
_ *_ N96- 12945

Constructing Complex Graphics Applications With
CLIPS and the X Window System

Ben M. Faul

TRW Defense Systems Group

Carson, CA 90746

_nl]nfln.n_Nn_D _i,

I1[TM _ulllllluu

708

1. ABSTRACT ... 1

2. INTRODUCTION ... 1

3. APPROACH ... 2

4. DATA ACQUISITION AND MANIPULATION 2

4.1 Inter-process Communications Data 2

4.2 Language Interface For Inter.process Communications 4

4.3 Mathematical Data .. 5

4.4 Language Interface For Data Analysis 5

5. GRAPHICS ... 6

5.1 Two Dimensional Graphics 6

5.2 Three Dimensional Graphics 6

5.3 Language Interface For Graphics 6
5.4 Definition of XCLIPS Windows 7

5.5 Printing ... 11
5.6 XCLIPS Interface to the UNIX X Window System 11

m XCLIPS APPLIED TO A REAL PROBLEM 12

6.1 Problem Definition 12

6.2 System Architecture 13
6.3 Demonstration ... 14

6.4 XCLIPS Programs ... 18
6.4.1 ANALYZE Source Code 18

6.4.2 PROJECTION Source Code 20

6.4.3 XCLIPS Extensions Glossary 21

7. CONCLUSIONS ... 22

8. FURTHER READING .. 23

709

1. ABSTRACT

This article will demonstrate how the artificial intelligence concepts in CLIPS used to solve

problems encountered in the design and implementation of graphics applications within the

UNIX-X Window System environment. The design of an extended version of CLIPS, called

XCLIPS, is presented to show how the X Window System graphics can be incorporated without

losing DOS compatibility.

Using XCLIPS, a sample scientific application is built that applies solving capabilities of both

two and thee dimensional graphics presentations in conjunction with the standard CLIPS

features.

2. INTRODUCTION

The CLIPS language provides most of the control functions required for building expert systems.

Two areas of the language identified that could use improvement are in the areas of advanced

graphics presentation and data analysis functions.

To apply CLIPS to the solution of very complex scientific or business applications, the language

requires extensions to handle extended data analysis and graphics presentations problems

normally encountered in these systems.

In designing extensions to the CLIPS system to handle these kinds of problems, a survey of

several scientific and presentation graphics systems was done to determine the new features.

The survey of these other systems yielded the following capabilities that would be most desirable

in the extended CLIPS expert system shell:

Inter-process communications - Many problems are better solved by the ability to use a
server/client architecture.

2D & 3D Charting/Graphics - A picture is worth a thousand words.

Printing of Charts/Graphics - Hard-copy is needed, in order to publish the charts and graphs.

Data Smoothing - Reduces noise in a set of experimental data.

Curve Fitting - Polynomial and cubic splines curve fitting to a set of values.

Simultaneous Equations - Solves systems of linear equations.

The remainder of this document describes the philosophy of how CLIPS was extended to

incorporate these new features and how well the resultant XCLIPS performs in solving a non-

710

trivial problem.

3. APPROACH

The design approach for extending the CLIPS language involves two distinct tasks.

The second in'st involved designing a graphics system for XCLIPS to use. While the X Window

System was chosen as the graphics sub-system, linking XCLIPS directly to X would obviate the

expert systems from ever being used on DOS; the X Window System is not available on DOS,

nor is it ever likely to be available on DOS.

The second task involved linking the XCLIPS language to the data analysis algorithms and

graphics sub-system. For the most part, interfacing XCLIPS to these sub-systems follows the
method defined in section 2, in the CLIPS 4.3 Advanced Programming Guide. However, the

interface to some of the data analysis functions r_uires the use of vectors and matrices as

parameters. Because the data types of standard CLIPS are not convenient for representing

matrices, the language had to be extended in a non-standard manner.

4. DATA ACQUISITION AND MANIPULATION

Advanced data handling capabilities required by XCLIPS fall into two categories: inter-process

communications and the mathematicics based tasks such as curve-fitting and the like.

4.1 Inter-process Communications Data

Many applications are better implemented as separate cooperating entities - using a server/client

architecture.

A familiar server/client architecture may be found in large database management systems.

Typically, the only program that actually updates the database is the "server" process. The user

"client" programs communicate their requests for processing to the server, that handles the

requests and returns the appropriate responses. In such a way, access to the database is

maintained through a singleprocess.

In the XCLIPS system, the inter-processmechanism used isthe TCP protocol.Using TCP, an

XCLIPS progr-an may communicate directlyto any process within the sarnc machinc, or any

process on any machine thatthe user can accessvia the localor wide-area network.

In order to open a communications path between programs, the callerand receivingprograms

firsthave to bc ready tomake connections.The two programs thatwillbe communicating agree

beforehand which communications channel (or "socket")willhandle the call.The program that

will be called prepares to receive by making a function callto place the socket into the

"accepting state".The function that places the program into the accepting statereturns

immediately with statusindicatingwhether any other program isready to communicate. In this

711

way, the program can continue processing, without the need for waiting for a connection to

complete.

Periodically the accepting program checks the status of the socket to find out if a connection has

been accepted.

The program that wishes to place a communications caU to another program specifies the add.,-css

of the program to be called. This address consists of the Internet name and socket number. This

action puts the calling program in the "opening state".

When the opening program makes the function call to open the communications socket, the

function waits for the call to complete before returning; however, ff the call does not complete

within 5 seconds the call returns with an error.

When the open completes, the opening program gets a return code indicating success. Also, the

called program, which is periodically checking the socket for a completed call likewise gets a

return code indicating that the communications channel is now open for communications.

Once established, bi-directional communications is as easy as reading and writing to a file.

To promote efficiency, when a socket is read by a rule in XCLIPS, the socket read returns

immediately, whether or not data is actually available. The socket read call returns the number

of bytes it read. When the n:turn code is greater than zero, data is ready to be processed.

To demonstrate how easy implementing inter-process communications within XCLIPS programs

can be, consider the following rules for sending and receiving messages across a network.

In the rules defined below, the process listens on socket 3000; when successful, the socket

descriptor 1 is used for reading a message from the network and then printing it on the terminal.

(dcfrulc listen "IAstes2 for network open"

(not (_ea,:ct corned))
s>

(if (> 0 0qetAccept 3000 1)
then

(assert (soc_ open)))

(defrule read-socket "If data in socket, them print"

(socket open)
m>

(bind ?ari_ OqctReai l))
(if (n_; ?su.mg"')
-->

(printout t ?suing t)))

In the foLlowing rules the process opens a connection to a process on machine "shasta" at socket

712

3000 (the previously described rules). Once the connection is open the "write-socket" rule reads

from the terminal and sends the message to the other process on machine shasta.

The "read-socket" rule of the other process reads the data sent by the "write-socket" rule and then

prints this data on the terminal.

(defrule setup "Setup the call"

(not (call sen,p))
m>

(GetHostByName "shasta')
(mum (call setup)))

(defrule check-socket "Cheek socket for open success"
(not (socket open))
(call setup)
-->

(if (> 0 (NetOpen 3000 1))
then

(assert (socket open)))

(defrale write-socket "Write to socket"
(socket open)
_->

(NetWritc (read) 1)))

These two programs may be on the same machine, on different machines on the same local-area

network, or on different machines separated across the world on a wide-area network.

4.2 Language Interface For Inter-process Communications

In the UNIX environment, the programmatic interface to the TCP layer is done through file

descriptors. However, in a DOS system, TCP sockets are separate from the file descriptors.
Because this bifurcation of file/socket descriptors is a given on IX)S, in the spirit of keeping

DOS and UNIX versions of XCLIPS equivalent, this bifurcation of file/socket descriptors is

retained in the UNIX version. Note that while file I/O on both DOS and UNIX is of the blocking

variety, Network I/O on XCLIPS is of the non-blocking type.

As can be seen in the XCLIPS programs of the previous section there arc several new language

constructs introduced. Actually, this network capability is accomplished by the introduction of

only five new commands to the language.

(GetHostByName) - Identifies the program to be called, by its Internet address.

{NetAccept) - Place a specified socket in the "accept" state. (Listenfor a call.)

fNetO_n) - Place a specifies socket in the "opening" state. (Place a call.)

"/13

(NetWrite) - Send data m the other program.

(NetRead) - Receive data from the other prograrn.

The ability of XCLIPS rules to communicate across a network, in a wansparent, real-time fashion

opens up new vistas for CLIPS applications.

4.3 Mathematical Data

The XCLIPS language includes many functions (over 75) for easily handling and analyzing large
volumes of data. Section 2 of this document details the kinds of functions available for data

analysis.

4.4 Language Interface For Data Analysis

All of the data analysis functions involve operations on floating point arrays or matrices. While

CLIPS has a vector data type, it is not suitable for handling large amounts of data, nor are these

vectors shareable across rules.

To accommodate easier handling of single and two dimensional arrays, as well as for the ability

to share this kind of data across rules, two new data types are introduced -- Vector (single

dimension) and Mawix (two dimensions). These new data types are accessed by name as string

variables. The new data types have their own actions for assigning and evaluating elements.

As representative of the class of data analysis functions available in XCLIPS, the curve-fitting

functions are briefly discussed below:

In the curve-fitting section of the XCLIPS language there are tth-r,e functions available.

(PolyCurveFit) is a function that fits a polynomial with linear coefficients to a dependent -

independent variable set of data.

(CubicSvlines) is a function that fits a set of polynomial equations m a discrete set of data.

(CalcSvline) is a function that will calculate the cubic spline interpolation of a y-given value

given an x-value of the cubic splines coefficient matrix calculated by the function CubicSplines.

These curve fitting functions are representative of the power and flexibility of the functions

available within XCLIPS. For sample uses of these functions refer to Section 6.4.

714

$. GRAPHICS

5.1 Two Dimensional Graphics

The XCLIPS language provides both plot and chart graphics, as well as object oriented drawing.

Graphical representations are often the best method for conveying information derived from a

mathematical analysis; the pictorial representation of a sine wave carries more information to the

reader than an equation or columns of numbers.

There are approximately fifty functions available for 2D graphics. The following table details the

kinds of features available. The extensions were written in a machine-independent manner, all

of these graphics functions are available under both DOS and UNIX versions of XCLIPS.

Automatic Axes and Scaling

Automatic Grid Drawing

Line Plotting

Bar Plotting

Contour Plotting

Pie Charting

Patterning

Text Printing
World <-> Real Coordinate Translations

Color Selection

Object Oriented Drawing

5.2 Three Dimensional Graphics

Building on the 2D graphics capabilities, XCLIPS implements 3D projections using 2D functions.

There are thirty 3D graphics functions available in XCLIPS. The following table summarizes the

capabilities available in the language:

World <-> Actual Coordinate Translation

Concatenation

3D Rotation

Perspective Selection

3D Scaling
Color Selection

Solid Drawings

5.3 Language Interface For Graphics

To facilitate an XCLIPS product portable to both DOS and UNIX, XCLIPS uses an arbitrarily

defined that is neither specific to DOS or UNIX. The XCLIPS language interfaces to this

arbitrary window system. In this manner, the language is independent of the native DOS graphics

715

or the X Window System based graphics. The graphics commands include both low-level (draw

line, point, etc.) to very high-level (auto-axes generation, draw contour, draw 3D in 2D

projection, draw object and the like) commands.

5.4 Definition of XCLIPS Windows

The window system used internally by XCLIPS is an arbin'ary one designed to be portable to

both the DOS and UNIX operating systems.

The DOS version of XCLIPS works on Pcs using CGA, EGA, VGA, and Hercules graphics

cards. The XCLIPS programs art independent of the graphics card used in the PC. Of course,

color application's output is converted to black and white on monochrome displays; nonetheless

the XO.,IPS application still run. On the DOS screen up to 10 "windows" may be created by the

application. Each of these windows is separately accessible by the XCLIPS program. The

windows may or may not overlap as the programmer desires. These windows are accessed with

a "world" coordinate system, defined by the user program.

In the UNIX-X Window environment, XCLIPS creates an X window that corresponds m the DOS

screen. Within this X window, up to 256 sub-windows (instead of 10) may be created by the

XCLJPS program. If the user program desires, the resolution of the XCLIPS window may

correspond to a resolution found under DOS on CGA, EGA, VGA or Hercules graphics adapters.

However, the XCLIPS program may select a base window to be of any size that the X Window

System display can support. The UNIX based XCLIPS program uses the same base color scheme

as the DOS system uses. However, the XCLIPS program may utilize all the colors available to

the X Server, if the developer so desires; but, such programs are not backwards compatible under

DOS. Even though the UNIX based extended XCLIPS has higher resolutions, more colors, virtual

memory in its favor, the XCLIPS programs will still run under DOS, subject to DOS's memory
restrictions.

To demonstrate how well the arbitrary window interface works, consider the following XCLIPS

rules that describes a wire-frame house in a 3D perspective as displayed on a DOS screen and

a UNIX X Window.

(deft-ale main "Initialize the sysmm"

(not (syuem initialized))
a=>

(dait3)
Onit3D 6)
(SetWorldCoordmates - 10 - 10)

(SelectCokr 3)
(WorldScalc 1 2)
(Worldgota_3 10 0 1)

(ar_m-L(s_u:mitalicized))

(men (drawhouse)))

716

(defruledraw-house"Drawthewire-fTmnehouse"
•?rein <- (draw house)

z>

(retract ?_m)

(SelectColor 15)

(Move3Abs I)
(Line3Abs I -I)

(L_3Abs I -I -])

; right side
(Line3Abs I -I)

(I..ine3Abs 1)

(Move3Abs -1)

CL.ine3Abs -1 -1 -1)
; left side

(Line3Abs -1 -1)

(Line3Abs -1)
(Move3Ab$ l)

, from mp
(IAn_3Ab$ -I)

(Move3Abs 1 -I)
(Line3Abs -I -l)

; front bottom

(Move3Abs I -l)

; back top
(L.ine3Abs -I -1)

(Move3Abs I -1 -1)
; back bottom

(Line3Abs -I -I -I)
(Move3Abs I)

(l..ine3Abs 0 1..5 1)
; roof

(L,ine3Abs-I)

(Move3Abs I -I)

(l.,ine3Abs0 I..5-I)

(l.,ine3Abs-I-I)

(Move3Abs 0 1.5 I)

(L.ine3Ab$ 0 1_5 -1))

The following two figures show the resultsof the XCLIPS programs running under both DOS

and UNIX. In Figure I, the DOS screen is displayed. In Figure 2, the UNIX screen is shown,

running the exact same program.

717

+i.i?i::i-........

Figure 1, Screen Dump of DOS Version of "3D House".

718

Figure 2, UNIX Version of "3D House".

719

As Figures 1 and 2 show, by using an arbitrary windowing system the XCLIPS programs are

easily made machine and operating system independent.

$.5 Printing

Users of graphics systems need hard-copy output as well as screen outputs. Since a range of

printers would be used by any given set of users, XCLIPS supports some of the more popular

printers. The language interface to the printer drivers is via a single call, with parameters used

to inform XCLIPS which printer is selected, where m spool the output, and landscape/portrait

modes.

Table 1. Printers Support_ by XCI.,IPS

EPSON MX, FX, LQ Dot Matrix Dot Matrix Printers.

Toshiba Dot Matrix Printers

HP Laser JetPrinters

Plouers implementing Hewlett-Packard Graphics

Language (HPC3L).

A future enhancement will include Post-Script support, as this output format is readily becoming

the standard for publishing.

5.6 XCLIPS Interface to the UNIX X Window System

The graphics subsystem used by XCLIPS is the X Window System. Because the X Window

System is divided into two distinct parts, with all of the device dependent code isolated in the

server, XCLIPS is inherently machine-independent.

XCLIPS utilizes the Xlib programming library for all its graphics requirements. Xlib provides

all of the primitive graphics capabilities needed by XCLIPS; however, since Xlib calls are very

low-level, a separate library called "seglib" was created that supplies high level functions to the

XCLIPS language, such as auto-axes, bar and pie charting, etc., that are of more interest to the

expert system user.

Seglib is organized using a layered approach, making it usable with the Microsoft "graph.lib"

library under MS-DOS and on UNIX under the X Window System XCLIPS expert systems

utilizing graphics capabilities work without modification on either UNIX (using X) or DOS

(using standard DOS graphics).

720

_r

In Figure 3, the operating system independent graphics architecture of XCLIPS is described.

Notice that the top layer, the XCLIPS language

interface and high-level graphics, is common

across both the DOS and UNIX versions of

XCLIPS. The middle layer, also common to both
DOS and UNIX versions, is an interface to the

machine dependent graphics layer (bottom layer).

The middle layer is divided into to two parts. The

top half of the middle layer is an arbitrary

graphics system that communicates to a graphics

library with a compatible calling sequence to

Microsoft's "GRAPH.LIB" library. The bottom

half of the middle layer is an implementation

specific module depending on which operating

system is being utilized. On DOS, this bottom

half is merely a coupling to GRAPH.LIB. On
UNIX this bottom half is a module that translates

GRAPH.LIB calls to X-Window System Xlib

calls.

CL|P| Irtpkloe I|loflaeo

ilaehlao ItqlopoRionl (Irgp|loo

MOeltl tO I_llHPmdogl! Layer

Ikleklme Dependent II,|pklee

Figure 3

Layered Graphics Architecture

The bottom layer is operating system specific. On DOS, this layer is merely the Microsoft

graph.lib library. On UNIX, this bottom layer is the Xlib X Window System library. Using this

architectural approach, XCLIPS remains true to its operating system independence heritage.

Note that this DOS to X Window System library interface at level-2 has the potential to allow

DOS programs written to the Microsoft library to be easily ported to the UNIX/X Window

System interfaces.

6. XCLIPS APPLIED TO A REAL PROBLEM

6.1 Problem Definition

To demonstrate the effectiveness of applying non-procedural languages, such as XCLIPS, to

solving graphics related problems, a fairly sophisticated application is described, and then

implemented. This XCLIPS system will demonstrate the uses of the 2D and 3D graphics

described in Sections 6.1 and 6.2, the inter-process communications mechanisms described in

Section 5.1, and the curve-fitting data analysis functions described in Section 6.3.

721

The dcmonsu'ation system will be a simulated resistance/superconductivity analysis station. This

analysis station will have the following features:

Table 2. Capabilities of the Superconductor Analysis Station

Obtains resistance samples from the surface of the object being analyzed.

In a split window display the resistance samples on the object. This display will show the

actual samples along with a prediction of the resistance curve, and a running computation

of the prediction confidence.

In a scpara_ window, display a 3D projection of the resistance found across the object's

surface. The X and Y axis represent the surface of the object and the Z axis represents the

resistance at that point on the object.

6.2 System Architecture

There will be two instances of XCLIPS running on the UNIX computer that communicate via

inter-process communications mechanisms.

The first XCLIPS system is called "ANALYZE". This expert system is responsible for

communicating with the resistance probe, over a TCP socket. ANALYZE will also handle all

computations involving data gathering and analysis (curve fitting) as well as all 2D graphs). Also,

ANALYZE will handle any user input.

The second XCLIPS system is called "PROJECTION". This expert system is responsible for

generating the 3D projection of the object's resistance. The data for the 3D projection will be a

contour map. This contour map is send to PROJECTION by the ANALYZE expert system.

722

The following figure describes the processing architecture of the complete resistance analysis

work-station.

PROJ ECTI ON I ANALYZE

i .. J

Roll et ence

]Pzobe

• A

Comrnunl cat I onto Modl •

Figure 4, Superconductor Analysis Work Station Architecture

As can be seen in Figure 4, the central server is the process called ANALYZE. ANALYZE

controls input and output to the probe, and "the PROJECTION system. The graphics output of
both ANALYZE and PROJECTION is sent to an X Server.

Due to its inherent server/process architecture, all the processes could be on the same machine,

or each process could be on a different machine across a network. This transparent distributed

architecture is flexible, without burdening the user with having to know the specifics of how the

system operates.

When the analyst starts the session, the ANALYZE expert system is started. ANALYZE then

establishes connections with the resistance probe. Once the connections are successfully started,

ANALYZE then requests user input as to where to place the probe. Once ANALYZE has the

coordinates to analyze it sends the appropriate information to the probe. When ANALYZE

receives the data from the probe it displays the information in its 2D windows as line-plots.

When the analyst wants to view a 3D projection of the object's resistance the user pushes an icon

with the mouse button. ANALYZE then starts the PROJECTION expert system, establishes a

TCP connection with it, and passes the data to be displayed as a contour map.

PROJECTION then computes the 3D projection of the contour map and displays the projection.

6.3 Demonstration

The resistance analysis work-station is started by typing "xclips -b analyze.b" at the UNIX shell

prompt.

After ANALYZE begins running, the coordinates of the object are sent to the probe. After the

723

necessary data is retrieved from the probe, the graphs arc then prescntexi. In the figure on the

next page, the 2D chart of the resistan_ of the material under test along with a prediction of the

martial's resistance appears in the upper window. In the lower window the error analysis of the

pr_lictions appear as a line-plot.

724

Noti_ the "printer" icon in the lower ldt hand side of the upper graph window, and the Gothic

"P" icon in the lower left hand side of the lower graph window. I_pressing the mouse button

while the mouse rests on the "printer" icon causes the rule to fu"e that prints the window on a dot

matrix printer. Depressing the mouse button while the mouse cursor rests on the Gothic-P icon

starts the PROJECTION expert system.

Figur_ 5, ANALYZE (2D) Display

725

The following figure shows the result of depressing the Gothic-P icon, that results in the 3D

projection of the contour map.

J

Figure 6, ANALYZE (2D) and PROJECTION (3D) Display

725

6.4 XCLIPS Programs

In this section the two expert systems source code is listed in sections 6.4.1 and 6.4.2. In Section

6.4.3 a glossary of the XCLIPS extensions used in this article are presented.

6.4.1 ANALYZE Source Code

(de.fTule initialize "Initialize the ANALYZE expert system"

(not (system initialized))
ffi>

; allocate storage
(vector "x,t,,_" 50)

(Vector "ydam" 50)
(Vector "indvar" 50)

(Vector "depvar" 50)
(Vector "coef"50)

(Vector "coefsig" 50)
(Vector "yesC 50)
(Vector "resid" 50)

(Vector "numobs" 1)
(Mamx "contour" 50)

; connect to probe & get data
(GetHostByNamc "probe')
(bind ?test O)

(while (= ?test O)
(bind .'?test(NetOpen 3000 1)))

(NetWrite I "-2 0 2.5 0")
(bind ?test 0)

(while (= ?test O)
(bind ?test (NetRead I)))

(Assign "numobs" 0 ?test)
CXTide "ANALYZE')

C_tSEGraphi_ 60O6OO)
(assert (system initialized)))
(luitSEGraphics 6)

(defrulc display-and-fit ""
(system initialized)
=>

(bind 7numobs (Evaluate "numob$" 0))

; fit data to 1_ order polynomial
t_etRead 1 (Address"depvar'3)
(NetRead 1 (Address "iadvar'))

(PolyCurveFit "indvar" "depvm'" ?numobs
"order" "coef" "yest" "resid" "coefr, ig')

(SetCarrentWindow 3)

(BorderCurrentWindow 2)
(SelectColor 6)

(SetAxesType 0)
(AutoAxes "xdata" *ydata" ?numobs l)
(L,inePlotData "xdam" "ydam" ?numobs 3 0)

727

(SelectColor 3)
(TitlcWindow "SAMPLE DATA - GREEN, FITFE.D DATA - RED")
(TitleXAxis "PROBE POSITION")
(TitleYAxis *RESISTANCE')

0,ind 7i 0)
(while (<: ?i _umobs)

(Assign "ydaUi"?i (Evaluate "yest" 7i))
(bind ?i (+ 7i i)))

; draw ihc _u'v¢
CLinePlotDam"xdata" "ydata" ?numobs 4 3);
(DrawGrid 10)
(as_n (display t_rs))
(l_gister ('ITimsform(PutObject "printer") 0 0) "print"))

(defrule d/splay-error analym
(di_lay errors)
---->

(SetCurrentWindow 3)

(BordcrCurrentWindow2)
(Sc|ectColor 6)]
(SetAxesType 0)
(bind ?i 0)
(while (<= 7i numobs)

(Assign "ydata" ?i (Evaluate "resid" ?i))

(bind ?i (4-?i i)))
(AuloAxes *xdam" "ydam" ?numobs I)
(B_npl_axa "xdaxa" "yda_" ?numobs 0.05 l)
(TiflcWindow "DATA FIT ERROR ANALYSIS')
('l'ideXAxis "PROBE POSITION')
(TidcYAxis "RESISTANCE")
(DrawGridY I0)
(amen (w_.h mouse))

(Register _'ransform0_utObject "Gothic-P') 0 0) "project'))

(defrule waw.h-mouse "Watch the mouse, and do what it says"
(wa_ mouse)
z_

(while (= O)
(if (= (Mou_l_t) i)

(GetMouie) (bind ?object (Analyze (Pick)))
(if (eq ?object "print")
then

(ScreenDump "/usr/t,cn/spooi" "epson-_q" i I 0))
(U"(eq ?object "project")

then
(system "xclips *bprojecLb &'*)
(GetHos_yNamc "shasta')
(while (_10_ctOpen 3000 2) 0))
(NctWrite 2 50)

(NeiWrite 2 15)
(NeiWrite I "contour_map')
(bind ?_.st o)

728

(while(= ?test0)

(NctRead 1 (Address"contour")))

(NetWrite2 (Address"contour"))))))

6.4.2 PROJECTION Source Code

(defrulecreate-function"Createthecontour map"

(creamfunction)

=>

(Vector "elements" 2)
(while (= 0NelRead I (Address "elements") 0))

(bind 7hum (Evaluate 1 "elements'))
(bind7alloc(Evaluate2 "elements'))

(Mamx "comour.x"?alloc?alloc)

(Matrix "contour.y" ?alloc ?allot)
(Matrix "contours"?alloc ?alloc)
(NetRead 1 (Address "comour.x'))
(NetRead I (Address"contour.x'))

(NeIRead 1 (Address "contour.y'))

;draw thecontourmap

(Vector "pv.x" 5)
(Vector "pv.y" 5)

(Vector "pv.z" 5)
(bind?lower(-1 7hum))

(bind?i(*-I (-.'MumI)))

(while (<= ?i.'_nurn)

(bind?j(*-I (- ?nurnI)))

(while(<= ?j'hmm)

(Assign "H.x" 0 (Evaluate

(Assign "pv.y" 0 (Evaluate

(Assign "pv.z" 0 (Evaluate

"contour.x" (+ ?i?lower)(+?j?lower)))

"contour.y" (+ ?i?lowez)(+7j71oweT)))

"contour.z" (+ ?i ?lower) (+ ?j ?lower)))

(Assign "pv.x" 1 (Evaluate

(Assign "pv.y" 1 (Evaluate
(Assign "pv.z" 1 (Evaluate

"contour.x" (+ ?i .'hmm) (+ ?j ?lower)))

"contour.y" (+ ?i ?nurn) (+ ?j ?lower)))
"contour.z" (+ ?i 7num) (+ ?j?lower)))

(Assign "pv.x" 2 (Evaluate
(Assign "pv.y" 2 (Evaluate

(Assign "pv.z" 2 (EvMuate

"contour.x" (+ ?i _um) (+ 7j _um)))
"coruour.y" (+ ?i ?num) (+ ?j ._um)D

"contour.z" (+ ?i ?num) (+ ?j 7hum)))

(Assign "pv.x"
(Assign "pv.y"

(Assign "pv.z"

3 (Evaluate "contour.x" (+ ?i ?ioweO (+ 7j _um)))

3 (Evaluate "comour.y" (+ ?i ?lower) (+ ?j ?_m)))
3 (Evaluate "contour.z" (+ ?i ?lower) (+ ?j ?num)))

(Assign

(Assign
(Assign

"pv.x"

"pv.y"
"pv.z"

4 (Evaluate"contour.x"(+ ?i ?lower)(+7j?lower)))

4 (Evaluate"contour.y"(+ ?i?lower)(+ ?j7lower)))

4 (Evaluate "contour.z" (+ ?i ?low_) (+ ?j ?lower)))

729

(PolyFdl3D "pv.x" "pv.y" "pv.z" 9,4 5)
(bind ?j (+ ?j 1)))

(bind ?i (+ ?i 1)))

(assert (wamh mouse)))

(defrule watch-mouse "Watch the mouse for click, exit ff found"

(waw.h mouse)
----.>

(while (eq 0 (Gel.Mouse))
(Service))

CClo_SEGrap_cs)
(exiO)

(defrule init "Initialize Comm Port, Draw the Axes"

(not (system initialized))

(while (= (NetAccept 3000 1) 0))
(XTitle "PROJECTION")

(T_t3)
0nit3D 6)
(SetWorldCoordinales -10.0-10.0 10.0 10.0)
(WorldRotate3 20.0)
(WorldRotate3 -45.0 1)

(SelectColor 15)

(Draw3DAxis 10)
(assert (system initialized))
(assea (create funcuon)))

6.4.3 XCLIPS Extensions Glossary

The following list summarizes the XCLIPS extensions used in this presentation.

Address - Returns the address of the object specified.

Assign - Assign a value to matrix or vector at index specified.
AutoAxes - Draw axes from data.

BarGraphData - draw a bargraph from specified data.
BorderC'urrentWindow - Border the current window.

CloseSEGraphics - Close the graphics window.

Draw3DAxis - Draw the 3D axis from specified values.

DrawGrid - Draw a grid in the window.

Evaluate - Return a value from a vector or matrix at specified index.

GetHostByName - Given a host name, initialize the network parameters.

GetMouse - Get the mouse position.

Init3D - Initialize 3D graphics routines.

InitSEGraphics - Initialize the 2D graphics routines.

Line3Abs - Draw a line from current 3D point to specified 3D point.

LinePlotData - Prom specified data, draw the plot.
Matrix - Create a 2I) matrix.

Move3Abs - Move to specified point in 3D.

730

Move3Abs = Move to specified point in 3D.

NetAccept - Accept connections from the network.

NetO_n - Pla_ a call on the network.

NetR_ad - Read data from a process across the network.

NetWrite - Write data to a process across the network.

Persp - Set the 3D perspective.

Pick - I_tenninv if an object is registered at this mouse position.

PolyCurveFit - From specified data, create a curve.

PolyFill3D - Draw a 3D image from a contour map.

PutObject - Put specified object in window.

Register - Register an object at specified position.

Scr_nDump - Print the window contents.

SelectColor - Select current color by an index.

SetAxcsType - Set the axes type to use on subsequent calls.

SetCurrentWindow - Set operations m point into specified window.

SetWorldCoordinates - Set the world coordinams as they relate to the screen.
Ti_Window - Place a title on the current window.

TitleXAxis - Place a title on the X axis in current window.

TitleYAxis - Place a title on the Y axis in current window.

Transform - Transform world coordinates to real.

Vector - Allocate storage for a one din_nsional array.

WorldRotate3 - Rotate a point in a 3D space.

WorldScale - Scale the window by specified world coordinates.

XTitle - Title the window for use by the X Window System window manager.

7. CONCLUSIONS

XCLIPS isreadilyapplicableto solutionsthatrequiregraphicalexpressions.The XCLIPS rule

is a very flexiblecontrolmechanism for handling icons,mouse and keyboard devices, and

drawing simple to very complex pictures.

XCLIPS based graphics solutionsto very complex problems tend to bc straight-forwardand

compact. With the addition of communications support, transparentdistributedXCLIPS

applicationsan: as easy to build as monolithicsystems.

The one area where XCLIPS isdifficultto apply to data intensiveproblems is in the area of

performing cornplcx computations. Ifthe language employed an operatorprecedence grammar,

thisdifficultywould bc eased,but the language would bex:omc lessuniform.

731

8. FURTHER READING

A good understanding of the general graphics principles used in extended CLIPS is contained in

the following reference: Newman, M.N., Sproull, R.F., Principles of Interactive Computer

Graphics, McGraw Hill Book Company, New York.

For information on graphics programming in the PC environment under MS-DOS, two books are

especially helpful: Wilton, R., Programmer's Guide to PC & PSI2 Video Systems, Microsoft

Press, Redmond Washington and in Microsoft Corporation (1987), Microsoft C 5.I Optimizing

Compiler Run Time Library Reference, Microsoft Press, Redmond Washington.

The following book was used a reference for X Window System graphics programming: Nye,

A. (1988), Xlib Programming Manual Vol. 1, O'Reilly & Associates, Sebastapol CA.

The following book describes the algorithms used for solving systems of simultaneous equations

and polynomial curve fitting: Chapra, S.C., Canale, R.P. (1985), Numerical Methods for

Engineers, MeCa'aw-Hill Book Company, New York.

The following document describes advanced programming topics in CLIPS: Giarratano J.C.,

CLIPS Reference Manual, Johnson Space Center, Houston TX.

732

