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ABSTRACT

Whilethe classicalmethodsof shadowgraphandschlierendo yielda shadowin the
neighborhoodof a shock, they ot_ensuffer from low power densitiesand the need for
relativelylong distances. Scanningmethodsmay help in solvingthese problems. The
paper describes various scanningtechniques,presents experimentaldata obtained by
mechanicalscanning,andidentifiesconditionsatwhichthe datawere taken.
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1. INTRODUCTION

Amongflowvisualizationtechniques,shadowgraphandschlierenare the two most
cofiamonlyused. A parameterthatdeterminesapplicabilityof oneor the otl_ertechniqueis
the degree of variationin the density(or refractiveindex) of the medium. Thus if the
mediumof interest containsa sharprefractiveindex gradient then the shadowgraphis
employed. Shocksgeneratedin a supersonicflow have a characteristicdensityprofile
whichis often describedas an abruptchangein the density. Thereforethe best resultsin
visualizing'theshockshavebeenobtainedusingshadowgraphs1,2.

A classicalshadowgraphconsistsof a collimatedbeamwhichtransversesthe flow
in the area of interest and is projectedonto a screen. Any changesin the density are
observedat the screen as variationsin the light intensitydistribution. The greater the
variationsin the densitygradientsinthe flow,the highercontrastof the pattern observed
on the screen. A CCD array or photo cameramay be used to record the intensity
distribution. Shadowgraphbasedflowvisualizinginstrumentsare simpleand have been
used successfullyin variousdiagnosticsystems3-5.

Despite its simplicity,the classicalshadowgraphhas some drawbacks. One of
them is that lightfillsthe wholeapertureof the collimatinglens,causingthe spatialpower
densityto drop. In orderto keepthepower densityhigh andthe contrastof the resultant



pattern stronghighpowerlightsourceshave to be used. Another drawbackis due to the
fact that the sharpness(or contrast)of the patterngeneratedbythe instrumentdependson
the distance£romthe inhomogeneityin the flow to the observationscreen. To obtaina
good qualityvisualizedimageof theflowon the screen,it has to be placed reasonablyfar
away from the flow. These drawbacks seriously limit the applicability of the
shadowgraph,especiallyto airbornesystems.

An approachwe propose in this paper may help to minimizethe problems
mentionedabove. It usesa narrowpencilbeaminsteadof a wide collimatedone. The
pencil beam is scannedthrough the flow and inhomogeneitiesin the flow alter the
directionof the beam propagation.It has been reported alreadythat shocks may cause
laser beam scatteringin a free jet6 and in supersonicflow with a blunt bodyT,8. The
present paper describes and evaluatesthe interaction of a pencil beam with shocks
generatedwithinconverging-divergingnozzles.

2. OPTICALSCANNINGTECHNIQUES

The scanningmodeshadowgraphshavea higheropticalpowerdensitythroughput
than conventionalshadowgraphs.A commonfeature in these instrumentsis a scanning
elementthat makes a narrowbeam of light scan throughthe aperture of the systemin a
time sequentialmanner. Amongvarious beam scanningmechanismssome of the best
known are electro-mechanicaland acousto-optical. Electro-mechanicalscah_uersare
opticalmirrors or prismsthat reflectlight in a certaindirectionaccordingto the law of
reflection..By changingthe positionof the reflectingsurfacewkh respect to the incident
beamthe directionofthe reflectedbeamalsowillbe changed.Two basictypesof electro-
mechanicalscanners,linearandangular,arerepresented.

In a systemwith a linear scanner(Fig. 1) a reflectingmirror oi"prism moves
parallelto the flow dkectionand reflectsthe incidentbeam at a right angle. Thus, we
scanthe beamthrougharegionin the nozzlewherewe expectthe shockto be.

In a sensingsystemwith an angularscanner(Fig. 2) a reflectingmirror or prism
rotates around an axisproducinga sector of light. The axisis located at the reflecting
surfaceof the scannerfromwhichthe incidentbeamreflects. The scanneris a part of a
transmitterandis located in the vicinityof the test section. The lightbeamreflectedfrom
the scannerpassesthrougha collimatinglens. The scannerand the collimatinglens are
positionedin a suchwaythat the focalpointofthe lenslieson the axisof the scanner.

The principleof acousto-opticalscannersis similarto electro-mechanicalones.
The major differenceis that the electro-mechanicallydrivenreflectingsurfaceis replaced
by an acousto-opticaldeflector. The deflector is placed at the focal point of the
collimatinglens in sucha way that the beam that exits the lens is alwaysnormalto the
flowdirection.

2



3.DESCRIPTIONOF EXPERIMENT

The experiment has been conductedusing two converging-diverging (CD)
nozzles with transparentwindowsin the test sections. A descriptionof the CD nozzle
principlecanbe foundin a numberof publicationsg,1°. The CDnozzleswere connected
to a 25.4 mm diametershop air supplyline. Both nozzleshad minimumthroats with a
square shapebut theirprofilesand areavariationswere different. The area profileof the
first nozzlewas computedfor a maximumMath numberof 1.8 andthe dimensionsof the
minimumthroat were 13.9x 13.9mm2. The othernozzlehadthe throat dimensions17.9
x 17.9 mm2 and the area was computedfor Math number 2.3. Both nozzles had
windowsin their outerwallsin the regionof the minimumthroat. By shining the beam
through the windows,perpendicularto the directionof the flow, one could observe the
effectof the flowon the spatialdistributionof the beamintensityafterpassingthrough the
test cell.

The configurationofthe experimentis displayedinFig.3. The experimentalsetup
consists of two laser systemsLS1 and LS2, a CD nozzlewith transparentwindows, a
beam splitter B, beam splittingprismP, two photo detectors (CCD array and photo
camera),and signalprocessingequipment.The lasersystemLS1 containsa 3 mWHeNe
laser L1 and collimatingdevice C1. This systemcreates a wide collimatedbeam with
uniformlydistributedintensityandis a conventionalshadowgraph.The laser systemLS2
consists of a single0.5 mWHeNelaserwhichemitsa narrowpencilbeam. Both beams,
the pencilbeamandthe collimatedone,are sentthroughthebeamsplittingprismP in such
mannerthat theyexit the beamsplittersuperimposedand alignedin the samedirectionof
propagation. The combinedbeamthen passes through the windowsof the CD nozzle.
Finally,via the beamsplitterB, the beamreachesthe photo cameraand the CCD array.
The intensitydistributionobtainedbythe CCDarrayis observedon an oscilloscope.Both,
the photo cameraand oscilloscope,are connectedto a computerfor data _acquisitionand
analysis.

With the configurationdescribedabove, we can analyzethe flow at the same
locationusing two differenttechniques. The shock is visualizedby a collimatedbeam
producedby the lasersystemLS1andthe resultantshadowis observed. The pencilbeam
from laser systemLS2 also penetratesthe flow in the vicinityof the shock. With this
configurationthe lasersystemsLS1 andLS2 can be used independentlyfrom each other
under the sameflowconditions.To evaluatephenomenaof laserbeaminteractionswith
shocks,the pencilbeamis scannedacrossthe test sectiontransverseto the flowdirection.
Thisis doneby placingthebeamsplittingprismP on a translationstage (not shownin the
Fig. 3) whichis controlled electronically.Whenthe pencilbeampassesthrough regions
in the flowwith strongchangesin density the circularcrosssectionalshape of the beam
becomesdeformed.

Despiteof similaritiesinthe CDnozzlesusedin the experimenttheiroperational
regimesarequitedifferent.Thenozzlewiththe smallerminimumthroat areawas
operatedwithhigherup-streamanddown-streampressuresthan the nozzlewith the
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largerthroat area. The lower pressuresinthe latter resultedin a lowerair densityand
alsoa lowerrefractiveindex.

4. RESULTS AND DISCUSSION

The results of the experimentusing the CD nozzle with the smaller minimum
throat obtainedby the photo cameraand CCD array are shown in Figs. 4, 5, and 6 .
Figure4 containscross sectionalintensitydistributionsof the pencilbeam,aiderit passes
throughthe test sectionof the nozzle,under three conditions,no flow (Fig.4a), with the
flowbut no shocks(Fig.4b),andwiththebeamintersectingthe shock(Fig.4c). It can be
seen from these pictures that the interactionof a pencil beamwith a shock produces a
smearingof the beam. The smearingand tail associatedwith it occur in the direction of
flow. The phenomenonis explainedby the fact that the air densityof a subsonic flow
downstreamofthe shockis higherthanthe air densityof a supersonicflowupstreamof it.
The airdensitygradientcausesthebeamto refractin the directionof flow.Thus,the beam
smearingandtail result.

Usingthe smallernozzlewithCCDarrayplaced 1m awayfromthe test cell,Fig. 5
containsthe intensitydistributionof the pencilbeam at three differentlocations in the
nozzleunderflow conditionswhichyielda shock. From Fig. 6 (the shadowgraphof the
test cellunder the sameconditions)we canreadilyidentifythe existenceof a shock from
the bumpon the graph. The intensityprofileof the pencilbeamis representedin Fig. 5 as
a pulse-likesignalof almostconstantamplitudedue to saturationof the CCD array. A
significantincreasein thewidthofthe pulseis observedwhenthe beamis passingthrough
the shock. Thisincreaseis alsoa manifestationof the beamsmearingandtail.

Similar results have been obtainedusing the CD nozzle with the larger minimum
throat. However, an attempt to use the shadowgraph to observe the shock "has ended in a
low contrast pattern with the shock being hardly seen by the CCD. Figure 8 shows a
signal obtained using the shadowgraph and the CCD array placed at a distance of 1 meter
from the nozzle. At the same time the pencil beam produced a quite noticeable tail (See
Fig 7). Locating the CCD array at 4 m distance has produced slight improvement in the
conti-astof the pattern obtained using shadowgraph. The intensity distribution of the laser
pencil beam after passing through the shock is accompanied, again, by a significant tail.
Figures 9 and 10 show data from the scanning pencil beam approach and shadowgraph
respectively with the CCD placed at a distance of 4 meters from the test cell.

The data obtained using both CD nozzles have shown such similar features as
refraction of the pencil beam caused by the shock. At the same time the laser light
scattering by the shocks is insignificantand is barely seen. The refractive effects have
been manifested as a substantial increase in the beam width and may be used as an
indicator of the presence of the shock. The experiment has shown that these refractive
effects are stronger than those that govern the shadow formation. It makes it possible to
construct a compact shock "visualizing"system. Such a portable flow visualizing system
could find applications at test facilities. One of the shortcomings of the technique is the
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needto provideelectricpower to the scanningelement. Providingthis problemis solved,
the techniquecouldalsobecomea goodcandidatefor such airborneinstrumentationas a
normalshockpositionsensor.
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FIG. 5. Intensity distribution of the pencil beam in smaller nozzle at  three locations under flow 
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FIG. 6. Shadowgraph image of the test cell under same conditions as in Fig. 5. 
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FIG. 7. Intensity distribution of.the pencil beam in larger nozzle at three locations under flow
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FIG. 8. Shadowgraph image of the test cell under same conditions as in Fig. 7.
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