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ABSTRACT

The demonstration of repeated gamma-ray bursts from an individual source would severely

constrain burst source models. Recent reports (Quashnock and Lamb 1993; Wang &

Lingenfelter 1993; Ryan et al. 1994) of evidence for repetition in the first BATSE burst

catalog have generated renewed interest in this issue. Here, we analyze the angular

distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for

evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-

point angular correlation function. We find the data to be consistent with the hypothesis

that burst sources do not repeat; however, a repeater fraction of up to about 20% of the

bursts cannot be excluded.
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1. INTRODUCTION

The observed isotropy and inhomogeneous spatial distribution derived from BATSE

burst data (Meegan et at 1992; Fishman et al. 1994) severely constrain possible

Galactic distributions and argue in favor of sources at cosmological distances. Although

neutron stars in an extended Galactic halo (Brainerd 1992; Li & Dermer 1992; Eichler

& Silk 1992; Hartmann 1992, 1993; Hartmann et al. 1994a) were considered as an

alternative to cosmological models, the observational constraints are now so severe that

a halo origin of bursts appears unlikely (Hakkila et al. 1994; Hartmann et al. 1994a,b).

Cosmological models, however, naturally explain the observed isotropy and inhomogeneity.

The most popular cosmological models involve mergers between compact stellar remnants

(see Hartmann 1994 for a recent review), and the observations suggest that BATSE has

sampled the host galaxies for these events out to redshifts of order unity (Fenimore et al.

1993, Wickramasinghe et al. 1994). In such models, it is not likely that repetitions would

be observed.

The absence of an excess of overlapping error circles in pre-BATSE burst localizations

provided a mo del-dependent upper limit of ~10 years for a burst repetition time scale

(Schaefer & Cline 1985; Atteia et al. 1987). Several recent reports, however, have

cited evidence for repetition on much shorter times. Quashnock & Lamb found an

excess of close neighbors in the IB burst catalog, and concluded that a large fraction of

classical bursts repeat on timescales of order months (Quashnock & Lamb 1993). Wang fc

Lingenfelter (1993) claimed evidence for repetition with recurrence times perhaps as short

as ~ days from one particular location (0855—00). Also, the coincidence of the locations

of GRB940301 and GRB930704 determined with COMPTEL has a 3% chance probability,

suggesting a possible repeater (Ryan et al. 1994). If confirmed, any example of repetition

would impose strong constraints on source models, particular in the cosmological scenarios.

To investigate burst repetition, we test the null hypothesis that "the angular

distribution of GRBs is consistent with an isotropic distribution", i.e., equal probability

per unit solid angle. Tests of isotropy have varying sensitivities to clustering, which can

indicate the presence of repetition, as well as to large-scale anisotropies. In this paper we



focus on the implications of these tests for burst repetition. We do not consider possible

time dependent repetition, as suggested by Wang and Lingenfelter (1993), which will be

presented in a separate paper (Brainerd et al. 1994a). We consider only the "classical"

gamma-ray bursts, which are distinct from Soft Gamma Repeaters (Kouveliotou 1994).

We analyze the 2B catalog of bursts observed by BATSE between 19 April, 1991 and

9 March, 1993, comprising 585 bursts (Meegan et al. 1994) and various subsets. Data after

March 1992 contain numerous gaps due to CGRO tape recorder errors. For 100 bursts

that were most seriously affected by these gaps, the determination of burst location relied

on MAXBC data, which consists of the maximum background-subtracted rates in each

detector on a 1.024 second timescale in the 50 to 300 keV energy range. The location

errors using this data type have not yet been determined very accurately. We believe that

the systematic error is unaffected, and the statistical error usually slightly larger due to

integrating counts over only the peak.

Our subsets, which are listed in Table 1, are of consecutive triggers limited by the listed

trigger numbers. We also apply two types of cuts to some of the datasets: datasets marked

with "yes" in the MAXBC column contain bursts located with the MAXBC technique while

such bursts have been removed from datasets with "no" in this column. Similarly, datasets

with "yes" in the column "> 9°" contain bursts with statistical location errors > 9°, while

datasets with no in this column omit bursts with statistical errors > 6°. The total location

error of a burst is estimated as the rms sum of its statistical error and a 4° systematic

error.

2. TWO-POINT ANGULAR CORRELATION FUNCTION

One mathematical function that is used to test for anisotropy is the two-point angular

correlation function, w(0). defined in the following manner. Consider an ensemble of points

distributed on the sky. Then for any given point, the number of pairs (averaged over the

ensemble) with angular separation 9 and within the solid angle dfi is given by (e.g., Peebles

1980)

d$l (I)
4rr

The application of angular correlation analysis to GRB data was introduced by Hartmann



& Blumenthal (1989) for point sources and refined for fuzzy sources by Hartmann, Linder,

& Blumenthal (1991). The effect of poor angular resolution is loss of information on any

intrinsic correlation function on angular scales less than ~ 1.72 a ~ 7° (for BATSE).

However, if some of the observed bursts are repeaters, each of their coincident positions

on the sky will be smeared by the brightness-dependent instrumental resolution, causing

an excess correlation within several smearing scales. We define / as the fraction of all

observed bursts that can be labeled as repeaters and v as the average number of observed

events from sources that repeat. With Gaussian smoothing characterized by a standard

deviation cr» and only one observed repetition per repeating source (v = 2), the observed

correlation function becomes (Hartmann, et al. 1994c)

( N _ l ) w ( 0 ) = _ /+H£exp(-|L) . (2)

This equation shows the effect of fuzzy observations on the assumed correlation function;

the amplitude at 9 = 0 is reduced and excess correlation is spread over an angular scale

cr* (~ 7° for BATSE). The negative correlation at larger angles occurs because of obvious

integral constraints on the correlation function. To generalize this equation to the case in

which each source had exactly v repeaters, substitute / —»• /(i/ — 1). For a given repeater

fraction / it is easier to detect a smaller number of sources that each have a larger number

of recurrences.

Figure 1 shows the two-point correlation functions for datasets 1, 5 and 6 (Table 1),

which are the revised IB catalog, the 2B catalog and the 2B catalog less MAXBC-located

bursts. In the IB data two regions with excess at the 2<7 level are apparent, one near

zero degrees and one near 180 degrees. The excess near zero degrees was interpreted by

Quashnock and Lamb (1993) in terms of repetition. The 180 degree excess was used to

argue against this interpretation (Narayan & Piran 1993; but see Lamb & Quashnock

1994). We have also argued against recurrences from the absence of clustering on any

angular scale based on preliminary 2B locations (Blumenthal, Hartmann, &: Linder 1994;

Hartmann et d. 1994b). Here we use the final localizations of the 2B BATSE catalog

and confirm the earlier conclusion that there are no significant angular correlations on any

scale in the current data set. Burst data obtained after the IB period do not show the



excesses that were apparent in the IB set. The combined data sets still show some residual

effects of the IB excesses but the deviations are not significant. Consistency with the null

hypothesis of zero correlations was evaluated with the Kuiper (1960) statistic which has

certain advantages over the usual KS test in the current context (Hartmann et al. 1994c).

We have also applied various cuts in angular resolution, using subsets of the data with

better localization accuracy. None of these sets shows evidence for significant deviations

from zero clustering (Hartmann et al. 1994c). To derive upper limits on the product of

repeater fraction and mean number of recurrences per source, f(v — 1), we attempted to

fit the data with model correlation functions including a non-zero fraction of repeaters

and Gaussian smearing relevant for BATSE's mean angular resolution. The fits become

unacceptable at the 99% confidence level if f(v — 1) exceeds ~20%.

NEAREST NEIGHBOR TEST

Another approach to detecting burst recurrences is the nearest neighbor test, which

tests whether the separations between bursts are consistent with the separations found for

an isotropic distribution. For isotropically distributed bursts one expects the cumulative

distribution of nearest neighbors to be (Scott & Tout 1989)

'. (3)

Burst repetition will create small scale anisotropies in the burst densities. The nearest

neighbor test can indicate the existence of such anisotropies if the average distance between

bursts is greater than the location error. For BATSE, this requires that the sample size

be less than about 500 bursts (Brainerd et al. 1994b).

The First BATSE Gamma- Ray Burst Catalog was analyzed by Quashnock & Lamb

(1993) for burst repetition by comparing the cumulative distribution of nearest neighbor

separations with that expected for a uniform sky distribution, using the KS statistic. This

was done for the full catalog of 260 bursts and for various subsets. They found a deviation

from isotropy of 2% significance for the full catalog and of 1.1 x 10~"4 significance for

the 202 bursts with statistical errors less than 9 degrees. The selection of the 9 degree

error cut maximizes the signal but introduces uncertainty in the calculation of statistical

significance, since the value of 9 degrees was not specified a priori. Such techniques are
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useful for exploring a dataset for unanticipated effects but must be subsequently tested

based on fixed predictions and probabilities.

Results of our nearest neighbor analysis of the Second BATSE Catalog and various

subsets are given in Table 1. Figure 2 shows the nearest neighbor cumulative distribution

for four o£ these subsets. We find the maximum deviation D of each, data set from the

isotropic cumulative distribution and derive the Kolmogorov-Smirnov statistic K = D^/N\

where N is the sample size. The sign of D is positive if the maximum deviation is

above the model curve and negative if below the model curve. The nearest neighbors are

not statistically independent, so the value of 5 is larger than expected for a statistically

independent data set. Therefore, the significance 5 of the magnitude of K—that is, the

fraction of trials that produce a greater deviation from the model curve—is determined

through Monte Carlo simulation. The results are given in Table 1 for both the celestial

coordinate frame (Kcei and 5ce/) and the CGRO coordinate frame (Kgro and Sgro)- The

analysis in CGRO coordinates is particularly sensitive to systematic effects relating to the

angular response of the BATSE detectors. The CGRO orientation is routinely changed at

one or two week intervals. We reproduce the effect seen by Quashnock & Lamb in our

data set 7. The other subsets exhibit no statistically significant deviation from isotropy.

An upper limit on the number of repeating sources can be found from both the nearest

neighbor test and the farthest neighbor test. Through Monte Carlo simulation we derived

these limits for an isotropic distribution of burst sources. The model that the various data

sets were tested against consists of N3 sources that each produce one observed burst and

Nr sources that each produce n observed bursts. The burst locations of the repeating

sources are given a Gaussian distribution with a 9° standard deviation about the source

location. The simulations constrain the total number Nrn of bursts that can be labeled

as repeaters. In general, repeater fractions of greater than ~20% are excluded with 99%

confidence, except for set 7.

DISCUSSION

To search for evidence of burst repetition in the second BATSE catalog, we tested the

null hypothesis of isotropy using angular correlation functions and neighbor distributions.
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Post facto analysis of the IB catalog using a sliding location error cut found evidence for

burst repetition (our set 7). We have tested the hypothesis that generated this evidence

with new data (our set 8) and do not find evidence for repeaters. As explained in the next

paragraphs, we calculate that BATSE remains sensitive to repeaters. Thus the results of

datasets 7 and 8 are contradictory. Considering the difficulty of evaluating the significance

of the evidence for repeaters found by retrospective analysis of the IB catalog and the non-

confirmation of the effect in the post- IB data, we conclude that the data are consistent

with the null hypothesis of isotropy.

If the MAXBC-located bursts are removed from the sample, the effective exposure

decreases. Exposure is defined here as the fraction of bursts above trigger threshold that

would be observed, and is less than unity due to earth blockage, SAA passes, and intervals

during which the burst trigger is disabled. We have investigated the effect of exposure on

the detectability of repeaters. If the number of detectable bursts from a repeating source

is large, then the average number of bursts observed for each source remains large, and

the fraction of bursts identified as bursts from repeater sources changes little. If, however,

the number of bursts from a repeater source is small, so that the average observed number

of bursts is small, then the number of repeater sources that appear as single burst sources

increases significantly as the efficiency of detecting a burst drops. The effect of this is to

decrease the fraction of bursts that are identifiable as bursts from repeaters.

Figure 3 illustrates the effect of a varying exposure on the detectability of repetitions

from an ensemble of sources that each produce 10 bursts above threshold, not all of which

are detected. The dashed line gives the average fraction of bursts observed for sources that

produce at least 2 observed bursts. The solid line gives the fraction of observed bursts that

are observed to be single events. As this curve rises with decreasing exposure, the ability to

discern burst repetition declines. The vertical dashed line at 0.35 indicates the exposure of

the IB catalog. Here, an average of about 3.5 bursts will be observed from each repeating

source, and about 3% of the observed bursts will be misidentified as non-repeaters. Note

that this number of observed repetitions per observed repeater agrees with that suggested

by Quashnock & Lamb (1993), based on the angular scale of the dumpings seen in the
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IB catalog. The vertical dashed line at 0.25 indicates the exposure of the post-IB portion

of the 2B catalog when MAXBC-located bursts have been removed. Here, an average of

about 3.0 bursts will be observed from each repeating source, and about 8% of the observed

bursts will be misidentified as non-repeaters. Such a small change has a negligible effect

on the burst repetition limit derived for the 2B catalog from the nearest neighbor analysis.

The limit from the two point angular correlation function is increased by ~15%.

While we find no evidence of isotropy, we derive model-dependent limits on the total

fraction of repeaters in the BATSE data. Both angular correlation function and nearest

neighbor analysis suggest that no more than ~ 20 % of all BATSE bursts observed during

the first two years of operation could be members of a hypothetical class of classical

repeaters.

Several avenues are being explored to improve upon these results. First, statistical

limits will be reduced as BATSE continues to accumulate burst locations. Since the 2B

catalog, software changes have eliminated the need for MAXBC locations, and the daily

exposure exceeds that even of the IB era. Second, we continue to refine the burst location

algorithm to reduce systematic errors. Third, new statistical techniques for analyzing the

isotropy are being developed (Hartmann et al. 1994c).



FIGURES:

Fig. 1 — The angular correlation function of gamma-ray bursts. Shown are the results for

262 bursts in the IB catalog (data set 1), the full 2B set of 585 bursts (data set 5), and the

modified 2B set with 485 bursts in which MAXBC events (see text) were removed from

the sample (data set 6). The addition of second year data clearly reduces both excesses

near 0° and near 180° originally found in the IB set.

Fig. 2 — Nearest neighbor cumulative distributions from the 2B catalog, plotted as

functions of 1 — cos Q, where 9 is the angle to the nearest neighbor. The data are plotted

as a histogram while the model curve for isotropy is plotted as a smooth curve. The four

plots are for data sets 1, 3, 7, and 8 of Table 1. Data sets 1 and 7 correspond to the IB

catalog while data sets 3 and 8 correspond to the 2B - IB catalog. Data sets 1 and 3

are consecutive sets of 262 gamma-ray bursts. Data sets 7 and 8 are bursts with position

errors < 9°.

Fig. 3 — Efficiency of observing burst repetition as a function of sky exposure. It is

assumed that a gamma-ray burst source produces 10 outbursts The solid curve gives the

fraction of observed bursts from repeaters that have no observed companion bursts from

the same source. The dashed curve gives the average value of z//10, where v is the number

of repetitions observed from a repeating source. The right hand vertical line is the exposure

for the IB catalog and the left hand vertical line is the exposure for the 2B - IB catalog.
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Nearest Neighbor Analysis

* Set

1

2

3

4

5

6

7

8

Triggers

105-1466

1467-2230

1467-2121

1467-2230

105-2230

105-2230

105-1466

1467-2230

MAXBC

no

no

yes

yes

no

yes

no

no

>9°

yes

yes

yes

yes

yes

yes

no

no

Size

262

223

262

323

• '485

585

202

195

Keel

1.77

0.98

1.15

0.61

1.41

1.03

2.66

0.86

Seel

0.028

0.54

0.34

0.98

0.14

0.49

1.0 -10-4

0.71

fcgro

-1.02

-1.05

1.02

-1.23

-0.54

-0.75

-0.76

-1.03

Jgro

0.50

0.51

0.49

0.27

0.994

0.87

0.85

0.48
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