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Abstract

Two methods for developing high order single step explicit algorithms on symmetric sten-

cils with data on only one time level are presented. Examples are given for the convection and

linearized Euler equations with up to the eighth order accuracy in both space and time in one

space dimension, and up to the sixth in two space dimensions. The method of characteristics

is generalized to nondiagonalizable hyperbolic systems by using exact local polynomial solu-

tions of the system, and the resulting exact propagator methods automatically incorporate

the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-

Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be

applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space

dimensions. Cross derivatives are included in the local approximations used to develop the

algorithms in this paper in order to obtain high order accuracy, and improved isoptropy and

stability. Ei_ciency in meeting global error bounds is an important criterion for evaluating

algorithms, and the higher order algorithms are shown to be up to several orders of magnitude

more et_cient even though they are more complex. Stable high order boundary conditions for

the linearized Euler equations are developed in one space dimension, and demonstrated in two

space dimensions.





I: Introduction

Hyperbolic systems include familiar examples such as the linear systems for convective

transport, acoustics, and electromagnetics, and the nonlinear Euler equations of fluid mechan-

ics ([18],[39]). These examples have very practical applications in areas such as aircraft noise

([24],[33],[35]). Numerical methods for hyperbolic systems have a broad history ([8],[20],[36}).

There is an increasing interest in the use of computational fluid dynamics techniques for these

systems ([26],[27],[32],[34],[42]), but with unusually severe accuracy requirements ([16],[25]).

Algorithms are needed for hyperbolic systems that are able to propagate a wide range of

wavelengths with high accuracy over long distances.

Compact difference methods ([5],[29],[37]) are generally viewed as being highly accurate,

and can be tailored to produce both high order accuracy and high resolution [22], which is

defined as the ability to propagate relatively high frequency waves with the correct velocity.

Compact difference methods generally use separate treatments for space and time, either with

different [40] or the same [14] order of accuracy. The dispersion relation preserving method

[38] is similar to compact difference methods in its spatial treatment, but it addresses the

relationship between space and time treatments by using some of the degrees of freedom of

temporal data that it requires in order to reduce the dispersion or phase speed errors in

each time step. The dispersion relation preserving scheme provides fourth order accuracy in

space and second or third order in time on a seven point stencil with data from four time

levels. High resolution is frequently stated in terms of the number of grid points required

to accurately propagate a normal mode, or algorithm performance relative to a grid scale,

which does not address the question of efficiency with respect to meeting a stated global error

bound. Compact difference methods do not provide a general efficient high order time stepping
method.

A variety of high order finite difference methods use multiple time steps. The dissipative

two-four method [13] is a two step generalization of the Lax-Wendroff method, with second

order accuracy in time and fourth order accuracy in space. The two-four method has versions

([1],[13]) that are similar to the MacCormack [28] operator splitting method. The third order

difference method of Burstein, Mirin and Rusanov ([3],[31]) uses intermediate time steps and

a correction to obtain third order accuracy in space and time on a five point stencil. The

modified equation approach [6] uses data on three time levels to obtain fourth order accuracy

in space and time. A five-six finite difference scheme has been developed [43] on a seven

point stencil in one dimension with a six stage time marching method, providing fifth order

accuracy in time and sixth order in space. This method has an optimized variation which

relaxes its order of accuracy in order to increase its resolution. The particular approach of

directional splitting in multiple space dimensions violates the physics of nondiagonalizable

hyperbolic sytems in a fundamental way, and in general, the use of multiple time steps raises

issues such as intermediate time level boundary conditions, artifical dissipation, significant

time step constraints, starting values, and efficiency.

Many classical approaches to developing numerical methods can be viewed as simultane-

ously treating the spatial representation of data and the temporal evolution of the system. Lax

Wendroff [21] methods can be viewed as using a second order Taylor series expansion in time,



with time and space derivatives related by the partial differentia/equation. Semi Lagrangian

methods use the method of characteristics [41] and incorporate the geometric behavior of the

solution in space and time. Godunov [10] methods use the solution of a Riemann problem to

approximate the physics of shocks within a control volume in space and time. Finite volume

methods use integral forms of conservation laws in space and time, and are close in spirit to the

general method of control volume analysis. The finite analytical method [4] also combines the

treatments of space and time by using a local Fourier decomposition in space and a separation

of variables analytical treatment for time evolution. These approaches generally are limited

in either accuracy or applicability.

This paper presents and compares two different approaches to algorithm development

for linear hyperbolic systems in multiple space dimensions, the use of local exact polynomial

solutions in space and time, or exa_t propagators, and the use of multivariate Taylor series,

or Cauchy-Kowa/eskaya expansions. Local exact polynomial solutions can be obtained for

diagona/izable hyperbolic systems by the method of characteristics, and for nondiagona/iz-

able systems in multiple space dimensions by requiring that a genera/polynomial expansion

in space and time exactly solves the partial differentia/ equations, with all of the unknown

expansion coefficients that involve time expressed in terms of spatial coefficients. The Cauchy-

Kowa/eskaya procedure ([9],[17]) is an equivalent method for obtaining time expansion coef-

ficients. Local exact solutions which incorporate the multidimensional wave dynamics of the

hyperbolic system can be viewed as a correct way to extend the method of characteristics to

nondiagonalizable systems. If the Taylor series methods are considered only at the spatial

center of the local expansions, then they can be viewed as a Taylor series expansion in time

alone, similar to the second order Lax Wendroff method [21]. The exact propagator and mul-

tivariate Taylor series approaches produce single step explicit algorithms that have the same

order of accuracy in both space and time, while using data from only one time level, and that

can be extended to arbitrarily high order and multiple space dimensions for nondiagona/izable

systems. These two approaches to algorithm development produce the same methods in one

space dimension, and different methods in multiple dimensions.

The exact propagator and multivariate Taylor series approaches to algorithm development

can both be viewed as direct applications of the genera/ use of multivariate approximating

polynomials in space and time ([2], [8]). As a related example of this technique, in a dis-

cussion from the Taylor series perspective about extending Leith's method from one to two

space dimensions, Roache [30] makes the point that a scheme in two spa_e dimensions would

have to include cross derivative terms in order to obtain high order accuracy. The use of cross

derivative spatial terms has been shown to also improve isotropy and stability, for example in

the development of finite volume methods for multidimensiona/advection [23], and in the de-

velopment of a nearly exact second order algorithm on three time levels for the wave equation

[7]. Including sufficient cross derivative terms in a multidimensional algorithm is required for

high order accuracy, and improved isotropy and stability, but it does not necessarily produce

a loeaUy exact solution with the correct multidimensional wave dynamics. A fundamental

viewpoint in this paper is to approximate the solution of a system of partial differentia/equa-

tions as a whole, instead of approximating separate derivative terms in particular equations.

This viewpoint is expressed in the two genera/approaches to algorithm development that are

used throughout this paper, which in turn are realized in a sequence of particular algorithms
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for linear hyperbolic systems in one and two space dimensions.

Development of high order algorithms for the two dimensional linearized Euler equations is

a prominant goal of this paper, but various issues are addressed in the simplest possible context

by developing algorithm for other systems. Examples for the convection and linearized Euler

equations will be shown in one space dimension up to eighth order in both space and time, and

in two space dimensions up to sixth order in both space and time. In the second section of this

paper, a fourth order algorithm is presented for the scalar first order linear wave equation in

one space dimension, and is used to relate several viewpoints of algorithm development. In the

third section, algorithms for the one dimensional linearized Euler equations are presented, with

second, fourth, sixth and eighth order accuracy in space and time. The accuracy and relative

efficiency of these algorithms is examined for short and long time calculations, with high and

low error bounds [19]. The problem of creating stable high order boundary algorithms for this

system is also treated. In the fourth section, algorithms are developed on symmetric stencils

for the convection equation in two space dimensions with second, fourth and sixth order

accuracy in space and time. Relative efficiency, stencil choice, and the differences between

exact propagator and Taylor expansion algorithms are examined. In the fifth section, exact

propagator and Taylor series algorithms with second, fourth, and sixth order accurcy in both

space and time are developed for the linearized Euler equations in two space dimensions. A

method for developing local exact polynomial solutions to the two dimensional linearized Euler

equations is described and used for developing exact propagator algorithms. This method for

developing local exact polynomial solutions is a departure from the method of characteristics

which is used throughout the rest of the paper. The relative effect of algorithm type and

order is compared, and a high order implementation of a new unobtrusive outflow boundary

condition by Hagstrom [15] is demonstrated. The sixth section is a brief concluding summary.

Several longer formulas have been included in appendices.
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II: A Fourth Order Algorithm For The 1D Convection Equation

Consider the scalar first order linear wave equation in one space dimension for u(x, t),

Ou M OU
+ = o, (1)

where M is the constant mean convection speed. The initial value problem for this equation

with u(x, O) = ui(x) for x E R can be immediately solved by the method of characteristics,

and u(x, t) = ui(x -Mr) for x E N and 0 _< t. With this well understood example it is possible

to quickly develop high order algorithms, and to readily present an algorithm from various

viewpoints.

A fourth order numerical algorithm can be developed for this problem by the method of

charateristics with a local quartic interpolation to u at time tn on a five point central stencil.

A uniform grid is used, with (xi, tn) = (ih, nk) for integer i and n, where h -- Ax and k - At

axe the uniform mesh spacings in x and t. The quartic spatial approximation to u around xi

at tn can be written in local coordinates as

where the coefficients are not indexed with respect to the mesh point. The method of un-

determined coefficients and the known data on the five point stencil immediately yield the

unknown coefficient solutions

n

U 0 --" Iti ,

1
U.n un n n

ul = 12h ( ,-2 - 8 i-1 + 8ui+l - ui+2),

1
1 n n-u. _ u" - 30u_' + - ui+2),u2 - 24h2 ( ,-2 + 16 i-1 6ui+l

1
= - -u." " -2u_+,÷ " ),u3 12ha ( ,-2 ÷ 2ui-1 ui+2

1
--_ U. n U n U n4 i+1 ÷ _+2).u4- 24h4( ,-2-4 i-l+6U_'- u"

(2)

0* ua 1 c3a u
Notice that u_ -- _! 0_ _ a! 0x _ , so that the spatial approximation to u about xi at t,_ is

essentially a truncated Taylor series in x. The method of characteristics and the local solution

approximation at time t_ now give

4

u(xi,t,+l) = u(xi - Mk,t,) _ ua(-Mk) = _ u_(-Mk) a = u_ +1,
vl_-O

where u_ +1 is implicitly defined. This algorithm correctly incorporates the wave dynamics of

equation (1) by using the method of charateristics. Notice that the time propagation is exact,
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so that the error at eachtime step is due to the local spatial interpolation ua. This algorithm

can be rewritten in the familiar form of a conventional single step explicit finite difference

method,
2

u n+l = _ arUn+r,

rm-2

where if the CFL number is A = M__b.k,then

a+2 = 2-_(+2 - A - 2)_2 + )_3),

a+l = _(-4 -t- 4)` -t- )_2 _ )`3),

ao = 1(4- 5A 2 + )`4),

)` )`2
a-1 = _(+4 + 4A -- - A3),

A

a-2 = _-_(-2 - A + 2A 2 + As).

In this form the algorithm requires five multiplies and four adds at each grid point for each

time step. Standard analysis shows that this method is fourth order accurate in both space

and time, with truncation error

k(U(xi, tn+l) un+l) =h4 -M ),2)( 4 2 °_u- _ ), )bTe 

h_ +M 2 0_u
+ ( 7--ff6-))`(1 - ),2)(4- A )_-gx8

The leading order error term is dispersive, which is natural for algorithms with symmetric

central stencils. Numerical experiments suggest that the method is stable for [AI < 1.

If the local expansion coefficients are interpreted in terms of space derivatives, and if u is

an exact solution to equation (1), then

U_q-i = E Or! _ (0) _ _ _xa(Xi,tn ) = "_. -_
ot=O ot=O ot-_O

This form of the algorithm is a fourth order expansion in the time step size k, and is similar to

the standard second order Lax-Wendroff method [21] expressed as a truncated Taylor series in

time. If the general form of the solution to equation (1) is used, then u can be approximated

in both local coordinates x and t near (xi, tn), with u(xi + x, tn + t) _ ua(x - Mr). If the

interpretation of the expansion coefficients are used, then this local approximation to u in x



and t can be written as

4

=__uo(x-Mt) _
a=O

4 l(z_Mt)aOau.

a_O

4
1

a=O 3=0

x_-_t _ Oau
Ox___& _ (zi, tn),

where ui "+1 = ua(-Mk). This form of the solution is actually just a truncated Taylor series

in both space and time simultaneously. This truncated Taylor polynomial is also an exact

polynomial solution to equation (1). This particular exact local solution approximates the

solution u for points (x, t) with a domain of dependence contained in the interval [xi-2, xi+2].

There are four related interpretations of this fourth order algorithm: a locally exact solu-

tion derived from the geometric method of characteristics with a local truncated Taylor series

approximation in space for its initial data; a conventional finite difference method; a truncated

Taylor series expansion in time; and a locally exact polynomial solution derived analytically

from a truncated Cauchy-Kowaleskaya or bivariate Taylor series expansion in space and time.

The first interpretation ensures that the numerical method properly represents the wave dy-

namics of the partial differential equation, since the characteristic behavior of the equation is

incorporated into the numerical solution. The second and third interpretations ground this

algorithm in the mature tradition of finite difference methods. The fourth interpretation pro-

vides an avenue for generalization and extension, since a locally valid exact analytic solution

is possible for hyperbolic systems in higher space dimensions. Notice that no consideration

has been directly given to the problem of finite difference approximation to any derivative,

but rather to the interpolation of the known data on a stencil, and to an exact local solution

to the partial differential equation. A key shift in perspective is away from the details of

approximating separate terms in an equation, and toward the approximation of a solution to

the equation.

6



III: Numerical Algorithms For 1D Linearized Euler Equations

Consider now the linearized Euler equations in one space dimension, in particular the

isentropic case in the form of the nondimensionalized system

Ou MOU Op
0x

op ou_+M +_x =0,

(3)

where M is the constant mean convection speed in terms of Mach number, and where p and u

are the pressure and velocity of the disturbance. A general discussion of the linearized Euler

equations can be found in Kreiss and Lorenz [18]. System (3) can be diagonalized and written

with Riemann variables in the equivalent decoupled form

0031 _ _ O/,.O1

0-----_+ (M- ±)--_-x = O,

00,2+ (M+ 1) =0,
(4)

where wl = ½(u - p) and w2 = ½(u + p). The initial value problem for u and p with u(x,O) =

ui(x) and p(x,O) = p/(x) for x G R is equivalent to a corresponding problem for wx and

w2 with Wl(X,0) = ½(ui(x) - pi(x)) and w2(x,0) = ½(ui(x) + pi(x)). Each equation in the

Riemarm variable system (4) can be solved separately by the method of characteristics, and

these solutions can be used to obtain the general solution for system (3),

1

u(x,t) =_(ui(x - (M + 1)t) + pi(x - (M + 1)t))

+2(ui(x-(M- 1)t)-pi(x-(M- 1)t)),

1

p(x,t) =_(ui(x - (M + 1)t) + pi(x -(M + 1)t))

-2(ui(x - (M - 1)t) - p/(x - (M - 1)t)).

(5)

Note that this system has two characteristics with separate unidirectional solutions that are

constant along their characteristics, and that are travelling with the characteristic velocities

M - 1 and M + 1, respectively.

III-A: A General Algorithm Development

A general development can simultaneously provide algorithms of the second, fourth, sixth

and eighth orders. A local polynomial interpolation to u and p in x about (xi, tn) can be
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written in the general form

Or

u(x,+ x,t.) ua( ) =
o=0 (6)

Or

where indexing with respect to the mesh point is suppressed, and where Or = 2, 4, 6, or 8 is

the order of the interpolation, on central stencils of from three to nine points. The method

of undetermined coefficients using the data on the stencils immediately yields the unknown

coefficients in terms of the known data. The coefficients have standard central finite difference

forms, such as for the quartic case in (2). The expansion coefficients can be interpreted in

terms of spatial derivatives, with

10aua.

_° - a! _ (o)

1

10au

1 0_p(_,,_).
"_ 5-50z----_

A new solution value at (x_, tn+a ) is obtained from the general solution form (5) with the local

spatial interpolation (6) as initial data,

=l (ua(-(M + 1)k) + pa(-(M + 1)k))

+l (ua(-(M - 1)k) - pa(-(M- 1)k)),

_(xi, t.+l) _ u_'+_

(7)
p(Xi,tn+l) ,_ V n+l =_(ua(-(M + 1)k) -+- pa(-(M + 1)k))

2

U n+l : U 0 -- k(p I -q,- MUl)

-- k3((1 + 3M2)p3 +

+ k4(4M(1 + M_)p4

-l (ua(-(M - 1)k) - va(-(M - 1)k)).

Algorithm form (7) is obtained by applying an exact propagator to a local polynomial inter-

polant, so that form (7) correctly incorporates the multiple characteristic wave dynamics of

equation (3). Algorithm (7) can also be arranged as a truncated time series expansion in k.

On the nine point central stencil the algorithm for u can be rewritten as

+ k2(2Mp2 + (M 2 + 1)u2)

M(3 + M2)us)

+ (1 + 6M 2 + M4)u4)

+ kS(-(1 + 10M 2 + 5M4)ps - M(5 + IOM 2 + M4)us) (Sa)

+ kS(M(6 + 20M 2 + 6M4)p6 + (1 + 15M 2 + 15M 4 + MS)us)

+ k7(-(1 + 21M _ + 35M 4 + 7MS)pr - M(7 + 35M 2 + 21M 4 + MS)ur)

+ kS(M(8 + 56M 2 + 56M 4 + 8MS)ps + (1 + 28M _ + 70M 4 + 28M s + MS)us),
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and for p as

=po-k(ul + Mpl)+ k2(2Mu2 +(M 2 + 1)p2)

- ka((1 + 3M2)ua +M(3+MZ)p3)

+ k4(4M(1 + M2)u4 + (1 + 6M 2 + M4)p4)

+ kS(-(1 + IOM 2 + 5M4)u5 - M(5+ IOM 2 + M4)ph)

+ k6(M(6 + 20/2 + 6M4)u6 + (1 + 15M 2 + 15M 4 + M6)po)

+ k7(-(1 + 21/2 + 35M 4 + 7/6)u7 - U(7 + 35/2 + 21M 4 + M6)p.r)

+ kS(M(8 + 56M 2 + 56M 4 + 8M6)us + (1 + 28M 2 + 70M 4 + 28M 6 + MS)ps).

(Sb)

Algorithm form (8) can be used to obtain the time series expansion forms of the second, fourth

and sixth order algorithms, by simply taking the terms up to the appropriate order in k. Note

that the symmetry of (3) in u and p is reflected in (8). The familiar grid ratio A = _ is implicit

in algorithm form (8), since each expansion coefficient ua or Pa is a finite difference form with

h a in its denominator. A general finite difference form can be derived from (8), with

R

R

p_+l ---- Z (a"P_+r + b"uh")'

(9)

where the coefficients axe polynomials in A and M, and where R = 1, 2, 3, or 4 depending upon

which stencil is being used. The coefficients a_ and br are used symmetrically with respect to

u and p in algorithm form (9), and reflect the symmetry of the equation (3) in u and p.

Algorithm (7-9) on a three point central stencil has Or = 2 in (6) and R = 1 in (9),

and represents just the first line of equations (Sa) and (Sb). The truncation error for this
algorithm is

1 Ou
M Ou op

+ Oz +

+ h2(M)(1 - (3 + M2)A2)_@3 + h2(_)(1- (1 + 3M2)A2)_

+

(p(xi,t.+l) -- p_.+l) = -_ + M + Ox

+h2( M)(1_(3+ M2)A2)00-_Pa + h2 (_)(1 -(1 + 3M2)_2) 0_3

+ O[ha].

Clearly, this method is consistent with equations (3), it is second order accurate in space and

time, and it is dispersive. Algorithm (7-9) on a five point central stencil has Or = 4 in (6)



and R = 2 in (9), and represents just the first three lines of equations (8a) and (8b). This

algorithm has the truncation error

k(U(zi,t,+l) _ u_+, ) = Ou MOU Op+ Ox +

4 -M 2 )_2 _M(5+10M 2+ 4 _4 Osu
+ h ( 3"0 + M(3 + M )_-_ M )_-_)_x s

-1 2 "k2_(l+10M 2+ 4 A4 c35p
+ h4(_ - + (1 + 3M )_-_ 5M ) 1-_)_x s

+ oihs],

Op 02k(P(Xi,tn+l) - pn+l) = _ + M + Ox

4 -M _ )_2 _M(5+IOM 2+ 4 )_4 vOSp
+ h (--_-- + M(3 + M )_- M ) 1-_-6)_x s

, -1 M2 A2 (I+IOM2+5M,)_4)c_u
+h (-_-_ +(1+3 )_-_ 120 c3x5

+ o[hs].

This fourth order accurate method is clearly consistent with (3) and dispersive. The truncation

errors for the seven and nine point central stencil methods also verify that these methods are

sixth and eighth order accurate, respectively.

The algorithms in this section can be viewed as characteristic or semi Lagrangian meth-

ods with a local polynomial spatial interpolation, as truncated Taylor series in time, or as

conventional explicit finite difference methods. The exact solution form and the interpreta-

tion of the local polynomial expansion coefficients can be used to provide a local polynomial

solution to the differential equation that can be interpreted as a multivariate Taylor series or

Cauchy-Kowaleskaya expansion in space and time. The algorithms in this section are derived

from an exact solution to the partial differential equation, and find a new solution value by

using the correct wave dynamics of a local spatial interpolant.

III-B: Numerical Comparisons

Numerical tests of these four algorithms for equation (3) are obtained from an initial

value problem with data u(x, O) = 0 and p(x, 0) = Sin(Trx), for -1 _< x _< 1, and with periodic

boundaries at x = =kl. The exact solution for this problem can be obtained from (5). Table

A gives data for this problem with the four algorithms at M = 0 and A = _ = 0.8, on a series

of mesh sizes, and calculating out to the fixed time t = 10, which corresponds to five periods

of wave propagation for the given initial data. In Table A, _ is the number of grid points

in [-1, 1], or per wavelength for the initial data, nl0 is the number of time steps required to

reach t = 10 with A = 0.8 at the given grid resolution, and the columns are identified by the

order Or of the algorithm which produced the data in the column. The error data in Table A

is the maximum absolute accumulated error in u or p for x E [-1, 1] at t = 10, so it reflects

10



the error of the algorithms in both space and time. The mesh sizes that are used are for mesh

refinements by successive halving of the grid size.

Table A: Data From The Four Algorithms For The 1D LEE

u(x,O) = 0 and V(x,O) = Sin(Trx), A = 0.8, M = 0

Maximum Error in u or p at t = 10

2 Or = 2 Or = 4 Or 6 Or 8
nlO = =

4 25 1.035D+0 7.885D-01 4.253D-01 2.078D-01

8 50 6.760D-01 9.141D-02 1.110D-02 1.387D-03

16 100 2.586D-01 7.122D-03 2.158D-04 7.000D-06

32 200 7.133D-02 4.644D-04 3.551D-06 2.910D-08

64 400 1.811D-02 2.932D-05 5.620D-08 1.157D-10

128 800 4.539D-03 1.837D-06 8.808D-10 3.438D-13

256 1600 1.135D-03 1.149D-07 1.283D-11 9.484D-13

512 3200 2.839D-04 7.182D-09 6.303D-13

1024 6400 7.097D-05 4.527D-10 3.776D-12

The orders of accuracy of the algorithms can be verified by calculating the factor by which

the error decreases with the grid resolution. The data from the method with Or = 2 at grid

sizes 2 = 512 and _ = 1024 gives,

1 Log[2.839 x 10 -4
Log[2] 7.097 x 10 -5] = 2.00,

so that the error decreases by a factor of 22.00 when the mesh size is halved, and the method

as implemented actually is second order in both space and time. For the method with Or - 6,

the error decrease from _ -- 128 to _ = 256 is by a factor of 2 _'1°, but the decrease from

2_h-- 256 to -_ = 512 is only by a factor of 24"s5, while the error actually increases from _ -- 512

to _ = 1024. The differences between these estimates of the order of accuracy for this method

is due to the contamination of the finer grid results by roundoff error at the resolution limits

for these calculations in double precision. The data from _ = 128 and _ = 256 can be

accepted as showing sixth order accuracy for this method. A similar effect can be seen in the

data for the method with Or = 8, but the order of the method can be obtained from the data

at _ = 64 and _ = 128, which shows an error decrease by a factor of 2 s's9 and eighth order

accuracy. The order of accuracy of a finite difference method is an asymptotic concept that

applies in the limit as the mesh size converges to zero, but due to roundoff errors, numerical

computations in a given precision to a fixed simulation time with a particular algorithm have

an effective lower bound on usable grid resolution that is finite, even though the bound can

be affected by programming practices.

The second order algorithm with ] = 4 has a maximum absolute error in u and p at

t - 10 of 1.03451. At t -- 10, the numerical solution from this simulation shows a maximum

absolute value of 1.55885 x 10 -2 for u, and 3.45145 x 10 -2 for p, while the exact solution

has u identically 0, and extreme values of :kl for p. The larger than one absolute error arises
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becausethe p solution is a half wavelength out of phase, which is possible even at a short time

with a very coarse resolution and a dispersive method. Notice in Table A that the maximum

errors at _ = 4 range from O[1] to O[0.1], decreasing slightly as the order of accuracy of the

method increases. This shows no outstanding advantage for the higher order methods at this

coarse grid resolution. The actual advantages of higher order methods only become apparent

when the qualities of the methods are not confounded with marginal data resolution.

Table B presents data from the same periodic problem as in Table A, but at t - 1000. In

Table B the number of time steps is now given as nl000, the number required to compute to

t - 1000 with _ -- 0.8 and the given grid resolution. The errors in Table B from the second

order method at { = 16 and the fourth order method at _ = 8 are produced by a very large

phase error, just as the error in Table A for the second order method at _ = 4. In general,

the errors in Table B tend to be larger than the corresponding errors in Table A by a factor

of 100, which is the ratio of nl000 to nl0 at any given grid resolution. These algorithms are

derived with an exact propagator for equation (3), so that the discrete approximation of the

time evolution can be expected to have O[1] eigenvalues and a linear growth trend in error.

But notice that the maximum absolute errors on the coarsest grids never become much larger

than one, or that the error growth has an asymptotic limit as the simulation time increases,

since the errors eventually become of the order of the solution. Also notice that the noise level

where accumulated roundoff error begins to significantly affect the solution has increased from

0110 -13] at t = 10 to 0110 -9] at t = 1000.

Table B: Data From The Four Algorithms For The 1D LEE

u(x,O) -" 0 and p(x,O) = Sin(_rx), A = 0.8, M = 0

Maximum Error in u or p at t = 1000

2 Or = 2 Or 4 Or 6 Or 8
nl000 ---- ---- =

4 2500 1.000D+0 1.000D+0 1.000D+0 1.000D+0

8 5000 1.000D+0 1.004D+0 7.787D-01 1.265D-01

16 10000 1.001D+0 5.407D-01 2.145D-02 6.998D-04

32 20000 7.401D-01 4.614D-02 3.552D-04 2.909D-06

64 40000 1.215D+0 2.931D-03 5.618D-06 9.548D-09

128 80000 4.327D-01 1.837D-04 9.263D-08 4.590D-09

256 160000 1.131D-01 1.150D-05 9.364D-09 7.987D-09

512 320000 2.838D-02 7.000D-07 1.816D-08

1024 640000 7.096D-03 1.294D-08

If interpolation is used with the data in Table A, then this data suggests that in order

to achieve a maximum absolute error of less than 5.0 x 10 -4 at t = 10, the second order

method requires -_ > 215, the fourth requires -_ >_ 16, the sixth 1 > 8, and the eighth ] > 7.
ZXt

For a grid ratio of ,k = X'i,, the number of time steps nl0 required to compute to t = 10 is

nl0 = lo_hh. The total number of multiplications required for each computation on the domain

-1 _< x < 1, with -_ mesh points per unit interval, using a stencil with ns grid points, with
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two equations using data from two functions, and for nl0 time steps is

total multiplications = nl0 x 2h x ns × 4 =
80h2n,

With modem RISC processors, a single cycle multiply and add instruction is possible, so that

additions can be neglected in floating point operation counts. In order to meet the 5 x 10 -4

error bound at the time t = 10, the ratio between the number of multiplications required by

the second and fourth order methods is

2152 x 3

162 x 5
,_ 108.34

it is 2.86 for the fourth to the sixth order, and 1.02 for the sixth to the eighth order. If the

error bound is decreased to 5 x 10 -5 at t - 10, then the second order method requires -_ >_ 673,

the fourth _ _ 31, the sixth -_ > 14, and the eighth -_ >_ 8. In this case, the ratio of the

number of multiplications required by the different methods is approximately 282.79 for the

second to the fourth order, 3.50 for the fourth to the sixth order, and 2.38 for the sixth to the

eighth order. If the error bound is kept at 5 x 10 -4 but the time is increased to t = 1000, then

the second order method requires -_ :> 1989, the fourth -_ _> 60, the sixth _ _> 16, and the

eighth -_ > 10. In this case, the ratio of the number of multiplications required by the different
methods is approximately 659.4 for the second to the fourth order, 10.04 for the fourth to the

sixth order, and 1.99 for the sixth to the eighth order.

The difference between low and high order algorithms is not very significant if the data

is not resolved well enough for any of them to be able to accurately propagate meaningful

information to a useful time. It is significant that small errors can be obtained at relatively long

times, even though there is a limit to what can be achieved with double precision arithmetic.

For example, if the periodic problem is computed with the eighth order method at _ = 16

out to t = 100000, or 50000 periods, then the maximum absolute error 3.022D-04 is invisible.

The higher order methods are clearly more efficient in terms of the total number of floating

point operations required to compute to a fixed simulation time with a given error bound,

and the comparative efficiency of the higher order methods increases as the simulation time

is increased or as the error bound is decreased. There is a particularly great advantage shown

by the fourth order method compared to the second. These observations should be expected,

since they are predicted by the analysis of Kreiss and Oliger [19]. Higher order methods can

be more complex, requiring additional research and development time as well as extra care

in implementation, but the value of the efficiency of higher order methods increases either if

they are incorporated in codes that are frequently used, or if specific computations are made

possible only with the use of a highly efficient algorithm.

IIIoC: High Order Boundary Conditions

Propagation algorithms must be complemented by high order boundary algorithms in

order to be useful. Stable high order boundary algorithms can be developed by using the

exact propagator approach. The general algorithm development for equation (3) uses a local
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spatial interpolant (6) at time t, as initial data, and the general solution form (7), to obtain

an exact solution to the linearized Euler equations which correctly incorporates the wave

dynamics of the local interpolant. This exact solution can be written in local coordinates as

u(xi + x,tn + t) _ ua(z,t)

Or Or

= l(Eue(x-(M + 1)t) _ + Ep_(x-(M + 1)t) a)
a=O a'=O

Or Or

+ _(E ua(x-(M- 1)t) _- Ep_(x-(M- 1)t)a),

o,=o _=o (I0)

Or Or

= l(Eu_(x-(M + 1)t) ° + Ep_(x-(M + 1)t) a)

u_(_ - (M - 1)0° - _po(_-(M- 1)t)°),
or_O _=0

where Or is the order of the interpolant, and where ua and p_ are interpolation coefficients

obtained by the method of undetermined coefficients. Note in (10) that an extra free variable

has been added to the domain of ua and pa from (6), and that the general numerical algorithm

in either form (7) or (8) can be obtained from (10) as u_ +1 - ua(O,k) and p_+l _ pa(O,k).

The local exact solution (10) can be interpreted as a multivariate Taylor series or Cauchy-

Kowaleskaya expansion in space and time. The local exact solution (10) represents more than

just an approach to obtaining a numerical approximation to u and p at (xi,tn+l), it is also

a valid representation of the evolution in space and time of the local spatial interpolant (6)

at all points which have their domain of dependence entirely within the interpolation stencil.
1

The Riemann variables wl = ½(u -p) and w= = _(u + p) can also be locally approximated in

space and time, with wal = ½(ua - pa) and we2 -- ½(ua + pa). For subsonic mean flow with

M < 1, the left going Riemann variable wl will have a valid representation up to the left end

of the stencil, and the right going Pdemann variable w2 will have a valid representation up to

the right end of the stencil. The general boundary algorithm idea is that at the boundaries of

the computational domain, the outgoing Riemann va_ables are calculated, and appropriate

boundary conditions are used to provide enough degrees of freedom of information to determine

the primitive variable solutions at the boundary. If there are any points between the center and

boundary points of a boundary stencil, then solution values are computed at these intermediate

points with (10). All of these different calculations use a single spatial interpolation on one

boundary stencil, and a consistent representation of the local evolution of the interpolant over

the interval from the stencil center to the boundary of the computational domain.

In the case of Or = 2 on a three point stencil, in addition to the new values at the stencil

center the only calculation that is needed is the outgoing Riemann variable. At the stencil

center, either (8) or (10) give

u_'+' = u0 - k(p, + M_,) + k_(2Mp=+ (M2+ 1)_2),
(11a)

p_'+_= po - k(u_ + Mp_) + ,_2(2Mu2+ (M _+ 1)p2).

14



The left going Riemann variable is obtained from (10) at (x/-1, tn+l) as

1

wl_ +) =_((uo - po ) - h(ul - pl) + h _(u2 - P2))

-i 1 -_M((ul -Pl)- 2h(u2 -P2))
z_

(1 - M) 2
+ 2 (u2 - p2),

and the right going Riemann variable at (z/+_, tn+x ) as

(11b)

n+l 1
2i+1 =_((Uo + po) + h(ul + pl) + h2(u2 + P2))

1
--+M ((ul + pl) + 2a(u_ + p2))

4 (1 + M)2(u 2 +p2),
2

(llc)

where the interpolation coefficients for u are

1 n 1 un
Uo = _,_', Ul = _-(ui+ 1 -- uLx), and _,2 = 5-_-(Ui_l - 2u_' + i-l),

with similar forms for p. If the three point stencil is at the left of the computational domain,

then (lla) and (llb) are used, and if the three point stencil is at the right of the computational

domain, then (lla) and (llc) are used. In either case, a single interpolation stencil is used

to provide the coefficients ua and pa for all three calculations, and an additional degree of

freedom of information is required to obtain the primitive variable solutions at the boundary

point.

In the case of Or = 4 on a five point stencil, the required calculations are for u and p

values at the stencil center and one intermediate point, and for one outgoing Riemann variable

at a stencil edge. At the stencil center, either (8) or (10) give

u_ +1

p_+l

= U 0 -- k(p 1 + Mul) + k2(2Mp2 + (M 2 + 1)u2)

- kS((1 + 3M2)p3 + M(3 + M2)u3)

+ k4(4M(1 + M2)p4 + (1 + 6M 2 + M4)u4),

= Po - k(ul + Mpl) + k2(2Mu2 + (M 2 + 1)p2)

-- kS((1 + 3M2)u3 + M(3 + M2)p3)

+ k4(4M(1 + M2)u, + (1 + 6M 2 + M4)p4),

where the coefficients for u are given by (2), with similar forms for p. In a boundary stencil at

the left of the computational domain, the intermediate solution values between the cell center
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and the boundary point are given by (10) as

u__+: =Uo -- hul + h2u2 - h3u3 + h4u4

+k(M(-ul + 2hu2 - 3h2u3 + 4h3u4)

+ (-p_ + 2hp2 - 3h2p3 + 4h3p4))

+k2((1 + M2)(u2 - 3hu3 + 6h2u4)

+ 2M(p2 - 3hp3 + 6h2p4))

+k3(M(3 + M2)(-u3 + 4hu4)

+ (1 + 3M2)(-p3 + 4hp4)),

P'_+-) =Po - hpl + h2p2 - h_p3 + h4p4

+k(M(-pl + 2hp2 - 3h2p3 + 4h3p4)

+ (-ul + 2hu2 - 3h2u3 +4h3u4))

+k2((1 + M2)(p2 - 3hp3 + 6h2p4)

+ 2M(u2 - 3hu3 + 6h2u4))

+k3(M(3 + M2)(-p3 + 4hp4)

+ (1 + 3M2)(-u3 + 4hu4)),

and the boundary point value for the outgoing Riemann variable is given by (10) as

=-_wl,o - hwl,1 + 2h2wl,2 - 4h3wl,3 + 8h4wl,4

1

1

3 1
+k3(1 - M) (5Wl,3 - 4hwl,4)

41
+k4(1 - M) _w1,4,

where wl,_ = ½(ua - pa), with the coefficients ua and pa given by (2).

In the case of Or - 6 on a seven point stencil, u and p values are needed at the stencil

center and two intermediate points, and one outgoing Riemann variable is needed at a stencil

edge. If the three boundary treatments for Or --- 2, 4 or 6 are used with Dirichlet boundary

data for u and p, then they maintain the order of accuracy of the propagation algorithm in

IM At I _both space and time, and they are stable if i _--/,_ < 1. In the case of Or = 8 on a nine

point stencil, if this general procedure is followed, with u and p values calculated at the stencil

center and three intermediate points, with one outgoing Riemann variable calculated at a

stencil edge, and with boundary data for u and p, then this boundary treatment is unstable.

A stable boundary treatment is obtained if a nonstandard interpolation is introduced on an
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eight point stencil with four points on the interior side of the stencil center, and three points

on the exterior side. The extra degree of freedom of information that is required for eighth

order accuracy is obtained by adding spatial derivative variables for both u and p on the

boundaries. The method of undetermined coefficients easily accomodates this information by

using the derivatives of (6) evaluated at the boundary in addition to the values of (6) on the

eight stencil points. For example, in an eight point stencil at the left edge of the conputational

domain, the solution values on the stencil must be suplemented by the derivative data u "
zi--3

and pxin_3 at the stencil edge. In this case, the method of undetermined coefficients produces
the estimate

1

ul = 14700h (-420huz'}_3 - 13230u__1 + 4410u__ 2 - 1229u__ 3

+1225u_ + 11025u_+ 1 -2646u_+ 2 + 490u_+ 3 - 45u_+,),

with similar estimates for the other ua and pa. On this stencil, both the outgoing Riemann

variable and its derivative are calculated at the boundary point, and two degrees of freedom

of boundary information must be supplied. The derivative of the outgoing Riemarm variable

is obtained by combining the spatial derivatives of (10). An eight point stencil at the right

edge of the computational domain is handled in a similar manner. If data is provided for one

of the variables and its spatial derivative, then this eight point stencil boundary treatment is

stable and eighth order accurate in both space and time.

Numerical results are presented in Table C for the intial boundary value problem with

initial data u(x,O) = 0 and p(z,O) = Sin(_rx), for -I < x < 1, and with boundary data

u(-1, t) = ½(Sin(_r(-1 - t)) - Sin(_r(-1 + t))) and p(1,t) = ½(Sin(r(1 - t)) - Sin(r(1 + t))),

for 0 _< t. This problem is the periodic initial value problem from Section III-B in a truncated

domain with the solutions for u(-1, t) and p(1, t) given at opposite boundaries of the domain.

This type of boundary data specification is common in computational fluid dynamics. The

boundary algorithms are as specified in this section.

2

8

16

32

64

128

256

512

1024

Table C: Data From The Four Algorithms For The 1D LEE

BC - Outgoing Riemann Variable, u(-1,t), and p(1, t)

u(x,O) = 0 and p(x,O) = Sin(_rx), A = 0.8, M = 0

Maximum Error in u or p at t = 10

nlo Or = 2 Or = 4 Or = 6 Or = 8

50 1.870D-01 1.170D-02 1.012D-02 8.653D-05

100 4.569D-02 9.980D-04 5.260D-05 8.499D-07

200 1.323D-02 8.109D-05 8.786D-07 4.690D-09

400 3.500D-03 5.540D-06 1.290D-08 2.087D-11

800 8.937D-04 3.580D-07 1.894D-10 3.752D-13

1600 2.254D-04 2.270D-08 3.346D-12 4.910D-13

3200 5.657D-05 1.430D-09 1.889D-12

6400 1.417D-05 9.115D-11
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The data in Table C confirms that the propagation algorithms with the boundary algo-
rithms have the sameorder of accuracyas the propagation algorithms with periodic bound-
aries. This can also be confirmed by truncation error analysis. The parameters used for the
computations in TablesA and C are the same,so that the results can be directly compared.
The overall error data in Table C is slightly smaller than in Table A, by method and by grid
size, most notably for the eighth order method, particularly at 2 = 8. At _ = 8, the eighth

order method has a nine point domain, and uses only three stencils for the entire calculation.

The entire nine point domain is used for computing the values at the central grid point, the

leftmost eight points are used to calculate everything to the left of the central point, and the

rightmost eight points everything to the right. Specification of Dirichlet data and computation

of the outgoing Riemann variables provides slightly more accurate results throughout Table

C than comparable results in Table A with periodic boundary conditions. The computations

for this initial boundary value problem can be carried out to longer times. For example, in

computing out to t = 1000 with the eighth order method, if _ - 8 is used, then the maximum

absolute error is 5.405D-05, while if _ = 64 is used, then the maximum absolute error is

6.522D-12. These boundary algorithms appear stable, and they clearly have the same order of

accuracy as the propagation algorithms, from second to eighth. The boundary algorithms can

be viewed as using interior differencing at and near the boundaries. From this viewpoint the

stencils become heavily weighted towards the interior, much more so than appears possible

with conventional upwind algorithms. A central feature of these boundary algorithms is the

simultaneous and consistent calculation of the correct wave dynamics of the solution over an

interval next to the boundary.
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IV: Numerical Algorithms For The Convection Equation In Two Dimensions

The simplest hyperbolic problem in two space dimensions is the scalar first order linear

wave equation for u(x, y, t),
Ou Ou Ou

_- + Mx_x x + M_y = 0, (12)

where Mz and M r are the constant mean convection velocities in the x and y directions,

respectively. The initial value problem u(x, y, O) = ui(x, y) for (x, y) e _ x N has the general

solution u(x,y,t) = ui(x - Mxt, y- Myt) for (x,y) e _ x _ and 0 < t. This solution form

is developed by the method of characteristics, it incorporates the geometry of the solution's

behavior, and it can be used to develop exact propagator algorithms for equation (12). In one

space dimension with a common stencil the exact propagator and Taylor series approaches to

algorithm development lead to the same algorithm, but for two dimensional problems with

a common stencil they lead to algorithms that are distinctly different. Both approaches are

used and compared in this section with examples of second, fourth and sixth order algorithms.

A significant new issue for two dimensional problems is the choice of stencil and interpolant.

IV-A: A General Algorithm Development

A uniform mesh is used with grid points (xi, yi) = (ih, jh) for integers i and j, where

h = /kx = Ay is the uniform mesh spacing in space, and with discrete times t,, = nk for

integer n, where k = At is the uniform time step size. The numerical solution at the mesh

point (xi, yj,tn) is denoted by u n.. ,_ u(xi,yi tn). In two space dimensions, a polynomial
z,J

spatial interpolation to u around (xi, yj) at tn can be written in local coordinates as

{a,_}eAS

(13)

where AS is the index set for the expansion, and where the coefficients are not indexed with

respect to the mesh point. All of the undetermined coefficients are simultaneously obtained

by interpolating a data surface to the solution values on a given stencil. The coefficients can

be interpreted as spatial derivatives, with

1 Oa+#Ua(zi, yj,tn ) _ 1 Oa+#u (14)

The general form of the solution to equation (12) and the interpretation of the expansion

coefficients can be used to develop a truncated Cauchy-Kowaleskaya series expansion that

locally approximates the exact solution in space and time, with

u(xi q- x, yj Jr y, tn q- t) _ ua(x- M_t,y - Myt) = _ u_,_(x - Mzt)a(y - Myt) _. (15)

{_,/_}eAS
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This local polynomial approximation of the exact solution to the global problem is an exact

solution to the local approximate problem which uses the local spatial interpolant as initial

data, and it incorporates the correct wave propagation dynaraics for (12).

The exact propagator algorithm form is obtained from the method of characteristics by

using the locally exact solution form (15), with

u"+l=ua(-M_k,-Myk) = _ u.,a(-M_k)"(-M_k)a_u(xi, yj,t_+k) •i,j

{a,_}EAS

(16)

This algorithm form can also be viewed as a time expansion, with powers of k up to the

maximum possible a + 8. A truncated Taylor series expansion in time produces the algorithm

form
Or 3"

0,n+l
i,j = Z (-k)" Z u3"-#'zM_-aM_

_0 fl:O

o, 3" 1 cg_ua

= (-k)3" Z)!Z!ox3"- o 
3"=0 _=0 (17)

Or _/

1 9_u (xi, yj, t_)

3,=0 B=0

o_ k3" 03"u

= 7! or3"(x"Yi't") + k),
2r=O

where Or is the order of the expansion. Both algorithm forms can be rewritten as conventional

single step explicit finite difference methods, with

_n+l _ ni,j -- Cr,s_ti+r,j+s,

{r,s} EIS

where IS is the appropriate index set for the stencil that is being used, and where the constant

coefficients c_,_ are polynomials in the convection velocities M_ and Mu, and in the grid ratio

A -- _. For any given order of accuracy Or, if the expansion coefficients ua,$ of (13) from a

fixed stencil are used in both the characteristic based (16) and the Taylor series time expansion

(17) algorithms, then both algorithms will have the same explicit finite diference index set

IS, and they both require the same number of floating point operations per grid point per

time step. In general, the time expansion form of the characteristic based algorithm will have

time terms that are higher than Or, and the finite different coefficients c_,s for the two types

of algorithm will differ.

The order of the algorithms of either type will depend upon the stencil and interpolant

that are used for local approximation of the known data surface. Figure 1 presents information

for stencils and interpolants that can be used for second, fourth and sixth order algorithms in

two space dimensions. In Figure 1, information for second, fourth and sixth order algorithms

is presented in the lefthand, center, and righthand columns, respectively. Stencil schematics
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are presented in the top row. The stencils are all symmetric in space, with a stencil choice

for fourth and sixth order algorithms. The points at the stencil centers are marked with a

'÷', other necessary points are marked with an 'o', and optional points are marked with an

'x'. The only second order stencil is the familiar 3 x 3 square. The two fourth order stencils

are the 5 x 5 square, with twenty five points, and this square minus its four corner points,

with twenty one points. The three sixth order stencils are the 7 x 7 square, with forty nine

points, this square minus its four corner points, with forty five points, and this square minus

the three points in each comer that are either in the comer or next to it on an edge, with

thirty seven points. Spatial interpolation coefficient index sets are presented in the second and

third rows of Figure 1, and represent the index set AS that is used in (13). Each index pair

represents an expansion coefficient that can be interpreted as a mixed partial derivative in x

and y, as in (14). The expansion coefficients in the second row are for use with the complete

square stencil in each case, and the expansion coefficients in the third row are for use with

the smallest stencil in each case. The index sets in the second and third rows of Figure 1 are

used in (16) for exact propagator algorithms on either the full stencil or the smallest stencil

for each order. The fourth row of Figure 1 presents the index sets that are retained in the

Taylor series time expansion algorithms (17). The coefficients in the fourth row for the Taylor

series algorithms can be obtained on any of the symmetric stencils that are possible for each

order, or by other methods. The algorithms in this section are completely specified by the

stencils and expansion coefficient index sets in Figure 1, and the general algorithm forms (16)

and (17).
It can be shown that if the data for a simulation is independent from one of the coordinate

variables, and if the mean convection velocity is perpendicular to that coordinate axis, then

for a given order, algorithm forms (16) and (17) both reduce to the same one dimensional

algorithm along the mean convection direction. Under these assumptions, the second order

methods both reduce to the Lax-Wendroff scheme in one dimension, and the fourth order

methods reduce to the algorithm in Section II. In multiple dimensions with general data and

symmetric interpolation, algorithms for equation (12) that are derived as truncated Taylor

series time expansions cannot be interpreted as projection backwards along a characteristic

to its point of intersection with the local data surface at time tn. In effect, Taylor series time

expansion algorithms introduce an error in the time evolution of the local interpolated data
surface.

IV-B: Second Order Algorithms

The second order algorithms both use the 3 x 3 square stencil on the left of the top row

in Figure 1. The expansion coefficient index set for the exact propagator algorithm is given

on the left of the second row in Figure 1, and the expansion coefficient forms are given in

Appendix A. The local biquadratic spatial interpolant for u near (xi, Yi) at tn can be written
as

2

+ x, yj + y, n) = (is)
a,X_=0
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With this interpolant, the locally exact algorithm (16) is

ui",+1 =u00 - k(ul0M_ + uo_M_) + k2(u_0M_ 2 + ua_M_M, + u0_M, 2)

--k3(,_21MJM_+ u_2M_M_)+ _(,_:MJM_).
(19)

Notice that algorithm (19) has time expansion terms up to k 4.

algorithm (19) is

k(_(_i, - 0_yj tn+a) .+1_ Ou M Ou, _,_ j= _+ _+M_

+ h_( )(1 - M_222)_-x3

+ O[h31.

The truncation error for

+ h2(--_)(1 - My2,_2) 0_

Algorithm (19) is consistent with equation (12), it is second order accurate in space and time,

and it is dispersive with no cross derivative terms in its O[h 2] truncation error.

The truncated Taylor series time expansion algorithm (17) for this stencil is

u_+a k(uloM_ + uoaM_) + k2(u2oM_ 2 + UalMzMy + uo2My2), (20)i,j --" UO0 --

which is just the second order Lax-Wen&off method for (12). Notice that algorithm (20)
includes the terms of algorithm (19) up through k 2, but does not have k s and k 4 terms.

Algorithm (20) requires the cross difference term ual, and the simplest approximation of ull

with a symmetric stencil requires the use of the four comer points in the 3 × 3 nine point

central stencil. The truncation error for algorithm (20) is

_(u(zi, Ou 0_,yj,t_+a) _ . _+1_ Ou

03u

+ h2(--_-)(1- Mz2_2)-_x3 + h_(--_)(1- M,2,_)- _

03U
M_ I 2_h2(Mz2My)_2 h2( u.)_2

03U

2 Ox20y OxOy 2

+ O[h_].

Algorithm (20) is consistent with equation (12), it is second order accurate in space and time,

it is dispersive, and it has every possible O[h 2] cross derivative term in its truncation error.

IV-C: Fourth Order Algorithms

The square 5 x 5 central stencil can be used for fourth order algorithms, with the biquartic

interpolation

u(xi + x, yj + y,t,) _ ua(x,y) - .o,_e= _ _,o_°u _. (21)
a,_=0
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The locally exact algorithm form (16) with this interpolant is

_,"+_ k(_oM. + uo_My)+ k2(_20M,2 +unM.M, + Uo2My2)i,j _UO0 --

- kS(usoM, s + u2_M.2M, + u_2M.M, 2 + uosM, s)

+ k4(u40M. 4 + uslM.SMy + u22M.2My 2 + ulaM.My s + uo4M_ 4)

- kS(u,lM.4My + us2M.SMy 2 + u23M.2M_ 3 + u14M.My 4)

+ ke(u42Mz4My 2 + us3MzSMy 3 + u24Mz2M_ 4)

_ k'(u,_g2g_ _+ u_4g2g, _)

+ ks(u44Mz4My4).

(22)

Notice that this algorithm has time expansion terms up to ks .

The second fourth order algorithm uses the reduced stencil with twenty one grid points

and the modified biquartic interpolation

(23)

where A21 is set of indexes in the center of the third row in Figure 1. The coefficients for A21

are given in Appendix B. With interpolant (23), the locally exact algorithm form (16) is

_n+l
i,j =uoo - k(uloMx + uolM_) + k2(u2oMx 2 + ullMxM_ + uo2My 2)

- P(u_oM2 + ,.,2_M.2My+ u_2M.M,,_+ _,o_M_?)

+ k4(u40M. 4 + u31M.SMy + uz2M.2My 2 + u_3M.My 3 + uo4My 4)

- kS(u.nM.4My + u32M.SM_ 2 + u2sM.2My 3 + u_aM.Mf _)

+ k6(u42Mx4My 2 + u24Mz2M_4).

(24)

Note that algorithm (24) has time terms up to k 6.

The leading order truncation error for both algorithms (22) and (24) is

_(tL(Xi, -- OU OUyj tn+l) . n+l_ Ou
, ui,j )="_+Mx_x+M,_y

Mx M 2A2)(4 M2A2) _- h_(1-_-6)(1-

My M,_)_2)(4_ M,_) O%
- h4( 1--_)(1 - OyS

+ O[hS].

Algorithms (22) and (24) have the same O[h s] truncation errors, except that algorithm (24)

has an additional mixed {3, 3} cross derivative term. The {3, 3} index pair is not in A2_.

Algorithms (22) and (24) are consistent with equation (12), they are fourth order accurate
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in spaceand time, and they have leading order truncation error that are dispersive with no

cross derivative terms. In the form of conventional finite difference methods, algorithm (22)

requires twenty five multiplications and twenty four additions at each grid point for each time

step, and algorithm (24) requires twenty one multiplications and twenty additions.

The third fourth order algorithm uses the truncated Taylor series in time (17), with

u,+l k(uloM_ + uolM_) + k2(u20M_ 2 + u11M_My + uo2My 2)
i,j -'UO0 --

_ ka(usoMzS + u21Mx2My + ux2MzM3, 2 + u0sMy s) (25)

+ k4(u4oMx 4 + ualMxSMy + u22M_2M_ 2 + ulsMzMy s + u04Mu4).

Notice that algorithm (25) has the terms up to k a which are in both algorithm (22) and (24),

but that it does not have the higher order terms that are used for the accurate evolution of

their local data interpolants. The coefficients in (25) can be obtained from interpolations (21)

or (23), or elsewhere. If the twenty one point stencil from algorithm (24) is used, then the

leading order truncation error for algorithm (25) is

k(U(xi,y.i,t,,+x ) n+l_ Ou M Ou Ouui,i )= _ + _ Ox + Mr Oy

M_ Mx2A2)(4 h_fx2 2 05u- h'(_--_)(1- - _ )b-_
"2" 05u

h4(1_00)(1- M_2)(4 - M_2_

h4 .Mz4My OSu M 3M 2 OSu
__ ( "_ ))k4 0X4(_Y h4( z_2" Y )_4 0X30_] 2

, M_M_' 4 0_u _ h,(M_'M_3)_, 05U

-h ( 24 )A _ 12 Ox2(gy s

+ O[h_].

If the twenty five point stencil from algorithm (22) is used to estimate the coefficients for

algorithm (25), then the O[h 4] truncation error terms remain unchanged, and there is a change

in only the {3, 3} mixed O[h s] term. Algorithm (25) is consistent with equation (12), it is

fourth order accurate in space and time, it is dispersive, and it has every possible O[h 4] cross

derivative term in its truncation error.

IV-D: Sixth Order Algorithms

Within the 7 x 7 square stencil there are three symmetric options for developing algorithms

that are sixth order, but only two will be considered. Sixth order algorithms will use either a

7 × 7 central stencil and the bisextic interpolation

_(_ + _,y, + y,t.) _ _(_, y) =
6

{ot,_} eA49 o,_---_0
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or the reducedstencil with thirty seven grid points and the modified sixth order interpolation

_(x, + x,_i + y,_.) _ _a(x,y) = E uo: °:
{a,_}EAsz

(27)

The index sets A49 and A3_ axe given in the righthand column of the second and third rows

in Figure 1, respectively. The locally exact solution form (16) produces the algorithms

'J E u°',_(-M_'k)_(-M'k)Z (28)

{or,,8}EA49

with the forty nine point square stencil and interpolant (26), and

u'_,+1= E ua,_(-Mxk)_(-M_k)_' (29)

{a,B}eAs7

with the reduced stencil and interpolant (27). The leading order truncation error terms for

both algorithms (28) and (29) are

_-(u(zi, . ,+1, 0u Ou Ou_,t.+_) - at _-,.%i : = -- +M,, +M_

+ h6 (5___)(Mz 1 - M,2A2)(4 - Mz2A2)(12 - M'2A2) 07Uox"

M. 1 M.2X_)(4 M_2_2)(12-M.=_,2)°''+ h_(5--0-_)(- - O:

+ O[h_].

These algorithms are both consistent with equation (12), and sixth order accurate in space

and time, and they both have dispersive leading order truncation error with no cross derivative

terms. Notice that algorithm (28) has terms up to k _2, while algorithm (29) has terms up to

k s . There appears to be little accuracy advantage for algorithm (28) with the larger stencil,

which has approximately a third more grid points. The thirty seven point stencil does not

have corners, so that special care has to be exercised when treating boundaries and comers

for problems with nonperiodic boundaries.

The sixth order truncated Taylor series algorithm (16) has the form

6 k. t O.ru.
. n+l

_i,j = _ .: &-_(x,,y_,t.), (3o)
_----0

with terms up to k 6. If the thirty seven point stencil is used to obtain the coefficients for
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algorithm (30), then the leading order truncation error terms are

l (u(zi ,,+1 Ou Ou Ou
,YJ,tn+l)--Ui,j ) = N +Mx_x +M_yy

+ h6(50_0)(1- Mz2_2)(4 - Mz2)_2)(12 - Mz2)_2) 0@7

2 2 07u

+ h6(5_O40)(1- M_eA2)(4- M_2A2)(12- My A )-g-'7
oy

--h6(M_-2MY),_ 6 07u M_My6)A 60ruO'z'gOy h6( 720 OxOy 6

S 2 O'tU h 6 M, 2Myr, Oru_ h6(M,_°My )A6 ( )A 6 --
" 240 OxSOy 2 240 Ox20y 5

_h6(M,:aMy3)A 6 0ru h6(M,_3My4)A 6 0r._....____u
144 0Z40y 3 144 Ox30y 4

+ O[h'].

Algorithm (30) is consistent with equation (12), it is sixth order accurate in space and time,

and it has a leading order truncation error term that is dispersive with every possible cross
derivative term.

IV-E: Numerical Comparisons

As a numerical test of the algorithms in this section, consider equation (12) with the
initial data

u(z,y,O) = Sin(Trx)Sin0ry),

for (x,y) • [-1, 1] x [-1, 1], and with periodic boundaries. Computations will be done with

Mz = 1 = M r and A - g-_ - _, for a sequence of grid sizes, and out to the fixed time t = 10.

Numerical data for this problem is presented in Table D. In Table D, _ is the number of grid

points in [-1, 1], or per wavelength, nl0 is the number of time steps required to compute to

t = 10 at a given grid resolution with A = _, and the data is the maximum absolute error

in u over the entire grid at t = 10. In the column headings of Table D, Or is the order of

the method, EX9 and TS9 represent the second order exact propagator and Taylor series

algorithms (19) and (20) on the nine point 3 x 3 stencil, EX21 and TS21 represent algorithms

(24) and (25) on the twenty one point stencil, EX49 and TS49 represent algorithms (28) and

(30) on the forty nine point 7 x 7 stencil, and EX37 and TS37 represent algorithms (29) and

(30) on the thirty seven point stencil. Note that the square twenty five point 5 x 5 stencil is

not used, and that the sixth order Taylor series algorithm (30) is used with both the thirty

seven and forty nine point stencils. The second order Taylor series method TS9 is unstable

at all grid resolutions with A = 0.8 for M_ = 1 and My = 1, so that A = 0.4 is used to obtain

it's data. The large error for the second order Taylor series algorithm at _ = 8 is due to

dispersion errors from poorly resolved data, just as for similar cases among the data in Table
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A. Calculation of error reduction exponents similar to those conducted for the data in Table

A confirms the order of accuracy for each of the methods used to produce Table D.

Table D: Data For The Scalar First Order Wave Equation In 2D

u(x,y,O) = Sin(rx)Sin(_ry), A = 0.8, Mr = 1 = M_

Maximum Error In u at t = 10

Or=2 Or=2 Or=4 Or=4 Or=6 Or=6

"£2 nlo EX9 TSg* EX21 TS21 EX49 TS49

4 25 0.999 0.959 0.978 0.675 0.670

8 50 0.895 1.414 0.156 0.365 1.8D-02 2.0D-02

16 100 0.322 0.387 9.6D-03 4.2D-02 2.8D-04 2.3D-04

32 200 8.0D-02 8.6D-02 5.4D-04 2.8D-03 4.1D-06 2.9D-06

64 400 1.9D-02 2.0D-02 3.2D-05 1.8D-04 6.0D-08 4.0D-08

128 800 4.7D-03 4.7D-03 1.9D-06 1.1D-05 9.1D-10 6.0D-10

256 1600 1.2D-03 1.2D-03 1.2D-07 7.0D-07 1.4D-11 2.8D-06

512 3200 2.9D-04 2.9D-04 7.3D-09 4.4D-08 2.2D-13 2.9D-05

* Note that A = 0.4 for the data in this column.

Or=6 Or=6

EX37 TS37

0.733 0.841

2.2D-02 2.2D-02

3.1D-04 2.6D-04

4.3D-06 3.2D-06

6.2D-08 4.2D-08

9.2D-10 6.1D-10

1.4D-11 9.2D-12

2.2D-13 4.0D-11

The sixth order Taylor series methods become inaccurate at fine grid resolutions with

= 0.8, near _ = 256 for TS49, and near _ = 512 for TS37. If the grid ratio is reduced, then

these Taylor series methods produce accurate results at these grid resolutions. The fine grid

errors with the TS49 and TS37 methods appear to be due to the excitation of parasitic steady

state periodic solutions of equation (12). Notice that the Taylor series algorithm on the larger

square stencil shows signs of inaccuracy at a coarser grid resolution than the algorithm on

the reduced stencil. Numerical experiments show that exact propagator methods are stable if

both one dimensional CFL numbers are less than one in absolute value, but that the Taylor

series methods have more restrictive stability constraints. At each level of grid refinement,

the data in Table D shows errors from the exact propagator and Taylor series methods on the

same stencil that differ by at most a factor of about 5. The largest differences are in the fourth

order results, with smaller errors from the exact propagator method. Recall that both types

of method can be recast as conventional finite difference algorithms, and that in this form the

number of operations depends only upon the stencil. The exact propagator methods appear

to be at least comparable in accuracy to the Taylor series methods, if not more accurate, and

they appear to be more robustly stable, without requiting more operations. The choice of

largest or smallest possible symmetric stencil does not appear to be significant for accuracy.

The data in Table A for the one dimensional linearized Euler equations, and the data in

Table D for the two dimensional convection equation both come from periodic initial value

problems with pure frequency sine wave initial data at the same wavelength. The two dimen-

sional convection calculations are run with the velocity (Mr, My) = (1, 1), which is at a 45 °

angle with the grid lines. The close agreement between the error levels of the comparable one

and two dimensional results suggests that convection skew to the grid does not introduce sig-

nificant errors if these algorithms are used. Note that both algorithm types use time evolution

that reflects the genuinely multidimensional nature of the convection equation. The Taylor

27



seriesin time methods include the cross derivative terms required for higher than first order

accuracy in time, and the exact propagator methods directly incorporate the characteristic

behaviour of the solution. Both method types use genuinely multidimensional interpolation

for the local approximation of the solution surface in order to obtain the expansion coefficients

that are needed for accurate time evolution.

If interpolation is used with the data in Table D, then in order to achieve a maximum

absolute error of less than 5.0 x 10 -4 at t = 10, the second order methods require _ > 216, the

exact propagator fourth order method requires -_ >_ 17, the Taylor series fourth order method

1 grid ratio of A = _-_, therequires _ >_ 30, and the sixth order methods require _ > 8. For a zxt

10h Consequently, the totalnumber of time steps nl0 required to compute to t - 10 is nl0 - -W"

number of multiplications required for each computation on the domain (x, y) e [-1, 1] x [-1, 1]

with _ mesh points per unit interval, using a stencil with n_ grid points, and for nl0 time

steps is

total multiplications - nlo4h_ns - 40h3ns
A

In order to meet the 5.0 x 10 -4 error bound at t -- 10, the ratio of the number of multiplications

required by the different order methods is approximately

40 x 2163 x 9

40 x 17 s x 21
879.1,

for either of the second order methods to the exact fourth order method, and

40 x 173 x 21

40 x 83 x 37
5.4,

for the exact fourth order method to either of the sixth order methods. If the Taylor series

fourth order method is used, the ratio of the number of multiplications required by the different

order methods becomes approximately 160.0 for the second order methods to the fourth order

method, and approximately 29.9 for the fourth order method to the sixth order methods.

These comparisons show that the efficiency advantage of higher order methods is increased for

increased spatial dimension, as well as for increased absolute simulation time and decreased

maximum error limit. The greatest payoff by far is in the relative efficiency shown by the

exact propagator fourth order method when compared to the second order methods.
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V: Numerical Algorithms For Linearized Euler Equations In Two Dimensions

The linearized Euler equations in two space dimensions can be written as

Ou Ou Ou Op

N+Mx-_x+M,_y+-_x =0,

Ov Ov Ov Op
+ + M,N + N =O,

Op Op ,Op O_ Ov
-gi+M  +MYN+ +N =o,

(31)

where V is the pressure, (u,v) the disturbance velocity, and (Mx,My) the constant mean

convection velocity. This formulation is for the isentropic case, and is nondimensionalised in

terms of the Mach number. The linearized Euler equations are essentially multidimensional

because they cannot be diagonalized and transformed into a simpler set of decoupled equations,

and wave propagation is along characteristic surfaces instead of characteristic curves.

A uniform mesh is used, with mesh sizes h and k in space and time, and with numerical

solutions denoted by u -_.,,J,v -_.:,J,and Pi,j." Polynomial spatial interpolations to u, v, and p are

written in local coordinates around (xi,yi) at tn with the form (13). Second, fourth and

sixth order methods will use the nine, twenty one, and thirty seven point stencils in Figure 1.

Interpolation coefficients are obtained by the method of undetermined coefficients, and can

be interpreted in terms of spatial derivatives as in (14). Exact polynomial solution forms for

the linearized Euler equations can be derived by substituting the expansion forms

Or

{a,B}EAS 7=0

Or

v(x,+  ,yj +  ,tn + va(x, ,t) = ", (32)
{a,Z}eAS _=O

Or

{a,B}eAS'_=o

into system (31), and obtaining all the terms with 7 P 0 by requiring system (31) to be

satisfied for all x, y and t. Coefficients with 7 5¢ 0 are equivalent to time derivatives, and

the resulting polynomial solutions are expressed entirely in terms of the spatial expansion

coefficients. The exact polynomial solution forms with the local spatial interpolants as initial

data give exact propagator algorithms, and automatically incorporate into the solutions the

correct local multidimensional wave propagation dynamics for the local spatial interpolants.

V-A: Second Order Algorithms

The second order methods approximate u, v and p with the biquadratic spatial interpola-

tion (18) on the 3 x 3 stencil. Formulas for the u expansion coefficients are given in Appendix
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A. The second order exact propagator method has Or = 4 in (32), with the solutions given in

Appendix C. The exact propagator algorithm is

unq-1 "-ua(O, O, k)i,j

-"?200

+ k(-plo - Muuol - Mzulo)

1

+ k2(M,,p_+ 2M_mo+ M,,2_,o_+ M_M,,_,I_+ (1+ MJ)_,_o+ _,,_1) (33,,)

+ k_(-(_ + M_)p_ - 2M_M,,p_

- MxM,,h,l_ - (My+ M_M,,)u_ - Myv_:- M_v_)

+ k'((2M_ + 2MxM_2)P22 + (!6 + My2 + M_2M_2)u22 + 2MzMyv22),

v"+_ =va(O, O,k)i,j

=Vo0

+ k(-POl - Myvol - M,.vlo)

1 2 2 v
+ k2(2MyVo2 + M_pll + _ull +(1 + M_)vo2 + M_Myvll + M_ 20) (33b)

1 M2
+ kS(-2M_Myp12 - (-_ + _)p2a

- MyUl2 - M_u21-(M_ + M_M_)v12 - M_Myv21)

2 1 2 _'2M2_ v "_+ k4(( My + 2M_M_)/_2 + 2MzMyu22 + (-_ + M x + av._x _) 22),

and
pn+l_,_ =pa(o,o,k)

-"PO0

+ k(-MyPol - MxPlO - Ulo - Vol)

+ k2((1 + M_)p02 + M_MyVll + (1 + M2).20

+ Myull + 2M_u2o + 2Myv02 + Mxv11)

+ k,_(-(M_+ M_M_)r,_-(M_, + M_M_)p2_ (33c)
1 1

-(-_ + M2)u12 - 2M_M_u2_ - 2M_M_vl2 -(-_ + M_)v21)

+ k'(( + M_ + M_ + M_M_ )p22

+ (2M_/3+ 2M_M_)_,_+ (2M_/3+ 2M_M_)_,_).

Notice that algorithm (33) has the form of a time expansion with terms up to k 4. If algorithm

(33) is written in the form of a conventional explicit finite difference method, then it requires

twenty seven constant coefficients for each of the three equations. The time expansion form
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is easier to develop and program, and is more flexible, but the finite difference form is more

computationally efficient.

The truncation errors for algorithm (33) are

_(U(Xi,yj,tn+l) --" n+l h2_3u .Mzui, j )='4- _x3 (-_--)(1 - (3 + M_)A2)

+ h2O_ M, 1 M._ :)-
+ h2 03p 1 .

_xS (_)(l-(1 + 3M2)A 2)

+ O[h3],

(34a)

k(V(Xi, y j, tn+l) -
v .n.+l) = -4- h 2_93v M_,,, _-Z_(-C)(_- M_ _)

+ h_°_ÈbT(_---_")(_ - (3+ M_)_2)

+ h_O_p_(1_)(1_ (1+ 3M_)X2)

+ O[h3],

(34b)

k(P(xi, yj, tn+l) --Pi,j ) = +

+

+

+

+

203p M_

h _(--E-)(_ - (3 + M_)__)

_O_p M, M_)_)
h b-_ (T)(_ - (3+

203u 1
h _xZ(_)(1 - (1 + 3M_)A 2)

20Sv 1

h b-_u_(_)(1 - (1+ 3M_)_2)
O[h3].

(34c)

Note that the truncation errors (34a) and (34c) for u and p are the lowest order errors of

the second order method from Section III plus one additional third derivative term each. The

truncation errors (34) clearly show that algorithm (33) is second order accurate and dispersive.

The second order Taylor series time expansion algorithm on the 3 × 3 central stencil can

be obtained by taking the time terms up through k 2 in (33). If symmetric crossdifferencing is

used to obtain u11, Vll and P11, then the second order Taylor series time expansion algorithm

requires the same number of floating point operations per grid point per time step as algorithm

(33). With this differencing, the truncation error for u from the second order Taylor series
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time expansionalgorithm is

l (u(xi, - 2 C_u Mzyj,t,+l) _ ,+1 (3 + M_)A 2)_,,_ ) =h b-U_(-g-)(1 -

oy u

h20 v M 
+ Ox 3' 6 )(1-(I+3M:)A 2)

-k-h 2 03u (-1)(1 2 h 2 03u -1 2 2
O-_y T + M;)MvA2 + Ox-_y2(-2 -)MxM;A

+h _ i_v -i As h2 03v -
0_(T)M= + OxOy------_(--_-)M.A2

+h_ 070y°_p (-1)MxM'X_ + h_0x0V---_°3p (-_)(1 +3M_)X_

+ O[h3].

This truncation error for u from the time expansion method contains the error (34a) for u

from the exact propagator algorithm (33) plus an additional six cross derivative terms. The

truncation errors for v and p have a similar complexity with cross derivative terms that are

absent from (34b) or (34c). Note that algorithm (33) correctly incorporates the local wave

dynamics for its spatial interpolant, but that the Taylor expansion in time does not.

V-B: Higher Order Algorithms

For the sake of brevity, only an outline will be given of higher order methods, but with

sufficient detail to ensure their specification. The local approximation of u, v and p is done

for the fourth order algorithms with the twenty one point stencil and interpolation (23), and

for the sixth order algorithms with the thirty seven point stencil and interpolation (27). With

these approximations the fourth order exact propagator method has Or = 6 in (32), and the

sixth order has Or = 8. The exact solution forms are used to obtain the numerical algorithms

_ n+l va(O, O, k), and ,+1 = pa(O, O, k). The time expansion_ .+1 _ ua(O, O,k), vi,iwith ui, j -- = Pij
forms of the fourth order algorithm are given in Appendix D. Notice in Appendix D that the

. n+l vn+lalgorithms for -¢ti,j and i,j are symmetric in u and v, if the role of x and y are interchanged.
The truncation errors for the fourth order exact propagator algorithm are

¼(.(x,, .,,_.+1) - .,"_') = h_ o% M.(4 - 5_2(3+ M:) + _(5 + iOM_+ M_))
120 Ox 5

h4 05_M "4 5_2My 2 -_- _ M;)
120_'gY 5 u(_ 4 4

h4°_P(4- _:(3+ M_)+ _(i+ XOM2+ _M_))
120

+O[hS],

(35a)
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_(v(x. v-t1) =yj,t.+l) - ,,j

_(p(xi, y.i,tn+l) _n+l_Pi,j ) =

h4 0Sv My(4- 5)_2(3 + M_) + )_'(5 + 10M_ + M_))
120 0y s

4 4h' 0_, M_(4_5_2M_ + _, M2)
120 Oz 5

h' 05p(4 - 5A2(3 + M_) + )_4(1 + 10M_ + 5M_))
120 _ys

+O[h_],

h4 05p Mz(4- 5A2(3 + M_) + A4(5 + 10M_ + M_))
120 Ox 5

h' O_u (4 - 5_(3 + M2) + X4(1 + 10M2 + 5Mg))
120 Ox s

(35b)

h 4 o'_pMu(4_ 5,_2(3 + M_)+ _4(5 + IOM_ + M_)) (35c)
120

h 4 05v.

_ (4- 5_(3 + M_)+ _'(1 + 10M_+ SMg))120 y

+O[hS].

Note that the truncation errors (35a) and (35c) for u and p in two dimensions are the lowest

order error terms of the fourth order method from Section III plus an additional fifth derivative

term. The truncation errors for both methods are dispersive and completely lacking in cross

derivatives, and they show that the methods are fourth and sixth order accurate in space and

time, respectively.

The fourth order Taylor series time expansion algorithm can be obtained by dropping

the k 5 and k 6 terms from the exact propagator algorithm in Appendix D. Similarly, the

sixth order Taylor series method can be obtained by dropping the k r and k s terms from the

sixth order exact propagator algorithm. The truncation errors for these methods confirm

their order of accuracy in both space and time. None of the Taylor series algorithms can be

interpreted as correctly incorporating the wave propagation dynamics of their interpolants,

and they exhibit a plethora of cross derivative terms in their lowest order truncation errors

because these derivatives from the spatial interpolation are not incorporated in the local time

evolution. The number of error terms that the Taylor series algorithms add to the lowest

order truncation errors from the exact propagator algorithms increases with the order of the

algorithm.

V-C: Numerical Comparisons

As a numerical test of the algorithms that are discussed in this section, consider system

(31) with the initial data

p(x, y, O) = Sin(Trx)Sin(Try),

u(z, v, O)= O,

v(z, v, O)= O,
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for (x,U) • [-1, 1] x [-1, 1], and with periodic boundaries. The exact solution is

p(x, y, t) = Cos(Vr2_rt)Sin(zr(x - M,t ) )Sin( _r( y - M,t )),

u( x, y, t ) - _22 Sin(x/'2_rt)Cos(_r(x- M_t ) )Sin( Tr(y - M,t ) ),

v(x, y, t) - -_l_sin(x/_Trt)Sin(Tr(x- M,t))Cos(Tr(y - M,t)),
V'z

for (z,y) • [-1,1] x [-1, 1] and t _> 0. This problem is the direct two dimensional extension

of the problem used in Section III-B for the numerical comparison of algorithms for the one

dimensional linearized Euler equations, and similar data is used for the numerical tests in

Section IV-D. The algorithms in Section III for the linearized Euler equations in one space

dimension have the stability constraint A = _ < 1 and in that section A = 0.8 is used with- I+IMI'
mean convection velocity M = O. Two dimensional analogs of the one dimensional stability

constraint include replacing 1 + [M[ by either 1 + (M_ + M_)½ or by 1 + Max{IMp[, [My[}.

For M_ = 1 = Mu, this becomes either A < 1/(1 + v_) _ 0.414, or A < 1/(1 + 1) ----0.5. With

Mz -'- 1 = My, the exact propagator algorithms for equation (31) are stable with A = 0.5, the

second order Taylor series algorithm is not stable with A -- 0.4, but it is stable with k -- 0.25,

and the fourth and sixth order Taylor series algorithms are not stable with A - 0.5, but they

are stable with A -- 0.4. The computations in this section will be on a sequence of grid sizes

k _ 0.4, except with A -- 0.2 for the secondout to the fixed time t -- 10, generally with A -

order Taylor series algorithm. Numerical data for this problem is presented in Table E.

Table E: Data For The Linearized Euler Equations In 2D

p(x,y,O) = Sin(Trx)Sin(Try), u(x,y,O) = 0 = v(x,y,O), A = 0.4, M, = 1 = M s

Maximum Error In p at t = 10

Or=2 Or=2 Or=4 Or=4 Or=6 Or=6

_ nlo EX9 TSg* EX21 TSn EX37 TSar

4 50 0.885 0.851 0.931 0.917 0.735 0.763

8 100 0.888 1.054 0.168 0.262 2.2D-02 1.7D-02

16 200 0.344 0.524 9.9D-03 2.5D-02 3.0D-04 1.9D-04

32 400 0.102 0.145 6.9D-04 1.7D-03 5.3D-06 3.4D-06

64 800 2.7D-02 4.0D-02 4.5D-05 1.1D-04 8.8D-08 5.9D-08

128 1600 6.9D-03 1.0D-02 2.9D-06 6.8D-06 1.4D-09 9.7D-10

256 3200 1.7D-03 2.6D-03 1.8D-07 4.3D-07 2.3D-11 5.1D-12

512 6400 4.4D-04 6.6D-04 1.2D-08 2.7D-08 1.6D-11 5.0D-12

* Note that X = 0.2 for the data in this column.

In Table E, _ is the number of grid points in the interval [-1, 1] or per wavelength, nla

is the number of time steps required to compute to t = 10 at a given grid resolution with

A = 4, and the data is the maximum absolute error in p over the entire grid at t = 10. In the

column headings of Table E, Or is the order of the method, and EXm and TSm represent the
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exact propagator and Taylor series algorithms on the m point stencil. Calculations of error

reduction exponents similar to those conducted for the data in Table A confirm the order of

accuracy for each of the methods used to produce Table E. The error levels in Table E are

similar to those in Table D when compared by method and by grid size. The large error for

the second order Taylor series algorithm at _ = 8 is due to dispersion errors from poorly

resolved data, just as for similar cases among the data in Tables A and C. If these methods

are compared by order, then the exact propagator and Taylor series methods are similar both

in the computational effort that they require, and in the errors that they produce, but the

exact propagator methods have less severe stability constraints. For these computations the

total number of multiplications can be calculated as in Section IV, with

total multiplications = nao4h2nsnenv - 360h3ns
A

where this problem involves ne = 3 equations using data from nv = 3 variables in each

equation. Interpolation of the data from the exact propagator methods in Table E implies

that in order to achieve a maximum allowable error of 5.0 x 10 -4 at t = 10, a grid resolution

of _ = 248 is required for the second order method, _ = 20 for the fourth order method, and

a_ _ 8 for the sixth order method. The ratio of the total number of multiplictions requiredh --

to meet this error constraint at this time is approximately 817.1 for the second to the fourth

order methods, and 8.9 for the fourth to the sixth order methods. These results are similar to

the comparisons obtained in Section IV, showing greater efficiency for higher order methods.

V-D: Numerical Computations With Boundaries

Algorithms require boundary conditions in order to be useful. This subsection presents

the results of computations with both real and artiflcal outflow boundaries using the fourth

order exact propagator algorithm. Details on boundary treatments are given in [15] and [12].

Consider the linearized Euler equations (31) with the initial data

+ (u - 25)5)],p(x,u,o) = exp[-In(2)( 25
u(x,u,o) = o =

with Mx = 0.5 and My = 0, and on the computational domain (x,y) E [-100,100] × [0, 200],

where there is a wall at y = 0, a computational inflow boundary at x = -100, a computational

outflow boundary at x = +100, and a far field boundary at y = 200. This problem represents

a Gaussian pressure pulse near a wall in a Mach 0.5 flow parallel to the wall. Calculations

will be done with h = 1 and k -- 0.25 out to t = 150.

The wall boundary conditions are

V _-_ 0,

OP=O.
Ou
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The normal derivative of p is evaluated on the wall with fourth order interior differencing

on a one sided five point stencil. In a wall boundary cell, the fourth order method is used

to produces values for the three variables at the cell center and at one intermediate point

between the cell center and the wall, and for u on the wall. All of these solution values

are found in essentially the same way as for the one dimensional equations in Section III-C,

using the algorithm in the form of a Cauchy-Kowaleskaya expanion in space and time, with

expansion coefficients that are obtained from one interpolation on the boundary cell. The

form of the algorithm as an expansion in space and time is evaluated at (0, 0, k) to obtain the

three solution values for the cell center, at (0, -h, k) for the intermediate point values, and at

(0,-2h, k) for the value of u on the wall.

New outflow conditions that have been derived by Hagstrom [15] are used at the outflow

boundary x = +100. If system (31) is diagonalized in the x direction, or normal to the

boundary, then the primitive variables p, u and v can be replaced with

r 1 "- Zt -- p,

r 2 _ V,

r3 = u-t- p.

For subsonic flows, rl is conventionally viewed as coming into the computational domain from

the +z direction, and both r2 and r3 as going out. The variable rl is obtained on the outflow

boundary as the solution of the system

Or l Ov

--_- - Mz _-ffy- (£ + f2 + gl + g2) = O,

Oh _ _k (1 - M_ 2) O_p& , kJ(1- = -T Oy2'

Ogk _ _k (1 - M_ _) 02p-- + Mx ) =-T b- y

for k -- 2, where c_1 -- Cos(_), a2 = Cos(_g_), #1 __ 2Sin(_), and #2 - _ Sin(T).2_ Notice

that this boundary condition requires no geometric information about the disturbance, neither

globally nor locally. Details are given in [15]. The algorithmic implementation of this boundary

condition is similar to the algorithm for the wall conditions. In an outflow boundary cell, the

space and time expansion is evaluated at (0, 0, k) for the three solution values that are needed

at the cell center, at (h, 0, k) for the three values at the intermediate point, and in combination

at (2h, 0, k) for the values of r2 and ra that are needed on the outflow. Separate expansion

forms are developed on the boundary for rl, fl, f2, gl, and g2, using the expansion forms for p

and v. These expansion forms use a stencil of width five, and are designed to be fourth order

accurate in both space and time. The system for rl and the fk and gk is one dimensional on

the boundary line, forced by the evolution of p and v. The values of rl and the fk and gk

are all initialized at 0. At the intersection of the wall y --- 0 and the outflow x = +100, ft is

obtained by solving its PDE using interior differencing, while gk is obtained from

Og_ Of_.__k= 0, (36)
0---_-+ Oy

36



for k = 1 and 2. At the far field y = +200 on the outflow x = +100, f_ = 0 and gk is obtained

by solving its PDE using interior differencing, for k = 1 and 2. Details are given in [12].

Characteristic boundary conditions are used on the inflow boundary at x - -100, and

on the far field boundary at y = +200, with outgoing Riemann variables solved using interior

differencing and the appropriate momentum equation, and incoming Riemarm variables set

equal to 0. For these two boundaries, the Riemann variables are determined by a one dimen-

sional diagonalization of the system in the direction normal to the boundary. The propagation

algorithm, the wall conditions, and the outflow boundary algorithm are all implemented as

fourth order methods, in both space and time, with central stencils having a stencil width of

five grid points, unless they are offset by interior differencing at a boundary. The inflow and

far field boundary algorithms are implemented with a second order method using a stencil

with a three point width, since nothing ever happens at these two boundaries for t _< 150.

The results for this wall pulse problem are presented in Figure 2, which shows pressure

contours at t = 15, 45, 75, and 150. These results have been briefly described in [11]. In

Figure 2a at t = 15 the expanding pressure wave just begins to touch the wall. In Figure

2b at t - 45 there is a very evident reflecting wave expanding behind the expansion front,

with interferance patterns where they interact near the wall. The expanding wave reaches

the artiflcal outflow boundry at about t = 60, and shows no disturbance at this moment

of first contact. In Figure 2c at t - 75 the two waves have already passed through the

artiflcal outflow, and have progressed from being parallel to the outflow boundary at their

first contact, to being at approximately 45 ° with the boundary. Notice that there are no

evident disturbances in the wave front contours near the boundary at t = 75, even though the

expanding waves have just passed through the intersection between the wall and the outflow.

This type of intersection can create a transient error that is propagated with the waves as a

reflection trailing backwards from the intersection between the solution and the boundary. In

Figure 2d at t - 150 the two wave fronts have become nearly perpendicular to the outflow

boundary, and the pulse center has convected to (x, y) = (75, 25). The solution downstream

from the artificial outflow boundary at x = 100 continuously effects the analytic solution for

x _< 100 over the time interval 60 < t _< 150 during which there is significant downstream

solution structure. The plot sequence shows a correct evolution on the computational domain,

with solutions that are symmetric in x and have round wavefronts, with no visible perturbation

of the solution right up to the boundary, and with no evident reflection from the boundary

or the wall, either as a transient or cumulative effect. This data reflects both the accuracy

with which the propagation algorithm simulates the fully multidimensional wave dynamics of

the linearized Euler equations, and the unobtrusive quality of the artifical outflow boundary
condition.

It could be argued that the structure of the wall pulse solution is so simple near and

downstream from the outflow boundary that the quality of the outflow boundary is not seri-

ously tested. A more severe test of the algorithm and outflow condition is given by placing

the initial Gaussian pressure pulse in a duct. Consider the same initial data for the Gaussian

pressure pulse but on the computational domain (x, y) E [-100, 100] × [0, 50], with two walls

at y -- 0 and y -- 50, with an inflow at x = -100, and an outflow at x = +100. The fourth

order exact propagator algorithm is used, with h = 1 and k = 0.25 on a uniform grid. The

only change in the outflow boundary is that at the intersection of the wall y = 50 and the
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outflow z -- +100, gk is obtained by solving its PDE using interior differencing, while fk is

obtained from (36) for k = 1 and 2. The results for this duct pulse problem are presented in

Figure 3, which shows pressure contours at t = 15, 45, 75, and 150. Notice that the wave front

hits the two walls and is reflected back and forth several times. Each time this happens, a

more complex structure of interference patterns is visible in the pressure contours. The same

story is visible in these calculations as from the wall pulse problem, but now the pressure

structures are very much more complex, both as they are successfully passed through the

numerical boundary, and as they continue to effect the evolution of the pressure structures

within the numerical domain because of their virtual representation by means of the bound-

az3z condition. In Figure 3a at t - 15 the expanding pressure wavefront begins to touch both

walls. In Figure 3b at t - 45 there are two reflecting wavefronts that have almost reached

each other in the center of the duct. In Figure 3c at t - 75 the two reflecting wavefronts

have passed through each other while propagating completely across the duct, and have been

reflected once again to pass through each other a second time and reach the wall from which

they were originally reflected. The complex interference pattern at the upstream end of the

disturbance has a rich structure created by the crossing and recrossing of the reflecting waves.

Notice at t - 75 that approximately half of the complex structure at the downstream end of

the disturbance has already passed out of the computational domain. In Figure 3d at t --- 150

the two wavefronts have gone through further reflections and interactions, creating a very

complex upstream interference pattern. Notice that the entire interference pattern is missing

from the downstream end of this plot, since it has passed entirely out from the computational

domain. If a transperancy is made of this plot, it can be turned over and the contour lines in

the center wiU allign perfectly, with the transparency contours near the center of the domain

exactly overlaying the plot contours near the boundary. This symmetry in the plot shows that

even though nearly half of the solution structure is outside of the compuational domain, there

is no visible effect on the solution inside the domain. The lack of discernable effect from the

outflow boundary occurs in spite of the fact that the propagating wavefronts in the computa-

tional domain are virtually perpendicular to the outflow boundary. This computation shows

the unobtrusive and robust quality of the artificial outflow boundary condition [15].
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V'I: Summary And Discussion

This paper presents two techniques for developing algorithms for hyperbolic systems in

multiple space dimensions, the use of local exact polynomial solutions, or exact propagators,

and the use of multivariate Cauchy-Kowaleskaya expansions, or truncated Taylor series. Both

techniques of algorithm development can be viewed as approximating the solution of a hy-

perbolic system as a whole, rather than individual derivative terms in separate equations.

The multivariate polynomial solution approximations that are used by these techniques in-

clude various cross derivative terms, which are needed for high order accuracy, and improved

isotropy and stability. Both of these two techniques are used to develop algorithms for the lin-

ear convection equation and the linearized Euler equations, in one and two space dimensions.

The explicit single step algorithms developed by these two methods use symmetric stencils

and are dispersive, they use data from only one time level, they have the same order of accu-

racy in both space and time, and they can be extended to arbitrarily high orders of accuracy.

Algorithm examples are given with up to eighth order accuracy in one space dimension, and

sixth in two dimensions. For each order of method, and for each type of algorithm, the choice

of large or small symmetric stencil in two space dimensions does not appear to be significant

for accuracy. The higher order methods are more efficient in terms of the total number of

floating point operations required to compute to a fixed simulation time with a stated error

bound, and they can require less operations than a low order method by factors of up to sev-

eral orders of magnitude. The relative efficiency of the higher order methods increases with

either the simulation time or the dimension of the system domain, and with decreases in the

error bound. The exact propagator methods appear to be at least comparable in accuracy to

the Taylor series methods, if not more accurate, and they appear to be more robustly stable,

without requiring more operations. Exact propagator algorithms incorporate the correct local

multidimensional wave propagation dynamics for their polynomial spatial interpolants, and

they can be viewed as a generalization of the method of characteristics to nondiagonalizable

hyperbolic systems in multiple space dimensions. In particular, exact local polynomial solu-

tions are shown for the linearized Euler equations in two space dimensions. Stable high order

boundary conditions are possible using a consistant calculation of the correct wave dynamics

of the solution simultaneously from the center to the exterior edge of a grid cell on the bound-

ary. High order boundary conditions are developed for the linearized Euler equations in one

space dimension, and demonstrated in two.

There are several evident extensions, and issues that are not addressed in this paper.

Analysis of the algorithms is being done, particularly for stability, with an investigation of the

different stability constraints for the exact propagator and Taylor series methods in two space

dimensions. The form of the algorithms are independent from the spatial interpolation that

is used, so that various methods can be used for estimating the spatial expansion coefficients.

In particular, an implementation on a nonuniform or unstructured grid is being prepared with

an appropriate spatial interpolation, and it should not incur any degredation in the order of

accuracy. Implementation in other coordinate systems is being explored. Complete details

of the outflow boundary algorithm are being prepared for publication [12]. In particular,

compatibility conditions for the juncture of two artifical boundaries are being developed, and
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implementations for an artifical inflow are being prepared. These two approaches to algorithm

development are being extended to other first order linear systems, such as for MaxweU's

equations. The Taylor series method is being extended to variable coefficient cases.
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Appendix A: Biquadratic Expansion Coefficients For A 3 × 3 Stencil

The spatial approximation to u around (xi, Yi) at t. is

_'(=_+ =,yi + _,,t.) = ,,,,(=,u) =
2

a,/Y=O

with difference coefficients

UO0 -- It. n .

1 "u"
ulo = _( i+l,i - u_'_lj),

1 . - 2U_,j + unu2o = _--_(ui+_j ___j),

1 .

1

Ull = 4hz,,Ui+l,j+l i+1,j-1 i-l,j+1 "{- i-l,j--1),

1 n U n un
U21 = --_(Ui+l,j+l --2U_,j+I "_ i--l,j+l -- i+1,j--1 + 21/_,j--1 --

1 n un
_o_= 5U(u_,j+, - 2u_,i+ _,__,),

1
",_ = 4-_(_'_+,,i+,- 2_'7+,,i+ "['+,,i-,

1 n n U n
U22 = "_(Ui"l-l,j+l -- 2Ui+l,j + i+l,j--1

-1t- un 1,j+l -- 2uin...1,j + Uin-.1,j_l ).

ui"--1j-1),

- u_'-1,i+1 + 2u_. 1j u"-- -- i--l,j--1)_

- 2u,",,+_+ 4,,,",j- z,,_i__
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Appendix B: Expansion Coefficients For A Modified Biquartic On A Twenty One
Point Stencil

The spatial approximation to u around (xi, YJ) at t. is

ua(x, y) ----?200 -I- ulOX Jff u20 x2 Jv U30 x3 2f- U40 x4

+(uol + ullz + u21z 2 + uzlz 3 + u41z4)y

Jff(U02 "3L Ul2X Jr- U22X 2 -Jff U32X 3 -{- U42x4)y 2

+(u03 + Ul3Z + u23z2)y 3

+(?204 "_ U14 x "_ U24z2)y 4

"-- Z Uc_'flXaY$'

{a,fl}EA_t

with difference coefficients

UO 0 = nUi,j,

1
_"-T'_- ( - s 71 + s hl,j -UI0 12a.Ui-2,i - ,J

1
-- _ __U. n .
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1
Un _ U n n

UZl 24h 4 ( i-2,j-1 i-2,j+1 - 2Un--l,j--1 q- 2Ui--l,j+l

+ 2_i_+_,j__- 2_,_'+_,i+x- ,,_"+_,,__+ _i_+:,_+_),
1

u41 - 48h5 (-ui__2j_l + un_2,j+l + 4u'__l,j_l - 4U_-l,j+l

Zt n-- 6U[j_ 1 "_- 6 i,j+l

+ 4uT+lj-1 - 4un+lj+l -- u7+2,1_ 1 + u/"+2,./+1),

1
= u" 16u[j_, 30u[i 16u[j+l -- u,,j+_),Uo2 24h 2 (-- i,j-2 _- __ q_ n

1

u12 = 4ShZ (2uT_2,j_l - 4u7_2,1 + 2u__2,1+1

n n Un ttn
q- Un_l,j_2 -- 20Ui_l,j_ 1 -q- 38Ui_1, j -- 20 i--l,j+1 -}- i--l,j+2

Un n- u_+l j-2 + 2Our+l,/-1 - 38u_+l,j + 20 i+1,1+1 - Ui+l,j+2

- 2_"+_,___+ 4_h_,i- 2_'+_,j+_),
1

_n _ un
_Z22 -- 48h 4 (-- i--2,/--1 dr- 2un-2,j i-2,j+l

-- Un_l,j_2 + 20uin.-1,j-1 -- 38uin_l,j q- 20Un_l,j+l -- un_l,j+2

n U n+ 2u_,j_ 2 - 38ui,i_ _ + 72u[1 - 38u_,j+_ + 2 i,i+2

n n Un n- ui+l j-2 + 20u_'+l,j-1 - 38ui+1,i + 20 i+1,1+1 -- ui+l,j+2

1
un n i--2,j+lu32 - 24hS (- i-2,i-1 + 2ui-2,i - u"

+ 2u'__1,1_1 - 4ui"_l, j + 2ui_-l,i+l

- 2u_+l,j_ 1 + 4u_+l,i - 2ui_+lj+l
n n n

+ Ui+2,j--1 -- 2ui+2, j q- Uiw2,j+ 1 ),

1

u42 - 48h6 (ui"__2j_l - 2ui"-2j + u'__2,i+l

n Un
-- 4Ui_l,j_ 1 + 8 i-l,j -- 4un-l,j+l

u" -- 12u_j+ 6 i,j-1 q- 6uin, j+l

-- 4un+l,j_l q- 8Un+l,j -- 4uin+a,j+l

+ ._%_,,__- 9.u7+_,,+ u_%_,_+_),
1

uo3 = 12hZ (-ui[j_2 "_ 2uin, j-1 -- 2u_j+l + u[j+2),

1
U n 2 r_ n n

_t13 -- 24h4 ( i--l,j--2 -- Ui--l,j--1 "q- 2Ui--l,j+l -- Ui--l,j+2

- u?+_,,__+ 9.u_+_,i__- 2u_"+,,_+_+ _"+_,_+2),
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1
u23 - 24h5 ((ui"-_l,j_2 - 2ui_-l,j-1 + 2ui=...1,j+l - u'_-l,j+2

- 2ui_,j_2 + 4ui_,j_1 -4ui_j+ I + 2ui",j+2

._ Un+l,j_2 _n n-- 2 i+l,j--1 "_ 2Un+l,j+i -- Ui+I,j+2)'

1
= u n - 4u_,j_ a 6u_j u nUo4 24h4 ( i,./-2 + - 4u_,./+1 + i,j-t-2),

1
n ltl ulrt lr#.

U14 = 48hS ((tti_l,j_ 2 -- 4Ui_l,j_ 1 Jr 6 i-l,j -- 4Un-l,j+l "4- Ui_l,j.4. 2

" 4 "-- ui+a,j_ 2 + 4ui+l,j-1 -- 6u_+x, j + ui+l,j+x -- ui+,,j+2) ,

1
.-. _tn _ n i--l,j+2u24 48h6 ( i--l,j--2 4Un-l,j-1 + 6U_-a,j -- 4ui-l,j+l 3u un

- 2ui"j_ 2 + 8ui"j_, - 12u_j + 8u_j+l - 2u_j+2

+ uin+aj_2 - 4ui"+l,j_ 1 + 6u_+1,./- 4uin+a,j+l + u_+l,j+2)-
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Appendix C: Exact Second Order Polynomial Solution For Equation (31)

The local exact solution to the linearized Euler equations that uses a biquadratic spatial

expansion for initial data is given for u by

"-- Uo0

+ _o(_ - M_t) + _Ol(y- M_t)
+ _o((_ - M_t)_+ t_)+ _(_ - M_t)(y - M_t) + _o_(y- M_t)_
+ _1((_ - M_t)_+ t2)(Y- M_t) + _(_ - M_t)(y - M,t) _
+ _(((_ - M_t)_ + t_)(_- M_t)_+ t'/6)

+ v_ (t2/2)

+ _(_ - M_t)t_ + _(y - M_t)t_
+ ,_(2(_ - M_t)(y- M_t)__)
+ plo(-t)

+ P2o(-2(x - Mxt)t) + Pll(-(Y- Myt)t)

+ p21(-2(x - M_t)(y - M_t)t) + P12(-(Y - M,t) 2t - t3/3)

+ p22(-2(x - M.t)((y - Myt) 2 + t2/3)t),

for v by

va(z, y, t) = voo

+ vlo(X - Mzt) + vol(y - Myt)

+ _o(_ - M_t)_+ v_(_ - M_t)(y - M_t) + _o_((_- M_t)_ + t_)
+ _1(_ - M_t)_(Y- M_t) + _1_(_- M_t)((y - M_t)_+ t2)
+ v2_((z - M_t)_((y- M_t) 2 + t 2) + t4/6)

+ _1(t_/2)

+ u_a(x - M_t)t 2 + u12(y- Myt)t 2

+ u22(2(z - Mzt)(y - Myt)t 2)

+ poa(-t)

+ pll(-(z - M_t)t) + po2(-2(y - Myt)t)

-[- P21(--(Z -- M,t)2t - t3/3) q- p12(-2(x - Mzt)(y - Myt)t)

+ P22(-2((x- M,t) 2 + t2/3)(y- Mvt)t),
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and for p by

----Poo

+ plo(X - M_t) + Pol(Y- M_t)

+ p20((x - M.t) 2 + t 2) + pll(z - M.t)(y- M_t) + po2((y - M,t) 2 + t2)

+ p21((x - M_t) 2 + t2)(Y - Myt) + pa2(x - M_t)((y - M,t) 2 + t _)

+ p2_(((x - M_t) 2 + t2)((y- Myt) 2 + t _) - 2t4/3)

+  10(-t)
+ u2o(-2(x - M_t)t) + ull(-(y - Myt)t)

+ u21(-2(x - M_t)(y - M_t)t) + u12(-(y - M_t)2t - ts/3)

+ u22(-2(x - M_t)((y- Myt) 2 + 3t2)t)

+ vo (-t)

+ v_(-(x - M_t)t) + vo2(-2(y - Myt)t)

+ v21(-(x - M_t)2t - ts/3) + v12(-2(x - M_t)(y - M_t)t)

+ v22(-2((x - M_t) 2 + t2/3)(y - M_t)t).
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Appendix D: A Fourth Order Algorithm For Equation (31)

(Appendix D-U) u solution for the linearized Euler equations

t n-I-1
i,j =UO0

+k(-plo - Myuol - M_ulo)

+k2(M_pll + 2M_I_o + M_uo2 + M_M_ull + (1 + M_)u2o + v11/2)

+k_(-(1 + 3M_)w_/3- 2M_M_p_- (1+ 3M_)wo
- M_o_ - M_M_ -(1 + M_)M_ - M_(3+ M_)u_o
- My,,12- M_v21)

+k'(My(1 + M_)p13 + 2Mx(1/3 + M2)p22

+ (1+ 3M:)M_v31+ 4Mx(1+ M_)p40
+ M4uo4 + M_M_u13 + (1/6 + M 2 + M2M2)u22

+ M_(3+ M2)M_,_31+ (1+ 6M: + M:)u_0
+ (1 + 6M_)v13/4 + 2M_M_v22 + (1 + 6M2)v31/4)

-(1 + SM:+ SM_+ 15M2M_)p_/5-4Mx(1+ M2)M_p,_
- M_M4u14 - My(l/2 + M 2 + M2M_)u23

- M_(1/2+ 3M_+ M:M_,)u_-(1 +6M_ + M_)M_,_
- M_(1+ 2M_,)v_- M_(1/_.+ 3M_),_3

+ (4M_/5 + 4M_/3 + 4M_M 2 + 4M_M2)p42

+ (_/15+ M_+ M_+ M2M_)_,_
+ (_/_ + M_+ M_+ 6M2M_+ M_M_)_
+ (2MxM_+ 4M_M_)_,
+ (_.M_M_+ 4M_M_)_)
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(Appendix D-V) v solution for the linearized Euler equations

v_+ _
z,j --Vo0

-[-k(-pOl "-- Myvol - M_vlo)

- Myu12 - M_u21

- M_(3+ i_),o_- i_(1 + M_),x_- M_M,,:_ - i2_,_o)

+ 2(1/3+ i2)M,,p_ + M_(1+ M2)p_
+ (1+ 6M_)u,_/4+ 2i_i_ + (1+ _M:)_,/4
÷ (1 ÷ 6M_-t- M_)v04 -t- MxM_(3 + M_)v13

+ (1/6+ M: + M:M_)_,_:+ M_M_v31+ M_,,o)
+ks(-4MxM_(1+ M_)p_ - (1+ 5M: + 5M_+ I_M_M_)p_3/5

- 2M_(1+ M_)M_p_-(1 + IOM_+ 5M:)p,_/5
- M_(1 -t- 2M_)ul, - Mz(1/2 ÷ 3M2)u_3

- (1/2+ 3M2)M_,_- M_(1+ 2M_)_,_
- M_(1+ 6M_+ M_),_,- M_(1/2+ 3M2+ M_M_),_3
- Mx(1/2 -t- M_ -t- M2M_)v32 - M:M_v4, )

+ (2M_,/5+ _M:M_,+ 2M2M_,)p,_
+ (2MxM_+ 4M_M:,)u_
+ (2M_M,,+ _M_My)u_
+ (2/15-t- M: -t- M_ "t-6M_M_ + M_M_)v24

÷ (1/15 + M: ÷ M: ÷ M:M_)v42)
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(Appendix D-P) p solution for the linearized Euler equations

pn-.I-1
i,./ =Poo

+k(-( M,,po_)-M_v_o- _,_o- vow)
•-kk2((1 "t- M_)po2 "t" MxMypal + (1 --I-M_)P2o

+ M_ull + 2M_u2o + 2Myvo2 + M_.v11)

+k_(-M,(3 + M_)po_- M.(1 + M_)p_
-(1 + M_)M,r_- M.(3+ M_)p_o
- (1 + 3M_)u12/3 - 2M_Muu21 - (1 + 3M_)u3o

- (1+ 3M_)_o_- 2M.M_v_- (1+ 3M_)_a/3)
+k4((1 + 6M_ + M_)Po4 + M_My(3 + M_)p13

+ (1/3+ M_ + M_+ M_M_)p_+ M_(3+ M:)M,p_
+ (1 + 6M 2 + M:)p4o

2 2M_(1/3 2 u+ M_(_+ M_)_,_+ + M$) _
+ (1+ 3M:)M_u_+ 4M_(1+ M:)_,o
+ 4M_(1+ M_)_o,+ M_(_+ 3M_)._
+ 2(1/3+ M:)M_v_ + M_(_+ M_)v_)

+k_(-M_(1+ 6M_+ M_)p_,- M_(1+ 3M:+ M_ + M:M_)p_
- M_(1+ M2+ 3M_+ M2M_)p_-(_ + 6M_+ M:)M_p,_
- (1+ _OM_+ 5M'_)ux,/5- 9.M_M_(1+ M_)_,_
- (_+ 5M: + 5M_+ _SM_M_)u_/5- 4M_(_+ M:)M_,x
-4M_M_(1+ M_),_,- (_+ _M2+ _M_+ _M:M_),,_/_
-eM_(_ + M_)M_v_-(_ + _OM2+ _M_').,_/_)

+_((_/_ + M2+ _M_+ _M2M_+ M_+ M2M'_)V_,
+ (_/_+ _M: + M'_+ M_ + _M_M_+ M'_M_)p,_
+ (2M_/5 + 4M_M_ + 2M_M_)u24

+ (4M_/5 + 4M_/3 + 4M_M_ + 4M_M_)u4_
2 3

+ (4M_/5 + 4M_M_ + 4M_/3 + 4M;M_)v24

+ (2M_/_+ 4M:M_+ 2M_'M_),,_)

51



o 0 0
o + 0

o o o

x o o 0 x

o o o 0 0

o 0 + 0 o

o o o 0 o

x o o 0 X

X X 0 0 0 X X

X 0 0 0 0 0 X

0 0 0 0 0 0 0

0 0 0 + 0 0 0

0 0 0 0 0 0 0

X 0 0 0 0 0 X

X X 0 0 0 X X

(a) Stencils for second, fourth and sixth order interpolation.
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(b) Square stencil (x,y) expansion coefficients.

O0

10 01

20 II 02

21 12

22

O0

10 Ol

20 11 02

30 21 12 03

40 31 22 13 04

41 32 23 14

42 24

O0
10 01

20 11 02

30 21 12 03
40 31 22 13 04

50 41 32 23 14 05

60 51 42 33 24 15 06

61 52 43 34 25 16

62 44 26

(c) Minimal stencil (x,y) expansion coefficients.
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Figu_ 1.--Two dimensional inte_olation info_ation.
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Figure 2.--Plots for the linearized Euler equations with M x = 0.5 and My = O, using the fourth order exact propagator algorithm
along a wall. (a) Pressure at t -- 15. (b) Pressure at t = 45. (c) Pressure at t = 75. (d) Pressure at t = 150.
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Figure 3.---Plots for the linearized Euler equations with M x = 0.5 and My = O, using the fourth order exact propagator algorithm

in a duct. (a) Pressure at t = 15. (b) Pressure at t = 45. (c) Pressure at t = 75. (d) Pressure at t = 150.
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