differences between the

theoretical and experimental results will be studied to determine the cause. Generally,

the experimental coupling efficiency versus x or y offset matches the theoretical results

multiplied by a transmission coefficient. This transmission coefficient is used to

account for reflection loss, propagation loss, and output coupling efficiency [48].
t.

In regards to the rib waveguide, a few researchers have reported a phe-

nomenon where a rib which begins as single-mode will become multimode as the etch
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depth increases, which is expected. However, as the etch depth further increases to

a critical point, the device become single-mode again. This has been attributed to

= spurious modes caused by the finite window size. Modeling the rib and varying the

etch depths to replicate this phenomenon would be of interest.

Calculations to determine how the coupling efficiency changes with varia-

tions in the gap between the fiber and guide would be useful for determining device

operation. It would also be interesting to model the rib waveguide using four layers,.

instead of three, to determine any differences between the results.

The design for coupling the fiber to the waveguide will use a v-groove configu-

ration, hence thermal changes of the groove will affect the alignment. This alignment

change with temperature was not considered in this research, however, during the

design stage, these thermal effects will be considered and the subsequent coupling

efficiency determined. To eliminate loss due to scattering at the fiber/rib interface,

it will be necessary to polish the endface of the rib waveguide.

The issue of bonding the fiber into the groove must also be addressed. Using

epoxy as a bond is not a practical choice because epoxy degrades at high temperatures

and has a different coefficient of thermal expansion than the fiber and guide, thus

altering the alignment with temperature. A flip-chip approach may be applicable to

this situation.
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