
NASA CR-185706

Report Submitted

to

NASA-Johnson Space Center

An Analytic Model for Footprint Dispersions and its

Application to Mission Design

by

J. R. Jagannatha Rao

Assistant Professor

and

Yi-Chao Chen

Assistant Professor

Department of Mechanica1 Engineering

University of Houston

Houston, TX 77204-4792

EniaiJ: rao@tree.egr.uh.edu

, November 3, 1992

Systems Design Laboratory

i«o
z

tfl
to
u
c

fO

o
o

m

o

LU tO
O H
O •*
s:

O 2
u a: o

> VJ
«J 2
< a
Z ••«
< to

ct
2 UJ
< O-

W

UJ
O

z
a a
IM

f) >O
co en

v- Z
O ^

O «
t- H >
Z .«=
»-" 2 C

O OC
I a
m h-
o» o
I o

U) U.
O.
»-» oc
2 O
w U.

O
M
H C
< O
U *•>
t-((/»
cJ 3
a o
Ou I
< s*

NASA CR-185706

Report Submitted

to

NASA-Johnson Space Center

An Analytic Model for Footprint Dispersions and its

Application to Mission Design

by

J. R. Jagannatha Rao

Assistant Professor

and

Yi-Chao Chen

Assistant Professor

Department of Mechanical Engineering

University of Houston

Houston, TX 77204-4792

Email: rao@tree.egr.uh.edu

November 3, 1992

Systems Design Laboratory

Summary

This is the final report on our recent research activities that are complementary to those

conducted by our colleagues, Professor Farrokh Mistree and students, in the context of

Taguchi method. We have studied the mathematical model that forms the basis of the Sim-

ulation and Optimization of Rocket Trajectories (SORT) program and developed an analytic

method for determining mission reliability with a reduced number of flight simulations. This

method can be incorporated in a design algorithm to mathematically optimize different per-

formance measures of a mission, thus leading to a robust and easy-to-use methodology for

mission planning and design.

1 Introduction

NASA currently employs an entry Monte Carlo analysis incorporated with the Simulation

and Optimization of Rocket Trajectories (SORT) program to analyze trajectories of space

vehicles. A basic function of this analysis is to assess the dispersion of a trajectory from the

prescribed one due to dispersions of various vehicle and environmental parameters.

As an example, the Monte Carlo analysis of the LifeSat vehicle has been performed to

determine:

1. If a trim burn is needed to correct state vector after de-orbit burn.

2. The expected G-load necessary to land within desired target area.

Three scenarios of state vector correction after de-orbit burn were investigated. In each

scenario, five sets of vehicle and environmental parameters were dispersed: initial state,

atmosphere data, winds, vehicle and parachute aerodynamics, and vehicle weight. Also, five

entry interface conditions characterized by peak G-load were analyzed for each of the second

and third scenarios. To achieve 95% confidence of 99.73% reliability, 1109 dispersed cases

were needed for each G-load.

Based on these simulations, footprint distributions were plotted for all cases of G-load.

and footprint dispersions computed as functions of G-load for the given 99.73% reliability.

It was then concluded that a trim burn with a 14g to 15g entry is required to land within

the desired target area. All parameters were recorded for statistical post-processing.

While the Monte Carlo analysis generates satisfactory results, the necessary confidence

with this method is supported by large numbers of simulations. The associated high costs

not only make a design process expensive, but also severely limit the number of scenarios

that can be considered in the design.

It is then desirable to develop alternative methods that would significantly reduce the

number of simulations. In a broad sense, different methods can be classified into two cat-

egories. One is based on a statistical approach, and the other on an analytic approach. A

statistical method uses a collection of samples to simulate a stochastic process, while an

analytic method models the process through probability density functions.

The analytic method we have developed makes use of the fact that the desired landing

area is small in an appropriate scale, which make it possible to approximate admissible

footprint dispersions as simple functions of the dispersions of the vehicle and environmental

parameters. These functions can be determined by a small number of simulations. The

set of admissible parameters then can be defined through certain functional relations, and

the reliability associated with given parameter distributions can be evaluated by a high

dimensional integral-. This integral can be further reduced, by an appropriate coordinate

transformation, to a two-dimensional one, that can be readily evaluated numerically.

2 Statement of the Problem

A returning space vehicle is to land within a desired target area. Once the vehicle crosses

the entry interface, its landing position (footprint) depends only on a number of vehicle

and environmental parameters, including initial position and velocity of the vehicle at the

entry interface, atmospheric density, pressure, temperature, wind speeds, wind direction,

angle of attack, drag and lift coefficients of the vehicle and parachutes, reference areas of

the parachutes, and vehicle mass. If all parameters take their nominal values, the vehicle

will follow a predetermined trajectory and land at the center of the target area. In a real

flight, deviations of the parameters from the nominal values will inevitably occur, resulting

in a deviation of the footprint from the center.

Due to their stochastic nature, the values of the parameters cannot be predicted exactly.

They can take any value in certain ranges. However, their variations obey specific statistical

descriptions, that can be expressed either by discrete data drawn from a large number of

samples, or by continuous probability density functions determined by experiments.

A consequence of such statistical distributions of the parameters is that the deviation of

the footprint also obeys certain statistical rules, making it possible to define the reliability

of a mission as a measure of likelihoods of having an admissible landing. Precisely, given

the distributions of the vehicle and environmental parameters, the reliability P of vehicle

landing is defined as the probability for the vehicle to land within the desired target area.

To determine P, two different approaches are possible as described below.

3 Statistical and Analytic Approaches

By its physical interpretation, the probability of an event is the limit of the relative frequency

of occurrence of the event in an infinite sequence of replications. It is then not unreasonable

to take the relative frequency in a finite sequence as an approximation of the probability.

This is the basic idea that the statistical approach is based upon.

In the Monte Carlo analysis, a number of experiments (computer simulations of vehicle

trajectories) are carried out, each based on a randomly chosen set of parameter values. If the

distribution of a parameter is given by a set of discrete data, a data point is taken randomly

from the set in an experiment. On the other hand, if the distribution is given by a probability

density function, a data point is generated randomly in accordance with the given function

relation in a statistical sense. The footprints of all experiments are calculated, and those

within the target area identified. The reliability is then given approximately by

^ number of admissible landing
number of experiments

The error due to the approximation in Eq.(l) depends on the number of experiments.

It is usually measured in terms of confidence, which is defined as the probability of correct

prediction. As stated in Section 1, some 1109 experiments are required to achieve 95%

confidence. The large number of experiments associated with this approach is a major

source of high costs, and appears unavoidable due to the high confidence requirement.

Other methods within the statistical approach have been proposed. For instance, by a

Taguchi method, experiments are performed on a selected set of data points, that are gen-

erated by using orthogonal arrays. As the Taguchi method has proved capable of delivering

useful information on the distribution of footprints, an analysis of reliability based on this

method has not yet been developed.

The basic idea of the analytic approach is to describe the distributions of the parameters

by probability density functions, and to compute the reliability directly by the mathematical

definition of probability rather than by running statistical experiments. Computer simula-

tions are needed only for determining admissible parameters, not for establishing statistical

profiles of footprints. This provides the possibility of significant savings on simulation count.

Also, this approach completely eliminates the issue of confidence as the result is not obtained

by using a finite sequence to approximate an infinite sequence, and therefore has no error

from that source.

The main difficulty associated with the analytic approach is related to its numerical fea-

sibility. For a system having as many parameters as a space vehicle does, the determination

of admissible parameters is a tedious and laborious process, if possible to accomplish at

all. The method we developed uses an approximation scheme to simplify this process, and

consequently leads to the computation of reliability in a concise way.

The method is presented in the following sections.

4 Mathematical Formulation

Space of night
parameters

Target Area

Figure 1: The footprint mapping /.

Suppose that there are n vehicle and environmental parameters x \ , x z , . . . , xn, that determine

the trajectory and therefore the footprint of the vehicle. Let f be the 2-dimensional vector

whose components are the coordinates, longitude and geodetic latitude for example, of the

footprint. Then we can write

f =

where we also use f to denote a function that maps the set of the parameters to the set of

footprints. This function is given numerically by integrating the trajectory equations.

A rectangular target area can be expressed by

(2)

where (ci,c2) corresponds to the nominal landing coordinates, and di and d2 are the al-

lowed longitude and geodetic latitude deviations of footprint. A landing with footprint f is

admissible if f G D. A set of parameter values (x \ , x < 2 , • • • , #n) is said to be admissible if

f (0:1,0:2, • • • ,xn] € D. The set of all admissible parameters is denoted by

D}. (3)

The distribution of a parameter a;, is assumed to be given by a probability density function

Pi(xi). The value p,-(a,) corresponds to the probability for Xi to take values in an infinitesimal

neighborhood of a, divided by the length of the neighborhood. The probability for the

parameters (xi, x2, . . . , xn) to take values in a neighborhood of (a j , a2, . . . , an) divided by

the n-dimensional volume of the neighborhood is then

Pi(ai)pz(a 2) . . .p n (a n) .

It is now readily seen that the reliability, or the probability of landing in the target area, is

given by

p = \ P\(^\)Pi(x-2} • ..pn(xn)dxi • • • dxn. (4)
Jn

While Eq. (4) gives the exact expression of reliability, the evaluation of the integral is

difficult due to the presence of two major difficulties. First, the determination of the set fi

of admissible parameter as defined by Eq. (3) involves finding the pre-image of function f

under D. Since the explicit expression of f is not available, one has to numerically solve two

equations of n unknowns variables. In general, this requires extensive numerical iterations.

Secondly, the integral Eq. (4) is n-dimensional with the domain of integration fl given in a

numerical form. Since n is usually a large number, fifty say, the numerical integration can be

very lengthy. In the next two sections, we shall show how these difficulties can be overcome

by appropriate linear approximation and transformation of coordinates.

5 Approximation

Determined by the solutions of nonlinear differential equations, the footprint function f is

expected to be nonlinear. However, since the target area is small in a scale corresponding

to the level of the linear momentum and other flight variable of the vehicle, function f can

be approximated by lower order polynomials when restricted to the admissible set D.

This fact is clearly demonstrated by Figures 4-6 which show the dependencies of the foot-

print coordinates on the atmospheric density, the drag coefficient of the vehicle, the wind

speed, and the initial velocity for the LifeSat vehicle. It is observed that in the admissi-

ble dispersion ranges, the errors induced by linear approximations of f are less than 8%.

We expect similar behavior for the dependences of f on other vehicle and environmental

parameters.

This suggests that we approximate f by first order polynomials as

f i (x i , x 2 , . . . , x n) = GI +gn(xi -Hi) + #12(3:2 - Afc) + • • • + 9in(xn - Hn),

h (X l , X z , . . . , X n) - C2 + 021 (#1 -A*l) + 022(3:2 ~ 1*2) + ••• + 92n(Xn ~ Hn), (5)

where HI, H2, • . • , Hn are nominal values of the parameters, and g^,i = 1,2, j = 1, 2, . . . , n,

are the derivatives of /, with respect to Xj evaluated at the nominal values. We note that

totally 2n simulations are needed to determine the approximate footprint functions of form

in Eq. (5).

Substituting Eq. (5) into Eq. (2) and Eq. (3), we find that the set f) of all admissible

parameters can be determined approximately by the following inequalities

-di < Q I \ (X I - ni) + 512(3:2 - //2) + • • • + g\n(xn - //„) < di,

-d 2 < 02i (Zi - Hi) + g2l(X2 - //2) + • • • + 9ln(xn ~ Hn) < &1 (6)

Inequalities (6) define a region between two pairs of parallel (n — 1) -dimensional planes in

the n-dimensional parameter space.

6 Integration of Probability Density Functions

Even with the set (7 of admissible parameters in the approximate form of Eq. (6), the

evaluation of the n-dimensional integral in Eq. (4) is still not an easy task. The difficulties

lie in the fact that the integral limits are not constants, but functions of integral variables.

10

Also, the high dimension of integration makes the numerical treatment cumbersome.

In practice, the probability density function Pi(xi) of the parameter #,- often has the form

of either a uniform distribution (Figure 2)

^ if ̂ - hi < Xi < (J.i + hi

0 otherwise

M2ty-

2h-

Figure 2: A uniform distribution,

or a normal distribution (Figure 3)

I

/7T-
V27TCT,-

(7)

where a; is the standard deviation. The integration of a uniform distribution is immediate

and needs no discussion. In the following, we consider the case where Pi(xj) in Eq. (4) are

of the form in Eq. (7).

The idea is to introduce a transformation of coordinates so that the integral in Eq. (4)

can be converted to one with constant limits, and the integration can be carried out ex-

plicitly except for two variables. Numerical integration is then performed on the resulting

2-dimensional integral.

11

-4 -2 2

Figure 3: A normal distribution.

To this end, we introduce new variables

= 9n(xi - Hi) + - /z2) + • • • + 9in(xn - /*„),

&> = 021 #1 -

Taking £1,^2 and n — 2 of £1,0:2, • • • ,xn as integral variables, we can transfer (4) into an

integral for which the integral domains of fi and £2 are [—di,di] and [-^2,^2], respectively,

and those of £'s are (— 00,00). Furthermore, a detailed analysis shows that the n - 2 fold

integration in x's can be carried out analytically, leading to the following 2-dimensional

integral for the reliability

P =
1

/ -
(8)

12

where

A =

7 Simplified LifeSat Model

In this section, we illustrate the method described above by applying it to the simplified

LifeSat model constructed by M. A. Tigges. In particular, 3 parameters, atmospheric density

p = xi, vehicle drag coefficient Cd = x? and wind speed w = x3, are dispersed, while other

parameters are set at their nominal values. The 3 dispersed parameters contribute to the

majority of the dispersion of the footprint.

A footprint is described by the longitude /] (deg) and the geodetic latitude /2 (deg). The

target landing area is defined by f\ = c\ ± d-i and /2 = c^ ± d^, where

ci = -106.66, c2 = 33.6, dl = 0.08, d2 = 0.2.

In Figures 4-6, we plot /i and /2 vs. p. Cd and w. The ranges of the parameters are

chosen according to their dispersion values: 30% for /?, 5% for Cd, and ± 30 mph for w.

Longitude f\ is constant in p and Cd-, as is apparent from the physics. Similarly is geodetic

latitude /2 in w. Other function dependences are non-constant and nonlinear. However, in

the dispersion ranges of interest, the errors caused by linear approximations are less than

8%. If quadratic approximations are employed, the errors would be practically negligible.

Similar behavior is expected for the dependences of f\ and /2 on other parameters.

13

>

33.95

33.9

33.85

33.8

_ 33.75

0> 33.7

2 33.65

Jj 33.6
O
•̂ 33.55
<D
-O ~,c.
O •"•*
0)

(T) 33.45

33.4

33.35

•v.
Geodetic Latitude (deg N)

• Longitude (deg W)

-106.59

-106.6

-106.61

-106.62

-106.63
-106.64 C-

-106.65 ^

-106.66 §?
-106.67 S

-106.68 ^

-106.69 3

-106.7 5)

-106.71 O
-106.72 ~'

-106.73

-106.74

-106.75

•106.76

1.1 1.2 1.3 1.4

Density Parameter (at sea level kg/cu. m)
1.5

Figure 4: Longitude and geodetic latitude vs. atmospheric density

The derivatives of f\ and /2 with respect to p, C^ and w for the case of 13 g-load can be

readily calculated as

dfi • dfi df\ _3

= 1.24, <722 = ^f = 2.50, <?23 = -^ = 6.57 x 10~5

Results

The following results were now directly obtained with for the two indicated cases of density

dispersions.

Case 1

Disperse p normally by 30 % (3 a)

Cd normally by 5 % (3 a]

w normally by 17 mph.

14

33.8

33.7

•S 33.6
CO

.9
0)

1 33-5

33.4

Geodetic Latitude (teo, N\
- Longitude (deg W)

-106.56

-106.59

-106.61

-106.62

-106.63 §

-106.64 O)

-106.65 2.

-106.66 <U
T3

-106.67 3

-106.68 O>

-106.69 ^O

•106.7

-106.72

•10673

-106.74

0.6 0.65 0.7
Vehicle Drag Coefficient

0.75

Figure 5: Longitude and geodetic latitude vs. vehicle drag coefficient

Peak G-Load

Reliability P(%)

120

69.91

130

74.16

140

79.71

150

83.73

Case 2

Disperse p normally by 15 % (3 a)

Cd normally by 5 % (3 a)

w norinally by 17 mph.

Peak G-Load

Reliability P(%)

120

95.31

130

96.96

140

98.51

150

99.22

The reliability variations with the maximum G-load during the flight, as shown in Fig-

ure 7. are very important during mission planning. Note that for the 3 dispersed

variables in this case, only 6 simulations were required to arrive at the results

summarized above.

15

33.8

33.78
33.76
33.74

z 33J2

o. 33J

0) 33.68
2- 33.66
0) 33.64
"5 33.62
S 33.6
5 33.58
O 33.56

'•J5 33.54
"O 33.52
8 33.5

C3 33.48
33.46
33.44
33.42

33.4

Geodetic Latitude (deg N)
Longitude (deg W)

• 106.53
-106.54
-106.55
-106.56
-106.57
-106.58
-106.59
-106.6
-106.61
-106.62
-106.63
-106.64
-106.65
-106.66
-106.67
-106.68
-106.69
•106.7
•106.71
-106.72
-106.73
-106.74
-106.75

8"

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Wind Speed (West to East, mph)

Figure 6: Longitude and geodetic latitude vs. wind speed

Integration into a Design Strategy

As mentioned above, our efficient method for computing reliabilities makes possible the

following very desirable scenario - we wish to use reliability predictions during the design

and planning of the mission itself (i.e., analysis "concurrently" with design) and not just as

a performance analysis tool.

For a typical space mission, two classes of variables affect vehicle performance: (1) the

deterministic design variables such as vehicle size and shape, drag and lift coefficients and

pay load capacity, and (2) stochastic variables such as atmospheric density, temperature,

and wind conditions. The mission designer has direct control over only the design variables

whereas the stochastic variables are typically described by their probability density functions.

With this natural partition of variables governing the space vehicle, what is a rational design

strategy?

Consider, for the entry and landing phase of the LifeSat vehicle, the following different

design statements:

16

15
eg

'QJ
CC

100
98

96

94

92

90

68

66

84

82

80

78

76

74

72

70

density dispersion - 30%
• density dispersion -15%

12 12.5 13 13.5
G-Load

14 14.5 15

Figure 7: Reliability variations with max. G-load

1. Find the (best) nominal values of the design variables and the entry interface conditions

which minimize the target landing error and which satisfy flight constraints (e.g., the

g-load not to exceed 12).

2. Design a LifeSat mission which maximizes the reliability of landing within the target

and for which the g-load does not exceed 12.

3. Design a LifeSat mission which maximizes the pay load capacity such that the reliability

of acceptable landing exceeds 99.73% and the g-load during the flight does not exceed

12.

These and other design models are immediately accessible to us since we have a simpli-

fied mathematical model for the flight trajectory and we also have a very efficient method

to estimate the measure of reliability. These word statements of design problems can be

naturally transcribed into nonlinear programming models for which available computational

methods can be used to search for optimum designs. For the LifeSat model, we have already

17

formulated and solved a few of the above mentioned design problems. For example, for the

fixed data given below:

altitude = O.l2192d6 azimuth = 180.0 clift = 0.0 cdrogue-drag = 0.55

cmain-drag=0.8 drogue-area=4.104 cmain-area=51.234 drogue-mach=1.5

cmain-altitude=3048.0 density-sl=1.225 tstep=2.0 wind-speed = 0.0

the following nominal values were obtained for the design variables and El conditions:

El Variable

latitude (deg N)

longitude (deg W)

flight path (deg)

velocity (m/s)

angle of attack (deg)

rotational speed (deg/s)

mass (kg)

vehicle drag

frontal area (sq. m)

l.b

40.0

-110.0

-7.0

9000

-5.0

0.0

1200.0

0.6

2.0

u.b.

60.0

-100.0

0.0

11,000

5.0

50.0

1700.0

0.9

4.0

init.

40.0

-110

-5.0

9800

0.0

25.0

1550

0.7

3.1

final

44.498

-105.507

-6.037

9799.8

0.0

25.0

1550.1

.8427

3.6357

An interesting 'what-if' scenario for this model is to determine what is the effect of the

g-load constraint on the flight. The following is a comparison of one set of optimal nominal

values for the two cases (with and without g-load constraint):

18

Variable

latitude (deg N)

longitude (deg W)

flight path (deg)

inertial velocity (m/s)

angle of attack (deg)

alpha rotational speed (deg/s)

satellite mass (kg)

vehicle drag

vehicle frontal area (sq, m)

final-latitude (deg N)

final-longitude (deg W)

time of flight (sec)

No Constraint

44.498

-105.507

-6.037

9799.8

0.0

25.0

1550.1

0.8427

3.6357

33.603

-106.659

375

Max G-Load= 12.0

52.21

-105.327

-5.021

9799.56

-5.0

25.0

1549.8

0.696

3.167

33.641

-106.673

485

Figures 8 and 9 show the time history for the two cases.

1.2* 10s

IF i*io5

I
>, 8*104

£ 6*1O4

^T 4*1°4

T3

f 2*104

0

Altitude (m)
Latitude (deg N) -
Longitude (deg W
velocity (m/s)
aero-forces
g-forces

\Max G-Force = 14.658

100 200

Time (sec)
300

150

100

50

-50

o
LL

6

in

«
O
LL
O
<D

0)
T3

'ra
o

0)
T)

-100
0)

Figure 8: Optimum flight without g-load constraint

19

1.2*10!

8 i*io5

i 8*1°4

£ 6*104

- 4»104

•o

5 2*104

0

,5 -

Altitude (m)
Latitude <deg N)
Longitude (deg W)
velocity (m/s)
Aero-Forces
G-Forces

to
cuo
o

50 H-
O

£
6

•50 -|
o

0)

-100 .|
CO

100 200 300

Time (sec)
400 500

Figure 9: Optimum flight with g-load constraint

Further, Figure 10 shows that there are indeed nominal values of the variables such that

the g-load can be made as low as 7.5. Note that there was no constraint on reliability in this

model. Thus, further work needs to be done to investigate this design since we know from

Figure 7 that a low g-load mission typically has low reliability.

CO

1 10
o

CO

I 5
CO

8
o
LL

6

G-Forces, unconstrained
G-Forces, 12.0 max. allowable

Oodpooooooooo

100 200 300

Time (sec)
400

Figure 10'. Reliability variations with max. G-load

20

8 Conclusions and Generalization to other Missions

Further test and development of the analytical model is proposed. Following our project

NAG 9-616 with NASA-JSC, an immediate step is to fully implement the model on LifeSat

in which we will

• Compare our predictions with Monte Carlo analysis. Assess the error due to the

approximation employed.

• Study more accurate approximations, as well as other types of probability density

functions.

Also to be investigated is the problem of generalizing the analytical model so that it can

be applied to other systems for which the reliability of performance is an important concern,

as is the case for many problems in mission control. As our collaboration with the Systems

Engineering Division of NASA-JSC continues, we will identify and solve additional problems

of importance. In general, the applicability of our analytical model is based upon two basic-

assumptions: (a) Some simplified form of the governing equations is available, and (b) The

probability density functions are explicit. It must be pointed out that the simplifications in

the governing equations are not a handicap since this method is being developed as a design

tool and not as a replacement for detailed Monte Carlo simulations.

21

9 Program SATSIM
The following files are necessary to run the program SATSIM: satsim.f, Isoda.f, satsim.dat.
The flight data is input via satsim.dat. Isoda.f is a ODE solver from the well-known ODE-
PACK. The subroutine that includes the machine specific constant in Isoda is also included
here for completeness. The rest of the solver routines can be down loaded from NETLIB
(ftp to research.att.com). On a unix machine, the following commands are used to compile
and run SATSIM:

'/, ±77 -c Isoda.f
'/, f77 -o satsim satsim.f Isoda.o
'/, satsim

File satsim.dat

0.12192d6 initial altitude (m)
45.8017 geodetic latitude (deg) [i.e., 90 - theta]
-105.42323 longitude, west, (deg) [i.e., phi - 180]
-5.7607 flight path angle, (deg)
9946.57 inertial velocity (m/sec) -
180.0 azimuth angle (deg)
********* other problem specific data ***********
1557.66 satellite mass (kg) 3434 Ib * .45359
0.0 angle of attack (deg)
0.0 vehicle lift coeff.
0.66512 vehicle drag coeff.
0.55 drogue chute drag coeff.
0.8 main chute drag coeff.
4.8616 vehicle area (sq. m)
4.104 drogue chute area (sq. m)
51.234 main chute area (sq. m)
1.5 drogue chute deployment Mach number
3048.0 main chute deployment altitude (m)
1.225 atm. density at sea level (kg/cu.m)
25.0 alpha rotational speed (deg/sec)
2.0 time step for integration (sec)
0.0 wind speed (mph, positive west to east)

File satsim.f

c***

c satsim.f version 1
c August 20, 1992
c Earth
c rotation effects added; other flight data is provided for
c for plotting, time step for integration is input in

22

c the data file. The only item yet to be added is drogue
c chute deployment. The main chute deploys.
c***

c***
c satsim.f - Version 1
c
c simple simulation program for lifesat vehicle .
c June 17, 1992
c by J. R. Jagannatha Rao
c
c The equations have been derived in spherical coordinates
c arid will be integrated using the odepack solver LSODA.
c At this time, the inertial effects due to the rotation of the
c earth have not been included.
c
c***************************** *************************************

implicit real*8(a-h,o-z)

external fex

c these are parameters required by Isoda and should be
c changed for a new problem.

parameter (neq=6,lrw=150,liw=30)
parameter (ndimy = 30)

c input data file unit number
parameter (idata = 8)
parameter (iecho=6)
parameter (iplot=12)

dimension y(ndimy), atol(neq), rwork(lrw), iwork(liw)

c open proper files
open(unit=idata, file='satsim.dat')
open(unit=iplot, file=Jsatsim.plt')

pi = 4.0*atan(1.0)
degree = pi/180.0
earth_radius = 6.377656d6 ! (m)
write(iecho,*)
write(iecho,*) ' LANDSTAT SATELLITE SIMULATION PROGRAM
write(iecho,*) ' Input Data:- '

23

c initial values of the state vector
c
c y(l) := r
readddata,*) altitude
writedecho,*) 'altitude => ', altitude, ' (m)'

y(l) = altitude + earth.radius
c y(3) := theta
readCidata,*) geod.lat
C234567890123456789012345678901234567890123456789012345678901234567890
writedecho,*) 'geodetic latitude => ', geod_lat, ' (deg)'

y(3) = (90 - geod_lat)* degree
c y(5) := phi
readCidata,*) wlongitude
writeCiecho,*) 'longitude => ', wlongitude, ' (deg. W)'

y(5) = (180 + wlongitude) * degree

c read flight path angle, (deg)
read(idata,*) flight_path
writedecho,*) 'flight path => ', flight.path, ' (deg)'
c convert to radians
flight.path = flight_path*degree
c read inertial velocity, vel_init (m/sec)
readddata,*) vel_init
write(iecho,*) 'inertial velocity => ', vel_init, ' (m/sec)'
c read azimuth angle, (deg)
readddata,*) azimuth
writedecho,*) 'azimuth angle =>', azimuth, ' (deg)'
c convert to radians
azimuth = azimuth*degree

c y(2) := rdot
rdot = vel_init*dsin(flight.path)

y(2) = rdot
c y(4) := thetadot
thetadot = vel_init*dcos(flight_path)/y(l)

y(4) = thetadot
c y(6) := phidot (from azimuth angle)

phidot=(vel_init/(y(l)*dsin(y(3))))*dcos(azimuth - pi/2.0)
y(6) = phidot

c read other problem specific data
y(7) = earth_radius
c read a comment line
readddata,*)
c satellite mass, satmass
readddata,*) satmass
writedecho,*) 'Satellite Mass => ', satmass, ' (kg)'

24

y(8) = satmass
c angle of attack, alpha_init
readCidata,*) alpha_init_deg

writeCiecho,*) 'angle of attack => ', alpha_init_deg,' (deg)'
y(9) = alpha_init_deg*degree
c vehicle lift coefficient,clift
readCidata,*) clift
y(10)=clift
c vehicle drag coefficient, cdrag
readCidata,*) cdrag
y(ll)=cdrag
c drogue chute drag coefficient, cdrogue_drag
readCidata,*) cdrogue_drag
y(12) = cdrogue.drag
c main chute drag coefficient, cmain_drag
readCidata,*) cmain.drag
y(13) = cmain_drag
c vehicle frontal area, varea
readCidata,*) varea
y(14)= varea
c drogue chute area, drogue_area
readCidata,*) drogue_area
y(15)=drogue_area
c main chute area, cmain_area
readCidata,*) cmain_area
y(16)= cmain_area
c drogue chute deployment Mach number
readCidata,*) drogue_mach
y(17)= drogue_mach
c main chute deployment altitude
readCidata,*) cmain_altitude
y(18) = cmain_altitude
c atm. density at sea level
readCidata,*) density_sl
y(19) = density.sl
c alpha rotational speed
readCidata,*) alpha_rate
yC20) = alpha_rate
c time step for integration
readCidata,*) tstep
c wind speed, mph, positive west to east
readCidata,*) wind_speed
y(21) = wind_speed * 0.44704

c initial value of the independent variable 't'

25

t = O.OdO

c first point where output is desired
tout = l.OdO

c itol is 1 if atol is scalar, 2 if atol is an array
itol = 2

c relative tolerance parameter (scalar)
rtol = l.Od-6

c absolute tolerance parameter(s)
atol(l) = l.Od-4
atol(2) = l.Od-4
atol(3) = l.Od-6
atol(4) = l.Od-6
atol(5) = l.Od-6
atol(6) = l.Od-6

c
itask = 1

c
istate = 1

c
iopt = 0

c use the following if optional inputs are being used.
c do 22 i=5,10
c iwork(i) = 0
c rwork(i)=0.0
c 22 continue
c iwork(6) = 500

jt = 2

c main integration cycle
do while (y(l) .ge. earth_radius)

call lsoda(fex,neq,y,t,tout,itol,rtol,atol,itask,istate,
1 iopt,rwork,lrw,iwork.liw,jdum,jt)

geod_lat = 90 - (y(3)/degree)
wlongitude = y(5)/degree - 180.0

write(iecho,20)t,y(l), geod_lat , wlongitude
20 format(7h at t =,e!2.4,6h y =,3el4.6)

if ((istate .It. 0)) then
80 write(iecho,90)istate
90 format(///22h error halt., istate =,i3)

26

stop
end if

40 tout = tout + tstep

write(iecho,60)iwork(ll),iwork(12),iwork(13),iwork(19),rwork(15)
60 format(/12h no. steps =,i4,llh no. f-s =,i4,llh no. j-s =,i4/

1 19h method last used =,i2,25h last switch was at t =,e!2.4)

c write quantities in the plot file
call forces (neq.t.y, fr, ftheta, fphi,velnorm,aero_forces,
1 g_forces)

current_altitude = y(l) - earth_radius
write(iplot,91) t, current.altitude, geod_lat, wlongitude,

1 velnorm, aero_forces,g_forces
91 format(lx,f6.2,lx,fl0.2,lx,fl0.3,lx,fl0.3,lx,fl4.5,lx,f8.3,

1 Ix,f8.3)
end do

write(iecho,*) >*******************'
write(iecho,*) ' satellite landed !'
geod_lat = 90 - (y(3)/degree)
wlongitude = y(5)/degree - 180.0
write(iecho,*)' geod_lat =>',geod_lat,

1 ' longitude =>'.wlongitude

stop
end

subroutine fex (neq, t, y, ydot)
implicit real*8(a-h,o-z)
dimension y(30), ydot(6)
r = y(l)
rdot = y(2)
theta = y(3)
thetadot = y(4)
phi = y(5)
phidot = y(6)
earth_radius = y(7)
satmass = y(8)
alpha.init = y(9)
clift = y(10)
cdrag = y(ll)
cdrogue.drag = y(12)
cmain_drag = y(13)
varea = y(14)

27

drogue_area = y(15)
cmain.area = y(16)
drogue.mach = y(17)
cmain_altitude = y(18)
density_sl = y(19)
wind_speed = y(21)
wind.component = -1.0* wind_speed/(r*dsin(theta))

c account for earth rotation
pi = 4.0*atan(1.0)
degree = pi/180.0

earth_rot = (1.0/240.0)*degree
phidot = phidot + earth_rot + wind_component

call forces (neq.t.y, fr, ftheta, fphi,velnorm,aero_forces,
1 g_forces)
ydot(l) = y(2)
ydot(2) = fr + r*(thetadot**2 + phidot**2 *(dsin(theta)**2))
ydot(3) = y(4)
ydot(4) = (1.0/r)*(ftheta + r*phidot**2*dsin(theta)*
1 dcos(theta) - 2*rdot*thetadot)
ydot(5) =y(6)
ydot(6) = (1.0/(r*dsin(theta)))*(fphi - 2.0 * r * thetadot*
1 phidot* dcos(theta) - 2*rdot*phidot*dsin(theta))

return
end

subroutine forces(neq,t,y,fr,ftheta,fphi,velnorm,aero_forces,
1 g_forces)

implicit real*8(a-h,o-z)
dimension y(30)
dimension fgravity(3),faero(3), vel(3), total_force(3)
dimension el(3),e2(3), dirn_lift(3)
r = y(l)
rdot = y(2)
theta = y(3)
thetadot = y(4)
phi = y(5)
phidot = y(6)
earth_radius = y(7)
satmass = y(8)
alpha.init = y(9)
clift = y(10)
cdrag = y(ll)
cdrogue_drag = y(12)

28

cmain_drag = y(13)
varea = y(14)
drogue_area = y(15)
cmain_area = y(16)
drogue_mach = y(17)
cmain_altitude = y(18)
density.sl = y(19)
alpha.rate = y(20)
wind.speed = y(21)
wind_component = -1.0* wind_speed/(r*dsin(theta))

pi = 4.0*atan(1.0)
degree = pi/180.0
earth_rot = (1.0/240.0)*degree
phidot = phidot + earth_rot + wind_component

c compute forces due to gravity
fgravity(l) = -9.81*(earth_radius)**2/r**2
fgravity(2) =0.0
fgravity(S) = 0.0

c compute forces due to aerodynamic effects
density=density_sl*dexp(-l.0*(r-earth_radius)/7162.8)

c compute reference area for drag
if (r .le. (earth_radius + cmain.altitude)) then

ref_area = cmain_area + drogue_area + varea
cdfinal = (cdrag*varea + cdrogue_drag*drogue_area

1 + cmain_drag*cmain_area)/(varea + drogue_area +
2 cmain.area)
else

ref_area=varea
cdfinal=cdrag
endif
cdfinal = cdfinal*(-l.0)
c velocity vector
vel(l)=rdot
vel(2)=r*thetadot
vel(3)=r*phidot*dsin(theta)
velnorm = enorm(3,vel)

c multiplying factor for aerodynamic effects
faero_factor=density*velnorm**2 * ref_area/(2.0*satmass)

29

c vectors el and e2 for getting lift vector direction
el(l) = - r*thetadot
el(2) = rdot
el(3) =0.0 ' .
elnorm=enorm(3,el)
e2(l) = - r*rdot*phidot*dsin(theta)
e2(2) = - r**2 * thetadot*phidot*dsin(theta)
e2(3) = rdot**2 + r**2*thetadot**2
e2norm = enorm(3,e2)
alphat = alpha_init + alpha_rate*degree*t
dirn_lift(l) = (el(l)/elnorm)*dsin(alphat) +

1 (e2(l)/e2norm)*dcos(alphat)
dirn_lift(2) = (el(2)/elnorm)*dsin(alphat) +

1 (e2(2)/e2norm)*dcos(alphat)
dirn_lift(3) = (el(3)/elnorm)*dsin(alphat) +

1 (e2(3)/e2norm)*dcos(alphat)

c compute aerodynamic forces
faero(l) = faero_factor*(cdfinal*vel(l)/velnorm + clift*

1 dirn_lift(l))
faero(2) = faero_factor*(cdfinal*vel(2)/velnorm + clift*

1 dirn_lift(2))
faero(3) = faero_factor*(cdfinal*vel(3)/velnorm + clift*

1 dirn_lift(3))
c magnitude of the aerodynamic forces
aero_forces=enorm(3,faero)

c finally, the three force components..

c do 92 i=l,3
c faero(i) = 0.0
c 92 continue
fr = fgravity(l) + faero(l)
ftheta = fgravity(2) + faero(2)
fphi = fgravity(3) + faero(3)

total_force(l) = fr
total_force(2) = ftheta
total_force(3) = fphi
c magnitude of the acceleration
g_forces=enorm(3,total_force)/9.81

return
end

30

DOUBLE PRECISION FUNCTION ENORM(N,X)
INTEGER N
DOUBLE PRECISION X(N)

C **********

c
C FUNCTION ENORM
C
C GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE
C EUCLIDEAN NORM OF X.
C
C THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF
C SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE
C SMALL AND LARGE COMPONENTS ARE SCALED SO THAT NO OVERFLOWS
C OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLOWS
C AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED
C SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS.
C THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS
C DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN
C RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF**2 NOT

C UNDERFLOW AND RGIANT**2 NOT OVERFLOW. THE CONSTANTS
C GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER.
C
C THE FUNCTION STATEMENT IS
C
C DOUBLE PRECISION FUNCTION ENORM(N.X)
C
C WHERE
C
C N IS A POSITIVE INTEGER INPUT VARIABLE.
C
C X IS AN INPUT ARRAY OF LENGTH N.
C
C SUBPROGRAMS CALLED
C
C FORTRAN-SUPPLIED ... DABS.DSQRT
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C

INTEGER I
DOUBLE PRECISION AGIANT.FLOATN, ONE, RDWARF, RGIANT, SI ,S2, S3, XABS,
* X1MAX,X3MAX,ZERO

31

DATA ONE,ZERO,RDWARF,RGIANT /I.ODO.O.OD0.3.834D-20,1.304D19/
51 = ZERO
52 = ZERO
53 = ZERO
X1MAX = ZERO
X3MAX = ZERO
FLOATN = N
AGIANT = RGIANT/FLOATN
DO 90 I = 1, N

XABS = DABS(XCD)
IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70

IF (XABS .LE. RDWARF) GO TO 30

C
C SUM FOR LARGE COMPONENTS.
C

IF (XABS .LE. X1MAX) GO TO 10
SI = ONE + S1*(X1MAX/XABS)**2

X1MAX = XABS
GO TO 20

10 CONTINUE

SI = SI + (XABS/X1MAX)**2
20 CONTINUE

GO TO 60
30 CONTINUE

C
C SUM FOR SMALL COMPONENTS.
C

IF (XABS .LE. X3MAX) GO TO 40

S3 = ONE + S3*(X3MAX/XABS)**2
X3MAX = XABS

GO TO 50
40 CONTINUE

IF (XABS .NE. ZERO) S3 = S3 + (XABS/X3MAX)**2
50 CONTINUE
60 CONTINUE

GO TO 80

70 CONTINUE
C

C SUM FOR INTERMEDIATE COMPONENTS.
C

S2 = S2 + XABS**2

80 CONTINUE
90 CONTINUE

C

C CALCULATION OF NORM.
C

32

IF (SI .EQ. ZERO) GO TO 100

ENORM = X1MAX*DSQRT(S1+(S2/X1MAX)/X1MAX)
GO TO 130

100 CONTINUE
IF (S2 .EQ. ZERO) GO TO 110

IF (S2 .GE. X3MAX)

* ENORM = DSQRT(S2*(ONE+(X3MAX/S2)*(X3MAX*S3)))
IF (S2 .LT. X3MAX)

* ENORM = DSQRT(X3MAX*((S2/X3MAX)+(X3MAX*S3)))
GO TO 120

110 CONTINUE
ENORM = X3MAX*DSQRT(S3)

120 - CONTINUE
130 CONTINUE

RETURN

C
C LAST CARD OF FUNCTION ENORM.

END

Function D1MACH
The following machine specific constants were used for both NeXT Station Turbo and for
HP 9000/710 workstations.

DOUBLE PRECISION FUNCTION DIMACH(I)
C
C DOUBLE-PRECISION MACHINE CONSTANTS

C

C D1MACHC 1) = B**(EMIN-1), THE SMALLEST POSITIVE MAGNITUDE.
C

C D1MACHC 2) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.
C

C D1MACHC 3) = B**(-T), THE SMALLEST RELATIVE SPACING.
C

C D1MACHC 4) = B**(1-T), THE LARGEST RELATIVE SPACING.
C

C D1MACHC 5) = LOGIO(B)
C

C TO ALTER THIS FUNCTION FOR A PARTICULAR ENVIRONMENT,
C THE DESIRED SET OF DATA STATEMENTS SHOULD BE ACTIVATED BY
C REMOVING THE C FROM COLUMN 1.
C ON RARE MACHINES A STATIC STATEMENT MAY NEED TO BE ADDED.

C (BUT PROBABLY MORE SYSTEMS PROHIBIT IT THAN REQUIRE IT.)

C

C FOR IEEE-ARITHMETIC MACHINES (BINARY STANDARD), ONE OF THE FIRST

33

C TWO SETS OF CONSTANTS BELOW SHOULD BE APPROPRIATE. IF YOU DO NOT

C KNOW WHICH SET TO USE, TRY BOTH AND SEE WHICH GIVES PLAUSIBLE

C VALUES.

C
C WHERE POSSIBLE, DECIMAL, OCTAL OR HEXADECIMAL CONSTANTS ARE USED

C TO SPECIFY THE CONSTANTS EXACTLY. SOMETIMES THIS REQUIRES USING
C EQUIVALENT INTEGER ARRAYS. IF YOUR COMPILER USES HALF-WORD

C INTEGERS BY DEFAULT (SOMETIMES CALLED INTEGER*,2), YOU MAY NEED TO
C CHANGE INTEGER TO INTEGER*4 OR OTHERWISE INSTRUCT YOUR COMPILER

C TO USE FULL-WORD INTEGERS IN THE NEXT 5 DECLARATIONS.

C
C COMMENTS JUST BEFORE THE END STATEMENT (LINES STARTING WITH *)
C GIVE C SOURCE FOR D1MACH.

C
INTEGER SMALL(2)
INTEGER LARGE(2)
INTEGER RIGHT(2)
INTEGER DIVER(2)
INTEGER LOG10(2)
INTEGER SC

C
DOUBLE PRECISION DMACH(5)

C
EQUIVALENCE (DMACH(l) ,SMALL(D)
EQUIVALENCE.(DMACH(2),LARGE(1))

EQUIVALENCE (DMACH(3),RIGHT(1))
EQUIVALENCE (DMACH(4),DIVER(1))
EQUIVALENCE (DMACH(5),LOG10(1))

C
C MACHINE CONSTANTS FOR BIG-ENDIAN IEEE ARITHMETIC (BINARY FORMAT)

C MACHINES IN WHICH THE MOST SIGNIFICANT BYTE IS STORED FIRST,
C SUCH AS THE AT&T 3B SERIES, MOTOROLA 68000 BASED MACHINES (E.G.

C SUN 3), AND MACHINES THAT USE SPARC, HP, OR IBM RISC CHIPS.
C

DATA SMALL(1),SMALL(2) / 1048576, 0 /
DATA LARGE(1),LARGE(2) / 2146435071, -1 /

DATA RIGHT(1),RIGHT(2) / 1017118720, 0 /
DATA DIVER(1),DIVER(2) / 1018167296, 0 /

DATA LOG10(1),LOG10(2) / 1070810131, 1352628735 /, SC/987/

C

C

C *** ISSUE STOP 779 IF ALL DATA STATEMENTS ARE COMMENTED...
IF (SC .NE. 987) STOP 779

C *** ISSUE STOP 778 IF ALL DATA STATEMENTS ARE OBVIOUSLY WRONG...
IF (DMACH(4) .GE. l.ODO) STOP 778

IF (I .LT. 1 .OR. I .GT. 5) GOTO 999

34

D1MACH = DMACH(I)

RETURN
999 WRITE(*,1999) I

1999 FORMATC D1MACH - I OUT OF BOUNDS',110)

STOP

END

35

