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ABSTRACT

In this work, the feasibility of using massively parallel computation to study the
response of ablative materials is investigated. Explicit and implicit finite difference methods
are used on a massively parallel computer, the Thinking Machines CM-5. The governing
equations are a set of nonlinear partial differential equations. The governing equations are
developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate,
and (3) restrained thermal growth testing. The transpiration cooling problem is solved using
a solution scheme based solely on the explicit finite difference method. The results are
compared with available analytical steady-state through-thickness temperature and pressure
distributions and good agreement between the numerical and analytical solutions is found.
It is also found that a solution scheme based on the explicit finite difference method has the
following advantages: incorporates complex physics easily, results in a simple algorithm, and
is easily parallelizable. However, a solution scheme of this kind needs very small time steps
to maintain stability. A solution scheme based on the implicit finite difference method has
the advantage that it does not require very small times steps to maintain stability. However,
this kind of solution scheme has the disadvantages that complex physics cannot be easily
incorporated into the algorithm and that the solution scheme is difficult to parallelize. A
hybrid solution scheme is then developed to combine the strengths of the explicit and implicit
finite difference methods and minimize their weaknesses. This is achieved by identifying the
critical time scale associated with the governing equations and applying the appropriate
finite difference method according to this critical time scale. The hybrid solution scheme is
then applied to the ablative composite plate and restrained thermal growth problems. The
gas storage term is included in the explicit pressure calculation of both problems. Results
from ablative composite plate problems are compared with previous numerical results which
did not include the gas storage term. It is found that the through-thickness temperature
distribution is not affected much by the gas storage term. However, the through-thickness
pressure and stress distributions, and the extent of chemical reactions are different from the
previous numerical results. Two types of chemical reaction models are used in the restrained
thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and
(2) pressure-dependent Arrhenius type rate equations. The numerical results are compared
to experimental results and the pressure-dependent model is able to capture the trend better
than the pressure-independent one. Finally, a performance study is done on the hybrid
algorithm using the ablative composite plate problem. It is found that there is a good
speedup of performance on the CM-5. For 32 CPUs, the speedup of performance is 20. The
efficiency of the algorithm is found to be a function of the size and execution time of a given
problem and the effective parallelization of the algorithm. It also seems that there is an
optimum number of CPUs to use for a given problem.
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Nomenclature

A constant material parameter for the transpiration cooling
problem

A0> Arrhenius rate constant for the k th reaction

B constant material parameter for the transpiration cooling
problem

c damping coefficient or constant in Eqn. 4-39 depending on
context

ck degree of conversion for the kth reaction

C constant material parameter for the transpiration cooling
problem

Cp specific heat of the porous charred solid

Cp specific heat of the gas

Cp specific heat of the ith substance

CPi specific heat of the absorbed moisture

Cp specific heat of the porous virgin solid

D constant material parameter for the transpiration cooling
problem

e efficiency

£ overall internal energy or Young's modulus depending on
context

E^ Arrhenius activation energy of the kth reaction

Egmt heat generated by the Jkth chemical reaction

h thickness of the plate

hc enthalpy per unit mass of charred solid

he enthalpy per unit mass of evaporation gas

hg enthalpy per unit mass of the gas
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/i, enthalpy per unit mass of the /th substance

h, enthalpy per unit mass of absorbed moisture

hp enthalpy per unit mass of pyrolysis gas

hs enthalpy per unit mass of virgin solid

k thermal conductivity

K. area-average thermal conductivity in the z direction

K',t area-average thermal conductivity in the z direction at the /th
node and ;'th time step

/, reference length in Eqn. 4-40

L length of the plate

M average gas molecular weight

mc mass of charred solid per unit control volume

m, mass of i th substance per unit control volume

mg mass of gas per unit control volume

ml mass of absorbed moisture per unit control volume

ms mass of virgin solid per unit control volume

mg mass flux of gas

mj
gi mass flux of gas at the /th node and /th time step

MC moisture content

nt Arrhenius order of the kth reaction

p effective parallelization

P internal pressure

Pb ambient pressure

P, fixed boundary pressure at z = 0 for the transpiration cooling
problem

P2 fixed boundary pressure at z = h for the transpiration cooling
problem

/V pressure at the /th node and ;th time step
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qcond conduction heat flux

qconv convection heat flux

Q effective heat of charring reaction

(2, effective heat of evaporation reaction

Q. heat of charring reaction

Qw heat of evaporation reaction

Qk chemical heat of reaction of the fcth reaction

r nondimensional constant in Eqn. 2-3

re rate of gas mass generation due to evaporation

rg rate of gas mass generation

rt rate of mass generation of the i th substance

rik rate of generation of substance / by reaction k

rp rate of gas mass generation due to pyrolysis

R universal gas constant

Rc vapor formation rate

R± rate of reaction of the k th reaction

R^ char formation rate

5 speedup

Siju compliance of the porous solid under mechanical loading

Smax.uttat maximum ideal speedup

t time

rcl first critical time scale in Eqn. 4-39

rc2 second critical time scale in Eqn. 4-39

tcand conduction time scale

tfl excess time

r^, first time scale associated with governing equation for pressure
(Eqn. 4-27)
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r , second time scale associated with governing equation for
pressure (Eqn. 4-27)

rpci third time scale associated with governing equation for pressure
(Eqn. 4-27)

tsoM solid time scale

r,v execution time using N processors

rrc critical time scale associated with Eqn. 4-47

rTcl first time scale associated with governing equation for
temperature (Eqn. 4-28)

tTc2 second time scale associated with governing equation for
temperature (Eqn. 4-28)

tTc3 first time scale associated with governing equation for
temperature (Eqn. 4-28)

f, execution time using one processor

T temperature

7, fixed boundary temperature at z = 0 for the transpiration
cooling problem

T2 fixed boundary temperature at z = h for the transpiration
cooling problem

T^ temperature at which charring begins

T^ temperature at which evaporation begins

Ttc temperature at which charring ends

7W temperature at which evaporation ends

7"M>(^) saturation temperature of gas at pressure P

r/ temperature at the ith node and y'th time step

u scalar quantity in Eqn. 4-39

Uj displacement vector of the porous solid in the ith direction

u'It displacement of the porous solid in the x direction at the ith
node and jth time step
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ui.

w
X \~ X 2~ X 3

x-y-z

a

ft

AP

Ar

AT

Avc

Ax

Az

displacement of the porous solid in the y direction at the ith
node and ;th time step

displacement of the porous solid in the z direction at the j'th
node and jth time step

charred solid volume

virgin solid volume

velocity of gas flowing inside a porous solid

width of the plate

on-axis coordinate system

off-axis coordinate system

Amdahl's fraction

equivalent Amdahl's fraction

thermal expansion tensor

moisture expansion tensor

charring expansion tensor

Kronecker delta

changes from a reference value of absorbed moisture content

changes from a reference value of the pressure

time step

changes from a reference value of the temperature

changes from a reference value of the char volume

distance between two neighboring nodes

distance between two neighboring nodes

total strain tensor

overall porosity (virgin + charred)

charred solid porosity

virigin solid porosity
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O ply angle

A(>. compliance of the porous solid subjected to an internal pressure

Y permeability

T] combined heat capacity of the system

H average gas viscosity

v constant in Eqn. 4-39

Q)n circular natural frequency

9 fiber angle

pc intrinsic density of the porous charred solid

pg intrinsic gas density inside the pores

pj
gi intrinsic gas density inside the pores at the ith node and ;th

time step

ps intrinsic density of the porous solid

cr. total stress tensor

o™ mechanical stress tensor

q nondimensional damping coefficient

v Poisson's ratio

£t arbitrary small reaction rate for reaction k
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CHAPTER 1

INTRODUCTION

Ablative composite materials have been used in a broad range of

applications. The production of solid fuel rocket motors, planetary-entry

probes, and reentry vehicles was made possible by these materials. Ablatives

are used to protect structures from extreme temperature environments.

When these materials are exposed to a high heat flux environment, extreme

thermal gradients, internal pressures due to chemical reactions, and thermal

and mechanical stresses all develop, which can cause premature failure.

Hence, to make full use of these materials, all of these aspects of their

response must be more completely understood.

The physical phenomena that happen inside these materials can be

characterized by the following processes. When the surface of the ablative is

exposed to a high temperature environment, heat is conducted into the

material. The temperature of the material below the surface will then rise

and a temperature gradient is established inside the material. When the

temperature inside the material reaches a high enough value, chemical

reactions take place. Gases are generated due to these reactions. Due to the

relatively low permeability of the material, these gases are trapped in the

material and cause internal pressures to develop. Both the temperature

gradient and internal pressure will cause stresses to develop in the materials.

Sometimes the values of these stresses are high enough to cause premature

failure of the ablative materials. The response of the ablative materials
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undergoing these processes needs to be understood to prevent premature

failure.

There are typically two approaches to study the responses of composite

ablatives. The experimental approach usually requires large scale test

specimens which can be prohibitively expensive to manufacture. Moreover,

these experiments do not always reveal the details of the underlying physical

processes. The analytical approach can give insight to the physical processes

that lead to premature failure of such materials if the modeling is done

properly. However, in order to obtain these insights, the nonlinear partial

differential equations of a very complete analytical model need to be solved.

Closed-form solutions are impossible to obtain in most cases. Therefore,

numerical solutions are needed.

Two major numerical solution schemes that have been applied to this

problem are the finite element method (FEM) and the finite difference

method (FDM). In both methods, some simplifications must be made in the

governing equations in order to keep the computation tractable. However, it

is important that sufficient complexities are included in the computations so

that the predicted results can be used with confidence. A great deal of

computational power is needed to allow such complexities to be included in a

solution algorithm. With the recent arrival of massively parallel computers

such as the Thinking Machines' Connection Machine 5 (CM-5), enough

computational power has become available to both greatly increase the

accuracy of such solutions and lower their turn-around time.

However, to make efficient uses of massively parallel computers, an

appropriate solution algorithm needs to be developed. Relatively speaking,

FDM results in simpler algorithms than FEM on a parallel computer.

Simpler algorithms allow more complexities to be incorporated into an FDM
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algorithm. Results computed based on this algorithm will simulate reality

more closely. Therefore, a solution algorithm based on FDM is developed on

the CM-5 in this work.

In FDM, there are two major types of solutions scheme. They are the

explicit finite difference method (EFDM) and the implicit finite difference

method (IFDM). The two schemes differ in the way they approximate the

derivatives in the governing equations. There are two major advantages of

using EFDM. The first advantage is that it leads to a simple algorithm which

is easy to program. This implies that complex nonlinear physics is relatively

easy to incorporate into the program. The second advantage is that EFDM is

well suited to parallel computation. At each time step, the difference

equations can be solved at all nodes simultaneously and the solution of the

equations at each node requires knowledge only of the states of its immediate

neighboring nodes. This minimizes the required communication between

processors, keeping the parallel computation efficient.

The major drawback of the EFDM is that computations need to be done

at relatively small time steps to maintain stability. The allowable time steps

are usually limited by the fastest physical process associated with the

problem. In the ablative case, the fastest physical processes are the

deformations of the solid material and the internal flow of gases. These two

processes can limit the time step to as small as 1CT6 second. Therefore,

modeling using a fully-explicit scheme may be impractical for a typical

simulation time which is on the order of 100 seconds. A hybrid algorithm

which will be discussed later is proposed to alleviate the time-step problem.

In this work, approaches to solve ablation type problems on massively

parallel computers are explored. Analytical models and numerical solution

schemes are developed to solve several physical problems of interest.
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The three physical problems considered are: (1) transpiration cooling of

a plate, (2) ablation of a composite plate, and (3) restrained thermal growth

testing. The transpiration cooling problem is used to verify the EFDM. The

internal pressure, temperature, and stress distributions are obtained using

EFDM and compared to available analytical solutions. The ablative

composite plate problem is used to demonstrate the capability of the EFDM

scheme to incorporate complex physics and solve parctical problems. A

typical solid rocket motor nozzle liner problem is solved, and the solution

compared to previous numerical solutions of the problem. The restrained

thermal growth problem is used to demonstrate the adaptability of the

numerical method. Parametric studies are performed on the effects of

different chemical reaction models and the results compared with

experimental data.

The present work is organized as follows. In Chapter 2, previous work

and relevant background on massively parallel computing are discussed. A

concise problem statement is given in Chapter 3. In Chapter 4, the general

governing equations are developed. The governing equations are then

simplified appropriately for each of the three cases studied: transpiration

cooling, ablative composite plate, and restrained thermal growth. The results

are presented in Chapter 5. The performance of the hybrid algorithm on the

CM-5 is also presented in Chapter 5. The conclusions drawn from the results

and recommendations for future research are presented in Chapter 6.
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CHAPTER 2

BACKGROUND

The first section of this chapter contains a discussion of the previous

analytical and experimental work done in the area of ablative composite

materials. A brief discussion of previous work on numerical schemes then

follows. In the second section of this chapter, relevant information

concerning parallel computation on machines such as the CM-5 is presented.

The first part of this section contains a brief discussion on the architecture of

the CM-5, as well as how codes using CM-FORTRAN [1] should be written to

take advantage of the architecture. In the second part of this section, the

metrics for measuring the performance of parallelized codes is presented.

2.1 Experimental Investigations and Modeling

The earliest work done on natural ablative materials was done on wood

for fire-retarding purposes (see [21 for more early history). For man-made

ablatives, one of the earlier works was done by Moyer and Rindal [3] in 1963

in which the thermal response of materials used as heat shields for reentry

vehicles was investigated.

Henderson and his colleagues did extensive experimental work to

determine the properties of glass-phenolic ablative composite materials in the

early 1980's [4]. Stokes [5] and Hubbert [61 performed many experiments to

study the material response of ablative composite materials. The one of

particular interest to this study is the restrained thermal growth (RTG) test.
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McManus and Springer [7] also did some experimental work on carbon-

phenolic ablative materials to validate his model and the CHAR computer

code. Florio et al. [8] experimentally determined the volumetric heat transfer

coefficient in decomposing polymer composites. This volumetric heat transfer

coefficient was used in their study of the assumption of local thermal

equilibrium [9].

Much work has been done on modeling the behavior of ablative

composite materials. Henderson developed a simple model which included

an Arrhenius reaction model, an energy equation, and a steady-state mass

flow equation [4]. The model was later refined to include a mass flow

equation based on Darcy's law and the thermal expansion of the solid

material [10]. These models predicted the internal pressure and temperature

predictions distributions but did not give stress distributions. Kuhlmann

[11], McManus [12], Sullivan [13], and Weiler [14, 15] developed models

which also included the stress distributions inside the solid material. This

was achieved by applying the theory of poroelasticity [16-21] in combination

with the existing thermochemical and gas flow theories to predict the

material's temperature, chemical state, internal pressure, and stresses

simultaneously. Each author used a different approach to derive the coupled

thermoporoelastic equations. These governing equations are highly

nonlinear due to the fact that the coefficients in the constitutive relations are

functions of the independent variables (temperatures, pressures, stresses,

etc.). When complex chemical reaction models are used, governing equations

can be made even more nonlinear. For example, Tai [22] developed a new

evaporation model for ablative composite materials which is a function of

temperature and pressure.
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Sullivan [23, 24] proposed a thermodynamic approach to derive a new

set of constitutive relations for decomposing ablative materials. In general,

the coefficients in the newly developed constitutive relations are functions of

the independent variables and thus the governing equations are highly

nonlinear. This approach was proposed to overcome the limitations of the

previous models which were all based on porous media flow and

poroelasticity. These limitations are: (1) gases generated from chemical

reactions act together as a single equivalent fluid, (2) a well-defined boundary

exists between the fluid and solid constituents where mechanical equilibrium

is maintained and (3) the forces that exists between the solid and fluid

constituents are purely mechanical in nature. However, certain carbon fibers

used in polymeric composites are known to be hydrophilic (i.e. attract water)

when heated to high temperatures [251. This is due to the presence of

activated carbon sites on their surface. Chemical forces then develop between

the carbon fibers and water molecules liberated from the resin. These forces

may have significant influence on the mechanical behavior of the material.

In the only work to date on this problem, chemisorption of H2O in the matrix

was dealt with on an ad-hoc basis in the model developed by Tai and

McManus [22].

2.2 Numerical Methods

Due to the complex physics occurring inside an ablative composite

material, the models developed so far require the solution of a set of highly

nonlinear partial differential equations. Closed form solutions for these

governing equations are impossible to obtain. Therefore, numerical schemes

have been used. Two types of numerical schemes have been adopted by

researchers in this field. Sullivan, Kuhlmann, and Weiler adopted the finite
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element method. Other researchers such as Henderson and McManus have

used the finite difference method. The finite element method has the

advantage that geometry and boundary conditions can be accurately modeled.

The major disadvantage of the finite element method is the difficulty in

incorporating complex physics (nonlinear constitutive laws for example). The

advantage of the finite difference method is that it is relatively easy to

incorporate complex physics. The disadvantage of the finite difference

method is that geometry and boundary conditions are harder to model than

in the finite element method. Within the finite difference method, there are

two ways a differential equation can be approximated: (1) the explicit finite

difference method (EFDM) and (2) the implicit finite difference method

(IFDM). It is easier to incorporate complex physics into the EFDM than the

IFDM. However, the EFDM generally requires more computational power

than the IFDM. Henderson's original work used the EFDM, because the

EFDM was relatively easy to implement [4]. However, it was later

abandoned due to limited computational power available at that time. With

the recent advances in computational power, the explicit finite difference

method is again becoming a viable method for solving the governing

equations.

In this work, a numerical scheme called the hybrid algorithm is

developed to solve the governing equations. The hybrid algorithm uses both

the EFDM and the IFDM to solve the governing equations. For this reason, a

brief discussion of these methods is presented using an example based on a

simple 1-D heat transfer equation.

The 1-D heat transfer equation is:
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The EFDM, using forward difference in time and central difference in space

[25], can be used to derive the following difference equation:

(2-2)
A/ Ax*

where T? is the temperature at the ;th time step and the ith node, A/ is the

time step, and Ax is the spacing between two nodes. By rearranging Eqn.

2-2, an expression for 7/+1 is obtained:

(2-3)

where r = (fcA/)/Ax2. It can be seen from Eqn. (2-3) that the value of

temperature at the next time step for a given node is found from the known

current values of temperature of that node and its immediate neighbors. A

finite difference method where the unknown values can be expressed directly

in terms of the known values is called an EFDM. The scheme used in Eqn.

(2-3) is illustrated graphically in Figure 2-1. In Figure 2-1, the y axis

represents time and x axis represents nodal position. As shown in Figure 2-

1, the value of temperature at the ith nodal point and (j + l)th time step is

updated by the known values of the neighboring nodes ((i-l)th, ith, and

(/ + 1 )th nodes) at the ; th time step. Eqn. 2-3 is stable for time step sizes that

are less than (Ax2/2* ) [251.

To illustrate EFDM, the Crank-Nicholson scheme is used [26]. In- this

scheme, the same difference technique as the one in EFDM is used. The only

difference is that the spatial derivatives are approximated by taking the

average of its central difference at the ;th and j + 1th time step. By applying

the IFDM to Eqn. 2-1 the resulting difference equation is:

/*1 T' If ( Ti *)T> J. T> T'*1 — 97V*1 4. 7V>1 "\
, ~*i _ * •»,>! -Lii + *i-i . *.•+! Lli +*i-l (0-4)

•^ """•• I - " ~ m \ V** ^'

A/ 2l Ax2 Ax2 1
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Figure 2-1. Explicit finite difference method for the simple heat conduction
equation (Eqn. 2-3).
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Rearranging Eqn. 2-4 into a more convenient form,

, (2-5)

It can be seen readily from Eqn. 2-5 that the value of temperature at a given

node is dependent on both the known (yth time step) and the unknown

0 + 1th time step) values of temperature at that and neighboring nodes. The

value T/*1 cannot be solved directly from Eqn. 2-5 as in Eqn. 2-3. If there are

N internal nodal points then at the y + lth time step Eqn. 2-5 gives N

simultaneous equations for the N unknown values in terms of the boundary

and yth time step values. Such a difference method is called the IFDM. The

IFDM used in Eqn. 2-5 is illustrated graphically in Figure 2-2. The value

r/*1 depends on both the current (;th time step) and future (; + 1th time step)

value of temperature at that and neighboring nodes. The future value of the

neighboring nodes depend on the values of their neighbors, and so on, until

the problem becomes fully coupled.

If the coefficient (k in our example) is itself a function of temperature,

Eqn. 2-1 becomes non-linear. This presents no complication to solving the

EFDM (Eqn. 2-3), as it is calculated at timestep j and is thus known.

Equation 2-5 requires values of k at both timestep j and timestep j + 1 ; thus

the matrix solution becomes nonlinear and must be solved iteratively. When

A: is a constant, Eqn. 2-5 is stable for all positive values of time step size [26].

However, a reasonable time step size must be used to maintain accuracy.

The key characteristics of EFDM and IFDM are shown in the above

example. In EFDM, the solution can be obtained from known neighboring

nodal values. However, the time step size must be smaller than a given value

for EFDM to remain stable. A matrix solution is needed in IFDM and it may

need to be iterated to solve non-linear problems. IFDM is more stable than
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Figure 2-2. Implicit finite difference method (Crank-Nicholson Scheme) for
the simple heat conduction equation (Eqn. 2-3).
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EFDM. In the above example, the IFDM is stable for all positive values of

time step size when k is constant . EFDM is more attractive than IFDM for

implementation on parallel computers, since the algorithm can be

parallelized more easily (the solution at each node can be obtained directly

from known neighboring nodal values). Although it is easier to implement

EFDM on parallel computer, sometimes the time step size necessary for

stability may become too small for EFDM to be practical. In that case, one

may need to use IFDM.

2.3 Parallel Computing on the CM-5

The Connection Machines CM-5 is a massively parallel, SIMD (Single-

Instruction Multiple-Data) and MIMD (Multiple-Instruction Multiple-Data)

computer. Machines of this type consist of a very large number of processing

elements. Each parallel processing element has its own physically connected

memory. Intense communication takes place between the processors when

data needs to be moved from one memory to another. Efficient algorithms

will minimize this communication. For large numerical codes, the regularity

of the data structure and the absence of sequential operations are important

factors to minimize interprocessor communications on the CM-5 [27].

A schematic drawing of the CM architecture is shown in Figure 2-3.

The serial control processor directs the actions of a set of parallel processors.

The serial controller also performs all sequential operations. During such

operations, the parallel processors do nothing. The parallel processors act on

data elements stored in their local memories. Parallel processors are most

efficient when acting on large data set, each element of which can be acted on

independently. The entire set can then be acted on simultaneously, one

processor working on each element.
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Figure 2-3. Connection Machine architecture [1].
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CM FORTRAN is the language used here to implement the solution

algorithm on the CM-5 machine. It allows data parallel programming in a

language familiar to most researchers since it is actually based on FORTRAN

90. A full description of CM FORTRAN may be found in the Connection

Machine documentation [11.

CM FORTRAN does not require the programmer to be concerned about

the details of parallelization. The CM FORTRAN compiler performs the

parallelization after the code is written. However, the programmer needs to

arrange the data structure so that the compiler can parallelize the code in the

most optimal way. Optimal parallelization can be achieved by the compiler

when data structure is arranged into different sets of conformable arrays

(arrays that are the same size and shape) and all operations are performed

with conformable arrays from the same set. This allows the compiler to

assign conformable arrays to the same parallel processor set. When this is

done, operations are performed in parallel without communications between

different sets of processors.

With the above ideas in mind, it can be seen that the EFDM is a

suitable method to solve differential equations on the CM-5. Take the simple

heat conduction equation (Eqn. 2-1) as an example. Eqn. 2-3 is obtained

using EFDM. For demonstration purpose, it is assumed that there are five

nodal points in the mesh. Using the EOSHIFT function, a utility in CM

FORTRAN that allows the location of array elements to be shifted by a

specified amount, three independent conformable arrays containing the

values of, TV, TV, , and TM at all nodes can be formed. The EOSHIFT

function inserts specified values in the appropriate end of an array which are

used to define boundary conditions. Then the values of T/*1 at all nodes can
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be obtained with a single operation [28]. This process is illustrated in Figure

2-4. For this reason, the EFDM is very efficient for parallel computations.

The opposite is true for the IFDM. As shown in Eqn. 2-5, the

unknowns values of temperature are coupled together. Therefore, in order to

obtain solutions, a system of equations needs to be solved at the same time.

Typical numerical schemes available for solving systems of equations (Gauss

elimination, LU decomposition, and Gauss-Seidel) involve mainly sequential

operations which require intense interprocessor communication during which

the parallel processors remain idle. Therefore, the computation becomes less

efficient.

Although the EFDM is a very efficient method for solving differential

equations on the CM-5, it does have a very stringent stability criterion. As

mentioned before in chapter 1, the time step for the ablative problem can be

as small as 10"6 second. The IFDM has a much less stringent stability

criterion than the EFDM. In the 1-D heat conduction example, the IFDM is

actually unconditionally stable. However, the implementation of IFDM on

the CM-5 is not as efficient as that of EFDM.

For any given problem, it is difficult to predict a priori which method is

the most suitable. The most efficient algorithm will take advantage of the

strengths of both methods while minimizing the weaknesses. The hybrid

algorithm is developed based on this concept.

2.4 Parallel Computing Performance Measures

For serial algorithms, performance measurement based on millions of

floating point instructions per second (MFLOPS) is usually appropriate.

However, applying this type of measurement to a parallel algorithm is not

appropriate. The reasons are: (1) extra work is done by a
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Figure 2-4. Example computation using parallel processors.
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parallel computer in the background and (2) synchronization and

communication overhead costs are not reflected in FLOPS. Moreover, it does

not give any measure on how effectively the code is parallelized.

The performance of parallel algorithms is most commonly measured in

terms of speedup. Speedup of an algorithm executed using N processors is

defined as:

5 = -^ (2-6)
*N

where 5 is the speedup, r, is the execution time using one processor, and tH is

the execution time using N processors.

However, simply measuring the speedup, S, is not sufficient to learn

how well a parallel code is written. By applying Amdahl's law [29], one can

measure, ideally, how much of an algorithm cannot be parallelized and must

be run sequentially. This measure is provided by Amdahl's fraction, a. The

idealized tN can then be written in terms of a and f, as:

V = of,+(l + a)^ (2-7)

Substituting Eqn. (2-7) into Eqn. (2-6) and letting N approach infinity, the

maximum ideal speedup is obtained:

$-.«--£»*-£ (2-8)

The maximum ideal speed up approaches asymptotically to a number

governed by a which is the fraction of the sequential algorithm that cannot

be parallelized.

It is assumed that the Amdahl's fraction, a, is a constant and depends

only on the algorithm. In most engineering problems, a depends not only on

the algorithm but also on the problem size. Hence, Amdahl's law is not
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directly applicable to measure the performance of an algorithm on CM-5, as

overhead costs such as initial setup, opening and closing files, input/output of

results, interprocessor communication, and synchronization delays are not

taken into account.

To overcome the limitations in Amdahl's law, a measure called the

effective parallelization, p, has been introduced by E.J. Plaskacz et. al. [301.

In order to compute p, the equivalent Amdahl's fraction, a,, is calculated

first from the measured speedup using Eqns. (2-6) and (2-7):

Note that at represents the fraction of the code that is running serially, and

this includes the serial part of an algorithm as well as the overhead costs.

The effective parallelization, p, is then given by

p = l-ae (2-10)

where p represents the fraction of the code that can be completely

parallelized.

Efficiency, e, and excess time.r^, are two additional useful measures of

a parallel code's performance. Efficiency is defined by

•H? «•«>
Excess time measures the time spent by a processor over and above the time

required due to ideal speedup and it is given by the following equation:

'„ = <*(!-') (2-12)

The excess time provides a measure of the total time a parallel computer

spends on overhead costs.
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CHAPTERS

PROBLEM STATEMENT

In this work, analytical models and numerical solution schemes are

developed to solve three ablation-type problems of interest. The three

problems are: (1) transpiration cooling of a uniform plate (2) ablation of a

composite plate, and (3) restrained thermal growth of a composite test

specimen.

In the transpiration cooling problem, a flat plate made of porous

material with gas flowing through the thickness is considered. The in-plane

dimensions of the plate are much greater than the through-thickness

dimension and all boundary conditions are uniformly applied over the in-

plane dimensions of the plate. A one-dimensional analysis in the thickness

direction is developed. Given the material and flowing gas properties

(assumed constant), the initial conditions (temperature and pressure), and

the boundary conditions (temperature and pressure values at both

boundaries, tractions at one end, and displacements at the other),

temperature, pressure, and stress as functions of time and position through

the thickness, and mass flux as a function of time, are obtained. The solution

of this problem is used for comparison to exact steady state solutions, and to

explore the time scales of different physical aspects of the problem.

In the ablative composite plate problem, a flat plate made of carbon-

phenolic material, exposed on one surface to a high temperature environment

and insulated on the other, is considered. The in-plane dimensions of the
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plate are much greater than the through-thickness dimension and all

boundary conditions are uniformly applied over the in-plane dimensions of

the plate. A one-dimensional analysis in the thickness direction is developed.

Given the material and gas properties, and the initial and boundary

conditions, temperature, pressure, and stress as functions of time and

position through the thickness, and the maximum pressure as a function of

time, are obtained. Initial conditions specified are temperature and pressure,

uniformly distributed through the thickness of the plate. Boundary

conditions specified on the exposed surface of the plate are the heat flux and

ambient pressure values. On the insulated surface, the heat flux and gas

mass flux values are set to zero. The solutions of this problem are used to

demonstrate the capability of the massively parallel computer algorithm to

incorporate complex physics, explore the effects of including additional

physics on the solutions, and study the performance of the algorithm.

In the restrained thermal growth (RTG) problem, a cylindrical

specimen made of carbon phenolic material heated uniformly at a constant

rate and held at a constant longitudinal strain is considered. A one-

dimensional model, approximating the cylindrical geometry of the specimen

as a strip, is developed. Given the material and gas properties and the initial

and boundary conditions, the restraining stress required to hold the specimen

at a constant longitudinal strain is obtained as a function of temperature.

The properties of the material and gas are functions of temperature and

chemical state. The initial conditions are uniformly distributed temperature

and pressure values. The boundary conditions at one end of the strip are

the values of ambient pressure and surface tractions. At the other end of the

strip, the values of the mass flux and displacements are set equal to zero.

The solution of the problem is used to demonstrate the capability of the
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computer algorithm to incorporate complex physics, to perform a parametric

study of two chemical reaction models, and to compare the analytical results

to experimental measurements.
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CHAPTER 4

THEORY AND IMPLEMENTATION

In this chapter, the general governing equations are developed for

three physical problems. Explicit finite difference method (EFDM) or hybrid

solution schemes are developed for these problems. The chapter is divided

into four main sections: (1) general governing equations, (2) governing

equations for transpiration cooling, (3) governing equations for ablative

composite plates, and (4) governing equations for restrained thermal growth

(RTG) testing. For each case, the general governing equations are simplified

appropriately. The implementation of the solution scheme for each of the

three problems is also discussed.

4.1 General Governing Equations

The general governing equations used here are based on the model of

McManus [12]. The general governing equations are developed based on two

models: (1) thennochemical and (2) mechanical models. In the

thermochemical model, McManus used a control volume approach to obtain

the local mass and energy balance equations. These two equations were used

to obtain the internal pressure and temperature distributions inside the

control volume. The mechanical model was based on the poroelasticity theory

developed by Biot et. al. [19]. This theory takes into account the internal

pressure in the calculation of stresses.
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The unit control volume of a porous solid used by McManus [12] is

shown in Figure 4-1. In general, a porous solid contains both porous virgin

and porous charred solids. The volume occupied by the virgin and charred

solids are denoted by vs and v., respectively. Initially, the unit control

volume consists of porous virgin solid and absorbed moisture only. Due to

heating, some of the porous virgin solid is converted to porous charred solid.

Gases are then released from the virgin solid into the pores of the virgin and

charred solid. Moreover, the gases flow through the walls of the unit control

volume. By applying the principles of conservation of mass and energy to the

unit control volume, the general 3-D governing equations for pressure and

temperature are obtained [12]. Then poroelasticity theory is applied to the

unit control volume to obtain the stresses in the porous solid. In this work,

only the 1-D form of the general pressure, temperature, and stress governing

equations are developed. The reason for this simplification is discussed in the

following section.

4.1.1 Geometric Considerations

In the first two cases (transpiration cooling and ablative composite

plate), the structure considered is a thin plate depicted in Figure 4-2. The in-

plane dimensions are assumed to be much greater than the through-

thickness dimension. In addition, the boundary conditions, such as

temperature, pressure, and surface tractions, are uniform over the in-plane

dimensions. It can then be assumed that all of the derivatives with respect to

the in-plane dimensions are zero, hence the temperature, pressure, and stress

vary only in the thickness direction. Therefore, only the 1-D governing

equations for temperature, pressure, and stress need to be developed. The

RTG problem can be simplified to 1-D as well. This is
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Figure 4-1. Illustration of the unit control volume.
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Figure 4-2. Thin plate geometry used in transpiration cooling and ablative
composite plate where the length (L) and the width (W) are
much greater than the thickness (h).
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achieved by considering the variations in temperature, pressure, and stresses

along a strip of the material. More details will be discussed in the later

sections where the governing equations for the RTG problem are developed.

4.1.2 Mass and Energy Balance Equations

The 1-D gas mass balance (continuity) equation is:

dm, dm,
—*•«— rL + rg (4-1)

dt dz *

where mg is the mass of gas per unit control volume, mg is the mass flux of

gas, and rg is the rate of gas mass generation per unit control volume. The

first term of Eqn. 4-1 represents gas mass storage, the second term

represents the change of mass due to gas flow, and the last term represents

the generation of gas due to chemical reactions.

The velocity of the gas flowing inside the porous solid is assumed to

obey Darcy's Law [31]:

where VD is the area-average gas velocity, y is the permeability of the porous

solid, fj. is the average viscosity of the gas [32], and P is the internal

pressure. Then the mass flux of the gas is:

mg=p tVD (4-3)

where pg is the intrinsic density of gas defined as the density of the gas

within the pores. The mass of gas per unit control volume is related to its

intrinsic density by:

mg = 4>pg (4-4)

where 0 is the porosity of the porous solid.
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The gas inside the porous solid is assumed to behave ideally, so the

pressure is given by the ideal gas law as:

n RTm,P=V (4-5)

where /? is the universal gas constant, T is the absolute temperature, and Af

is the average molecular weight of the gas [32] .

The 1-D energy balance equation is:

f = -|(^)-|(O + 5Xe, (4-6)

where E is the internal energy inside the control volume, qcmd is the heat flux

due to conduction, qcom is the heat flux due to convection, and Egait is the heat

generated by the fcth chemical reaction. Equation 4-6 represents the rate of

internal energy change inside the control volume due to heat flow by

conduction and convection and heat generation by chemical reactions. More

specifically, the terms in Eqn. 4-6 are:

K
qcond~ ' dz (4-7)

where m, is the mass per unit control volume of the ith substance, h, is the

enthalpy per unit mass of the ith substance, Kz is the area-average thermal

conductivity in the z direction, hg is the enthalpy per unit mass of the gas, Rt

is the rate of reaction of the fcth reaction, and & is the chemical heat of

reaction of the kth reaction. By substituting Eqn. 4-7 into Eqn. 4-6 and

applying the ideal gas assumption, the energy equation (Eqn. 4-6) becomes

[12]:
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where r is the rate of mass generation of the ith substance, Cf is the specific

heat of the <th substance, and CP is the specific heat of the gas.

Note that in Eqn. 4-8, the rate of reaction of the *th reaction, Rk, is in

general a function of temperature, internal pressure, state of chemical

reactions, etc. A reaction rate law is used to predict Rt. The rate of mass

generation of the ith substance in Eqn. 4-8, r,, is given by the sum of

contributions from all reactions that produced the ith substance

( rt =2^k
rikKk ). Finally, the char volume, ve, is defined in the unit control

volume as the ratio of the current mass of charred solid to the mass when all

reactions are complete.

Equations 4-1 through 4-8, along with appropriate initial and

boundary conditions, and reaction laws (discussed later) provide the

necessary relations to obtain the temperature and internal pressure

distributions.

4.1.3 Stress Equations

In this section, the summation convention over repeated indices is

assumed and comma indicates spatial derivative. The equation of motion for

the porous solid without body force is :

d*u, du, ,, 0»

"••^+C-*=<T« <4'9>

where ps is the density of the porous solid, u, is the displacement vector of the

porous solid in the ith direction, c is the damping coefficient, and o{j is the

total stress tensor. The transient terms on the left hand side of Eqn. 4-9 are

due to the inertia! and damping effects of the porous solid. The term on the
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right hand side of Eqn. 4-9 is associated with the forces developed due to the

deformations of the porous solid.

The damping term is introduced in order for the solution of Eqn. 4-9 to

reach steady-state. By nondimensionalizing Eqn. 4-9 (see Appendix A.I), a

nondimensional damping coefficient is derived [33]:

? = r-£— (4-10)
2p,fl>.

where £ is the nondimensional damping coefficient, and 0), is the circular

natural frequency and is given by ^E/(p,h2). In the transpiration cooling

calculation, it will be assumed that the solid response will be underdamped

(<;<!) and a q value of 0.1 is used. The value of 0.1 for q is unrealisticly

large. However, in the problems considered the transient effects in stress are

not very important, hence a large value of £ is used to damp out the transient

effects quickly.

The total stress tensor, cr, is defined in reference [12] as:

(4-11)

where a? is the mechanical stress tensor and Sfj is the Kronecker delta. The

total stress tensor includes contributions from both the mechanical stresses

and internal pressures.

The strain-displacement relation is:

Strain may be introduced into the porous solid by mechanical stresses,

internal pressures, temperature, moisture, and chemical (charring) reactions.

Accordingly, the total strain is:

„ Ave (4-13)
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In Eqn. 4-13, a, /?, and % are ^e temperature, moisture, and charring

expansion coefficients, respectively, and AP, A7, A(MC), and Avc are the

changes from a reference value of the pressure, temperature, absorbed

moisture content, and char volume, respectively. The tensor Siju is the

compliance of the porous solid under mechanical loading and A,y is the

compliance of the porous solid when subjected to an internal pressure. The

values of these compliance tensors must be determined from experiments.

Once the temperature and internal pressure distributions (Eqns. 4-1

through 4-8) are determined, Eqns. 4-9 through 4-13, together with

appropriate initial and boundary conditions, provide a set of relations

necessary to obtain the stress distributions inside the porous solid. The

specific boundary conditions used for each of the three cases will be discussed

in the following sections.

4.2 Transpiration Cooling

To demonstrate the feasibility of using the explicit finite difference

method (EFDM) to solve a system of partial differential equations on a CM-5,

a sample problem is first solved. The sample problem chosen is the

transpiration cooling problem. This problem resembles the ablative

composite plate problem with the absence of chemical reactions.

In the transpiration cooling problem, a porous solid, here considered as

a plate with a through-thickness temperature gradient, is cooled by sending a

gas flow from the cool side to the hot side. This sort of cooling has found

applications in the cooling of turbine blades and is under consideration for

the surfaces of hypersonic vehicles. The problem is illustrated in Figure 4-3.

The pressures and temperatures are fixed at the boundaries. On one end of
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Figure 4-3. Transpiration cooling of a plate of thickness h.
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the plate ( i = h ), the value of the mechanical stress is fixed (set to 0). On the

other end (z = 0), the displacement is fixed (set to 0). It is desired in this

problem to find the pressure, temperature, and stress distributions through

the thickness of the porous solid matrix. In this problem, all properties

associated with both the porous solid and cooling gas are assumed to be

constant. Moreover, the porous solid is isotropic and consists of the porous

virgin solid only.

4.2.1 Transpiration Cooling Governing Equations

In order to obtain the through-thickness temperature, pressure, and

stress distributions, the general 1-D governing equations need to be

simplified appropriately for the transpiration cooling problem. Since there

are no chemical reactions in the transpiration cooling problem, the gas

generation term in the 1-D continuity equation (Eqn. 4-1) is set to zero:

(4-14)
dt dz

It is assumed that the system consists of two species: an isotropic porous solid

and a cooling gas. The two energy generation terms due to chemical

reactions in the energy balance equation (Eqn. 4-8) are set to zero. The

energy equation (Eqn. 4-8) then simplifies to:

l^:-Cfmt^j: (4-15)
dz ' * dz

where Cr is the specific heat of the porous solid and mt is the mass of the

porous solid per unit control volume. After some algebraic manipulations

(using Eqns. 4-2 through 4-5) Eqns. 4-14 and 4-15 become:



dt

dT

d2T

, (4-16)

The derivation of Eqns. 4-16 is outlined in more details in Appendix.A.2.

Equations 4-16 are used in the actual computation.

Simplifying the equations of motion to 1-D:

r- = aB.I

du,

du.

(4-17)

Note that it is assumed in Eqns. 4-17 implicitly that the damping coefficient

is the same in all three directions. The equations of motion can be simplified

further by making use of Eqns. 4-11 through 4-13. To be consistent with the

assumption that the system consists of only the isotropic porous virgin solid

and the cooling gas, A(AfC) and Avc are also set equal to zero in Eqn. 4-13.

After some algebraic manipulations, Eqns. 4-17 become:

oP' dt
du

D̂u

(4-18)

where
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A(u +
(w-1

Ct(U +""

2(1+u)

£ is the Young's modulus of the porous solid, v is the Poisson's ratio, and the

pressure compliance tensor, A, is taken from reference [341 for the isotropic

and dilute porosity case as:

A = ~^p (4-20)

The derivation of Eqns. 4-18 are outlined in more detailed in Appendix

A.3. Equations 4-16 through 4-20 are incorporated into a computer code on

the CM-5 to obtain the through-thickness temperature, pressure, and stress

distributions. The computer implementation is discussed in the next section.

4.2.2 CM*? Inpl^rrcftfltation - Transpiration

In order to obtain the through-thickness temperature and pressure

distributions, Equations 4-16 are cast into an explicit finite difference form.

Forward difference is used for the temporal derivation, backward difference,

with respect to the gaa flow direction, is applied to all first order spatial

derivatives, and central difference is applied to all second order spatial

derivatives. The finite difference forms are:
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p,r' = rfp»!-p.l-.1 AZ (T1 T' Y 0 ' -l, ~ li-\ 11 t-li
Az Az

Az' Az2

rr =
A

(4-21)

Az + P.. Az

where p;| is the intrinsic gas density at the ith node and the yth time step,

7"/ is the temperature at the tthe node and the ;th time step, Az is the

distance between two neighboring nodes, and A/ is the time step. These

approximation schemes are chosen to ensure stability of the explicit finite

difference method [35]. The values of temperature (D and intrinsic gas

density (p() are obtained by marching forward in time. The values of the

internal pressure are calculated using the ideal gas law (Eqn. 4-5) with the

known value of 7 and pg at each time step.

To obtain the through-thickness stress distributions, Eqns. 4-18 are

cast into an explicit finite difference form. Central difference is applied to

both the temporal and spatial derivatives for stability reasons [35]:

*« (l + cAf/2p,)

u. ¥ ,
-vi-l

Az1
| j» § i •*<'«^»
-»-2u.;-»-

cAf/2p,)A Az*
_ (A+

I V 'I

(4-22)

2Az
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where uc\ is the value of the displacement of the porous solid in the x

direction at the ith node and the ;th time step, and similarly for uy' and uj.

Once the displacements are obtained, the strain-displacement relation (Eqn.

4-12) is used to obtain the strains. By substituting the strain results into the

constitutive relations (Eqn. 4-13 with A(A/C) and Avc set to zero), the

through-thickness mechanical stress distributions, cr£, are obtained.

The spatial derivatives are computed simultaneously at all nodes. As

discussed before in Chapter 2, this is achieved by declaring multiple

conformable arrays for T, pt, and u's in combination with the EOSHIFT

command [1] to get arrays that contain the appropriate data elements. By

adding and/or subtracting the arrays according to Eqns. 4-21 and 4-22, the

finite difference approximation for the spatial derivative are obtained in

unison for all nodes. This is repeated for each time step until the values of T,

pg, and u's reach steady state. The results are shown and discussed in

Chapter 5.

4.3 Ablative Composite Plate

To demonstrate that complex physics can be incorporated into the

EFDM easily, the ablative composite plate problem is solved. Two major

complexities arise in the ablative composite plate problem that are not

encountered in the transpiration cooling problem. The first complexity is

that the material properties are no longer constants. In general, they are

functions of temperature (D and char volume (vc) 112}. The second

complexity is that chemical reactions take place in the ablative composite

problem. The chemical reaction model used in this study is the two-step

reaction model by McManus [12]. These additional complexities are

incorporated into the current model.



The geometry of a typical ablative composite plate is shown in Figure

4-4. Composite plies with fibers at an angle 9 (usually 45*) are built up at an

angle 4> to the heated surface. When the surface of the plate is exposed to

high temperatures (e.g. during rocket firing), the heat conducts into the

material, causing it to degrade and release gases. These gases create internal

pressure which can eventually exceed the cross-ply strength of the composite,

resulting in delaminations (ply-lifts) [12].

The boundary conditions are described by referring to Figure 4-4.' On

one side of the plate (z = 0) the displacements are fixed. That side is also

insulated and impermeable to heat and mass flux. The other side (z = h) is

open to ambient environment where the heat flux, pressure, and applied

mechanical loads are specified as functions of time. Initial conditions are

specified uniformly through the thickness. Geometry, initial conditions, and

all of the surface conditions (heat flux, pressure, and applied mechanical

load) are uniform in the x and y directions. Hence, the solutions (pressure,

temperature, stress) vary only in the z direction.

4.3.1 Governing Equation . Ablative Composite Plate

There two sources from which gases can be generated in this problem:

(1) evaporation of absorbed moisture and (2) charring of the porous solid. The

gas generation due to the first and second source will be denoted by rt and rp,

respectively. The 1-D continuity equation (Eqn. 4-1) now becomes:

otn, dm .. nn\L- _L + r +r (4-23)
dt dz ' "

Note that the gas generation term in Eqn. 4-1, rg, is now given by rt and rf,

which denote rates of gas generation due to evaporation and pyrolysis



y
ply angle

9 fiber angle

Figure 4-4. Ablative composite plate geometry.



reactions, respectively. Moreover, the terms rt and rp are given by the

following expressions [12]:

where R» is the vapor formation rate, Rc is the char formation rate, pc is the

intrinsic density of the charred solid, and MC is the instantaneous moisture

content defined as the ratio of the liquid mass over the solid mass. Assuming

evaporation and charring reactions are temperature-rate dependent, R^ and

Rc are given as [12]:

nr and. t w n rT~-Ti~ * (4-25)
R»=0 TZT^ or T*Tn or <?T/ASO

and

Re= - - - Q- T t t<T<T l t and dT/dt>0
' T^-T^dt * - (4-26)

R e =sQ TZT* or T2TK or ^T

where f^ is the temperature at which the evaporation begins, Tn is the

temperature at which the evaporation ends, ?te is the temperature at which

charring begins, and Ta ia the temperature at which charring ends. Note

that T^, !*„,, Tte, and Tw are functions of pressure. By applying Darcy's law

(Eqn. 4-2) and the ideal gas law (Eqn. 4-5), the 1-D continuity equation (Eqn.

4-23) becomes:

dt

+
T dt $ dt



Eqn. 4-27 is used to obtain the internal pressure distribution. The detailed

derivation of Eqn. 4-27 is outlined in Appendix B.I.

The ablative composite plate is a system containing four components:

(1) porous virgin solid, (2) porous charred solid, (3) absorbed moisture, and (4)

flowing gases due to evaporation and charring. The sum of the internal

energies of these four components contribute to the total internal energy of

the system. Specifying the energy equation (Eqn. 4-8) to this case:

(4-28)

where & and Qw are the effective heat of charring (pyrolysis) reaction and

evaporation reaction, respectively. They are given as [12,22]:

Qt~(0t+ PA - PA ~ (MC)pjit+(MOPA - (p, - Pe)hp)

where Q is the heat of charring reaction, Q, is the heat of evaporation

reaction, hs is the specific enthalpy of the virgin solid, hc is the specific

enthalpy of the charred solid, hp is the specific enthalpy of the pyrolysis gas,

hj is the specific enthalpy of the absorbed moisture, and ht is the specific

enthalpy of the evaporation gas. The combined heat capacity of the system,

H, is given as:

f l~f nt + f HI -4» C in. + C ifi (4-30)

where Cfi is the specific heat of the virgin solid, Cf< is the specific heat of the

charred solid, Cfi is the specific heat of the absorbed moisture, Cff is the

specific heat of the flowing gases, m, is the porous virgin solid mass per unit

control volume, mc is the porous charred solid mass per unit control volume,

m, is the absorbed moisture mass per unit control volume, and mg is the

flowing gases mass per unit control volume. Eqn. 4-28 is used to obtain the



through-thickness temperature distributions of the plate. The derivation of

Eqn. 4-28 is described in detail in Appendix B.2.

To obtain the through-thickness stress distributions, it will be shown

that the time scale associated with the solid deformations is much smaller

than the time scales associated with the temperature and pressure responses.

Therefore, the response of the solid matrix is approximately steady-state on

the time scales of the temperature and pressure responses. This is justified

by the results of the transpiration cooling problem and will be discussed

further in Chapter 5.

The development here for the stress governing equations is based on

the work by McManus [12]. The equations of motion for the solid matrix in

steady-state condition (Eqn. 4-9) become:

(7^=0 (4-31)

which are just the equilibrium equations. As discussed before in section 4.1,

the problem allows the simplification to 1-D. With this simplification, Eqn. 4-

31 becomes:

cr. t=0 (4-32)

By substituting the definition of the total stress tensor (Eqn. 4-11) into Eqn.

4-32, the following relations are obtained:

a" = 0"s.t v

< r = 0 (4-33),

For the ablative composite plate problem, the boundary condition at the fixed

surface ( z - 0 in Figure 4-3) is:

u ;=0 (4-34)



At the free surface ( z = h in Figure 4-3), the boundary condition is:

(7* ~Tb

(

where T? is the mechanically applied traction on the free surface in the ith

direction and Pb is just the ambient pressure. The results, after integrating

Eqn. 4-33 through the thickness (in the z direction) and applying the surface

boundary conditions (Eqn. 4-35), are:

(7* = T*"a * I

(4-36)

The strain-displacement relations for the present problem are:

--u

Substituting the strain-displacement relations (Eqn. 4-37) into the

constitutive equations (Eqn. 4-13) yields:

0 = S^o^ + A

0 » S^o^ + A

^ - S«XI + AaA? + aa AT •»• ̂ aA(Af C)+*aAve

—*• = 5^0^ + AnAP + anAT -t- J3B

Equations 4-38 are a set of six equations in the six unknowns, the

three displacements ut, uy, and uf, and the three stresses c£, er£, and a^.



The other three stresses are given by Eqn. 4-36. Equations 4-38 are solved

with the boundary conditions specified in Eqns. 4-34.

4.3.2 CM-5 Imlementation - Hybrid

In this section the numerical method used to solve the governing

equations for pressure and temperature (Eqns. 4-27 and 4-28) is discussed.

Due to the stringent stability criterion of the explicit finite difference method

(EFDM), the critical time scale for stability needs to be identified. A method

for identifying the time scale is proposed. Based on this method, the time

scales associated with the temperature and pressure governing equations are

identified. From these time scales, the most critical one for stability is

determined numerically. A time step is then chosen for the calculation. The

basic idea of the hybrid algorithm is that implicit finite difference method

(IFDM) is applied for the regions where the time step is greater than the

critical time scale, and EFDM is used in the regions where the time step is

smaller than the critical time scale. How the critical time scale for the

ablative composite problem is identified is discussed in the following

paragraphs.

To identify the time scales, the following two generic equations are

considered:

du _ du

(4-39)

where u is some scalar quantity, and v and c are constants. Critical time

scales associated with Eqns. 4-39 are [6]:



-is
(4-40)

where rcl is the critical time scale for the first equation of Eqns. 4-39, tc2 is the

critical time scale for the second equation of Eqns. 4-39, and /, is some

reference length such as the spacing between nodes.

By comparing the first three terms on the right hand side of the

pressure governing equation (Eqn. 4-27) to Eqns. 4-39, three time scales- are

identified by comparison to Eqns. 4-40:

__ / 0—T" ~^~ \f

dz (4-41)

PT

In Eqns. 4-41, f^,, t^, and r^, are the time scales associated with the

governing equation for pressure. The first two equations in Eqns. 4-41 are

found by comparing the first two terms on the right hand side in the

governing equation for pressure (Eqn. 4-27) to the first equation in Eqns. 4-

40. The third equation in Eqns. 4-41 is found by comparing the third term on

the right hand side of Eqn. 4-27 to the second equation in Eqns. 4-40. The

time scales associated with the governing equation for temperature (Eqn. 4-

28) are determined in a similar way:



dp

I.

1 dK.
— —•__._ • •

rj dz (4-42)

£.
n

The pressure and temperature governing equations (Eqn. 4-27 and

Eqn. 4-28) are first solved using the EFDM. The explicit finite difference

form of the pressure governing equation used in computation is:

?rl = PI + A/
(WIRT}\

/',., (4-43)

Equation 4-43 is determined using forward difference for time, backward

difference, with respect to the gas flow direction, for the spatial gradients of

the coefficients, forward difference, with respect to the gas flow direction, for

the pressure gradient, and central difference for the second spatial derivative

of pressure. This scheme was chosen to maintain stability and accuracy [26,

36]. The explicit finite difference form of the temperature governing equation

used in computation is:

T 1 = 7 + —

(4-44)



Equation 4-44 is determined by forward difference for time, backward

difference, with respect to the gas flow direction, for the spatial gradients of

the coefficients, forward difference, with respect to the gas flow direction, for

the spatial gradients of temperature and pressure, and central difference for

the second spatial derivative of temperature. Again, the scheme is chosen for

stability reason [26, 36).

In the computation of pressure and temperature (Eqns. 4-43 and 4-44),

the gas mass, mg, is determined from the ideal gas law (Eqn. 4-5). The

pressures and temperatures are determined by Eqns. 4-43 and 4-44. The six

time scales associated with the problem are calculated as well. In the

computation of the time scales, the reference length, /,, is set equal to the

spacing between the nodes, Az. From the six identified time scales (Eqns. 4-

41 and. 4-42), it is found in practice that the third equation in Eqn. 4-41 gives

the smallest time scale [37]. Therefore, pressure response controls the

critical time scale. This implies that for stability reasons in the EFDM, the

time step taken in Eqn. 4-43 has to be smaller than the smallest value of the

critical time scale.

In Figure 4*5, a semi-log plot of the critical time scale vs. position is

plotted along with the representative time scales associated with heat

conduction (^ - &zl/2Kt/ri) and porous solid deformation (/a-y = te/2*]E/p,).

This plot is generated by solving Eqns. 4-43 and 4-44 using from an EFDM

solution at a simulation time of 10 seconds. The solution was for a 3cm thick

plate, finely meshed with 251 nodes. The problem solved is more completely

described in section 5.2. Note that the abrupt changes in the critical time

scale curve are not numerical artifacts. These abrupt changes denote the

boundaries of different regions of material response. It can be seen from

Figure 4-5 that the smallest value of the critical time scale occurs on the
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surface and is almost of the same order of magnitude as the time scale

associated with solid deformation. However, near the insulated end, the

critical time scale is on the same order of magnitude as the one associated

with heat conduction. The reason for this large variation is due to the

through-thickness variation in permeability. Permeability varies by a factor

on the order of 106 from the exposed surface to the insulated end. Depending

on the degree of permeability, the ablative composite plate can be divided into

three regions of material response in the thickness direction: (1) char region,

(2) reaction region, and (3) virgin region. This is illustrated in Figure 4-6.

This can also be seen from Figure 4-5; the char region extends from about 0

cm to 0.4 cm, the reaction region extends from about 0.4 cm to about 1.0 cm,

and the virgin region extends from about 1.0 cm to 3.0 cm.

If the explicit finite difference equations for pressure and temperature

(Eqns. 4-43 and 4-44) are applied to all three regions, the time step is

governed by the extent of the char region. Typically, the char region is not a

critical region where accurate information on pressure and temperature is

desired [121. Therefore, to remove the stringent stability criterion, Eqns.

4-43 and 4-44 are only applied to the reaction and virgin regions (Figure 4-6).

In the char region, it is also assumed that the gas storage term can be

neglected [12]. The pressure distribution is then determined from a finite

difference formulation of Darcy's law [121:

„ (4-45)

The ideal gas law (Eqn. 4-5) is used to determine mt, and the result is:
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Figure 4-6 Three regions of an ablative composite plate: (1) char regions.Figure 4 b. inrej^8^^ and (3) vir^n „,£<„>. The reaction region
is comprised of two sub-regions: (A) evaporation region and(B)
pyrolysis region.
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(4-46)

Equation 4-46 results in a quadratic equation for the unknown pressure

value at the ith node. It can be solved progressively from the node closest to

the surface to the last node in the char region once the mass flux of gas is

known. The gas mass flux (m() can be calculated by assuming that all gas

mass generated in this zone flows to the surface immediately. To calculate

mg, the gas storage term on the left hand side of the continuity equation (Eqn.

4-23) is set to zero. The continuity equation (Eqn. 4-23) is then integrated

numerically over the thickness of the char region.

The energy equation used in the char region is:

. R^Q] (4-47)

Note that the energy equation shown in Eqn. 4-47 is in a different form from

the one used in the reaction and virgin regions (Eqn. 4-28). The reason is

that mg is obtained in the char region by integrating the continuity equation

(Eqn. 4-23). In the other two regions, mt is given by the Darcy's law (Eqn. 4-

2). To obtain the explicit finite difference form of Eqn. 4-47 the same scheme

used to obtain Eqn. 4-44 is also used on Eqn. 4-47:

(T'.-IT1 ±T>. \
Ti+i=T!+ —* > * i • :

Az
(4-48)



Note that in Eqn. 4-48, mg is already known from the numerical integration

of the steady-state (gas mass storage term is zero) continuity equation (Eqn.

4-23).

There is no time scale associated with the pressure calculation in the

char region (Eqn. 4-46), so stability is no longer a concern. That is not the

case for the temperature calculation, since there are still time scales

associated with the energy equation (Eqn. 4*47). It has been identified

numerically that the most critical time scale associated with the energy

equation (Eqn. 4-47) is [371:

This time scale is associated with the heat convection process. Its magnitude

is high enough to allow the time steps used in Eqns. 4-43 and 4-44 to be used

in Eqn. 4*48 as well. A flow-chart of the overall algorithm is shown in Figure

4-7.

The stress distributions are obtained by solving the system of

equations in Eqns. 4-38. A standard LU decomposition scheme is adopted to

solve the system of equations. Since Eqns. 4-38 are derived based on the

assumption that the response of the porous solid reaches steady-state

immediately, there is no time scale associated with the problem, i.e. no

stability problem. As mentioned before, the steady-state assumption is

justified by the results from the transpiration problem which are shown in

Chapter 5. Also, as shown in Figure 4-5, the time scale associated with the

porous solid response is quite small (about 10"* second). The time scales of

the other aspects of the ablative composite plate problem are typically on the
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Figure 4-7. Flow chart of the overall algorithm.



order of 10" second. Therefore, it is quite reasonable to assume the porous

solid response reaches steady state immediately.

4.4. Restrained Thermal Growth

Restrained thermal growth (RTG) experiments were performed by

Stokes [5] and Hubbert [6] on carbon phenolic specimens preconditioned to

three different mixture contents: wet (8.0% water by weight), as-received

(3.6% water by weight) and dry (0.27% water by weight). The specimens

were cylindrical (0.5 in. diameter and 1.0 in. long). These specimens were

heated uniformly at a constant rate of temperature change. The stress

required to hold the specimen at a constant longitudinal strain was recorded

(Figure 4-8). The specimens were fabricated so that the plane of the carbon

fabric was perpendicular to the longitudinal axis of the specimen.

Figure 4-9 is a plot of the restraining stress vs. temperature as

measured by Stokes [5]. Sullivan et. al. [38] divided the specimen response in

Figure 4-9 into three temperature regions: the thermoelastic, transition, and

poroelastic regions. The temperature in the thermoelastic region ranges from

room temperature (297 K) to approximately 450 K. In this region, the

measured stress is a result of elastic thermal expansion. At some

temperature, usually above the cure temperature, secondary hydrogen bonds

break down and the materials softens. The region above this temperature,

roughly between 450 K to approximately 600 K for carbon-phenolic materials,

has been identified as the transition region. Two things happen in this

region: (1) the measured stress decreases considerably due to material

softening and (2) the specimen begins to undergo pyrolysis and gases begins

to accumulate in the specimen. The poroelastic region is at temperatures

above 600K. In the poroelastic region the internal pressure becomes large
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and the specimen response is governed by the internal pressure and the

material's poroelastic response.

Since the specimens were heated uniformly during the RTG tests, the

specimen response does not change along the specimen length. Therefore, the

RTG specimen response may be simulated by considering only a cross*

sectional slice of the cylindrical test specimens. In reference [38], the

longitudinal stress needed to keep the displacement constant was calculated

by a finite element method using three-noded, constant-strain, triangular

finite elements. Since the specimen response in the RTG test is axisymmetric

about the specimen centerline, only one-quarter of the specimen was

modeled. The finite element mesh used is shown Figure 4-10. In reference

[38], the specimen response is simulated using a 2-D code. In this work, due

to the limitations of the current code, a 1-D approximation of the specimen

response is used. Referring to Figure 4-10, the 1-D code will be applied along

the strip at y = 0. The current 1-D code cannot be used for quantitative

comparison since it is not cast in polar coordinates. However, it can be used

to perform parametric studies where only qualitative comparison is

necessary. In this study, the effects of pressure-independent and pressure-

dependent Arrhenius type chemical reaction rate equations are compared to

experimental data.

The pressure distribution along the strip is approximated by using the

same governing equation for pressure calculation as in the ablative composite

plate case. The only difference in this case is that the z -direction is now

replaced by the x-direction. The energy equation is not needed because the

heating rate, dT/dt, is specified in the RTG tests. Only stress governing

equations are needed.
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Figure 4-10. Finite element mesh used for RTG analysis [38]. Radius is
0.635cm.



4j4.1 Governing Equations for RTG - Stresses

In the RTG test, the longitudinal displacement was held fixed.

Therefore, the specimen can be modeled closely by the plane-strain

assumption. Under the plane-strain assumption, £s, £„ and £a are zero.

With these three strains being zero, the strain-displacement relations (Eqn.

4-12) become:

£-~u'.*

(4-50)

In reference [38], the material of the RTG specimen is assumed to be

transversely isotropic with the plane of isotropy (x-y plane) coincident with

that of the carbon cloth (Figure 4-10). Directly from the constitutive

equations for transversely isotropic material under the plane-strain

assumption [39] , the transverse shear stresses Ga and an are zero. Note

that there is no y variation along the strip in the x -direction ( d/dy = 0). Also,

referring to Figure 4*10, the displacement uy is zero along the strip. With

these two simplifications, the strain-displacement relations (Eqn. 4-50)

become:

*» = "*.,
£=0 (4-51),,

Applying the constitutive equations again [39], o^ can be shown to be zero.

The equilibrium equation in this case is:

< 7 = 0 (4-52)



Integrating the equilibrium equation over the length of the strip and applying

the definition of total stress tensor (Eqn. 4-11) and the traction free boundary

condition at x-r, an expression for aa is obtained:

- Pb) (4-53)

The following two equations are used to solve for ut and o£:

Mz t - SXTU^ + Sav,<C + AnA? + dt^AT + j3uA(MC) + %c

0 = SCTJBCT^ + S ,<r£ + A AP + orv,AT + Pn{

along with the boundary condition:

u. =0 * = 0

(4-54)

(4-55)

Eqn. 4-54 is derived by specializing the constitutive equations in Eqn. 4-13 to

the RTG problem. With <r£ , <r£ , and <?£ known, the restraining stress, a% ,

can be calculated with the following equation derived from Eqn. 4-13:

(4-56)
"act

4.4.2 Governing Eolations for RTG - Arrh^njys Type Rate

In modeling the RTG tests, Sullivan et. al [381 modeled the chemical

reactions by using a 4-step Arrhenius type rate equation:

RT
(4-57)

where ck is the degree of conversion for the fcth reaction, A^, nk, and E^ are

the Arrhenius constants and k = 1, 2, 3, 4. However, McManus [401 argued

that Eqn. 4-57 is not a proper physical model of the chemical reactions, since

it can generate gases even if the pressure at the point of generation is higher

than the saturation pressure of the assumed gaseous substance. For this

reason, McManus [401 developed a pressure-dependent Arrhenius type rate



equation such that the gas generation rate above the saturation pressure

proceeds at an arbitrarily small rate. McManus further assumed that the

mechanism that limits the reaction rate is due to an increase in the

activation energy (£a<) with pressure. Eqn. 4-57 is then solved for £% at a

known value of pressure:

(4-58)

where Tsal(P) is the saturation temperature of the gas at pressure P and <J;t is

the arbitrarily small reaction rate, A*. In computing the value of E^, a value

of 0.01 is selected for <Sjt [40]. It is assumed that in the first two steps of the

chemical reactions the gas produced is steam. Therefore, !„,(?) can be

determined from the steam tables [41]. The resulting E^ for the first two

steps of the chemical reaction are tabulated in Table 4.1. The latter two steps

of the 4-step chemical reaction model are assumed to be pyrolysis reactions

and are independent of pressure. Therefore, the activation energies are

constant. The values for the activation energy of the pyrolysis reactions are

tabulated in Table 4.2. The other Arrhenius constants for pressure-

dependent and pressure-independent models are tabulated in Tables 4.2 and

4.3.

-

Both the pressure-dependent and pressure-independent Arrhenius rate

equations are incorporated into the pressure computation (Eqn. 4-43). More

details can be seen in Appendix C. The pressure value is then determined for



Table 4.1. Pressure-dependent Activation Energy (E^) [40].

Pressure

(attn)
0
1
2
5
10
20
50
100
200

2000

Reaction 1
E^ MJ/kg mole

88.76
88.76
90.64
98.24
104.71
112.11
124.13
135.00
147.94
.147.94

Reaction 2
£a, MJ/kg mole

117.24
117.24
117.24
117.24
117.24
117.24
119.23
129.67
142.10
142.10



r

Table 4.2. Pressure-dependent Arrhenius Constants [40].

Model

Pressure-
dependent
Arrhenius

Reaction

Number
1
2
3
4

^MJ/kg mole
*
*

211.4
272.1

\

I/sec
1.20xlOl°
4.05xl09

3.86xlOw

5.58xl013

«,-

3.5
6.5
6.5
3.3 .

*See Table 4.1.



Table 4.3. Arrhenius Constants for Pressure-independent Model [40].

Model

Pressure-
independent
Arrhenius

Reaction

Number
1
2
3
4

E*
MJ/kg mole

88.76
117.24
211.4
272.1

\
I/sec

1.20xlOl°
4.05xl09

3.86xl014

5.58xl013

ni
.

3.5
6.5
6.5
3.3



each time step. The temperature value at each time step is determined from

the know heating rate, dT/dt. Then, <£ along the strip y = 0 (Figure 4-9) is

determined from Eqn. 4-56. The resulting o^ calculated based on pressure-

dependent and pressure-independent Arrhenius type rate equations are

presented and discussed in Chapter 5.



CHAPTERS

RESULTS AND DISCUSSIONS

In this chapter, results from the solutions of the three problems

considered are presented and discussed. The results of the transpiration

cooling analysis are used to verify the explicit finite difference method

(EFDM) and to justify an important simplification used in the solutions of the

ablative composite plate and RTG problems: the steady-state assumption in

the stress calculations. Results from the ablative composite plate problem

are used to demonstrate the capability of the hybrid algorithm to incorporate

complex physics. An improvement in the model made possible by including

the gas storage term in the pressure calculation is studied parametrically.

The RTG results are used to study another, different, complex problem. The

effects of two different chemical reaction models, a pressure-independent

Arrhenius type rate equation and a pressure-dependent Arrhenius type rate

equation are explored with this model. Finally, a performance study of the

hybrid algorithm is presented and discussed.

5.1 Transpiration Cooling

In this problem, a plate made of porous material (aluminum) heated on

one side is cooled by sending a gas flow (H^O vapor) from the cool side to the

hot side. The properties of the porous plate and the cooling gas used in the

computation are listed in Table 5.1. The temperature and pressure values

are fixed on both sides of the porous plate (Figure 4-2). On one side of the



Table 5.1 Properties for Porous Plate and Cooling Gas.

Properties
Specific Heat of Porous
Solid
Specific Heat of Gas

Porosity of Solid
Area-average Thermal
Conductivity
Permeability of Porous
Solid
Gas Viscosity
Molecular Weight of
Gas
Young's Modulus of
Porous Solid
Poisson's Ratio of
Porous Solid
Damping Coefficient of
Porous Solid
Intrinsic Density of
Porous Solid
Plate Thickness
Thermal Expansion
Coefficient of Porous
Solid

Symbol

,̂
C>,

4>
K.

Y

M
M

E

V

ca

P,

h
a

Units

J/(kgK)

J/(kgK)
dimensionless

W/(mK)

m2

Ns/m*
kg/kmole

Pa

dimensionless

Na/m«

kg/m3

tpryi

1/K

Value

167

2000
0.05
150

IxlO'17

IxlO"8

18

70x10'

0.3

l.OxlO8

2700

30
1.2xlO-«

a Value of the damping coefficient is computed from Eqn. 4-10 by setting the
nondimensional damping coefficient, g, to 0.1.



plate (z = Omm), the displacements are fixed. On the other side of the plate

(z = 30mm), the surface tractions are prescribed. The values used for the

temperature, pressure, and surface tractions on the boundaries are listed in

Table 5.2. Initially, the temperature and pressure distributions in the porous

plate are uniform and the porous plate has zero displacement and velocity.

The initial temperature, pressure, displacement, and velocity values are

given in Table 5.3.

To verify the explicit finite difference method (EFDM), the computed

steady-state temperature and pressure distributions are compared with

analytical solutions for two different values of boundary pressure. The

pressures used (0.2 MPa and 2.0 MPa) resulted in steady state gas mass

fluxes of mg =0.034 and 4.90 kg/s m2, respectively. The analytical solutions for

the steady-state temperature and pressure distributions are given by the

following three equations [42, 43]:

<5-2'

or

(5-3)

where 5, /»„„, P^, and F(z) are given by:

, K, (5-4)

,

—



Table 5.2 Boundary Conditions

Pressure (Pa)

Temperature (K)

Tractions (Pa)

Displacement (m)

2=0 mm

P,=2xl05or2xl06

7>273

Tf - unknown

u,-Q

z s 30mm

PjslxlO5'

T2=373

Tf a.O

u,=unknown



Table 5.3 Initial Condition Everywhere in Plate.

Initial Temperature (K) 273

Initial Pressure (Pa) IxlO5

Initial Displacement (m) 0

Initial (velocity) 0



P' =* max

'2hm,Ru.
(5-6)

Z-T<)TT (5-7)

The notation used is given in Table 5.1; R is the universal gas constant. The

steady-state temperature distribution (Eqn. 5-1) can be derived from the

governing equation of temperature for the transpiration cooling problem

(Eqn. 4-15) by setting the left hand side to zero and assuming that all

coefficients on the right hand side are constant. The first steady-state

pressure distribution (Eqn. 5-2) is derived using Darcy's law (Eqn. 4-2) by

assuming constant coefficients and uniform through-thickness temperature

distribution. The second steady-state pressure distribution (Eqn. 5-3) is

derived in the same manner as in Eqn. 5-2 with a linearly varying

temperature distribution through the thickness. Equation 5-2 which is exact

only for a uniform temperature, is used for the relatively high mass flux case

(mg = 4.90 kg/s m2) which is insensitive to the temperature distribution.

Equation 5-3 is used for the relatively low mass flux case (mf - 0.034 kg/s m2)

where the through-thickness temperature distribution can be approximated

as linear. The computed results are shown in Figures 5-1 and 5-2 along with

the analytical solutions for temperature and pressure. As shown in Figures

5-1 and 5-2, the computed results agree fully with the analytical solutions.

These results lend confidence in the EFDM solution scheme.

Transient temperature distributions are shown in Figure 5-3. The

temperature distribution rises from the initial condition to the steady-state

distribution in approximately one second. The relatively fast response is due

to the high thermal conductivity material assumed in the computation. The

time for the temperature distribution to reach steady-state has been checked



Numerical (mass flux = 0.034 kg/s'm2)

'Analytical (mass flux = 0.034 kg/s*m2)
a Numerical (mass flux = 4.900 kg/s*m )

' ' "Analytical (mass flux = 4.900 kg/s*m )

260

10 15 20

z (mm)

25 30

Figure 5-1. Numerical and analytical steady-state temperature
distributions for two different gas mass fluxes.
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* Numerical (mass flux = 0.034 kg/s*m2)

Analytical (mass flux = 0.034 kg/s*m2)
a Numerical (mass flux = 4.900 kg/s*m2)

Analytical (mass flux = 4.900 kg/s*m2)

10 15 20

z (mm)
25 30

Figure 5-2. Numerical and analytical steady-state pressure distributions
for two different gas mass fluxes.
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against an available analytical solution [44]. This time is found to be in good

agreement with the analytical solution. The analytical solution in reference

[44] is obtained by ignoring the gas mass flux term in Eqn. 4-15. The

comparison made here is appropriate, but reasonable, since the gas mass flux

is relatively small in this case (mg = 0.034 kg/s m2).

Transient pressure distributions are shown in Figure 5-4. There are

two things worth noting: (1) there is a small spatial oscillation in the pressure

distribution early in the analysis (0.001 second) and (2) the pressure

distribution reaches steady state about 100 times faster than the

temperature distribution. The small spatial oscillation in pressure is due to

a sharp temperature rise near one boundary (z = 30mm) which increases the

gas pressure before the flow of gas from the other boundary (i - 0 mm)

reaches there. This sharp rise in temperature can be seen from Figure 5-3 at

0.001 second.

Transient stress distributions (<r£) are shown in Figure 5-5 for four

different simulation times: (1) 0.001 second, (2) 0.01 second, (3) 0.10 second,

and (4) 1.00 second. The steady-state gas mass flux value is 0.034kg/s m2

which corresponds to P, = 0.2 MPa in Table 5.2. The stress response is

relatively fast. This conclusion is reached by noting that the stress

distribution has the same shape as the pressure distribution by about 0.001

second. This result is predicted for steady-state stresses by poroelasticity

theory [16-21]. At a very early time (r = 0.0001 sec), a transient oscillation in

stress can be seen from Figure 5-6. This is caused by an impulsive

application of the surface pressure (P,). In the actual situation, the

application of surface pressure is relatively gradual. When the surface

pressure is applied gradually, the effects of the oscillatory transient stress is
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not significant. In order to mimic the actual situation more closely in the

analysis, an unrealistically high damping value (g =0.1) was used to reduce

the effects of the transient stress.

The temperature, pressure, and stresses all reach steady state at

different times. This observation suggests that each physical process

(temperature, pressure, and stress) has its own characteristic time scale

(W™,, « W»« << '»«)• In EFDM, if a single time step A/ is used for all

calculations, it must be smaller than the characteristic time scale of the

fastest physical process (in this case, that of stress) to assure overall stability

of the numerical scheme. The slower physical processes (in this case,

temperature and pressure) are calculated with time steps smaller than

required. Therefore, the computations are done many more times than

necessary.

A first step made towards alleviating the stability problem in the

EFDM is to assume that the stress response is quasistatic. The assumption

is justified since the oscillatory transient stress is neither important nor

realistic. The quasistatic stress response assumption is in agreement with

the assumptions made without justification by Kuhlmann [111, McManus

[12], and Sullivan [13].

The same idea can be extended to the pressure calculation as well.

Notice that in this analysis the pressure distribution reaches steady-state

about 100 times faster than that of temperature due to the relatively high

value of permeability assumed for the porous plate. This observation

suggests that when the permeability of the porous plate is high enough, it can

be assumed that the pressure response is quasistatic.

O1?



5.2 Ablative Composite Plate

In this sample problem, an ablative composite plate is used to model

the lining of a rocket nozzle exit cone. The in-plane dimensions of the lining

are much greater than the through-thickness dimension. Also, heat flux,

pressure, and surface tractions are assumed to uniformly applied over the

surface of the lining. Hence a 1-D analysis will suffice to capture the

response of the lining. The properties of the ablative composite plate

(FM5055) and the flowing gases are taken from reference [12]. These

properties are listed in Appendix E. The properties given are on-axis (-V-V

x3) properties (see Figure 5-7). In order to relate the on-axis properties to the

off-axis (x-y-z) properties, two rotations need to be performed. The first

rotation is about the ar3 axis and the second rotation is about the y axis. The

method used to rotate the properties is described in Appendix F.

The geometry of the plate is shown in Figure 4-4. The plate has a

thickness h equal to 3cm. The ply and fiber angles are * = 15* and 9 = 45',

respectively. On the exposed side of the plate (z - 3cm), heat flux, ambient

pressure, and surface tractions are specified. On the insulated side (z -

Ocm), the heat flux, gas mass flux, and displacements are specified. Initially,

the temperature and pressure are uniformly distributed through the

thickness of the plate. The initial values of the temperature and pressure are

25 *C and 1 atm, respectively. The initial moisture content (MCa) is 3

percent. The simulation time is 105 seconds. In the first 100 seconds, the

boundary conditions on the surface (z - 3cm) are held constant. In the last

five seconds, the ambient temperature, the ambient pressure, and the

convective heat transfer coefficient are reduced over a five second period to



O ply angle

0 fiber angle

Figure 5-7. On-axis and off-axis coordinate systems [12]. The on-axis
system is denoted by Jt,-*,-*,- T*16 off-axis system is denoted
by x-y-z.



25'C, 1 atm, and 90 W/m2, respectively. These conditions are used to

simulate the firing (time < 100 sec) and shutoff (time > 100 sec) of the rocket

motor. The boundary and initial conditions are listed in Tables 5.4 and 5.5.

The temperature and pressure distributions are obtained using the

hybrid algorithm described in Section 4.3.2 of Chapter 4. A mesh of 251

nodes and a fixed time step of 0.001 second are used. Whenever the critical

time scale (A/cr = Az2/|/>y/^|) becomes less than 0.001 second at a given node,

the solution scheme for pressure and temperature at that node is switched

from EFDM to IFDM automatically by the code.

Temperature distributions at 10, 50, 80 and 104 seconds are shown in

Figure 5-8. As expected, the temperature is highest at the surface of the

plate for the first 100 seconds since the surface is exposed to the ambient

environment of the rocket motor. After shutoff, the value of temperature on

the surface drops below that on the inside. This is shown by the temperature

distribution at 104 second. These four temperature distributions are almost

the same as those obtained by McManus [12]. Note that the previous

temperature distributions were obtained without the inclusion of the mass

storage term in Eqn. 4-27. Hence, the results suggest that the mass storage

term does not have much effect on the through thickness temperature

distributions.

Four pressure distributions are shown in Figure 5-9 at 10, 50, 80, and

104 seconds. The first three pressure distributions reach a peak then drop

off. These results are different from the results shown in reference [12] which

did not include the mass storage term.
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Table 5.4. Boundary Conditions.

Boundary Conditions
: = Omm z =30mm

Surface Emissivity
none

Boltzmann's Constant
none

Surface Absorptivity
none

Effective Black Body Temp,
none

Convective Heat Transfer Coef.
none

Ambient Temperature,
N/A

Insulated
qwf=O.OW/m2

Impermeable,
mf = 0.0 kg/a m2

Fixed Displacements,
u, = 0mm

Surface Emissivity4,
£ s 5.1X10'1

Boltzmann's Constant3,
a = 5.670x10* W/m2 K4

Surface Absorptivity*,
a = 4.9xlO'1

Effective Black Body Temp.a,
Tt = 3023 K

Convective Heat Transfer Coef.b'c,
hcl =450 W/m2 K
/ic2=100W/m2K

Ambient Temperatureb>c,
T., = 3023 K
T.j « 298 K

Heat Flux,

Ambient Pressure0,
/>M = 10 MPa
P a 0.1 MPa

Surface Tractions,
TN 0 MPa

aThe radiative heat flux, q^, is given by the expression:
bThe convective heat flux, q^, is given by the expression: qewv ~ hJT^ - TJ.
cFor the first 100 seconds the convective heat transfer coefficient, ambient
temperature, and ambient pressure are given by the value with the subscript
one. For times greater than 100 seconds, these values are reduced linearly
over a five second period to the value with the subscript two.



Table 5.5. Initial Conditions Everywhere in Plate.

Initial Pressure Initial Temperature

0.1 MPa 298 K
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Figure 5-8. Through-thickness temperature distributions at 10, 50, 80, and
104 seconds.
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However, the locations where the maximum pressures occur are

approximately the same in the results of this study and that of reference [12].

Also notice that when the peak pressure value is reached, it remains

relatively constant in magnitude and simply moves inward as time

progresses. This observation implies that a continuous chemical reaction

front is established [40]. In order to capture this phenomena, a relatively fine

mesh needs to be used. In this case, a mesh containing 251 nodes is used.

According to reference [40], a mesh of at least 151 nodes is necessary to

capture this phenomena. At 104 seconds, the ambient pressure is lowered

from lOMPa to 2MPa. The peak pressure value at 104 seconds is lower than

that of previous times. However, the difference between the boundary and

the maximum internal pressure is the largest at this time. It was found in

reference [12] that this difference is critical to the mechanism that causes

delaminations (ply-lifts). The value of pressure differential at which ply-lifts

occur for the current geometry (<D = 15° and 6 = 45*) has been shown in [12]

to be 6MPa. Then, according to Figure 5-9, ply-lifts are going to occur at 104

seconds since the pressure differential at that time is 8MPa. This is in

agreement with reference [12].

The maximum pressure differential predicted by the current pressure

model is compared with the values predicted by the previous model [12]. The

results are shown in Figure 5-10. Overall, the current pressure model

predicts a lower maximum pressure value than the previous model. In

reference [12], it has been found that for smaller ply angle, <D = 5*, ply-lifts

can occur before the rocket motor shuts off. This implies that under the same

conditions as analyzed in the previous study, the prediction by the current

model may differ from that of the previous model. Also notice that the

maximum pressure differential value predicted by the current model is
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highest in the first 5 seconds, and then settles to a steady lower value. The

previous model [12] does not predict the same phenomena. It simply rises to

a peak value and remains at that value until shutoff.

Moisture loss and char volume as functions of position through the

thickness of the plate are plotted in Figures 5-11 and 5-12 at 10, 50, 80, and

104 seconds. Both are expressed non-dimensionally, with 1.0 indicating

complete charring or moisture loss. Both evaporation and charring reactions

occur over a very narrow region and proceeds into the thickness of the plate

with time. Also, the evaporation front precedes the char front. These

observations are in agreement with the results from McManus's model [12].

However, the extent of both the evaporation and char regions are about 0.5

cm less than that predicted by McManus at the end of the calculations [12].

The through-thickness on-axis stress distributions at 104 seconds are

shown in Figures 5-13 through 5-16. The stress distributions at 104 seconds

are chosen because the maximum pressure differential occurs approximately

at this time (see Figure 5-9). For each figure, two stress distributions are

shown. The solid line distribution is showing only the internal pressure

contribution to stress. This is achieved by setting the thermal expansion

coefficient (a) to zero in the computation, hence excluding any thermal stress

contributions. The dashed line distribution represents the overall

contributions from both the internal pressure and thermal stresses.

For the current geometry (<& = 15*, 0 = 45'), the mechanical shear

stresses (o^ and o^) are dominated by thermal stresses as shown in

Figures 5-13 and 5-14. However, their magnitudes are quite small and do not

exceed the failure strength of the material. Internal pressure and thermal

stresses contribute approximately equally to the o"^ distribution (Figure 5-

15). Note the magnitude of <r^ varies a great deal through the thickness.
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This variation resembles the measured restraining stress at different

temperatures for the restrained thermal growth (RTG) test. These results

will be compared to the RTG experimental results in the following section.

The distribution of cr^ is dominated by the internal pressure contribution

shown in Figure 5-16. This is to be expected for a relatively small value of

the ply angle <I> = 15° [12]. In this case, the magnitude of o ,̂, is large enough

to cause delamination (ply-lifts) according to the maximum stress failure

criterion.

5.3 Restrained Thermal Growth (RTG)

In a restrained thermal growth (RTG) test, a cylindrical specimen is

heated uniformly at a constant rate. The stress required to hold the

specimen at a constant longitudinal strain is recorded. A schematic RTG test

setup is shown in Figure 4-7. The measured restraining stresses to keep the

specimen at a constant longitudinal strain for different temperatures are

shown in Figure 4-8. In this section, the computed values of a^ for the

ablative composite plate problem are compared qualitatively to the

experimental RTG results. Then the results of a direct numerical RTG

simulation are shown and discussed. In the simulation two types of chemical

reaction model are used: (1) pressure-dependent Arrhenius type rate equation

and (2) pressure-independent Arrhenius type rate equation.

The results of an RTG experiment are shown side by side with the cr^

results from the ablative composite plate problem in Figure 5-17 for a

qualitative comparison. Sullivan [38] has divided the measured material

response into three regions: (1) thermoelastic, (2) transition, and (3)

poroelastic. In the thermoelastic region the measured stress is a result of

elastic thermal expansion. In the transition region the material response
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changes from thermoelastic to poroelastic. The initial drop in the measured

stress is due to material softening. As the temperature increases further,

gases from the pyrolysis reaction begin to accumulate and the effects of the

internal pressure become apparent. This causes an increase in the

magnitude of the restraining stress. Finally, in the poroelastic region, the

internal pressure becomes excessive and the response of the material is

highly dependent upon the internal pressure, the material's permeability,

and the material's poroelastic behavior. As one can see qualitatively,'the

computed results compare well with the experimental results. The three

regions of material response are captured by the hybrid algorithm. The lack

of quantitative agreement is due to the differences in geometry and boundary

conditions between the RTG testing and the ablative composite plate.

In the numerical RTG simulation, the specimens have a radius of

0.635cm. The material properties used are the same as the ones listed in

Table 1 of reference [38]. The boundary and initial conditions used in the

numerical RTG simulation are listed in Tables 5.6 and 5.7, respectively. The

values of the Arrhenius constants are listed in Appendix C.

The computed restraining stresses (cr£) based on the pressure-

dependent and pressure-independent chemical reaction models are shown

along with the experimental results in Figure 5-18. Note that on the y-axis

the absolute value of the compressive restraining stress is used. The

pressure-dependent Arrhenius reaction model captures the trend of the RTG

experiment better than the pressure-independent Arrhenius reaction model

which does not capture the trend at all. The quantitative disagreement is

due to the difference between the model geometry (a strip) and the real RTG

geometry (a disc).
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Table 5.6. Boundary Conditions Used for Numerical RTG Simulation

z=0 cm 2=0.635 cm

Impermeable, mg=Q kg/m2 s

Fixed Displacements, w,=0 cm

Fixed Ambient Pressure,

Pb=Q.l MPa

Zero Surface Tractions, Tf=Q MPa
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Table 5.7. Initial Conditions3 Used in Numerical RTG Simulation

Initial Pressure (MPa) Initial Temperature (K)

0.1 298
alnitial conditions are uniformly distributed.

1 O
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Figure 5-18. Restraining stress vs temperature for pressure-independent
Arrhenius reaction model, pressure-dependent Arrhemus
reaction model, and measured results [38].



The reason why the pressure-dependent Arrhenius model gives better

results than the pressure independent Arrhenius model can be deduced from

Figures 5-19 and 5-20, in which the moisture content and internal pressure

are plotted with respect to temperature. As shown in Figure 5-19, the

moisture content reaches zero at a lower temperature for the pressure-

independent Arrhenius model, causing a large amount of vapor generation at

relatively low temperature. This results in a much higher internal pressure

(about two orders of magnitude) as shown in Figure 5-20. Therefore, the

effects of internal pressure on the restraining stress are manifested much

sooner in the pressure-independent model than in the pressure-dependent

model. This can be seen in Figure 5-18 where the poroelastic material

response is seen at a lower temperature. However, the internal pressure does

not contribute much to the restraining stress since at low temperatures the

material is relatively rigid.

5.4 Performance Study

The results of a performance study of the hybrid algorithm ablative

code are presented in this section. All the metrics used to measure the

performance of a parallel code have been discussed in Section 4 of Chapter 2.

They are used here to determine the performance of the hybrid algorithm on

the CM-5 massively parallel computer.

Two different simulation times are used, 0.2 second and 1.0 second.

The reason for using two simulation times is to compare the purely parallel

scheme with a hybrid scheme. In the 0.2 second simulation, none of the

nodes for the mesh sizes used (51, 71, 91, 101, 111, 121, 131, 141, 151, 501,

and 1001) has gone unstable, so the solution scheme is purely parallel

(explicit scheme). However, in the 1.0 second simulation, some of the nodes

19O
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in the mesh have become unstable and a serial solution scheme (implicit

scheme) has to be used. Table 5.8 lists the number of unstable nodes for each

mesh size used in the 1.0 second simulation. "Unstable nodes" refers to nodes

for which the solution scheme for pressure has switched from the EFDM to

the IFDM. The time steps used in both 0.2 and 1.0 second simulations are

determined by the third equation in Eqn. 4-41:

(5-8)

As mentioned before in Chapter 4, this time step has been identified to be the

most critical one in the ablative problem. The values used for pressure,

permeability, porosity, and viscosity in Eqn. 5-8 are based on the typical

values that exist in the evaporation zone (Figure 4-6). The reason for using

these values is to ensure that the parallel solution scheme (explicit scheme),

which incorporates complex physics, remains stable in the evaporation zone.

This way, accurate information on pressure can be obtained which is needed

to predict failure by ply-lifts. These values are listed in Table 5.9.

The results of the performance study of the 0.2 second simulations are

listed in Tables 5.10 and 5.11. The results of the performance study for the

1.0 second simulation are listed in Tables 5.12 and 5.13. Three different

numbers of CPUs (1, 32, and 64) are used. 1 CPU is used to simulate the

code as if it was executed on a serial machine. In tables 5.10, the following

results for the 0.2 second simulation are shown: mesh size, measured clock

time for a single, 32, and 64 CPUs, speedup for 32 and 64 CPUs, effective

Amdahl's fractions for 32 and 64 CPUs, and effective parallelization for 32

and 64 CPUs. In Table 5.11, the following results for the 0.2 second are

shown: efficiency for 32 and 64 CPUs, and excess time for 32 and 64 CPUs.



Table 5.8. Number of Unstable Nodes for Different Mesh Sizes After 1.0
Second of Simulation Time.

Mesh 51 71 91 101 111 121 131 141 151 501

Size
Number of
Unstable 1 1 1 1 2 1 2 2 2 6

Nodes
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In Table 5.12, the same results as in Table 5.10 for the 1.0 second simulation

are shown. In Table 5.13, the same results as in Table 5.11 for the 1.0 second

simulation are shown. Note that for the 1.0 second simulation run (Tables

5.12 and 5.13), performance information for the 1001-noded mesh could not

be obtained.

The thing to notice is that for a given simulation time, as the mesh size

increases, the parallel algorithm outperforms the serial algorithm. However,

when the problem size is small (smaller number of nodes in this case) the

serial algorithm is actually better. This can be seen from Table 5.10 for 51

and 71 node mesh sizes where the effective parallelization (p) is actually

negative. In Table 5.12, for the 51 nodes mesh size, the effective

parallelization is also negative. Another measure that also points out the

serial algorithm is better than the parallel one for relatively small problems

is the speedup, 5. In Table 5.10, for the mesh sizes of 51 and 71 nodes, the

speedup in actually less than one which implies that the serial algorithm is

actually faster. The same is also seen from Table 5.12 for the mesh size of 51

nodes.

The second thing worth noting is that in this particular case of the

hybrid algorithm, larger numbers of CPUs do not always lead to better

performance in terms of speedup, 5. The results shown in Tables 5.10 and

5.12 indicated that using more CPUs actually slows down the computation.

However, this result may not be true as the problem size or the simulation

time is increased further. As the problem size or simulation time is

increased, more of the CPU time is spent on performing parallel computing.

As more of the CPUs are participating in the actual parallel computing, the

performance of the hybrid algorithm using 64 CPUs may finally exceed that

of the 32 CPUs. Hence, the following observation may be made of the results



Table 5.9. Typical Values of the Parameters In the Evaporation Zone.

P (MPa) r fa2) 0 V (kgfa sec)
10 SxlO'18 0.11
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Table 5.10. 0.2 Second Simulation Results Summary I.

Mesh

Size

51
71

91
101

111
121
131

141
151
501

1001

(sec)

1.15
2.00
3.20
4.00
4.97
6.14
7.53
9.17
11.1

468.6
4113

* .V=32

(sec)

1.81
2.44
3.00
3.54
4.08
4.65
5.26
5.63
6.43
53.3

205.6

I N=(A

(sec)

1.80
2.43
3.05
3.50
4.09
4.63
5.16
5.61
6.23
54.2

208.1

5"

0.64
0.82
1.07
1.13
1.22
1.32
1.43
1.63
1.73
8.79
20.0

5M

0.64
0.82
1.05
1.15

1.22
1.33
1.46
1.64
1.78
8.64
19.8

«,32

1.59
1.23
0.93
0.88
0.82
0.75
0.69
0.60
0.57
0.085
0.019

«,«

1.57
1.22
0.95
0.86
0.82
0.75
0.68
0.61
0.55
0.10

0.036

P32

-0.59
-0.23
0.07
0.12
0.18
0.25
0.31
0.40
0.43

0.915
0.981

P64

-0.57
-0.22
0.05
0.14
0.18
0.25
0.32
0.40
0.45
0.90
0.964
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Table 5.11. 0.2 Second Simulation Results Summary II.

Mesh Size

51
71
91
101
111
121
131
141
151
501

1001

*32

0.020
0.026
0.033
0.035
0.038
0.041
0.045
0.051
0.054
0.275
0.625

*64

0.010
0.013
0.016
0.018
0.019
0.021
0.023
0.026
0.028
0.135
0.310

r,j32 (sec)

1.77
2.38
2.90
3.41
3.93
4.46
5.02
5.34
6.08
38.7
77.1

'„« (sec)

1.78
2.40
3.00
3.40
4.01
4.53
5.04
5.46
6.05
46.9
143.8
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Table 5.12. 1.0 Second Simulation Results Summary I.

Mesh

Size

51
71
91
101
111
121
131
141
151
501

*•„.,
(sec)

3.16
7.95
13.8
17.6
22.4
28.3
35.6
44.5
55.3
3316

* .V=32

(sec)

4.12
7.18
10.8
13.0
15.9
18.3
24.5
24.7
28.4
306

* ,V=6*

(sec)

3.97
6.84
11.0
12.9
16.0
18.5
21.7
24.8
28.3
319

Sn

0.77
1.11
1.28
1.35
1.40
1.55
1.45
1.80
1.95
10.8

SM

0.80
1.16
1.25
1.36
1.40
1.53
1.64
1.79
1.95
10.4

«,32

1.31
0.90
0.78
0.73
0.70
0.63
0.68
0.54
0.50
0.06

<*,64

1.26
0.86
0.80
0.73
0.71
0.65
0.60
0.55
0.50
0.08

Pn

-0.31
0.10
0.22
0.27
0.30
0.37
0.32
0.46
0.50
0.94

P64

-0.26
0.14
0.20
0.27
0.29
0.35
0.40
0.46
0.50
0.92
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Table 5.13. 1.0 Second Simulation Results Summary II.

Mesh Size

51

71

91

101

111

121

131

141

151
501

en

0.024

0.035

0.040

0.042

0.044

0.048

0.045

0.056

0.061
0.340

*64

0.012

0.018

0.020

0.021

0.022

0.024

0.026

0.028

0.030
0.160

'«32 (sec)

4.02

6.93

10.3

12.5

15.2

17.4

23.4

23.3

26.7
202

'„« (sec)

3.92.

6.72

10.8

12.7

15.7

18.0

21.1

24.1

27.5
267
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in Tables 5.10 and 5.12. Given the competing mechanisms (overhead costs

and actual parallel computation) which determine the net performance, there

may be an optimum number of CPUs that should be used to give the best

performance for the hybrid algorithm.

The third thing to notice is that the effective parallelization, p, and

efficiency, e, are consistently better for the 1.0 second simulation than the

0.2 second simulation (see Tables 5.10 through 5.13). This result is to be

expected. As the simulation time increases, the number of time integration

operations increases as well. The time integration operations are done in

parallel. Therefore, it comes as no surprise that the effective parallelization

and efficiency are consistently better for the 1.0 second simulation than for

the 0.2 second simulation. Some of the nodes have become unstable in the 1.0

second simulation and thus the serial scheme (implicit scheme) has to be

used for some of the calculation. However, the number of unstable nodes is

much smaller than the total number of nodes in all cases, so most of the

computation is still done by the parallel scheme.

For a large problems, the effective parallelization for the code is

approximately one, but the efficiency is nowhere near that. This result

indicates that even though the non-parallelizable part of the code is a small

percentage of the whole code, it drastically reduces the efficiency of the

parallel computation. This result can be attributed to the fact that a large

number CPUs sit idle while the non-parallelizable part of the code is running.

This result is worse for the case of 64 CPUs than for the case of 32 CPUs

since more CPUs sits idle in the 64 CPUs case. Equation 5-9 below gives an

expression for the efficiency (e) in terms of the numbers of CPU (AO and the

effective parallelization (p):

1 O1



-i (5-9)
-p) + p

The above equation is derived by using Eqns. 2-9 through 2-11. Equation 5-9

is plotted vs p in Figure 5-21 for two different numbers N (32 and 64). As

one can see from Figure 5-21, for both 32 and 64 CPUs, e drops very quickly

as p decreases. Also note that e is consistently worse for the N = 64 case

than the N = 32 case.
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Figure 5-21. Plot of efficiency («) vs effectively parallelization (p) for two
different numbers of CPU (tf = 32 and 64).
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In this work, numerical solution schemes have been developed on a

massively parallel computer (a Thinking Machines CM-5) to solve three

problems: (1) transpiration cooling, (2) ablation of a composite plate, and (3)

restrained thermal growth (RTG). The numerical solution schemes are based

on two types of finite difference method: (1) the explicit finite difference

method (EFDM) and (2) the implicit finite difference method (IFDM).

It has been found that a solution scheme based on EFDM requires

relatively small time steps for stability but complex physics can be easily

incorporated into the solution scheme. On the other hand, a solution scheme

based on IFDM can use relatively large time steps and still maintain stability

but complex physics are more difficult to incorporate.

An efficient solution scheme called the hybrid algorithm has been

developed to combine the strengths and minimize the weaknesses of both

solution methods as much as possible. The algorithm was developed by

simplifying the physics of the problems judiciously. This simplification of

physics was achieved based on observations that different time scales are

associated with different physical processes. When the time scale of a

physical process was much faster than the others and when transient effects

in that process were not important, the response of the process was assumed

to be quasistatic. This assumption was used to recast the mathematical



model of the problem. In all three problems considered, the stress response

was always quasistatic and its calculation was decoupled from the others;

pressure response was sometimes quasistatic and sometimes not. The hybrid

algorithm developed picks regions for EFDM and IFDM in the pressure

calculations continuously, moving the boundary as the calculation progresses.

This solution scheme can be conceptually extended to other engineering

problems where more than one time scale are involved due to different

physical processes.

The algorithm was verified by comparing the numerical results to the

exact solutions for the transpiration cooling problem. From the numerical

results of the transpiration cooling problem, the time scales associated with

stress, pressure, and temperature responses were compared and discussed as

well. The ablation problem demonstrated the importance of advanced

physics, such as gas storage terms, to solutions. This problem was also used

to analyze the performance of the algorithm. The results of the RTG problem

showed that by incorporating enough physics into the algorithm, the complex

material responses captured during tests can be reproduced numerically as

well.

As expected, it was found that the solutions can be obtained in a

shorter wall-clock time using the CM-5 than a single CPU computer. The

reduction of wall-clock time is a function of the size and execution time of the

problem. The reduction of wall-clock time, however, was not linear with

respect to the number of CPUs. For example, when using 32 CPUs, one

would expect to obtain the solutions 32 times faster than when using 1 CPU.

A speedup of only about 20 times was achieved for 32 CPUs. The speedup did

not increase when 64 CPUs were used to solve the problem. This result



seemed to indicate that there is an optimum number of CPUs for a given

problem.

By using a standard metric, the hybrid algorithm was found to be

highly (94 percent) parallelized. However, this did not directly translate into

high efficiency. When the six percent of the algorithm that ran sequentially

was running, all but one of the CPUs sit idle and this drastically reduced the

efficiency of the overall performance.

6.2 Recommendations

For future work, the following three recommendations are made:

(a) Extend the analysis to more complex geometries. For example,

the analysis can be extended to 2-D, 3-D, and axisymmetric

problems. EFDM makes this extension relatively easy.

(b) Include more advanced physics such as: an eroding surface,

stress-dependent permeability, and Sullivan's thermodynamics

model. Their effects on the calculated response of ablative

materials can then be studied.

(c) Parallelize the code more by using more advanced system

features designed for the CM-5 to obtain higher efficiency. For

example, in the ablative composite problem, the 1FDM

subroutine used for sequential pressure calculation could take

advantage of these features to minimize the idle time.
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APPENDIX A

EQUATION DERIVATIONS FOR
TRANSPIRATION COOLING

A.1 Nondimensional Damping Coefficient (Eqn. 4-10)

Eqn. 4-10 is an expression for the nondimensional damping coefficient.

It is derived as follows. We begin with the equations of motion (Eqn. 4-9):

Based on the thin plate assumption, the only nonzero spatial derivative is

with respect to the z direction. By using this assumption, Eqn. A-l reduces

to the following:

d2u, fa /A o\
Pi ~^2~ + c ~^r ~ °>.t (A-2)

The displacement vector of the porous solid («,) and the through-thickness

direction variable (z) are nondimensionalized by the thickness of the plate

(/>). The nondimensionalized displacement vector and the through-thickness

direction variable are:

u,. = ̂ - £ = - (A-3)
' h h

The total stress tensor is nondimensionalized by the Young's modulus of the

porous solid:
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where d,. is the nondimensionalized total stress tensor. Substituting Eqns.

(A-3) and (A-4) into Eqn. (A-2) yields:

psh
2 dut ch2 dut .

~E~ ~d? ~E~dt~ a*- *

Note that the coefficient, psh
2/E, has units of time squared. This coefficient is

used to nondimensionalized the time variable:

t= i \ (A-6)

Substituting Eqn. A-6 into Eqn. A-5 yields:

dt

Defining the circular natural frequency as [33]:

C U: _ , A „.

- cr. (A-7)
"•'

(A'8>

Then Eqn. A-7 can be written as:

du, c du, .. _.
(A-9)p,®, r -

According to reference [331, the nondimensional damping coefficient is

defined as:

2? = -^- (A-10)
P,®*

By using the above definition, Eqn. 4-10 is obtained easily.

A.2 Derivation of Eqn. 4-16

To derive the first equation in Eqn. 4-16, we make use of the continuity

equation (Eqn. 4-14):
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dtn ^^e
~dT = ~1k

is related to p by the following relation:

(A-ll)

mg =

mg is given by Darcy's law (Eqns. 4-2 and 4-3):

m = ~W* dP
1 U dz

(A-12)

(A-13)

By substituting Eqns. A-12 and A-13 into Eqn. A-ll, Eqn. A-ll becomes: .

dt
(A-14)

P is given by the ideal gas law:

RTp,
M

(A-15)

Eqn. A- 16 is obtained by substituting Eqn. A-15 into Eqn. A-14 for P:

di

By expanding the derivative out on the right hand side of Eqn. A-16, the first

equation in Eqn. 4-16 is derived:

yR
dt

\ (#rYdp.\ ^32p. 5 d*T
+ 3p — | — L \ + p T — 2 + P Z — j " (A-17)

To derive the second equation in Eqn. 4-16, we make use of the energy

equation (Eqn. 4-15):

•\_» "V?*«* "\«v*
- rfl >J* t^ *ff

m +C m \---K C m (A-18)

m, is related to pt by the following relation:

(A-19)



By substituting Eqns. A-12, A-13, and A-19 into Eqn. A- 18, the following

equation is obtained:

By making use of the ideal gas law (Eqn. A- 15) for P, the following equation

is obtained:

Then by expanding the derivative out for the second term on the right hand

side, the second equation in Eqn. 4-16 is obtained:

dT 1 dp,

' dz
(A-22)

A.3 Derivation of Equations of Motion (Eqn. 4-18)

To derive Eqn. 4-18, we start with Eqn. 4-17:

du.

du.
'O.Z

(A-23)

By using the definition of the total stress tensor (Eqn. 4-11), the three terms

on the right hand side of Eqn. A-23 can be written in the following forms:

(A-24)

1 /in



By substituting Eqn. A-24 into Eqn. A-23, we obtain another form of Eqn. A-

23:

^L

du.

(A-25)

For the transpiration cooling problem, the strain-displacement relations are:

= L
** 2 dz

(A"26)

2 dz * 2 dz a dz

By specializing the constitutive relations (Eqn. 4-13) for the transpiration

cooling problem, the following constitutive relations are obtained:

0 =

0 =

0 =

where ya and yn are engineering shear strains. For an isotropic solid, S^

and S^ are given by the following equations:

?-4 S.-f (A-28,

By substituting the strain-displacement relation (Eqn. A-26) into the

constitutive relations, Eqn. A-27 can be written as:



0 -

o =

0 = (A.29)

The first two equations in Eqn. A-29 are used to solve for o"£ and <f^ . The

resulting two equations for o£ and o£ .are then substituted into the third

equation in Eqn. A-29. The resulting equation is then solved for fl£ . The

last two equations in Eqn. A-29 are used to solve for cr£ and (r£. The three

equations for <T£, <r, and <r£ are shown below:

(A-30)

~ u A '

where the constants A, B, C, and D are defined in Eqn. 4-19. By

substituting Eqn. A-30 into Eqn. A-25, the desired result (Eqn. 4-18) is

obtained:

d\ du,
P'-*? + C-*:

av du.



APPENDIX B

DERIVATION OF EQUATIONS FOR
ABLATIVE COMPOSITE PLATE

B.I Derivation of Governing Equation for Pressure (Eqn. 4-27)

We begin the derivation of the governing equation for pressure (Eqn.

4-27) with the 1-D gas continuity equation for the ablative composite plate

problem (Eqn. 4-23):

dm,
r, + r, (B-l)

mg is given by the ideal gas law as:

_ P<t>M (B-2)

mg is given by the Darcy's law as:

,nt=-?*L?j- (B-3)

By substituting Eqns. B-2 and B-3 into Eqn. B-l, the following equation is

obtained:

dt\ RT ) dz( VL di) f '

Another form of the ideal is gas law is given below:

p =™L (B-5)K* RT

By substituting Eqn. B-5 into Eqn. B-4 for pt, the following equation is

obtained:



-
M and R are the only constants in Eqn. B-6. By expanding Eqn. B-6 out and

rearranging the terms, the governing equation for pressure (Eqn. 4-27) is

obtained:

dt Q d z T n dz
(B-7)

L?L-!L*!L
T dt ~ $ dt

B.2 Derivation of Governing Equation for Temperature (Eqn. 4-28)

We begin the derivation of the governing equation for temperature

(Eqn. 4-28) with the energy equation (Eqn. 4-8):

*f*?*a-S* (B-8,

Recall that in the ablative composite plate analysis, the system consists of

four components: (1) porous virgin solid, (2) porous charred solid, (3) absorbed

moisture, and (4) flowing gases (evaporation gas and pyrolysis gas). By

specializing the energy equation to this system, we obtained the following

equation:

(Cfm, + Cfmc + Cf m, + Cf

(B'9)

r
s>

 r
c>

 ri> r
f> aad rf are given in reference [12] by the following expressions:
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(B-10)

Eqns. B-3 , B-5, and B-10 are substituted into Eqn. B-9 to give the governing

equation for temperature (Eqn. 4-28):

dl TJ QfJ. dz dz dz dz z dz2

Q and Qw are given by the following expressions:

(B.-11)

= 2 +PA -

= (a, -»»
-(p, -Pe)hp)

(B-12)
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APPENDIX C

IMPLEMENTATION OF FOUR-STEP
ARRHENIUS REACTION MODEL

In this appendix, explicit expressions for rt and rf are given. They are

used in Eqn. 4-43 to compute the pressure distribution in the numerical

simulation of restrained thermal growth (RTG) testing.

The mass generation rates of evaporation and pyrolysis gases, rt and

rf , are given by the following expressions:

C R

Rw and Rc are given by the following expressions:

*. '**.+*;* (C.2)
Rc = u^ + VjR, + u4

c/?4

where /^ (fc=l, 2, 3, and 4) are given by Eqn. 4-57 and the values for the

constants in Eqn. 4-57 are listed in Tables 4.1- 4.3. tJ* and ut
c are given by

the following expressions:

m,
4 (C-3)

where m^ is the mass of absorbed moisture converted to gas by the

completion of the fcth reaction, m^ is the mass of porous charred solid created

by the completion of the fcth reaction, m^ is the total mass of absorbed
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moisture converted to gas, and mc, is the total mass of the porous charred

solid created by all reactions. The values of m,t, mc<, m/o, and mCa used in the

RTG numerical simulation are listed in Table C-l[40].
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Table C-l Reaction Constants

Reaction Number mit
 mc,

kg/m3 kg/m3

1 22 0
2 27 80
3 0 618
4 0 314

m, =47 kg/m3 mc =1012 kg/m3
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APPENDIX D

MATERIAL PROPERTIES OF FM5055

Table D-l. Material properties of FM5055 carbon-phenolic - permeability
data for various values of char volume, ve.

Permeability Units (m2 x lO'18)
Char
Volume, vc

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r,

5

6

15

39

112

320

940

2700

7800

23000

65000

r*

9

13

15

39

112

320

940

2700

7800

23000

65000

r*

0.01

0.23

0.90

3.5

13

50

190

720

2700

10000

39000



Table D-2. Material properties of FM5055 carbon phenolic - thermal
conductivity data for various values of temperature, T.

Thermal Conductivity Units (W/m2°C)

Temp.,
rro
0

200

275

400

600

827

1227

1727+

^
1.08

1.50

1.55

1.55

1.55

1.55

2.59

3.00

*,

1.08

1.50

1.55

1.55

1.55

1.55

2.59

3.00

*, '

0.80

0.93

1.00

1.00

1.00

1.00

1.60

1.60



Table D-3. Material properties of FM5055 carbon phenolic - specific heat
capacity3 for virgin and charred solid for various values of
temperature, T,

Specific Heat Units (J/kg'C)

Temp., r r
T CC) ^ C'<

0

100

200

300

400

700

800+

880

1165

1450

1475

1500

1500

1500

1800

1800

1800

1800

1800

1800

1900
aThe specific heat capacities for the flowing gas and absorbed moisture are
assumed to be constant. In computation, the value used for the flowing gas is
CP =2000 J/kg°C and the value used for the absorbed moisture is Cft =4200
J/kg'C.



Table D-4. Viscosities of flowing gas for two values of temperature. T.

Viscosities Units (kg/m sec x IP'5)

Temp., CC) Viscosity, /z

-273 0.7975

2727 8.2975
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Table D-5. Temperature at which reactions begin and end (°C) and heats of
reaction (MJ/kg) for various values of pressure.

Moisture evaporation reaction

P(MPa)

0.1

0.2

0.5

1.0

2.0

5.0

10.0

20.0+

r*

100

120

152

180

212

264

311

367

r.

150

170

202

230

262

314

361

417

a
-2.251

-2.197

-2.108

-2.008

-1.871

-1.623

-1.351

-0.551

Charring Reaction

T*

400

400

400

400

400

400

400

400

T.

538

538

538

538

538

538

538

538

a

-0.234

-0.234

-0.234

-0.234

-0.234

-0.234

-0.234

-0.234
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Table D-6. Material Properties of FM5055 - Young's and shear Moduli
for various values of temperature, T.

Moduli Units (GPa)

Temp.CC)

23

93

204

315

426

537

815

1093

1648

2204

2760

£,

17.93

17.24

13.10

8.96

6.90

6.55

7.58

8.27

6.90

2.76

1.38

EH

17.93

17.24

13.10

8.96

6.90

6.55

7.58

8.27

6.90

2.76

1.38

£„

16.55

12.41

5.52

1.38

0.55

0.34

0.34

0.34

0.34

0.34

0.34

<V,

6.90

6.55

3.24

2.21

1.86

1.72

1.79

1.93

2.07

1.52

0.69

<V,

5.17

4.83

2.76

1.03

1.03

1.10

1.38

1.52

1.52

1.24

0.48

<V,

5.17

4.83

2.76

1.03

1.03

1.10

1.38

1.52

1.52

1.24

0.48
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Table D-7. Material properties of FM5055 - Poisson's ratios for
various values of temperature, T.

Temp. CO v v , v
Jt|JC} *2*J •'t^J

23

93

204

315

426

537

815

1093

1648

2204

2760

0.32

0.29

0.23

0.13

0.08

0.06

0.05

0.06

0.07

0.08

0.09

0.24

0.20

0.18

0.12

0.06

0.05

0.01

0.01

0.01

0.02

0.03

0.24

0.20

0.18

0.12

0.06

0.05

0.01

0.01

0.01

0.02

0.03
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Table D-8. Material properties of FM5055 - thermal expansions u^
various values of temperature, T.

Thermal Expansion Units (m/m x IP"3)

7TC)

23

93

204

315

426

537

815

1093

1648

2204

2760

ATCC)

0

60

181

292

403

514

792

1060

1625

2181

2737

a Aiji

0.0

0.8

1.6

2.0

2.0

1.0

0.0

0.0

2.5

17.5

28.0

or̂ AT

0.0

0.8

1.6

2.0

2.0

1.0

0.0

0.0

2.5

17.5

28.0

a,AT

0.0

1.0

4.0

7.0

10.0

13.0

12.0

-6.0

-21.0

-30.0

-60.0
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APPENDIX E

ROTATIONAL MATRICES

Four matrices are listed in this appendix. The first two (Rz and Rv)

are associated with rotating second order tensorial quantities about the z and

y axes. The latter two (X. and Xv) are associated specifically with rotating

engineering strains about the z and y axes. Rotation of stress, engineering

strain, and stiffness and compliance using engineering strain are illustrated

here. Some relations used in this thesis are expressed in terms of tensor

strain and tensor stiffness and compliance; the relation between tensor and

engineering quantities is discussed thoroughly in [39].

R =

r m 2

n2

0
0
0

-mn

'm'2

0
n'2

0
m'n'

0

0
1

0
0
0
0

n2

m2

0
0
0

mn

n'2

0
m'2

0

0
0
1
0
0
0

-m'n'
0

0
0
0
m
n
0

0
0
0
m'

0
-n'

0
0
0

2mn
-2mn

— n

m

0 m

-2m

0

0
0
0

2-n2.

'n' 0"
0

2m'n' 0
0

m'2-
0

n'
n'2 0

m'

(E-l)

(E-2)
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x.=

m
n2

0
0
0

m'

0
0
0

0 0 0
0 0 0
1 0 0
0 m -n

0 n m

mn

-mn

0
0

0
-2mn 2mn 0 0 0 m 2 -n 2

(E-3)

m
0

/2

n /2

0

0
1
0
0

0
0
0
m'

2m'n' 0 -2mV 0
0 0 0 -n'

n'2

0
m'2

0

-m'n'

0
n'n

0

m'n'

m'2-n'2

0

0
0
0
n'
0
m'

(E-4)

where m is short for cos 6, n is short for sin 6, m' is short for aw<&, and n' is

short for $in<I>.

To illustrate how the matrices in Eqns. E-l and E-2 are used to relate

off-axis second order tensors to on-axis second order tensors, we use the two

matrices to relate the on-axis (*,-x2-.x3) stress tensor to the off-axis

(x - y - z) stress tensor:

Coff ~ (E-5)

where Ggff and o,,,, are given by the following equations:

"<r»"
<TW

<7a

G*
(Tn

on

ffv\ '

°*».

at

0f

a

(E-6)

Similarly, the on-axis engineering strains can be related to off-axis

engineering strain by the same expression shown in Eqn. E-5, except now Ry

and Rz are replaced by Xz and Xy, respectively.
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Eqn. E-7 gives the expression for relating the off-axis compliance

tensor to the on-axis compliance tensor:

S0, = R.VRZSOTX;'X;' (E-7)

where XT1 is the inverse matrix for Xz and X;1 is the inverse matrix for Xv.

The inverse matrices for R2, Ry, Xz, and Xv are listed below in Eqns.

E-8 through E-ll:

R~' =* *

*;'-

m2

n2

0
0
0

mn

" m'2

0
n'2

0
-m'n'

0

X~' =•**z

X_l

"m2

n2

0

0
0

2mn

" m'2

0
n'2

0

-2m' n'

0

n2

m2

0
0
0

— mn

0
0
1
0
0
0

0 n'2

1 0

0 m'2

0 0
0 m'n'

0

n2

m2

0
0
0

0

0
0
1
0
0

0
0
0
m

0 -2mn "

0 2mn

0 0
n 0

— n m 0

0

0

0
0

0 m2-n2

2mV 0 "
0 0

-2m'n' 0
m' 0 -n'

0 m'2-n'2 0
n' 0 m'

0 0 -mn

0 0 mn
0 0 0
m n 0
-n m 0

-2mn 0

0
1
0

0
0
0

n'2

0
m'2

0

2m' n'
0

0 0 m2-n2

0 m'n' 0 "

0 0 0
0 -m'n' 0

m' 0 -n'
0 m'2-n'2 0

n' 0 m'

(E-8)

(E-9)

(E-10)

(E-ll)

159



To relate the off-axis stress tensor to the on-axis stress tensor, the

following expression is used:

con = RT'RX, (E-12)

Eqn. E-12 is also valid for all second order tensorial quantities. To relate the

off-axis engineering strain tensor to the off-axis engineering tensor, replace

IT1 and R"1 by XJ1 and X"1, respectively The off-axis compliance tensor is

related to the on-axis tensor by the following equation:

160



APPENDIX F

INPUT AND OUTPUT FILES OF
TRANSPIRATION COOLING PROGRAM

There is one input file and two output files for the transpiration cooling

program. The name of the input file is "input.txt." The names of the two

output files are "outputsl.txt" and "outputs2.txt." The formats and contents

of these file are shown below. Line numbers are shown for convenience; they

are not included in the input files. Input values should be valid FORTRAN

real or integer numbers. Lines are separated by carriage returns, values on

the same line should be separated by spaces.

F.I Format of Input File "Input.txf

Input.txt

Line numbers:

1. CPS

Specific heat capacity of porous solid (J/kg °C)

2. CPG

Specific heat capacity of gas (J/kg °C)

3. PORE

Porosity of porous solid

4. COND

Area-average coefficient of thermal conductivity (W/m2 °C)
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5. PERM

Permeability of porous solid (m2)

6. MU

Gas viscosity (kg/m sec)

7. MW

Molecular weight of gas (kg/kmole)

8. E

Young's modulus of porous solid (Pa)

9. v

Poisson's ratio of porous solid

10. ALPHA

Coefficient of thermal expansion of porous solid (1TC)

11. DAMP

Damping coefficient (N sec/m4)

12. MS

Density of porous solid (kg/m3)

13. XO

Thickness of plate (m)

14. NODE

Number of nodes in the mesh

15. . DT

Time step (sec)

16. TIME

Length of simulation time (sec)

17. TA

Boundary temperature at z = 0.0 cm (Pa)
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18. TB

Boundary temperature at z = XO cm (Pa)

19. PA

Boundary pressure at z = 0.0 cm (Pa)

20. PB

Boundary pressure at z = XO cm (Pa)

21. TIB

Surface traction Tf at z = XO cm (Pa)

22. T2B

Surface traction 7* at z = XO cm (Pa)

23. T3B

Surface traction 7* at z = XO cm (Pa)

24. TINIT

Initial temperature value (*C)

25. PINIT

Initial pressure value (Pa)

F.2 Format of Ouput Files

Outputsl.txt

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Position Pressure Temp. Displ. u, Displ. Uj Displ. t^ Sim.

(m) (Pa) (K) (m) (m) (m) Time (sec)
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Outputs2.txt

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

« ... cr a" (f <^ < Sim.Position °xi vyy u« " =

(m) (Pa) (Pa) (Pa) (Pa) (Pa) Time(sec)
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APPENDIX G

INPUT AND OUTPUT FILES OF ABLATIVE
COMPOSITE PLATE PROGRAM

The input files for the ablative composite plate program consists of six

categories: (1) general information, (2) mesh information, (3) material

properties, (4) restart conditions, (5) boundary conditions, and (6) chemical

reaction constants. In the general information category, there is one input

file named: "input.in." In the mesh information category, there is one input

file named: "mesh.in." In the material properties category, there are ten

input files named: (1) "alpha.in," (2) "cond.in," (3) "denpor.in," (4) "mole.in,"

(5) "poisson.in," (6) "shear.in," (7) "speh.in," (8) Mperm.in,"(9) "visc.in," and (10)

"young.in." In the initial conditions category, there are four input files

named: (1) "rechar.in," (2) "remois.in," (3) "retpinit.in," and (4) "trate.in."

These files can also be used to restart runs, and are refered to as restart files.

In the boundary conditions category, there are three input files named: (1)

"heatb.flux," (2) "presb.in," and (3) "traction.in." In the chemical reaction

category, there are two input files named: (1) "ccharl.in," and (2) "wchar2.in."

There are six output files from the program and they are: (1) "char.out," (2)

"press.out," (3) "stability.out" (4) "stress.out," (5) "temp.out," and (6)

"volat.out." The contents and formats of the input and output files are shown

in the following sections. Line numbers are shown for convienience; they are

not included in the input files. Input values should be valid FORTRAN real
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or integer numbers. Lines are separted by carriage returns, values on the

same line should be separted by spaces.

G.I General Information Input File

input.in

Line numbers:

1. SEP2

Number of nodes using IFDM solution scheme for pressure (Eqn. 4-46)

2. SEPT2

Number of nodes using 2nd EFDM solution scheme for temperature

(Eqn. 4-48)

3. NF

Number of specified output time

4. TSPEC(l)

First specified time (sec)

TSPEC(NF)

NFth specified time (sec)

5. GN

Number of char volumes at which the permeability of the porous solid

are specified

6. KN

Number of temperatures at which the coefficients of thermal

conductivity are specified
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7. NET

Number of temperatures at which mechanical properties are

specified

8. NEC

Number of char volumes at which mechanical properties are

specified

9. CN

Number of temperatures at which the specific heats of the porous

virgin and charred solids are specified

10. MN

Number of temperatures at which the gas viscosities are specified

11. TYPEC

Type of char reaction. For ablative composite plate problem enter 1

12. TYPEW

Type of evaporation reaction. For ablative composite plate problem

enter 2

13. CHEMNC

Number of pressures at which the values of Qw, T^, and 7W are

specified

14. NODE

Number of nodes in the mesh
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G.2 Mesh Information Input File

mesh.in

1. XO

Thickness of plate (m)

2. PT

Ply angle (degrees)

3. FT

Fiber angle (degrees)

4. DT

Time step (sec)

5. TIME

Length of simulation time (sec)
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G.3 Material Properties Input Files

alpha.in (coefficients of thermal expansion of porous solid damaged and

undamaged (1/°C))

Undamaged Damaged

Col.l Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

(I^.v.) (T^.v.)
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cond.in (coefficients of thermal conductivity of porous solid

damaged and undamaged (W/m2 'Q and temperatures at which

the coefficients of thermal conductivity are specified CO )

Undamaged Damaged

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

*,:(7,) £,,(7.) K.W J^cr.) ^(r.) 7,
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denpor.in (intrinsic densities of virgin and charred solids (kg/m3), porosity

of virgin and charred solids, and initial moisture content)

Col. 1 Col. 2 Col. 3 Col. 4

P,

MC0
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mole.in (Molecular weights of evaporation and pyrolysis gases

(kg/kmole))

Col. 1 CoL 2

M. M,
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poisson.in (Poisson's ratio of porous solid undamaged and damaged)

Undamaged Damaged

Col.l Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

v^ v*» v*»
(Tm,v.) (rmtv,) (r^.v.) (
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shear.in (Shear moduli of porous solid undamaged and damaged (Pa))

Undamaged Damaged

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6
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speh.in (specific heats for porous virgin and charred solids (J/kg °C),

temperatures at which the specific heats of porous solid are

specified (°C), specific heats for absorbed moisture, evaporation

gas, and pyrolysis gas (J/kg 'O )

Col. 1 Col. 2 Col, 3

e,.(r,) c,c(r,) r,

cft
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perm.in (permeability of porous solid undamaged and damaged (m2) and

char volumes at which the permeability of porous solid are

specified)

Undamaged Damaged

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

v) V. )
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visc.in (viscosities of evaporation and pyrolysis gas (kg/m sec) and

temperatures at which the gas viscosities are specified CO )

Col. 1 Col. 2 Col. 3

177



young.in (Young's moduli of porous solid undamaged and damaged (Pa),

char volumes at which Young's moduli are specified, and

temperatures at which Young's moduli are specified (°C))

Undamaged Damaged

'NET

VNEC

(TmtvJ (T^.v.) (Twr.v,) (T^.v.)
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G.4 Restart Conditions Input Files

rechar.in (restart through-thickness char and solid volume distributions)

VC(1)

VC(NODE)

VS(1)

VS(NODE)
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remois.in (restart through-thickness moisture content distribution)

MC(l)

MC(NODE)
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retpinit.in (restart through-thickness temperature CO and pressure (Pa)

distributions)

T(NODE)

P(NODE)
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trate .in (restart through-thickness rate of temperature change

distribution ("C/sec))

TRATE(l)

TRATE(NODE)
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G.5 Boundary Conditions Input Files

heatb.flux (radiative and convective heat transfer parameters at exposed

surface)

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

T. *. h« T" r->

w/m2K4 K W/nVK W/m^ K K
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presb.in (pressure at exposed surface and ambient pressure

(Pa))

Col. 1 Col. 2 Col. 3

° *
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traction.in (surface tractions at exposed surface (Pa))

TIB

T2B

T3B
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G.6 Chemical Reaction Constants Input Files

ccharlin (chemical reaction constants for pyrolysis reaction)

Col. 1 Col. 2 Col. 3

rte co rec co a (J)
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wchar2.in (chemical reaction constants for evaporation reaction and

pressures at which these reaction constants are specified)

Col. 1 Col. 2 Col. 3 Col. 4

T» (Pt) CO Tm (PO CO 0, (Pi) <J) Pi (Pa)

7^ (PCHEMNC) CC) Tw (PcHEMNc) CC) G. (PcHEMNc) (J) PcHEMNC (Pa)

187



G.7 Output FUes

char.out (through-thickness distributions of virgin and charred solid

volumes at specified output times (sec))

Col. 1 Col. 2 Col. 3 Col. 4

Position (m) v, (TSPEC(l)) vc (TSPEC(l)) TSPEC(l)

Position (m) v,(TSPEC(NF)) vc (TSPEC(NF)) TSPEC(NF)
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press.out (through-thickness distributions of pressure (Pa) at specified

output times and time step used in simulation (sec))

Col. 1 Col. 2 Col. 3 Col. 4

Position (m) PCTSPECd)) TSPEC(l) DT

Position (m) PCTSPEC(NF)) TSPEC(NF) DT
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stability.out (number of nodes that used Eqn. 4-46 and Eqn. 4-48 to calculate

pressure and temperature at specified output times (sec))

Col. 1 Col. 2 Col. 3

SEP2 (TSPEC(l)) SEPT2 (TSPEC(l)) TSPEC(l)

SEP2 (TSPEC(NF)) SEPT2 (TSPEC(NF)) TSPEC(NF)
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stress.out (through-thickness distributions of stress (Pa) at specified

output times (sec))

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

Position
(m)

TSPEC(l)

Position
(m)

TSPEC
(NF)
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temp.out (through-thickness distributions of temperature CO at specified

output times (sec))

Col. 1 Col. 2 Col. 3

Position (m) T (TSPEC(l)) TSPEC(l)

Position (m) T (TSPEC(NF)) TSPEC(NF)
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volat.out (through-thickness distributions of moisture content and rate of

temperature change (°C/sec) at specified output times (sec) )

Col. 1 Col. 2 Col. 3 Col. 4

„ .,. , x MC TSPEC(l)
Position (m) (TSpEC(1)) (TSPEC(D)

P - f i n n f T n ^ MC TSPEC(NF)Position (m) (TSpEC(NF)) (TSPEC(NF))
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APPENDIX H

INPUT AND OUTPUT FILES OF RTG
PROGRAM

All of the input files of the RTG program have the same formats and

contents as the input files of the ablative composite plate program except for

the input file named: "input.in." Also, for the RTG program, there is one

additional input file named: "rtg.in." The RTG program has the same output

files as the ablative composite plate program. The formats and contents of

the two input files (input.in and rtg.in) are shown in the following sections.

H.1 Formats and Contents of Input File "input.in"

input.in

1. TRATESPEC

Constant heating rate (°C/sec)

2. SEP2

Number of nodes using IFDM solution scheme for pressure (Eqn. 4-46)

3. SEPT2

Number of nodes using 2nd EFDM solution scheme for temperature

(Eqn. 4-48)

4. NF

Number of specified output time

5. TSPEC(l)

First specified output time (sec)
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TSPEC(NF)

NFth specified output time (sec)

6. GN

Number of char volumes at which the permeability of the porous solid

are specified

7. KN

Number of temperatures at which coefficients of thermal conductivity

are specified

8. NET

Number of temperatures at which mechanical properties are specified

9. NEC

Number of char volumes at which mechanical properties are specified

10. CN

Number of temperatures at which the specific heats of the porous

virgin and charred solids are specified

11. MN

Number of temperatures at which the gas viscosities are specified

12. TYPEC

Type of char reaction. For RTG problem enter 4

13. TYPEW

Type of evaporation reaction. For RTG problem enter 4

14. NRTG

Types of chemical reactions

15. PRSP

Number of pressure at which the reaction constants are specified

195



16 NODE

Number of nodes in the mesh

H.2 Formats and Contents of Input File "rtg.in"

rtg.in

Pi

First pressure at which the Arrhenius constants are specified (Pa)

PPRSP

PRSPth pressure at which the Arrhenius constants are specified (Pa)

^(Pi)

Activation energy (J/mole) for first type chemical reaction evaluated at

first specified pressure

Activation energy (J/mole) for first type chemical reaction evaluated at

PRSPth specified pressure

Activation energy (J/mole) for NRTGth type chemical reaction

evaluated at first specified pressure

Activation energy (J/mole) for the NRTGth type chemical reaction

evaluated at PRSPth specified pressure
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3.

Col. 1 Col. 2 Col. 4 Col. 5

A^ (Usec) «, mk (kg/m3) mC( (kg/m3)

(kg/m3)

Rest of Arrhenius constants for NRTG types of chemical reactions
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