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Preface

This document constitutes the final report describing work conducted under Grant NAG

2 - 665. The work has been directed at the development of efficient multigrid methods for

the solution of aerodynamic problems involving complex geometries, including the devel-

opment of computational methods for the solution of both inviscid and viscous transonic

flow problems. The emphasis is on problems of complex, three-dimensional geometry. The

methods developed are based upon finite-volume approximations to both the Euler and

the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on

multi-block grids using diagonalized implicit multigrid methods to achieve computational

efficiency. The work is focused upon aerodynamic problems involving complex geometries,

including advanced engine inlets.

The Principal Investigator for the project has been David A. Caughey, Professor and

Director of the Sibley School of Mechanical and Aerospace Engineering at Cornell University.

The Grant Technical Monitor has been

Dr. W. J. Chyu
Applied Aerodynamics Branch
Mail Stop 227-6
NASA Ames Research Center
Tel: (415) - 604-6208

Further information regarding this work can be obtained from:

Professor David A. Caughey
105 Upson Hall
Cornell University
Ithaca, New York 14853
Tel: (607) - 255-3372
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I. Review of Work

Work has been directed towards the efficient solution of the inviscid Euler and Reynolds-

averaged Navier-Stokes equations for aerodynamic flows involving complex geometries. Such

flows include, but are not limited to, transonic flows through engine inlets and those past

complete aircraft configurations. The research focuses upon the development of implicit

multigrid algorithms for these problems, treating three-dimensional problems of great geo-

metrical complexity through the use of multi-block grid systems. The work includes further

development of mesh systems suitable for three-dimensional inlet and wing geometries, the

exploration of parallel computing strategies, and demonstrations of the suitability of the

method to complex engine inlet configurations of interest to NASA.

The multi-block grid approach involves subdividing the computational domain into a

number of sub-domains, each of which is topologically equivalent to a rectangular com-

putational domain. Each sub-domain is chosen to be simple enough that a grid can be

generated relatively easily. Several grid generation packages are available for generating

the grids within the blocks [1,2]. The problem of geometric generality is thus transferred

to that of treating the interfaces between the blocks in the multi-block grid. There are at

least three advantages to this approach. First is the obvious geometric generality arising

from the relative ease with which a boundary-conforming grid can be generated within each

block. A second advantage is the universality of the code which results when the blocks are

chosen so that the boundary conditions on each face of each block are restricted to be of a

single type. This means that the flow solver does not need to be modified each time a new

grid topology is introduced. In effect, the topology of the grid system is embedded within

the structure of the multiple blocks, which is provided as input to the flow solver from the

grid generation step. Finally, the multi-block approach provides a natural framework within

which to implement parallel processing.

In the following sections, work performed on each aspect of the algorithm will be

summarized. More complete information is contained in the Appendices, which contain

copies of papers describing the work in more detail.

A. Implicit Multigrid Solution of the Euler Equations

Implicit methods are attractive for the efficient solution of the Navier-Stokes equations on

the high aspect-ratio grids required for resolution of the flow at large values of the Reynolds

number, but only if they are efficient enough computationally that the increase in conver-

gence rate more than compensates for the increased computational work required for the

solution of an algebraic system of equations in each iteration. The most widely used implicit

methods for multi-dimensional problems are based upon an approximate factorization of the

implicit operator into the product of one-dimensional factors (Briley & McDonald [3], Beam



&; Warming [4]). Since each factor then has a bandwidth that is independent of the num-

ber of unknowns, the computational work per time step is proportional to the number of

unknowns - i.e., to the number of mesh cells. For the Euler equations in three-dimensions,

which comprise a hyperbolic system of five coupled first-order partial differential equations,

this procedure is still relatively expensive since the blocks are 5x5 and the need to include

fourth-difference numerical dissipation terms leads to the requirement to solve block pen-

tadiagonal systems of equations along each grid line in each coordinate direction for each

time step. For steady flows, the procedure can be made much more efficient by performing

similarity transformations on the Jacobians of the flux vectors in each one-dimensional fac-

tor, with the result that only a set of five decoupled scalar pentadiagonal equations needs

to be solved along each line to update the solution for each iteration (time step). (Chaussee

fe Pulliam [5]).

Even implicit algorithms are usually limited to rather modest values of the Courant

number in practice, however, and many hundreds, or even thousands, of iterations of-

ten are required for convergence of the solution on fine grids. The multigrid method is

an attractive convergence acceleration technique, which is capable of greatly reducing the

number of iterations required for convergence. Jameson [6] has successfully implemented

a Full-Approximation Scheme version of multigrid for the Euler equations on structured

grid systems. The multigrid scheme was first implemented for the explicit, Runge-Kutta

time-stepping scheme of Jameson et al. [7], and later by Jameson & Yoon [8] using (block)

ADI as the smoothing algorithm.

Caughey [9] has developed a diagonalized version of the ADI-multigrid scheme for two-

dimensional airfoil problems and, with Turkel [10], has developed improved treatments of

the dissipation terms that introduce less spurious entropy near stagnation points. Yadlin &;

Caughey [11] have extended the algorithm to three-dimensional problems, including com-

putations of the transonic flow past a swept wing. More recently, Caughey has implemented

a symmetric TVD form of the numerical dissipation that greatly increases the robustness

of the scheme [12].

B. Multi-Block Grids

The implementation of implicit multigrid methods on multi-block grids seems relatively

straightforward, but there are a number of strategic choices that must be made, and it

is important to assess the effects of these upon the performance of the algorithm. Yadlin

&; Caughey [13] have performed experiments for two-dimensional problems on multi-block

grids to answer some of these questions before proceeding with three-dimensional implemen-

tations. The implicit multigrid method outperformed by a considerable margin the implicit

method of Belk &; Whitfield [14], which is based upon an approximate Lower-Upper factor-

ization of the implicit operator. In addition, we have investigated the speed-up achievable



using parallel processing on a large, shared-memory multiprocessing supercomputer (the

IBM 3090-600E).

The most important aspect of multigrid on multi-block grids involves the decision of

whether to perform the multigrid cycles within the blocks independently or to perform the

multigrid cycles within all blocks concurrently. We have termed the former a 'vertical'

multigrid strategy and the latter a 'horizontal' multigrid strategy. The 'horizontal' strat-

egy is feasible on shared-memory computers and promises the best multigrid convergence

acceleration, but at the cost of considerably more overhead associated with initiating and

synchronizing parallel tasks (or with communication delays on distributed memory archi-

tectures). The 'vertical' strategy considerably reduces the parallel overhead, but with a

possible penalty in multigrid efficiency. The 'horizontal' multigrid strategy has been ap-

plied successfully to the solution of the Euler equations on multi-block grids (see, e.g., Yadlin

[15]), including parallel implementation on the six-processor IBM 3090-600E (Yadlin [15]

and Yadlin & Caughey [16]).

An implementation of the 'vertical' multigrid strategy for the three-dimensional Euler

algorithm on multi-block grids which avoids the convergence rate penalties associated with

earlier attempts has been developed recently by Yadlin &; Caughey [17]. As described

above, the ability to use the 'vertical' strategy, in which the multigrid cycles are advanced

independently within each block, allows much greater flexibility in grid generation and in

multigrid strategies for complex geometries; in addition, the parallel implementation of this

strategy has much less overhead, with correspondingly greater parallel efficiencies. The key

to maintaining good multigrid performance for the 'vertical' strategy is the introduction

of asynchronous updating of the boundary conditions on the coarser grid levels of the

multigrid sequence. This is done using buffer arrays which are updated with the latest

boundary information as soon as it is computed in each block, while each block also reads

from the buffer arrays of neighboring blocks the latest boundary condition information

currently available.

Work also has been done on the incorporation of more general interface conditions on

the interblock boundaries to account for discontinuities in the grids across these interfaces.

A fully conservative procedure, which requires knowledge of the solution in only one layer

of cells on each side of the interface, has been developed. This data is used to compute the

fluxes across the cells on one side of the interface, then the conservation condition is used

to infer the fluxes through the cell faces on the other side. A similar procedure is used to

guarantee that the dissipative fluxes also are treated conservatively. The solution in only

one layer of cells on each side of the interface is required, even including the evaluation of

the dissipative terms, since it has been found that the fourth-difference dissipative terms

can be neglected, and only the second-difference terms need be computed in those cells



adjoining the interblock boundaries. The development of this idea in two dimensions has

presented by Wang & Caughey [18]. More complete results in two dimensions and results

for a complicated three-dimensional inlet, the geometry and mesh for which were provided

by NASA researchers, are described by Wang [19] and by Wang &: Caughey [20].

C. Implicit Multigrid Solution of the Navier-Stokes Equations

For the two-dimensional Navier-Stokes equations, a study of various ways to include con-

tributions of the viscous terms in the implicit operator, while maintaining the diagonal

form of the algorithm, has been performed by Tysinger &: Caughey [21, 22]. The results

of that study showed that several approximate treatments of the viscous contributions to

the implicit operator could increase the stability of the scheme beyond that of a scheme

in which the viscous terms were treated only explicitly. In particular, incorporation of a

simple diagonal approximation to the contributions of the viscous terms results in a robust

scheme at little additional cost. A three-dimensional, multiblock implementation of the

Navier-Stokes algorithm has also been described by Yadlin, Tysinger &; Caughey [23].

A two-dimensional version of the multi-block version of the implicit viscous algorithm

has been further developed and has been implemented on a distributed-memory, multi-

processing system consisting of a ring of IBM RS/6000 work stations interconnected on a

high-speed optical network. The implementation was performed in a highly modular fash-

ion, using general UNIX socket-based utilities, which feature makes the code easily portable

to any UNIX-based system. A complete description of this work is given by Tysinger [24]

and Tysinger &; Caughey [25].

Incorporation of the turbulence model of Baldwin &; Lomax [26] into the viscous code

has allowed the computation of flows at high Reynolds number. Varma & Caughey [27]

describe the results of these turbulent flow calculations, demonstrating that the multigrid

efficiency remains high even on the highly-stretched meshes required to resolve these high

Reynolds number flows. Careful consistency checks on these solutions have suggested a

way in which to evaluate the integrated effect of numerical dissipation on the accuracy

of the solution. This idea, along with examples demonstrating its application to laminar

and turbulent flow calculations, has been described by Varma & Caughey [28]. Complete

details of the turbulent flow computations, including the accuracy-assessment procedure,

are described by Varma [29].

Finally, a survey paper summarizing all the algorithmic work on the Euler and Navier-

Stokes problems has been written by Caughey [30].
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AIAA-93-3358-CP

Implicit Multigrid Euler Solutions with Symmetric
Total-Variation-Diminishing Dissipation

David A. Caughey*
Cornell University, Ithaca, New York 14853

Abstract

A symmetric Total-Variation-Diminishing (TVD) for-
mulation of the numerical dissipation terms has been
incorporated into a diagonalized alternating direction
implicit multigrid algorithm to solve the Euler equa-
tions of inviscid compressible flow. The new treatment
of the dissipation makes is possible to capture both
very strong and very weak shocks, virtually without
oscillation for the steady flows of interest here. In ad-
dition, the TVD constraint fixes one of the two previ-
ously arbitrary constants in the formulation of the dis-
sipation, and results in both converged solutions and
convergence rates which are relatively insensitive to the
choice of the remaining dissipation parameter.

I. Introduction

The finite-volume approach provides an attractive
framework for approximating the spatial derivatives
appearing in systems of conservation laws, such as the
Euler equations of compressible flow. The popular
scheme of Jameson et a/1 reduces to a central differ-
ence approximation on uniform cartesian grids, how-
ever, and numerical dissipation terms must be added to
stabilize the scheme when solving hyperbolic systems
of equations. The added terms are generally chosen in
the form of an adaptive blend of second and fourth dif-
ferences of the solution in each coordinate direction,
modulated so that the second differences are active
near discontinuities, with the fourth differences pro-
viding only a background dissipation in regions away
from shocks. A sensor, based on an undivided second
difference of the pressure, is used to modulate these dis-
sipative terms. The dissipative terms are scaled with
the spectral radii of the flux-vector Jacobians in each
coordinate direction (see, e.g., Caughey2), but also are
proportional to constants which must be chosen some-
what arbitrarily.

The connection between the dissipation terms added

'Professor, Sibley School of Mechanical and Aerospace Engineer-
ing. Associate Fellow AIAA.

Copyright ©1993 American Institute of Aeronautics and Astro-
c. All rights reserved.

to central difference schemes and the implicit dissipa-
tion contained in upwind methods has been discussed
by Pulliam3, and Swanson & Turkel4 have shown how
these dissipation terms can be chosen to duplicate the
properties of upwind TVD schemes. The essential el-
ements in such a symmetric TVD dissipation scheme
are: (1) an improved shock sensor, and (2) the formula-
tion of the coefficients of the dissipation terms as matri-
ces. The former allows the numerical scheme to reduce
to the same first-order approximation in the vicinity
of shocks of nearly arbitrary strength, while the lat-
ter allows the dissipation terms to be scaled properly
for each individual equation when treating a system of
conservation laws.

For the explicit Runge-Kutta time-stepping scheme
used by Swanson & Turkel4 and Jorgenson & Turkel5,
the additional cost of evaluating the matrix viscosi-
ties is considerable. When a diagonalized alternating
direction implicit (ADI) scheme is used to march the
equations in time, however, the additional computation
associated with implementing the matrix form of vis-
cosities is less significant, since the modal matrices of
the flux- vector Jacobians have already been calculated
in order to diagonalize the factors of the ADI scheme.

In the following section, the formulation of the ma-
trix viscosities and their TVD implementation are de-
scribed. Results are then presented to illustrate the
effect of the matrix and TVD viscosities on solutions
containing shocks of varying strengths. Convergence
histories are also presented for several cases to illus-
trate the efficiency of the multigrid implementation.

II. Formulation

The Euler equations in two space dimensions can be
written in the generalized coordinates £ and 77 in the
form

5w df d .,

where w, g and f are four- vectors representing the con-
served variables and the fluxes in the £ and 77 coordi-
nate directions, respectively. In smooth regions of the
flow, this system of equations is equivalent to the quasi-

676



linear system

(2)

where A = {df/dw} and B = {5g/9w} are the Ja-
cobians of the flux-vectors f and g with respect to the
solution vector w.

Since the Euler equations are hyperbolic, both A and
B can be diagonalized, though not, in general, by the
same similarity transformation. That is, Eqs.(2) can
be written in the form

(3)

where A.A and AB are diagonal matrices, and Q^ and
QB are the modal matrices of the,flux-vector Jacobians
A and B, respectively.

A symmetric finite-volume approximation to these
equations, of the form introduced by Jameson el a/1,
must be stabilized by the addition of terms represent-
ing numerical dissipation. These are usually incorpo-
rated in a directionally split form by adding approx-
imations to second and fourth derivatives in each of
the coordinate directions. The form of the dissipation
terms can be described for the one-dimensional prob-
lem, say in the f direction.

For this one-dimensional problem, the difference equa-
tions for the original scheme of Jameson et a/1 can be
interpreted as an approximation to

dw df
IT + *

(4)

~
d3w

(4)

where p(A) is the spectral radius of the Jacobian ma-
trix A, and the coefficients e?' and tY' are functions of
gradients in the solution. These coefficients are defined
in terms of constants K^ and K^ such that

£(2) _ J2)
(5)

where the switch i/,- is defined in terms of the pressure
pby

p,-+l + 2p;

and is designed to activate the second difference terms
in the vicinity of shock waves. Also,

max (7)

is designed to provide a nearly constant background
level of fourth-difference dissipation, except in the
vicinity of shocks, where the coefficient is set to zero
when i/,- becomes of order unity. While this form of dis-

•sipattCh is relatively efficient computationally, it can-
not be expected to be effective in all cases since the

magnitude of the shock sensor depends on the strength
of the shock, and the same scaling is used for all equa-
tions in the system. This latter difficulty might be
expected to cause no particular problems for transonic
flows, for which all but one of the eigenvalues have
roughly the same magnitude (to within a factor of two).

The new formulation, based on the work of Swanson
& Turkel4 and Jorgensen & Turkel5, addresses both
these issues. The first step in constructing the im-
proved scheme is to replace the scalar coefficient of the
dissipative terms appearing in Eq.(4) by a matrix co-
efficient. The difference equations for the new scheme
can be interpreted as central difference approximations
to

dw
dt

._5_

^^

\-i .(2) dw
e(4)< "w

, (8)

where [A^l is a diagonal matrix, the elements of which
are the absolute values of the eigenvalues of A. Com-
parison of Eq.(8) with Eq.(4) shows that the earlier
scheme can be interpreted as one in which the matrix
|A>t| is replaced by p(A)I, where I is the identity ma-
trix. Thus, the original (scalar viscosity) scheme can
be seen to have the viscosity for all equations in the
system controlled by the largest eigenvalue, while the
matrix viscosity incorporates dissipative terms which
are scaled according to the appropriate eigenvalue for
each equation in the system. In practice, the matrix
\ \A\ must be modified so that the dissipative coeffi-
cients do not become zero when individual eigenvalues
vanish (e.g., at stagnation and/or sonic points). This
is achieved by redefining the elements of the diagonal
matrix according to

\A A \ = Diag{max(rp(A),|A>-|)}, (9)

where A,- are the eigenvalues of A, and r is a small
constant, typically chosen to be 0.20. The implemen-
tation of the scheme defined according to Eqs.(8) that
is most nearly analogous to the original scalar model
retains Eqs. (5) - (7) to define the coefficients of the
dissipation terms; we term this the matrix dissipation
scheme.

The matrix dissipation scheme defined above tends to
introduce less spurious dissipation into solutions, espe-
cially on relatively coarse grids, as would be expected.
At the same time, because of its reduced dissipation
solutions containing shock waves can suffer from ex-
cessive oscillations in their vicinity. To reduce this ten-
dency, the coefficients controlling the dissipation can be
redefined in such a way that near shock waves the dif-
ferences reduce exactly to first-order accurate one-sided
differences, at least in the quasi-linear approximation

677



considered here; for this reason, this choice of the scal-
ing coefficients is here referred to as the TVD matrix
form of dissipation. For this purpose, the coefficients
are redefined as

where

Vi = (11)

Here 6 is a constant of 0(A£2) which is used to prevent
activation of the switch in smooth regions of the flow
where the pressure is nearly a constant. Similarly,

= «:<4>A£2max(0.,l.-2i/,-). (12)

The new shock sensor z/,- is small in regions in which
the flow is smooth, but takes on a maximum value of
unity, independent of shock strength, at local extrema
of the pressure field.

These new forms of dissipation have the effect of ap-
proximating the system of Eqs.(8) as

_
-

._a_
:dt

(13)
where v = Qj4

1w is the vector of characteristic vari-
ables corresponding to the one-dimensional problem in
the £ coordinate direction. From the form of Eqs.(13),
it can be seen that the TVD formulation reduces to
a simple upwind approximation near shocks (where

'/o\ • f A\ '

££ ; = 1/2 and e£ ' = 0.), but has only background
fourth-difference dissipation in smooth regions. It is
relatively easy to incorporate a sensor which tests sep-
arately for extrema in the appropriate characteristic
variable for each equation in the decoupled system cor-
responding to Eqs.(13), but for the steady transonic
flows of interest here, this seems to have little added
benefit.

For the two-dimensional flows considered here, dissipa-
tive terms must also be added in the 77 coordinate di-
rection, and are defined analogously to those described
above for the £ direction. Thus, the equations have the
form

dt
5f <9g _

.(2)C?W 03,

(2)5w
f" ~d^

where the notation for the dissipative terms in the 77-
direction is directly analogous to that used earlier for
the dissipative terms in the ^-direction.

Also, even when the matrix form of dissipation is used,
but particularly for the TVD matrix form, excessive

spurious entropy can be generated at stagnation points,
unless the grid is excessively fine. Since the flow is
smooth in these regions, the second difference dissipa-
tion is not needed there, and can be reduced. In the
present implementation, this is achieved by multiply-
ing the switching function V{ in either Eq.(5) or Eq.(lO)
by the square of the ratio of the local Mach number to
that in the free stream. The numerical implementation
corresponding to Eqs.(14) requires that f(2) be defined
at the cell faces, and the Mach number used for this
scaling is taken to be the maximum of the averages
in the two cells sharing the face; this was shown by
Caughey & Turkel6 to result in less oscillation in en-
tropy near shock waves for the original scalar form of
the dissipation.

The spatial discretization of these equations is based
upon the finite-volume approximation of Jameson et
a/1. For the purpose of computing the Euler fluxes, the
flow variables are assumed to be constant on each cell
face, and are taken to be the average of the cell average
quantities in the two cells sharing the face. The fluxes
are determined by multiplying the fluxes per unit area
thus determined by the projected areas of the cell face
in the appropriate coordinate directions. The dissipa-
tive fluxes are computed as simple finite differences, as
described by Jameson et ail and Caughey2.

The implicit, diagonalized ADI scheme is essentially
unchanged from that described by Caughey2. In that
formulation, the equations are linearized to allow ap-
proximation of the spatial derivatives as weighted aver-
ages of differences at the old and new time levels. The
time-linearized implicit operator is then approximated
as the product of two one-dimensional factors. In or-
der to improve computational efficiency, each of these
implicit factors is diagonalized using a local similarity
transformation, following Chaussee fe Pulliam7. The
modal matrices required to achieve this diagonaliza-
tion are the same as those used above to implement the
matrix-based forms of dissipation, whence they need to
be calculated only once per time step. The resulting
implicit scheme requires the solution of four scalar pen-
tadiagonal systems along each line in each of the two
mesh directions for each time step.

The implicit scheme is implemented within the frame-
work of the multigrid method, as described by
Jameson8 and by Caughey2, to further accelerate con-
vergence to the steady state. A simple fixed-strategy
saw-tooth cycle in which one time step is performed
on each grid before the solution is restricted to the
next coarser grid has been used. For this simple strat-
egy, each multigrid cycle requires less than 1 1/3 Work
Units, if a work unit is defined as the work required
for one time step on the finest grid and the overhead
associated with restriction of the solution and residuals
to coarser grids and of prolongation of the corrections
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NACA 0018 — Matrix Dissipation
Mach 0.8000 Alpha 1.250
Cl 0.3605 Cd O.OZ30
Grid 160x32 Work 400.61

Cm -0.0393
Kes 0.961E-07

NACA 0012 — TVD Matrix Dissipation
Mech 0.8000 Alpha 1.250
Cl 0.3534 Cd 0.0330 Cm -0.0386
Grid 160x3? Work 400.61 Res 0.116E-10

Fig. 1 Airfoil surface pressure distribution; NACA Fig. 2 Airfoil surface pressure distribution; NACA
0012 airfoil at free stream Mach number 0.80 and 1.25 0012 airfoil at free stream Mach number 0.80 and 1.25
degrees angle of attack; matrix dissipation. degrees angle of attack; TVD matrix dissipation.

to finer grids is neglected. Both the matrix and TVD
.matrix implementations of the dissipation terms are
more robust than the original scalar form; when the
scalar dissipation model was used, it was found to be
necessary to run the smoothing steps on coarser grids
of the multigrid sequence at a Courant number equal
to half its value on the fine grid; for both the matrix
implementations, the same value of Courant number
typically is used on all grids in the multigrid sequence.

III. Results

Results are presented here for steady transonic flows
past airfoils to illustrate the shock-capturing capabili-
ties of the schemes, as well as the convergence prop-
erties of the multigrid algorithm. The calculations
are performed on "O"-type grids, usually containing
160 x 32 cells in the wrap-around and body-normal
directions, respectively. The mesh extends from the
airfoil surface to a nearly circular far field boundary
located approximately 30 chord lengths from the body;
the ratio of areas of the largest to smallest cells in
the mesh is approximately 5 x 107. All calculations
presented here have been computed using local time-
stepping at a constant Courant number of C = 8.0 on
all meshes in the multigrid sequence. Five levels of
multigrid were used for all calculations presented here,
with the coarsest grid containing 10 x 2 cells. Several
levels of grid sequencing were used to start the calcu-
lations on the finer grids, i.e., initial conditions were
obtained by interpolating from converged solutions on

coarser grids having half as many cells in each coordi-
nate direction.

Fixed values of the dissipation coefficients were used
for all cases presented here. For the matrix dissipation
scheme, values of K^ = 4.0 and K^ = 0.0625 were
used; for the TVD matrix dissipation scheme, a value
of K^ = 0.125 was used.

The first result is for the flow past the NACA 0012
airfoil at a free stream Mach number of 0.80 and 1.25
degrees angle of attack. For these conditions, a mod-
erately large pocket of supersonic flow forms in the
region above the airfoil upper surface, terminated by a
rather strong shock, while a small supersonic zone ter-
minated by a very weak shock forms below the lower
surface. This solution was calculated using both the
matrix and TVD matrix forms of the numerical dissi-
pation. Figures 1 and 2 show the airfoil surface pres-
sure distributions for the calculations using the matrix
and TVD matrix dissipation, respectively. The solu-
tions are nearly the same, except for the fact that the
weak shock on the lower surface of the airfoil is more
smeared using the TVD form. On the other hand, the
solution is more highly oscillatory in the vicinity of the
shock for the solution obtained using the matrix viscos-
ity. This is visible in the pressure field, but shows more
clearly in the entropy. Figures 3 and 4 show contours
of constant entropy for these two cases; the contour
spacing in these figures corresponds to 0.20 per cent
loss in total pressure.
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Fig. 3 Contours of constant entropy; flow past
NACA 0012 airfoil at free stream Mach number 0.80
and 1.25 degrees angle of attack; matrix form of dissi-
pation.
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Fig. 4 Contours of constant entropy; flow past
NACA 0012 airfoil at free stream Mach number 0.80
and 1.25 degrees angle of attack; TVD matrix form of
dissipation.

Similar results are shown for the flow past the NACA
0012 airfoil at the same angle of attack and a free
stream Mach number of 0.85 in Figures 5-8, and sim-
ilar conclusions can be drawn. For this case, however,
both shocks are considerably stronger, and even the
shock near the airfoil lower surface is captured crisply
by both schemes. The entropy contours shown in Fig-
ures 7 and 8, again plotted at levels corresponding to
0.20 per cent total pressure loss, show considerable os-
cillation for the matrix dissipation scheme, and are
smoother for the TVD version, but with more spuri-
ous entropy generated at the leading edge.

The spurious entropy generated near the leading edge
stagnation point can, of course, be reduced by refining
the mesh. Figures 9 and 10 show the airfoil surface
pressure distribution and contours of constant entropy
are shown for the Mach 0.85 and 1.25 degree angle of
attack case on a finer grid containing 320 x 64 cells.
On this grid, both shocks are captured crisply, and
there is very little spurious entropy generated at the
leading edge stagnation point even when the TVD form
of dissipation is used.

Finally, to illustrate the performance of the TVD ma-
trix dissipation scheme at higher Mach numbers, a flow
field having a supersonic free stream is presented. The
flow past the NACA 0012 airfoil at 2.0 degrees angle
of attack and a free stream Mach number of 2.0 has
been computed using the TVD matrix dissipation; nei-
ther thTToriginal scalar dissipation model nor the ma-
trix dissipation model converged for this case at the

values of Courant number normally used. Figure 11
presents contours of constant pressure coefficient for
this case; the interval between contour lines plotted
is ACp = 0.025. The pressure contours clearly show
the strong bow shock and the weak (supersonic-to-
supersonic) shocks from the airfoil trailing edge.

The convergence histories for several of these calcu-
lations will now be presented. The logarithm of the
residual (the average of |A/?/Af| over all cells in the
grid) is plotted as a function of work units, where one
work unit is defined as the amount of computational
work required for one time step on the finest grid of
the multigrid sequence. The lift and drag coefficients
and the number of cells in which the Mach number is
supersonic are also plotted (on arbitrary scales). These
three latter quantities are good global measures of the
convergence of the iteration. Figures 12 - 14 show the
convergence histories for the three flow fields presented
above using the TVD matrix dissipation. The conver-
gence rates are similar for all three cases, but is some
what slower and more oscillatory for the Mach 0.85
case. In all three cases the lift and drag coefficients
and the number of cells in which the local Mach num-
ber is supersonic have converged to within plottable
accuracy for these figures in about 100 Work Units.

While the use of TVD schemes is generally thought to
be most useful for cases involving very strong shocks,
they are also valuable for avoiding oscillations in the
vicinity of very weak shocks. This is illustrated here
for the flow past a very thin profile at a Mach number
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NACA 0012 — Matrix Dissipation
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Cm -0.1518
Res 0.382E-06
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Fig. 5 Airfoil surface pressure distribution; NACA
0012 airfoil at free stream Mach number 0.85 and 1.25
degrees angle of attack; matrix dissipation.

Fig. 6 Airfoil surface pressure distribution; NACA
0012 airfoil at free stream Mach number 0.85 and 1.25
degrees angle of attack; TVD matrix dissipation.

very near unity. These flows were of interest in recent
experiments to verify the transonic similarity law of
Karman9. A profile was generated by maintaining a
constant value of the transonic similarity parameter

1-M2

~ M4/3r2/3 '

where M is the free stream Mach number and T is the
airfoil thickness ratio. Here, a reference case is taken
to be the symmetric flow past the NACA 0012 profile
(rrej = 0.12) at a reference Mach number MTCj = 0.85.
For the similar flow at a Mach number of 0.975, Kar-
man's rule requires a profile having a thickness ratio
of only 0.00685. Calculations for this flow have been
performed on grids having 320 x 64 cells using both the
original scalar dissipation and the TVD matrix model.
The airfoil surface pressure distributions for these solu-
tions are plotted in similarity form in Figs. 15 and Mi.
The similarity form of the pressure coefficient plotted
here is defined as

2/3

The oscillations in pressure coefficient in the vicinity
of the shock for the original scheme are apparently a
result of the failure of the shock sensor in the original
scheme to detect the presence of this extremely weak
shocTT^ note that the minimum value of the (un-scaled)
pressure coefficient immediately ahead of the shock for
this case is only about —0.12. The oscillations in the

vicinity of the shock are almost completely absent with
the improved scheme.

Finally, it is worth emphasizing that all calculations
presented here using the TVD matrix dissipation model
have been performed with the same value of the dissi-
pation parameter K^. In a one-dimensional version of
the scheme written to compute quasi-one-dimensional
flows in nozzles with shocks, the TVD matrix scheme
converges well for values of K^ ranging over several
orders of magnitude, and produces solutions which
are virtually independent of the value of this param-
eter. The two-dimensional implementation does not
yet perform well for so broad a range of values, but
the problems seem to be near stagnation points, not
shock waves, so there seems to be some scope for fur-
ther improvement of the two-dimensional version of the
algorithm.

IV. Concluding Remarks
Two forms of matrix artificial viscosity have been incor-
porated into an implicit multigrid algorithm for solving
a finite-volume approximation to the Euler equations
of compressible fluid flow. The simplest matrix form
introduces less spurious total pressure loss, but is prone
to oscillation, particularly noticeable in the entropy, in
the vicinity of shock waves. The TVD matrix form cap-
tures weak shocks less crisply, but is more robust for
computing flows having shock waves of widely varying
strengths over a range of free stream Mach numbers.
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Fig. 7 Contours of constant entropy; flow past
NACA 0012 airfoil at free stream Mach number 0.85
and 1.25 degrees angle of attack; matrix form of dissi-
pation.
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Fig. 8 Contours of constant entropy; flow past
NACA 0012 airfoil at free stream Mach number 0.85
and 1.25 degrees angle of attack; TVD matrix form of
dissipation. .
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Fig. 11 Contours of constant pressure coefficient;
flow past NACA 0012 airfoil at free stream Mach num-

Fig. 9 Airfoil surface pressure distribution; NACA ber 2.00 and 2.00 degrees angle of attack; TVD matrix
0012 airfoil at free stream Mach number 0.85 and 1.25 dissipation
degrees angle of attack; 320 x 64 cell grid using TVD
matrix dissipation.
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Fig. 10 Contours of constant entropy; flow past
NACA 0012 airfoil at free stream Mach number 0.85
andj.25 degrees angle of attack; 360 x 64 cell grid using
TVD matrix dissipation.

'$ 2.
O
a.

\

Nsup

I. i«. int. 3<o. «ia. u«. 60*.

Work Units

NACA 0012 — TVD Matrix Dissipation
Mach O.BOO Alpha 1.250
Resl 0.268E-01 CFL 8.00
Res2 0.116E-10 Grid 160x32
Work 399.61 Rate 0.9475 Nmesh 5

Fig. 12 Iteration history for NACA 0012 airfoil
at 0.80 Mach number and 1.25 degrees angle of at-
tack; TVD matrix dissipation. Note: force coefficients
and number of supersonic cells are plotted on arbitrary
scales.
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Fig. 13 Iteration history for NACA 0012 airfoil
at 0.85 Mach number and 1.25 degrees angle of at-
tack; TVD matrix dissipation. Note: force coefficients
and number of supersonic cells are plotted on arbitrary
scales.
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Similarity Scaled NACA 0012 Airfoil
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Cl .0006 Cd .0578 Cm .0000
Grid 320x64 Work 400.90 Res .416E-04

Fig. 15 Scaled pressure distribution for flow past
similarity-scaled profile; reference case is NACA 0012
airfoil at 0.85 Mach number; original scalar dissipation.
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Fig. 14 Iteration history for NACA 0012 airfoil at
2.0 Mach number and 2.0 degrees angle of attack; TVD
matrix dissipation. Note: force coefficients and number
of supersonic cells are plotted on arbitrary scales.
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Fig. 16 Scaled pressure distribution for flow past
similarity-scaled profile; reference case is NACA 0012
airfoil at 0.85 Mach number; TVD matrix dissipation.
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Block-Multigrid ADI scheme has been developed for three-dimensional prob-

lems. The scheme uses the horizontal mode of multigrid, and can run on

a shared-memory parallel computer. Computations of transonic flow past a

swept wing illustrate the accuracy and efficiency of the scheme. Speed-up re-

sults are presented to illustrate the ability of the scheme to calculate complex

flows in the short turn-around time required in any design application.



BLOCK IMPLICIT MULTIGRID SOLUTION OF THE EULER

EQUATIONS

Yoram Yadlin, Ph.D.

Cornell University 1990

A Diagonal Implicit Multigrid (BDIM) scheme has been developed to

solve the Euler equations of inviscid, compressible flow in three-dimensions,

and has been implemented within the framework of block-structured grids.

The work described has been developed along the following path: First a

multigrid ADI scheme was developed for a single-block grid in three dimen-

sions, using a diagonalization procedure resulting in a computationally effi-

cient code; the scheme has been applied to compute transonic flow past a

swept wing and found accurate and efficient.

Second, ways to implement the multigrid ADI scheme on block-structured

grids have been investigated. Two modes of multigrid cycles have been de-

veloped: one in which the multigrid cycle advances concurrently on all blocks

(horizontal mode) and one in which the multigrid cycle advances indepen-

dently in each block (vertical mode). The efficiency and accuracy of both

modes has been investigated by applying the schemes to compute transonic

flow past the NACA-0012 airfoil. Both modes have been implemented to run

on a shared-memory parallel computer and resulting speed-ups have been

presented and discussed.

Finally, based on the results of the two-dimensional implementation, the
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Parallel Computing Strategies for Block Multigrid Implicit
Solution of the Euler Equations

Yoram Yadlin* and David A. Caugheyt
Cornell University, Ithaca, New York 14853

A multigrid diagonal implicit algorithm has been developed to solve the three-dimensional Euler equations of
inviscid compressible flow on block-structured grids. An improved method of advancing the multigrid cycle has
been examined with respect to convergence rates, accuracy, and efficiency. In this method, the multigrid cycle
is advanced independently in each of the blocks, and the information exchange between the blocks is done using
buffer arrays, allowing for the asynchronous updating of interface boundary conditions. This updating scheme
is used to eliminate the convergence problems found in a previous implementation of the algorithm while
retaining its potential for efficient parallel execution. Results are computed for transonic flows past wings and
include pressure distributions to verify the accuracy of the scheme and convergence histories to demonstrate the
efficiency of the method. Efficiencies that were obtained using a modest number of processors in parallel are
also presented and discussed.

Introduction

W HEN one tries to design an algorithm for the simula-
tion of flow around realistic three-dimensional aerody-

namic configurations, a major difficulty is the generation of
an appropriate grid on which to compute the solution. One
approach to this problem is the use of composite block-struc-
tured grids.1 In this approach, the physical domain is divided
into a set of subdomains; in each subdomain, relatively simple
grids can be generated. In its most general implementation,
the subdomains can be adjacent to each other or overlapped
and have different degrees of continuity at the interfaces. The
block-structured grids also allow different governing equa-
tions to be solved on different blocks according to the physical
characteristics of the flow. The block-structured grid, in a
natural way, also allows the use of a multiprocessor computer
since the solution on several blocks can be computed concur-
rently, resulting in a faster turn-around time.

Flow solvers that take advantage of block-structured grids
have been developed in the last few years, employing both
explicit3"7 and implicit schemes.8"11 In Ref. 12, an implementa-
tion of the diagonal implicit multigrid (DIM) algorithm13'14 on
block-structured grids has been described and implemented
for two-dimensional problems. The implementation of the
multigrid scheme has been done in two modes: a horizontal
mode, in which the multigrid cycle is kept in phase in all the
blocks; and a vertical mode, in which the multigrid cycle is
advanced independently in each block. Both modes were ex-
amined with regard to their accuracy and efficiency in serial
and parallel execution, and it was found that, although the
vertical mode shows more potential for high parallel efficiency
(e.g., less synchronization and overhead), it exhibits conver-
gence problems. These findings led to the implementation of
only the horizontal mode in a three-dimensional version of the
code.15

In this paper, an implementation of the vertical mode in a
three-dimensional code that addresses these convergence prob-
lems will be described. First the numerical algorithm will be
described, followed by a description of the implementation of
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multigrid on block-structured grids. Next, the implementation
of the code on parallel computers will be discussed, and fi-
nally, results of calculations of flows past three-dimensional
geometries will be presented in order to demonstrate the accu-
racy and efficiency of the algorithm and its applicability for
parallel execution.

Description of Algorithm
The block diagonal implicit multigrid (BDIM) algorithm is

a direct extension of the DIM algorithm described in Refs. 13
and 14. The Euler equations are approximated using a cell-
centered finite volume spatial discretization on the mesh cells
corresponding to a boundary-conforming curvilinear coordi-
nate system. Artificial dissipation is added as a blend of sec-
ond and fourth differences of the solution; the fourth differ-
ences are necessary to ensure convergence to a steady state,
and the second difference terms are introduced to prevent
excessive oscillation of the solution in the vicinity of shock
waves. The time-linearized implicit operator is approximated
as the product of three one-dimensional factors, each of which
is diagohalized by a local similarity transformation, so that
only a decoupled system of scalar pentadiagonal equations
needs to be solved along each line. The resulting method has
good high wave-number damping and thus is a good smooth-
ing algorithm to be used in conjunction with the multigrid
method. In the following sections, those aspects relevant to
the implementation of the DIM algorithm on block-structured
grids will be described. Most of the descriptions will be for
problems in two dimensions with references to the appropriate
extensions to three dimensions.

Domain Decomposition
The physical domain is divided into subdomains, which are

represented by rectangular blocks in the computational do-
main. Each block has four faces (six in three dimensions), with
its own coordinate system (£, r;) in the computational space.
The faces are numbered as illustrated in Fig. 1.

Each block is defined with two layers of dummy cells
around it, which are used to enforce the boundary conditions;
when two faces of neighboring blocks coincide, these layers
create a region of overlap. The information required at each
face is as follows: 1) block number, 2) type of boundary
conditions, and 3) neighboring face number (if applicable) and
the orientation of its coordinate system. This information is
stored in a set of two-dimensional integer arrays, created as
input for the flow solver by the grid generation code. In the
present implementation, it is required that the grid distribu-
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tion on coincident faces be the same in both blocks sharing the
face.
Boundary Conditions

Each face can have one of the following types of boundary
conditions: 1) solid surface, 2) far field, or 3) interface. In the
present implementation, the type of boundary condition must
be homogeneous over each block face. For each step of the
multigrid cycle in which an update to the boundary conditions
is required, the code loops through the blocks and the faces
within each block and updates either the solid surface or the
far-field boundary conditions accordingly. The update of the
interface boundary conditions is done by introducing a set of
surface arrays, which act as buffer arrays between the blocks.
Each block has a surface array that holds a copy of the
solution vector in the two inner layers; from this array, data
will be read into the layers of dummy cells of the adjacent
blocks (see Fig. 2). •

The treatment of the boundary conditions on solid surfaces
and in the far field is the same as in the original DIM scheme.13

The implicit boundary conditions are treated in a manner
consistent with the characteristic theory. At each face, the
appropriate eigenvalues are calculated and used to determine
the directions of the characteristics for the one-dimensional
problem normal to the boundary. The boundary conditions
for those elements of the solution vector that correspond to
characteristics entering the domain are taken to be homoge-
neous Dirichlet conditions, whereas the boundary conditions
on those elements that correspond to characteristics leaving
the domain are taken to be homogeneous Neumann condi-
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Fig. 1 Decomposition of physical and computational domains into
blocks.

Fig. 2 Surface array.

tions. Note that there is no extra cost for this implicit charac-
teristic boundary condition treatment since the calculation of
the eigenvalues is already required for the construction of the
coefficient matrix.

Since the locations of the block boundaries are determined
independently of the solution, it is possible that large gradients
(including numerically smeared shocks) may occur in the
vicinity of the boundaries. This imposes a requirement that no
approximations be made in the evaluation of the residuals
near these artificial boundaries. In particular, the treatment of
the boundary conditions for the dissipation terms is crucial
since these have the largest difference stencil. In the basic
algorithm, the dissipative terms include fourth differences of
the solution, hence each block is surrounded by two layers of
dummy cells (an increase of 10% in memory requirement for
a block sized 64 x 64 x 64).

Data Structure

The data structure for the composite block-multigrid al-
gorithm is an extension of the multigrid data structure used
for a single block. All of the flow variables, coordinates, cell
areas (volumes in three dimensions), time steps, etc., are
stored in one-dimensional arrays. The arrays are organized by
blocks; the unknowns of the first block are stored at the
beginning of the array, followed by those of the second block,
and so on. Within each block, the data is organized by grid
levels, as is the case in the single-block multigrid scheme. The
surface array data structure follows the same arrangement,
where at each grid level, data is organized by faces, starting
with face 1 (£ = 1 surface) and ending with face 6 (f=/tmax
surface), as illustrated in Fig. 3.

The position of the first entry for each block is calculated
according to the number of blocks and grid levels in the
multigrid cycle and is stored in an integer array. This data
structure allows access to each block independently and re-
quired no synchronized input/output when the algorithm is
executed in parallel.

The only exceptions are the surface arrays; for these, the
possibility exists that one block will try to write into a surface
array while the adjacent block is reading from it. To avoid this
possibility, a locking mechanism is used in the parallel code,
which allows access to the array by only one block at a time.

Multigrid

The multigrid scheme on a composite block structured grid
can be implemented in at least two modes: 1) horizontal — the
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a) Solution arrays

b) Surface arrays

Fig. 3 Data structure.

multigrid cycle is advanced in phase in all of the blocks, or 2)
vertical — the multigrid cycle is advanced independently in
each of the blocks. The main difference between the two
modes is the degree of interaction between the blocks during
the multigrid cycle. In the horizontal mode, all of the blocks
are in phase during the cycle, hence the data exchange between
the blocks (i.e., the updating of boundary conditions on inter-
faces) can be done easily at each grid level in the cycle. On the
other hand, in the vertical mode, the blocks are synchronized
only at the beginning/end of each cycle, allowing for data
exchange only once in the cycle, resulting in the freezing of the
boundary conditions on interfaces during the entire cycle. As
discussed in Ref. 12, this updating scheme results in poor
convergence rates, probably due to the fact that the interface
boundary conditions on the coarse grids are not the correct
ones (compared to single block or the horizontal mode multi-
grid), and the relaxation operations spread these disturbances
into the interior of the block, thus impairing smoothing.

One way to improve on this updating scheme is the use of
asynchronous updating, in which the interface boundaries are
updated with any available data from adjacent blocks. That
data can be new or old, depending on the current stage of the
multigrid process in the adjacent block. The implementation
of the asynchronous updating in the vertical mode has been
done by using the surface arrays; any time an update of the
interface boundaries is required, the most recently available

data from the surface array of the adjacent block will be read
into the layers of dummy cells of the block.

Using these surface arrays, advancing the solution one time
step involves the following steps: 1) Update interface bound-
aries by reading in data from the surface arrays of the adjacent
blocks. 2) Advance the solution one time step. 3) Write out the
solution in the inner layers into the block surface array.

A similar sequence of steps is taken in the interpolation step
of the multigrid cycle.

The order in which the blocks are updated dictates which of
the blocks will use surface arrays with updated data and which
ones will use old data. It is worth noting that the order of
updating will affect the intermediate solution on the way to a
converged solution (e.g., a symmetric solution may develop
asymmetries during the iteration, even though it eventually
converges to a symmetric solution). The present code allows
for different combinations of updating interface boundary
conditions at different stages in the multigrid cycle. The ef-
fects of these options will be discussed later.

Implementation on Parallel Computers

Most physical problems may have some level of inherent
parallelism. Two common forms of parallelism are spatial and
functional. In spatial parallelism, each subdomain interacts
weakly with its neighbors and can be assigned to a different
processor for updating; information is only occasionally ex-
changed between the domains. In functional parallelism, the
physical phenomena can be represented by different model
equations having different time or length scales; e.g., viscous

a)

b)

Fig. 4 Comparison of measured and calculated pressure coefficients:
A/™ = 0.839; a = 3.06 deg.
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effects taking place in a confined boundary layer or a chemical
reaction in a multicomponent flow.

In each of these forms, parallelism can be exploited on
different levels: 1) fine-grained parallelism at the do-loop
level, and 2) coarse-grained parallelism at the subroutine level.
In the case of fine-grained parallelism, each task (a discrete
section of computational work to be completed) is relatively
small, requiring more frequent communication, more fre-
quent synchronization, and greater overhead expenses. For
coarse-grained parallelism, the tasks are relatively larger, and
so more computational work is done between synchroniza-
tions, but more programming effort usually is required to
implement the parallelism.

The BDIM algorithm has an inherent spatial parallelism on
at least two levels. Since it is based on domain decomposition,
all blocks can be updated concurrently, with exchange of
boundary data at specific times. In the vertical mode, each
task can be the execution of an entire multigrid cycle in each
block, whereas in the horizontal mode, a task might be the
execution of one part of the multigrid cycle in each block (e.g.,
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compute corrections or interpolate corrections to a finer grid).
This is a coarse-grained level of parallelism, in which the
number of tasks is of the order of the number of blocks. On
the fine-grained level, many operations can be done concur-
rently. For example: the calculation of the residual in each cell
is independent of the others and can be done concurrently, the
line sweeps in the alternating-direction implicit (ADI) al-
gorithm can be done concurrently, the solution of the five
decoupled pentadiagonal systems on each line can be done
concurrently, etc. On this fine-grained level, the number of
tasks can be of the order of the number of cells in the entire
domain.

The present implementation has used the parallel extension
of Fortran (PF)16 on the IBM 3090-600J. This parallel archi-
tecture has six processors, each with a vector' facility and
access to a shared memory. The language extension allows for
fine-grained parallelism by invoking a compiler option that
generates a parallel code for any do-loop found eligible and
economical (i.e., when the solution remains the same and the
code is predicted to be executed faster). The compiler allows
for the nesting of parallel, scalar, and vector loops within a
parallel loop and attempts to find the most efficient available
combination. The coarse-grained level is implemented by exe-
cuting each step in the multigrid cycle concurrently. This is
done using the explicit mode of parallelization available in
parallel Fortran; a set of parallel Fortran tasks is originated
[the number of tasks is the minimum (number of blocks,
number of processors)], each having its own local storage and
subprograms and the ability to share memory with other tasks.
Each time a do-for-all-blocks loop is encountered, each task
is dispatched to perform work (i.e., the execution of one
iteration of the loop). If more than one real processor is
available, the tasks can be mapped onto different processors
and the jobs executed in parallel. A wait statement is provided
for synchronization since all tasks or loop iterations must have
finished before the next step or loop can be executed. For
more details on PF and its execution on the IBM 3090 see Ref.
17.

Results
The algorithm just described has been applied to the prob-

lem of transonic flow past wings. Results have been obtained
for the transonic flow past an ONERA M6 wing for a variety
of freestream conditions to verify the accuracy of the al-
gorithm. Surface pressure distributions will be presented first,
followed by a comparison of convergence rates for the two
modes of multigrid, and a discussion of the effects of block
boundary updates on the solution and convergence rates. Fi-
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Fig. 7 Convergence history: vertical mode, single grid.

nally, results from the parallel implementation of the code will
be discussed.

The grid used for these calculations is a C-grid containing
192 x 32 x 32 mesh cells in the wraparound, normal, and
spanwise directions, respectively. The grid was generated by
stacking two-dimensional C-type grids in the spanwise direc-
tion to produce a three-dimensional grid. The two-dimen-
sional C-type grid was generated by a weak shearing of a
square root transformation about a point just inside the lead-
ing edge of the wing surface in each plane of constant z. The
distribution of mesh cells is such that for each x - y plane 2/3
of the cells in the wraparound direction are on the wing
surface and 3/4 of the C-type sections in the spanwise direc-
tion intersect the wing. The far-field boundaries are located
approximately 10 chords upstream and downstream of the
wing, approximately 19 chords laterally from the wing, and at
approximately 3.5 semispan from the plane of symmetry in the
z direction. This global grid was artificially divided into eight
blocks: four blocks containing the wing and its wake and four
blocks containing the domain outboard of the wing toward the
spanwise far field (blocks 1-4 around the wing and 5-8 out-
board of the wingtip). This division resulted in two sets of
blocks containing 32 x 32 x 24, 64 x 32 x 24, 32 x 32 x 8,
and 64 x 32 x 8 grid points; the ratio of the number of cells in
the largest block to that in the smallest block is 6:1. The
interface boundaries in each spanwise plane lie along the wing-
normal lines leaving the leading and trailing edges of the
airfoil and along the cut downstream of the airfoil trailing
edge.

The calculations, to be presented here, have been performed
on an IBM 3090-600J under AIX, for the serial code, and
under CMS for the parallel code. To confirm the accuracy of
the vertical mode, results have been calculated for a
freestream Mach number of 0.839 and 3.06-deg angle of at-
tack in order to allow comparison with existing wind-tunnel
test data. Figure 4 presents a comparison with wind-tunnel
data18 at four spanwise stations. The Reynolds number based
on the mean aerodynamic chord Rec for the wind-tunnel test is
approximately 11.7 x 106. The calculated results predict quite
accurately the strengths and the locations of the shocks for
this flow condition in spite of the neglect of viscous effects in
calculation.

Figure 5 presents contours of constant pressure on the upper
surface of the wing for both the horizontal mode and the
vertical mode. The development of the lambda shock pattern
on the wing upper surface, characteristic of supercritical flows
past swept wings, is clearly visible and the solutions are identi-
cal.

To examine the effects of an interblock boundary in a
region of large gradients, the set of blocks containing the wing
and the wake was further divided into two sets of blocks,
having a common interface at about the 70% semispan of the
wing. Contours of constant pressure for this case (12-block
configuration) are presented in Fig. 6. It is clear that there is
no visible effect on the shock structure caused by its crossing
the interblock boundary (indicated by the solid line at the 70%
semispan). The force coefficients for this case and the previ-
ous one (eight blocks) are exactly the same. The accuracy of
the solution in the vicinity of the interface boundaries is a
direct result of the introduction of the second layer of dummy
cells, which eliminates the need for approximating the fourth-
order dissipation terms at the boundaries. This is in contrast to
the increased thickness of the shock across the interface de-
scribed by Atkins,6 which resulted from his approximation of
the dissipation terms on the interblock boundary. The present
results also agree exactly with the calculations done using the
horizontal mode.15

Convergence rates discussed in the following are for the
ONERA M6 wing at a freestream Mach number of 0.839 and
3.06-deg angle of attack. The calculations were performed
using a sawtooth multigrid cycle with grid sequencing, starting
with the undisturbed flow as the initial guess on the coarsest
grid. In this strategy, four levels of grids have been used; 100
multigrid work units have been performed on each level, using
the interpolated final solution of the coarser grid level as the
initial solution on the next finer grid. The additional work on
the first three grids required for this grid sequencing was about
14% of that on the final grid (for 100 work units on the final
grid). Figures 7 and 8 present convergence histories on the
finest grid for the block scheme in vertical mode without and
with multigrid, respectively. The plotted variables are the log-
arithm of the average over all of the grid cells of the residual
of the continuity equation I Ap/A/ I, the total number of grid
cells in which the local Mach number is supersonic, and the lift
and drag coefficients as a function of work units (WU). The
latter three quantities are plotted on normalized scales, and
one WU is the amount of computational work required for
one time step on the fine grid. (One multigrid cycle requires
slightly less than 8/7 WU for the sawtooth cycle used here).
The effect of multigrid on the convergence rates is clear; using
four levels of multigrid, the lift coefficient (as a measure for
global convergence) reaches its final value in fewer than 40
WU, whereas without multigrid, more than 150 WU are re-
quired; with multigrid the error was reduced four orders of
magnitude in 150 WU, whereas without multigrid a reduction

WORK UNITS

ONERA WING M6(12 BLOCK,Vert,msurf=l)

Fig. 8 Convergence history: vertical mode, four-level multigrid.
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in error of only two orders of magnitude was achieved with the
same number of WU. Figure 9 presents the convergence rates
for the horizontal mode for the same test case. It is clear that
the two modes have very similar convergence characteristics.
This is in contrast to our earlier two-dimensional results pre-
sented in Ref. 12, where the boundary conditions on the block
interfaces were frozen during the entire multigrid cycle, result-
ing in degradation of convergence rate for the vertical mode.

The effect of altering the order in which the blocks are
solved on the accuracy and stability of the method has been
examined by creating a random ordering of the blocks in each
multigrid cycle (in contrast to a fixed consecutive ordering).
The final results have been found to be exactly the same as for
the fixed sequence and the differences in convergence rates
were negligible.

As mentioned in the description of the multigrid cycle, the
updating of the interface boundary conditions is done at two
times during the cycle; before advancing the solution one time
step and before interpolating the corrections to the next finer
grid. The effect of the updating has been investigated by
turning off the updating, when on the coarse grids, before the
interpolation step and at both steps altogether. It was found
that when no updating of the boundary conditions is done on
the coarse grids, the solution diverges (a behavior consistent
with the two-dimensional results), but when the updating is
turned off only in the interpolation step, no visible effect on
convergence can be found. This suggests that, in parallel exe-
cution, the overhead incurred by the locking mechanism at the
updating step can be avoided by freezing the boundary condi-
tions during the interpolation processes.

We now turn to the results of the parallel computations.
Since most of the execution time is spent in the multigrid cycle,
and each block can execute its cycle independently of the other
blocks, this part of the code has been explicitly executed in
parallel. This was accomplished using the parallel task and
parallel lock options in the parallel extension of Fortran on the
IBM 3090-600J. The same test case (eight block) has been
executed in parallel, using up to six processors at a time. The
final solution, after 75 WU, has been found to be exactly the
same as for the serial execution, independent of the number of
processors. The convergence rates were almost identical to the
rates of the serial runs as would be expected based on the
experiment with the random ordering of the blocks in serial
runs.

The parallel performance of the code can be evaluated as
follows. The maximum theoretical speedup SthcOT expected,
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ignoring the overhead required to manage the parallel tasks, is
given by Amdahl's Law:

where P is the percentage of work performed in parallel, and
N the number of processors.

In the case where the overhead V associated with the parallel
tasking is included, the modified theoretical speedup is given
by

gtheor

The actual speedup is given by

serial CPU time
wall clock time

The efficiency of the parallel execution can be defined as

E_ Saa

Figure 10 presents speedup results for the eight-block con-
figuration using up to six processors. It has been found that
the parallel overhead V is almost negligible, except for the
cases in which six processors have been used, for which
K = 2.8%. This is similar to the overhead observed for the
horizontal mode.15 It is clear that the parallel speedups
achieved by the code are very good when using up to three
processors but reduced significantly for any number of proces-
sors greater than three. This observation can be explained by
looking at the way in which the different blocks are distributed
between the processors and the ratio of largest to smallest
blocks. For example, in the eight-block decomposition, the
total work to be done between synchronization points consists
of 24 units (taking the smallest block to be equal to 1 unit).
When using six processors, the time to process the two largest
blocks (with a size of six units each) is the limiting factor in
speedup, i.e., 24/6 = 4; it is similar for five processors. It can
be seen that the actual speedup achieved for five and six
processors is, in fact, less than or equal to 4. In Ref. 19, it has
been shown that improved load-balancing results in better
speedups for the horizontal mode; the same holds for the
vertical mode. The reason for lower efficiencies when using a
large number of processors is most probably due to system
overhead and limited CPU resources when running in a pro-
duction environment on a multiuser machine. The results pre-
sented here have been obtained for the case in which the
interblock boundary conditions are not updated at the inter-
polation step. Updating the interblock boundary conditions at
the interpolation step resulted in no significant difference in
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parallel performance. This suggests that the amount of time
spent in the updating process, which causes locking of some
data and increases overhead, is negligible compared to the
time spent in advancing the solution. This might change when
a larger number of blocks is used and the ratio of block
surface area to block volume increases.

Conclusions
A multigrid diagonal implicit algorithm has been developed

to solve the Euler equations of inviscid compressible flow on
block-structured grids. An improved version of the vertical
mode of advancing the multigrid cycle has been examined. In
this version, the use of buffer arrays allows for asynchronous
updating of interface boundary conditions on coarse grids,
thus eliminating the convergence problems encountered when
the boundary conditions were frozen throughout the cycle.
Results for transonic flows past wings verify the accuracy of
the new method, in particular, the fact that no spurious errors
have been introduced at the interblock boundaries or due to
the asynchronous updating of the boundary conditions. It is
also demonstrated that the new version of the vertical mode of
the multigrid exhibits the same convergence characteristics as
the horizontal mode, but without the need for frequent syn-
chronization required in the horizontal mode. The algorithm
has been implemented on a parallel computer, and speedups
approaching the theoretical ones have been obtained when
using a modest number of processors.
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1 Introduction

The challenge to develop algorithms to simulate accurately flows over re-
alistic aerodynamic configurations has led to the exploration of block-
structured grids. This approach substantially simplifies the task of grid
generation for complex geometries and provides a natural framework for
parallel computing. This approach also facilitates the use of different flow
models in different blocks according to the physical characteristics of the
flow, and the same applies for efficient grid refinement strategies.

The division of the flow domain into blocks creates new interface bound-
aries. The behavior of grid lines at the interfaces is an important character-
istic that differentiates the methods which fall in this class. The approach
used by Yadlin and Caughey (1991) to develop a block-structured multigrid
algorithm for the Euler equations is restricted to interfaces with complete
continuity. This restriction simplifies the treatment of inter-block bound-
aries within the flow solver, but reduces the flexibility of the block grid
generation technique. In order to fully demonstrate the power of block
grid approaches, the present work is aimed at developing more general
interface schemes to extend the multi-block Euler solver to more general
block-structured grids having discontinuities in grid density and spacing.

The construction of stable, accurate and conservative interface schemes
has been addressed in numerous papers in recent years. For example, Rai
(1986) has described a general patched grid interface condition for upwind
schemes, and Berger and Jameson (1985) have discussed the importance
of treating the inter-block boundaries conservatively. It is clear that the
interface treatment depends upon the nature of the inter-block boundaries
and the numerical algorithm used to solve the governing equations. In the
present work, a fully conservative interface scheme, which permits the pas-
sage of discontinuities across block boundaries with minimum distortion of
the solution, has been developed. The scheme is based upon a cell-centered

1



2 Block-Structured Grids with Discontinuous Interfaces

finite volume method with a multigrid implementation of the Alternating
Direction Implicit (ADI) algorithm. Results demonstrate the feasibility of
using the multi-block approach with discontinuous grids to solve complex
flow problems having discontinuous solutions.

2 Description of Basic Algorithm

In general curvilinear coordinates (£,T)), the two-dimensional Euler equa-
tions can be written in strong conservation law form as

dW 8F 8G .

where W = hw — h{p, pu, pv, e}T ,

F = h{PU, pUu+Ssp, pUv+{yp, (e+p)U}T,

G = h{pV, PVu+r)xp, pVv + w, (e+p)V}T,

and p = (7 - 1) {e — p(u2 + ir)/2}. Here, p is the density, u and i; are
the velocity components in the Cartesian coordinates (x ,y) , e is the total
energy per unit volume, p is the pressure, h is the determinant of the Jaco-
bian of the transformation, and U and V are the contravariant components
of the velocity.

The present finite-volume method, following Jameson, Schmidt and
Turkel (1981), defines the dependent variables p,pu,pv, e and p as cell
averages. The value of any variable on each cell face is taken to be the
average of the values in the cells sharing the face. The spatial derivatives
are approximated by evaluating the net flux across the faces of each mesh
cell using constant values of the fluxes on each face.

In order to prevent decoupling of the solution at alternate cells in the
grid, dissipative terms must be added. These are constructed as an adaptive
blend of second- and fourth-differences of the solution in each of the mesh
directions. With the added dissipation, the difference approximation of Eq.
(2.1) is written as

=Q, (2.2)

where Q is a flux operator, and D is a dissipative operator defined as

DiSij = 6({t™6( - e™6f}<Sij + 6,{t™6, - €^}wij, (2.3)

where 8^ and 8^ are central difference operators. The coefficients e^"' and

f are adapted to the solution as described by Caughey (1988).
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Once discretized, the equations are integrated to the steady state using
a diagonal ADI method (Caughey 1988). Local time stepping, successive
grid refinement and the multigrid method are used to accelerate the con-
vergence. In the present implementation, the multigrid cycle is advanced
concurrently in all the blocks. For two dimensional problems, a complete
description of the diagonal implicit multigrid algorithm for a single block
is given by Caughey (1988), and the extension to the multi-block case on
smooth grids is given by Yadlin and Caughey (1991).

3 Interface Scheme

The physical domain is sub-divided into logically rectangular blocks in
the computational domain. Each block, with its own coordinate system
in the computational space, has four faces. Each face can correspond to
one of several types of boundary conditions: a solid surface, a far field or
an interface. The treatment of the boundary conditions on solid surfaces
and in the far field is the same as in Caughey (1988). The ADI algorithm
requires implicit boundary conditions on all four faces of each block. These
implicit boundary conditions are treated in a manner consistent with the
characteristic theory.

On the inter-block boundaries, special treatment is needed to transfer
information accurately between the blocks. In the present implementation,
the grid points on each side of the interface are not necessarily identical, nor
is the grid spacing across the interface necessarily continuous. In order to
apply the cell-centered finite volume discretization to the cells on both sides
of the interface, it is necessary to compute the inviscid fluxes across the cell
faces lying on the interface. This can be done as follows. First, one of the
two adjoining blocks is designated as Block 1, and the other as Block 2, (see
Fig. 1). Then, the dependent variables at the midpoints of cell faces lying
on the interfaces of Block 1 are interpolated from three cell centered values
using bilinear interpolation. The three cell centers involved are chosen such
that the midpoint of the cell face considered lies inside the triangle formed
by these three points. The corresponding fluxes across the cell faces on the
interface for Block 1 can then be determined in the standard manner. The
advantage of this approach is that information is required only from the two
layers of cells separated by the interface; the computer memory required
for bookkeeping is thus reduced. In order to preserve global conservation,
the fluxes through the cell faces on the interface for Block 2 are determined
by satisfying the conservation condition at the interface, which requires the
discrete line integral of the numerical flux along both sides of any portion
of the inter-block boundary be the same. The conserved fluxes for each
face of Block 2, are thus calculated using the sum of the fluxes through
each of the segments of Block 1 which lie between the two end points of
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the cell face of Block 2. For example, in Fig. 1, the flux through cell face
A of Block 2, which runs from point (j — ̂ ) to point (j + i), is the sum of
the fluxes through segments a, b and c of Block 1.

The easiest way to keep the dissipative fluxes conservative is to set the
first- and third-difference dissipative fluxes to zero at interfaces. If there
is no shock passing through the interface, the solution is almost unaffected
by this approach. If there is strong shock crossing the interface, setting the
first-difference fluxes equal to zero will result in an inaccurate or divergent
solution. In the present implementation, the third-difference fluxes at the
interfaces are set to zero, but the first-difference fluxes are treated the same
as the inviscid fluxes at the interfaces. The required first difference at cell
faces on the interface of Block 1 can be formed using linear combinations
of the values at the last cell centers and at the midpoints of cell faces on
the interface. For Block 2, the quantities are calculated in exactly the same
way as are the inviscid fluxes. In this way, both inviscid and dissipative
fluxes are kept conservative across the interface.

4 Results

The algorithm described above has been applied to compute transonic flows
past the NACA 0012 airfoil. Results have been obtained for several types of
grids and free stream conditions to verify the accuracy and functionality of
the method. The convergence histories of the multi-block implementation
are virtually identical to those for corresponding single block grids in the
several cases for which comparisons have been made.

The first test case presented here is designed to verify the accuracy of
the interface scheme on discontinuous grids, and to examine the effects of a
discontinuous block boundary in the vicinity of a large gradient. The free
stream Mach number is 0.875 with 0° angle of attack. The grid around the
airfoil is patched together using six blocks, as shown in Fig. 2. The grid dis-
tribution is clearly discontinuous across the interface boundaries. Contours
of constant pressure for this case are presented in Fig. 3. No discontinuities
in the slopes of the contours are observed, and the discontinuous inter-block
boundary has no visible effect on the shock structure.

In the second test case, the present blocked grid approach is used to
allow efficient grid refinement. Flow regions requiring higher resolution
can be isolated in separate blocks and the required grid refinement can be
introduced in these blocks. This test case has a free stream Mach number of
0.8 with 1.25° angle of attack. The flow field is divided into 18 blocks with
refined blocks near the leading edge and in the regions where shocks are
expected to appear in the solution, as shown in Fig. 4. The results verify
that the present method can generate solutions of accuracy comparable to
those obtained on a single block, uniformly fine grid (384 x 64), by using
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locally refined grid blocks. The contour plots of pressure shown in Fig. 5
demonstrate the continuity of the solution across block boundaries.

5 Conclusion

A multi-block approach which permits grid discontinuities at inter-block
boundaries has been developed for the two dimensional Euler equations.
The interface schemes are designed for the cell-centered finite volume ADI
method, but could be applied to explicit or other implicit methods as well.
Results have demonstrated the accuracy and functionality of the method.
The method is ready to be extended to three dimensional problems.
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Figure 2. Block-structured grid with discontinuous inter-block boundaries

Figure 3. Constant pressure contours: NACA 0012 airfoil at M = 0.875, a = 0°



Lixia Wang & David A. Caughey

Figure 4. Block-structured grid with local refinement

Figure 5. Constant pressure contours: NACA0012 airfoil at M = 0.8, a = 1.25



IMPLICIT MULTIGRID SOLUTIONS FOR

COMPRESSIBLE FLOWS IN COMPLEX GEOMETRIES

Lixia Wang, Ph.D.

Cornell University 1993

Two implicit multigrid algorithms for the two and three dimensional com-

pressible Eul.er equations have been developed in this dissertation.

First, a diagonal implicit multigrid method is developed for solving a

finite-volume approximation to the Euler equations in which the dependent

variables are stored at the cell vertices. The spatial derivatives in the two di-

mensional Euler equations are approximated using a conservative cell-vertex

finite volume formulation. Artificial dissipation is provided by adding an

adaptive blend of second and fourth differences of the solution to maintain

stability and accuracy. A Diagonal Alternating Directional Implicit method

is used to advance the solution in time. Rapid convergence to a steady-state

solution is achieved with local time stepping and the multigrid algorithm.

Results for the transonic flow past the NACA 0012 airfoil are presented to

verify the accuracy and efficiency of the scheme.

Second, the development of an efficient and flexible multiblock/multigrid

Euler solver and its application to realistic engineering problems are pre-

sented. A cell-centered finite volume method with a multigrid implementa-

tion of the Diagonal Alternating Direction Implicit algorithm is used to solve



the Euler equations. A fully conservative inter-block boundary condition,

which permits the passage of discontinuities across block boundaries with

minimum distortion of the solution, is developed for cases in which the grid

lines at the inter-block boundaries can be completely continuous or discontin-

uous. Information is exchanged between blocks by using surface arrays, which

contain all the data needed to update the inter-block boundary conditions.

Results demonstrate the feasibility of using the present multi-block/multigrid

approach to solve flow problems involving complex geometries. Two dimen-

sional results for several types of grids and various free stream conditions

have been presented to verify the accuracy and computational efficiency of

the method. The application of the multiblock approach as a means to per-

form efficient grid refinement has also been demonstrated. Calculated results

for three dimensional external and internal flow fields surrounding a highly

contoured super-elliptic diffuser inlet are presented to demonstrate the accu-

racy and functionality of the present multiblock/multigrid methodology.
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A Multiblock/Multigrid Euler Method to Simulate
2D and 3D Compressible Flow
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Abstract

The development of an efficient and flexible
multiblock/multigrid Euler solver and its applica-
tion to realistic engineering problems are described
in the present paper. A cell-centered finite volume
method with a multigrid implementation of the
Alternating Direction Implicit (ADI) algorithm is
used to solve the Euler equations. A fully conserva-
tive inter-block boundary condition, which permits
the passage of discontinuities across block bound-
aries with minimum distortion of the solution, is
developed for cases in which the grid lines at the
inter-block boundaries can be completely contin-
uous or discontinuous. Information is exchanged
between blocks by using surface arrays, which con-
tain all the data needed to update the inter-block
boundary conditions. Results demonstrate the fea-
sibility of using the present multi-block/multigrid
approach to solve flow problems involving com-
plex geometries. Two dimensional results for sev-
eral types of grids and free stream conditions have
been presented to verify the accuracy and compu-
tational efficiency of the present method. The ap-
plication of the present multiblock approach as a
means to perform efficient grid refinement has also
been demonstrated. Calculated results for three
dimensional external and internal flow fields sur-
rounding a highly contoured super-elliptic diffuser
inlet are presented to demonstrate the accuracy
and functionality of the present method.

I. Introduction

Considerable progress has been made over the last
two decades in developing computational fluid dy-
namics (CFD) methods for aerodynamic applica-
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Copyright ©1993 by the American Institute of Aero-

nautics and Astronautics, Inc. All rights reserved.

tions. Recent work in CFD has concentrated pri-
marily on developing algorithms for the solution
of the Euler and Navier-Stokes Equations and on
applying these algorithms to increasingly complex
aeronautical configurations. A major obstacle in
solving flow problems over complex geometries is
the generation of smoothly varying meshes about
such configurations. In order to overcome this ob-
stacle, two basic approaches have been proposed.
The first is to employ completely unstructured
meshes as in the methods described by Jameson
et al [1], Billey et al [2], and Peraire et al [3]. The
meshes are composed of triangles in 2D and tetra-
hedrons in 3D connecting a random distribution of
points. The second approach involves the use of
multiblock structured grids as in the methods pre-
sented by Thompson [4], Weatherill and Forsey [5],
Thomas [6], and Karman et al [7]. This approach
divides the given flow domain into sub-domains,
in each of which can be generated independently
a simple structured mesh of quadrilateral cells in
2D or hexahedral cells in 3D. Both these methods
have produced impressive demonstrations of their
capabilities.

The aim of our present research is to develop
an efficient algorithm to simulate two and three
dimensional transonic flows around complex ge-
ometries. To this end, a multiblock approach is
adopted here. This approach can substantially
simplify the task of grid generation for complex
geometries and also provides a natural framework
for parallel computing. This approach can also fa-
cilitate the use of different flow models in different
blocks according to the physical characteristics of
the flow, and the same can apply for efficient grid
refinement strategies.

The division of the flow domain into blocks cre-
ates new inter-block boundaries between contigu-



ous blocks. The behavior of grid lines at the
inter-block boundaries is an important character-
istic that differentiates the methods which fall in
this class. Grid lines from the two adjoining re-
gions may meet with complete continuity, with or
without slope continuity, or may not even meet.
A more general type of interface uses overlapping
grids as in the Chimera method of Benek et al [8].
While the overlapping grid approach provides even
greater flexibility in mesh generation, it is more dif-
ficult to communicate between the blocks and to
maintain global conservation. Thompson [9] has
provided a survey of various grid concepts, gener-
ation methods and related issues.

Various Euler solvers have been developed us-
ing multiblock approaches, and the construction of
stable, accurate and conservative interface schemes
has been addressed in numerous papers in recent
years. For example, Hessenius and Pulliam [10]
employed a conservative upwind flux vector split-
ting scheme at interior inter-block boundaries for
the Beam-Warming [11] implicit integration pro-
cedure. Rai [12] has described a general patched
grid interface condition for upwind schemes, and
Berger and Jameson [13] have discussed the impor-
tance of treating the inter-block boundaries con-
servatively. In general, these methods differ from
one another in several aspects, such as upwind
vs. central differencing procedure, explicit vs. im-
plicit integration process, cell-centered vs. cell-
vertex scheme, conservative vs. non-conservative
formulation, convergence acceleration technique,
patched grid vs. overlapping grid approach.

It is clear that the interface treatment depends
upon the nature of the inter-block boundaries and
the numerical algorithm used to solve the govern-
ing equations. Wang and Caughey [15] developed
a fully conservative interface scheme, which per-
mits the passage of discontinuities across block
boundaries with minimum distortion of the solu-
tion. The scheme was based upon a cell-centered
finite volume method with a multigrid implemen-
tation of the Alternating Direction Implicit (ADI)
algorithm. In the present work, the fully con-
servative interface scheme is extended to three-
dimensional problems. Three significant features
of the present work are the following: (1) The gen-
eral specification of the boundary conditions at the
block boundaries combined with a fully conserva-
tive interface scheme greatly enhances the power
of the multiblock approach; (2) Efficient local grid
refinement can be performed by using the present
multiblock approach; and (3) Only a relatively lim-
ited modification of the input data is needed when
switching from one application to another.

The present multiblock/multigrid method has
been applied to compute two dimensional and
three dimensional flows. Results of two dimen-
sional transonic flows past the NACA 0012 airfoil
have been obtained for different types of grids and
free stream conditions. The three dimensional ex-
ternal and internal flow through an engine inlet
is also presented here. Results demonstrate the
ability of the present multiblock methodology to
compute flows about complex geometric configu-
rations.

The present work is an extension of a block-
structured multigrid algorithm for the Euler equa-
tions developed by Yadlin and Caughey [14]. In
their work, the inter-block boundaries were re-
stricted to those having complete continuity, which
means that continuity conditions are imposed on
grid points, grid spacing and grid line orientation
at grid interfaces between adjoining blocks. This
restriction simplifies the treatment of inter-block
boundaries within the flow solver since it implies
that cells at an inter-block boundary can be treated
as interior grid cells, but greatly reduces the flex-
ibility of the block grid generation technique. In where
order to fully realize the power of the multiblock
approach, the present work is aimed at developing
more general interface schemes to extend the multi-
block Euler solver to more general block-structured
grids, even those having discontinuities in grid den-
sity and spacing.

II. Description of Basic Algorithm

The unsteady, three dimensional Euler equations
can be written in conservation law form as

9t dx dz m( >

w =

P
pu
pv
pw
e



is the vector of conserved state variables, and
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are the flux vectors in the x, y and z coordinates
respectively. The variable p is the density, u, v
and w are the velocity components in the x, y and
z coordinate directions, respectively, e is the total
energy per unit volume, and p is the pressure. For
a perfect gas, the pressure is related to the total
energy by the equation of state

e. = - - +
i ~

pH0, (2)

where 7 is the ratio of specific heats and HQ is the
total enthalpy.

To allow the treatment of arbitrary geometries,
Eq. 1 is transformed into the general curvilinear
coordinates (£,77, C) and written in strong conser-
vation law form as
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are the transformed flux vectors. Here, J is the
determinant of the Jacobian of the transformation
(which corresponds to the cell volume)

J = x y z

and U, V, and W are the contravariant components
of the velocity given by
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The present finite-volume method, following
Jameson, Schmidt and Turkel [16], defines the de-
pendent variables p,pu,pv,pw, e and p as cell av-
erages. The value of any variable on each cell face
is taken to be the average of the values in the cells
sharing the face. The spatial derivatives are ap-
proximated by evaluating the net flux across the
faces of each mesh cell using constant values of the
fluxes on each face.

In order to prevent decoupling of the solution at
alternate cells in the grid, dissipative terms must
be added. These are constructed as an adaptive
blend of second- and fourth-differences of the so-
lution in each of the mesh directions. With the
added dissipation, the difference approximation of
Eq. 3 is written as written as

= 0, (5)

where Q is a flux operator, and Z? is a dissipative
operator defined as

(6)

where 8f, 6^ and 6( are central difference operators.
The coefficients e(2) and e^ are adapted to the
solution as described by Caughey [17].

Once discretized, the equations are integrated to
the steady state using the diagonal ADI method.



Local time stepping, successive grid refinement and
the multigrid method are used to accelerate the
convergence. For two dimensional calculations, a
complete description of the diagonal implicit multi-
grid algorithm is given by Caughey [17], and the
extension to the three dimensional flow is given by
Yadlin and Caughey [18].

III. Multiblock/Multigrid Implementation

The multiblock approach adopted here consists
of a preliminary topological subdivision of the com-
plete physical flow domain into a number of logi-
cally rectangular blocks in the computational do-
main. The present method assumes that the grids
do not overlap, but share common boundaries. The
choice of non-overlapping grids has an advantage
with respect to communication between the blocks.
In this case, only 2D data structures are required
for the inter-block boundaries. This simplifies the
logic and allows increased of efficiency. Although
the inter-block surface must be common between
the two neighboring blocks, there is no restriction
on the grid slope or density across the block bound-
ary. This allows highly complex geometries to be
broken into a collection of simple blocks, each of
which requires only simple grid generation tech-
niques.

Each block, with its own coordinate system in
the computational space, has four faces in 2D or six
faces in 3D. In the present implementation, it is re-
quired that at each face, only one type of boundary
condition can be applied. This often requires intro-
ducing more computational blocks than necessary,
but the handling of the boundary conditions is sim-
plified. The information required at each face is as
follows: (1) the block number; (2) the neighbor-
ing block number and face number (if applicable);
(3) the orientation of the face coordinate system;
and (4) the boundary condition type. This infor-
mation is stored in a set of 2-D integer arrays and
used in the flow solver to steer the boundary condi-
tion routines and link the interfaces to each other.
These integer values can either be created as in-
put by the grid generation code or specified by the
user to select appropriate boundary conditions for
a particular block structure.

The multiblock approach is combined with
multigrid in order to accelerate iterative conver-
gence. Two options to implement the multigrid
within the multiblock framework exist. The loop
over the various blocks may be put inside or out-
side the loop over the different grid levels. These

are called horizontal mode and vertical mode, re-
spectively. In the horizontal mode, the multigrid
cycle is kept in phase in all the blocks; in the verti-
cal mode, the multigrid cycle is advanced indepen-
dently in each block. A discussion of the advan-
tages arid drawbacks of these two modes was given
by Yadlin and Caughey [14,19]. In the present im-
plementation, the multigrid cycle is advanced using
the horizontal mode in the 2D case and the vertical
mode in the 3D case.

Boundary Conditions

The aim of this work is to develop an efficient
method for calculating flows over complex geome-
tries without the need to modify the computer pro-
gram for each new geometry. In the present imple-
mentation, general specification of boundary con-
ditions on the four/six computational faces is al-
lowed for calculating either external flow around
an airfoil/wing or internal flow through a cas-
cade/inlet. Any of several different types of bound-
ary conditions can be applied on each boundary
face: solid surface, symmetry plane, far field of
external flow, inflow/outflow of internal flow, peri-
odic boundary or interface boundary.

At a solid surface, the mass flux is zero. Only the
pressure on such a face contributes to the momen-
tum flux balance. For inviscid flow, a symmetry
condition is equivalent to a solid surface boundary
condition.

For external flow in the far field, the Riemann in-
variants for the one dimensional flow normal to the
boundary are used for inflow and outflow bound-
aries. At an outflow boundary point, the tangen-
tial velocity component and entropy are extrapo-
lated from the interior, while at an inflow boundary
point they are specified at their free stream values.
The detailed treatment of explicit boundary con-
ditions on solid surfaces and in the far field for
external flow are described by Caughey [17].

For internal flow, the inflow boundary condition
is the same as the inflow condition for external
flow. On an outflow boundary, only the pressure
is specified, while entropy and the three velocity
components are extrapolated from the interior of
the flow field. For periodic boundaries, the treat-
ment is the same as an interface boundary, which
will be discussed later.

The ADI algorithm requires implicit boundary
conditions on all four/six faces of each block.



These implicit boundary conditions are treated in
a manner consistent with the characteristic the-
ory. At each face, the appropriate eigenvalues are
calculated and used to determine the directions of
the characteristics for the one-dimensional problem
normal to the boundary. The boundary conditions
for the corrections to those elements of the solution
vector which correspond to characteristics entering
the domain are taken to be homogeneous Dirichlet
conditions, while the boundary conditions on the
corrections to those elements which correspond to
characteristics leaving the domain are taken to be
homogeneous Neumann conditions.

Interface Scheme

In the original code developed by Yadlin and
Caughey [14], the grid lines at the interfaces are
continuous across block boundaries. In order to
treat boundary grid points as interior grid points,
two extra layers of dummy cells are added outside
each block. In the basic algorithm, the dissipa-
tive terms include fourth differences of the solu-
tion, hence their direct evaluation would require
two extra layers of dummy cells. In the present
implementation, the grid points on each side of
the interface are not necessarily identical, nor is
the grid spacing across the interface necessarily
continuous. For this general type of inter-block
boundaries, special treatment is needed to transfer
information accurately between the blocks.

In order to apply the cell-centered finite volume
discretization to the cells on both sides of the inter-
face, it is necessary to compute the inviscid fluxes
across the cell faces lying on the interface. This can
be done as follows. First, one of the two adjoin-
ing blocks is designated as Block 1, and the other
as Block 2. Fig. 1 shows a schematic inter-block
boundary for the 2D case. The dependent vari-
ables at the midpoints of the cell faces lying on the
interfaces of Block 1 are interpolated from the cor-
responding cell centered values using bilinear inter-
polation. The cell centers involved are chosen such
that the midpoint of the cell face considered lies
inside the triangle for 2D formed by three points
or the tetrahedron for 3D formed by four points.
The corresponding fluxes across the cell faces on
the interface for Block 1 can then be determined
in the standard manner. The advantage of this ap-
proach is that information is required only from the
two layers of cells separated by the interface; the
computer memory required for bookkeeping is thus
reduced. In order to preserve global conservation,

the fluxes through the cell faces on the interface for
Block 2 are determined by satisfying the conserva-
tion condition at the interface, which requires the
discrete line/surface integral of the numerical flux
along both sides of any portion of the inter-block
boundary be the same. The conserved fluxes for
each face of Block 2 are thus determined using the
sum of the contributions from each of the segments
of Block 1 which lie inside the cell face of Block 2.
For example, in Fig. 1, the flux through cell face A
of Block 2, which runs from point (j — j) to point
(j + 5), is the sum of the fluxes through segments
a, b and c of Block 1.

By analogy with the treatment of inviscid fluxes
at the interfaces, special interface formulas for the
dissipative fluxes also must be provided. The eas-
iest way to keep the dissipative fluxes conserva-
tive is to set the first- and third-difference dissi-
pative fluxes to zero at interfaces. If there is no
shock passing through the interface, the solution
is almost unaffected by this approach. If there is
a strong shock crossing the interface, setting the
first-difference fluxes equal to zero will result in
an inaccurate or even a divergent solution. In the
present implementation, the third-difference fluxes
at the interfaces are set to zero, but the first-
difference fluxes are treated in a manner similar
to the inviscid fluxes at the interfaces. The re-
quired first difference at cell faces on the interface
of Block 1 can be formed using linear combina-
tions of the values at the last cell centers and at
the midpoints of the cell faces on the interface. For
Block 2, the quantities are calculated in exactly the
same way as are the inviscid fluxes. In this way,
both inviscid and dissipative fluxes are kept con-
servative across the interface.

It is noted that since an approximation is made
in the evaluation of the dissipative terms by this
interface scheme, the solution at points near block
boundaries is formally less accurate than at other
interior points. The present code therefore allows
either of two types of interface boundary conditions
to be applied at the block surface: (1) a completely
continuous interface; or (2) a general or discontin-
uous interface, in which the solution at one bound-
ary face is calculated by interpolation, while that
at the pairwise one is calculated by integration. It
is, of course, clear that the general interface condi-
tion also applies for grids with complete continuity.

The inviscid fluxes and dissipative fluxes cal-
culated as described above at the interfaces for
both adjoining blocks are stored in special sur-



face arrays. Also stored in these surface arrays
is the required geometric information at the inter-
face, which includes: the pointers addressing the
cell center points needed to interpolate the depen-
dent variables at the midpoints of the cell faces of
Block 1 and the interpolation coefficients needed to
calculate the face flux for Block 2. These pointer
and coefficient arrays can be set up at the mesh
generation stage. The data structure of the sur-
face arrays follows the usual multiblock/multigrid
framework. These arrays are treated as one dimen-
sional arrays, and organized by blocks. The data
of the first block are stored at the beginning of the
array, followed by those of the second block, and
so on. Within each block, the data is organized by
grid level. At each grid level, the data is organized
by faces. The data stored in the surface arrays is
accessed using a system of pointers, which are cal-
culated according to the number of blocks and grid
levels in the multigrid cycle and are stored in an
integer array.

IV. Results

The algorithm described above has been applied
to compute two dimensional and three dimensional
flows. Results of two dimensional transonic flows
past the NACA 0012 airfoil have been obtained
for different types of grids and free stream condi-
tions to verify the accuracy and functionality of the
present method. The three dimensional external
and internal flow through an engine inlet is also
presented here to demonstrate the ability of the
present multiblock methodology to compute flow
about complex geometric configurations.

2D Results

The first two dimensional case is presented to
compare the convergence rates of the multi-block
implementation with those for corresponding sin-
gle block grids. For this purpose, it is necessary to
choose a case for which the flow can be calculated
equally well using a single block method. The cal-
culation is done for the flow over the NACA 0012
airfoil at a free stream Mach number of 0.80 and
1.25° angle of attack. The grid used in the cal-
culation is a C-grid, containing 192 x 32 grid cells
in the wraparound and normal directions, respec-
tively. To test the multiblock calculations, the grid
was artificially divided into three blocks, contain-
ing 32 x 32, 128 x 32 and 32 x 32 grid cells, as shown
in Fig. 2. It is obvious that the grid lines at the
interfaces between Block 1 and Block 2 or between
Block 2 and Block 3 are completely continuous. In

order to test the present version of the multiblock
code, the general type of the interface scheme is
used in this calculation, instead of using the con-
tinuous interface scheme (results of which were dis-
cussed by Yadlin and Caughey [14]). The calcula-
tions were performed using a saw-tooth multigrid
cycle with grid sequencing, starting with the undis-
turbed flow as the initial guess on the coarsest grid.
In this calculation, 100 multigrid work units were
first performed on grids containing 8 x 8, 32 x 8,
and 8x8 cells in the three blocks, respectively,
using three levels of multigrid. The solution was
then interpolated onto grids containing 16 x 16,
64 x 16, and 16 x 16 cells, and an additional 100
work units were performed. Finally, this solution
was interpolated into the fine grids and a final 200
work units, using five levels of multigrid, were per-
formed. Fig. 3 shows the convergence history on
the finest grid for the present multiblock method
in horizontal mode with five levels of multigrid.
Four measures of convergence are plotted: the log-
arithm of the average over all the grid cells of the
residual of the continuity equation |A/?/A<|, the
total number of grid cells in which the local Mach
number is supersonic, the lift coefficient C\ and
the drag coefficient Cj as a function of computa-
tional labor, measured in work units. The latter
three quantities are plotted on normalized scales,
and one work unit is the amount of computational
work required for one time step on the fine grid.
For reference purposes, a calculation has also been
done using a single-block grid that is, in all other
respects, equivalent to the multiblock method de-
scribed above. Fig. 4 presents the convergence his-
tory for the single block calculation. Comparing
Figs. 3 and 4 shows that the convergence history
of the multiblock implementation is virtually iden-
tical to that for the corresponding single block grid.
There is no significant degradation in the perfor-
mance of the multiblock/multigrid method, even
though the interface scheme for updating the solu-
tion at points on block boundaries is formally less
accurate than at other interior points.

The second test case presented here is artificially
designed to verify the accuracy of the interface
scheme on discontinuous grids, and to examine the
effects of discontinuous inter-block boundaries in
the vicinity of a large gradient. The free stream
Mach number is 0.875 with 0° angle of attack. The
grid around the airfoil is patched together using six
blocks, as shown in Fig. 5. Block 2, next to the air-
foil, contains 144 x 16 grid cells. The grids in the
other five blocks are coarser than those in Block 2,



containing 16 x 12, 16 x 12, 16 x 12, 96 x 12, and
16 x 12 cells, respectively. The grid lines across the
interfaces between Block 1 and Block 4, Block 3
and Block 6, Block 4 and Block 5, and Block 5 and
Block 6, are completely continuous; while the grid
distributions are clearly discontinuous across the
interface boundaries between Block 1 and Block 2,
Block 2 and Block 3, and Block 2 and Block 5.
For the continuous inter-block boundary, the first
type of interface scheme has been used and for the
discontinuous inter-block boundaries, the general
type of interface scheme has been used. Contours
of constant pressure as well as the block boundaries
for this case are presented in Fig. 6. Although there
is a strong shock generated near the rear part of
the airfoil, no discontinuities in the slopes of the
pressure contours are observed, and the discontin-
uous inter-block boundaries have no visible effect
on the shock structure.

In the third test case, the present multiblock ap-
proach is used as a tool to perform efficient grid re-
finement. Flow regions requiring higher resolution
can be isolated in separate blocks and the required
grid refinement can be introduced in these blocks.
This test case has a free stream Mach number of
0.8 with 1.25° angle of attack. The coarse global
grid is a C-grid with 192 x 32 grid cells. Then,
the flow field is divided into 18 blocks with refined
blocks near the leading edge and in the regions
where shocks are expected to appear in the solu-
tion, as shown in Fig. 7. The block sizes vary from
4 x 16 cells to 32 x 32 cells, with a total of 8,448
grid cells. The contour plots of pressure shown in
Fig. 8 demonstrate the continuity of the solution
across block boundaries. Fig. 9 shows the surface
pressure coefficient distributions calculated by the
multiblock method on the 18-block grid. The lift
coefficient is 0.3638, the drag coefficient is 0.0239.
Fig. 10 shows the surface pressure coefficient distri-
butions calculated by a single block method using
a global grid with 384 x 64 grid cells. The lift coeffi-
cient in this case is 0.3644, and the drag coefficient
is 0.0234. It is evident that the present method,
by using locally refined grid blocks, can generate
solutions that agree well those obtained on a single
block, globally refined grid, and the interfaces do
not cause any problems even when they are crossed
by shocks. However, a global refinement increases
the total number of grid cells by a factor of 4, while
the local refinement increases the number of cells
by a factor of only 1.375. This fact illustrates the
potential of local refinement and the power of the
present multiblock methodology.

3D Results

The present multiblock/multigrid approach was
applied to simulate the integrated internal and ex-
ternal flow fields surrounding a highly contoured
super-elliptic diffuser inlet. This geometry is a re-
alistic engineering geometry and it is complicated
enough to verify the functionality of the multiblock
method. Chyu and Bencze [20] used a multiblock
approach combined with a two-topology grid to
represent both the internal and external flow fields
surrounding this geometry, and used an implicit,
approximately factored, partially flux-split finite-
difference algorithm to solve the three dimensional
thin-layer Navier-Stokes equations. Although good
agreement was shown between the experiment and
their computation, the convergence rate of their
computation was very slow. The present calcula-
tion solves only the Euler Equations; an effort to
extend the present method to the Navier-Stokes
equations is underway.

The inlet geometry consists of a bell-mouth en-
trance, a straight rectangular duct, and an offset
diffuser with cross sectional profiles that vary from
rectangular to circular, and a circular exit duct, as
shown in Fig. 11. To treat the complexity of this
geometry, a composite grid of three blocks with
two types of grid topology was generated by Chyu
and Bencze [20]. The three grid blocks consisted of
an external grid which extended from the highlight
of the bell-mouth to the far field boundary of the
external flow and two internal grids referred to as
the outer internal grid and the inner internal grid.
An O-H topology was used for the external and
outer internal grids, whereas to avoid the numeri-
cal singularity associated with an O-grid along the
centerline of the duct, an H-H topology was used
for the inner internal grid. The internal grids are
shown in Fig. 12 for typical rectangular, elliptical
and circular sections of the duct. The grids (repre-
senting only half of the geometry due to symmetry)
consist of a total of 51,200 cells including 48x16x8
cells in the inner internal H-grid, 48 x 32 x 8 cells
in the outer internal O-grid and 32 x 32 x 32 cells
in the external O-grid. The grid points were clus-
tered near the bell-mouth and in the offset region
of the inlet where the flow variation is great in the
axial direction.

In the present implementation, the type of
boundary condition must be the same for the entire
extent of each face of a block, so it was necessary
to decompose the original three blocks into four-
teen blocks. The block sizes vary from 16 x 32 x 32



to 128 x 64 x 32. Although the grid lines across
the interface boundary are continuous, their slopes
and coordinate orientations are not continuous at
all interfaces.

The calculations are done for a free stream Mach
number of 0.5 and for two different exit static pres-
sure ratios. Three successive grids have been used.
Figs. 13 and 14 present convergence histories on
the finest grid for the block scheme with three lev-
els of multigrid, for pressure ratios of 1.11 and 1.08,
respectively. The effect of the multigrid on the con-
vergence rate is very clear.

Figs. 15 and 16 show the computed Mach con-
tours of the flow field in the symmetry plane of
the inlet, and Figs. 17 and 18 show the computed
Mach contours in the rectangular, elliptical and
circular sections of the duct. The contour lines are
smooth and continuous across the interface bound-
aries. Since these results are obtained using the
Euler equations, there is no result available for
comparison. Nevertheless, the results demonstrate
that the method can be used to calculate three di-
mensional flows over complex geometries, given a
grid of multiblock type.

V. Conclusion

An efficient and flexible multiblock/multigrid al-
gorithm to solver the Euler equations on structured
grids with non-overlapping inter-block boundaries
is developed and validated by calculating sev-
eral two and three dimensional flow problems.
The fully conservative treatment of the inter-block
boundary allows the passage of discontinuities
across block boundaries with minimum distortion
of the solution. Results have demonstrated the ac-
curacy and functionality of the present multiblock
method. The method is ready to be extended to
solve the Navier-Stokes equations.
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Figure 11: Inlet geometry and grid at symmetry Figure 12: Internal grid; rectangular section; ellip-
plane tic section; circular section

12



CONVERGENCE HISTORY

200. 400. 600. EBB. 1000. 1201
WORK UNITS

Inlet; 14blks; Euler; Pe=l . l l
Mach 0.500 Alpha 0.000
Resl 0.946E-01 CFL 8.00
Res2 0.680E-04 Grid 51200
Work 399.36 Rule 0.9827 Nmesh 3

Figure 13: Convergence history with three levels Figure 15: Constant Mach contours at symmetry
of multigrid; at Mx = 0.5,pexi«/Poo = 1-H plane; at M^ — O.S^^.-j/poo = 1.11

CONVERGENCE HISTORY

WORK UNITS

Inlet; 14blks; Euler: Pe=1.08
Much 0.500 Alpha 0.000
Resl 0.98SE-01
ResZ 0.90SE-04
Work 399.36 Rote 0.9827

CFL 6.00
Grid 51200
Nmesh 3

Figure 14: Convergence history with three levels Figure 16: Constant Mach contours at symmetry
of multigrid; at MM = Q5,pexitlpoe = 1-08 plane; at M^ — 0.5,pex,-(/poo = 1.08

13



Figure 17: Constant Mach contours at cross sec- Figure 18: Constant Mach contours at cross sec-
tion; at MOO = O.5,pexit/Poo = 1.11 tioii; at Mx = 0.5,peWp<» = 1-08

14



AiAA

AIAA 91-0242
Implicit Multigrid Algorithm
for the Navier-Stokes Equations

T. L. Tysinger and D. A. Caughey

Cornell University
Ithaca, N. Y.

29th Aerospace Sciences Meeting

January 7-10, 1991/Reno, Nevada

For Permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
370 L'Enfant Promenade SW, Washington, DC 20024



Implicit Multigrid Algorithm for the Navier-Stokes
Equations

T. L. Tysinger* and D. A. Caughey*
Sibley School of Mechanical and Aerospace Engineering

Cornell University
Ithaca, New York 14853

Abstract 2 Governing Equations

An implicit multigrid procedure for the solution of the
Navier-Stokes equations of viscous, compressible flow is
described. Attention is focused on the implicit inclusion
of the viscous contributions to the equations in a way
that will enhance the stability, yet not disturb the effi-
ciency of the algorithm. Two- and three- dimensional
laminar flows are computed to demonstrate the stability
and efficiency of the scheme.

1 Introduction

Compressible viscous flows are governed by the Navier-
Stokes equations. These equations require that both
streamwise and normal viscous diffusion be computed.
Under certain conditions, it is possible to neglect
streamwise diffusion, resulting in the thin layer equa-
tions. Both the Full Navier-Stokes (FNS) equations and
the Thin Shear Layer (TSL) approximation to those
equations are considered here. The development of
the algorithm will be described for the two-dimensional
equations. Extensions to three-dimensions are straight
forward; equations relevant to the three-dimensional al-
gorithm are listed in appendix A.

In the numerical simulation of viscous flows at high
Reynolds numbers, it is necessary to resolve the thin
shear layers which develop near solid boundaries. Such
thin shear regions require the use of grids with cells
of very high aspect ratio, which are known to hin-
der convergence for steady problems when using ex-
plicit schemes. To overcome these difficulties, Caughey
has developed a diagonal Alternating Direction Implicit
(ADI) algorithm for the solution of the Euler equations
of inviscid, compressible flow [1]. Rapid convergence is
achieved with the use of the implicit scheme within a
multigrid framework.

Here, the method is extended to solve the Navier-Stokes
equations. Attention is focused on methods of adding
the viscous contributions in a way which does not dis-
turb the overall stability and efficiency of the implicit
scheme. No attempt is made here to incorporate a tur-
bulence model, so the discussion will be limited to lam-
inar flows.

2.1 Navier-Stokes Equations

The nondimensional form of the Navier-Stokes equa-
tions is written

(1)di d dy
.

dx "" dy '

This system represents conservation of mass, momenta,
and energy. The vector of conserved dependent vari-
ables w. consists of the density, cartesian momentum
flux, and total energy per unit volume and is written

w= {p,pu,pv,e}T.

The three-dimensional form contains five elements since
a third momentum equation is required. The convective
flux vectors in the x- and y- directions, respectively jf
and £^, and the viscous flux vectors f_v and gv are
given by
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gv = {0,ryr,ryy,/?y}T.

The viscous shear stresses and the heat fluxes are of the
form

TIX = 2/i«z + A (vx + Vy) ,

+ A (u, + Vy) ,

where k is the coefficient of thermal conductivity and T
is the temperature. The second coefficient of viscosity
A can be related to the molecular viscosity p by Stokes'
hypothesis

A—!/- 0)

An equation of state is needed to relate the pressure and
total energy:

(3)

where 7 is the ratio of specific heats.

To allow treatment of arbitrary geometries, these equa-
tions are transformed into curvilinear coordinates and
written in Strong Conservation Law (SCL) form as

dW_
at "*"

dF_v . dGi
(4)

where W = hw_ is the transformed dependent variable
and

PU
pUu
pUv •
(e+p)U

pV

TJyp

•xy

= h

(o \

+ 'Jy'yy

are the transformed flux vectors. The contravariant ve-
locities U and V are related to the cartesian velocities
by

where J is the Jacobian of the transformation written
as

The determinant of the inverse of the Jacobian is h
which is written

v.
and which corresponds to the cell area. The metrics are
computed from the grid coordinates by

=- —x,,,

hrjy = x(.

2.2 Thin Layer Equations

Under certain conditions it is possible to neglect viscous
diffusion in the streamwise direction without adversely
affecting the quality of the solution. This simplification
requires that the flow have a predominant direction, and
be without massive separation. High Reynolds number
flows over wings are one such example. Implementation
of such a model requires that body surfaces be mapped
onto coordinate surfaces, and there be sufficient cluster-
ing normal to the shear surface to allow the boundary
layer to be resolved. It can be argued that even if the
complete equations are used, viscous diffusion in the
streamwise direction cannot be resolved unless the grid
is sufficiently fine in that direction [2], and for many
practical flows, current computational limitations pre-
vent the use of grids with sufficient resolution in both
the normal and streamwise directions.

The transformed viscous flux vectors can be decoupled
into components which depend only on the vector of
dependent variables and its derivative in either the £-
or 77- direction:

(5)

(6)



The thin layer approximation entails retaining only the are computed by a line integral over the cell boundaries,
surface normal- or 77- derivatives from the viscous terms so that, for example,
in the Navier-Stokes equations (Eqs. (4)); that is, only
the term G_v(WjWjj) is kept when the body surface is
a line of constant rj. The thin layer equations are then
written

with
dt

dGy

• dr, ' (7)

+ TJyTyy

and

rxx =

3 Numerical Method

3.1 Finite Volume Formulation

i,i i , dhi.s

where, consistent with the finite-volume approximation,

J u d y = Wi+jjAy^. + tt^Ayu+j
»ohi,j

+ «<_ j jAy,._u + uw_ jAy,j_ j, (11)

with

and the velocity u computed as shown in Eq. (9). The
approximation of Eq. 11 is appropriate for the FNS for-
mulation. An approximation consistent with the TSL
formulation is

udy = u (12)

The values on the faces are then taken to be the averages
of the values in neighboring cells.

Spatial discretization of the governing equations is ac-
complished with a finite volume scheme similar to that
of Jameson et al [3]. The physical domain is partitioned
into quadrilateral cells and a conservative flux balance
is applied to each cell. The net flux across the cell faces
is evaluated assuming a constant value of velocity on
each face. In the present implementation, discretized
solution variables correspond to cell averaged quanti-
ties. That is,

1 f wdS, (8)

where A.-y is the area of grid cell (t, j). This average
value does not correspond to any particular location
within the cell, but for convenience may be thought of
as the value at the cell center. The values on the cell
faces are computed as simple averages of the values in
adjoining cells. For example, the value of u on the face
shared by cells (i,j) and (t + 1, j) is

(9)
+

Discretization of the viscous terms requires that first-
order derivatives be known on the cell faces. By appli-
cation of Green's theorem the cell averaged derivatives

3.2 Numerical Dissipation

Applying the finite volume discretization to each grid
cell, a system of ordinary differential equations emerges
which has the form

— (13)

where Qe and Qv are centered difference operators rep-
resenting the ^convection and viscous diffusion terms.
Use of a centered difference scheme for the Euler equa-
tions may lead to solutions which are decoupled at odd
and even grid cells due to the first differences of the con-
vection terms. The addition of some form of dissipation
is required to ensure convergence to a steady state. In
comparison, the Navier-Stokes equations are naturally
dissipative and, in a centered difference scheme such as
that described here, are coupled by second differences
of the viscous terms. However, to suppress the growth
of nonlinear instability in regions of the flow where vis-
cous damping is inadequate, and to prevent oscillations
in regions where the grid is incapable of resolving the
gradients, such as near shocks, adaptive dissipation sim-
ilar to that described by Jameson [3] and modified by
Caughey [1] is added to the scheme.



With the added dissipation, the difference approxima-
tion is written

Kij = -QcJStj + + (14)

3.3 Iterative Scheme

To advance the solution in time, an ADI procedure suit-
able for the Navier-Stokes equations has been devel-
oped. Such a scheme begins by approximating spatial
derivatives at new and old time levels, linearizing the
changes in the flux vectors, and approximating the im-
plicit operator as a product of one-dimensional factors.
The implicit operators are then diagonalized to improve
the computational efficiency of the scheme. Special at-
tention is directed at methods to include viscous contri-
butions in the implicit operators.

3.3.1 Delta Form

The first step in developing an ADI scheme is to ap-
, (4) , , , , ,, proximate the spatial derivatives as weighted averages

where D is the difference operator representing the ar-
tificial dissipation. Following Caughey [1], D is written

Dwj • = D^Wf • + D,,WJ • (15)

where

D{ = 6((d£Wjj) (16)

and 8( and 6^ are central difference operators spanning
a single grid cell. In the operator D(,

where the coefficients
solution using a switch which measures the magnitude
of the change in pressure gradient across a cell defined
by

„ _
''J

-(2)

and

%,;• =

(20)

(21)

cases

(22)

was found adequate. When using the TSL approxima-
tion, only dissipation in the TJ— direction is scaled by
the Mach number due to the lack of natural dissipation
in the £— direction.

To minimize the amount of added dissipation, the con-
stants /«(2) and /c^4) should correspond to the smallest
values which will allow convergence to steady state and
prevent spurious oscillations. For the present calcula-
tions, values of K^ = 2 and K^ = 1/32 were used.

at new and old tune levels. Such an approximation to
the full Navier-Stokes equations (Eq. (4)) can be written

(19)

To limit spurious dissipation in regions close to solid
boundaries, i.e. where the physical dissipation is most
important, the coefficients are scaled by a function of
the local Mach number M, and so are then written

It has been suggested by several researchers [4] that
the Mach number scaling function /(M) be different
depending on whether the flow is separated or attached;
here no such adaptation was attempted and for most'

where AW?j = W^^1 - W£ is the correction added to
the solution, and 6 represents the degree of implicitness
with 0 < 0 < 1. Eqs. (23) are commonly referred to as
the "delta" form derivation [5] since increments of the
conserved variables and fluxes are involved.

For this scheme to be computationally efficient, it is
necessary to linearize the implicit operator and approx-
imate it as a product of one-dimensional factors. Un-
like the Euler equations, the multidimensional Navier-
Stokes equations are spatially coupled due to the pres-
ence of mixed derivatives in the viscous stress tensor.
Therefore the implicit operator cannot be factored di-
rectly into one-dimensional components. The problem
can be avoided by neglecting the mixed derivatives in
the the left-hand side operator of Eqs. (23). This is
accomplished using Eqs. (5) and (6) to give

Neglecting the mixed derivatives in this way does not
alter the consistency of the approximation. Nor can it
affect the converged solution since the right-hand side
of the equation - the residual vector - remains intact.
It can alter the stability properties of the scheme, but,
as will be demonstrated, the scheme remains uncondi-
tionally stable according to linear stability theory [6, 7].



In the TSL formulation there are no mixed derivatives, The viscous flux Jacobians are
and so the delta form approximation is / 0 0 0

=,"+!
C32 633 0

642 643 644

(32)

(25) where

In the remaining development only the FNS approxima- C21 = -a,, ( - ) - a,y ( - ) ,
tion will be considered. The analogous TSL schemes can \P/ \P/

622 =

tion will be considered. The analogous TSL schemes can
be readily derived by neglecting the appropriate terms.

3.3.2 Linearization e2a

(1\

= «"U>'= axvG)'
The changes in the convective flux vectors can be lin- ezi = -axy ( — ] - <*yy ( - ] >
earized using local Taylor series expansions in time to \P/ \P J
give [8] C32 = C23'

(26) e33 = a

(27) g4i = _

where A = {dFc/dW} and B = {dQc/dW} are the
Jacobians of the transformed convective flux vectors +
with respect to the solution and are given by Warming,
Beam, and Hyett [9] and by Chaussee and Pulliam [10]. g - _a _e

- ' \P '
Since the transformed viscous flux vectors E_v and Q_v f \
are functions of .p£ and W^ or W^ respectively, the ap- e43 = — a e(-}-e3 i ,
propriate linearizations are \P/

a

O (A<2)

with

(28)

- J + O (A<2) , (29)

where K = {5£v/^I£} ano1 M = {Sfiv'/^iil} are

the Jacobians of the transformed viscous flux vectors
with respect to the solution and L = {dE.v/dW,} and

fn* ln , T ,. ., ,
N = {dav/dW,,} are the Jacobians with respecUo the
derivatives of the solution. Recognizing that K-Le = 0
and M — Nn = 0 if the the transport coefficients are ap-
proximated to be locally constant [6, 11], the lineariza-
tions reduce to

(30)

w+1 .« _. /-B N 2v,7 - Gv,; - 5?? (N$ AIK", J + O (A*2) . (31) For simplicitV)

and K = ^ or r? for L and N, respectively, and Pr is the
Prandtl number. This matrix contains no derivatives of
tne solution variables, unlike the coefficient matrix in
Ref. [12] derived by a similar method.

, . . ._ .nn.
Introducing the approximations of Eqs. (26)

and (31) ^ EJP
(24) and .indudi^gartificial dissipation results in the scheme

, „.
, (30),

i1 + 0&t[A-i& +
+ efi

_

- S( L,-y -

+

(33)
the numericai dissipation coefficients in



Eqs. (33) are written as if they were the same for the
£— and TJ— directions, although they differ in reality.

Approximating the left hand side of Eqs. (33) as the
product two one-dimensional factors - one for each of
the spatial directions - results in a block ADI scheme
and is written

(34)

To advance the solution one time-step using Eqs. (34), a
two step procedure - one for each of the implicit factors
on the left hand side - is used. In the first step, the
intermediate correction AW*j is determined by solving
the block pentadiagonal system

(35)

along each line of constant 77. Here #,- ;- is the residual
vector corresponding to the right hand side of Eqs. (34).
The correction AW?- is then determined by solving the
system

. = AW2y (36)

along each line of constant £. The size of the blocks
is 4 x 4 for the two-dimensional problem which corre-
sponds to the order of the system of equations. For the
three-dimensional problem, the blocks are size 5 x 5; in
addition, a third factor corresponding to the additional
spatial direction is required.

3.3.3 Diagonalization

For the Euler equations, the convective flux Jacobians
can be diagonalized with local similarity transforma-
tions as A =: Q^AxQ^1 and B = QsAaQjjS where
\A and AB are diagonal matrices whose diagonal ele-
ments are the eigenvalues of their respective Jacobians,
and Q.A and Q# are the modal matrices whose elements
can be found in [11]. This allows the block equations
to be decoupled into equations which can be solved
as scalar pentadiagonal systems, greatly reducing the
amount of computational labor needed for a solution.

For the Navier-Stokes equations, it is not possible to
both include the viscous terms in the implicit factor and
to diagonalize the system, since the convective and vis-
cous Jacobians are not simultaneously diagonalizable.
Several alternatives exist to circumvent this problem.

Method 0: Explicit Treatment If viscous contri-
butions are neglected completely from implicit consid-
eration,- a diagonalized system can be written

= - A * Q .

,- + *£?(*4 + *4)J2.-J}"- (37)
Neglecting the viscous terms from the implicit fac-

tors may jeopardize the stability of the scheme. It is
desirable to maintain the efficiency of the diagonalized
scheme without degrading its stability properties, so al-
ternate approaches must be explored.

Method L Implicit Approximation The first im-
plicit method consists of using the largest eigenvalue of
the viscous Jacobian to add contributions to the inviscid
implicit factors. This is similar to what was suggested
by Pulliam [12]. The eigenvalues of L,N are

(38)

A3 =

A4 = 0,

where Pr is the Prandtl number.

A scheme is constructed by adding the diagonal
imations A£ w Q^LQx, and A^ w Q
appropriate implicit factors:

approx-
to the

x QB,, {I + 0&t[ABlJ6n - 6* A

= -A*

6



The diagonal approximations A£ and
pie

are for exam-

and

where I is the identity matrix. The number of additional
operations needed to implement this scheme is negligible
since it involves only the calculation of an eigenvalue
whose analytical form is known.

Method II:. Additional Operator A second option
is to use additional implicit operators which contain the
exclusive contributions from the viscous terms. The ad-
dition of the viscous Jacobians directly to the operators
would require the solution of block tridiagonal systems.
However, since the eigenvalues of the viscous Jacobians
are distinct (Eqs. (38)), modal matrices QI and Q^
exist which diagonalize L and N, respectively, through
a similarity transformation. This results in the diagonal
scheme

+

= -At

where \Lij = Q

ij>B , (42)

and are
diagonal matrices whose nonzero elements are the eigen-
values of L and N, respectively. In this scheme, two ad-
ditional scalar tridiagonal systems must be solved; for
the TSL approximation, only one additional factor ap-
pears in the equation. The viscous modal matrices are
written

0 0 0
kt 0 ky

ky 0 — kx

6 1 -

1

v
e.
P -I

(43)

where /c = £ or rj for
_

**£ ^™

(44)

respectively, and

0 = kxu + kyV, ft = kxv — kyU.

The three-dimensional viscous Jacobi matrices and their
eigenvalues are given in the appendix. Although the
eigenvalues are not unique in the three-dimensional
case, the matrices can still be diagonalized. The multi-
ple sets of modal matrices, which are possible because of
the degenerate eigenvalue, are also listed in the appedix.

3.4 Convergence Acceleration

3.4.1 Local Time Stepping

For problems in which only the steady-state solution is
of interest, the goal for any iterative procedure is to
reach that solution as quickly as possible. One way of
accelerating the convergence is to use local time steps
in which a time step is proportional to the size of the
grid cell. The directional time steps are based on one-
dimensional inviscid wave propagation corresponding to
unit Courant number and are written

Ate = . h ,__ , . ,. (45)
\ynu - xnv\ +

A local time step At is then denned as

(46)

(47)

where A is the Courant number.

3.4.2 Multigrid

The resulting ADI scheme has good high wave num-
ber error damping characteristics. Effective removal of
low wave number error is accomplished using a multi-
grid scheme in which corrections to the solution are re-
cursively computed on a hierarchy of grids. The algo-
rithm is based on that originally developed by Jame-
son [13] and described by Caughey [1] and Smith and
Caughey [14].



A coarse grid is created by removing every other grid
line from the fine grid, essentially doubling the grid
spacing in each direction. The multigrid cycle begins
by advancing the solution a fixed number of time steps
on the fine grid using a time stepping procedure such as
that described earlier. Next, the solution is restricted
to the coarse grid using area-weighted (volume-weigh ted
in 3D) averages. The fine grid residuals are also re-
stricted since they are needed to drive the solution on
the coarse grid. A forcing function is added to the coarse
grid residuals and is defined as the difference of the re-
stricted fine grid residuals and the initial coarse grid
residual. It is important to use such a forcing function
so that the fine grid accuracy is maintained. The proce-
dure is then repeated by recursively starting a number
of multigrid cycles from the present grid level. High
wave number error on a coarse grid corresponds to low
wave number error on a fine grid so by using a time
stepping procedure with good high wave number error
damping characteristics on successively coarser grids, a
range of wavenumber errors is eliminated from the fine
grid solution. Once the coarsest grid is reached, the cor-
rections are prolonged to successively finer grids using
bilinear (trilinear in 3D) interpolation in the computa-
tional coordinates. At each level in the prolongation,
the time stepping procedure is again performed for a
fixed number of iterations (time steps).

By controlling the number of iterations and multigrid
cycles on each level, various cycles are possible. For ex-
ample, if the multigrid procedure is executed once from
each level, a V-cycle results. A recursive W-cycle results
from executing the multigrid procedure twice from each
level. Grid sequencing is used to initialize a starting so-
lution by first computing the solution on a coarse grid,
and then interpolating the coarse grid solution to the
fine grid.

3.5 Boundary Conditions

On solid surfaces, the no-slip condition is imposed by
setting the velocity components u and v to zero. Adi-
abatic walls are assumed and so the normal tempera-
ture gradient at the wall is zero. The normal pressure
gradient in the first cell off the wall is found from the
momentum equations; for high Reynolds number flows,
the normal pressure gradient may be set to zero at the
wall. Once temperature and pressure are determined
from their respective gradients, density is found using
the ideal gas law. The energy is then computed from
the equation of state (Eq. 3).

On the far field inflow boundary, where the flow is nearly

inviscid, characteristic boundary conditions based on
the Riemann invariants of the one-dimensional prob-
lem normal to the boundary are used. The Riemann
invariants are determined using either freestream val-
ues or those extrapolated from the interior depending
on the direction of propagation of their respective char-
acteristics. On the outflow boundary, where viscos-
ity is important in the wake, pressure is fixed to the
freestream value, density and momentum flux are ex-
trapolated from the interior. The energy is then com-
puted from the equation of state. The implicit boundary
conditions are also treated in a manner consistent with
the characteristic theory.

3.6 Stability Analysis

A qualitative description of the stability properties
of these schemes is obtained from a von Neumann
(Fourier) analysis of an advection-diffusion equation.
This equation with fourth-order numerical dissipation
is written

du du du
Tt + cdx

 + cd^ +

This equation serves as a model for the full approxima-
tion of the Navier-Stokes equations. A model for the
thin layer approximation is obtained by removing the
viscous derivatives in the x— direction. Substituting the
Fourier term «?• = Gnel^*xel^"y , and constructing an
ADI scheme analogous to that described earlier leads to

(G-l)

sin2

= -A

sn

{i(sin£ + AR'1 smrj)

+ 16e(sin4 | + AR~l t
2 i'

1 O f 1

Z"1 sin^sintj

(49)

From Eq. (49), the magnitude of G can be calculated,

\G\=f(S,T,;\x ,Re s ,AR,e,8,9v),

where £ = @xAx and 77 = /?yAy are the grid wave num-
bers, 6 and 8v are the implicit parameters, the latter



corresponding to the viscous terms. The model switch
aj is set to 1 when modeling the FNS approximation,
and to 0 when modeling the TSL approximation. In ad-
dition to the Courant number Xx = cAt/Az and artifi-
cial dissipation e, the numerical stability of the implicit
viscous equations is governed primarily by the aspect
ratios AR = Ay/Az of the mesh cells and the mesh
Reynolds numbers Rex = cAz/i>. The expression in
Eq. (49) corresponds to what is done in Method I. Sim-
ilar expressions representative of Method II can also be
derived.

Using such a model, it is found that when viscous terms
are added directly to the convective operators, analo-
gous to what is done with Method I, unconditional sta-
bility is achieved. This is true even when the mixed
derivatives are neglected in the implicit operator. If
the viscous terms are evaluated explicitly without im-
plicit contributions, a conditionally stable scheme re-
sults. This can be seen in Fig. 1 in which the dark areas
represent regions in parameter space where von Neu-
mann analysis predicts an amplification factor greater
than unity. This figure represents the properties of the
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Figure 1: Method 0
Viscous contributions included only in the explicit fac-
tor. Gray areas are regions of instability where the
growth factor is greater than unity

scheme applied to a model problem using values of the
dissipation parameters representative of those used in
the computations, and a Courant number of 16. These
results jp not rule out the possibility of obtaining a con-

verged solution without including viscous contributions
in the implicit factors. If additional viscous operators
are added to the scheme (as is done in Method II), the
solution will remain conditionally stable, although the
region of stability is increased slightly as shown in Fig. 2.
The stability analysis indicates that the most promising
algorithm would be one similar to Method I. Method II
should also be considered, however, in so far as it rep-
resents less of an ad hoc approximation than Method I.

UNSTABLE REGIONS
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Figure 2: Method II
Viscous terms are included implicitly in an additional
factor. Gray areas are regions of instability where the
growth factor is greater than unity

4 Results

Both implicit methods are implemented in a computer
code to calculate transonic flows. A number of test cases
have been computed for flows past a two-dimensional
NACA 0012 symmetric airfoil. For all cases presented,
a simple power-law is used for the dependence of the
viscosity coefficient on temperature. The coefficient of
thermal conductivity is proportional to the molecular
viscosity under a constant Prandtl number assumption.

The first case presented is for subcritical laminar flow
(Re = 5000, MOO = 0.5) past a two-dimensional NACA
0012 symmetric airfoil at zero degrees angle of attack.



The calculation is performed using the thin-layer .ap-
proximation on a 256 x 64 cell algebraically generatated
"C"-grid. A section of this grid is shown in Fig. 3. The
outer boundary of the grid is located about 10 chords
from the body. Care is taken to insure sufficient cluster-
ing in the region close to the body surface where viscous
effects are significant. Approximately 25 grid points are
included within the boundary layer at the airfoil trailing
edge, and the first point normal to the body surface is
located at about .001 chords.

o

"

Figure 4: Surface Pressure Distribution

Re = 5000.0, MX, = 0.50, a = 0.0

257x65

Figure 3: Section of 256 x 64 "C"-grid

The surface pressure distribution, presented in Fig. 4,
agrees well with that presented by by MartinelliL Jame-
son, and Grasso [15]. The flow separates at approxi-
mately 82% of the chord, as can be seen from the skin
friction distribution in Fig. 5; this value is close to that
reported by other researchers [16, 17, 18] for this case.
The pressure and friction drag coefficients are found to
be 0.02238 and 0.03289, respectively, which are very
close to the values reported by Venkatakrishnan [18].
Using Method I with 6 levels of multigrid, the solution
converged to a steady state (defined as within 0.1 % of
the fully converged solution) in approximately 50 work
units which corresponds to 30 multigrid cycles. One
work unit is defined as the amount of work required
to advance the solution one time step on the finest grid
level; for a simple V-cycle - the strategy used here, each
multigrid cycle requires approximately 1 2/3 work units.

To illus.trate the effect of the implicit schemes described

earlier, the above case is computed on a 192 cell "C"-
grid generated using the GRAPE code elliptic mesh gen-
erator [19]. The iterative process is begun by initializing
the solution to free stream values. Plots of the conver-
gence histories for the different methods are shown in
Figs. 6 and 7. Five levels of multigrid are used for the
results in Fig. 6, and only a single grid is used for the
result shown in Fig. 7. Local time stepping is used for
all results. The error curves plotted are the normal-
ized root mean square of the density residual. Using
Method I with multigrid, the solution converged to a
steady state in approximately 35 work units which is 20
multigrid cycles.

This solution is computed at a Courant number of 16
using Method I. At this Courant number, both Meth-
ods I and II produce converged solutions as illustrated
in Fig. 6. Here, the asymptotic convergence of Method I
is somewhat better than Method II. A converged solu-
tion is not attainable if viscous terms are neglected from
the implicit factors (Method 0) at a Courant number of
16. However, the scheme does converge at the expense
of a lower Courant number, hence, a slower convergence
rate, as shown in Fig. 6. This demonstrates the impor-
tance of maintaining an implicit viscous contribution hi
the numerical scheme. The convergence rates for all
schemes suffer without the use of multigrid. For ex-
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Figure 5: Skin Friction Distribution

He = 5000.0, MOO = 0.50, a = 0.0

ample, approximately 500 work units - fourteen times
more than that needed when using multigrid - are re-
quired before the drag coefficient converges to a steady
state as shown in Fig. 7 for Method I. .

The second case tested is the transonic laminar flow
(Re = 500, MOO = 0.8) past a NACA 0012 airfoil at ten
degrees angle of incidence. The region of separated flow
is quite substantial for this case and necessitates the use
of the full Navier-Stokes equations. The 256 x 48 cell
"C"-grid described earlier is used for this case. Plots
of the pressure coefficient and Mach number field are
show in Figs. 8 and 9. The solution appears to be in
reasonable agreement with that obtained by Martinelli,
et al. [15]. In this case, the flow separates from the
upper surface of the airfoil at approximately 25% of the
chord.

To test the algorithm in three-dimensions, a calculation
of subsonic flow past a NACA 0012 wing with zero sweep
angle and an aspect ratio, of 12 is compared with the
analogous two-dimensional case. The calculation is per-
formed on a 192 x 48 x 12 cell "C-H"-grid, and Method I
is used for the implicit algorithm. In Fig. 10, the distri-
bution of pressure coefficient on the wing's center plane
is compared with the two-dimensional case, and the ag-
greement is quite close. The three-dimensional results
are preliminary and more extensive tests are underway.

Figure 6: Convergence Histories using Multigrid
Re = 5000.0, MOO = 0.50, a = 0.0

Methods I, II at Courant number 16
Method 0 at Courant number 2
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Figure 7: Convergence History without Multigrid
Re = 5000.0, Moo = 0.50, a = 0.0
Method I at Courant number 16
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Pressure Coefficient

Figure 8: Pressure Coefficient

e = 500.0, MX, =.0.80, a = 10.0

Figure 10: Surface Pressure Distribution Comparison
Re = 5000.0, Moo = 0.50, a = 0.0

Three-dimensional case - *
Two-dimensional case - D

Macli Number

Figure 9: Mach Number

Re = 500.0, Moo = 0.80, a = 10.0

5 Conclusions

The importance of including viscous contributions in
the implicit operator has been demonstrated. Although
several options are available for implicit inclusion, the
addition of approximate terms to the existing opera-
tors (Method I) seems the most effective. The laminar
solutions obtained are in good agreement with results
reported by other researchers [17, 15, 16, 18]. Work
is underway to incorporate a turbulence model so that
engineering flows can be studied.
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A Three Dimensions

The viscous flux Jacobians in three-dimensions are

0 0 0 0 0 \

654

with

• -G)-

L,N,S =

where

621 = ~

622 = 01.

623 = <*

631 =.. ~axy \ ~ } -

632 =

633 =
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and /c = f, r;, or ^ for L, N, or S, respectively.

The eigenvalues of L, N, S are

(A2)

A4 = (£

A5 = 0.

Three sets of modal matrices associated with the viscous
Jacobi matrix are

Set 1:
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where K = £, 77, or £, and and K = f, 77, or £ for L, N,
or S, respectively, and
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I. Introduction

I N the numerical simulation of viscous flows at high Rey-
nolds numbers, it is necessary to resolve the thin shear

layers that develop near solid boundaries. Such thin shear
regions require the use of grids with cells of very high aspect
ratio, which are known to hinder convergence for steady prob-
lems when using explicit schemes. To overcome these diffi-
culties, Caughey has developed a diagonal alternating direc-
tion implicit (ADI) algorithm for the solution of the Euler
equations of inviscid, compressible flow.1 Rapid convergence
is achieved with the use of the implicit scheme within a multi-
grid framework.

Here, the method is extended to solve the Navier-Stokes
equations. Attention is focused on methods of adding the
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viscous contributions in a way that does not disturb the overall
stability and efficiency of the implicit scheme. No attempt is
made here to incorporate a turbulence model, so the discus-
sion will be limited to laminar flows.

II. Governing Equations
Compressible viscous flows are governed by the Navier-

Stokes equations. These equations require that both stream-
wise and normal viscous diffusion be computed. The nondi-
mensionalized form of the full Navier-Stokes (FNS) equations
is written in curvilinear coordinates as

dW age dGc_dFy dGy
dt + d£ + dr, ~ d$ + dr. (D

where W is the transformed dependent variable, FC(W) and
Gc(W) are the convective flux vectors, and Fy(WjW^,W_^ and
G_V(W_,W£,WJ are the viscous flux vectors. An equation of
state is used to relate .the pressure to the total energy.

Under conditions in which the flow has a predominant
direction and is without massive separation, it is possible to
neglect viscous diffusion in the streamwise direction without
adversely affecting the quality of the solution. This results in
the so-called thin layer approximation (TLA).

The viscous flux vectors can be decoupled into components
that depend only on the vector of dependent variables and its
derivative in either the £ or 17 direction:

(2)

(3)

The TLA entails retaining only the surface normal or ?) deriva-
tives in the viscous terms of the Navier-Stokes equations [Eq.
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(1)]; that is, only the term G_v(W,Wj) is kept when the body
surface is a line of constant 77. The TLA equations are then
written

Convergence History

dW

dt

dCc_dGy

drj ~ dri
(4)

III. Numerical Method
Spatial discretization of the governing equations is accom-

plished with a finite volume scheme similar to that of Jameson
et al.2 To prevent oscillations in regions where the grid is
incapable of resolving the gradients, such as near shocks,
adaptive dissipation similar to that described by Jameson et
al.2 and modified by Caughey1 is added to the scheme.

For problems in which only the steady-state solution is of
interest, local time stepping is applied. A full multigrid al-
gorithm based on that originally developed by Jameson3 and
described by Caughey1 and Smith and Caughey4 is imple-
mented to further accelerate convergence.

To advance the solution in time, an ADI procedure suitable
for the Navier-Stokes equations has been developed. Atten-
tion here is directed at methods to include viscous contribu-
tions in the implicit operators. Only the TLA equations are
considered in this analysis. Further details, including a deriva-
tion appropriate for the full Navier-Stokes equations, can be
found in Ref. 5.

The scheme begins by approximating spatial derivatives at
new and old time levels, linearizing the changes in the flux
vectors, and approximating the implicit operator as a product
of one-dimensional factors. Linearization of the convective
flux vectors introduces the Jacobians, A = (dFc/d W) and
B = (dCc/dlD-6"8 Since the transformed viscous flux~Sr is a
function of W and W^, the appropriate linearization intro-
duces two additional Jacobians, M=(dGy/dW) and
N= (dQy/dWj). If the transport coefficients and metrics are
approximated to be locally constant, M — N^ = O (Refs. 9 and
10), and only the Jacobian with respect to the derivatives of
the solution, N, is needed. This matrix contains no derivatives
of the solution variables, unlike the coefficient matrix in Ref.
11 in which the metrics are not approximated as locally con-
stant. Such linearization in the implicit operators results in a

STABILITY DIAGRAM
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Fig. 1 Regions of linear stability for methods 0, I, and II; shaded
areas represent regions of stability where the magnitude of the growth
factor is less than unity.
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Fig. 2 Convergence histories using multigrid; Re = 5 x 103,
A/oo = 0.50, a = 0.0, methods I and II at Courant number 16, method
0 at Courant number 2.

block pentadiagonal system of equations when the fourth
differences due to the numerical dissipation are included.

For the Euler equations, the convective flux Jacobians can
be diagonalized with local similarity transformations as
A = QA^QA I and B = Qe^-BQa ' > where A^ and AB are
diagonal matrices whose diagonal elements are the eigenvalues
of their respective Jacobians, and"(£4 and Qg are the modal
matrices whose elements can be found in Ref. 8. This allows
the block system to be decoupled into equations that can be
solved as scalar pentadiagonal systems, greatly reducing the
amount of computational labor needed for a solution.

For the Navier-Stokes equations, it is not possible both to
include the viscous terms in the implicit factor and to diago-
nalize the system, since the convective and viscous Jacobians
are not simultaneously diagonalizable. Several alternatives ex-
ist to circumvent this problem.

One alternative is to neglect the viscous contributions com-
pletely from implicit consideration but maintain their contri-
bution to the explicit residual. For bookkeeping, this explicit
treatment will be called method 0. Neglecting the viscous
terms from the implicit factors may jeopardize the stability of
the scheme. It is desirable to maintain the efficiency of the
diagonalized scheme without degrading its stability properties,
so two alternate implicit methods are explored.

Method I: Implicit Approximation

The first implicit method uses the largest eigenvalue of the
viscous Jacobian to add contributions to the inviscid implicit
factors. This is similar to what was suggested by Pulliam.12

The eigenvalues of N are

(5)

where Pr is the Prandtl number, /* and X are the viscosity
coefficients, and •> is the ratio of specific heats.

The scheme is constructed by adding the diagonal approxi-
mations \f) ~ Qi lffQB to the appropriate implicit factor:

(/ +

x (6)
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The diagonal approximation A# is, for example,

(7)

where /is the identity matrix. For simplicity, the terms arising
from the artificial dissipation are not shown in the equations.
The number of additional operations needed to implement this
scheme is negligible since it involves only the calculation of an
eigenvalue whose analytical form is known.

Method II: Additional Operator

A second option is to use additional implicit operators that
contain the exclusive contributions from the viscous terms.
The addition of the viscous Jacobians directly to the operators
would require the solution of block tridiagonal systems. How-
ever, since the eigenvalues of the viscous Jacobians are distinct
[Eqs. (5)J, a modal matrix Qx exists that diagonalizes N
through a similarity transformation. This results in the diago-
nal scheme

(8)

where A/fy = Q$J FfQtfjj is the diagonal matrix whose nonzero
elements are the eigenvalues of N. In this scheme, an addi-
tional scalar tridiagonal system must be solved; for the full
Navier-Stokes approximation, two additional factors appear
in the equation. The viscous modal matrices are written

0 0 0 1

rjx 0 rjy U

Vy 0 -ijx V

0" 1 - /i e/p

(9)

+ % it + fly

e_

p
- U - V

(10)

where

I* =

V- = ifcV - r]yU

Stability Analysis

Some insight into the stability properties of these schemes is
obtained from a von Neumann (Fourier) analysis of an advec-
tion-diffusion equation. This equation with fourth-order nu-
merical dissipation is written

du du
dt dx

du d<u .d*u
?-—h ceAx* ——- + ce&y* ——: =
dy dx* dy*

(U)

This equation serves as a model for the TLA of the Navier-
Stokes equations. Substituting the Fourier term w,"
= G"e^*xe'eyy and constructing an ADI scheme analogous to
that described earlier leads to an equation for the growth
factor G. In addition to the Courant number and artificial
dissipation e, the numerical stability of the implicit viscous

equations is governed primarily by the aspect ratios of the
mesh cells and the mesh Reynolds numbers.

Using such a model, it is found that, when viscous terms are
added directly to the convective operators, analogous to what
is done with method I, unconditional stability is achieved. If
the viscous terms are evaluated explicitly without implicit con-
tributions (analogous to method 0), a conditionally stable
scheme results. This can be seen in Fig. 1 in which the shaded
areas represent regions in parameter space where von Neu-
mann analysis predicts an amplification factor less than unity.
This figure represents the properties of the scheme applied to
a model problem using values of the dissipation parameters
representative of those used in. the computations and a
Courant number of 16. These results do not rule out the
possibility of obtaining a converged solution without includ-
ing viscous contributions in the implicit factors. If additional
viscous operators are added to the scheme (as is done in
method II), the solution will only remain conditionally stable,
although the region of stability is increased slightly, relative to
method 0, as shown in Fig. 1. The stability analysis indicates
that the most promising algorithm would be one similar to
method I. Method II should also be considered, however,
insofar as it represents less of an ad hoc approximation than
method I.

IV. Results and Conclusions
To illustrate the effect of the implicit methods, a subcritical

laminar flow (Re = 5 x 103, M& = 0.5) past a two-dimen-
sional NACA 0012 symmetric airfoil at zero degrees incidence
is calculated. A 192 x 48 cell "C" grid is used. A full multi-
grid scheme is used with the solution on the coarsest grid
initialized to freestream values. Plots of the convergence histo-
ries for the different methods on the finest grid are shown in
Fig. 2. Five levels of multigrid and local time stepping are used
for the results. The error curves plotted are the normalized
root mean square of the density residual. Using method I with
multigrid, the solution converged to a steady state in approx-
imately 35 work units, which is 20 multigrid cycles. One work
unit is defined as the amount of work required to advance the
solution one timestep on the finest grid level; for a simple V
cycle, the strategy used here, each multigrid cycles requires
approximately 1-2/3 work units.

At a Courant number of 16, both methods I and II produce
converged solutions as illustrated in Fig. 2. The asymptotic
convergence of method I is somewhat better than that of
method II. A converged solution is not attainable if viscous
terms are neglected from the implicit factors (method 0) at
Courant number of 16. However, the scheme does converge at
the expense of a lower Courant number, hence, a slower
convergence rate, as shown in Fig. 2. This demonstrates the
importance of maintaining an implicit viscous contribution in
the numerical scheme.

The importance of including viscous contributions in the
implicit operator has been demonstrated. Although several
options are available for implicit inclusion, the addition of
approximate terms to the existing operators (method I) seems
the most effective.
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I. Introduction
An efficient parallel algorithm has been developed for

!the simulation of compressible, viscous flow over com-
plex geometries. The algorithm has been implemented
within the framework of Composite Block-Structured
grids which simplifies the construction of grids and al-
lows the solution of different governing equations on dif-
ferent blocks according to the physical character of the
flow; in subdomains where the flow is nearly inviscid, the
Euler equations are solved, while in subdomains where
viscous effects are important, the Navier-Stokes equations
are used. Accuracy and geometric generality are obtained
by using a finite-volume approximation, solving the equa-
tions in conservation form and including adaptive dissipa-
tion for the accurate capture of flow discontinuities. The
efficiency of the algorithm is achieved by a combination
of various factors: an implicit formulation suitable for
highly-stretched grids, a diagonalization procedure that
reduces the operation count significantly, and a multigrid
algorithm for rapid convergence acceleration.

II. Description of the Algorithm
This algorithm is modeled on the algorithm for the so-

lution of the Euler equations described in Refs. [1] and
[2], and the extension of that algorithm for the implicit
solution of the Navier-Stokes equations [3]. Since turn-
around time is a major limiting factor in the design pro-
cess, the code is implemented on a multiprocessor super-
computer. The block-structured grid, in a natural way,
allows the use of parallel processing with the solution on
different blocks being computed concurrently. The imple-
mentation of the Diagonal Implicit Multigrid algorithm
for the Euler equations [1] on block-structured grids is
described in Refs. [4] and [5]. Here, the method is further
extended for the solution of the Navier-Stokes equations.
At present, the scheme is implemented on an IBM 3090-
600J, a six-processor shared memory architecture, using
Clustered FORTRAN [6], a parallel extension of FOR-
TRAN.

* Postdoctoral Associate. Cornell National Supercomputing Fa-
cility. Member, AIAA

'Graduate Student. Sibley School of Mechanical and Aerospace
Engineering. Student Member, AIAA. _

' Professor. Sibley School of Mechanical and Aerospace Engi-
neering. Associate Fellow, AIAA.

III. Results
The algorithm has been implemented in a computer

code to calculate transonic flow problems in two- and
three-dimensions. The two-dimensional results presented
here are used in verifying the accuracy and efficiency of
the block code by comparing it with a serial single block
Navier-Stokes code [3]. Also, the parallel speedups are
reported as a measure of the parallel efficiency of the al-
gorithm. For all multiblock results presented, the Navier-
Stokes equations are solved in blocks adjacent to solid
surfaces and in wake regions, while the Euler equations
are solved in far-field regions.
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Figure 1: Residual convergence history - 12 blocks;
Re = 5000.0, Mco = 0.50, a = 0.0

The case presented here is a subcritical laminar flow
(Re = 5000, MOO = 0.5) past a two-dimensional NACA
0012 symmetric airfoil at zero degrees angle of attack.
The calculations are performed using a thin-layer approx-
imation on a 192 x 48 cell "C"-grid. For the block code,
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a single block grid was artificially divided into either 8 or
12 blocks. The convergence rate for the 12—block case is
shown in Figure 1. Using four levels of multigrid in each
block and local time stepping, the solution converged to a
steady state (defined as when the force coefficients reach
99% of their final value) in approximately 25 work units
which corresponds to 16 multigrid cycles. One work unit
is defined as the amount of work required to advance the
solution one time step on the finest mesh level; for the
strategy used here, each multigrid cycle requires approx-
imately 1 2/3 work units. This is the same convergence
rate obtained on a single block.

As shown in Figure 2, the solution of mixed equation
multiblock case agrees well with the solution of the sin-
gle block case. The computed force coefficients agree to
within 0.05%.
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Figure 2: Surface Pressure Distribution Comparison
Re = 5000.0, Moo = 0.50, a = 0.0

Multiblock case (12 blocks) - *
Single block case - D

The results of the parallel execution are presented in
Table 1. A speedup is the ratio of the elapsed time
required for a serial execution of the algorithm to that
required for a parallel execution. System overhead for
executing a parallel job is considered in the calculation
of theoretical speedups. The actual speedups agree well
with the theoretical speedups except when there is a load
imbalance, which can be attributed to blocks of different

#
of

proc's
1
2
3 .
4
5
6

8 Blocks
Theoretical

Speedup
0.97
1.89
2.77
3.67
4.46
5.33

Actual
Speedup

0.97
1.89
2.74
2.71
3.49
3.47

12 blocks ~~"— |
Theoretical

Speedup
0.97
1.86
2.78
3.64
4.50
5.32

Actual
Speedup

0.97
1.86
2.76
3.59
3.48
5.16

Table 1: Parallel speedups for 8 and 12 block configura-
tions.

size or noninteger block to processor ratios.
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IMPLICIT MULTIGRID SOLUTION OF THE COMPRESSIBLE

NAVIER-STOKES EQUATIONS WITH APPLICATION TO
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Efficient numerical procedures are developed for the solution of the Navier-

Stokes equations. The Navier- Stokes equations are a system of conservation

laws which govern the motion of compressible, viscous, heat-conducting flu-

ids. A conservative finite volume formulation is used for spatial discretiza-

tion of the governing equations, resulting in a system of ordinary differential

equations. To advance the system in time, an Alternating Direction Implicit

(ADI) procedure suitable for the Navier-Stokes equations is developed. The

resulting implicit system is diagonalized to improve the computational effi-

ciency of the scheme. Viscous contributions are added to the scheme implic-

itly in a way that enhances the stability, yet does not disturb the efficiency of

the algorithm. Rapid convergence to a steady state solution is achieved with

a recursive multigrid algorithm. The stability and efficiency of the scheme

I



are demonstrated with simulations of flow over wing sections.

Furthermore, the algorithm has been implemented within the framework

of multiple-block-structured grids in which the spatial domain is decom-

posed into several blocks and the solution is advanced in parallel on the

different blocks. Generic utilities have been developed to implement such

a scheme in distributed computing environments. The multiple-block al-

gorithm is designed so that the explicit residual calculation is identical to

that of the single-block scheme, and therefore converged solutions for both

schemes must be the same. To accelerate convergence, horizontal, vertical,

and asynchronous multigrid algorithms are tested. Significant speedups have

been achieved in a multiple processor environment, while convergence rates

similar to those of the single-block scheme are observed.
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Abstract

An implicit multigrid algorithm for the solution of
the Euler and Navier-Stokes Equations has been im-
plemented within the framework of multiple block-
structured grids in which the physical domain is spa-
tially decomposed into several blocks and the solution
is advanced in parallel on each block. Utilities have
been developed to implement such a scheme in a dis-
tributed computing environment. The multi-block al-
gorithm is designed so that .the explicit residual calcu-
lation is identical to that of the single-block scheme,
and therefore converged solutions for both schemes
must be the same. To accelerate convergence, syn-
chronous and asynchronous multigrid strategies are im-
plemented. Significant speedups have been achieved in
a multiple processor environment, while convergence
rates similar to those of the single-block scheme are
observed.

1 Introduction

In a numerical simulation of a physical process, it is
important to construct a model which accurately re-
flects the physics of the problem. Also of importance
is the numerical efficiency of the method, especially if
the model is to be used repeatedly in a design process.
Numerical efficiency for the solution of the Euler and
Navier-Stokes equations was achieved with the devel-
opment of a diagonalized implicit finite volume method
within the framework of a multigrid algorithm • • .
With the recent advances in computer architecture -
specifically the availability of low-cost high-speed com-
puter workstations, the development of multiple pro-
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cessor compute engines, and the interconnectivity af-
forded by high-speed computer networks - it has be-
come attractive to modify numerical algorithms so that
they are amenable to parallel processing.

Here, the algorithm developed by Caughey for solv-
ing the Euler equations of inviscid compressible flow
and Tysinger and Caughey • ̂  for solving the Navier-
Stokes equations of viscous compressible flow has been
modified to work in a distributed computing environ-
ment. A distributed computing system consists of a
set of processing units and their associated memory
linked together by a communications network. In the
algorithm presented, the spatial domain is decomposed
into multiple structured grids or blocks to allow for the
treatment of complicated geometry. As an example;
when computing the flow about an aircraft, the var-
ious blocks might correspond to the domains in the
vicinity of the wing, fuselage, nacelle, etc. In the multi-
block scheme, a separate instance of the flow solver is
used to compute the solution in each block. In addi-
tion to providing a natural model for parallelization,
where the solution is advanced in parallel on the dif-
ferent blocks, a multi-block scheme allows the solu-
tion procedure for individual blocks to be customized.
For example, when computing flow near solid walls, it
is important to model the viscous stresses accurately.
In such regions, the Navier-Stokes equations must be
solved. In the far-field however, where viscous contri-
butions are small, the Euler equations may be used,
thereby reducing the overall amount of computation
per iteration step.

Yadlin, Tysinger, and Caughey ^ describe a simi-
lar scheme implemented on a shared memory multi-
ple processor IBM ES/3090 600J supercomputer us-
ing Parallel FORTRAN5, a version of the FORTRAN
language with parallel extensions. That work was in-
spired by the success of Yadlin and Caughey "• ' in
the development of an implicit multigrid scheme for
the Euler equations using block-structured grids on a



shared memory architecture. The present implementa-
tion uses a distributed message passing system devel-
oped for distributing large scale computations over a
loosely coupled network of independent workstations.

2 Distributed System

Several message passing routines for inter-processor
communication have been developed to facilitate the
implementation of the distributed multi-block scheme.
Much of the system is built on routines which were
originally developed by the authors for interactive vi-
sualization of supercomputer computations on graphics
workstations, while later developments were inspired
by a research project developed by Gounares ° at Los
Alamos National Laboratory. Reliability considera-
tions such as fault-tolerance are not addressed by this
system. Such important issues have been addressed by
more mature distributed systems such as the ISIS sys-
tem developed by Birman at Cornell University (see
for example ^). The goal here is to develop a library
of high-level routines which contains little overhead,
and yet still provides a reliable means of communica-
tion which is both useful in a research environment
and simple to set up. Like similar, but more sophis-
ticated systems PVM and Parasoft Corporation's
Express, the routines are portable across differing ar-
chitectures and allow for heterogeneous computation.
The system uses communication services provided un-
der UNIX, which are available with most high perfor-
mance computers currently available. However, since
the details of the underlying communication primitives
remain hidden from the application, the system may
be built with other communications primitives, such as
those provided with many dedicated parallel machines,
without altering the application.

The system is based on a coupled set of computing
elements. A computing element may be thought of as
a virtual processing unit and its associated memory;
depending on the system used, two or more computing
elements may share the same physical processor. Each
computing element contains one or more communica-
tion links, each of which is uniquely identified. Initially,
each computing element knows its communications link
identifiers, those of its neighbors, its internet address,
and the address of a global server. It does not initially
know the address of neighboring computing elements
(or any other computing element).

The distributed system begins with each comput-
ing element sending a message to the global server, in-
forming it of both its address and communication link
identifiers. The message passing in the initialization
phase is based on datagrams which provide a proto-
col for passing small packets of data. Once the global
server has received a message from each of the comput-

ing elements, it returns a message to each computing
element informing it of its neighbors' addresses. The
global server also initializes the distributed system for
either synchronous or asynchronous communication to
provide flexibility in the design of the algorithm .

After initializing the system, all the necessary com-
munication links between the computing elements have
been established, and reliable data streams based on
UNIX sockets are used for communication. Blocking*,
non-blocking, and indeterminate message passing li-
brary calls which access the lower level UNIX calls are
provided for the application. The blocking calls are
guaranteed not to return until all requested data has
been received, providing synchronous communication.
Non-blocking calls return immediately, even if the data
is not yet available, allowing asynchronous communi-
cation, and indeterminate calls are either blocking or
non-blocking depending on the initialization of the dis-
tributed system. While true that blocking and non-
blocking calls would be sufficient for both modes of
communication, the third indeterminate mode is pro-
vided since its low-level implementation requires less
overhead than the other routines.

Fig. 1 illustrates a typical distributed system. That
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Socket
Datagram
Data Pipe
Writer Process

Fig. 1 Computer Model

system is comprised of three computing elements la-
beled CE 1, CE 2, and CE 3. The writer processes
are separate processes connected to the communication
links of the computing elements. They are connected to
the computing elements via a pipe and are there to fa-

* Here the term block indicates a communication wail state
and is not to be confused with the term when used in the context
of multiple t/oci-structured-grids



Fig. 2 Writer Module

cilitate non-blocking communication and to avoid data
size restrictions of UNIX sockets. They are used only
if the low-level communications buffers are too small
for the amount of data to be sent, thereby avoiding a
potential deadlock situation. The writer process con-
sists of an expandable buffer, as shown in Fig. 2, which
can grow to the memory limitations of the machine.
That process is spawned by the distributed system if
needed, and simply reads and writes data to and from
its buffer when signaled. This allows a large amount of
data to be transferred without first segmenting it into
smaller chunks. A graphics filter could also be added
to the distributed system as an additional computing
element for interactive visualization as shown in Fig. 1.

3 Autonomous Multi-Block Al-
gorithm

Using the distributed system described above, an
Euler/Navier-Stokes solver is modified to work in a dis-
tributed environment. The distributed system allows
for the concurrent computation of multiple physical do-
mains. Each physical domain, which is referred to as
a block, can be mapped onto a computational domain
with its own coordinate system. With the exception of
the transfer of information between blocks which share
a common interface boundary, the computation in each
block is designed to be autonomous in that its execu-
tion is independent of the execution of other blocks;
when implemented in a computer code, each block re-
quires a separate instance of the flow solver code.

To accelerate convergence, three multigrid strate-
gies - synchronous horizontal, asynchronous, and syn-
chronous vertical - are tested. In the synchronous
horizontal mode, interface information is updated on
each level of the multigrid cycle, maintaining synchro-
nization among the multiple, blocks at each level. The
asynchronous mode allows the coarse-grid calculations
within each block to continue even if interface data is
not available; however, synchronization is imposed on
th«-finest multigrid level. Finally, in the synchronous
vertical mode, interface information for all multigrid
levels is updated only after the finest multigrid level is

reached; Parallel speedups are compared for the three
modes.

3.1 Domain Decomposition Method

The distributed version of the algorithm uses multiple
layers of ghost cells to transfer the solution between
blocks with common interface boundaries. The trans-

Outflow Outflow

Solid Wall
^^

Trailing Edge Cut

Fig. 3 Block Decomposition of Computa-
tional Domain

fer of information is designed so that the explicit resid-
ual calculation for the multi-block scheme is identical
to that of the single block scheme, and therefore con-
verged solutions for both schemes must be the same.
To ensure numerical stability, an adaptive blend of sec-
ond and fourth differences of the solution^ variables is
added to the scheme. The fact that the fourth differ-
ence numerical dissipation has a five point central dif-
ference stencil dictates that there be at least two layers
of ghost cells. An additional layer is needed because o£*
a three point pressure switch in the dissipation coeffi-
cients, for a total of three layers of ghost cells at an in-
terface boundary. Fig. 3 shows a typical decomposition
into three blocks of the computational domain of a C-
grid, such as that in Fig. 4. Block 2, including its ghost
cells, is highlighted in the figure. The ghost cells extend
into the interior of the neighboring blocks, blocks 1 and
3. In the multi-block algorithm, in addition to interior
cells, three types of boundary cells can be identified:
physical boundary cells, interface boundary cells, and
corner boundary cells. Physical boundary cells consist
of only one layer of ghost cells, while interface bound-
aries require three layers for the form of dissipation
employed, as shown in Fig. 5. Also shown in that fig-
ure are the necessary mesh coordinate points. Mesh
points in the interface cells are used for the calculation
of volume and metrics shown in Fig. 6, which are used
in the calculation of the dissipation in those cells. Not
having interface coordinate points would require either
some approximation be made for the interface cell dis-



sipation, or that the values of the dissipation be trans-
ferred from the neighboring block, requiring additional
communication costs. The values of the interface coor-
dinate points are determined during the initialization
phase of the distributed system when the values are
transferred from the interior of the neighboring block
to which they correspond.

Fig. 4 Block Decomposition of Physical Do-
main (C-Grid)

Mesh Coordinate Point

Interface Coordinate Point

Physical Boundary Cell

Interface Boundary Cell

Corner Boundary

Interior Cell

Fig. 5 Cell Classification

All communication costs, except for those in the ini-
tialization phase, occur in the explicit treatment of the

interface boundaries. At an interface boundary, solu-
tion information is transferred from the neighboring
block. Unlike a shared memory system in which the
transfer of information involves only a direct memory
fetch, a distributed message passing system such as the
one used here requires, in general, that data be sent
over a communications network. Since networks are
typically the root of the most severe performance limi-
tations in parallel computing, it is important that com-
munications costs be minimized. Therefore, only the

Mesh Metrics

Fig. 6 Interface Cell Storage

solution information in the neighboring block which is
necessary to fill the corresponding interface boundary
ghost cells is transferred. It would not be prudent, in
terms of communications costs, to transfer the entire
solution of a neighboring block.

Implicit boundaries on block interfaces are treated
in a manner consistent with characteristic theory. No
inter-block communication is required for such a treat-
ment. While it would be possible to construct implicit
interface boundaries so as to ensure an exact correspon-
dence with a single block scheme, further communica-
tions and synchronization costs would be incurred. The
approximation for implicit boundaries cannot affect a
converged solution; it can alter only the intermediate
stages in the convergence process.

3.2 Application Model

The multi-block algorithm is implemented
distributed-memory message passing system.

on a
Each



block may be thought of as an autonomous unit
linked to neighboring blocks by its interface bound-
aries though some communications channels, such as
the example in Pig. 7. The details of the underlying
communications systems remain hidden from the ap-
plication. Implemented with the message passing rou-
tines described earlier, the underlying structure of each
block module consists of a virtual computing element
and the optional writers, as illustrated in Fig. 8. Mul-
tiple block modules, when linked together, form the
distributed system shown earlier in Fig. 1.

Communicaliorts
Channel

Fig. 7 Application Model

Optional Writers
(OS dependent)

3.3 Multigrid

The multigrid algorithm within each block is the same
as that of the single block algorithm with the additional
complication of interface boundary treatment on coarse
grid levels. The three strategies presented are similar
to those described by Yadlin and Caughey **• ".

Sawtooth Cyefe

Fig. 8 Block Module

£ Advance Solution

Q Update Boundaries

V Restrict Solution and Residual

A Prolong Corrections

^ Write Interface Data •

«^ Read Interface Data
(block until available)

Fig. 9 Synchronous Horizontal Mode, 5 Level
Sawtooth Cycle

In the synchronous horizontal mode, interface
boundary data is written and read at specified loca-«'
tions within the multigrid cycle on all multigrid levels,
as illustrated with the sawtooth cycle in Fig. 9. The
read call will wait until all interface data from neigh-
boring blocks has been received. Thus, the multigrid
cycle across all multiple blocks will be synchronized at
each multigrid level as shown in Fig. 10.

In the synchronous vertical mode, interface data is
written to neighboring blocks on all coarse levels, but
is not read until the finest multigrid level is reached.
This has the advantage that the calculation within each
block can proceed while the interface data is trans-
ferred through the network until the finest multigrid
level is reached. The communication for the syn-
chronous vertical mode is illustrated in Fig. 11. All syn-
chronization for this mode occurs at the finest multi-
grid level. Since the communication pattern is fixed,
in that all writes and reads occur at a predetermined
times within the multigrid cycle, this mode is labeled
synchronous.

In the asynchronous mode as illustrated by Fig. 12,



Fig. 10 Horizontal Mode Connectivity, 5 Level Sawtooth Cycle

Sawtaofc Cycle-
jj Synchronous Vertical

Mode

0 Advance Solution

Q Update Boundaries

V Restrict Solution and Residual

A Prolong Corrections

^> Write Interface Data

•^ Read Interface Data
(block until available)

Fig. 11 Synchronous Vertical Mode, 5 Level
Sawtooth Cycle

0 Advance Solution

[[] Update Boundaries

V Restrict Solution and Residual

A Prolong Corrections

j^- Write Interface Data

<3 Read Interface Data .
(block until available)

<] Read Interface Data
(proceed even if not available)

Fig. 12 Asynchronous Mode, 5 Level Saw-
tooth Cycle

interface data is written at predetermined locations
within the mult/grid level, but interface data is read
only after it traverses the network and arrives at the
neighboring block. A read call will not block until the
finest multigrid level is reached. Data which arrives
after it has been. requested will be queued until it is
read during the next read request. If the network is
extremely slow relative to the speed of the computa-
tion, this mode behaves like the synchronous vertical
mo4g. If the network is fast relative to the computa-
tion, then it behaves more nearly as the synchronous
horizontal mode.

4 Computations

To demonstrate the efficiency and viability of the dis-
tributed system, the algorithm described has been im-
plemented in a computer code for solving the Euler
and Navier-Stokes equations and several comparisons
between the multi-block and single block solver have
been carried out. All test cases presented have been
carried out on a two-dimensional NACA 0012 symmet-
ric wing section. To compare the properties of the
different multigrid modes, the code has been imple-
mented on a distributed system consisting of high speed



RISC-based (Reduced Instruction Set Chip) worksta-
tions connected by a fiber-optic network.
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Fig. 13 Convergence History of Single Block
Case, Moo = 0.800, a = 1.25

The first case presented is that of inviscid tran-
sonic flow at free stream Mach number 0.8 past a two-
dimensional NACA 0012 symmetric airfoil at a positive
angle of incidence. The case is computed on a 192 x 32
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Fig. 14 Convergence History of Multi-
Block Case, Synchronous Horizontal Mode,
Moo = 0.800, a = 1.25

cell "C"-grid, and for the multi-block case is broken
inter six blocks of size 32 x 32 cells each. The distri-
bution of the blocks is such that four of the blocks lie

4.

Z.

1 "'

ee

e

i
c
>

C~...r...<. H,.,^T

, c,

V-V
4. 3*4. 444. 444. 444. 1444. 1244.

U.rk UMU

<«h -0.400 Alpha - 1 J30 Re -OXte+00
3 -3J9c-01 Cdp -2J2e«2 Rue -0.919
Vork -200.4062 Resl -4J7e-03 Rdl-5.46e-10

Fig. 15 Convergence History .of Multi-
Block Case, Synchronous Vertical Mode,
Moo = 0.800, a = 1.25

on the airfoil surface while the remaining two lie in the
wake region, downstream of the trailing edge. Conver-
gence rates are compared for a single block case and
both synchronous horizontal and synchronous vertical
mode multi-block cases, and are shown in Figs. 13 - 15.
In each case, a full multigrid scheme is used with the
solution on the coarsest grid initialized to free stream
values. A four level sawtooth multigrid cycle is used
in the final grid sequence. The residual error curves

c
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Fig. 16 Surface Pressure Distribution of Sin-
gle Block Case, MOO = 0.800, a = 1.25

of the multi-block cases are the maximum value over
each block of root mean square of the density residual.



The plots show that the convergence rates do not differ
significantly between the single block case and the two
multi-block cases. In each case, the residual has been
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Fig. 17 Surface Pressure Distribution
of Multi-Block Case, Synchronous Horizontal
Mode, Moo = 0.800, ot = 1.25

reduced by approximately 6.5 orders of magnitude in
200 work units, where one work unit is defined as the
amount of work required to advance the solution one
time step on the finest grid level. The solution as
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Fig. 18 Surface Pressure Distribution of
Multi-Block Case, Synchronous Vertical Mode,
Moo = 0.800, a = 1.25

represented by plots of surface pressure distribution in
Figs. 16 - 18, shows the strength and location of the
shock^and the values of the force coefficients, to be the
same for all three cases.

Fig. 19 Mach Number Contours of Single
Block Case, M^ = 0.875, a = 0.0
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Fig. 20 Mach Number Contours of Multi-
Block Case, Synchronous Horizontal Mode,
Moo = 0.875, a = 0.0
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Fig. 21 Mach Number Contours of
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The next case presented is that of inviscid transonic
flow at free stream Mach number 0.875 past a two-
dimensional NACA 0012 symmetric airfoil at zero an-
gle of incidence. The case is computed on the same
192 x 32 cell "C"-grid as in the previous example, and
is broken into six blocks of size 32 x 32 cells each for
the multi-block cases. This case is chosen because of
the strong shock near the trailing edge of the airfoil
which crosses interface block boundaries and so tests
the treatment of the artificial dissipation across the in-
terface boundaries in the vicinity of strong gradients.
Since the stencil for the treatment of dissipation across
an interface boundary is the same as for that in the in-
terior field, the solution of the multi-block solver should
be identical to that of the single block solver once it has
converged to its steady state. Contours of constant
Mach number are presented in Figs. 19 - 21 for a sin-
gle block case and multi-block cases using synchronous
horizontal and synchronous vertical multigrid modes.

As shown in those figures, even with a strong shock
crossing the interface boundaries, neither of the multi-
block solutions differs from the single block solution.
In addition, the drag coefficients for all three cases are
the same.

To demonstrate the versatility of the multi-block
scheme, a laminar viscous flow is computed at free
stream Mach number 0.5 past a NACA 0012 airfoil at
zero angle of attack. The computation is performed on
a 192x49 cell "C"-grid which is partitioned into twelve
blocks of size 32 x 24 cells for the multi-block case. The
blocks are distributed such that four He along the air-

Fig. 22 X-Momentum Contours of Single
Block Navier-Stokes Case, MTO = 0.5, oc = 0

foil surface, two along the periodic cut downstream of
the trailing edge, and the remaining six in the far-field.
The solution for the single block and multi-block cases .
are shown in Figs. 22 and 23 and are found to be in
exact agreement.

A full multigrid scheme is used with the solution on -
the coarsest grid initialized to free stream values. A
four level sawtooth cycle is used in the final grid se-
quence: For the single block case, the density residual
error is reduced by 4.3 orders of magnitude in 150 work
units. The convergence rate for the multi-block case is
nearly identical, differing by only 0.04%. ..

Next, the same case is computed solving the Eu-v

ler equations in the six far-field blocks rather than the
Navier-Stokes equations. The Navier-Stokes equations
are solved in the near-field blocks where viscous ef-
fects are important. The solution shown in Fig. 24
is found to be in close agreement with the previous
cases, with the drag coefficient differing by 0.1%, and
a convergence rate likewise nearly identical to the single
block case. Using the synchronous horizontal multigrid
mode, the multi-block calculation was performed on
twelve identical workstations linked by ethernet, but
achieved only a 3.5 performance gain over the single
block calculation.

To test the parallel performance of the different
multigrid modes, tests were run on a distributed system
consisting of five IBM RS/6000-530 RISC workstations
connected in a ring network by an IBM serial optical
channel. A speedup is defined as the ratio of the wall
clock time required to process a solution on a single
processor to the wall clock time required on multiple

9



Fig. 23 X-Momentum Contours of Multi-
Block Navier-Stokes Case, MOO = 0.5, a = 0

Fig. 24 X-Momentum Contours of
Multi-Block Hybrid Euler/Navier-Stokes Case,
MOO = 0.5, a = 0

processors on an unloaded system. The theoretically
maximum speedup is the number of processors used
in parallel for a particular solution. Rarely in prac-
tice is that ideal reached both because of algorithmic
overhead in the parallel algorithm and communications
delays among the processors.

For this test, a 320 x 64 cell mesh was decomposed
into five 64 x 64 cell blocks so that each of the five
processors would have one-fifth of the original mesh
in the parallel computations. An Euler calculation
was performed in each block. The theoretical bound
on the speedup is 5, assuming each processor per-
forms the same operations, since each block is of equal
size. The results of several tests are shown in Fig. 25,
which shows the speedup verses the number of multi-
grid levels.

The number.of communication calls increases lin-
early with the number of multigrid levels, and the syn-
chronous horizontal mode suffers the greatest penalty
because of this. Recall that in the synchronous hori-
zontal mode, interface information is updated on each
level of the multigrid cycle. Thus, on every multigrid
level, each processor must wait until it receives data
from neighboring blocks until continuing with the cal-
culation. With five levels of multigrid, the synchronous
horizontal mode speedup was only 2.83 or 57% of the
theoretical maximum 5. This is consistent with the
performance observed in the Navier-Stokes calculation
described earlier. The performance of both the asyn-
chronous mode and the synchronous vertical mode were
mudfimproved. The asynchronous mode reached a
speedup of 4.29 and the synchronous vertical mode

a speedup of 4.59 with five multigrid levels. Much
of this improvement stems from not waiting for data
from neighboring blocks on coarse multigrid levels. The
asynchronous mode continues with its calculation until
interface data from neighboring blocks arrives and only
afterwards are coarse level interface boundaries up-
dated. The synchronous vertical mode behaves in much
the same way, except it ignores all incoming coarse level
data until the calculation reaches the finest level in the
multigrid sequence. Note that without multigrid, the
modes are algorithmically equivalent to each other, and
each recorded a speedup of 4.95 or 99% of the maxi-
mum possible.
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5 Summary References

To allow for the treatment of complicated geome-
try and to take advantage of parallel and distributed
computing systems, an Euler/Navier-Stokes solver has
been extended to allow for computation on a domain
separated into multiple blocks. In the multi-block
scheme, a separate instance of the flow solver is used
to compute the solution in each block.

Except for the treatment of interface boundary con-
ditions which are a necessary part of the multi-block
strategy, the algorithm is identical to the single block
algorithm. To allow neighboring blocks to commu-
nicate across their interface boundaries, a library of
communication utilities has been developed. The al-
gorithm has been constructed so that a converged flow
field will be identical to the solution obtained with the
single block algorithm. This is shown to be the case
in three examples presented, even when strong gra-
dients cross interface boundaries. Convergence rates
between the single and multi-block schemes are nearly
the same, using both synchronous horizontal and syn-
chronous vertical multigrid modes in the multi-block
scheme.

The multi-block algorithm has the added advantage
over the single block scheme in that it can readily
be used in a parallel computing environment. Several
tests were run on a coarse-grained distributed system
to compare three multigrid modes - synchronous hor-
izontal, asynchronous, and synchronous vertical - for
the update of coaise level boundary conditions. Com-
munications requirements restricted the synchronous
horizontal mode speedups. The problems were largely
resolved by using either the synchronous vertical mode
or the asynchronous mode, where favorable speedups
were observed, even when several multigrid levels were
used.
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Abstract
A Multigrid Alternating Direction Implicit scheme has
been developed to solve the two-dimensional Thin
Layer Navier-Stokes equations for compressible turbu-
lent flows, incorporating a simple algebraic turbulence
model. Spatial discretization of the governing equa-
tions is done using a finite volume approximation to
provide flexibility in dealing with complicated geome-
tries. In order to maintain stability and robustness,
artificial dissipation is added in the form of an adaptive
blend of second and fourth differences of the solution.
The time-linearized implicit operator is approximated
as the product of two one-dimensional factors, each of
which is diagonalized using a local similarity transfor-
mation for computational efficiency. The viscous terms
are treated explicitly to maintain the diagonal form.
The implicit scheme is used within the framework of
the multigrid method to further accelerate convergence
to a steady state. Results are presented for transonic
flows past airfoils. Flow field results, including bound-
ary layer quantities, are presented and compared with
other computational data and experiments to confirm
the accuracy of the method. Comparisons of conver-
gence rates are made to demonstrate the efficiency of
the implicit ADI multigrid method.

1 Introduction

Much progress has been made in recent years in de-
veloping efficient algorithms to solve the Navier-Stokes
equations for complex geometries. However, if they are
to be used on a regular basis for design purposes in the
aircraft industry, the algorithms have to be made more

'Graduate Research Assistant. Student Member, AIAA.
'Professor. Associate Fellow, AIAA.
Copyright ©1991 by the American Institute of Aeronautics

and Astronautics, Inc. All rights reserved.

efficient and accurate. This is particularly important
for high Reynolds number flows, where the boundary
layers are very thin and where shocks may cause signifi-
cant boundary layer separation. It is generally accepted
that the biggest stumbling block to obtaining physically
correct solutions for such flows is the absence of good
turbulence models [1]. The incorporation of better tur-
bulence models leads to an increase in computing power
requirements. So alongside the drive to develop faster
computers is the drive to develop more efficient algo-
rithms.

The Multigrid Diagonal Implicit (MDI) algorithm of
Caughey [2] has proved very efficient in solving the Euler
equations. The implicit nature of the algorithm makes
it particularly attractive for solving the Navier-Stokes
equations for high Reynolds number flows where the
large cell aspect ratios, required to resolve the extremely
thin boundary layers, make stability a problem with
explicit algorithms. The diagonalization of the equa-
tions and the implementation of the algorithm within
the framework of multigrid make the scheme very effi-
cient for the Euler equations. This scheme is extended
here to solve the Thin Layer Navier-Stokes equations for
turbulent transonic flows over airfoils. First, the govern-
ing equations and the numerical scheme are described,
and then results including boundary layer quantities are
presented for a variety of flows.

2 Governing Equations

2.1 Navier-Stokes Equations

The Navier-Stokes equations describe the motion of a
viscous fluid. In Cartesian coordinates, the fully con-
servative form of the unsteady two-dimensional Navier-
Stokes equations for a compressible fluid, neglecting
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body forces and heat sources, is

Bt 8y
. » ,
8x 8y '

where
w = {p, pu, pv, e}T

is the vector of conserved variables,

/ = {pu, pu2+p, puv, (e-fp)u}T,

g = {pv, puv, pv2+p, (e+p)v}T,

(2)

(3)

are the inviscid flux vectors in the x and y directions
respectively, and

= {0, (rxx, axy, <t>x}T,

= {0, ffxy, <Tyy, <t>y}T', (4)

are the viscous flux vectors in the x and y directions,
respectively. The variables p and p are the fluid density
and pressure, u and t; are the velocity components in the
x and y directions, and e is the total energy per unit
volume. The equation of state for a calorically perfect
gas is used to relate the pressure to the total energy

(5)

where 7 is the ratio of specific heats. For air, 7 = 1.4 .

For isotropic Newtonian fluids the viscous stresses are
given by

- du \ ( ® u dv\
dx dx dy

,du dv.

dv .du dv .

Stokes' hypothesis,

(6)

(7)

relates the factor A to the molecular viscosity n of the
fluid. The energy fluxes, <j>x and <j>y, are given by

(8)

where

dT
^'
9T

are the heat fluxes in the x and y directions. Here T
is the temperature and k is the thermal conductivity of
the fluid.

The dependent variables in the governing equations
(Eqs. 1) are instantaneous local quantities. For turbu-
lent flows, the presence of fluctuations about the mean
makes it prohibitively expensive to compute the instan-
taneous values of the flow variables at large Reynolds
numbers since the range of length and time scales which
must be resolved is very large. It is more practi-
cal to compute, instead, the mean field alone if suit-
able closure models can be developed. Time-averaging
the flow equations and writing them in terms of mass-
averaged dependent variables lead to the Reynolds Av-
eraged Navier-Stokes Equations for compressible turbu-
lent flows [3], These equations have the same form as
the equations for instantaneous quantities (Eqs. 1) ex-
cept that

1. the viscous stresses (Eqs. 6) are augmented by the
Reynolds stresses and

2. the heat fluxes (Eqs. 9) are augmented by the anal-
ogous heat fluxes due to the turbulence.

The turbulence model which is used to estimate these
additional quantities is described in the next section.

2.2 Turbulence Model

The effects of turbulence are modeled using the eddy
diffusivity concept for the Reynolds stresses and eddy
thermal conductivity for the turbulent heat fluxes. The
total diffusivities are given by

k = k / + kt (10)

where fimoi and kmoi are the molecular quantities, and
ut and kt are the turbulent quantities. We obtain clo-
sure by modeling /z< analytically using a zero equa-
tion model and calculating kt from Prt, the turbulent
Prandtl number, which is chosen to be equal to 0.9 .

The turbulence model is based on the algebraic model
of Baldwin and Lomax [4]. This is a two-layer zero-
equation eddy-viscosity model. The eddy viscosity /it is
given by

r t

_ I
~" I

I,

(Ut)inner
/ \
\u t)outer

V S Vcrossovcr

where y is the distance normal to the wall and y,
\ ' is the smallest value of y at which the value of

cro»aovcr
cal-
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culated from the inner formula exceeds the value from
the outer formula.

This model does not provide any rigorous means of as-
certaining the location of transition. However, in this
implementation of the model it is possible to specify the
transition location and modify the values of //, accord-
ing to

I= }
1̂

\
t /Baldwin— Lomax

S xtramition

^̂ ^transition

The transition location x traniition can either be speci-
fied directly or deduced on the basis of a specified cri-
terion.

The model is modified slightly when applied to the
wake. In the wake the van Driest damping factor is
set equal to 1, and the y-distance is measured from the
first coordinate line in the wrap-around direction of the
C-grid, i.e. from the rj = 0 line.

2.3 Coordinate Transformation

To facilitate the handling of complex geometries in a
finite volume formulation, the Navier-Stokes equations
(Eqs. 1) are transformed from the Cartesian coordinate
system or the physical plane into a generalized curvilin-
ear coordinate system or the computational plane. This
non-singular transformation has the following form:

Under this transformation, an arbitrary quadrilateral
cell in the physical plane becomes a unit cell in the com-
putational plane. The transformed system of equations
written in strong conservation form is

dW 9£ 5G _ dF^ 8GV

dt + d£ + drj ~ d£ + drj '

where

is the transformed vector of dependent variables and

/ PU

F = h ^u+l- |, (15)

(16)

(17)

(18)

are the transformed flux vectors. The contravariant
components of the velocity are related to the Cartesian
velocities by

(19)

where J is the Jacobian matrix of the transformation
written as

J/e
(20)

The determinant h of the Jacobian J , which corresponds
to the cell area, is given by

(21)

2.4 Thin-Layer Approximation

The Thin Layer approximation [4] is a simplification
to the Navier-Stokes equations. Under this approxima-
tion, all diffusion processes in the streamwise direction
are neglected. If the Reynolds number of the flow is
large and if there is a dominant primary flow direction -
i.e., if there are no regions of significant separation, then
the diffusion in the streamwise direction is much smaller
than that in the normal direction. This forms the phys-
ical basis for the approximation. In this respect it is
similar to the Boundary Layer approximation. But it is
more general in that no assumptions are made regarding
the pressure, and the momentum equation normal to the
body surface is retained. The proper implementation of
the Thin Layer approximation in a numerical procedure
requires a grid with a body- or stream-aligned coordi-
nate. Under these conditions, the approximation can be
made without adversely affecting the solution. In the
present formulation the f -coordinate is approximately
parallel to, and the rj -coordinate is approximately nor-
mal to the airfoil surface. Therefore all £-derivatives
are neglected while all 77 -derivatives are retained in the
viscous terms and in the evaluation of the Cartesian
derivatives in the viscous terms. In particular, the vis-
cous flux in the r;-direction Gv which involves the calcu-
lation of Cartesian derivatives (Eqs. 6 and 9) is modified
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to a simpler form G'v containing only ij -derivatives:

= h (22)

where

ffrr =

ff-r,, ~

d_u
dr,
du

dT
^ dri '

, dT
-fcny-^-,

du
-

dv.
-)

dv

du dv .

The system of equations then reduces to

dW_

at

dG dG'
df,

(23)

(24)

3 Numerical Method

The Thin-Layer Approximation to the Navier-Stokes
equations (Eqs. 24), along with boundary conditions
which will be discussed later, is solved numerically. The
equations are discretized in space using finite volumes
and the solution is advanced in time using a diagonal
Alternating Direction Implicit scheme.

In a finite volume formulation, the physical domain is di-
vided into a number of quadrilateral cells. The govern-
ing differential equations (Eqs. 24) are integrated over
the area of a cell and are reduced to the following form
using Green's Theorem:

(25)
QA

Here the integration is performed in the computational
domain and hence A is the area of the cell in the com-
putational plane and dA is the cell boundary. Cell av-
eraged quantities are used for the dependent variables.

This finite volume scheme applied to the Euler equa-
tions does not contain any dissipative terms. In order to

prevent odd-even point decoupling and oscillations near
shock waves or stagnation points artificial dissipation
terms must be added when solving the Euler equations.
The Navier-Stokes equations on the other hand possess
dissipative properties due to the presence of the viscous
terms. However the physical dissipation provided by
these terms in regions away from the shear layer may
not be sufficient to guarantee stability. So in order to
maintain the stability and robustness of the numerical
procedure it is still necessary to add artificial dissipa-
tion. The terms are constructed as an adaptive blend of
second and fourth differences with the directional scal-
ing of the terms suggested by Caughey [2].

The modified set of equations in integral form is

(/•*,- a
= -/ &vdt + I (D (wdr,-Dnwdt) (26)

JdA JdA

and in differential form is

dW dF dG _ dG'v
dt d£ dr, dr, dr,

(27)

where D^w and Dnw are the dissipative fluxes across
cell faces in the £ and r, directions. The differential
operators. £>f and Dn have the form

Df = e
(2)—-e (4) —

Dn = ^-44)^. (28)

The coefficients of dissipation,
following Caughey [2].

and are defined

In computations of viscous flows, and turbulent flows in
particular, it is important to monitor the effects of artifi-
cial dissipation on the accuracy of the solution. Means
of estimating the integrated effect of these terms are
currently being studied.

3.1 Iterative Scheme

To construct the iterative scheme, the governing equa-
tions are written in their differential form (Eq. 27). The
spatial derivatives are approximated implicitly and the
changes in the flux vectors are linearized in time. The
implicit operator thus obtained is approximated as the
product of two one-dimensional factors. The develop-
ment thus far follows that of Briley and McDonald [5]
and Beam and Warming [6]. Following Pulliam and
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Chaussee [7] the two implicit factors are then diagonal-
ized using local similarity transformations.

All spatial derivatives except the viscous. term are ap-
proximated implicitly, i.e., as weighted averages of dif-
ferences taken at the old and new time levels. Treating
the viscous term implicitly presents problems because
simultaneous diagonalization of the Euler and viscous
flux Jacobians is not possible. For this reason the vis-
cous term is kept purely explicit in this work, although
recent work by Tysinger and Caughey for laminar flows
[8] shows that including approximations to the contribu-
tions of the viscous terms in the implicit factor improves
the stability of the scheme. The artificial dissipation
terms must be treated implicitly for good convergence
and this can be done easily without destroying the di-
agonal form. Using a forward difference to approximate
the time derivative, the equations can be written as

= Rij, (29)

where AIV,"^ is the correction vector defined as

AIV". — Wn+ l — IV".'J — 'vi,j V ij'

and the parameter 9 determines the degree of implicit-
ness in the scheme (0 < 9 < 1). The difference operators
T> and "D^ have the form

(30)

and R"j is the residual vector corresponding to the
cell (i,j) at time level n.

The changes in the flux-vectors are linearized in time
using a Taylor series expansion about time level n,

and

?j + O (A<2) , (32)

where

A.

are the Jacobians of the flux vectors with respect to
the solution. Introducing these linearizations into Equa-
tion 29 yields a scheme of the form

(7

(33)

The operator on the left hand side of the above equation
(Eq. 33) is approximated as the product of two one-
dimensional factors to give

= #,".,•• (34)

The error is making this approximation is O (At2). The
implicit treatment of the fourth order dissipation terms
leads to the requirement that block pentadiagonal sys-
tems be solved in each direction. For 2-D problems, each
of the blocks is 4 x 4. Pulliam and Chaussee [7] showed
that each of these systems of equations can be diagonal-
ized, thereby greatly reducing the computational labor
required to solve them.

The approximately factored equations (Eqs. 34) are di-
agonalized at each mesh point by a similarity transfor-
mation. The modal matrices QA and QB diagonalize
the Jacobian matrices A and B as follows

Here \& and AB are diagonal matrices whose diagonal
elements are the eigenvalues of A and B respectively.
The elements of the Jacobian matrices, their modal ma-
trices and their eigenvalues are given by Pulliam and
Chaussee [7].

Substituting Equation 35 into Equation 34 yields the
decoupled set of equations

= -At ,j - 6nG'ViJ

(36)

This represents a set of four scalar pentadiagonal sys-
tems. The error associated with the diagonalization can
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be shown to be of O(At). The systems of equations
(Eq. 36) are solved at each time step by first solving for
intermediate corrections along lines of constant TJ (i.e.,
constant j) and then solving along lines of constant £
(i.e., constant t) for the corrections AV^-"- to the charac-
teristic variables of the linearized one-dimensional prob-
lem in the rj-direction. The correction AW,"; to the
solution in each computational cell is then given by

(37)

3.2 Convergence Acceleration

The convergence to a steady state of the solution to the
difference equations (Eqs. 36) is accelerated using two
techniques - multigrid and local time-stepping.

3.2.1 Multigrid Algorithm

The diagonal ADI scheme described above has good
high wave number damping characteristics and is there-
fore a natural choice as a smoothing algorithm for elim-
inating the high wave number errors at each level of a
multigrid procedure. The multigrid strategy employed
here follows that of Jameson [9] and Caughey [2].

A specified number of iterations is first performed on the
finest grid. A coarser grid is then formed by eliminat-
ing every second line of the fine grid in each coordinate
direction. Each cell in the coarser grid therefore con-
tains four adjoining fine grid cells. Restricted values of
the flow variables in each coarser grid cell are obtained
using area-weighted averages of the values in the four
corresponding fine grid cells. Restricted values for the
residuals in each coarser grid cell are obtained by sum-
ming the residuals in the corresponding fine grid cells.
Forcing functions are defined for each coarser grid cell as
the difference between the restricted residuals and the
values of residuals calculated using the restricted flow
variables. The residuals used to drive the corrections on
the coarser grid are then defined as sums of the residuals
computed on the coarser grid using the current values of
the flow variables and the forcing functions. The forc-
ing functions ensure that the corrections on the coarser
grid are driven essentially by the residuals computed on
the fine grid. Corrections are computed on the coarser
grid for a specified number of iterations. Then a still
coarser grid is formed by the above procedure, and the
process repeated until the prescribed coarsest grid is
reached. Corrections are computed on the coarsest grid
and they are prolonged back to the next finer grid using
bilinear interpolation in the computational coordinates.

Residuals are computed using the corrected values for
the flow variables and a specified number of iterations
is performed. Corrections obtained are interpolated to
the next finer grid and this process is continued until
the finest grid is reached. The cycle is repeated for a
prescribed number of Work Units. A Work Unit is de-
fined as the amount of computation required for one
smoothing step on the finest mesh.

Both the body-surface and the far-field boundary con-
ditions are updated on coarser meshes. In our calcu-
lations, a fixed V-cycle is used in which the solution is
advanced one time step (i.e., one iteration) on each grid
level as the grid is coarsened and refined.

3.2.2 Local Time Stepping

The idea behind local time stepping is to take the largest
possible time step in each individual cell. This destroys
the time accuracy of the solution, but it does not affect
the steady state solution. The size of the time step
used in each cell depends on the dimensions of the cell.
Directional time steps, based on the one-dimensional
wave propagation in inviscid flow and on unit Courant
number, are defined as:

(38)

(39)

The time step At corresponding to each cell is then
defined as:

= CFL (40)

where CFL is the Courant number, which is taken to be
the same for all cells.

3.3 Boundary Conditions

Boundary conditions are imposed numerically using a
single layer of dummy cells along the entire boundary.
Values for the dependent variables are assigned to these
cells using explicit boundary conditions. The implicit
nature of the algorithm requires that boundary condi-
tions also be applied on the solution variables before
solving the system of equations.
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3.3.1 Explicit Boundary Conditions 4 Results

The solutions computed to date have been for subsonic
freestream Mach numbers. The upstream boundary
conditions in the farfield are based on the Riemann
invariants for the one-dimensional problem normal to
the boundary. Variables are either extrapolated from
within the domain or set to freestream values depend-
ing on the direction of propagation of the characteristic.
For meshes used in the present work the farfield inflow
boundary is a constant 77 line with £ increasing clock-
wise. At subsonic inflow locations the first Riemann
invariant

(41)
7-1

is extrapolated from the interior of the domain, while
the second Riemann invariant

_
ri-2 —

2c
(42)

is specified using the freestream values. The entropy
and the tangential velocity of the fluid at the boundary
are set to freestream values. Using these conditions the
values of the dependent variables are readily obtained.

At a subsonic outflow boundary pit, pv and the en-
tropy are extrapolated from the interior, while pressure
is specified to be the freestream value. The density and
energy are then calculated using these boundary values.

On the body surface the no-slip boundary condition is
applied, i.e., the velocity components u and v are set
equal to zero. The surface is assumed to be adiabatic,
i.e. dT/dn = 0. The high Reynolds number approx-
imation that the normal pressure gradient, dp/dn, on
the surface is zero is also used.

3.3.2 Implicit Boundary Conditions

The implicit treatment of the far-field boundary condi-
tions is straightforward; they are treated in a manner
consistent with characteristic theory. These conditions
are the same as those used in solving the Euler equations
[2]. For Navier-Stokes calculations, the use of character-
istic theory to determine the implicit boundary condi-
tions on the body surface is inappropriate. However, ho-
mogeneous Dirichlet conditions are found to work well
for a wide range of problems.

The Multigrid Diagonal Implicit (MDI) scheme de-
scribed in the previous section was coded and tested for
laminar and turbulent transonic flows past two differ-
ent airfoils - the NACA 0012 and RAE 2822 sections.
The test cases studied included attached flow, mildly
separated flow and flow with massive separation due to
shock - boundary layer interaction.

The scheme has been applied to compute transonic
flows past airfoils when the Reynolds numbers are large
enough that the boundary layer on the airfoil is turbu-
lent. The following cases are presented here:

1. NACA 0012 - Moo = 0.7, o = 1.49, Rec = 9 x 106

2. NACA 0012 -Meo = 0.799, a = 2.26, Rec = 9x 106

3. RAE 2822 - MTO = 0.725, a = 2.92,-Rec = 6.5xl06

4. RAE 2822 - M«, = 0.75, a = 3.19, Ree = 6.2 x 106

These are test cases used at the Viscous Transonic Air-
foil Workshop of 1987 [1].

The computations for both the NACA 0012 and the
RAE 2822 airfoils were done on C-grids generated by
the GRAPE code [10], containing 192 x 48 cells in the
wrap-around and body-normal directions respectively.
Of the 192 cells in the wrap-around direction- 120 or
62.5% were on the airfoil surface for the NACA 0012.
In the case of the RAE 2822 airfoil two-thirds of the
cells were placed on the airfoil surface. The distance
from the airfoil to the first coordinate line- was about
5 x 10~5 chords which corresponds to a y+ less than
4 for the given Reynolds numbers at most points on
the airfoil. The farfield boundaries were about 7 chord
lengths from the airfoil. The cells are highly clustered in
the 77-direction near the surface of the airfoil and have
aspect ratios as large as 103. The Prandtl number was
chosen to be 1.0, and the turbulent Prandtl number is
fixed at 0.9 for all computations.

4.1 Flow over NACA 0012 Airfoil

The NACA 0012 airfoil is a symmetric 12% thick airfoil
which has been tested extensively both experimentally
and computationally. The experiments used for com-
parison here were conducted in the transonic tunnel at
the NASA Langley Research Center by Harris [11]. In
these experiments, the boundary layer was tripped us-
ing carborundum strips at 5% of the chord. In all the
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computations, the location of transition, x t ran»ition, was
fixed at 0.05 chords. Airfoil surface pressure distribu-
tions for two cases are compared with the experiments
performed by'Harris and the computational results from
the VTA Workshop [1].

4.1.1 Case 1: NACA 0012 Airfoil at
MOO = 0.7, a = 1.49°, and Rec = 9 x 106

For this case the flow is attached and just slightly super-
sonic near the leading edge on the upper surface. The
measured experimental angle of attack for this case was
1.86°. This was corrected to 1.49° by Harris using a lin-
ear method of accounting for wind tunnel wall effects.

Figure 1 shows that the computed surface pressures are
in excellent agreement with the experimental data. Ta-
ble 1 gives a comparison of the force coefficients. The
lift coefficient obtained using the present method is
about 2% less than the experimental value and is within
the range of values obtained computationally by others.
Drag coefficients are difficult to calculate accurately be-
cause the pressure integration for drag is very sensitive.
Even so the value obtained 0.0084 is only about 6%
larger than the experimental value, and is within the
range of the VTA Workshop values. Of the total com-
puted drag about 17% is due to skin friction and the
rest is due to pressure drag.

Convergence results are presented in Figures 2 and 3.
Grid sequencing is used, i.e., multigrid solutions are first
obtained on coarser grids and then interpolated for use
as initial conditions on finer grids. The error is defined
as the absolute value of the residual of the continuity
equation averaged over all the grid cells. The logarithm
of the error is plotted versus the number of Work Units
in Figure 2 for a single grid and for 4 levels of multi-
grid. We see that with 4 levels of multigrid the error has
been reduced 8 orders of magnitude in 500 Work Units,
whereas for the single grid it has been reduced only 3 or-
ders of magnitude. The asymptotic rate of convergence
is clearly much improved with multigrid. The Courant
number for both cases was 24, and local time-stepping
was used. Figure 2 also compares the convergence his-
tory of the MDI scheme presented in this paper with
the explicit Runge-Kutta multigrid scheme of Martinelli
and Jameson [12]. The error as defined earlier is plotted
as a function of Work Units. The results of Martinelli
and Jameson have been converted to Work Units for
this comparison; this is appropriate since one work Unit
of our implicit scheme requires almost exactly the same
amount of CPU time as a Work Unit of the explicit mul-
tistage scheme of Martinelli and Jameson. The overall

convergence rate and the asymptotic rate are improved
with the present implicit scheme. Figure 3 shows that
the three measures of global convergence - the lift co-
efficient CL, the drag coefficient CD, and the number
of cells Niup in which the local velocity is supersonic,
have converged to within plottable accuracy of their fi-
nal values in less than 50 work units when using 4 levels
of multigrid.

4.1.2 Case 2: NACA 0012 Airfoil at
MOO = 0.799,a = 2.26°, and Ret = 9 x 106

Transition was again fixed at 0.05 chord. The flow
field for this case contains a shock on the airfoil up-
per surface at an x/c of about 0.5. The shock is strong
enough to induce a significant boundary layer separa-
tion. The experimental data obtained by Harris [11]
are compared with the computational results in Fig-
ure 4. The computational angle of attack (2.26°) is ob-
tained from the measured angle of attack (2.86°) using
a linear wind tunnel wall correction procedure [11]. Our
results are generally in close agreement with other com-
putational results that use the same turbulence model
(illustrated here using the results of King [13]), but the
shock strength and the shock position are incorrectly
predicted relative to the experiment- This is also re-
flected in the comparison of computed measured force
coefficients shown in Table 1. The computed shock is
both stronger and farther downstream than that mea-
sured experimentally. The convergence history using
grid sequencing and four levels of multigrid is shown in
Figure 5. The rate is comparable to that obtained for
the simpler Case 1.

4.2 Flow over RAE 2822 Airfoil

The experimental results of Harris on the NACA 0012
contained no boundary layer or wake measurements.
Hence, although the two test cases above showed that
the MDI scheme was efficient and that pressure distri-
butions could be reasonably well predicted, they did
not provide any evidence on how well the turbulence
model and its implementation within this scheme were
able to predict flow properties of the airfoil boundary
layer. To provide this information, comparisons were
made between the computations using the MDI scheme,
and experiments done on an RAE 2822 airfoil by Cook,
McDonald and Firmin [14] at the Royal Airforce Estab-
lishment in the U.K. This is a supercritical airfoil with a
highly cambered aft portion. Measurements reported by
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Cook et al. on this airfoil include surface pressure mea-
surements, wake total and static pressures and bound-
ary layer total and static pressures. From the data they
were able to calculate the skin friction coefficient C/,
and the displacement and momentum thicknesses 6 and
<5* at various points on the surface. Transition to tur-
bulence is effected using a strip of tiny glass spheres at
3% of the chord.

4.2.1 Case 3: RAE 2822 Airfoil at
Moo = 0.725, a = 2.92°, and Rec = 6.5 x 106

The airfoil surface pressure distribution is shown in Fig-
ure 6. Clearly a correction has to be made to account
for the wind-tunnel-wall interference. This is done by
modifying the angle of attack to match the computed
lift coefficient with the experimental value. At this cor-
rected angle of attack the drag coefficient is also close
to the measured value (Table 1). The surface pressure
distribution at the corrected angle of attack of 2.5° is
shown in Figure 7. The computed solution agrees well
with experiment except near the shock.

The measured and computed skin-friction coefficient
distributions are shown in Figure 8, The oscillation near
the leading edge is due to transition which was fixed
at 0.03 chords. The computed results show no shock-
induced separation and are in good agreement with the
experimental values. This is remarkable considering the
fact that it is a derivative quantity and is therefore more
difficult to estimate accurately.

The displacement thickness and the momentum thick-
ness distributions on the upper surface of the airfoil are
shown in Figure 9. The agreement with experiment is
very good before the shock but is only fair after it. This
is also reflected in the velocity profiles calculated at two
chordwise locations on the airfoil upper surface. In Fig-
ure 10, the computed velocity profile at x/c = 0.319 is
compared with experimental data taken at two spanwise
locations. In the same figure, the computed and experi-
mentally obtained velocity profiles at x/c = .95 are also
compared. They show that the boundary layer profile
shape at a location before the shock (x/c = 0.319) is
reasonably well predicted while the profile shape at a
location after the shock (x/c — .95) is rather poorly
predicted.

A plot of the convergence history is shown in Figure 11.
Using four levels of multigrid and grid sequencing, the
solution converged to a steady state in about 50 work
units. The average residual has been reduced about 7
orders of magnitude in 500 work units.

4.2.2 Case 4: RAE 2822 Airfoil at
Moo = 0.75,a = 3.19°, and /?ec = 6.2 x 106

This case is widely regarded as one of the most diffi-
cult cases because the shock wave causes a significant
amount of separation. The angle of attack was modified
to 2.50° to match the lift coefficient. At this corrected
angle of attack the drag coefficient is again close to the
measured value (Table 1). The computed surface pres-
sure distribution is plotted along with the experimental
data in Figure 12. The computed shock position is too
far downstream and the shock is too strong. But the so-
lution is in general agreement with other Navier-Stokes
solvers (Table 1) which may indicate that the problem is
not as much numerical error as due to shortcomings in
the turbulence model [1]. The computed upper surface
skin friction coefficient is compared with experiment in
Figure 13. The computations predict flow separation at
the shock at about 63% of the chord and reattachment
at about 70% of the chord. This separation location is
in reasonable agreement with other computations, al-
though there is a large disparity in the location of the
reattachment point between various calculations. The
upper surface displacement thickness and momentum
thickness distributions are plotted in Figure 14. They
confirm the general trend of reasonably good agreement
before separation and poorer agreement after it. The
convergence plot (Figure 15) shows that the solution has
converged to a steady state in about 100 Work Units.

4.3 Computational Requirements

Most of the computations presented in this .paper were
performed on an IBM 3090/600J. The code was vector-
ized to increase execution speeds. A typical computa-
tion took about llOps per Work Unit per grid point
which is about 20% more than the time required for
an Euler calculation using the same method. About
1.5 MB of memory was required for these calculations,
all of which were done in double precision (64-bit arith-
metic).

5 Conclusions

The multigrid diagonal Alternating Direction Implicit
scheme developed by Caughey [2] has been extended to
solve the thin-layer Navier-Stokes equations for com-
pressible flow. The Baldwin-Lomax algebraic turbu-
lence model was used. Results including boundary layer
quantities and velocity profiles for turbulent transonic
flows past airfoils were presented. They show that for
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attached flows the computed flowfield data are in good
agreement with the experimental data. For flows with
strong shocks and shock-induced separation the agree-
ment is poor particularly after separation. This can
most likely be attributed to the equilibrium nature of
the turbulence model used. The convergence rates are
about the same for all cases and do not seem to dete-
riorate significantly with the increasing complexity of
the flow. The rates also compare favorably with those
obtained using the explicit Runge-Kutta method.
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I

Case 1

Case 2

Case 3

Case 4

Cl
Cd
Cl
Cd
a
Cl
Cd
a
Cl
Cd

Present
Results
0.238
0.0084
0.416
0.0406

2.5
0.738
0.0131

2.50
0.750
0.0237

Expts.
[11, 14]
0.241
0.0079
0.390
0.0331

2.92
0.743
0.0127

3.19
0.743
0.0242

Computational
(VTA) [1]

0.235 - 0.262
0.0074 - 0.0100

0.300 - 0.476
0.0345 - 0.0446

2.3 - 2.8
0.717 - 0.822

0.0113- 0.0180
2.5 - 2.96

0.733 - .859
0.0224 - 0.0277

Table 1: Comparison of force coefficients for the four
test cases

233. see.
Work Units

NACA 0012 AIRFOIL Grid 192x48 CFL 24.00
Mech .700 Alpha 1.490 Re 9.000E+08
HDI Present Work R-K Uartinelli & Jameson

Figure 2: Comparison of convergence rates for Case 1

ci -

cd-

-Ksup-

NACA 0012 AIRFOIL
Mach .700 Alpha 1.490 Re 9.000E+08
Present Work— Harris [1981]°.«

a. IBB. 2aa. 3BB. tee. sea. 6za.
Work Units

NACA 0012 AIRFOIL
Mach .700 Alpha 1.490 Re 9.000E+08
Work SCO.OO CFL 24.00 Grid 192x48
1 Level — 4 Levels ~

Figure 1: Surface pressure distribution for Case 1

Figure 3: Global measures of convergence with and
without multigrid - Case 1
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-1.5BBB

1.5BBB

NACA oo iz AIRFOIL
Mach .799 Alpha 2.260 Re 9.000E+06
Present Work— Harris [1981]o.A King [1987] —

RAE 2822 AIRFOIL
Mech .725 Alpha 2.920 Re 8.500E+06
Present Work— Cook et al.[1979] o . .

•c- A c e j- t -L «.• r /-• o Figure 6: Surface pressure distribution for Case 3 withrigure 4: Surface pressure distribution for Case 2 6 v

a = 2.92

-1.5BM r-

r a -

a. laa. 2ea. see. tea. 50B. bee.

NACA 0012 AIRFOIL
Mach .799 Alpha 2.260 Re .900E+07
Res! .267E-02 CFL 20.00
Res2 .582K-10 Grid 192x48
Work 500.19 Rate .9653 Nroeah 4

RAE 2B22 AIRFOIL
Mach .725 Alpha 2.500 Re 6.500E+06
Present Work— Cook et al.[1979] o . «

Figure 5: Convergence history for Case 2
Figure 7: Surface pressure distribution for Case 3 with
a = 2.5
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x/o

RAE 2822 AIRFOIL
Mach .725 Alpha 2.500 Re 8.500E-I-06
Present Work— Cook et el.(l979] o

.8858

.8840

.8838

y/c
.0258
!. 8289

.0159

.8108

.8858 r/c = 0.95

1-5a.88 .53 u/Ue '-M

RAE 2822 AJRFOIL
Mach .725 Alpha 2.500 Re 6.500E+06
Present Work — Cook et al.[l870] o . .

Figure 8: Skin friction distribution for Case 3 Figure 10: Boundary layer velocity profiles at two loca-
tions for Case 3

RAE 2822 AIRFOIL
Mach .725 Alpha 2.500 Re 6.500E+06
Present Work— Cook et al.[l979] o

-2.

Cl '-

Cd -

e. IBB. 298. 3ea. tea. 508. tee.

RAE 2822 AIRFOIL
Mach .725 Alpha 2.920 Re .650E+07
Real .154E-02 CFL 24.00
Res2 .464E-09 Grid 192x48
Work 500.19 Rate .9704 Nmesh 4

Figure 9: Displacement and momentum thicknesses for
CaseS Figure 11: Convergence history for Case 3
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RAE 2822 AIRFOIL
Mach .750 Alpha 2.500 Re 8.200E+06
Present Work— Cook et al.[l979] 0.4

x/c •-" I-"
RAE 2822 AIRFOIL
Mach .725 Alpha 2.500 Re 6.500E+06
Present Work— Cook et al.[1879] o

Figure 12: Surface pressure distribution for Case 4 Figure 14: Displacement and momentum thicknesses for
Case 4
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500.19 Rate .9753
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Error
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Nmesh

Figure 13: Skin friction distribution for Case 4 Figure 15: Convergence history for Case 4
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Evaluation of Navier-Stokes Solutions Using the Integrated
Effect of Numerical Dissipation

R. R. Varma* and D. A. Caugheyt
Cornell University, Ithaca, New York 14853

A method for evaluating the quality of solutions to the Navier-Stokes equations is developed and illustrated
with representative examples. In solutions to the Navier-Stokes equations it is important that added numerical
dissipation does not overwhelm the real viscous dissipation. To verify this, it is necessary to be able to estimate
quantitatively the effect of numerical dissipation. A method for estimating the integrated effect of numerical dis-
sipation on solutions to the Navier-Stokes equations is developed in this paper. The method is based on integra-
tion of the momentum equations, and the computation of corrections due to numerical dissipation to the drag
integral. These corrections can then be considered as estimates of the error due to dissipation. Solutions to the
Navier-Stokes equations for laminar and turbulent flows over airfoils are' used to illustrate the method. The
errors due to numerical dissipation are compared with the total numerical errors in the solutions. The effect of
Mach number scaling of the numerical dissipation terms is discussed.

I. Introduction

THE evaluation of the quality of any numerical solution of the
Navier-Stokes equations and the validation of the computer

code that yielded the solution necessarily require an estimation of
the errors in the solution. As Hoist1 has pointed out, these errors
fall under two broad categories—physical modeling errors and nu-
merical errors. The physical modeling errors include, among oth-
ers, those arising from the approximations involved in the Navier-
Stokes equations themselves, or their thin-layer approximation, as
well as those introduced by any model for the effects of turbu-
lence. The numerical errors include those due to the basic discreti-
zation scheme, including any implicit or explicit numerical dissi-
pation, and are dependent upon the fineness and distribution of the
grid. Physical modeling errors can be quantified only by compari-
son with the results of experiments or with the results of direct nu-
merical simulations in which the corresponding approximations
are not made. Before these comparisons can be meaningful, how-
ever, it is important to understand the level of numerical error, and
this can be done without recourse to comparison with experiments.
It is with these numerical errors and, in particular, with the effects
of numerical dissipation, that the present article is concerned.

The calculation of fluxes in several widely used finite volume
schemes used to solve the Euler and Navier-Stokes equations can
be shown to be equivalent to central differencing. Such schemes,
applied to the Euler equations, do not contain any inherent dissipa-
tion. To prevent odd-even point decoupling and oscillations near
shock waves or stagnation points, numerical dissipation terms
must be added when solving the Euler equations. The Navier-
Stokes equations, on the other hand, possess dissipative properties
due to the presence of the viscous terms, but the physical dissipa-
tion provided by these terms in regions far away from the surface
is usually small, and the addition of numerical dissipation terms is
still necessary to ensure the stability and robustness of the
schemes. While the added dissipation terms must be large enough
for this purpose, they must also be small enough not to overwhelm
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ing, Reno, NV, Jan. 11-14, 1993; received April 5, 1993; revision received
July 22, 1993; accepted for publication Aug. 3, 1993. Copyright © 1993
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the effects of the real viscous dissipation in regions where the lat-
ter is significant.

Most previous attempts at studying the effects of numerical dis-
sipation have been based primarily on qualitative comparisons of
computed solutions and experiments. For the Euler equations,
Caughey and Turkel2 looked at the effects upon solution accuracy
of various forms of the dissipative terms and the smoothness of the
mesh. They used nonphysical behavior of the solution, such as os-
cillations in the surface pressure distribution near the airfoil trail-
ing edge, to study the effects of numerical dissipation. A similar
approach was followed by Swanson and Turkel3 for both the Euler
and Navier-Stokes equations. They analyzed various ways of re-
ducing artificial dissipation in central difference schemes for the
solution of these equations. Their efforts were also directed at ob-
taining better qualitative behavior of the solution in critical regions
of the flow and better agreement with experimental data. While
this approach provides some useful insight, there is clearly a need
to develop a method that provides quantitative estimates of the ef-
fect of numerical dissipation on the solution.

In this paper, we first develop a method for estimating quantita-
tively the integrated effect of numerical dissipation on solutions to
the Navier-Stokes equations. Using this method we then evaluate
the quality of solutions to the thin-layer Navier-Stokes equations
for two-dimensional transonic flows over airfoils obtained using
the multigrid diagonal implicit method of Varma and Caughey.4

II. Analysis
The governing differential equations considered here are the

thin-layer Navier-Stokes equations in two dimensions. These equa-
tions are transformed from a Cartesian coordinate system (x, y)
into a generalized coordinate system (£, T|). Near the airfoil sur-
face, the ̂ -coordinate is approximately parallel to, and the T|-coor-
dinate is approximately normal to, the body. The airfoil surface it-
self is a ̂ -coordinate line. The transformed equations are modified
by artificial dissipation terms. The form of dissipation used in
these calculations is based on the adaptive blend of second and
fourth differences described by Jameson et al.5 and modified by
Caughey.6 The system of equations can be written in the fully con-
servative form,

dt 9S 3n 3n
= 0

where

= h{p, pu, pv, e)T

(D

(2)
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is the vector of conserved dependent variables. The transformed
inviscid flux vectors are

F = h(pU, pUu + ?,xp, pUv + t,yp, (e + p)U}T (3)

G = h[pV, pVu + T\xp, pVv + T\yp, (e +p)V}T (4)

Here h is the determinant of the Jacobian of the transformation, p
is the fluid density, u and v are the respective velocity components
in the x and y directions, U and V are the contravariant components
of velocity in the 4 and r\ directions, respectively, and e is the total
energy per unit volume. The thin-layer approximation to the trans-
formed viscous flux vector is

G = /i{o,ri + Ti + ri

Using Green's theorem, the area integrals over A are converted to
line integrals along C. This gives

w \ - G

= 0 (7)

At steady state, the first term in Eq. (7) is identically zero, and the
integral equation becomes

= 0 (8)

(5)

where o'xx, <s'xy, and a'yy are the thin-layer contributions to the
Cartesian viscous stresses, and q'x and q'y are the corresponding
contributions to the heat fluxes. The dissipative fluxes across cell
faces in the £ and r\ directions are D£V and D^W, where the differ-
ential operators D^ and Dn have the form

(2) 3 3 (4) 3 (2)
= €

(4) 3 .„

The coefficients of dissipation, e(2) and e(4), are defined following
Caughey.6

A. Integration of the Momentum Equations
The analysis that follows is based on a generalized derivation of

the Momentum Theorem. The numerical implementation proce-
dure will be discussed in Sec. II.D.2.

Consider a fixed area A bounded by a closed curve C within the
computational domain as shown in Fig. 1 . The curve C is chosen
such that it includes the body surface. Integrating the governing
equations [Eq.(l)], which are satisfied at every interior point, over
the area A gives

n ldW 3F dG <^v
A dt 3E 9n 3n

= 0

The continuity, the two momenta, and the energy equations have
the same integral form. Our interest is restricted to the calculation
of drag, and so only the two momentum equations are considered.
Before we go on, however, a clarification regarding the notation is
required here. As defined by Eqs. (2-5) the vectors W, F, G, and
G'v each have four components corresponding to the four equa-
tions. For the rest of this paper, the same vector notation will be
used although we consider only the two components correspond-
ing to the momentum equations.

The curve C consists of segments along the body surface, the
outer contour, and the branch cut. Continuity of the solution across
the cut ensures that all fluxes on one side of the cut exactly equal
the corresponding fluxes on the other side. Since the cut is tra-
versed twice — once in each direction — the net integral of fluxes
along the cut is zero. Eq. (8) then reduces to a generalized form of
the momentum integral equation:

[F dT\-

' Outer

(9)

B. Body Surface Integral
The integral over the body in Eq. (9) is further simplified when

the mesh on which the solution is obtained is such that the airfoil is
a line of constant T| as is the case in our calculations. Then, the in-
tegral over the body surface reduces to

JBody JBody
(10)

Using Eqs. (4) and (5), the first term of the above expression can
be expanded as

•"Body

(U)

The physical forces that act on the body, and determine the lift and
drag, are caused by pressure and viscous stresses. Expressions for
yx and 5y, the x and y components respectively of the force S on the
body, can be obtained by integrating the pressure and the viscous
stresses. These force components are given by

Fig. 1 Contour for integration for drag: closed curve C enclosing
area A.
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Therefore, from Eq. (11), we have

= 5 (12)
•"Body

i.e., the integral over the body of the inviscid (pressure) and vis-
cous fluxes acting on the surface gives the net force on the body.
Note that the integral over the body surface [Eq. (10)] contains an
additional term due to the dissipative fluxes; the significance of
this term will be discussed in the following section.

C. Corrected Outer Integral
The momentum integral equation [Eq. (9)] thus yields an ex-

pression for the force 5 on the body in terms of integrals of the in-
viscid and viscous fluxes along an outer contour modified by inte-
grals of the numerical dissipation fluxes. From Eqs. (9), (10), and
(12), we have

= f
•'O

(13)
Body

This is termed the corrected outer integral. It is an equivalent ex-
pression for the forces on the body, and consists of contributions
from three sources: 1) inviscid contributions from the net pressure
forces on the outer contour and the net inviscid momentum flux
across it,

f (G di;-F dr,)
J Ollt^r•* Outer

2) contributions from the net viscous stresses acting on the outer
contour,

J (-
•' Outer

and 3) contributions due to the numerical dissipation which arise
from two sources: dissipation fluxes across the outer contour,

f (DfW dt|-D w d£)
J Outer

and dissipation fluxes across the body surface,

J RnHv

If the viscous stresses are negligible on the outer contour and the
dissipation terms are absent, then Eq. (13) reduces to the usual
form of the momentum integral equation consisting of only the in-
tegral of the inviscid fluxes.

The dissipation contributions from the integral over the body
can be interpreted as due to artificial sources and sinks of momen-
tum created on the body surface, which lead to an artificial mo-
mentum surplus or deficit in the integral along an outer contour.
This in turn is reflected in the calculation of forces on the body
from such an outer integral. The numerical dissipation contribu-
tions listed above may together be considered as corrections due to
dissipation to the outer integral for the calculation of the forces 3^
and yy on the body, and therefore as corrections also in the calcula-
tion of lift and drag.

D. Quantitative Estimates of Dissipation
The added numerical dissipation terms are formally third order

in the mesh spacing, and are therefore expected to have very little
effect on the solution if the mesh is sufficiently fine. In the calcula-
tion of the lift coefficient Q using the corrected outer integral, the

corrections due to dissipation, relative to the inviscid contributions
in particular, are expected to be negligible. It is indeed so, as will
be shown later. The drag coefficient Cd, on the other hand, is
known to be sensitive to small changes in the solution. So we
choose to focus our attention on the calculation of the total drag
coefficient, Cd(total), on the body.

The two contributions to the body surface integral for drag
[from Eq. (12)] are denoted as Cd(p) due to the pressure, and
Cd (/) due to the shear stresses on the surface (skin friction). The
total drag coefficient is given by

Cd (total) = Cd(p) + Cd(f) (14)

For attached flow, we expect the two contributions to be compara-
ble in magnitude. For flows with significant separation, the pres-
sure drag is expected to dominate.

The three contributions to the corrected outer integral for drag
[from Eq. (13)] are denoted as Cd (inviscid) due to the pressure and
convective terms, Cd (viscous) due to the viscous stresses, and
Q(diss) due to the dissipative fluxes. The total drag coefficient is
given by

Cd (total) = Q (inviscid) + Cd (viscous) + Cd (diss) (15)

As described in Sec. II.C, the numerical dissipation flux contribu-
tions to the drag coefficient can be separated further into compo-
nents corresponding to the outer and body-surface contours:

Cd (diss) = Q (diss-outer) + Q (diss-body) (16)

Various contours, at different distances from the surface, are cho-
sen for calculating these contributions to drag. If the body surface
is chosen as the outer contour, then we have Cd (diss-outer)
= - Cj (diss-body), which gives us the body surface integral as ex-
pected. For a contour close to the surface, Q (viscous) is expected
to be significant. For contours at sufficiently large distances from
the surface, Cd (inviscid) is expected to dominate.

For a steady-state solution, the Cd (total) computed on the sur-
face using the body surface integral [Eq. (14)] must equal exactly
the Q (total) computed along any outer contour using the cor-
rected outer integral [Eq. (15)], since each of these expressions for
drag is derived from expressions for S [Eqs. (12) and (13)] that are
exactly equivalent. The addition of the corrections due to dissipa-
tion is necessary for this to be true.

1 . Error Due to Dissipation

Equating the two expressions for Cd (total), we get

Q (total) = [Cd(p) + Q(/)]Body

= [Q (inviscid) + Cd (viscous)]Outer + Q(diss)

It is clear from this formulation that Cd (diss) values can be consid-
ered as errors in the calculation of drag. From among values of
Q(diss) for various possible contours, we choose one which re-
flects best the error due to numerical dissipation in the solution. It
is possible to set Cd (diss-body) to zero through a particular choice
of boundary conditions as we shall see in Sec. II.E. Therefore, the
value of Q (diss-body) is not necessarily representative of the total
error. Values for Cd (diss-outer) can be calculated for various con-
tours, each value representing the effect of dissipation along that
contour. If we want to control the amount of dissipation in the so-
lution, i.e., keep it below a certain level, then the quantity that we
should be most concerned about is the maximum value of Cd (diss-
outer) along any contour. Therefore, Max[C(/(diss-outer)]is chosen
to characterize the error due to dissipation.

2. Numerical Implementation

A numerical approximation to the time-dependent equation,

3F 3G dG'v
^>F + ^ --- =;3£, 8ri 3ri

dri = 0
'
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may be satisfied exactly in each cell at each time step according to
the discretization procedure. However, in this paper, we will re-
strict our attention to evaluating the quality of steady-state solu-
tions only. In particular, we will focus on the solutions obtained
using the multigrid method described by Varma and Caughey.4

The criterion for convergence to the steady state is that the residu-
als of the equations be reduced to values below a certain level. If
the numerical solution is converged such that the residuals are
down to round-off levels, then the steady state equation [(Eq. 8)]

= 0 (17)

is satisfied to machine precision in each cell. This equation is also
satisfied for a curve C enclosing several cells, such as shown in
Fig. 1, if the numerical scheme is conservative in transport and
therefore globally conservative, and the fluxes across the curve are
calculated in a manner which is consistent with the way they are
evaluated in the residual calculation in the iterative solver. The cal-
culation of these fluxes is greatly simplified if the curve C is cho-
sen along grid lines. In this case, the total flux is taken to be the
sum of the fluxes, as computed by the iterative flow solver, across
the individual cell faces that make up the curve. It follows that the
value of Cd (total) evaluated on the body surface using the body
surface integral [Eq. (14)] must agree with the value calculated
along any outer contour using the corrected outer integral [Eq.
(15)] to within the degree of convergence.

E. Dissipation Schemes
The analytical form of the adaptive blend of second and fourth

difference dissipation is given by Eq. (6). Numerical implementa-
tion of this form of dissipation requires the specification of bound-
ary conditions on both the second and fourth difference terms.
Along the cut the conditions are periodic, and in the far field the
gradients are assumed to be negligible. However, on the body sur-
face, boundary conditions for the normal dissipative flux,

n < 2 >dw d (4>92w

cannot be specified uniquely based on simple physical reasoning.
Several different implementations of the boundary conditions on
the normal dissipation fluxes are discussed by Varma and
Caughey.7 Those that lead to nonzero numerical dissipation fluxes
on the body surface yield poor quality solutions near the surface,
particularly on the coarser grids. In this paper, we will consider
two implementations:

1) Scheme A: The numerical dissipation fluxes — both the first
and third difference fluxes — on the solid surface are set equal to
zero. This leads to

Therefore, only the real viscous and inviscid fluxes are nonzero on
the body surface.

2) Scheme B: In regions of large gradients, such as the boundary
layer and the wake, the numerical dissipation fluxes are expected

Table 1 Contributions to drag coefficient due to inviscid fluxes,
viscous fluxes, dissipation fluxes along the outer contour, and

dissipation fluxes across the body surface, and total drag coefficient for
four choices of contours: laminar case, 256 X 72 grid, scheme A

Table 2 Comparison of numerical error and dissipation error
estimates—turbulent flow cases, scheme A

Error in
Grid size Cd(f) Cd(p) Cd(p) Diss error

Distance
from body
(chords)

0 [body]
2.7 X 10-4

5.2 X 10-3

1.0

Q
(inviscid)

232
244
354
584

Q
(viscous)

352
348
199
= 0

Q
(diss-outer)

-8
31a

= 0

Q
(diss-body)

0
0
0

Q
(total)
584
584
584
584

Turbulent case 1

Turbulent case 2

128 X
256 X
512 X

ti-
ns X
256 X
512 X

h -

36 (4/0
72(2A)
144 (h)

-»0
36 (4/i)
72 (2/i)
144 (A)

-»0

65.9
63.5
62.2
61.8
66.1
62.8
61.9
61.6

52.7
31.7
27.4
26.0
216.0
199.7
195.4
194.1

26.7
5.7
1.4
—

21.9
5.6
1.3
—

39.6
15.7
4.5

—
40.9
12.9
3.3
—

"Denotes maximum value of Q(diss-outer)

to be large. But these are the very regions where the viscous effects
are also important. Therefore, in viscous calculations it is common
to scale the numerical dissipation in the normal direction by multi-
plying the fluxes by some function of the local Mach number. This
technique is expected to reduce the effect of numerical dissipation
near the surface where the local Mach numbers are low without af-
fecting it in the rest of the flowfield.8 Here the T|-direction numeri-
cal dissipation fluxes across cell faces parallel to the ^-direction
are scaled by the local Mach number normalized by the freestream
Mach number, i.e.,

8 (4)9 w

where/(Af)=M/M00.

F. Total Numerical Error

Estimates of the total numerical error in the solution can be ob-
tained using Richardson extrapolation.9 Given an initial grid,
coarser grids are obtained successively by removing every other
line in each of the two coordinate directions. Iteratively converged
solutions are first computed on the finest grid (denoted by the sub-
script h), and then on two successively coarser grids (denoted by
subscripts 2/i and 4/i). The coefficient of total drag Cd and contri-
butions due to skin friction and pressure forces are computed on
each of these grid levels. Asymptotic values (denoted by subscript
0), i.e., values in the limit of zero mesh spacing, are estimated
based on the order of convergence. When the convergence is sec-
ond order, as expected for the computational scheme used here, the
estimate of the asymptotic value is (C^Q = '/s [4(Q)A — (Q)^].
Convergence studies for the drag coefficient to be presented in the
next section verify this second-order accuracy. From the asymp-
totic values, the total numerical errors in the drag coefficient for
each grid level can be calculated.

III. Results of Solution Evaluations
Representative laminar and turbulent flow solutions to the

Navier-Stokes equations for flows past airfoils are evaluated using
the method described in the preceding section. In the two lifting
cases analyzed here, the effect of the numerical dissipation on the
lift coefficient is found to be negligible—less than 0.1% on all
grids. However, the effect of the dissipation on the drag coefficient
is not negligible. And so, as mentioned earlier, we will concentrate
on the precise calculation of the drag coefficient.

For each calculation, the coefficient of drag is computed using
the body surface integral and corrected outer integrals. From a
breakdown of contributions to the computed drag along various
contours, the error due to numerical dissipation is estimated quan-
titatively. The asymptotic behavior of this error is studied as the
grid is refined. The estimated dissipation error is compared with
the total numerical error, which is obtained using Richardson ex-
trapolation. This procedure is repeated for the two numerical dissi-
pation schemes described in Sec. H.E, and the merits of the
schemes are discussed. The usefulness of this method in evaluating
the quality of flow solutions is thus demonstrated.
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Table 3 Error due to numerical dissipation—scheme A

Laminar case

Turbulent case 1

Turbulent case 2

Grid size
128 X 36 (4h)
256 X 72 (2/i)
512 X 144 (h)
128X36(4/1)
256 X 72 (2/i)
512 X144(/i)
128 X 36 (4/i)
256 X 72 (2/i)
512 X 144 (h)

Dissipation error

121.9
30.8
4.6
39.6
15.7
4.5
40.9
12.9
3.3

Q (total)

630.8
584.3
569.8
118.6
95.2
89.5
282.0
261.1
256.5

All values for the coefficient of drag in the tables presented here
are expressed in terms of drag counts; one drag count equals
0.0001.

A. Representative Solutions
Three different flow solutions—one laminar case and two turbu-

lent cases—are evaluated.
We first evaluate the laminar case—NACA 0012 airfoil at A/^ =

0.5, a = 0 deg, and Rex = 5000. This is a symmetric airfoil at zero
angle of attack; consequently the lift is zero. The coefficient of
drag is therefore computed from the integral of the ^-momentum
equation alone

We then evaluate turbulent case 1—NACA 0012 airfoil at M^ =
0.7, a = 1.49 deg, and Rex = 9 X 106. The solutions computed for
this case indicate that the flow is attached and is only slightly su-
personic in a small pocket near the leading edge on the upper sur-
face. Therefore the pressure drag is relatively small, and the skin-
friction drag is a significant portion of the total drag.

Finally, we evaluate turbulent case 2—RAE 2822 airfoil at Mm

= 0.75, a = 2.5 deg, and Rex = 6.2 X 106. The computed solutions
show a strong shock above the airfoil at about 65% of the chord
producing wave drag and causing a significant amount of flow
separation. The pressure drag component, and therefore the total
drag, is substantially larger than in the NACA 0012 case.

Well-converged solutions were computed using the MDI
algorithm4 with Schemes A and B for the numerical dissipation
(Sec. II.E). The finest grids (512 X 144) used in the series of calcu-
lations presented here were generated using the GRAPE pro-
gram.10 For the laminar flow calculations, the distance to the first
grid point normal to the airfoil surface was about 10"4 chord; while
for the turbulent flow calculations, it was about 10"6 chord. For all
three grids, 62.5% of the mesh cells in the wrap-around direction
were on the airfoil surface. From each fine grid two coarser grids
(256 X 72 and 128 X 36) were obtained sequentially by removing
every other line in each of the two mesh directions. The coarsest
grid was fine enough to resolve most features in the boundary
layer.

B. Dissipation Error Estimates
The estimation of dissipation errors is demonstrated using

Scheme A for the laminar flow solution obtained on the 256 X 72
grid. (See Table 1.) The body surface integral is used to obtain the
pressure and skin-friction drag components on the airfoil surface.
The pressure drag [Cd (p) = 0.0232] accounts for about 40% of the
total drag; the skin-friction component [Cd (f) = 0.0352] accounts
for the remaining 60%. The contributions to the total drag com-
puted using the corrected outer integral along two outer con-
tours—one close to the surface and the other about a chord away—
are considered next. The breakdown of Cd into its various compo-
nents is as expected. Along a contour corresponding to the first
gridline off the surface (2.7 X 10"4 chord), the breakdown of Cd

between the inviscid and viscous components is still roughly
40:60. But there is a correction due to dissipation [Q(diss) =
-0.0008] which is about 1.4% of the total drag. Along a contour
which is a chord away from the surface, the inviscid flux integral
[Cd (inv) = 0.0584] essentially gives the total drag. Because we set
the numerical dissipation fluxes on the surface to zero, the correc-

tion due to dissipation Cd (diss) is solely from the outer integral of
the dissipation fluxes. The maximum value of Cd (diss-outer),
which occurs along a contour about 0.005 chord from the airfoil
surface, is about 0.0031. This value amounts to about 5.3% of the
total drag coefficient, and provides an estimate of the error due to
dissipation in the solution. As expected for an iteratively .con-
verged solution, the total drag coefficient has the same value of
0.0584 for all contours, including the body surface. In this manner,
dissipation error estimates—maximum values of Cd (diss-outer)—
are easily obtained for all solutions.

The asymptotic behavior of the dissipation errors as the grid is
refined is studied next. Table 2 shows the dissipation errors and the
total drag coefficients on the three grid levels for the three cases.
As expected, the dissipation errors are relatively large (14—33%
here) on the coarsest grids and small (only up to 5% here) on the
finest grids. For the laminar case, the dissipation error goes down
by a factor of about four from the coarsest grid to the next finer
grid, and by a factor of nearly seven from the latter grid to the fin-
est grid. For the two turbulent-flow cases, the dissipation errors on
the finer grids reduce only by a factor of about four. The dissipa-
tion terms introduce third-order errors for a uniform grid. The re-
duced accuracy seen here may be due to the stretching of the grid,
particularly in the boundary layer.

C. Comparison of Total and Dissipation Errors
The total numerical errors in the solutions can be estimated

using Richardson extrapolation. To obtain these estimates, the val-
ues of the pressure drag Cd (p) and the skin-friction drag Cd (f) on
the three grid levels are considered. The order of convergence of
the drag components is determined, and the errors estimated from
the asymptotic values. Comparisons for the two turbulent-flow
cases are presented here.

The solutions for the turbulent case 1 are analyzed first. The
skin-friction drag values, as seen in Table 3, are quite close to the
asymptotic value of 0.00618 even on the coarse meshes. To esti-
mate the total numerical errors in the solutions, we will consider
the Cd(p) values. The convergence of Cd(p) in the limit as the
square of the mesh spacing tends to zero is shown in Fig. 2. The
line indicates the linear least-squares fit for the data points corre-

80.0 r

60.0

p
40.0

20.0 _l 1 1 •
.25 .50

Delta xA2
.75.

Fig. 2 Plot showing the pressure drag components on meshes with
spacings h, 2h, and 4A; and the linear least squares fit through them —
turbulent case 1, Scheme A (Table 3).
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Fig. 3 Plot showing the pressure drag components on meshes with
spacings h, 2h, and 4A; and the linear least squares fit through them—
turbulent case 2, Scheme A (Table 3).

spending to the three grids. The convergence is close to second-
order accurate. The asymptotic value for the pressure drag—Cd(p)
= 0.0026—is calculated. The errors in Cd(p) are computed and
compared with the errors due to dissipation in Table 3. The two er-
rors are of comparable magnitude on all three grids, although the
dissipation errors are consistently larger than the total numerical
error estimates.

The turbulent case 2 solutions are considered next. The values
of Cd(f) are fairly accurate even on the coarse meshes as seen in
Table 3; an asymptotic value of about 0.0062 is estimated. The
computed pressure drag, which is affected by the strength of the
shock and the extent of flow separation, depends more strongly on
the resolution of the grid. The values of Cd(p) on the three grids
are shown in Table 3, and are plotted against the square of the
mesh spacing in Fig. 3. The convergence is again very nearly sec-
ond-order accurate; an asymptotic value for Cd(p) equal to 0.0194
is obtained. Based on this asymptotic value, errors in Cd(p), which
can also be considered as estimates of the total numerical error in
the solutions, are computed. Comparison of these errors with the
errors due to dissipation shows again that the two are of compara-
ble magnitude but the dissipation errors are larger than the esti-
mated numerical errors on all grid levels.

D. Mach Number Scaling of Dissipation Terms
Solutions for the three representative cases computed with and

without Mach number scaling of the dissipation terms are analyzed
and compared in this section. In Scheme A, the dissipation fluxes
on the surface are set to zero and therefore Cd (diss-body) is identi-
cally zero. In Scheme B, the dissipation fluxes in the r|-direction
were scaled by the local Mach number normalized by the free-
stream Mach number. The local Mach number on the airfoil sur-
face is zero because of the no-slip boundary condition, so the nu-
merical dissipation fluxes on the surface are again identically zero.

The pressure and skin-friction drag components for the laminar
flow case on the three grids are compared for Schemes A and B in
Fig. 4. For each of the drag components, the asymptotic values as
the mesh spacing tends to zero are nearly the same for both
schemes [Cd(p) = 0.0232-0.0233; Q</) = 0.0332-0.0334]. On
the finest grid, the two solutions are very similar because the dissi-

pation errors are very small. The drag component values for both
schemes are essentially second-order accurate. However, the val-
ues with Mach number scaling are closer to the asymptotic values.

The errors due to numerical dissipation in the total drag coeffi-
cients for the two schemes are compared next. The results for the
laminar flow case are shown in Fig. 5. At the finest grid level, the
dissipation error in Scheme B is only slightly less than in the other
schemes, but on the coarser meshes the effect of the Mach number
scaling of the dissipation terms appears more significant. The re-
sults for one of the turbulent flow cases (turbulent case 2) are
shown in Fig. 6. The errors range from about 15% of the total drag
on the coarsest grid to about 1 % on the finest grid. They appear to
approach third-order accuracy on the finer grids. For both schemes
the dissipation errors are of comparable magnitude, but a reduction
in the dissipation error with Mach number scaling is observed.

E. Summary of Results
For three cases involving both laminar and turbulent flows, the

errors due to numerical dissipation are estimated and compared
with the total numerical error. The total numerical errors are based
on the errors in the drag components, while the dissipation errors

Friction and Pressure Drag
Laminar Flow Case

450

400

c 350

<§
|> 300
Q

250

200

-®—Scheme A - Friction

• a -Scheme B - Friction

-•—Scheme A - Pressure

• • -Scheme B - Pressure

0.25 0.5 0.75
Delta xA2

Fig. 4 Convergence with mesh spacing of the pressure and skin-fric-
tion drag coefficients for Schemes A and B—laminar case.

Dissipation Errors
Laminar Flow Case

150

f 100

o
o

0 0.25 0.5 0.75 1
Delta xA2

Fig. 5 Reduction in dissipation error with mesh spacing for Schemes
A and B—laminar case.
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Dissipation Errors
Turbulent Flow Case 2

0 0.25 0.5 0.75 1
Delta xA2

Fig. 6 Reduction in dissipation error with mesh spacing for Schemes
A and B—turbulent case 2.

are based on the maximum value of Cd (diss-outer). In the cases
considered here, the two errors are of the same order of magnitude,
although the dissipation errors are in general larger than the total
numerical errors. The total numerical errors scale very nearly with
the second power of the grid spacing, but the dissipation errors are
consistently between second and third order, even on rather fine
grids. Both schemes for numerical dissipation produce errors of
comparable magnitude in all cases. However, the Mach number
scaling of the dissipation terms reduces the dissipation errors in
most cases.

IV. Conclusions
A method for estimating the effect of numerical dissipation on

solutions to the Navier-Stokes equations is developed. The analy-
sis follows a generalized derivation of the momentum integral
equations. An exact expression for the lift and drag forces on a
body is obtained in terms of a corrected outer integral. This inte-
gral contains corrections due to dissipation in addition to contribu-
tions from inviscid and viscous fluxes along the outer contour. The
results presented here demonstrate that the corrections to drag due
to the added numerical dissipation can be used to estimate the ef-
fect of this dissipation on the solution. The total numerical error
can be estimated using Richardson extrapolation from the values
of the pressure and skin-friction drag on the surface. These two

error estimates together provide a means of judging the quality of
computed solutions. The dissipation errors and the total numerical
errors are of comparable magnitude for the cases considered here.
While the total numerical errors are second order in the mesh spac-
ing as expected, the dissipation errors are between second and
third order. Mach number scaling of the normal numerical dissipa-
tion fluxes reduces the dissipation errors in most cases.

As Navier-Stokes computations for high Reynolds number
flows become more routine, the need for better techniques for
evaluating the quality of the solutions becomes more important.
The dissipation error estimation method described here is a useful
tool for this purpose. It can also be used to guide the development
of new numerical dissipation models.
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MULTIGRID DIAGONAL IMPLICIT SOLUTIONS
FOR COMPRESSIBLE TURBULENT FLOWS

AND THEIR EVALUATION
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A numerical scheme to solve the two-dimensional Navier-Stokes equations

is developed, and applied to several compressible turbulent flows over airfoils.

A method for evaluating the quality of these solutions is then developed and

illustrated with representative examples.

The distinguishing features of the numerical scheme are its implicitness

for improving stability, the diagonalization of the matrices in the implicit op-

erator for computational efficiency, and the implementation within a multi-

grid procedure for convergence acceleration. A finite volume approximation

is used for spatial discretization of the governing equations to handle compli-

cated geometries. Artificial dissipation is added in the form of an adaptive

blend of second and fourth differences of the solution to maintain robustness

and stability. The viscous terms are treated explicitly to maintain the diag-

onal form. Results of simulations of viscous transonic flows past airfoils are

presented. The computed flow field quantities are compared with those from

other computations and experiments to confirm the accuracy of the method.

Comparisons of convergence rates are made to demonstrate the efficiency of

the method.



In solutions to the Navier-Stokes equations it is important that the added

numerical dissipation does not overwhelm the real viscous dissipation. In

order to verify this, it is necessary to be able to estimate quantitatively

the effect of numerical dissipation. A method for estimating the integrated

effect of numerical dissipation on solutions to the Navier-Stokes equations is

developed in this dissertation. The method is based on integration of the

momentum equations, and the computation of corrections due to numerical

dissipation to the drag integral. These corrections can then be considered

as estimates of the error due to dissipation. Solutions to the Navier-Stokes

equations for laminar and turbulent flows over airfoils are used to illustrate

the method. The errors due to numerical dissipation are compared with the

total numerical errors in the solutions. The effects of different boundary

conditions on the numerical dissipation are evaluated, providing means of

judging the quality of the solutions.
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Abstract—Recent advances in the development of the diagonalized alternating direction implicit multigrid
method for compressible aerodynamic problems are reviewed. These include the extension of the method
originally developed for the Euler equations to include viscous effects, the computation of turbulent flows
and the implementation on parallel computers of the scheme on multiblock grids.

1. INTRODUCTION
The multigrid method was first applied successfully to solve the Euler equations of inviscid,
compressible flow by Jameson [1], using the time-marching scheme of Jameson et al. [2].
While this marching method is usually referred to as an "explicit, multistage (or Runge-Kutta)
scheme", in order to be effective as an iterative technique it is usually necessary to enhance
the smoothing properties of the scheme using enthalpy damping (for the Euler equations) and
implicit residual smoothing for use on highly stretched grids. The fact that the implicit residual
smoothing is implemented for multidimensional problems in an alternating direction implicit (ADI)
fashion suggests that ADI schemes themselves would also be effective smoothers for use with
multigrid.

Such a method has been developed by Jameson and Yoon [3]. In order for the implicit method
to be an effective smoothing algorithm when used in conjunction with the multigrid algorithm,
it is important to include an accurate representation of the numerical dissipation terms. These
usually include fourth-differences of the solution in order to maintain high accuracy, and their
inclusion in the implicit operator requires the solution of pentadiagonal systems of equations for
each one-dimensional factor. To avoid the high cost of solving block pentadiagonal systems, these
equations can first be diagonalized at each point using a local similarity transformation, an idea
first introduced by Chaussee and Pulliam [4]. This procedure decouples the equations so that the
solution only of scalar pentadiagonal equations is required for each factor. The resulting method
has good high-wavenumber damping, so it is a good smoothing algorithm for use in conjunction
with the multigrid method, yet it remains computationally efficient because of the need to solve
only scalar systems of equations.

An efficient diagonalized ADI multigrid method of this sort has been developed by Caughey,
who applied the scheme to compute transonic flows past airfoils [5]; the method has also been used
to compute two-dimensional supersonic inlet flow fields by Iyer and Caughey [6]. The algorithm
has been extended to three-dimensional flows by Yadlin and Caughey [7], who computed flows past
swept wings. A multiblock grid version of the two-dimensional implementation of the algorithm
has been implemented on a shared-memory parallel computer by Yadlin and Caughey [8].

More recently, the method has been extended to treat the flow of real fluids by
incorporating the viscous terms of the Reynolds-averaged Navier-Stokes equations, or their
thin-layer approximation, including turbulent flows using a simple algebraic model. Additional
work on the multiprocessing implementation of the algorithm on multiblock grids has lead to a
more general multigrid strategy. This article is intended to provide an overview of these recent
developments.

In the next section, the algorithmic ideas upon which the method for the Euler equations is
based will be described very briefly. The developments needed to extend the method to treat viscous
flow problems will then be described, as will the implementation of the multiblock grid algorithm
on multiprocessing computers. Results will be presented for laminar and turbulent flows past
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two-dimensional airfoils, and the parallel-processing results will be presented for solutions to the
Euler equations for the transonic flow past three-dimensional, swept wings.

2. ALGORITHMIC ISSUES

The spatial derivatives in the partial differential equations of fluid flow are represented using the
finite-volume approximation with adaptive dissipation developed by Jameson et al. [2, 9]. In a
finite-volume method, the spatial derivatives are approximated by evaluating the net flux across
the faces of each mesh cell using constant values of the flow properties on each face. In the present
method, the dependent variables are taken to represent average values for the cells; alternatively,
they can be interpreted as values of the dependent variables defined at the cell centers. The value
on each face is taken to be the average of the cells sharing the face. This approximation is equivalent
to the centered difference scheme that is second-order accurate in the mesh spacing when the mesh
is sufficiently smooth.

In order to prevent decoupling of the solution at alternate cells in the grid, dissipative terms
must be added. Following Jameson [9], the dissipative terms are constructed as an adaptive blend
of second- and fourth-differences of the solution in each of the mesh directions. In the original
formulation of Jameson, the dissipative terms are scaled with coefficients that make them inversely
proportional to the time step corresponding to a unit Courant number for each mesh cell.
Several researchers [5, 10, 11] have found that stability can be maintained while introducing less
spurious dissipation if the dissipative terms are scaled differently for each mesh direction. This
strategy allows the use of the minimum dissipation to stabilize the one-dimensional problems in
each of the coordinate directions, rather than using the largest value for all directions, which is
approximately what the original Jameson strategy does for large aspect-ratio cells.

Block ADI methods for the equations of compressible gasdynamics were first introduced by
Briley and McDonald [12] and by Beam and Warming [13]. The basis of these methods is to
approximate the spatial derivatives as weighted averages of differences taken at the old and new
time levels, linearizing the changes in the flux vectors in time, and then to approximate the implicit
operator as a product of one-dimensional factors. The linearization in time introduces the
Jacobians of the transformed flux vectors with respect to the solution. The elements of these
matrices can be expressed explicitly as functions of the solution and the elements of the Jacobian
matrix of the coordinate transformation, and are given by Wanning et al. [14] and Chaussee and
Pulliam [4].

It is important to include the contributions of the dissipative terms in the implicit operator.
Jameson and Yoon [3] suggested choosing the coefficients of the numerical dissipation in the
implicit operator in a way that forces the amplification factor in a linear stability analysis of
the scheme applied to a scalar model equation to tend to zero in the high-wave number limit.
Caughey's results [5] have shown no clear advantage to this choice; setting the numerical dissipation
coefficients in the implicit factor equal to those in the residual seemed to work just as well.

Although the resulting system of equations is linear, it has too large a bandwidth for practical
solution of problems in more than one space dimension. To improve the efficiency of the scheme,
the implicit operator is further approximated as a product of one-dimensional factors. Thus, to
advance the solution one time-step requires the solution of a block pentadiagonal system along each
coordinate line in each mesh direction. The size of the blocks is 4 x 4 for two-dimensional problems
and 5 x 5 for three-dimensional problems.

Such an ADI scheme would be reasonably efficient were it not necessary to add numerical
dissipation to stabilize what is effectively a central-difference approximation. In fact, if only
second-difference dissipative terms were added, it would still be necessary to solve only block
tridiagonal systems. The inclusion of fourth-differences, however, is essential if the solution is
ultimately to converge to a steady state, and it is important to treat these differences implicitly
if the solution is to converge rapidly [15]. This can be done in a straightforward manner, following
the development above, but leads to a requirement to solve block pentadiagonal systems for
each factor. This requires approximately twice the computational labor of the block tridiagonal
solutions, and begins to become computationally prohibitive.

An alternative is to diagonalize the equations at each mesh point, yielding a decoupled set of
equations, each of which can be solved using a scalar pentadiagonal solver. This requires
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approximately one-quarter the computational labor of the block pentadiagonal solution (and
requires, in fact, only about half the work required to solve the block tridiagonal systems). The cost
of determining the elements of the modal matrices of the Jacobians required to perform the
diagonalization is about twice that of computing the elements of the Jacobian matrices in the block
method, but even with the extra matrix-vector multiplications required to perform the diagonaliza-
tion, the diagonalized procedure is considerably more efficient than solution of the block
pentadiagonal systems. The relative advantage of the diagonal scheme is even greater on vector
computers, since the determination of the elements of the modal matrices (and of their inverses)
and the additional matrix-vector multiplications are all easily vectorizable.

The treatment of the explicit boundary conditions in the far field follows that of Jameson [9],
based upon the Riemann invariants of the one-dimensional problem normal to the boundary. The
solutions computed to date have involved only subsonic free stream Mach numbers, so the far field
boundaries have either subsonic inflow or outflow. It is necessary to compute the solution on these
boundaries, therefore, using combinations of free stream values and those extrapolated from the
interior, the precise mix depending upon the direction of propagation of the relevant characteristics.

At the body surface, only the pressure is required since the contravariant velocity component
normal to the boundary is identically zero there. The pressure at the body surface is determined
from the normal momentum equation, using the formula proposed by Rizzi [16]. As a result of
the diagonalization of the ADI scheme, it is straightforward to treat the implicit boundary
conditions in a manner consistent with the characteristic theory. The intermediate and final
corrections are approximations to the changes in the vectors of characteristic variables for the
one-dimensional problems along the lines being solved. The boundary conditions for corrections
to those elements corresponding to characteristics entering the domain are taken to be homo-
geneous Dirichlet, while those for elements corresponding to characteristics leaving the domain are
taken to be homogeneous Neumann.

The incorporation of the scheme within the multigrid algorithm is straightforward, following
the procedure developed by Jameson [1]. An auxiliary mesh is defined by eliminating every second
line of the fine grid, effectively doubling the mesh spacing in each direction. Values of the flow
variables are restricted to the coarser grid using area-(or volume-)weighted averages of the solution
on the fine grid. It is important that the corrections on the coarser grid be driven by the residual
computed on the fine grid, so a forcing function is defined to account for corrections to the solution
computed on the coarse grid. After corrections have been computed on the coarser grid, the process
is continued to still coarser grids, again being careful to ensure that the corrections computed are
driven by the residuals restricted from the fine grid. After corrections have been computed on the
coarsest grid, they are prolonged back to successively finer grids using bilinear interpolation in the
computational coordinates. The addition of corrections to the solution on the finest grid completes
the multigrid cycle.

It is usually necessary to update only the body-surface boundary conditions on coarser grids,
although updating the far field boundary conditions as well does not impede convergence. For the
present scheme, the overall convergence rates seem to be relatively insensitive to the number of time
steps (smoothing iterations) performed at each stage of the multigrid cycle. The best asymptotic
rates are obtained using a fixed "sawtooth" cycle, in which one or two time steps are performed
on the finest, and on each coarser grid as the grid is coarsened, but no smoothing is performed
on the coarser grids after corrections have been added. Since the computational work required per
time step is very nearly proportional to the number of grid cells, the work per time step on each
coarser grid is approximately one-quarter (one-eighth) that on the previous grid for a two-
dimensional (three-dimensional) problem. Thus, for the above simple "sawtooth" cycle strategy
with one time step on each grid level, one multigrid cycle for a two-dimensional (three-dimensional)
problem requires slightly less than 4/3 (8/7) Work Units, if a Work Unit is defined as the amount
of computation required for one time step on the fine grid.

Since the smoothing characteristics of the time-stepping algorithm are more important than
accuracy on the coarser grids, Jameson [1] has found it desirable to use only a fixed-coefficient,
second-difference form of the dissipation on coarser grids. In the ADI formulation described here,
this allows additional efficiency to be achieved by using a scalar tridiagonal solver on all but the
finest grid level.
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3. APPLICATIONS

As described above, the diagonalized ADI multigrid algorithm has been applied to calculate
transonic flows past airfoils [5, 17] and in two-dimensional inlets [6]. It has been used to compute
the inviscid flow past swept wings [7] and implemented on multiblock grids [8, 18]. In this section,
more recent applications to viscous flows, including high Reynolds number turbulent flows,
are described, including an improved multigrid strategy for the multiblock implementation on
multiprocessing computers.

3.1. Viscous flows
The extension of the diagonalized method to treat viscous problems is complicated primarily by

the fact that the viscous Jacobian matrices are not, in general, diagonalized by the same similarity
transformations that diagonalize the Euler flux Jacobians. Thus, if the diagonal form is to be
maintained, the contributions of the viscous terms to the implicit factor must either be approxi-
mated or be neglected altogether. While the neglect of the viscous terms in the implicit factor is
permissible in some cases, there are also situations in which at least approximate representations
of these terms must be included for stability.

For many cases of practical interest, it is sufficient to consider only the thin-layer form of
the Navier-Stokes equations. In this form of the equations, only those viscous stresses acting on
the grid surfaces approximately parallel to the body surface are included. The contributions of the
viscous and heat-conduction terms to the residuals on the right-hand side of the equations are
approximated by finite-volume formulas that are equivalent to a centered finite-difference approach
[19]. The primary focus of the discussions here will be on the treatment of the terms in the implicit
operator.

For the case in which the transport coefficients are assumed locally to be constant, the
linearization of the change in the viscous flux vector can be written in terms of the normal derivative
of the Jacobian of the viscous flux vector with respect to the first derivative of the solution vector
in the normal direction [20]. The eigenvalues of this viscous Jacobian are real and distinct, although
three of the four values (in two dimensions) are equal to within plus or minus about 30% for typical
values of the specific heat ratio and Prandtl number [20].

This information suggests three approaches for treating the contributions of the viscous terms
to the implicit operator for a diagonalized scheme:

(A) Neglect the viscous contributions to the implicit operator altogether.
(B) Include a diagonal approximation to the viscous contributions.
(C) Include a third diagonalized factor to incorporate the viscous contributions.

The latter option is possible since the eigenvalues of the viscous Jacobian are real and distinct.
A separate factor is required since the transformation required to diagonalize the viscous
Jacobian is, in general, different from those which diagonalize the Euler flux Jacobians. The
diagonal approximation includes the identity matrix, multiplied by the largest of the eigenvalues
of the viscous Jacobian, as the coefficient of the contributions of the viscous differences to the
implicit operator.

Analysis of these alternatives for a representative model problem [21] has shown that
Methods A and C are only conditionally stable, with the stability region of Method C being
somewhat larger than that of Method A; Method B is unconditionally stable for the model
problem.

Results will be presented here for a single calculation, that of the symmetric laminar flow at a
Reynolds number of Re = 5000 past the NACA 0012 airfoil at 0° angle of attack and a free stream
Mach number of M^ = 0.50. The grid for this calculation has a "C"-topology, containing 192 x 48
cells in the wrap-around and body-normal directions, respectively, and extends in the far field to
approx. 7.5 chord lengths from the mid-point of the airfoil chord. At the airfoil surface the normal
spacing of the mesh is approx. 1.1 x 10~3 chords. The converged pressure distribution for this
solution is shown in Fig. 1.

On this grid, and for these flow conditions, the multigrid iteration diverges when local time
stepping is used at a Courant number of CFL = 16.0 and the contribution of the viscous terms
is neglected in the implicit operator: the solution begins to converge initially, until the residual is
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Fig. 2. Iteration history for calculation of viscous flow past
a NACA 0012 airfoil for the conditions of Fig. 1; five levels
of multigrid with local time stepping at CFL = 16; diagonal
approximation of the viscous terms is included in the

implicit operator (Method B).

reduced about two orders of magnitude, but then an oscillation develops of increasing amplitude.
This oscillation resembles a periodic shedding of vortices of opposite signs from the airfoil
trailing edge, but the solution to this problem is expected to be steady. In fact, when an
approximation to the viscous terms is included in the implicit factor, corresponding to Method B,
the iteration converges. The iteration history for this case is shown in Fig. 2. Plotted are the
logarithm of the average over all cells of the residual of the continuity equation | Ap/Ar |, the total
number of grid cells in which the local Mach number is supersonic and the lift and drag coefficients,
as a function of Work Units. The latter three quantities are plotted on arbitrary scales. Of course,
for this subcritical, non-lifting case the number of supersonic cells and the lift coefficient are both
zero.

3.2. Turbulent flows
The computation of high Re flows of practical interest requires both, the incorporation of a

turbulence model to relate the effective Reynolds stresses to the properties of the mean flow and
the ability of the algorithm to perform well on highly-stretched grids having very large geometric
aspect ratios. In the near future, improved turbulence models will be investigated, but here the goal
is to demonstrate good convergence characteristics for the basic multigrid algorithm on the grids
required to resolve high Re turbulent flows.

With this goal in mind, results are presented of a calculation using the simple two-layer algebraic
turbulence model of Baldwin and Lomax [22]. Results of diagonalized ADI multigrid calculations
for several airfoils and flow conditions have been given by Varma and Caughey [23]; one of these
solutions is repeated here. The flow past the RAE 2822 airfoil at M^ = 0.725 and 2.5° angle of
attack, at Rec = 6.5 x 106 is computed on a grid containing 192 x 48 mesh cells in the wrap-around
and body-normal directions, respectively. The computed airfoil surface pressure distribution is
compared in Fig. 3 with the data of Cook et al. from the AGARD compendium of test cases [24].
The agreement is quite good, although the angle of attack has been adjusted to match the lift
coefficient of the calculation with that of the experiment (in which the angle of attack was given
as 2.92°). Also, for cases in which the shock wave causes significant boundary layer separation,
results using simple algebraic turbulence models are generally not as good as for this unseparated
case [23, 25].
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Fig. 4. Iteration history for calculation of turbulent flow
past an RAE 2822 airfoil for the conditions of Fig. 3; four
levels of multigrid with local time stepping at CFL = 24.

A plot of the convergence history for this case is shown in Fig. 4; the same variables are
plotted as in Fig. 2. Using four levels of multigrid and a grid sequencing strategy (in which initial
estimates for the solution are computed on coarser grids), the solution has converged to a steady
state within approx. 50 Work Units; the average residual has been reduced about 7 orders of
magnitude in 500 Work Units.

In closing this section, it should also be mentioned that multigrid calculations using Jameson's
combination of explicit time-marching and implicit residual smoothing have also been performed
by Martinelli et al. [26, 27] for two-dimensional flows and by Jayaram and Jameson [28] for flows
in three dimensions.

3.3. Multiprocessing multigrid on multiblock grids
The implementation of the diagonalized ADI multigrid algorithm to solve the Euler equations

on multiblock grids has been described by Yadlin and Caughey [8]; the extension to include
the viscous terms of the thin-layer approximation to the Navier-Stokes equations has been
reported by Yadlin et al. [29]. The former paper also reported experiments using multiprocessor
computers in which the multigrid was implemented in two different modes: (1) a horizontal strategy,
in which the multigrid cycles are advanced in phase in all the blocks; and (2) a vertical strategy,
in which the multigrid cycles are advanced independently in each of the blocks. The principal
difference between these two modes is the degree of interaction between the blocks during the
multigrid cycle. In the horizontal mode, all of the blocks are in phase during the cycle, hence
the data exchange between the blocks (i.e. the updating of boundary conditions on the inter-block
boundaries) can be done easily at each level in the cycle. On the other hand, in the vertical
mode the blocks are synchronized only at the beginning of each cycle, allowing for data exchange
only once in the cycle, resulting in a freezing of the boundary conditions on the interfaces during
the entire cycle. It is desirable from the standpoint of achieving high efficiency in the multi-
processor environment to require as little synchronization as possible. Thus, the vertical mode is
preferred. Also, the vertical mode allows much greater flexibility in constructing multigrid
cycles—e.g. allowing different numbers of grid levels in different blocks. However, the implemen-
tation of the vertical mode described above has been shown to result in poor iterative convergence
rates due, most probably, to the fact that the interface boundary conditions on the coarse grids
are not correct [8].
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One way to improve this updating scheme is to use an asynchronous updating, in which the
interface boundary conditions are updated with the latest available data from adjacent blocks.
That data may be new or old, depending upon the current stage of the multigrid process in the
adjacent block. This asynchronous updating of the inter-block boundary conditions has been
implemented using a set of surface arrays, that act as buffers for information transfer between the
blocks. Each block has a surface array that holds a copy of the solution vector in the two layers
nearest the boundaries of the block; data from this array is read into the layers of dummy cells
of the adjacent blocks.

Using these surface arrays, advancing the solution one time step on any grid level of the multigrid
cycle involves:

1. Updating the interface boundaries by reading data from the surface arrays of the
adjacent blocks.

2. Advancing the solution within the block one time step.
3. Writing the appropriate layers of the solution into the block surface arrays.

A similar sequence of steps is performed in the interpolation step of the multigrid cycle.
The order in which the blocks are updated dictates which of the blocks will use surface arrays

with updated data and which ones will use old data. (A locking mechanism is provided when this
algorithm is implemented on parallel computers to prohibit a block from reading from a surface
array at the same time .that another block is writing to .the .same array.) It is worth noting that
the order of updating can affect the intermediate values of the solution (e.g. time accuracy is not
maintained, and asymmetries may be introduced into solutions that ultimately converge to
symmetric solutions), but the interest here is only in achieving rapid convergence to the steady-state
solution.

The result presented here is for the transonic flow past the ONERA wing M-6 [24]; M^ = 0.839
and the angle of attack is 3.06°. The Euler equations are solved on a grid containing 192 x 32 x 32
cells in the wrap-around, body-normal and span-wise directions, respectively. The reference grid
is divided into eight blocks. In order to verify that the inter-block boundary conditions were being
properly treated in the limit of the steady solution, the four blocks containing the wing and wake
were further subdivided into two sets of blocks, having a common interface in the middle of the
wing. Contours of constant pressure on the wing upper surface for this case show no visible effects
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of the inter-block boundary, even where the shock waves cross this artificial surface; in addition,
the lift and drag coefficients computed on this grid are identical to those for the eight-block grid,
which does not have the extra inter-block boundaries in this high-gradient region.

The convergence histories for this case are presented in Figs 5 and 6. These figures show the
same variables as plotted earlier for calculations on the multiblock grid in vertical mode without
multigrid and when using four levels of multigrid. The effect of multigrid on the convergence rates
is clear: using four levels of multigrid, the lift coefficient (a good measure of global convergence)
has converged to within plottable accuracy of its final value in fewer than 40 Work Units while
without multigrid more than 150 Work Units is required; with multigrid the average residual
has been reduced by about four orders of magnitude in 150 Work Units, while without multigrid
a reduction in error of only two orders of magnitude was achieved in the same amount of work.

Calculations for the same test case using the horizontal mode demonstrate that there is very little,
if any, degradation in performance caused by use of the vertical mode. This is in distinct contrast
to earlier results (presented in Ref. [8]), in which the boundary conditions on the inter-block
boundaries were frozen during the entire multigrid cycle. In those earlier calculations, there was
a significant degradation of convergence rate for the vertical mode.

4. CONCLUDING R E M A R K S

A multigrid implementation of a diagonalized ADI algorithm to solve the Euler equations
of inviscid, compressible flow has been reviewed. Recent extensions demonstrate that the
algorithm is also effective for solving the Navier-Stokes equations, including high Re turbulent
flows, and an improved vertical multigrid strategy for implementation of the algorithm on multi-
processing computers using multiblock grids allows greater parallel efficiencies to be achieved on
multiprocessing computers.
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